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ABSTRACT 

 
The U.S. Army’s Engagement Skills Trainer (EST) uses sensors on simulated weapons to collect valuable data 
about a soldier’s performance during marksmanship exercises. That data is available to an instructor for coaching 
and remediation purposes. However, experience shows that accessing the data, reviewing the data, and providing 
feedback to a trainee can be a time consuming process. This environment presents challenges when considering the 
number of trainees who must complete this training and the limited number of instructors available. This also as-
sumes that instructors are capable of accurately interpreting the data and applying effective remediation. Simulators 
like the EST are prime candidates for the incorporation of an Intelligent Tutoring System’s (ITS) capabilities. The 
goals of an ITS are to collect data from a system, make inference on that data as it relates to defined metrics, and to 
provide formative feedback when data is found to deviate from a specified standard. For this purpose, a system re-
quires models to compare data against. In this paper, we will present the results of the first phase of a study to apply 
ITS technology to the fundamentals of marksmanship. Models created in this phase will be integrated into an adap-
tive training system prototype built within the Generalized Intelligent Framework for Tutoring (GIFT) for future 
experimentation. Data was collected across eight experts from the U.S. Army Marksmanship Unit’s service rifle 
team as they conducted marksmanship tasks. These models are built around sensor data collected during execution, 
with each sensor being selected based on their link to the fundamentals of marksmanship. We will review the tech-
niques applied to the data for model construction, trends found in the data that are generalized across each expert, 
and how the models will be used to diagnose error and trigger remediation.   
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INTRODUCTION 
 
Marksmanship is a complex psychomotor skill demanding high physical and mental coordination. To strike a small 
target, possibly hundreds of yards away, a soldier must have a combination of proper breath control and body posi-
tioning, fine motor control of muzzle wobble and trigger squeeze, and sight alignment between the rear sight, front 
sight and target (Pojman et al., 2009). In the U.S. Army, all soldiers begin with Basic Rifle Marksmanship (BRM) 
training that focuses on the fundamentals of marksmanship, grouping and zeroing techniques with an M16-/M4-
series rifle, and transitional firing that culminates with a qualification event. Traditionally, this training includes 
education in the classroom, practice on the Engagement Skills Trainer (EST) marksmanship simulator, and live fire 
on outdoor ranges. The EST is a simulator developed for initial exposure to the interaction components of BRM and 
supports all facets of firearms instruction, including weapon qualifications associated with basic training.  
 
The purpose of this project is to identify tools and methods to improve the diagnostic capability of the EST to sup-
port better training practices. Currently, much of the instruction is based on subjective assessment of performance 
outcomes. For instance, in a live training event on an outdoor firing range, an instructor reviews a target after a 
shooting event and applies his or her expertise on what may have caused errors in shot placement. Unfortunately, 
due to the high number of soldiers who must complete this training every year, the Army does not have the re-
sources to provide a hands-on coach for every individual during every firing event. While an instructor is able to 
provide one-on-one feedback to a Soldier who is failing to perform to standard, he or she often does not have all of 
the data needed to immediately and effectively diagnose the cause of the errors. Furthermore, important behaviors 
involved in the execution of a shot (i.e., breathing, fine motor control during trigger squeeze, and sight alignment) 
are difficult to observe without using a system of sensors to collect data. 
 
On the EST an instructor replicates this process, but has additional information at his or her disposal including aim 
trace, trigger pressure and cant of the weapon (before, during and after the shot), which is provided through data 
logged from sensors embedded directly on the weapon. The instructor can access and use this information to provide 
focused feedback to the group or individual in an attempt to improve performance. However, proper use of these 
sensor technologies on a simulator like the EST is no guarantee. Instructors have to take time to review the data, 
interpret the data, and then to provide individual recommendations to struggling shooters. Given the vast number of 
trainees who must complete this training and the limited number of instructors available, this environment presents 
challenges. The above instructor-in-the-loop scenario additionally assumes that the instructors are capable of accu-
rately interpreting the data and applying remediation in a consistent fashion. The reality is that some instructors 
misunderstand parts of rifle marksmanship doctrine and/or inconsistently apply training techniques and procedures 
(James & Dyer, 2011). This can become additionally problematic when training is conducted using a complex simu-
lator like the EST because of factors such as: (a) a lack of instructor familiarity with the system’s features and capa-
bilities, and (b) a lack of guidance with regards to best-practices for conducting training using the simulator. 
 
One method of ensuring reliable, individualized, targeted diagnosis and instructional feedback is through the use of 
Intelligent Tutoring System (ITS) technologies. ITSs have already proven to be an effective and reliable tool for 
improving learning by personalizing instruction around the knowledge, skills, and abilities of a given learner, espe-
cially within well-defined domains of instruction like math and physics (e.g., VanLehn, 2011, Stottler, Harmon, & 
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Michalak, 2001, Sherry, Feary, Polson, & Palmer, 2000). What is not currently seen in the field is the application of 
these technologies to support psychomotor related domains, such as marksmanship. The psychomotor ITS training 
research presented in this work is the first of its kind. Conceptually, an ITS integrated into the EST could receive 
marksmanship behavioral and performance data produced by a trainee and instantly provide the instructor and/or 
student with feedback intended to correct performance. This could enhance the system’s ability to provide effective 
training by eliminating the variability in accuracy and consistency of instructor error diagnoses. Further, by being 
able to address every trainee’s problems immediately, an ITS could help the Army improve the efficiency and cost 
effectiveness of marksmanship training. 
      
In related work, Chung, Nagashima, Espinosa, Berka, & Baker (2009) found that individualized instruction based on 
errors related to shot placement, body position, breathing, trigger squeeze and muzzle wobble was effective in im-
proving shooting skills. In order to measure breathing and trigger pressure, a sensor-embedded weapon simulator 
was used like those on the EST. However, in that study, a human coach was used to review the data and then diag-
nose problems. Whereas in an ideal situation, an ITS would review the data (faster than a human could) and diag-
nose the problems (more consistently than a human could). This assumes, of course, that an ITS has the capability to 
analyze the shooter data and determine how it compares to the ideal performance. Thus the goal of this study is to 
collect performance data from expert shooters and use that data to create an expert model for use in an ITS. 
 
Research Objective 
 
The focus of this controlled laboratory study is to measure expert performance in the context of BRM. The overall 
research goal is to build models of expert performance on the fundamentals of marksmanship for inclusion in an 
adaptive marksmanship training system embedded with intelligent tutoring functionality. Models were built on sen-
sor technologies that monitor variables linked to: (1) trigger pressure, (2) cant/angle of the weapon’s orientation, and 
(3) breath control. Aim trace data was also collected, however we have not yet completed the analysis of this varia-
ble; as such, it will not be included in the results. The data was collected across a sample of expert marksmen, which 
was ultimately used to examine the efficacy of developing a generalized expert model based on trends and correla-
tions present in data outputs. Resulting models will be transitioned into ARL’s Generalized Intelligent Framework 
for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012) for the purpose of conducting follow-on experi-
mentation, and assessing their use in an operational context.  
 
Hypotheses 
Sensor data collected during interaction with a simulated marksmanship training system will correlate across desig-
nated experts when performance is deemed excellent.  

a. Prediction 1.1:  A metric for application of trigger pressure, as gauged from the mounted sensor, 
will correlate across expert participants, with general trends observed individually 

b. Prediction 1.2:  Breathing patterns, as monitored by a breathing strap sensor, will correlate across 
expert participants 

c. Prediction 1.4: The cant/angle of a weapon’s orientation, as monitored by a mounted sensor, will 
correlate across expert participants.  

 
METHODOLOGY 
 
Apparatus 
 
The experimental testbed is an integrated system of software and hardware components (see Figure 1). The software 
components are the SCATT marksmanship training software (SCATT Shooter Training Systems, 2013) and the 
GIFT  (Sottilare et. al, 2012). The hardware components are an airsoft M4 carbine rifle that produces realistic recoil, 
a pressure sensitive trigger, a Weapon Orientation Module (WOM), and a Zephyr physiological monitor. 
 
SCATT Shooter Training System 
SCATT WS1 is used for fixed target marksmanship training at distances from 5 to 10 meters and imitates shooting 
up to 1000 meters away. The system operates through an electronic optical sensor that is fixed to the barrel of a 
weapon. The shooter aims at the SCATT electronic target. The system logs the point of aim in real-time as measured 
through the optical sensor. When the weapon’s trigger is activated, the point of impact is recorded. All data can be 
logged accordingly for post-hoc analysis. 
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Hatalom Electronic Air Recoil Trainer (HEAT) Rifle 
The HEAT is a simulated assault rifle weapon that has the 
look and feel of the real U.S. Army M4 (see Figure 2). Us-
ing a standard, commercially available 12 gram carbon 
dioxide (CO2) cartridge, the HEAT is able to produce a 
relative approximation of the noise and feel of weapon re-
coil without firing any projectiles. 
 
Electronic sensors were attached to the HEAT in order to 
collect data about weapon orientation, trigger pressure, and 
aiming. One of these is an optic laser mounted near the 
muzzle of the weapon and pointed downrange at the target. 
This laser is used by the SCATT Shooter Training System 
(described above) to determine muzzle position (and thus, 
accuracy and muzzle wobble).  
 
SCATT Trigger Sensor 
The HEAT rifle was modified for the inclusion of the 
SCATT STS Trigger Sensor, which is used to record an 
individual’s application of pressure on the trigger over the 
course of a shot. This includes the effort applied by the shooter leading up to the fire event as well as following the 
release of the shot. This sensor replaced the standard HEAT rifle trigger. 
 
Inertial Labs OS3D Weapon Orientation Sensor 
In addition to the SCATT laser emitter and trigger sensor being fitted directly on the HEAT rifle, an orientation 
sensor developed by Inertial Labs was also installed. This sensor, called the OS3D, combines sensor technologies of 
magetometers, gyroscopes, and acceleratometers to measure absolute orientation of an object (inertaillabs.com). The 
OS3D was mounted directly atop the barrel of the rifle enabling the collection of metrics that convey pitch, roll, and 
yaw (PRY). This information associates with the position of the weapon while an individual produces shots on the 
SCATT target and will be used to determine how experts and novices hold the weapon during task execution. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Simulated M4 Rifle with Mounted Sensors 
 
Zephyr Technology BioHarness BT 
The BioHarness BT is a compact electronics module that attaches to a lightweight fabric strap which incorporates 
Electrocardiogram and breathing detection sensors. The sensor wears like a heart rate monitor avid runners use when 
exercising and is completely wireless. For this experiment, the data of interest are the breathing  metrics the device 
provides. This information will be used to monitor a participant’s breathing pattern while executing groups of shots. 
 
The Generalized Intelligent Framework for Tutoring (GIFT) 
GIFT is an evolving architecture-based project intended to provide the tools and methods for authoring and deliver-
ing adaptive training in a variety of instructional domains (Sottilare et al., 2012). This generalized approach enables 
system developers to quickly construct intelligent tutoring capabilities through a set of standardized tools and mes-
saging schemas. For this study, GIFT provided the architecture required to create a unified marksmanship system 

Figure 1. The experimental system: Pictured from 
left to right are the target, the simulated weapon, a 
laptop running the marksmanship program, and 

the physiological sensor system. 
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from which data was collected and logged while subjects interacted with the SCATT training environment. Modules 
in GIFT were authored to enable control of the SCATT software along with the collection of sensor data being 
logged across multiple pieces of hardware. During the second phase of this study, the same modules will be modi-
fied for data assessment and feedback provisioning. 
 
Participants 
 
The expert marksmen for this study were recruited from the U.S. Army Marksmanship Unit’s (AMU) Service Rifle 
Team out of Fort Benning, GA. Based on discussions with a leading researcher in the field of expert model devel-
opment at the University of Central Florida, Dr. Avelino Gonzalez, the target sample for this study was eight. This 
number allows for exploratory analyses to determine if a generalized model of expert performance can be construct-
ed that takes into account all subject data. In the event that no correlation was observed across experts, the use of a 
single expert (with best performance) would be the path forward. Of the eight experts recruited, seven were male 
and one was female, with an average age of 28 across all participants. Several members were repeat national cham-
pions in service rifle competitions, and majority were recognized as being one of the top one-hundred shooters in the 
country, having received the President’s Hundred Tab. Subjects in the experiment were volunteers and received no 
compensation for participation. Superiors had no influence over subordinates in determining their participation nor 
were they present during data collection. All involved in the experiment will remain anonymous.  
 
Procedure 
 
Upon arrival, participants received a brief overview of the study and were asked to fill out an informed consent. 
Next, subjects were fitted with the BioHarness breathing strap, and the sensors were then synced to GIFT for time-
synced data logging. This process took approximately 10-15 minutes. Participants then filled out a Demographics 
Questionnaire covering experience in the Army Marksmanship Unit and the various accolades and awards they won 
throughout their career. 
 
Following completion of the surveys, participants were presented a short PowerPoint slideshow that reviewed the 
purpose of the study and the details of the experimental equipment. This included information on the SCATT Shoot-
er Training System, the HEAT rifle they would interface with, and all the associated sensors that were logging data 
during task execution.   
  
Next, participants were given the opportunity for familiarization training with the system. They were instructed on 
task procedures, and then practiced with the weapon for 5 minutes. Upon completion of the practice phase, subjects 
were prepped for the main data collection window where they were instructed to produce shot groupings consisting 
of five rounds, with the goal to get all shots as close to center of target as possible. There was no set limit for the 
number of shot groupings to produce. All subjects were given 18 minutes, across two BRM stances (prone and 
kneeling), to produce as many groupings as they could, with self-regulated breaks taken in between. Upon comple-
tion of data collection with the SCATT Shooter Training Systems, participants completed a post-experiment survey. 
This was followed by a short debrief where the subject was given the opportunity to ask questions to the experi-
mental proctor and to discuss next phases of the research. 
 
Independent Measures 
 
The Independent Variable (IV) for this study is the associated interaction mode with the SCATT trainer. The inter-
action modes consist of two unsupported firing stances: (1) prone and (2) kneeling. As the goal of the study is to 
build models of expert performance, the IVs will distinguish marksmanship behaviors to assess if differences are 
observable across the two firing conditions. To support model development, correlations and trends will be exam-
ined with relation to the collected Dependent Variables and how they measure up with performance for the associat-
ed interaction mode. 
 
Dependent Measures 
 
Dependent measures are associated with two distinct categories. There are measures linked to performance out-
comes that dictate the quality of a firing event, and there are measures linked to operator behaviors that occur during 
the execution of a shot (see Figure 1). Behavior metrics are used to observe how an expert functions during a firing 
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event and to determine if experts consistently do the same things across events. The measures were selected based 
on their relationship to the recognized four fundamentals of BRM (Army, 2008). Table 1, below, describes the 
measure being collected and its relationship in the process of expert model development. 
 

Table 1. Description of Associated Dependent Measures 

Category Measure Type Description Data Source Expert Model

Performance 

Shot Grouping 
Distance 

 Measure computed by averaging the distance of each 
shot to the designated center point of each 5-shot cluster 

 Used to gauge consistency across shots 

SCATT Shot     
Placement Values 

n/a 
(direct) 

Shot Grouping 
Quality 

  Measure computed by averaging distance of each shot to 
the center of target 

  Used to gauge accuracy across shots 

SCATT Shot    
Placement Values 

Sight Picture 
(direct) 

Behavior 

Respiration Rate  Provides real-time monitoring of respiration patterns 
during execution of a shot 

BioHarness BT 
Breathing Strap 

Breath Control 

Weapon’s 
Position 

 Provides real-time pitch, cant, and yaw measures used to 
monitor weapon position during execution of a shot 

OS3D Weapon   
Orientation  

Module 
Body Position 

Aim Trace 

 Provides real-time capture of optical sensor reading in 
relation to the SCATT target. Used to monitor stability 
and control of the weapon leading up to the execution of 
a single shot. 

SCATT Optical   
Sensor 

Incomplete 
(analysis in  
progress) 

Trigger 
Pressure 

 Provides real-time monitoring of the pressure applied to 
the rifle’s trigger during the execution of a shot 

SCATT Trigger 
Sensor 

Trigger  
Pressure 

 
Data Analysis 
 
The analysis has been conducted in the following phases: 
 
Phase I - Introductory exploration for a match between experts. The basic research question that this analysis seeks 
to answer is "Are there commonalities for marksmanship performance observations among experts?" Data will be 
normalized, graphed, and statistically profiled for similarity measures. In the event that there are no significant cor-
relations among experts, then the expert which is most "representative" of the expert group will be chosen for Phase 
II. Generally, a "n=1" sample is not statistically significant, but this method of analysis has been used in other expert 
analysis studies (if the person is a 'representative expert', then instruction towards this standard is logically sound). 
 
Phase II - Construct statistical profiles of expert(s) data, and establish boundary conditions which seek to identify an 
event which would not occur among experts. Appropriate thresholds for error identification will be constructed via 
standard deviation metrics (ie. “you are doing something dissimilar from an expert marksman”). These standard 
deviation metrics will be tested in a future pilot study. Leave-one-out cross-fold validation is used to validate the 
resulting models.  
 
RESULTS 
 
Qualitative Within-Subject Analysis 
 
The within-subject analysis generally comes to the conclusion that the manner in which experts fire across shots is 
internally consistent. As an example of this internal consistency, Figures 3a, 3b, and 3c show trigger pull, breath 
control, and weapon position data across 30 individual shots taken from one expert. Qualitative analysis reveals 
general trends across the data sets that represent consistent behavior during the execution of a shot. The middle point 
in each of the below figures represents the period after the trigger has been pulled. Similar trends are observed 
across all other experts. 
 
For each of the experts, there is a qualitative analysis where similar behavior to the above is observed across all 
shots. Trending information was noted for each expert during this analysis in an attempt to answer the question 
“Does the expert exhibit similar behaviors for each shot taken”?  The observed trends can be simply described and 
appear, on the surface, to be consistent with the fundamentals of BRM (Army, 2008). This validates the approach in 
that the correct items are being measured by the system. In brief, these items are: 
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 For trigger squeezing data, pressure applied gradually increases up until a shot is taken 
o Observed in data through gradual, mostly linear, slope in the trigger pull data 

 Breathes are held during the time period prior to shots and trigger squeezes, and show little variability 
o Observed in data through breathing data coalescing to a single value across all shots 

 Pitch, Roll, and Yaw (PRY) values stabilize in a time period prior to the shot, showing little variability 
o Observed in data through variability of the PRY values before and after the shot 

 

 

 
 

 
Of true interest, however, is the creation of a general model of marksmanship fundamentals. The answer to the ques-
tion of whether marksman fired in a manner which is similar to the other experts was among the things that were 
investigated, beginning with the following segment. 
 
Model Development Considerations 
 
This data represents the recording of superior perform-
ers in their environment of expertise. This results in, 
expert shot performance that is vastly superior to  typi-
cal performance by novice shooters. Models created for 
this effort are intended to be descriptive in the behav-
iors associated with expert performance, with an inten-
tion for them to provide prescriptive capabilities within 
an ITS. These models will be used in order to diagnose 
misaligned (non-expert) novice behavior, rather than to 
catch novice errors, although these are similar tasks. 
There is no guarantee, however, that these models will 
catch the most common novice mistakes. In order to 
create novice-prescriptive models, expert-annotated novice 
performance data is required. The collection of such data is 
left to a second phase of this study, wherein novices will be 
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Figure 3. Collection of shot summary figures for a 
single expert (Top Left: Trigger Pressure (3a); 
Top Right: Respiration Rate (3b); Bottom Left: 
Weapon Orientation Data) (3c). Data within and 
between experts is found to be generally similar 
across shots. Similarity is examined in greater 

detail in quantitative analysis.  X axis represents 
30 seconds of time in all diagrams.  Y axis repre-

sents values reported by individual sensors, which 
is not as relevant as the variances which are quan-

titatively observed. 

Figure 4. A sample model for one expert, applied 
to himself, across 11 shots. Red lines indicate 

mean and variance boundaries.  X-axis is time, Y-
axis is derived values (see below). 

Figure 3a Figure 3b 

Figure 3c 
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assessed via the descriptive expert models described in the following subsection. This is discussed more thoroughly 
in the future work section. 
 
In terms of implementation techniques, there are an infinite number of possible models, with little way to evaluate 
relative superiority aside from comparison to other experts. As an example, consider a measure of average trigger 
slope in a time window of 4 seconds prior to shot. Why not use 6 seconds?  8 seconds?  0.5 seconds?  An infinite 
number of windows condensed into an average shot profile?  A time normalized shot sequence starting from first 
trigger touch to final shot?  In the interest of making models simple, understandable, and transferable, the models 
presented below are aligned with marksmanship fundamentals and observed trends. They are standard deviation 
(SD) based, profile-based, and applied to the other experts with measured data. Such an approach has face and nu-
merical validity in the description of expert behavior, but may be able to be bypassed by novices. This type of model 
adjustment is discussed in future work. An example of such an assessment is shown in Figure 4 with SDs serving as 
error thresholds. 
 
Quantitative Between-Subject Analysis 
 
For the between subjects analysis, the hypothesis is that experts perform similarly to each other. While this is quali-
tatively verified visually via graphs of various expert variables, it must be implemented mathematically in order to 
serve as an implementation inside of a psychomotor ITS. All measurements were investigated in series in an effort 
to create such a model. 
 
Trigger Squeeze 
The variable of trigger squeeze, as seen from the above graphs can be described verbally as a “slow squeeze preced-
ing the shot”. This can be described mathematically as “the slope of the smoothed line in the time period prior to the 
shot is positive”. This smoothing was performed to remove the noise present as a byproduct of data collection 
(Cooper, 1998), and the above figure is shown post-smoothing. Given that the model is intended to evaluate whether 
a novice falls outside of two standard deviations of the expert model, this value is examined, and described in Equa-
tion (1). 

ሾ݊ሿݕ ൌ
ଵ

ఛ
ሺ݊ሻݔ 

ఛିଵ

ఛ
ሺ݊ݕ െ 1ሻ,            window value (tau) of 0.5 seconds was chosen empirically.                  (1) 

The discreet time derivative measure was also applied in order to slope over time.  This is described in Equation (2). 

(
d

dx
ൌ ሺ݊ܶሻݕ ൌ 1

8
∗ ܶሾെݔሺ݊ܶ െ 2ܶሻ െ ሺ݊ܶݔ2 െ ܶሻ  ሺ݊ܶݔ2  ܶሻ  ሺ݊ܶݔ  2ܶሻሿ)                   (2) 

 
The model produced by this method is that expert shooters in the prone position have an average smoothed deriva-
tive measure of 8.3, with a 3.9 standard deviation, in the shooting range of 10 seconds prior to shot, while kneeling 
shooters have values of 6.79 / 2.185 in the range of 13 seconds prior to shot. Generally, experts pull the trigger 
slower for a longer period of time when kneeling. These values were validated through the use of leave–one-out-
cross-validation, where a model made from 7 experts was tested against the remaining expert. No expert fell outside 
of two standard deviations of the values produced from the other marksman in this condition, leading to an experi-
mental confirmation of the hypothesis that experts fire in a manner which is similar to the other experts, and which 
is logically consistent with the field manual and personal feedback received by experts. In use as a prescriptive mod-
el, this indicates that none of the experts would receive feedback for discrepancy on trigger pull fundamentals. 
 
Breathing 
The variable of breathing, as seen from the above graphs can be described verbally as a “holding a breath prior to a 
shot”. This can be described mathematically as having “little absolute value change of breathing variable in the time 
prior to the shot”. The measure which was selected to create the expert model is the standard deviation, which 
measures the square root of the variance. The general expert trend lends itself to this type of analysis. 
 
The model produced by this method is that expert shooters in the prone position have an average standard deviation 
measure of 0.11, with a 0.10 standard deviation, in the shooting range of 1.6 seconds prior to shot, while kneeling 
shooters have values of 0.15 / 0.13 in the range of 2.21 seconds prior to shot. Generally, experts hold their breath 
longer in the kneeling position and exhibit more variability. Breathing values, as reported by the BioHarness system, 
are generally between 40 and 65, but are dependent on chest size, which standard deviation values serves to remove. 
These values were validated in the same manner as trigger squeeze. In using these two measurement models, only 2 
experts made mistakes related to this item twice inside of a five shot grouping (when feedback would have been 
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assigned as part of an ITS). The vast majority of the time (90 5-shot groupings) experts breathe slowly prior to 
shooting, which may result in a 2% total error rate of the model, and was deemed acceptable for model creation. 
This generally implies experimental confirmation of the hypothesis that experts fire in a manner that is similar to the 
other experts and which is logically consistent with the manual, training, and personal feedback received by experts. 
 
Weapon Orientation 

Table 2. Descriptive Model Statistics for Weapon Orientation 
 P SD mean P SD SD R SD mean R SD SD Y SD mean Y SD SD 
Prone 0.0700 0.0543 0.1140 0.0919 0.0717 0.1077 
Kneeling 0.0939 0.0655 0.1449 0.0869 0.1161 0.218 

 
Weapon orientation was measured with Interial Labs’ OS3D sensor. The variable of orientation, as seen from the 
above graphs can be described verbally as a “stabilizing the weapon prior to a shot”. This can be described mathe-
matically as having “little absolute value change of orientation variable in the time prior to the shot”. The measure 
which was selected to create the expert model is the standard deviation in the same manner as was performed for the 
breathing measurement. The general expert trend lends itself to this type of analysis. The model produced by this 
method is described in table 2, with a defined range of 5.2 seconds prior to shot for both prone and kneeling. Gener-
ally, although aligned in time, shooters expressed more variability in the kneeling position. Orientation values, as 
reported by the OS3D, are absolute values between 0 and 360 degrees across the three dimensions of PRY. Using 
these measurement models, only 1 expert made mistakes related to this item twice inside of a five shot grouping in 
the prone condition. The same behavior was observed for another, different, expert in the kneeling condition. This 
expert generated models significantly different than the other experts for all shot groupings, which generally repre-
sents doing something different and is cause for future analysis. This expert was the third worst in terms of perfor-
mance, which gives confidence that these models will be usable for a general population. Inclusion of the abnormal 
expert indicates a 15% total error rate, while exclusion of the dissimilar expert represents a 0% total error rate in the 
prone condition, while the kneeling condition indicates a 15%/1% error rate. 
 
Cross-Validation Summary 
 

Table 3. Leave-one-out Cross Validation Outcomes 
KNEELING 

  

PRONE 
Leave Out 
Expert 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 
Trigger 
Pressure     

Avg 6.5206 6.4420 6.5115 6.8753 7.2269 7.2238 6.8208 6.7053 8.2369 7.8943 8.0533 9.5212 8.0377 8.4645 8.3794 7.8640 

Stddev 2.2394 2.2501 2.3957 2.0022 1.8520 2.1366 2.4487 2.1575 3.8445 4.0035 3.8347 3.7677 3.9862 3.9832 4.0045 3.9797 
Breathing     

avg stddev 0.1549 0.1537 0.1276 0.1456 0.1570 0.1548 0.1357 0.1317 0.1184 0.1263 0.1090 0.1124 0.1209 0.1243 0.1077 0.0997 

std stddev 0.1391 0.1472 0.1310 0.1301 0.1491 0.1448 0.1237 0.0953 0.1011 0.1066 0.0976 0.0988 0.1067 0.1050 0.0731 0.0760 
PRY 
measures     
P avg 
stddev 0.0909 0.1008 0.0967 0.0818 0.0877 0.0980 0.1008 0.0943 0.0677 0.0763 0.0688 0.0556 0.0738 0.0712 0.0741 0.0726 
P std 
stddev 0.0687 0.0716 0.0679 0.0488 0.0593 0.0703 0.0719 0.0651 0.0557 0.0613 0.0549 0.0332 0.0568 0.0571 0.0577 0.0578 
R avg 
stddev 0.1459 0.1559 0.1443 0.1320 0.1444 0.1480 0.1480 0.1409 0.1178 0.1248 0.1135 0.0917 0.1222 0.1201 0.1090 0.1129 
R std 
stddev 0.0928 0.0956 0.0840 0.0753 0.0895 0.0894 0.0925 0.0763 0.0974 0.1034 0.0962 0.0680 0.0980 0.0975 0.0812 0.0935 
Y avg 
stddev 0.1221 0.1271 0.0897 0.1071 0.1173 0.1215 0.1254 0.1188 0.0762 0.0780 0.0686 0.0484 0.0769 0.0762 0.0736 0.0754 
Y std 
stddev 0.2438 0.2451 0.0697 0.2284 0.2396 0.2371 0.2469 0.2351 0.1205 0.1221 0.0960 0.0487 0.1208 0.1202 0.1168 0.1164 

Prescriptive 
Feedback 
Assigned? No No No 

Yes:     
Weapon 
Position 
(all) No No No 

Yes: 
Weapon 
Position    
(1 Group) No No No 

Yes:     
Weapon 
Position 
(all) No No 

Yes: 
Breathing 
(1 
Group) 

Yes: 
Breathing 
(1 
Group) 
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Leave-one-out cross-fold validation was used to validate the resulting models to ensure their efficacy for describing 
performance across the fundamentals of marksmanship in a generalized fashion. This is achieved by developing 
models across n-1 participants, leaving a single subject’s data to confirm the resulting model matches their behav-
ioral patterns. This was performed across all possible combinations of participants to ensure it held constant in all 
facets of model development. At the most basic level, this answers the question of “if this model created from the 
other experts was used to assess this expert, would it find this experts data to be differing?” Generally, the finding 
from Table 3 is that the created metrics for measurement of expert items can be created in a manner which describes 
the performance of other experts. If these were implemented in an ITS with the purpose of diagnosing non-expert 
performance, the vast majority of the experts would be able to interact with the system without receiving feedback. 
The exception to this observation is Expert 4, who appears to perform weapon orientation different from the other 
experts, and would be assigned feedback at each stage (see “prescriptive feedback assigned” in table). This expert 
had firing scores analyzed cursorily to answer the questions that this raises, such as “is this expert performing activi-
ties that make them better than the other shooters, which the other shooters may consider adopting?”  The expert 
placed 5th in a rank-ordered list of the 8 experts in the prone position, but 2nd among the 8 experts in the kneeling 
position (when 33% of the values conformed to the other expert models). This warrants some amount of future in-
vestigation, as the expert conforming to other expert behavior results in increased performance, but gives confidence 
in the overall use of the models. 
 
DISCUSSION 
 
In an effort to create an adaptive marksmanship ITS, the above results support the application of a generalized mod-
el of expert performance which may be used to diagnose novice error across fundamental principles of BRM. The 
analysis is promising in that it highlights similar behavioral trends across experts when performing standard group-
ing procedures using the apparatus developed for data collection. 
 
The next step is to integrate the established assessment parameters within GIFT. The models can then be used to 
support real-time diagnostic functions when a non-expert is interacting with the training platform. This will enable 
GIFT to collect performance and behavior data from a user, compare that data against expert performance, and to 
diagnose behavioral errors as informed by the expert models and the principles they are linked to. As expert models 
are built to designate specific trends found in the data with concepts linked to task execution, parameters will be 
defined for the purpose of recognizing individuals that deviate away from desired behaviors. To accomplish this, 
three primary tasks must be completed. First, the concepts of BRM will need to be represented within a GIFT do-
main model. This involves breaking down the task into a hierarchy of concepts and subconcepts. For each concept 
and subconcept, thresholds will be defined that designate assessment values of ‘at’, ‘above’, or ‘below’ expectation, 
as deemed by GIFT’s standardized assessment logic (Sottilare, Brawner, Goldberg, & Holden, 2013). These thresh-
olds will be used by GIFT’s learner and pedagogical models to determine novice error and the type of remediation to 
provide in an attempt to correct and improve subsequent performance.  
 
While this paper  reports on the development of expert models for support of an adaptive marksmanship training 
capability, the ultimate outcome is to establish a validated testbed for the purpose of running studies across an array 
of topics, including feedback techniques and optimal training practices (e.g., blocked vs. random target practice). 
The last task before having a fully functional initial testbed environment is to develop instructional tactics and inter-
ventions for diagnosed errors and author the triggers that they act on. For the initial implementation, we will use 
video-based instructional interventions as previously applied by Chung et al (2009). The videos will include a SME 
describing the fundamental components of the concept assessed at ‘below expectation’ and providing tips on im-
proving performance. For this phase of the study, this will be the only type of instructional tactic used for coaching 
and remediation. It is also important to note that the feedback authored will be fairly general in detail. This is due to 
expert models only being able to identify individuals not performing in an expert-similar manner, rather than identi-
fying specific root causes of error.  
 
FUTURE WORK 
 
With an implemented version of GIFT for training BRM, phase two will result in an experiment using novice first-
time shooters as the sample population. This experiment will serve two purposes. First, it will provide pilot data to 
test and validate the expert model’s ability to interpret novice performance in real-time and diagnose errors based on 
outcomes. This will enable a thorough follow-on analysis to compare novices against experts and to locate common 
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differences between both populations, as seen in (Berka et al., 2008). In addition, this experiment will provide initial 
evidence of whether individualized instruction autonomously delivered by an ITS is an effective form of training for 
learning BRM skills. 
 
With a goal of improving the models used to diagnose error in novices, this phase will also include a panel of SMEs 
in BRM to observe the data generated from novices. As the initial expert models generated can be used to dictate 
what an individual is not doing similar to experts, these models do not have the ability to accurately determine what 
is truly causing the error, which in turn results in the system’s inability to provide focused remedial feedback or to 
truly validate the approach taken during model creation. The data from witnessing experts on the use and validation 
of the models of marksmanship and associated feedback will be used to develop a buggy–performance library of 
common novice errors, as well as assess the overall validity of the above handcrafted models. The generation of a 
labeled dataset for marksmanship which identifies exactly which type of error a trainee is making will be beneficial 
to the research. It is worth noting that how errors are annotated will be a subjective task completed by SMEs. As 
James and Dyer (2011) note, this can lead to discrepancies in diagnosis as instructors and SMEs in this domain are 
inconsistent from each other in the tactics and procedures they teach along with their complete understanding of the 
concepts involved in the task. At this point, two competing models will be in existence, without the knowledge of 
relative superiorities. Recommendations from this follow-on work are intended to point the way to other types of 
psychomotor ITS systems (i.e., Do you have to collect annotated mistake information?). 
 
CONCLUSION 
 
This work is among the first to address the need for automated, personalized, and intelligent psychomotor training. 
Methods for measurement, model creation, expert validation, and novice diagnosis in this type of domain are not 
addressed well in other literature. This paper presents a way to measure items of interest, create models without a 
barrage of annotated or novice data, validate those models for reasonability, and apply them in a real context. It is 
hoped that future research in psychomotor training follows and improves upon the effort set forth in this work.  
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