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Examining Opportunities to Reduce the Time and Skill for 

Authoring Adaptive Intelligent Tutoring Systems  

Robert A. Sottilare 

U.S. Army Research Laboratory
 

Introduction 

Intelligent tutoring systems (ITSs) as an instructional medium to provide one-to-one tutoring have been 

shown to be more effective learning tools than traditional classroom training (VanLehn, 2011; VanLehn, 

et al., 2005; Lesgold, Lajoie, Bunzo & Eggan, 1988) and more cost effective than providing one-to-one 

human tutoring in large organizations. It is estimated that it requires between 100 and 200 hours of a 

multidisciplinary team’s time are required to author (develop) one hour of instruction for delivery by 

ITSs. Authoring teams can be generalized to include these highly skilled disciplines: computer scientists, 

instructional designers, human factors psychologist, learning specialists, and domain experts. 

The time and skill required to author ITSs along with their associated high cost is a major barrier in their 

widespread adoption. This paper identifies authoring challenges and gaps in ITS research, and examines 

emerging and future opportunities to produce tools and methods (e.g., automation) that reduce the tedious 

process of authoring and make ITS authoring commonplace for the masses. Toward this purpose, our 

examination focuses primarily within two categories: methods to reduce authoring requirements and 

methods to automate authoring processes. 

Recommendations are also provided for future development of authoring tools and standards within the 

Generalized Intelligent Framework for Tutoring (GIFT), an open-source tutoring architecture for author-

ing, automated management of instruction, and analysis of effect (Sottilare, Brawner, Goldberg & 

Holden, 2012; Sottilare, Holden, Goldberg & Brawner, 2013). GIFT development is being led by the U.S. 

Army Research Laboratory with contributions by leading academic, government, institutions in the ITS 

field. As of this writing, www.GIFTtutoring.org has over 400 users in 30 countries that provide a regular 

stream of guidance to improve GIFT’s performance as an authoring, instructional, and analysis tool. 

Authoring Goals for Intelligent Tutoring Systems 

Our goal is to reduce the need for authoring where possible through interoperability standards and reuse. 

To augment this goal, we also want to reduce the knowledge and skill needed to author by developing job 

aids and other automation to support the authoring process. Based on these overarching goals, we pose the 

following authoring goals for ITSs, which have been adapted from Murray (1999), Murray (2003), 

Sottilare and Gilbert (2011), Sottilare, Goldberg, Brawner, and Holden (2012), and Sottilare (2013). 

Decrease the effort of the author 

It may be possible to decrease the effort to author ITSs by establishing and documenting standards for 

processes, tools, and reuse of components. Some existing technologies (e.g., GIFT, Cognitive Tutor 

http://www.gifttutoring.org/
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Authoring Tools) may be ready-made candidates for ITS standards. Templates for the development of 

domain models and content may also reduce the effort required to author ITSs.  

Another authoring goal is to establish standards to support rapid integration of external training or 

tutoring environments (e.g., serious games, virtual simulations, presentation content) to provide reuse of 

content and reduction of authoring effort. Standards for rapid integration of external environments will 

lower the need to create new content for practice and knowledge presentation, but will add the burden of 

matching appropriate content to course objectives. Care should be taken by authors to provide metadata to 

ease the search and location of appropriate content and scenarios by subsequent authors.  

Decrease the skill threshold and help organize knowledge 

While it may not be feasible to have a totally generalized set of authoring tools for all disciplines, it may 

be possible to tailor authoring tool interfaces to meet the needs of specific user disciplines (e.g., instruc-

tional designers, course managers, researchers, and domain experts). Tools to aid the user in organizing 

their knowledge for quick recall and application can result in large authoring time savings. 

Implement good design principles 

This goal seeks to reduce the number of disciplines and the time required to author effective ITSs. An 

essential element of good design is the ability to support (i.e., structure, recommend, or enforce) good 

design principles. This will alleviate the author from the burden of knowing best pedagogical practices or 

optimal methodologies for user-system interaction.  

Enable rapid assessment of prototypes 

Enable rapid prototyping of adaptive tutoring systems to allow for rapid design/evaluation cycles of 

prototype capabilities. Decreasing the time required to evaluate prototypes will result in a more efficient 

model-test-model cycle and support more efficient authoring of new system capabilities.  

Challenges for Intelligent Tutoring Systems 

Adaptive systems as opposed to adaptable systems change themselves to tailor interaction to meet user 

needs. Adaptive ITSs change instructional strategies (direction, support, feedback) in response to changes 

in learner states (cognitive, affective, and physical) to optimize their learning (knowledge and skill 

acquisition, retention). 

Figure 1 shows how the ITS (tutoring agents and training environment) supports adaptive instruction of 

the learner. Per the zone of proximal development (ZPD) (Vygotsky, 1978), the tutor has options to 

increase/decrease challenge level in the training environment or increase/decrease the amount of support 

provided to bring the learner into a balance between the learner’s competence and the difficulty of the 

problem space presented by the training environment (e.g., game, virtual simulation).  
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Figure 1. Interaction between the Learner and ITS (tutoring agents & training environment) 

The ability of ITSs to adapt to the learner’s needs comes at a cost. More adaptation requires additional 

domain content to support changes to the challenge level (e.g., increased complexity) in the training 

environment. New content may also come with requirements for authoring additional assessments. This 

authoring task is generally completed prior to runtime, but emerging technologies are evolving to auto-

matically generate alternate scenario branches.  

Another challenge for ITSs is the ability to shift from one tutoring domain to another. The complexity, 

definition (well or ill defined), and dynamics of domains that cover cognitive (e.g., decision making and 

problem solving), affective (e.g., moral judgment, emotional intelligence), and psychomotor tasks (e.g., 

marksmanship and golfing) vary widely so developing standards for domain models within ITSs is a 

major challenge. 

Methods to Reduce Authoring Requirements 

This section discusses methods that show promise in reducing ITS authoring requirements. As discussed 

earlier, a primary method of reducing authoring requirements is to promote reuse through interoperability 

standards and links to external tutoring and training environments (simulations, games, tools, and training 

content). Below are three methods demonstrated but not yet in widespread use. 

Interoperability with serious games 

The gateway module within GIFT provides an interaction standard for integrating external tutoring and 

training environments. The popularity of serious games which are virtual games used for training tactical 

tasks (e.g., land navigation) brings an element of high engagement to game-based tutoring. Game-based 

tutors use the immersive qualities of games along with the instructional best practices of tutors to provide 

adaptive one-to-one learning experiences. Serious game scenarios may be reused, copied, and modified 

rapidly in the game’s scenario editor to support complex branching based on adaptation needs.  



Proceedings of the 2
nd

 Annual GIFT Users Symposium (GIFTSym2) 

6 

Figure 2 illustrates the type of data exchanged between the game interface layer and the tutor interface 

layer. Entity state, game state, and interaction data generated by the learner provide fodder for ITS 

instructional decisions while feedback and scenario change strategies recommended by the tutor are 

implemented as tactics in the game. Trials are ongoing to evaluate the effect of serious games with GIFT-

based tutors and AutoTutor. To date, GIFT has been integrated with Virtual BattleSpace2 (VBS2), 

vMedic, and the Unity Game Engine. Standardization of data exchanged between the game and tutor 

interface layers is a near-term opportunity to increase interoperability and reduce authoring time to 

integrate unique tutor-game pairings. Automation of this process is another opportunity discussed in the 

“Methods to Automate Authoring Processes” section of this paper. 

 

 

Figure 2. Notional Game-based Tutoring (Sottilare & Gilbert, 2011) 

Interoperability with external web services 

As part of recent releases of GIFT, ARL implemented calls to external AutoTutor webservices. 

Webservices available through GIFT support AutoTutor dialogue-based tutoring include: latent semantic 

analysis (LSA) of text to support near-real-time analysis of learner essay responses; conversational 

dialogues based on LSA assessments; interfaces to animated agents; and various other tutoring and 

delivery style mechanisms. Web service calls are data driven and therefore largely domain-independent. 

Interfaces have been standardized within GIFT to support interaction with commercial virtual humans via 

the Media Semantic character set. This addition to GIFT cuts out the need to program individual interac-

tions between the tutor and the learner, and thereby reduces authoring load. 
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Interoperability with hardware and software-based data collection methods 

Another feature of GIFT is the reusability of hardware interfaces. In some cases, it may be necessary to 

collect data about the learner to support the real-time tutoring decision process. These data might be 

collected through learner actions (e.g., speaking, typing) and a software-based capture method. ARL has 

also has created a surrogate software-based sensor, which can be used for sensitivity testing and experi-

mentation in the absence of other sensors.  

Data may also be captured by hardware-based sensors. Since its initial release, ARL has integrated 

several hardware-based sensors as part of its experimental development. These sensors currently include 

interfaces for the Emotive Epoch (commercial low-cost electroencephalograph (EEG)), the Affective Q-

Sensor (commercial electro-dermal activity sensor), Microsoft Kinect (commercial sensor with software-

based affect and physical state detection), and a host of physiological sensors.  

Methods to Automate Authoring Processes 

This section discusses methods that show promise in automating ITS authoring processes. By automating 

processes, we can lower the authoring load and knowledge required to author ITSs. For GIFT, the goal is 

to be able to provide tools suitable for non-computer scientists who are domain experts, the ability to 

author an ITS to support lessons in various domains (cognitive, affective, psychomotor, social, hybrid) in 

50% of the time currently required for novice ITS authors. ARL envisions various degrees of automation 

from guided-authoring processes similar to the “TurboTax” experience to full automation. Below are two 

methods demonstrated but not yet in widespread use.  

Automating the development of expert models 

The concept automatically developing an expert model is commonly referred to as Tools for Rapid 

Automated Development of Expert Models (TRADEM) and it offers reduced time and skill, and thereby 

cost, to develop an essential part of the training domain without human knowledge of the domain. ARL is 

currently collaborating with Eduworks, a small business in Oregon, to develop tools and methods to 

automate the development of expert models for use by GIFT to produce adaptive tutors by datamining 

domain-specific instructional material using techniques to extract rules, principles, tasks, standards, 

conditions and hierarchical relationships from text in field manuals (Figure 3). Expert models, part of the 

GIFT domain module, are used to assess learner performance and the correctness of learner actions during 

tutoring sessions.  
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Figure 3. TRADEM process 

Automating the development of middleware for integration of games and tutors 

As mentioned in the “Methods to Reduce Authoring Requirements” section of this paper, the opportunity 

to automate the integration of games and tutors will combine higher levels of engagement found in 

serious games with the effective learning techniques found in tutors. ARL is collaborating with CHI 

Systems, a small business in Pennsylvania, to develop tools to automate the process of developing 

middleware to link serious games and ITSs. This middleware development tool is commonly known as 

Game-based Architecture for Mentor-Enhanced Training Environments (GAMETE) and this process will 

be integrated into GIFT in future versions.  

Conclusions and Future Recommendations for Research 

This paper identified opportunities for reducing authoring through standardization and interoperability to 

support increase reuse of ITS components and models, and through automation to reduce the time and 

skill required to author ITSs. Through GIFT and its user community, ARL is attempting to standardize 

components and interfaces to promote enhanced interoperability. ARL is also conducting research to 

generalize tools and methods to support reduced time/skill to produce ITSs which support cognitive, 

affective, psychomotor, social, and hybrid tutoring/training domains. GIFT also provides a serious of 

tools and templates to ease the authoring burden. Finally, GIFT is being architected to support coupling of 

generalized services, which can be made available to a variety of serious games and simulations to 

support self-regulated learning on demand. Additional research is needed to determine optimal methods 

for authoring: 

 Techniques, strategies and tactics within GIFT 

 Performance and competency assessments within GIFT 

 Domain content and expert model development 

 New content and instructional models from existing data sources  
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Unwrapping GIFT: A Primer on Authoring Tools for the 

Generalized Intelligent Framework for Tutoring 

Michael Hoffman and Charles Ragusa 

Dignitas Technologies, LLC 

Introduction  

The Generalized Intelligent Framework for Tutoring (GIFT)1 is a framework and tool set for the creation 

of intelligent and adaptive tutoring systems (Brawner, 2012; Sottilare, 2012; Sottilare 2012, January). In 

its current form, GIFT is largely a research and development (R&D) tool designed to provide a flexible 

experimentation platform for researchers in the intelligent and adaptive tutoring field. However, as GIFT 

matures, it moves ever closer to becoming a production quality framework suitable for use in any fielded 

training systems.  

In the past, tutors were generally built around a single domain (e.g., math) or training applica-

tion/interface such as Bohemia Interactive’s Virtual Battlespace 2 (VBS2). Since the tutors themselves 

were limited, their authoring tools were often simple, user friendly, and easy to learn. However, these 

attributes can heavily constrain the author when it comes to expanding the systems capabilities to other 

subjects. It is difficult to design an intuitive authoring tool that is flexible enough to support almost any 

domain. The authoring tools that claim to provide a way to author a course or assessment rules without 

programming often lack the ability to easily add logic associated with new domains, concept assessment 

rules, and a communication protocol that works with a new training application (TA) without program-

ming. In addition, those tools often require a well-defined set of tasks/concepts (e.g., start with X, then do 

Y and finally Z) within a well-defined environment (e.g., interact with a form, a panel of interactive 

components or in a small 3D environment). Usually the simpler the authoring tool, in terms of authoring 

choices, the more constrained the user will be in creating a tutor that will deliver the desired content and 

instructional strategies. This can be an indication of the tutor’s limited functionality across other domains 

and TAs. 

Since GIFT is constantly evolving to support the needs and requirements of various organizations and 

domains, any authoring tools that are created need to be as accommodating. This paper provides an 

overview of the GIFT authoring tools including the initial design decisions and requirements, as well as 

the history and next generation of development to date with references to specific GIFT publically 

released files.  

                                                           
1
 GIFT users are encouraged to register on the GIFT portal at https://www.gifttutoring.org. The site provides access 

to the latest builds, source code, and documentation, and supports active forums for general discussion and trouble-

shooting. 

https://www.gifttutoring.org/
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Design of Authoring Tools 

During the early development stages of GIFT, we focused on developing the core architecture including 

communication and course management, as well as extensive event logging. In this phase, rudimentary 

courses were created to help drive Domain and Tutor module development in a domain-independent 

fashion. As we increased the functionality for each module, it was quickly discovered that all of the GIFT 

modules needed input files that would be used to not only alter a modules default settings but also load 

user-dependent (e.g., learning management system (LMS) history) and domain-dependent (e.g., course 

flow, performance assessment rules) configurations. Instead of trying to adapt one or more existing file 

formats often associated with tutoring (e.g., Sharable Content Object Reference Model (SCORM), 

Shareable Knowledge Object (SKO)), which may not have the necessary elements to describe every 

aspect of the GIFT modules, we decided to use the Extensible Markup Language (XML). XML provides 

a set of rules for encoding a document in a human and machine readable format and many application 

programming interfaces (APIs) have been developed to aid software developers. Moreover, it can be used 

across all of the GIFT modules by simply defining a different XML schema definition (XSD) for each. 

Each XSD could then be used to generate Java code (GIFT’s native programming language) that makes it 

easy for a GIFT developer to use the defined elements found in an associated XML file. This tight 

integration between schema and source code greatly reduces errors and inconsistencies when a schema 

changes without changing the source code. Another benefit of the way GIFT utilizes XSDs is that it 

inherently defines a modules configuration definition. This definition can be used by third party applica-

tions to independently generate GIFT compatible XML files, thereby allowing users to still use authoring 

tools they are familiar with while expanding the suite of tools available to the GIFT community.  

XML editor 

Having a suite of schemas in place is useful as a developer; however, as GIFT evolved from an abstract 

design to a concrete implementation, it was apparent that we needed to shift a portion of our focus toward 

the usability of the GIFT authoring process. The initial goals of this endeavor were aimed at providing a 

graphical user interface for authoring that also included improved element validation, tips, and hints for 

complex elements, and most importantly, an interface that would require minimal software development 

as the schemas were continually being improved upon. User interface design can consume a large 

quantity of software development time. This is compounded when the back end logic is constantly 

changing and the application’s requirements are ill defined. Having a dynamic authoring user interface 

allows more time to be spent on increasing the functionality of a system rather than the dealing with 

maintaining the layout and actions of graphical components.  

After researching free XML editors, we decided on the Java application called XAmple XML Editor. 

XAmple provided the ability to dynamically analyze a given schema and then generate a document 

specific graphical user interface. It was more than a simple XML editor in that it provided additional tools 

such as invalid element identification, displaying of messages about selected nodes and the ability to 

associate custom dialogs on a per element basis. Within two weeks, we built an infrastructure in GIFT 

where, given a schema file, a new Java based authoring tool could be created in under five minutes. The 

tools inherently could load, create, edit, validate, and view an XML file associated with a different 

schema. From there the suite of XML based GIFT authoring tools was built. Each with the ability to 
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dynamically update the authoring user interface based on schema changes without needing to recompile 

GIFT or having to restart the authoring tool. Over time additional improvements were made to the tools 

such as creating custom dialogs that could search for entries to select from (e.g., survey elements, con-

cepts of a lesson, learner state attributes, performance assessments, auto generate IDs, file browsers), 

generalized custom inputs (e.g., Name/Value pairs) to limit software development and convert content 

from a previous version of GIFT to the latest version. The tools were evolving into more than mere XML 

editors.  

Web-based authoring 

Around the same time the GIFT XML authoring tools were being created, we had a requirement to also 

produce a survey authoring system (SAS). This application would not only replicate the features present 

in available survey authoring tools like “SurveyMonkey,”
2
 but allow us to introduce tutoring-related 

components with the various survey elements. Since most, if not all, of the most popular survey authoring 

and delivery applications are web based, we decided to make the GIFT SAS a web application. There 

were several reasons for this decision. One of which was based on having a well-defined set of require-

ments for the application. This meant that the interface would remain relatively the same once built (when 

compared to the other GIFT authoring tools). Furthermore the GIFT development team could reuse some 

of the infrastructure in place for the web-based Tutor User Interface (TUI). This infrastructure is based on 

Google Web Toolkit (GWT),
3
 which is a free, open source development toolkit for building and optimiz-

ing complex browser-based applications. With the goal of providing a productive development environ-

ment without the developer having to be an expert in browser quirks (e.g., how each browser type 

interprets different web based specifications), XMLHttpRequest, and JavaScript, GWT allowed us to 

write client-side applications in Java and deploy them with minimal effort. The development of the SAS 

identified several issues: 

 Paging in survey elements when there may be hundreds if not thousands to choose from (e.g., 

questions in the question bank) 

 Providing the ability to backup/restore the survey database  

 Sharing survey elements across surveys to minimize the effort need to distribute minor changes 

(e.g., spelling/grammar mistakes).  

 In addition, with the delivery of a web based application, we built upon GIFTs ability to handle 

client-server interactions. 

Current Authoring Tools 

The current suite of authoring tools has provided a plethora of configuration options across all GIFT 

modules, satisfying several research data collection and experiment efforts. There are three categories of 

                                                           
2
 For more information on SurveyMonkey refer to www.SurveyMonkey.com.  

3
 For more information on GWT refer to www.gwtproject.org. 

http://www.surveymonkey.com/
http://www.gwtproject.org/
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authoring tools in GIFT: XML based, web based and third party. Each category contains one or more 

applications that produce specific compositions for a GIFT session. 

XML based 

Course Authoring Tool (CAT) 

The XML-based Course Authoring Tool (CAT) is used to author GIFT course XML files. A GIFT course 

consists of one or more course transitions (e.g., Guidance, Survey, Lesson Material, Training Application, 

Branch Point, and After Action Review (AAR)) along with some course metadata such as the unique 

course name and a description about the course. For more information on authoring a course, please refer 

to the previous paper in the “Unwrapping GIFT” series called “Unwrapping GIFT: A Primer on Develop-

ing with the Generalized Intelligent Framework for Tutoring.” One way to start the CAT is by executing 

the GIFT/scripts/tools/launchCAT.bat script. With the interface that is presented, the user can choose to 

create a new course or open and then edit an existing course.xml file (for general information on the XML 

Editor dialog, please refer to GIFT/docs/content/GIFTXMLAuthoringTools.htm). Not only does the CAT 

provide a means to author a schema validated course.xml file but it also queries for the appropriate survey 

elements and displays Domain Knowledge Files (DKF) as well as HTML files for one to choose from 

when necessary. Without those types of customization, users would be left to read documentation and 

source code or merely guess at the appropriate values to provide for XML elements in the schema. 

In Error! Reference source not found. the CAT is shown populated with an existing GIFT course. Here 

he flat, ordered list of transitions, shown in the large white section of the dialog, defines the user’s 

experience through a course. In some instances, such as during experiments using GIFT, this fixed flow is 

often necessary. With the branch point transition; however, a course author can introduce the chance for a 

different course of action to be executed based on individualized learner states. Future versions of GIFT 

will expand on this component, making it concept based with a dynamic survey which tests the learner’s 

comprehension along with the introduction of remediation to the GIFT system. 
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Figure 4. The CAT showing the “Explicit Feedback within Game-Based Training – 1” course with  

the course metadata and the list of transitions exposed. 

After authoring, validating and then saving the newly created course, the author is able to see the name of 

the course appear in the course selection webpage of the TUI (helpful hint: if the author is viewing the 

course selection webpage when first saving the course, refresh the webpage to force the list to refresh). 

One of the main issues course designers have with this tool is that it presents course transitions from the 

view of a GIFT software developer. Ideally, it should guide the author to layout material according to IMI 

levels, individual differences, desired cognitive/affective metrics and overarching course objectives.  

DKF Authoring Tool (DAT) 

The DKF authoring tool (DAT) is used to author DKFs in GIFT. One way to start the DAT is by execut-

ing the GIFT/scripts/tools/launchDAT.bat script. A DKF consists of the performance assessment rules for 

a lesson’s concept map as well as the learner state transitions of interest and their associated instructional 

strategies. A DKF is used during a TA course transition (lesson). It configures one or more assessment 

engines that can run concurrently in the Domain module each time a TA transitions is encountered.  

Within the concept hierarchy/map of the DKF structure are a set of conditions that describe how a 

concept can be assessed. The assessment rules are defined in a condition implementation Java class, 

which registers for game state messages of interest (e.g., Entity State) and provides an assessment result 

(Above, At, Below Expectation) that is then aggregated up the concept hierarchy. During the execution of 

a lesson in a course, the learner’s state (cognitive/affective/performance) is expected to change based on a 
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suite of inputs provided to GIFT. Based on the metrics the user can collect, be it sensor or training 

application based, a DKF author would then need to identify the learner state transitions that should result 

in the delivery of an instructional strategy (e.g., if the learner is bored the user may want to make the 

scenario more exciting as a form of micro-adaptation). In some instances, a defined state transition may 

happen more than once, in which case, the DKF allows the author to provide more than one instructional 

strategy to choose from. Furthermore, each strategy then has one or more tactics (i.e., a strategy imple-

mentation) to choose from. This flexibility allows GIFT to move away from a fixed state diagram and 

introduce a stochastic system with algorithms such as the Markov decision process.  

One of the main shortcomings with this tool is in how it presents the heavily nested XML tree to the user. 

As per Figure 5, the XML authoring tool exposes the hierarchy of information in a tree-like structure 

synonymous with XML. However, this is not an ideal layout for many of the experts who need to author a 

DKF. Instead, a tool that intuitively organizes all of the necessary information (concepts, assessment 

rules, transitions between states, intervention tactics) in an author’s field of view is profoundly coveted. 

 

Figure 5. The DAT showing the Clear Building DKF contents. The XML tree is expanded to show the 

complicated nesting of information that is likely to happen.  
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Others 

There is a suite of other XML authoring tools in GIFT that were quickly developed using the existing XML 

editor, each of which look very similar to the CAT and DAT show in 

 

Figure 4 and Figure 5, respectively. The Learner Configuration Authoring Tool (LCAT) is currently used 

to author learner configuration XML files (GIFT\config\learner\LearnerConfiguration.xml). That file 

describes the pipeline of how sensor data from the Sensor module is translated, classified, and then 

predicted upon (into current/future/predicted temporal categories) in order to produce learner state 

attribute values. As further learner state modeling research is implemented in GIFT, we expect this 

configuration file to undergo many improvements.  

The Sensor Configuration Authoring Tool (SCAT) is used to author a sensor configuration XML file 

(examples in GIFT\config\sensor\), which configures the sensors that will be used in a Sensor module 

instance. Eventually, the Sensor module will be able to reconfigure itself on a per-user, per-course basis 

in order to collect the cognitive and affective metrics of interest.  

The Pedagogy Configuration Authoring Tool (PCAT) provides the ability to author a configuration file 

for the Engine for Macro and Micro Adaptive Pedagogy (eM2AP). This configuration describes the ideal 

metadata attributes of content to present in the various quadrants on Merrill’s Component Display Theory 

(CDT).  

The Metadata Authoring Tool (MAT) can create a metadata XML file (examples in Domain\Simple 

Branching Example\) that describes a single domain resource file (e.g., PowerPoint show) in a content 
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dependent and learner state independent fashion. The metadata files are used by course branching logic 

and eM2AP to select the most appropriate and available content to present to the user based on the current 

learner state and empirical research.  

Web based 

Survey Authoring System (SAS) 

The SAS was the first web-based authoring tool created for GIFT. It provides a means to author and 

compose surveys to present during the execution of a GIFT course. Surveys are built by selecting one or 

more questions from the shared question bank seen in. Figure 6. The question bank allows authors to 

reuse pre-existing and previously authored questions in various ways defined by a particular survey. After 

the survey copies portions of the question’s elements, customizations to those elements “original values 

can be made such as altering the scoring rules”. Unlike the XML-based authoring tools, the SAS provides 

a way to preview and test the author’s progress. When a survey is previewed, several presentation details 

are ignored such as requiring questions to be answered, warning if questions are not answered, and 

question scoring. To execute those features, the user will want to test the survey instead. After authoring 

one or more surveys to use in a GIFT course, the next step is to create a survey context. A survey context 

is a grouping of surveys that can then be selected during course or DKF authoring via the CAT and DAT, 

respectively. Think of it as a way to not only filter the list of Surveys existing in your GIFT instance but 

also collate the survey question responses made under a given situation such as the execution of a 

particular course. For post analysis of a data collection or experiment event, this organization is beneficial 

in that it allows you to naturally identify the appropriate survey results to export.  
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Figure 6. The SAS landing page that shows the question bank full of GIFT provided survey questions.  

The SAS web-based interface provides a more intuitive and user friendly approach to authoring in GIFT. 

With the layout implemented, authors can easily flow through the survey authoring process and find the 

desired information in a timely fashion. 

Third party 

Beyond the core XML- and Web-based authoring tools, there are a few additional third-party authoring 

tools have been integrated and delivered with recent versions GIFT. We are always exploring other 

applications and hope the GIFT community will deliver additional tools as a means to improve upon the 

framework. 

SIMILE Workbench 

During the development of GIFT version 3.0, we integrated the SIMILE
4
 assessment engine with the 

Domain module. This added a second assessment engine to what we now call the “Default Assessment 

Engine” in the Domain module. In addition, that task lead to identifying how future external performance 

assessment engines might integrate with GIFT. For SIMILE to execute, it requires a specific configura-

tion file which contains the assessment rules for a lesson in a GIFT course. This file is authored using the 

SIMILE workbench shown in Figure 7. The workbench is a desktop application that provides an interface 

for users to easily create “assessment models” that account for the different relationships between the 

student and the simulation. It also allows training developers to tailor the way a student is evaluated 

without having to write code. As part of the first integration effort, the SIMILE integration with GIFT 

could only assess Tactical Combat Casualty Care
5
 (TC3, aka vMedic) game state messages. In the near 

future, this coupling will evolve to allow users to assess any GIFT game state message without needing to 

alter the SIMILE engine or workbench. Furthermore, usability evaluations will identify aspects of the tool 

that need to be altered to lower the learning curve associated with authoring using the workbench. 

                                                           
4
 Visit http://www.ecsorl.com/solutions/simile for more information on SIMILE or use the forums on the GIFT 

portal at https://www.gifttutoring.org. 
5
 Visit http://www.ecsorl.com/solutions/tactical-combat-casualty-care-simulation for more information on TC3 

(vMedic). 

http://www.ecsorl.com/solutions/simile
http://www.ecsorl.com/solutions/tactical-combat-casualty-care-simulation
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Figure 7. The SIMILE Workbench populated with the assessment rules for the “Explicit Feedback within 

Game-Based Training – 1” GIFT course. 

AutoTutor Script Authoring Tool (ASAT) 

Around the same time that SIMILE was integrated with GIFT, we also integrated the AutoTutor Web 

Service (ATWS), which provides an interface to AutoTutor
6
 (AT). AutoTutor is an intelligent conversa-

tional engine that allows a user to interact with an avatar to conduct a dialog that usually results in 

delivery and elicitation of information. In GIFT, an AutoTutor component is represented as a top-level 

course transition or a DKF condition
7
. The ATWS requires a conversation script in the format of a SKO 

to execute on. That script is authored using the AutoTutor Script Authoring Tool (ASAT). ASAT consists 

of content editing tools, templates for production rules, and a variety of additional functions that can be 

used to fill in conversation content based on existing rule templates, create new rules or integrate conver-

sations with various forms of media. Each script usually centers on a specific topic such as “An airplane 

flying horizontally drops a package when it is right above the target. Does the package hit the target?” 

and terminates when the defined goal(s) of the conversation are reached.  

During the first integration effort, only a web-based ASAT (WASAT), seen in Figure 8, was available to 

authoring SKOs. Since then a desktop version has been added to the GIFT release and a detailed set of 

authoring instructions has been created. One of the challenges in using the ASAT is when an author wants 

to create a self-reflection assessment. This happens to be the critical piece to author when using AT with 

GIFT. One of the usability challenges with this tool is the information it requires to author an AT SKO. 

Not only does it need a question to elicit an assessment but a semantic answer based on the user’s 

semantic engine, tutoring feedback that considers number of “turns”, feedback triggers for each turn and 

                                                           
6
 For more information on AutoTutor, refer to http://www.autotutor.org/ or use the forums on the GIFT portal at 

https://www.gifttutoring.org. 
7
 See Domain/AutoTutorSession.example.dkf.xml in a the GIFT release for an example AT DKF configuration. 

http://www.autotutor.org/
https://www.gifttutoring.org/
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the relationship of the user’s response corresponding to a percentage of coverage to relevant new, irrele-

vant new, relevant old, and total coverage of the desired answer.  

 

Figure 8. The WASAT populated show a Question from a Tutoring Pack. 

Next-Generation Authoring Tools 

The future of GIFT authoring tools will be driven by the lessons learned and upcoming GIFT develop-

ment, as well as through input from the community of users. As described previously, the current XML 

authoring tools are highly agile. Thus, when new GIFT requirements force changes to a schema, updating 

the corresponding authoring tool is relatively simple, and often entirely automatic and transparent. This 

agility is extremely powerful. By authoring just above the XML level, users of the current authoring tools 

also have complete flexibility to author across the entire spectrum of capabilities supported by GIFT as 

there are no artificial limitations imposed by the authoring tools. As such, these tools will necessarily 

remain part of the GIFT baseline for years to come. 

However, despite the agility, flexibility, and engineering usefulness of these tools, they are still rather 

weak in the areas of usability and user-friendliness, especially when considered from the viewpoint of the 

most important end users: researchers, educators, course designers, and subject matter experts and not 

engineers or computer programmers. An abbreviated list of strategies for making the tools intuitive and 

easy-to-use is as follows: 

 Hide unnecessary complexity 

 Provide a logical presentation that makes sense to the user based on their role. 

 Make reasonable assumptions about what user wants to do, providing most likely defaults where 

appropriate. 



Proceedings of the 2
nd

 Annual GIFT Users Symposium (GIFTSym2) 

22 

 Present related elements within the same view, and where possible avoid use of cryptic ID num-

bers and the like. 

 Allow “Preview” functions where appropriate. 

 Provide context sensitive help and input validation. 

 Where appropriate, provide optional “Wizards” to guide users through difficult authoring steps. 

 Engage target users to get feedback on design. 

In the current suite of tools, individual tools are related, but not integrated. Thus, for example, a course 

author wanting to include a survey in their course, must first author the survey using the survey authoring 

tool, then from the (separate) course authoring tool, select that survey from an set of existing surveys.  

The next generation of authoring tools, seeks to address these key issues by creating a suite of web-based 

tools. Making the GIFT tools web based supports GIFT’s near term objective of web-enabling GIFT as 

whole. In this scenario, users/authors will log into a GIFT web site and access tools through their brows-

er, rather than launching desktop applications on their workstations. This approach has several benefits: 

 Multiple users can share a single GIFT installation, either a site- or cloud-based, thus relieving 

individual users from having to setup and maintain their own GIFT installation.  

 Multiple users can collaborate on authoring a single course, allowing each authoring participant 

to contribute according to their individual expertise 

 By implementing user roles, we can tailor the user interfaces to expose or hide functionality ap-

propriate to current user’s role 

The preferred approach and the one we are seeking in the next generation of authoring tools, is to have the 

entire tool suite presented as a single “GIFT Authoring Tool” (GAT) that allows user to move among the 

various tools seamlessly and effortlessly.  

GIFT Authoring Tool (GAT) 

The initial version of the web-enabled CAT included in GIFT 2014-1X and seen in Figure 9, is a fully 

functional browser-based course authoring tool, suitable for immediate use by GIFT users. The new CAT 

meets several (but not all) of the desired objectives and we believe it to be substantially easier to use than 

the legacy CAT. 
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Figure 9. The web-based CAT showing an instance of a TA course transition. Notice how this interface is 

more user-friendly and graphically oriented versus the XML based authoring tools used by GIFT developers. 

Details on the use of the new CAT are beyond the scope of this document; however, we will call out a 

few of the key features. Top-level operations are driven by the menu-bar at the top of the work area. The 

file menu allows for creating and saving courses. The transition menu allows for adding, deleting, and 

reordering transitions. At any time the user is working with transitions, a list of all transitions appears in a 

scrollable/selectable list along the left side of the view. Selecting a transition loads the transition into an 

editor panel that is presented in the main/center panel. For consistency and convenience, context sensitive 

help appears just above the editor pane for any element selected with the mouse. 

Though eminently useable, at this time the new CAT still falls short of the long term goals. Currently 

(despite the fact that it runs in the browser), the CAT is not ready to be deployed to the web. Furthermore 

it does not support login, roles, or multiple concurrent users. Ideally we hope to at least come close the 

agility offered by the legacy authoring tools, so as to minimize any delay between new GIFT functionality 

and corresponding authoring tool support. Authoring tools are a high priority but not the only priority as 

we’re also expanding the functionality of GIFT. Nevertheless, by the end of 2014 we plan to have a user-

friendly, browser based tool for DKF authoring. The next step beyond that would be to seamlessly 

integrating the web based interfaces with the other existing tools such as the SAS. Look for these im-

provements as well as implementations that mimic the other existing XML authoring tools in upcoming 

releases of GIFT. 

Conclusion 

Although user friendly interfaces are desired, there will still be an active and ever present need for agile 

XML authoring tools in GIFT. Once considered a step above creating XML files in a text editor, these 

tools will maintain a direct relationship with the latest research and development. This is mainly because 

user friendly tools are often incapable of adapting easily to new and innovative features. Ideally, a web 
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based approach to authoring is preferred as it appears to offer an easier way to integrate with other third 

party training applications in addition to enabling mobile authoring through a webpage. With GIFT, any 

number of tailored user interfaces can be built without having to duplicate the underlying data and rules 

mostly defined by the set of XML schemas. The features that must be provided (tools to help author a 

course) can be presented in many different variations having been built on a common model. Although, 

before committing to a complex model, be sure there is a reasonable path to an authoring tool. After all, 

the application may be a good idea on paper, but if the community is not able to use it, what good is it? 

References 

Brawner, K., Holden, H., Goldberg, B. & Sottilare, R. (2012, January). Recommendations for Modern Tools to 

Author Tutoring Systems. In The Interservice/Industry Training, Simulation & Education Conference 

(I/ITSEC)(Vol. 2012, No. 1). National Training Systems Association. 

Ragusa, Charles, Hoffman, Michael, Leonard, Jon (2013). Unwrapping GIFT: A Primer on Developing with the 

Generalized Intelligent Framework for Tutoring. In AIED 2013 Workshops Proceedings Volume 7 (http://ceur-

ws.org/Vol-1009/aied2013ws_volume7.pdf) 

Sottilare, R. A., Brawner, K. W., Goldberg, B. S. & Holden, H. K. (2012). The Generalized Intelligent Framework 

for Tutoring (GIFT). 

Sottilare, R. A., Goldberg, B. S., Brawner, K. W. & Holden, H. K. (2012, January). A Modular Framework to 

Support the Authoring and Assessment of Adaptive Computer-Based Tutoring Systems (CBTS). In The 

Interservice/Industry Training, Simulation & Education Conference (I/ITSEC)(Vol. 2012, No. 1). National 

Training Systems Association. 

  

http://ceur-ws.org/Vol-1009/aied2013ws_volume7.pdf
http://ceur-ws.org/Vol-1009/aied2013ws_volume7.pdf


Proceedings of the 2
nd

 Annual GIFT Users Symposium (GIFTSym2) 

25 

SimStudent: Authoring Expert Models by Tutoring 

Christopher J. MacLellan, Eliane Stampfer Wiese,  

Noboru Matsuda, and Kenne R. Koedinger 

Carnegie Mellon University 

Introduction 

Intelligent tutoring systems are effective at improving learning (Koedinger & Anderson, 1997; Pane, 

Griffin, McCaffrey & Karam, 2013; Ritter, Anderson, Koedinger & Corbett, 2007; Vanlehn et al., 2005), 

but development costs remain a formidable obstacle to their general adoption (Sottilare & Holden, 2013). 

As an example, despite widespread use of math Cognitive Tutors (more than 500k students per year 

complete a Carnegie Learning tutor course), they have not been widely used more broadly (e.g., in online 

education platforms such as Khan Academy, Coursera, etc.), perhaps because their learning benefits are 

not thought to outweigh the costs of their development. Authoring costs are particularly pronounced for 

massive online education platforms, which have large quantities of content that vary widely across 

domains (Khan academy has about 500 hours of videos spread over 40 units in Math, Science, Econom-

ics, and Humanities). Similar to the goals that motivate the Generalized Intelligent Framework for 

Tutoring (GIFT), our work aims to increase the value of intelligent tutoring systems (ITSs) by improving 

both sides of the cost-benefit equation to build higher quality tutors that lead to more robust learning 

while also decreasing authoring time. 

SimStudent is an outgrowth of the Cognitive Tutor Authoring Tools (CTAT) (Aleven, McLaren, Sewall 

& Koedinger, 2006; 2009). CTAT provides tools for constructing drag-and-drop tutor interfaces and 

authoring Example-Tracing Tutors, and creating an expert model for Model-Tracing Tutors. The Model-

Tracing Tutor is more general, but more costly to produce. Authoring in this paradigm consists of 

manually constructing production rules that define which actions are appropriate given the current 

problem-solving state, e.g., if there is a constant on both sides of the equation, then subtract one of those 

constants from both sides. These production rules can generalize to a wide range of problems, as long as 

the if” part of the production rule is applicable. Authoring an Example-Tracing Tutor consists of demon-

strating every possible action for every state directly in the tutor interface (e.g., for the equation 4 + x = 

2x - 5, the author would demonstrate subtracting 4 from both sides). These demonstrations compose a 

behavior graph, which specifies which actions are legal in each state. While authoring these tutors is 

generally much easier (students can learn to build example-tracing tutors in an afternoon (Aleven et al., 

2009)), they are much more specific than Model-Tracing Tutors. Demonstrations with Example-Tracing 

tutors can be generalized to new problems that share the same underlying structure (e.g., demonstrating  

4 + x = 2x-5 could be generalized to 10 + x = 3x - 6 but not to 4 + x = 5) using a technique called “mass 

production,” but problems with different structures require additional demonstrations. These types of 

tutors are two ends of a spectrum: Model-Tracing Tutors are difficult to produce, but they are quite 

general; and Example-Tracing tutors are easy to produce, but are quite specific. Our goal is to combine 

the best of both worlds in an authoring tool that makes general tutors easy to build. 
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SimStudent, our authoring system (Matsuda, Cohen & Koedinger, n.d.), uses machine-learning tech-

niques to try and bridge the gap between Example-Tracing Tutors and Model-Tracing Tutors. It does this 

by learning general production rule models from demonstrations and feedback. In this paper, we summa-

rize how this system works, give a step-by-step example of how a tutor might be authored with 

SimStudent, and discuss the different lines of research we are currently pursuing with SimStudent. 

The SimStudent Architecture 

SimStudent
8
 was created for three purposes: 1) to advance theories of human learning, 2) to explore the 

learning-by-teaching phenomenon, and 3) to improve the authoring of intelligent tutors. We briefly 

review the SimStudent architecture, discuss prior findings, and then describe how SimStudent can be used 

to author tutors. 

SimStudent learns from four sources of knowledge (Matsuda et al., n.d.) (Figure 1). Feature predicates 

and primitive functions are built before SimStudent starts learning, and User Feedback and User Demon-

strations come from SimStudent’s learning environment. First, SimStudent needs to recognize relevant 

features of the tutor interface (e.g., numbers, operators, the equals sign). These “feature predicates” are 

constructed by writing small Java functions, the equivalent of writing regular expressions, to identify key 

features in the interface. Second, SimStudent starts with a certain level of prior knowledge (e.g., 

SimStudent for algebra can add two numbers at the beginning); these “primitive functions“ are also small 

Java functions, similar to basic Excel formulas, for performing mental and interface actions. Third, within 

the learning environment, SimStudent is provided with “user demonstrations.“ These consist of the author 

solving sample problem steps. Fourth, SimStudent learns from “user feedback”, which is yes/no correct-

ness feedback when it attempts steps in a problem. After tutor problems have been demonstrated, 

SimStudent will learn new rules, attempt to apply them to new problems, and ask the author for verifica-

tion that the rules were applied correctly. Based on this author feedback, the condition statements of these 

rules are refined. 

 

Figure 10. The knowledge (squares) and learning processes (circles) used by the SimStudent system. 

                                                           
8
 For more details on SimStudent see http://www.simstudent.org/ 
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Given these four sources of knowledge, SimStudent employs three learning mechanisms to produce 

general production rules. These three types of learning are called “How” learning, “Where” learning, and 

“When” learning. How learning identifies sequences of primitive function operators that would have 

plausibly produced the user demonstrations (e.g., going from 4+4x = 5 to 4x = 1 could be caused by 

subtracting the constant “4” from both sides or by subtracting the coefficient of “x” from both sides). 

How learning generates the “then” part of the production rules. Where learning identifies which interface 

elements are relevant to each demonstration, (e.g., learning that all the interface elements in the last used 

row are relevant). Lastly, When learning identifies the conditions under which a given sequence of 

operators is applicable. The Where and When learning jointly produce the “if” part of a production rule. 

As the author demonstrates problem steps, the three mechanisms learn new production rules. Once 

production rules are learned, SimStudent attempts to use those rules to solve practice problems. The rules 

are refined when the author provides correctness feedback on each step of the problem. 

SimStudent enables us to test if the How, Where, and When mechanisms are reasonable approximations 

of how human students learn from demonstration and feedback. Indeed, empirical work indicates that 

models generated by SimStudent better fit student tutor data than models hand authored by domain 

experts (Li, Stampfer, Cohen & Koedinger, 2013). These results were replicated across three different 

domains (algebra, stoichiometry, and fraction addition). SimStudent may produce better results because it 

is less susceptible to “expert blind spots” (Nathan, Koedinger & Alibali, 2001) than domain experts. 

These blind spots refer to knowledge that an expert doesn’t realize they know. For example, a domain 

expert might view -x = 4 and -1x = 4 as equivalent, but the SimStudent model recognizes that additional 

knowledge is needed in the first case because the -1 coefficient is implicit. Improved student models are 

likely to result in better student learning (Koedinger, Stamper, McLaughlin & Nixon, 2013) because they 

guide interface design, problem selection, and assessment of student knowledge. Continuing the example 

above, the original model for students’ extraction of a negative coefficient lumped -x together with -3x,  

-5x, etc. That model assumes that practice on any of those examples would lead to improved performance 

on other examples within the group. In contrast, the SimStudent model would provide additional practice 

for -x and would not assume automatic transfer from -3x to -x. These findings, that SimStudent can create 

better models and that better models result in better student learning, show promise for leveraging 

SimStudent to create more effective tutors. 

In addition to theory building, SimStudent has been used as a teachable agent. Instead of asking students 

to learn directly from the tutor, students are tasked with teaching SimStudent so that it can pass a quiz on 

the domain content. The learning-by-teaching paradigms aim to take advantage of the “protégé effect,” so 

called because students have been found to be more motivated to learn on behalf of a teachable agent than 

to learn for themselves (Chase, Chin, Oppezzo & Schwartz, 2009). Results (Matsuda et al., 2010) suggest 

that learning-by-teaching is as effective as a Cognitive Tutor for students who have reached a basic level 

of competency. This work seems to imply that we don’t need an expert model to teach students since they 

can learn simply by teaching the SimStudent agent. However, the students are still receiving feedback on 

how the SimStudent agent does on each quiz, and grading the quizzes is done using an expert model. 

Therefore, it is still necessary to author good expert models, even in a learning-by-teaching paradigm. 
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A third line of SimStudent research investigates the authoring of expert models for use in both tutoring 

systems and teachable agents. One study found that higher quality models are produced by providing 

SimStudent with both demonstrations and feedback, compared with only giving it demonstrations 

(Matsuda et al., n.d.). A follow up study showed that authoring an Algebra tutor with SimStudent is more 

efficient than authoring an equivalent tutor using Example Tracing and that the model learned by 

SimStudent is more general (MacLellan, Koedinger & Matsuda, 2014), when the background knowledge 

had already been authored. Overall, research on the SimStudent system suggests that it might be a viable 

tool for efficiently authoring tutoring content that is general and of high quality. 

An Example of Authoring with SimStudent 

Authoring with SimStudent is similar to authoring with CTAT. Details of authoring a tutor with CTAT 

are written up elsewhere (http://ctat.pact.cs.cmu.edu/), so we focus on the aspects of authoring that are 

unique to SimStudent: authoring background knowledge and tutoring the SimStudent system interactive-

ly. This example shows how to construct a simple algebra tutor using SimStudent. 

Authoring background knowledge 

The SimStudent system separates the authoring of background knowledge from the construction of the 

expert model. Constructing the background knowledge requires basic programming skills; since the 

expert model is created through interactive tutoring, it requires no programming at all. The first class of 

background knowledge, feature predicates, are small Java functions that return True if a feature is present 

in an interface element and False otherwise. One example might be the “HasCoefficient” feature, which 

would be True for 3x but False for x + 1. SimStudent uses feature predicates to recognize important 

features in the tutor interface. For the algebra domain, we have authored 16 feature predicates. These 

predicates tend to be relatively general, so they can be reused from one tutor to the next. 

The second class of knowledge, primitive function operators, are similar to the feature predicates, in that 

they are small java functions, but they take two inputs (taken either from interface elements or from the 

outputs of other primitive function operators) and return a single value. One example of a primitive 

function operator is “AddTerm”: when given two numbers it returns their sum. These operators enable 

SimStudent to explain demonstrations and take actions in the tutor interface. For the algebra domain, we 

have authored 28 primitive function operators. Similar to feature predicates, primitive functions tend to be 

reusable across tutors. 

Tutoring SimStudent interactively 

After constructing background knowledge, authoring is done in the tutor interface using CTAT and 

running SimStudent’s interactive learning module. SimStudent tries to solve the problem loaded into the 

interface by firing an applicable production rule and taking the step determined by the rule. After each 

step it asks for feedback on the correctness of that action (Figure 2). If the author provides positive 

feedback to SimStudent, then it will continue solving the problem. If the feedback is negative, 

SimStudent will try other applicable production rules. When it runs out of production rules that apply to 

the current step, it will ask the user to do that step and then use its learning mechanisms to learn a new 

http://ctat.pact.cs.cmu.edu/
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production rule from that demonstration (Figure 3). After tutoring, SimStudent produces a behavior graph 

(shown on the left side in Figures 2 and 3) and a production rule file. The behavior graph can power an 

Example-Tracing tutor and the production rule file can run a Cognitive Tutor. 

 

Figure 11. SimStudent asking for correctness feedback. 

 

Figure 12. SimStudent asking for a demonstration. 

Future Work 

The SimStudent architecture shows promise as a tool for simultaneously increasing authoring efficiency 

and model quality (MacLellan et al., 2014; Matsuda et al., n.d.), but more research still needs to be done. 

In terms of efficiency, few studies have directly compared the efficiency of different authoring approach-

es. We are exploring different usability and interaction models as a method for evaluating different 

approaches (e.g., the goals, operators, methods, and selections rules models). In terms of model quality, 

we are working to identify key performance metrics for general models. For example, in addition to 

evaluating accuracy and recall of a model for correct behavior, we are also looking at accuracy and recall 

of incorrect behavior. SimStudent can learn incorrect productions from correct instruction by making 

incorrect induction due to suboptimal background knowledge (Matsuda, Lee, Cohen & Koedinger, 2009). 

These plausible, but incorrect, inductions can be used to identify bug rules that might be missed by 

experts. As an example, when SimStudent is taught to divide both sides by 3 for the problem 3x = 6, it 

might incorrectly learn a rule for dividing both sides by any number on the left side of the equation (an 

error students commonly make). When SimStudent incorrectly solves a subsequent problem using this 

bug rule, it will receive negative correctness feedback and refine its rule to only apply to dividing by the 



Proceedings of the 2
nd

 Annual GIFT Users Symposium (GIFTSym2) 

30 

coefficient. SimStudent could be modified to request a hint message for this misconception during 

authoring, such as text pointing out that the both sides of the equation are divided by the coefficient of x, 

not just any number. After this modification, it would be worth evaluating how authoring with 

SimStudent compares to Example-tracing or hand authoring in terms of number of bug rules identified. 

In addition to evaluating efficiency and quality, we are also interested in exploring how to increase 

SimStudent’s generality. To accomplish this, we have been exploring approaches for automatically 

learning the background feature predicates from tutoring (Li, Schreiber, Cohen & Koedinger, 2012). By 

reducing or eliminating the need to author this predicate knowledge, we will make it easier to apply 

SimStudent to new domains. Additionally, we have been exploring how this feature predicate learning 

can be used to apply SimStudent to learning models for open-ended tasks, such as educational games 

(Harpstead et al., 2013). 

Using these new improvements, we are exploring the effectiveness of the SimStudent architecture for 

authoring content for a MOOC platform, such as Khan Academy. We are planning to recreate some of the 

MOOC instruction using SimStudent and to produce evidence that the cost-benefit of creating intelligent 

tutors for these platforms is worth it. There is a great potential for intelligent tutors to have a broader 

impact (through MOOCs and other avenues), if we can demonstrate that authoring tools can lower the 

cost to tutor authoring while jointly improving tutor quality and student learning. It is our hope that 

SimStudent, and other general tutor authoring platforms, can help achieve this goal. 

Recommendations for GIFT 

Based on our research with the SimStudent system, we have three recommendations for GIFT. First, as 

with many authoring frameworks, authoring expert models in GIFT is a challenging problem. As such, it 

may benefit from a tool like SimStudent to aid in this authoring process. SimStudent’s automatically 

constructed expert models perform better than hand-authored models for multiple domains because they 

are not susceptible to expert blind spots. At the same time, in the process of generating these expert 

models, SimStudent makes errors that are often helpful in predicting human students’ mistakes. These 

errors could form the basis of a misconceptions library, before any data are gathered from real students. 

Exploring how SimStudent’s expert models and misconceptions could be used by GIFT may be a worth-

while direction for future work. This integration could take one of two forms: A SimStudent-like module 

could be constructed for GIFT that would allow authors to construct the domain knowledge by tutoring 

GIFT directly in the tutoring application or SimStudent could be configured to work with the tutoring 

application and then the production rule file generated by SimStudent could be converted into one of the 

domain knowledge formats acceptable to GIFT. 

Second, we recommend that GIFT separate authoring of knowledge that is domain specific from the 

authoring of knowledge that is tutor specific. Domain general knowledge is already separated from 

domain specific knowledge in GIFT, but our research has found that domain specific knowledge is often 

reusable across tutoring applications. In the SimStudent system, we separated the construction of back-

ground domain knowledge (algebra features and operators), which tends to be reusable across tutors for 

the same domain (algebra), from the construction of an expert model for a specific tutor (how to solve 
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particular algebra problems in the tutor interface). This was particularly useful because domain-specific 

background knowledge requires some Java programming abilities, whereas tutor-specific knowledge only 

requires the ability to demonstrate solutions in the tutor. This separation is useful because it allows 

domain experts, who may not know how to program, to construct the expert model for the tutor, if 

adequate domain knowledge already exists. Furthermore, our work with SimStudent has shown that 

domain-specific background knowledge tends to transfer across different tutors in the same domain and 

sometimes even across domains. For example, the feature predicates for extracting numbers and words 

from problem descriptions work in fraction addition tutors, algebra tutors, and chemistry tutors. 

Finally, the modularity of GIFT makes it ideal for measuring the usability and efficiency of different 

combinations of authoring approaches and tools. We have used the GOMS model to evaluate the efficien-

cy of different expert model authoring approaches (SimStudent and Example Tracing) in the context of 

CTAT. GIFT would benefit from similar analyses. Future GIFT research might explore how similar 

usability models can be employed for measuring the efficiency of different aspects of tutor authoring in a 

way that is comparable to other systems. 
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Background 

The Student Information Models for Intelligent Learning Environments (SIMILE) is composed of two 

components: an authoring system called the SIMILE Workbench and a run-time, reasoning component 

called the SIMILE Engine. Originally designed as an assessment middleware for simulations and serious 

games, it has broad applicability for doing learner assessments for any kind of learning experience that 

can produce data. We describe the work that was done to integrate the SIMILE Engine into the General-

ized Intelligent Framework for Tutoring’s (GIFT) Domain module. We also describe how the workbench 

can be used to author and export a Domain Knowledge File (DKF) as well as assessment rules for 

evaluating a learner’s performance state with regard to defined concepts. We demonstrate how it was used 

to integrate the Tactical Combat Casualty Care Simulation (TC3sim) and also talk about the work that is 

currently being done to make it easier to bring in new systems with assessments into GIFT. 

SIMILE started life as an Advanced Distance Learning Co-laboratory (ADL Colab) initiative. It was used 

to experiment with connecting serious games and simulations to learning management systems (LMSs). 

Part of this problem was that pre-existing simulations often did not report the same kind of assessments 

that one would track within a course of instruction inside of an LMS. Simulations typically stood (and 

stand) alone as a complete training system and did not interoperate within the ecosystem of learning 

systems that were geared towards courseware. The SIMILE Solution was to create a middleware that 

would provide the bridge between simulations and different kinds of LMSs. 

Another research area of interest that SIMILE addressed was the authoring of assessments by learning 

professionals rather than programmers. Because of the close integration between a simulation and its 

assessment capability, software developers would often need to be called upon to author new assessments 

even if the simulated scenarios did not change. Because of the nature of software, the people creating the 

training would re-hire the original developers to make these changes. This made the simulations less 

flexible and often expensive to change. 

As a side benefit, the SIMILE authoring capability could be used as a way to create assessments a priori 

to the development of a simulation or serious game scenario. An instructional professional could design 

the assessment and the domain data. The resulting models could then be delivered to the simulation 

developers as a specification for what data need to be exposed and how the simulation is intended to 

achieve its learning goals. The learning drives the simulation rather than the mechanics of the virtual 

environment driving the learning. 

Standardizing the results of an assessment also helps to incorporate a number of simulations into a 

program of instruction. The simulations can act as replacements for each other without changing the 

assessment (as long as the simulations supply the same data.) Alternatively, multiple different simulations 

can be used for a full learning experience and with learner performance being assessed across all of them. 
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SIMILE has been used as a testbed for a number of different ideas about assessment middleware and 

disparate learning system interoperability. To this end, it was integrated into a number of simulations and 

virtual worlds. TC3sim, funded by what is now the U.S. Army Research Laboratory - Simulation Tech-

nology Training Center (ARL-STTC), was one of the first to incorporate SIMILE assessment. In the 

interest of full disclosure, this was ostensibly due to the fact that Engineering Computer Simulations, Inc., 

was the prime developer on both projects. TC3sim is a serious game for training U.S. Army combat 

medics. TC3sim uses SIMILE rules to assess a player’s performance and generate an after action review 

(AAR) presented at the completion of a scenario. 

SIMILE has been modified and updated to be used as both an authoring capability (i.e., Workbench) and 

a reasoning system to be incorporated into their GIFT architecture. The workbench has been modified to 

support GIFT assessment authoring and export concomitant GIFT Domain Knowledge Files (DKFs) that 

work in conjunction with the SIMILE rules. SIMILE’s runtime process was incorporated into GIFT’s 

Domain module for reasoning about a learner’s performance within a serious game. TC3sim is used as a 

testbed for the integration of SIMILE and GIFT. 

SIMILE Architecture 

SIMILE is composed of two parts: the runtime Engine and the Workbench authoring tool (Figure 13.) 

The Engine ingests a configuration from the Workbench and then reasons about patterns of data that 

arrive from an external source (such as a simulation.) The Workbench is a graphical user interface (GUI) 

that allows people to author assessment rules and the data model that those rules reason about. 

 

Figure 13. SIMILE Workbench authors a specification to be used by SIMILE Engine 

Engine 

The SIMILE Engine is a runtime component that generates assessment results. The engine ingests an 

Intelligent eXpert Syntax (IXS) file that specifies the assessment rules and the data model over which the 

rules reason. The IXS file can be hand coded or generated by an authoring system such as the SIMILE 

Workbench. The IXS file is loaded at the time the engine is run. 

During a learning session, the SIMILE engine receives inputs from the system with which the learner is 

interacting (Figure 14.) In most examples, this is a simulation or serious game. The data model specifica-
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tion in the IXS file defines the schema of the events and objects that constitute the information that the 

SIMILE rules are interested in from the simulation. The plugin (i.e., Dynamic-Link Library (DLL)) 

defines how data are received from the external system and asserted within the SIMILE Engine for 

processing. 

 

Figure 14. SIMILE Engine receives input from an external training system and  

publishes results of its reasoning. 

The engine uses the rules to look for patterns within the instantiations of the data model and generates 

results based on those patterns. Basically, it is like medical diagnoses where the disease is inferred from 

the reported symptoms. In this case, the learner’s state is inferred from the reported activity of their 

interaction with a training system, serving as a form of stealth assessment built around monitoring in-

game behaviors (Shute, Ventura, Small & Goldberg, 2013). 

The results generated by the engine can take a variety of forms such as writing information to a log file, 

calling functions, or sending messages using a specific protocol. The results are based on a component 

(i.e., DLL) that can be plugged into the engine. Rules can also assert information into the data model to be 

used by other rules. Chaining rules like this can be used to perform induction (Gonzalez, 1993): a diag-

nostic process. 

The SIMILE Engine can be run as its own process and can speak to external systems through an inter-

process communication protocol. It can also be incorporated into another runtime system to allow another 

process to control its behavior. This is how it is integrated into GIFT’s architecture. 

Workbench 

The Workbench is the GUI that allows a user to create an IXS file to be used by the SIMILE Engine. The 

intent is to make it easier for a non-programmer to develop a data model of a learning environment and 

define how the learner will be assessed without knowledge of software programming. Additionally, the 

assessment model can be composed before a simulation is written where it can be used as a specification 

to the simulation programmer; or (as middleware) it allows assessments to be changed without altering 

the underlying simulation. 

SIMILE’s data model is composed of events and objects. Events are transient, one-time descriptions of 

data. Events are processed by SIMILE rules right when they occur. Objects are persistent entities within a 
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learning system that have attributes (i.e., name-value pairs). Objects are created and persist for a certain 

amount of time within a learning session. The objects attributes can change over time and are updated 

during the training session. SIMILE rules look for patterns or thresholds of change within objects. 

Rules are simple if-then statements. The “if” part of the rule defines the conditions for activating that rule. 

Matching a pattern within the defined data model is said to activate that rule. A rule, for example, can be 

activated by the occurrence of an event or the value of an object’s attribute going above or below a certain 

threshold (e.g., from TC3sim a virtual patient’s blood volume falling below 4000 mL.) The SIMILE 

Workbench provides an authoring environment for defining these conditions based on the defined data 

model. The user can select the object, the attribute, the operator, and the operand of the condition from 

drop downs within the authoring environment. Several conditions can be defined and related by “and” and 

“or” operators.  

When a rule is activated, the “then” part of the rule is read. The “then” part of the rule can assert infor-

mation into the data model or it can publish a result. The SIMILE Workbench allows a user to author the 

text of the result message or the assertion of data based on the data model through typing in a text box or 

using menus. A description of SIMILE Workbench customizations for GIFT is described below. 

GIFT Integration 

Motivations 

GIFT is designed to support simulation-based training (SBT) practices across an array of environments 

and settings. The motivation behind producing this capability is to enable a system to monitor interaction 

in a virtual environment, void of a live instructor, and provide coaching and guidance when performance 

deviates from a desired standard. This is achieved through modeled representations of expert performance 

established in GIFT’s domain module. These constructed expert models serve as assessment criteria in 

gauging a trainee’s real-time performance by comparing trainee interaction against designated behaviors 

congruent with optimal performance. Identifying these deviations enables a system to intervene with a 

pedagogical strategy (i.e., provide guidance, adapt scenario, or do nothing) that is intended to influence 

subsequent interaction. The challenge is establishing tools and methods for identifying errors in perfor-

mance that can be applied across multiple simulation environments. 

In terms of SBT, these modeled representations are dependent on the type of data that can be passed from 

the simulation to GIFT. These data are typically in the form of defined message libraries and protocols, 

such as Distributed Interactive Simulation (DIS), High Level Architecture (HLA), Simple Object Access 

Protocol (SOAP), and other proprietary and standard communication formats. Based on recognized 

interactions and behaviors identified during a task analysis, a system developer is responsible for linking 

interaction characteristics as deemed by available data, regardless of the protocol in use, with concepts 

represented in GIFT’s DKF. Currently, this form of assessment authoring is done at the source code level 

and requires explicit writing of code to symbolize characteristics in data outputs with established concept 

representations. 
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This is not the ideal case with respect to the desired end users applying GIFT tools to build adaptive 

courseware. From this perspective, GIFT needs two functional components. First, GIFT requires tools and 

methods for creating expert models linked to any type of messaging protocol, and second, there needs to 

be a run-time capability that manages the interpretation of data against defined rule sets. For these 

reasons, SIMILE was identified as a potential solution to provide the intelligent tutoring system (ITS) 

community with a user-friendly authoring environment to establish rule sets GIFT can act on, along with 

a run-time engine that manages the data and makes inferences from patterns of that data. 

Technical Considerations 

When modifying SIMILE to support GIFT authoring and run-time processes, there were a number of 

functions that needed to be addressed. This is based on recognizing how GIFT operates pedagogically, 

and what information is used to make informed decisions on how best to instruct and guide a trainee. 

GIFT uses a relational hierarchy of defined concepts to represent the knowledge and skill associated with 

a training event. Each represented concept requires an associated assessment to be authored, which is 

used as evidence to determine how an individual is performing with relation to a defined expectation. 

For each concept, metrics are defined to coincide with a GIFT performance state (e.g., at-, above-, or 

below-expectation). While the performance associated with a training event is domain dependent, it is 

assumed that transitions can occur between performance states as a training scenario unfolds. GIFT 

operates by communicating these transitions to the learner module where performance data are combined 

with other relevant learner information. This type of information includes affective states informed by 

sensor technologies, and individual differences linked to traits and aptitudes found to impact how one 

learns (e.g., prior knowledge, motivation, preferences). 

In terms of informing the learner module of transitions in performance states, GIFT’s domain module is 

set up to perform assessments based on authored rules and carries out domain specific implementations of 

pedagogical tactics linked with strategy requests received from the pedagogical module. A DKF specifies 

how GIFT’s domain module will accomplish its purpose. 

The DKF is where users define the relational hierarchy of concepts linked to a domain. It is also in the 

DKF where an author will designate how data are treated when received from the gateway module. This 

is where SIMILE fits in. While the DKF serves multiple functions, it operates as an .xml file within the 

domain module and currently is created through an .xml editor provided with a GIFT install. What 

SIMILE provides to alleviate this burden is an authoring environment (i.e., the Workbench). The SIMILE 

Workbench, described above, is a graphical interface that allows an author to build assessment rule sets 

around an established message library associated with a given simulation. For the SIMILE Workbench to 

support GIFT-based assessment, modifications had to be completed so the interface could link authored 

rule sets to established concepts represented in the DKF hierarchy.  

Integrated Architecture 

The SIMILE Workbench has been customized with GIFT-specific models and concepts. The GIFT 

Engine has been integrated into the Domain module of GIFT so a learner’s state conditions can be 
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authored as SIMILE rules. Additionally, DKF import and export plugins were written and incorporated 

into the SIMILE Workbench. 

Learner State Conditions 

For GIFT, the SIMILE Workbench has been customized and extended to allow the author to associate 

rules with specific concepts. Concepts define something about which a learner needs to demonstrate 

understanding. For example, a concept for a combat medic could be “Applies Tourniquet.” This describes 

a mental state of the learner where they know and understand when to apply a tourniquet to a wounded 

casualty. Concepts have four states associated with them: “At Expectation,” “Below Expectation,” 

“Above Expectation,” and “Unknown.” A combat medic learner that is not applying a tourniquet to a 

casualty that has an arm amputation in a timely manner would be “Below Expectation” for the “Applies 

Tourniquet” concept. SIMILE Rules define the conditions for concepts that indicate when the learner is in 

any of the four defined states. 

The definition of rules require very explicit knowledge of the learning domain and may not be an appro-

priate technique for every possible tutoring situation. There are many other techniques in support of 

authoring intelligent tutors (Murray, 1999), such as constraint-based representations. They are best 

applied in domains requiring expert knowledge (Crowley, 2003). They also may require a significant 

amount of time and expertise from the tutoring author to create. However, the Workbench has been 

adapted to present rule-authoring through a GIFT-specific conceptual model that helps to alleviate the 

burden of having to approach the problem as an expert system. It is hoped, that further work can be done 

in the future to address other techniques of representation with the SIMILE Workbench in the future. 

Domain Module 

In the case of GIFT, the Domain module controls the SIMILE Engine as a DLL. Because GIFT is written 

in Java, a Java Native Interface (JNI) wrapper is used to call SIMILE Engine functions. The Domain 

module passes messages of interest to the SIMILE Engine. The SIMILE Engine uses the message to 

update its data model. This may activate rules and cause results to be passed out to the Domain module 

through its call to the SIMILE Engine. 

For GIFT, SIMILE Workbench has a set of import/export plugins that handle DKFs. When an IXS file is 

built for a particular domain a concomitant DKF may also be exported. This DKF works in conjunction 

with the IXS file in the SIMILE Engine integrated in GIFT’s Domain module. 

The SIMILE Workbench can also import a DKF into the SIMILE Workbench. SIMILE’s data model is 

populated from the defined domain model in the DKF. GIFT Tactics, Concepts, and Transitions are 

brought into the workbench for editing and addition. Previously authored DKF structures can be used to 

add SIMILE rules that define the conditions of a learner’s state with regard to their mastery of concepts. 

The DKF and the IXS work together to evaluate a learner’s performance and let GIFT figure out when to 

inject tutoring tactics. 
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GIFT+SIMILE Workflow 

The typical author and learner workflow for how SIMILE works with GIFT follows this basic path 

(Figure 15): 

 

Figure 15. GIFT+SIMILE workflow 

Optionally, if there is a pre-existing DKF, the assessment author can import that DKF into the SIMILE 

Workbench. The SIMILE Workbench will be populated with named concepts, learner state transitions, 

and defined tactics found in that DKF. 

The assessment author writes learner state conditions as rules using SIMILE Workbench. The author also 

authors state transitions and their associated tactics for individual concepts as well. 

 The author publishes their project as an IXS file. 

 The author exports a DKF for use by GIFT’s Domain module. 
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 At run-time, the GIFT’s Domain module reads in the DKF and initializes SIMILE. 

 SIMILE reads in the IXS file. 

 Messages from the training simulation are routed through GIFT’s Gateway Module. 

 GIFT’s Domain module determines which messages are of interest to SIMILE and passes those 

messages to the SIMILE process. 

 SIMILE updates its data model based on those messages and rules are run against the new set of 

data looking for patterns. 

 If a rule or set of rules is activated, the SIMILE Engine reports the learner’s state to GIFT’s Do-

main module. 

 The GIFT architecture makes a determination of whether a tutoring tactic needs to be implement-

ed and sends out messages to that effect in its standard way. 

Basically, the SIMILE Engine behaves as a very sophisticated assessment function within GIFT. The 

SIMILE Workbench extends GIFT’s authoring capability to include the logic as rules of those assessment 

functions.  

TC3sim Inside of GIFT 

The initial integration point for GIFT and SIMILE was done by pairing the tutoring framework with the 

serious game TC3Sim. This integration offered an excellent use case as it provided a game-based learning 

environment that was already utilizing SIMILE to monitor interaction for the purpose of informing AAR 

materials. To support real-time assessment that GIFT can act on, SIMILE was modified to link estab-

lished rules with performance states (i.e., at-, above-, and below-expectation) representative of the 

concepts defined in GIFT’s DKF.  

The Workbench now supports defining concepts, defining rules to establish a performance state for each 

concept, defining observable transitions between performance states, and assigning tactics to enact when 

a transition results in an intervention request from the pedagogical module. To test the utility of SIMILE 

acting as a run-time assessment engine, an experiment was developed looking at the effect real-time 

feedback had on training outcomes in TC3Sim (see Goldberg, 2013, for a complete review of the associ-

ated study). This integration of SIMILE enables GIFT to monitor a participant’s interaction in the game 

TC3Sim, the ability to link data generated by the system against models of expert performance, the ability 

determine when rules associated with a model designate transitions in performance states, and the ability 

to implement instructional tactics when a strategy request is received by the pedagogical module. 

For authoring purposes, SIMILE’s workbench was modified to allow rules to be linked with concepts 

represented in GIFT’s DKF (Figure 16). During this process, it was recognized that the workbench can 

provide an environment to author all components of a DKF while helping a user maintain orientation of 
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how everything generated in SIMILE is linked to the prescribed tutoring effect chain that informs tutoring 

practices (Sottilare, Goldberg, Ragusa & Hoffman, 2013). 

With this capability, a user can now author a notional DKF in the SIMILE workbench environment and 

export its representation in an .xml file that GIFT operates on. This includes defining the concepts that 

will be monitored during run-time in a simulation, linking rules to those concepts that designate perfor-

mance states based on data communicated from the simulation, and establishing instructional tactics to be 

carried out when a performance state results in GIFT’s pedagogical module producing a strategy request. 

Prior to these modifications, all of these elements were authored in the DKF in distinctly different 

sections of the file, making it difficult to maintain orientation of how each field was explicitly linked with 

the others. The new SIMILE Workbench simplifies this process by providing all of these fields into a 

single view, making it easier to see the associations between concepts, assessments, and instructional 

tactics.  

 

Figure 16. SIMILE Workbench modified for GIFT integration 

Improvements and Additions 

Currently, the SIMILE Workbench is being extended with a plugin to allow its data model to be imported 

from GIFT’s state protocol definitions defined as Java classes. These classes are used by GIFT to com-

municate internally about the state of a simulation that is communicating through the Gateway Module. 

SIMILE can use these state definitions within its data model in order to cut down on the amount of work 

required to use a new simulation or other training application within GIFT. 
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Additionally, SIMILE has defined a generic SIMILE message class as part of GIFT’s state protocol 

definition. Objects and events specified within SIMILE’s data model can be communicated as payload 

within those messages using a standard textual format (i.e., JavaScript Object Notation: JSON.) This 

means that a user who is integrating a new simulation into GIFT does not have to define new message 

types as part of GIFT’s internal protocol. If the message payload format of the simulation is also JSON, 

then a generic Gateway Module plugin can be utilized without requiring any programming. Even if the 

training system uses a different protocol, the workload of programming a new Gateway Module plugin 

can be reduced. 

Additional work is now being incorporated into the SIMILE Workbench that supports the nesting and 

ordering of concepts. Nesting allows a concept to be made dependent on the results of sub-concepts. The 

sub-concepts’ states become entities that can be reasoned about while authoring the state conditions of a 

super-concept. Those conditions can use “AND” and “OR”, but also the temporal operators, “BEFORE” 

and “AFTER,” to reason about the ordering of concepts. 
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Introduction 

Organizations are making substantial investments in new training technology and methods of delivering 

training, such as mobile learning, virtual collaborative workspaces, and distributed simulations (ASTD, 

2012). With industry focused on personalized and tailored learning, more adaptive training approaches for 

customizing training experiences are being developed. Adaptive training (also referred to as accelerated 

learning) is a generic term for a family of approaches that use individual difference variables to personal-

ize the individual training experience by selecting an appropriate training event or changing the content 

within the event (Poeppelman, Blacksmith & Yang, 2013).  

Additionally, adaptive intelligent tutoring systems (ITSs) or computer-based tutoring systems (CBTSs) 

provide a method of guiding self-development by managing real-time instructional decisions. These 

systems select ideal instructional strategies to meet the specific learning needs of individuals or teams 

(Sottilare, 2012). Where human tutors are either unavailable or impractical, ITSs provide opportunities for 

reflection, and change the content, direction, pace, and challenge level of instruction to optimize learning.  

Currently, the United States Army is focusing on creating a more competitive environment for leaders and 

Soldiers through its new campaign for lifelong learning. To expand learning beyond the schoolhouse, the 

Army is evolving their goals to include new training methods and forms of performance tracking 

throughout ones career. The Army Learning Concept (ALC) 2015 (Department of the Army, 2011) is 

pushing the boundaries of research and practice and has introduced new architecture designs and con-

cepts. 

One recent effort at the U.S. Army Research Laboratory (ARL), Human Research and Engineering 

Directorate (HRED), Simulation and Training Technology Center (STTC) on Interoperable Performance 

Assessment (IPA) is presenting a path forward to greater efficiency of training performance across 

training systems. IPA, a method of uniformly defining and describing data about a user’s experience in a 

consistent way, has created a capability to enable different systems to leverage one another’s data to 

macro and micro adapt learner experiences. Specifically, the effort at ARL has developed an approach for 

enabling the Generalized Intelligent Framework for Tutoring (GIFT) to adapt learner’s future events or 

learning path based on past performance. This paper highlights the current IPA efforts and provides an 

overview of the future research efforts surrounding IPA and GIFT.  
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Experience API  

Currently, the Department of Defense (DoD) has a number of efforts underway related to tracking and 

assessing performance in order to enable these adaptive learner-centric environments. With known 

limitations of the Sharable Content Object Reference Model for environments like mobile, games, and 

simulations, the Advanced Distributed Learning (ADL) Initiative is currently working to extend the future 

support of interoperability of learning systems through a Training and Learning Architecture (Advanced 

Distributed Learning, 2013). Specifically, ADL is focusing on new approaches to standards and frame-

works, which include the Experience Application Programming Interface (Experience API or xAPI). 

The xAPI specification reached 1.0 as of April 26, 2013. This method defines an API to track data about 

learning experiences and defines a protocol for data structure and transmission by software components to 

communicate with one other (Advanced Distributed Learning, 2013). The xAPI defines a method to 

capture data about the interaction between a learner and a learning experience. 

The xAPI allows tracking outside of a learner management system (LMS) to capture data about digital 

and non-digital learning and user experiences across the formal, informal, and experiential spectrum. This 

includes experiences from newer training environments, such as serious games, mobile applications, 

simulations, virtual world, and augmented reality. 

The xAPI is based upon an open format specification for activity stream protocols, which are used to 

syndicate activities (Activity Streams, 2013). The xAPI specification defines a format using JavaScript 

Object Notation (JSON) to create statements that allow the capture of learning experiences. JSON is a 

text-based open standard designed for human-readable data interchange. The format of a statement is 

<Actor, Verb, Object> or “I did this.” Error! Reference source not found.1 is an example of an xAPI 

statement in JSON.  

 

Figure 1. xAPI example statement 

The xAPI specification is providing a means to uniformly describe data in meaningful way that has both 

flexibility and structure. As the ITS community continues to enable new methods of providing personal-
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ized feedback and instruction, xAPI will allow ITSs to share user data and enhance the capabilities of a 

system by leveraging data about performance outcomes and results. 

Interoperable Performance Assessment 

The purpose of the current ARL research is to capture and leverage contextual performance measures 

from current systems and encode them into xAPI statements to tailor learning to the individual learner’s 

experience and level of proficiency on a concept or capability. Through the work performed, the concept 

of IPA was defined as “a method of uniformly defining and describing experience and context to assess 

learning and performance over time; to adapt training across a variety of environments, systems, and 

modalities, whereby performance is observed, assessed, evaluated, or asserted by systems or observers.” 

Figure 2 shows a visualization of the IPA concept to represent a learner and how is tracked across 

multiple environments to adapt their pathway. 

 

Figure 2. Interoperable performance assessment diagram 

This definition not only combines the methods in which interoperable tracking occurs, but also (a) where 

the trainee, event, or training content is adapted and (b) how the data are collected. While the definition 

remains broad, the intent is to move toward a common understanding of what is meant by interoperable 

tracking of performance data and the goals of assessing performance over time. 

The previous effort set out with the following objectives: (1) define best practices for defining and 

encoding performance measurement using xAPI statements; (2) develop a technical architecture for 

interoperable activity across current Army architectures; and, (3) build a proof-of-concept called the 

Soldier Performance Planner (SP²). Below is an overview of each of the objectives and outcomes.  

xAPI Encoding Best Practices Guide 

The first research objective included the research of best practices for encoding individual performance 

data into xAPI statements from system-based (simulator) and observer-based (instructor) measures. 

Current efforts that capture individual and collective performance include an Extensible Markup Lan-
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guage (XML) activity structure known as the Human Performance Measurement Language (HPML). This 

schema was designed to capture and assess performance across distributed simulations by a language that 

identifies critical fields and stores them within an XML activity structure. The major goal of HPML is to 

focus on bridging the gap between the software implementation of raw data to measurements and compu-

ting measurements into overall assessments. Overall, HPML is designed to allow the expression of 

important concepts from the training world so that others, such as training professionals, instructors, 

operators, and researchers, can use, aggregate, and understand the data easily (Stacy, Ayers, Freeman & 

Haimson, 2006). The current effort uses HPML constructs as a basis for describing current performance 

data that is being collected by various Army simulators, as well as to understand what type of system-

based and observer-based data is being tracked across environments. 

The result of reviewing HPML included a list of pre-defined constructs along with the associated defini-

tion, examples, and usage requirements. Examples of these constructs include training objective, 

knowledge, skill, and roles. While some of the constructs were deemed useful as additional data sources 

or context, some are not required based on the current HPML schema. 

The first objective resulted in the SP² Encoding Best Practices Guide that outlines data encoding consid-

erations using the xAPI format to track data typically stored or described using HPML. The data formats 

used included xAPI version 1.0.1 and HPML version 3.1. The main purpose of the mapping was to 

provide guidance for encoding xAPI statements based upon consideration of the constructs of HPML. 

Technical Architecture 

The second research objective included developing requirements for ITSs, such as GIFT, to view this 

performance data. An xAPI statement is a human-readable set of data objects consisting of attribute-value 

pairs that use the JSON format. Data are sent in the form of time-stamped statements, which take on a 

natural language pattern of “subject-verb-object.” Storage of these xAPI statements is done via a learning 

record store (LRS) and allows access of that data by other systems. An LRS may be standalone or part of 

a larger system. 

As described above, the key components of the technical architecture include (1) HPML, which captures 

raw data, measures, and computes assessments within systems; (2) xAPI, which can capture interoperable 

learning experience data at any level of granularity; (3) LRS, which enables centralized storage and 

retrieval of all learning data captured by the xAPI; and, (4) GIFT polling component, which allows the 

ITS to receive xAPI statements and make macro recommendations within GIFT. The GIFT polling 

component queries relevant statements for a learner from an LRS. Figure 3 shows the current SP² archi-

tecture diagram, which contains all described components. 
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Figure 3. SP² architecture diagram  

Soldier Performance Planner (SP²) 

Lastly, the third project objective included the development of a prototype called the SP², which leverages 

the key elements found in the technical architecture above. Those include HPML, xAPI, LRS, and GIFT. 

The SP² HTML interface allows systems that use an LRS or HPML or xAPI data formats to connect and 

share data, add new individual data, and track individual and group performance data that will ultimately 

support adaptive and tailored learning across ITSs and other systems. While the data tracking functionali-

ty has traditionally been associated with the LMS, an LRS is able to collected statements that contain new 

types of training data that are being stored. The current purpose of xAPI and LRS is to support lifelong 

learning through persistence by tracking services and aggregating learner data from multiple systems. 

Figure 4 shows a screenshot of the SP² interface. 

 

Figure 4. SP² interface 
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Generalized Intelligent Framework for Tutoring (GIFT) 

Developed by ARL, GIFT is a modular tutoring system framework to support the instantiation of adaptive 

tutoring capabilities. It aims to research and prototype a computer-based tutoring framework to evaluate 

adaptive tutoring concepts, models, authoring capabilities, and instructional strategies (Sottilare, Gold-

berg, Brawner, Holden, 2012). The effort aims to do this across various populations, training tasks, and 

conditions, thus enabling summative and formative evaluations. 

GIFT services provide authoring of CBTS components, tools, and methods; management of instructional 

processes using best pedagogical practices based on the behaviors of expert human tutors; and an assess-

ment methodology to evaluate the effectiveness of CBTS and CBTS components, tools, and methods. 

GIFT provides services for learners, instructional system designers, expert behavior modelers, training 

system developers, trainers, and researchers. The infrastructure provides generic tutoring or remediation 

strategies to integrating systems based on learner performance. 

The current research and use of xAPI within GIFT is meant to start by informing macro-adaptation 

methods. The GIFT polling component allows GIFT to communicate with the LRS, determine relevant 

adaptations, and macro-adapt recommendations for courses. The polling component adapts based upon 

xAPI statements that state whether the learner is at or above a level of proficiency for a competency or 

concepts indicate that a user is performing below a level proficiency for a competency or concept. Based 

on the current rule sets, courses are either no longer recommended or presented based on their past 

performance. 

Additionally, current ARL efforts are developing a writing component that outputs data from GIFT into 

the xAPI format. This data mapping will enable outside LMSs and other systems to leverage xAPI 

statements describing user experiences that come from within GIFT. IPA efforts are looking at macro 

approaches to inform course recommendations and create more granular learner profiles that have 

intersystem data value. 

Community Development 

The purpose of xAPI and IPA is to describe, store, and provide access to learning experiences including 

traditional records, such as scores or completion status, as well as assertions of proficiency or deficiency 

for concepts, competencies, knowledge or skills. Intersystem communication between LMSs, ITSs, and 

other systems allows domain-independent ITSs and training technology-based solutions to aggregate rich 

and meaningful data across a continuum of systems to increase efficiency and effective use of learning 

and training assets. By understanding the current state and granular historical data of a learner, these 

systems will ultimately be able to adapt learner pathways at the macro and micro level. Figure 5 shows 

the data and functional ecosystem of the ITS, LRS, and xAPI. 
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Figure 5. ITS, LRS and xAPI ecosystem 

Based on the current work to date surrounding SP² and the developed architecture, potential impacts to 

the design and development of GIFT might include the classification of additional data sets that inform 

GIFTs approach to intelligent tutoring. Additionally, outside simulators and systems including other ITSs 

might consider connecting to an LRS as an additional data store to support initialization of learner 

profiles, course selection within GIFT, and potential extraction of data from GIFT to modification of 

long-term learner profiles. 

Future Research  

While current ITSs are focused on reducing high training development costs, improving standards, and 

adapting to support the tailored needs of the learner, there is still much research and development left to 

be done to attain this goal. As new domains continue to be explored, IPA best practices documentation 

and methods will iterate based on domain-specific verbs, actors, actor taxonomies, activities, and more 

domain-specific context descriptions. Future IPA efforts should continue to explore tools and methods to 

convert these strategies into specific instructional tactics for implementation. For instance, statements 

from other systems about competencies, knowledge, and skills could be utilized to select teams, identify 

group scenarios, and determine individual mission injects that would leverage the strengths of the teams 

to mitigate team weaknesses. 

The key to interoperability for performance assessment will also be to encode activity data across a 

number of streams (system-based measures, observer-based measures, computer-based training measures, 

physiological, etc.). To date, SP² has ingested system- and observer-based measures for individuals and 

teams. Encoding of additional streams will allow more data types to be used for testing and validation. 

Current efforts are underway to determine what data sets are applicable and what systems will be used to 

demonstrate interoperability. The goal is to continue to introduce more data sources that will lead to a 

comprehensive approach, a validation technique to confirm the data encoding process, and additional data 

sources to inform the community of encoding best practices across relevant domains. 
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Current community-driven efforts are being leveraged to support this encoding effort. A number of 

current projects from ARL and other Services are working toward a common end. An emergence of 

adoption of usage and tools is happening around the xAPI specification, which has the ability to acceler-

ate the ALC 2015 goals. Key support tools and practices are being developed to share methods of tracking 

performance data to enable tailored and adaptive learning across current ITSs, such as GIFT. 

Based on the community and data encoding efforts, enhancements should continue to be made to GIFT so 

that additional macro and micro approaches are evolved into the GIFT architecture. Additionally, other 

adaptive engines that leverage xAPI should also be leveraged for experimentation purposes. Furthermore, 

much of the future is focused on systems that provide adaptive and tailored learning not only for individ-

uals but also teams. Leveraging encoded xAPI individual and team performance data from multiple 

systems still poses a unique set of challenges that need to be explored further. Focus remains on having a 

highly agile system that is capable of tracking performance, experiences, and group data, as well as 

individual levels of data, from the national and Joint levels. 

Finally, research needs to continue to focus on the intersection between the variety of efforts underway at 

the DoD as they relate to tracking and assessing performance, which is an important step to enable these 

adaptive learner-centric environments. The current work recently completed at ARL presents an oppor-

tunity to conduct further analyses and technical exchanges among groups in order to make the community 

intersection possible around adaptive learning systems. These integration efforts will continue to grow 

with specifications such as Experience API in order to enable 21st century technologies to adapt based on 

learner profiles and performance data. 
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Introduction 

The Generalized Intelligent Framework for Tutoring (GIFT) provides a flexible set of service-oriented 

tools to enable the construction of intelligent tutoring systems (ITSs). In its current state, GIFT provides 

authoring tools to enable training designers to parametrically map a learning domain and establish a 

common domain knowledge structure or ontology. This structure is represented across the learning space, 

tutoring strategy, student model, and game/simulation environment. The Game-based Architecture for 

Mentor-Enhanced Training Environments (GAMETE) seeks to increase the capability of training devel-

opers to incorporate advanced tutoring capabilities into simulation-based gaming environments within the 

GIFT framework (GIFT, 2012). GAMETE focuses on enabling training designers to integrate intelligent-

tutoring models with game environments and parametrically control the interactions between the tutor, the 

game, and the learner. 

In the simplest sense, GAMETE is middleware – an intermediary between the tutor and the game. Figure 

1 shows the conceptual organization of GAMETE as a flexible middleware solution for integrating the 

experiential characteristics of game environments with the guided instructional and learning structure 

provided by ITSs. As shown in Figure 1, there are two conceptually distinct “users” of GAMETE. When 

a tutor/game pair is being executed, the user is the learner, to whom the distinctions between the ITS, 

GAMETE, and game components are transparent. When a tutor/game pair is being built or edited, the 

user is the content author, ideally an instructional designer, who uses tools in GAMETE as well as tools 

in the ITS engine and/or game engine to insert content in the training application.  
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Figure 1. Basic role of GAMETE in game-based tutoring 

From the user-learner’s perspective, the main interaction is with a game or simulated environment. 

GAMETE captures both game state information and user interaction data as the learner interacts with the 

game. These are then supplied to the ITS as indicators of the user’s behavior, from which the ITS can 

infer the user’s progress. The ITS may then supply performance assessments to GAMETE so that 

GAMETE can apply them to the game as it proceeds forward. The ITS may also make interventions of a 

tutoring nature based on this same information. Both of these (assessments and interactions) can involve 

changes (e.g., interruptions, overlays, etc.) to the game display that involve additional learning-based 

interactions by the user. These learning-based interactions are also managed through GAMETE and 

passed to the ITS, from which the ITS can further update its understanding of the user’s knowledge state 

and learning state against current learning objectives.  

Much of the infrastructure that GAMETE uses to do this comes from the GIFT environment. GAMETE, 

however, adds visibility and control to this process at a level that is accessible to instructional designers 

rather than, say, game- or ITS-programmers. In addition to the general GIFT infrastructure, GAMETE 

also makes specific use of the Student Information Models for Integrated Learning Environment 

(SIMILE) tools within GIFT that support the development and assessment of a student model (ECS, 

2012). In this initial version of GAMETE, the development has focused on one specific exemplar or use 

case, on both the game side – the Tactical Combat Casualty Care Simulation (TC3sim) game (also known 

as Virtual Medic: vMedic) – and the ITS side – the AutoTutor Lite system (Graesser, D’Mello, Hu, Cai, 

Olney & Morgan, 2012; Graesser, Conley & Olney 2012). Figure 2 shows this more functional organiza-

tion of GAMETE in the game-tutor process as seen from this initial tutor/game pairing.  
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Figure 2. GAMETE functionality 

GAMETE is organized as groupings of functionality that differentiate among aspects of function and use. 

The authoring cluster (the GAMETE Authoring Tools (GAT)) addresses the design and specification 

phase, in which an instructional designer interacts with GAMETE to develop an interoperation schema to 

specify system-initiated and learner-initiated tutoring options available during game execution. The 

GAMETE Domain Strategy Handler component serves as an interoperation point-of-contact between a 

specific game (through abstracted learning assessments), GIFT, and the GAMETE Runtime Environment. 

The GAMETE Run-Time Component provides graphical user interfaces to select learner-initiated 

tutoring options and serves as the communication interface for both tutor-initiated and learner-initiated 

interactions. The more detailed architecture of GAMETE is presented below, followed by discussions of 

each major functional area highlighted in Figure 2.  

GAMETE Architecture 

Figure 3 shows the high-level software architecture for the current GAMETE implementation, framed in 

the context of a learning application involving the AutoTutor Lite (ATL) ITS and the TC3Sim game. The 

authoring tools (green/light boxes) in Figure 3 provide the instructional designer with the means to grant 

the eventual learner two types of tutoring interactions, learner-initiated and tutor-initiated:  

 Learner-initiated Tutoring allows the learner to explore the instructional space by asking specifi-

cally for help and choosing from a number of optional lessons.  

 Tutor-initiated Tutoring allows the tutor, once it has identified a situation where it needs to inter-

act with learner, to interrupt the learner-game interaction and interjects the desired transaction.  
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Figure 3. Core GAMETE component architecture 

In the ATL/TC3Sim example, tutoring sessions for both the learner-initiated and tutor-initiated cases are 

specified (for execution) by the server locations of correlated AutoTutor scripts. The task assessments that 

are available for mapping to proactive tutoring sessions are defined in the correlated domain knowledge 

file (DKF) managed within GIFT. Once the mappings among the tutoring options, AutoTutor script 

locations and assessment tasks are defined, they are represented in a generalized .xml format, which is 

exported by the authoring component for use by the GAMETE run-time component. 

The GAMETE Strategy Handler is an instructional strategy implementation within the GIFT domain 

module meant to handle changes to learner state that are linked to a GAMETE strategy. The GAMETE 

Strategy Handler mitigates calls to the GAMETE Runtime to produce tutor-initiated interventions as 

dictated by the DKF. 

The GAMETE Runtime, in parallel, provides a vehicle to control and examine the execution of the 

domain-specific tutor being mediated by the GAMETE Strategy Handler (in the tutor-initiated tutoring 

case) and direct learner requests for help (in the learner-initiated tutoring case). This provides a means for 

learners to select tutoring options and interact with the tutor.  

The key aspect used to maintain generalizability within GAMETE’s authoring and runtime components is 

to conform them, as closely as possible, to the internal GIFT ontology and structure. Thus, at a more 

detailed level the three main architectural components of GAMETE have the following characteristics:  
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 GAMETE Authoring: An independent application, accessible from the GIFT Monitor module. 

This authoring application ingests pre-composed DKF, links specifically tagged instructional 

strategies to pre-composed tutoring scripts, and exports GAMETE project file appropriate for in-

gestion by the runtime application.  

 GAMETE Runtime: An independent application, interfaced through both the GAMETE Strategy 

Handler of the GIFT Domain module and a set of AutoHotkey Scripts. The runtime application 

ingests pre-composed GAMETE project files (GPF), operates in concert with a training applica-

tion to dictate simulation commands and tutor infusion as specified in the GPF.  

 GAMETE Strategy Handler: This component responds to changes in learner state (as determined 

by a performance measure and as defined within the DKF) that requires an instructional interven-

tion that is to be handled by the GAMETE Strategy Handler. This class passes information about 

the performance measure to the Runtime Application through interface methods. This information 

dictates the actions of the Runtime Application to possibly pause the simulation and start a tutor-

ing session. 

GAMETE Authoring - Design and Specification Tools 

The GAT is a self-contained Java application that can be accessed through the GIFT Monitor module. 

GAT provides a graphic user interface that enables an author to: 

 Configure GAMETE to link a tutor with a game environment (through actions such as importing 

a DKF, linking to a specific tutor service, and configuring high-level parameters within the tutor), 

and  

 Map instructional interventions to tutoring functionality, to enable the GAMETE run-time to in-

terface with the linked tutor in order to mediate the instructional interventions from the tutor to 

the learner. These mapping are contained within a GAMETE Project File (.gpf), which is checked 

for validity and exported at the conclusion of the authoring session.  

Figures 4 and 5 show examples of the GAT user interface. Authoring within GAT allows instructional 

designers a number of linking possibilities. They can create learner-initiated linkages, tutor-initiated 

linkages or both. Tutor-initiated linkages will ultimately be displayed to the user through a forced pausing 

of the simulation followed by external presentation of the lesson script. Learner-initiated linkages are 

listed in a drop-down menu of choices that is displayed when the user requests a tutoring interaction at 

runtime by pressing Alt-h. 

Authoring of tutor-initiated linkages begins by importing the DKF for the lesson currently being authored. 

Importing the DKF provides a list of strategies that will be used throughout the lesson. Only strategies 

predefined to be handled by the GAMETE Strategy Handler will be shown as these strategies will be 

routed through the GAMETE Strategy Handler interfaces to the GAMETE Runtime for tutoring display. 

After selecting a GAMETE Strategy, a second list will be generated allowing the author to associate the 

selected strategy with a tutor and tutor script URL. Additional parameters for tutor usage will also be 
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editable from this window. Upon the conclusion of editing, the GAT will export the mapping into a GPF 

to be specified in the Domain Course File and run within the GAMETE Runtime Application.  

 

Figure 4. GAMETE authoring welcome screen 
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Figure 5. GAT tutor-initiated tutoring authoring tool 

Authoring learner-initiated linkages involves creating a list of accessible tutor scripts from which the 

learner can choose at run-time, via a drop-down list. This is done within the Reactive Tutoring section of 

the authoring tool by pressing the green “+” to add a new script link. The author types the path to the AT 

script in the corresponding path column. After all script paths are added, pressing the “verify scripts” icon 

will check that the script path is valid and will populate the corresponding main question columns. 

An important focus for GAMETE authoring is the ability to enable an author to control the flow and 

sequencing of tutor-learner interactions. The GAMETE authoring toolset was designed to enable an 

author to introduce a tutoring interaction (e.g., an ATL script) within a game-based scenario and tie those 

interactions to learner-specific data. We envision this control being tied to data at multiple levels of 

abstraction, ranging from learner state coming from SIMILE (e.g., “at/below” expectation) to more 

detailed parameters such as the number/type of errors within a scenario or prior feedback delivered within 

the scenario.  

We have also identified more detailed GAMETE authoring design concepts where an author is linking 

two concepts and affixing a decision point (e.g., within the “EvaluateInjury“ concept node within the 

tutor). In this simple example, an author may want to remind the trainee of the proper procedure to 

evaluate an injury prior to applying a tourniquet. To enable GAMETE to invoke the tutor accordingly, the 

author attaches a GAMETE Strategy (i.e., tutor intervention) to the “below expectation” learner state for 

EvaluateInjury within the DKF. This approach enables the GAMETE run-time within the GIFT Domain 

module to react to this and other calls for instructional intervention by GAMETE Strategies in the DKF. 

The GAMETEStrategyHandler within the GIFT domain model passes the content of the strategy message 

on through interface methods to be handled by the GAMETE Runtime Application as dictated by the 

content of the GPF. 
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GAMETE Middleware 

The GAMETE baseline interoperability core consists of a module termed the GAMETE Strategies 

module. The GAMETE Strategies module is based upon the GIFT infrastructure and serves as the hub 

within the GAMETE formative architecture. It is the basis of the GAMETE baseline interoperability core, 

and provides a flexible capability to link GAMETE Strategies to particular changes in learner state based 

on rules authored within the GAMETE Authoring Tool.  

For GAMETE to proactively influence a learner’s progression through a lesson (by pausing/starting a 

simulation, beginning/ending a tutoring session, etc.), it must be commanded to take control of lesson 

adaptation. This is accomplished by assigning a GAMETE strategy to a particular change in learner state, 

and then linking a set of learner states to GAMETE strategies within the DKF. To keep the GAMETE 

abstraction away from the low-level states and processes of the simulation environment, the middleware 

was designed to use SIMILE to provide performance measurements against specified learning objectives 

throughout the simulation. For example, a SIMILE script would be authored to determine that a simulated 

medic within a TC3Sim scenario is near a bleeding patient and is not making progress towards applying a 

required tourniquet. SIMILE would communicate this information to GIFT’s domain module designating 

a shift in performance. This information is routed to the learner module where a message is sent to the 

GIFT pedagogical model, informing interested parties that the apply tourniquet learning objective is being 

reported as below expectation. The content author decides that this would be an appropriate time to 

introduce a tutoring scenario, reminding the trainee of the proper procedure to follow towards applying 

the tourniquet. To instruct GAMETE to take over the lesson progression at this point, the content author 

attaches a GAMETE strategy to the “below expectation” learner state for the apply tourniquet concept 

within the DKF. Within the GIFT domain module, the GAMETEstrategyhandler class was added to react 

to calls for instructional intervention by GAMETE strategies in the DKF. This class passes the content of 

the strategy message on to the GAMETE runtime application and is handled by the content of the 

GAMETE project file. Figure 6 shows an example of what this interaction looks like to the GAMETE 

author/user. 
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Figure 6. Assigning a GAMETE strategy using the DKF authoring tool 

GAMETE Run-time Tools and Operation 

The GAMETE Runtime Application (GRA) is an independent Java application that is started during 

instantiation of the domain module, and interfaces with the GAMETE Strategy Handler via a set of 

AutoHotkey scripts. The GRA is intended to be a background process that runs simultaneously with a 

simulation such as TC3Sim. It receives strategy messages from the GAMETEStrategies module and 

compares them against the mapping specified in the GPF. From this mapping, the GRA determines which 

tutoring scenario to start, along with running parameters for that scenario, using AutoHotkey scripts to 

pause the active simulation and present the tutoring interface to the learner (Figure 7).  
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Figure 7. Tutoring interface over paused simulation 

The GRA can also be accessed during the simulation by a learner wishing to request a tutoring session. 

By pressing Alt-h during a simulation, an AutoHotkey script calls for the presentation of a drop-down list 

of the available tutoring questions (Figure 8). When the learner chooses a question, the tutoring interface 

is presented. After tutoring is complete, the scenario resumes with normal game play. 

 

Figure 8. Tutor-initiated dropdown over paused simulation 
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As the GRA is intended to run as a background process, it will be invisible to a learner during the normal 

progression of a GIFT course until the dropdown is requested or the tutoring interface is presented.  

Summary and Future Plans 

This paper has described the initial steps in implementation of the GAMETE concept. The main innova-

tions of GAMETE have been the design and implementation of the following: 

 An extensible tutor/game middleware authoring/control capability for GIFT: 

o The GAMETE Strategy Handler to allow GAMETE to take control of a scenario and in-

terject tutoring into it automatically; 

o A simple tutor/learner interface that can be extended as functionality is added; 

o A graphical user interface to allow a user to ask for help in the form of a tutoring session 

while in game (i.e., for learner-requested tutoring); 

o A comprehensive GAMETE Authoring Tool to allow an instructional designer to tie to-

gether proactive and reactive tutoring options to be mitigated by the GAMETE Runtime 

Environment; 

o A practical example of using GAMETE to link the TC3Sim simulation/game with the 

AutoTutor Lite tutor.  

This research has also identified several areas for expansion of the initial GAMETE infrastructure as well 

as for future research. The ongoing GAMETE research will continue to expand GAMETE functionality in 

several areas: 

 Expanded integration of student modeling capability via expanded support for SIMILE authoring 

tools,  

 Expanded run-time integration to broader set of games/simulation, particularly to the Virtual Bat-

tle Space (VBS) family (e.g., Evertz et al., 2009) that is widely use in military training games, 

and 

 The use of other measurement constructs to trigger tutor interventions such as learner affect and 

motivation states. 

The research reported here has focused at the level of specific game-tutor pairs. One insight gained 

through working at that level was that greater interoperability could be gained from abstracting the 

interoperability interactions and developing interoperability authoring and communication standards, and 

building support for those standards into GAMETE. This principle could be applied both narrowly, (e.g., 

between specific tutors and games) as well as more abstractly (e.g., at the level of tutoring engines and 

game engines). An example of this principle might be evolving the .xml based communications mecha-
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nism between ATL and GAMETE to a more abstracted mechanism based on the Sharable Knowledge 

Object (SKO) model (Nye, 2013). Such an abstraction could enable the following: 

 Real-time updating of tutoring services through semantic message-passing; 

 Create a looser-coupling of tutoring services both within a tutoring system and between a tutoring 

system and external systems interoperated through GAMETE/GIFT;  

 An ontology of message types that describe the majority of typical tutoring events and learning 

experiences that are encountered when interacting with a human learner; and  

 Interoperability with the Foundation for Intelligent Physical Agents (FIPA) and Advanced Dis-

tributed Learning (ADL, 2013) xAPI standard for messaging learning experiences to learning 

record stores. 

Such more abstracted standards could be supported by GAMETE-based plug-ins for both tutoring and 

game engines, thus offering broad and lower-development-effort GIFT-based interoperability to be built 

into games and/or tutors from initial development. 
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Introduction 

In January 2011, the U.S. Army Training and Doctrine Command (TRADOC) published the “Army 

Learning Concept for 2015 (ALC 2015),” (Department of the Army, 2015) describing sweeping changes 

in the way Soldiers would be trained in the future. Noting that digital age learners are comfortable with 

technology, ALC 2015, now known as the Army Learning Model (ALM), describes how current and 

future technology can be leveraged to “make learning content more operationally relevant, engaging, 

individually tailored, and accessible.” The concept moves away from instructor-led training using 

hundreds of presentation slides to small group, collaborative problem-solving environments; learning 

tailored to the individual’s experience and skill level; access to content for learning and performance 

support using mobile technologies; and blended learning environments. In additional to being tailored to 

the needs of the learner, the instruction employs Live, Virtual, and Constructive simulations and games.  

As part of collaborative research, the Soldier-Centered Army Learning Environment (SCALE) program, 

the U.S. Army Research Laboratory (ARL) and the Army Research Institute (ARI) are conducting 

research and development of advanced technology-enabled training methods and technologies. ARL is 

developing an architecture and tools for an integrated learning environment and assessing its effectiveness 

to develop, deliver, and track training and education. Consistent with ALC 2015 concepts, the SCALE 

architecture supports training and education across multiple hardware platforms (personal computer and 

mobile devices), using mobile applications, virtual classrooms, and virtual worlds. The architecture has 

been designed and developed to allow for researching the viability of providing different forms and 

capabilities in training (e.g., adaptive vs. non-adaptive training, intelligent tutoring capabilities, and 

reusable learning objects). In addition, several ongoing SCALE research initiatives include incorporation 

of the Experience Application Program Interface (xAPI), Social Media Framework, Interoperable 

Performance Assessments (IPA), and Generalized Intelligent Framework for Tutoring (GIFT). 

As part of ARI’s SCALE research in 2011–2013, a prototype training application was developed and used 

as a test bed at the Fort Gordon Signal School for conducting research on assessment strategies (Spain, 

Harris-Mulvaney, Cummings, Barnieu, Hyland, Lodato & Zoellick, 2013). The training content, which 

teaches Soldiers how to operate a common piece of signal equipment, the Joint Tactical Radio Systems 

(JTRS)-Enhanced Multiband Inter/Intra Team Radio (MBITR) (JEM), was delivered via emerging 

training technologies, such as a mobile device, virtual classroom, and game-based training platforms. The 

training also included a simulated radio for the learners to interact with during the instruction as well as 

during assessments. Since the prototype training was developed using a systematic Instructional System 
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Design (ISD) approach (Dick & Cary, 1990) and a detailed ISD map was created, the JEM content, 

including pre and interim assessment items, were learning-objective aligned. This made them suitable for 

incorporation into ARL’s SCALE architecture to support research on adaptive training. Although the 

current research focuses on the impact of macro-sequencing (i.e., testing out of lessons via pre-

assessment) and remediation strategies based on learner performance on interim assessments, future 

research could include other aspects of adaptive training, such as learner profile input (i.e., novice, 

journeyman, expert) or more customized remediation strategies for micro-sequencing, both of which 

could leverage features of GIFT 4.0. 

The purpose of this paper is to provide background on the SCALE/GIFT architecture populated with JEM 

course content, a description of an in progress experimental plan to use the JEM course in the 

SCALE/GIFT prototype to answer research questions on adaptive training, and a preview of future 

research opportunities on adaptive training leveraging the SCALE/GIFT architecture. 

Background 

SCALE’s data-driven architecture was designed to support adaptive training research by being highly 

tailorable through its external interfaces and its ability to include and /or develop new modules to support 

additional capabilities and technologies. Designed to support an ontology or hierarchy of concepts within 

a domain, the SCALE architecture currently supports adaptive training through the use of learning-

objective driven content and assessments. Macro-sequencing via pre-assessment results and remediation 

strategies at the micro level, both representative of adaptive training, can be executed by leveraging GIFT 

(Sottilare, Goldberg, Brawner & Holden, 2012), an adaptive tutoring architecture that is also modular and 

service-oriented. Presenting learners with content that is matched to their aptitude or ability level provides 

learners with an appropriate level of challenge leading to optimal levels of learning performance (Orvis, 

Horn & Belanich, 2008; Vygotsky, 1978; Yerkes & Dodson, 1908). 

SCALE’s modular and web service-based architecture is illustrated in Figure 1. It was designed on top of 

the Drupal Content Management System (CMS) on the backend and provides a common Representational 

State Transfer (REST) interface on the front end. This design allows the SCALE architecture to be 

extended to support future requirements and allows the integration of existing and future technologies. 
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Figure 1. SCALE prototype architecture diagram 

Training delivery structure 

To support adaptive training and alignment with ISD principles, the SCALE training delivery structure 

was designed as shown in Figure 2. The JEM content was already segmented to support a systematic ISD 

approach with a main instructional goal, terminal objectives, and enabling objectives, which translated to 

a course, module, and lesson structure (Spain, Harris Mulvaney, Cummings, Barnieu, Hyland, Lodato & 

Zoellick, 2013). The SCALE architecture also includes a lesson element structure, i.e., a lower level 

structure resembling an authoring template that allows course authors to insert relevant assets and include 

transitional text. Assets, which are created by subject matter experts (SMEs), represent the smallest unit 

of learning for a particular concept. They include didactic text, procedural steps, audio files, video files, 

or animated sequences. Assessment questions are uploaded to SCALE and are accessible by the course 

author to create pre- and post-assessments at the module level and interim assessments at the lesson level, 

known as Check on Learning (COL) items. 
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Figure 2. SCALE training delivery structure 

GIFT integration 

As previously discussed, one of the external services that feeds into the SCALE architecture is GIFT 

version 2.0. Developed by ARL, GIFT is a modular tutoring system framework to support research and 

development of adaptive tutoring concepts, models, authoring capabilities, and instructional strategies 

(Sottilare, Goldberg, Brawner & Holden, 2012). The SCALE architecture passes learner assessment data 

through GIFT for input on appropriate remediation or advancement strategy. Currently, the SCALE 

prototype contains pre-assessments used to measure a learner’s current knowledge and interim assess-

ments used to measure a learner’s gained knowledge. Based on their performance on a pre-assessment, 

learners can be alerted to those lessons for which they have already illustrated mastery, and the learner 

can choose to skip these lessons. When a learner answers an interim assessment item incorrectly, the 

learner receives a hint and can answer the question a second time. If the learner is still unable to answer 

the question correctly, the learner is returned to the lesson content to review the related material. 

JEM Assessments 

The SCALE/GIFT prototype uses the same assessment questions as those developed as part of the 

original ARI research project involving JEM training. To support the relevant research questions for the 

ARI research project, a suite of assessments were developed, including a Computer Adaptive Test (CAT) 
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administered at three points throughout the training and COLs that were periodically administered 

throughout the training. Both the CAT items and the COLs were specifically aligned with the ISD map 

(one-to-one correspondence with each enabling learning objective). As a result of this alignment, the CAT 

items were easily reused in the ARL SCALE prototype to create pre-assessment items at the module 

level, allowing for macro-sequencing resulting in lesson collapsing for those students who demonstrate 

pre-requisite knowledge of particular lesson content. Additionally, the learning objective-driven COL 

items were used for the same purpose, specifically to assess knowledge transfer after each lesson. To set 

the foundation for multiple remediation strategies that could eventually be pushed out based on learner 

data, each COL has an associated hint in case the student selects the incorrect answer. At present, all 

students who answer the question incorrectly the first time receive the hint and a second opportunity to 

answer the question correctly. The second remediation strategy is implemented when the student still 

selects the incorrect answer even after receiving the hint. When this occurs, the student is returned to the 

lesson content for a second review.  

Adaptive Training Research Study 

The integrated assessments in the SCALE prototype as well as a fully developed JEM course have set the 

stage for conducting research on adaptive training, which was planned for the summer of 2014. There 

were additional advantages to using the JEM course as a test bed for the adaptive training research. 

Leveraging an existing relationship with the Fort Gordon Signal School, there was access to students as 

study subjects and to classrooms and equipment, as required. Additionally, the data collection from the 

ARI project yielded an experienced research team already familiar with the radio and prepared to admin-

ister post-assessment criterion measures. 

Research study summary 

ARL is currently leveraging the SCALE prototype to address research questions surrounding adaptive 

training. In addition to training efficiency and effectiveness, the research questions concern how adaptive 

training impacts learner motivation, learner engagement, and learner perception of the usefulness of 

certain adaptive training strategies. Although research has demonstrated that learners prefer a challenging 

environment (Belanich, Sibley & Orvis, 2008) and that learner reactions predict post-training motivation 

and post-training self-efficacy (Sitzmann, Brown, Casper, Ely & Zimmerman, 2008), not much is known 

concerning the ability of adaptive training to impact learner reactions, such as motivation and engage-

ment. It is assumed that presenting training that best suits the their needs would lead to higher levels of 

engagement, higher levels of motivation, as well as fewer maladaptive responses elicited by individuals 

who find a task too challenging and demonstrate decreased persistence and effort. In context of the 

adaptive JEM course that was used for the study scheduled for the summer of 2014, students would be at 

various levels of proficiency with the JEM and similar radio equipment. We would expect that students at 

the expert level would be more engaged with the training if they are able to skip topics on which they are 

already knowledgeable. Similarly, we would expect students at the novice level may be more motivated 

during the training if they receive remediation to assist them through challenging topics. 
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Adaptive training has the potential to reduce overall training time and tailor the length of the training to 

the needs of the learner (Landsberg, Astwood, Townsend, Steinhauser & Mercado, 2012; Park & Tenny-

son, 1980; Romero, Ventura, Gibaja, Hervas & Romero, 2006). In the study, the length of time spent on 

the training in conjunction with post-assessment results will provide data on training efficiency. Pre- and 

post-assessment data, as well as a capstone exercise, will determine training effectiveness. Also, students 

will provide data on learner motivation, engagement, and usefulness of adaptive training strategies.  

Study design and measures 

The adaptive training research study will involve two groups: an experimental group that will receive the 

adaptive version of the training (includes both macro and micro-sequencing) and a control group that will 

receive the non-adaptive version of the training (all lessons required with no remediation opportunities). 

Students will be utilizing a mobile version of the training using iPad technology. The two groups will be 

randomly assigned to maximize the likelihood of equivalence between groups. At least 30 participants 

should be assigned to each group. The students will begin with a pre-assessment to measure pre-requisite 

knowledge. Each group will be administered the appropriate version of the training. Following the 

training, students will participate in a post-assessment to measure knowledge transfer. Finally, students 

will participate in a capstone exercise for which measures were already created in the previous ARI 

project. This capstone measures student performance using an actual radio. To measure learner reactions, 

the students will complete surveys containing reaction items.  

Research questions 

Table 1 lists the research questions that the study will address. These results will be published in a report 

at the conclusion of the study. 

Table 1. Adaptive training research questions 

Measurement Question 

Reaction Data Does adaptive training lead to higher levels of learner engagement and motivation? 

Reaction Data – Useful of 

Adaptive Training  

Strategies 

If a module does not contain all of the lessons due to the learner’s performance on the 

pre-assessment, does the learner perceive the module content sequencing as disjoint-

ed or disorganized? Does this sequencing impact the learner’s engagement and 

motivation? 

Reaction Data – Useful of 

Adaptive Training  

Strategies 

If modules with one or more lessons are collapsed do they yield negative learner 

reactions? If so, what variations to the adaptive training strategy could reduce or 

prevent these negative consequences? 

Training Efficiency Does the adaptive training facilitate training efficiency? Do students spend less time 

on the training using the adaptive course structure strategies? Do students who spend 

more time due to remediation at least show improvement in knowledge transfer? 

Training Effectiveness 

(assessments) 

How does adaptive training impact acquisition of Knowledge, Skills, Abilities, and 

Other (KSAOs)? Do students receiving adaptive training show greater improvement 

on the post-assessment? What are the reasons why or why not? 

Training Effectiveness 

(capstone) 

How does this type of adaptive training impact job performance? Do students 

receiving adaptive training perform better on the post-training capstone exercise? 
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Future Research  

Learner profile and macro-sequencing 

As seen in Figure 3, one of the components of GIFT is the learner data, which informs the learner state 

and consequently the instructional strategy. This sequence of events is known as the adaptive tutoring 

learning effect chain (Sottilare, Goldberg, Brawner & Holden, 2012). 

 

Figure 3 – Adaptive Tutoring Learning Effect Chain 

The SCALE architecture currently contains assets that could be tagged as appropriate for certain learner 

profiles (i.e., expert level). For example, in the case of the JEM, one asset is an animated video of how to 

attach the battery to the Radio Transmitter Unit (RTU). Learner data such as the Soldier’s Military 

Occupational Specialty (MOS) could inform learner state to be expert. This could inform the strategy of 

displaying only the animated video for this lesson, since the expert student may not need didactic text or 

procedural steps for attaching the battery. 

Learner profile and micro-sequencing 

A future functionality could be implemented to push out the appropriate remediation strategy based on 

COL performance per lesson. Currently, there is one hint available for all incorrect answers. In the future, 

customized hints could be authored that tailor to a particular answer the student selects. The answer a 

learner selects could be considered representative of the learner state. For example, selecting the second 

best answer could reveal that the learner is familiar yet still does not fully understand the concept. The 

associated hint could be minimal and just enough to provoke a thought. Furthermore, if the learner selects 

the least favorable answer, he or she may not receive a hint but would instead be remediated back to the 

lesson content. 

Conclusions 

ARL continues to mature the SCALE architecture and tools for an integrated learning environment and 

continues to assess its effectiveness to develop, deliver, and track training and education. Ongoing 

SCALE research initiatives are beginning to mature and will be integrated into the SCALE architecture, 

including incorporation of the Social Media Framework, Reusable Learning Objects research, and IPA. 

The SCALE architecture will also be upgraded to the latest version of GIFT, to investigate the macro-

sequencing and micro-sequencing strategies described above. This will allow ARL the opportunity to 

continue research on the effectiveness of adaptive training in support of the ALM. 



 

74 

References 

Belanich, J., Sibley, D. E. & Orvis, K. L. (2004). Instructional characteristics and motivational features of a pc-

based game. U.S. Army Research Institute for the Behavioral and Social Sciences Technical Report 1822, 

Arlington, VA. 

Department of the Army. (2011). The U.S. Army Learning Concepts for 2015. Washington: Department of Defense. 

Dick, W. & Cary, L. (1990). The Systematic Design of Instruction, Third Edition, London: Harper Collins. 

Landsberg, C.R., Astwood, R. S., Townsend, L. N., Steinhauser, N. B. & Mercado, A. D. (2012). Review of 

adaptive training system techniques. Military Psychology (Taylor & Francis Ltd), 24(2), 96-113. doi: 

10.1080/08995605.2012.672903 

Orvis, K. A. , Horn, D. B. & Belanich, J. (2008). The roles of task difficulty and prior videogame experience on 

performance and motivation in instructional videogames. Computers in Human Behavior, 24(5), 2415-2433. 

doi: 10.1016/j.chb.2008.02.016 

Park, O. & Tennyson, R. D. (1980). Adaptive design strategies for selecting number and presentation order of 

examples in coordinate concept acquisition. Journal of Educational Psychology, 72(3), 362-370. doi: 

10.1037/0022-0663.72.3.362 

Romero, C., Ventura, S., Gibaja, E. L. , Hervás, C. & Romero, F. (2006). Web-based adaptive training simulator 

system for cardiac life support. Artificial Intelligence In Medicine, 38(1), 67-78. doi: 

10.1016/j.artmed.2006.01.002 

Sitzmann, T., Brown, K. G., Casper, W. J, Ely, K. & Zimmerman, R. D. (2008). A review and meta-analysis of the 

nomological network of trainee reactions. Journal of Applied Psychology, 93(2), 280.  

Sottilare, R. and Goldberg, B. Designing Adaptive Computer-Based Tutors to Accelerate Learning and Facilitate 

Retention. Journal of Cognitive Technology: Contributions of Cognitive Technology to Accelerated Learning 

and Expertise 2012, 17, 1, 19–34. 

Sottilare, R.; Goldberg, B.; Brawner, K.; Holden, H. A modular framework to support the authoring and assessment 

of adaptive computer-based tutoring systems (CBTS). In Proceedings of the Interservice/Industry Training 

Simulation & Education Conference, Orlando, FL, December 2012. 

Spain, R., Harris Mulvaney, R., Cummings, P., Barnieu, J., Hyland, J., Lodato, M. & Zoellick, C. Enhancing 

Soldier-Centered Learning with Emerging Training Technologies and Integrated Assessments. In Proceedings 

of the Interservice/Industry Training Simulation & Education Conference, Orlando, FL, December 2013. 

Vygotsky, L. (1978). Mind in society: The development of higher mental processes. Cambridge, MA: Harvard 

University Press. 

Yerkes, R. & Dodson, J. (1908). The relation of strength of stimulus to rapidity of habit formation. Journal of 

Comparative and Neurological Psychology, 18, 459-482.  

 

 



 

75 

THEME III:  

USER PERSPECTIVES OF  

GIFT 

 

 

 

 

 

 

 
 

 

 

 

 



 

76 

 

 

 

 

 

 

 

 

 

 

 

 



 

77 

An Analysis of GIFT User Experiences and Design Recom-

mendations for Enhancing GIFT’s Usability 

Heather Holden
1
 and Marcus Alexander

2
 

1
U.S. Army Research Laboratory  

2
Bethune-Cookman University 

Introduction 

Over the past four years, the developers of the Generalized Intelligent Framework for Tutoring (GIFT) 

have focused on providing Intelligent Tutoring System (ITS) researchers with an experimental test bed to 

assess learning effectiveness in a domain-independent fashion. The GIFT developers have conducted 

advisory boards and produced a book series to identify the key challenges relating to ITSs and provide 

design recommendations for how GIFT can address such challenges. An additional purpose of these 

efforts is to maximize GIFT’s acceptance among the ITS community by understanding the essential 

features and functionalities necessary to support the community’s research and development require-

ments.  

Although GIFT is a research prototype, it is now increased its user population to over 300 users. There-

fore, the most pressing concern is to maximize GIFT’s usability and interaction design in order to 

promote positive user experiences. In order for interactive technologies to be truly effective and enjoyable 

from a user’s perspective, they have to be designed for usability and the user experience. The purpose of 

this paper is to present the results of a survey distributed to GIFT users on their perceptions of GIFT’s 

usability and their experiences. This paper also outlines the key elements of interactive design principles 

and provides the design recommendations for future enhancements of GIFT to maximize the user experi-

ence. 

Usability vs. User Experience 

What is the difference between usability and user experience? Usability is ensuring that an interactive 

product is easy to learn and effective to use. Common usability criteria include effective to use (effective-

ness), efficient to use (efficiency), safe to use (safety), having good utility (utility), easy to learn (learna-

bility), and easy to remember how to use (memorability) (Preece, Rogers & Sharp, 2001). Good usability 

ensures that the user can successfully accomplish his/her goals due to the technology collectively address-

ing these quantitative criteria. On the other hand, user experience relates to how a user feels about the 

system. What is the emotional connection, if any, between the user and the system? User experience goals 

are more subjective in nature and can include elements evaluating the degree to which as user perceives 

the technology as satisfying, enjoyable, engaging, motivating, aesthetically pleasing, cognitively stimulat-

ing, supportive of creativity, etc. (Preece et al., 2001). Negative perceptions of frustration, annoyance, and 

boredom exhibited by a technology are also metrics that can be used to access user experience. The 

evaluation of what is being built throughout the process and the user experience it offers are the core 

processes of interaction design (Preece et al., 2001). For example, the computer and video game industry 
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have had great success in understanding the important relationship between and designing for both user 

experience and usability. This is evident by their continuous increase in revenue (in billions) yearly. 

Designing for usability and user experience 

While designing for the user experience may be more challenging than designing for usability, designing 

for both will produce maximum user acceptance and usage. There are many types of design principles of 

interaction design at have been developed by key experts in the human-computer interaction field:  

 Don Norman’s “Principles of Design,” which include visibility, feedback, constraints, mapping, 

consistency, and affordance (Norman, 2002). 

 Jakob Nielsen’s “10 Usability Heuristics for User Interface Design,” which include visibility 

of the system status; match between the system and the real world; user control and freedom; 

consistency and standards; error prevention; recognition rather than recall; flexibility and effi-

ciency of use; aesthetic and minimalist design; helping users recognize, diagnose, and recover 

from errors; and help and documentation (Nielson, 2005). 

 Ben Shniederman’s “Eight Golden Rules of Interface Design,” which include strive for con-

sistency; enable frequent users to use shortcuts; offer informative feedback; design dialog to yield 

closure; offer simple error handling; permit easy reversal of actions; support internal locus of con-

trol; and reduce short-term memory load (Shneiderman, Plaisant, Cohen & Jacobs, 2009). 

Of the three lists of design principles presented above, visibility, consistency, and feedback seem to be the 

main reoccurring principles; nevertheless, these principles can be useful for designing, developing, and 

evaluating aspects of any interactive technology. 

Unfortunately, thorough usability and user experience studies and testing takes time. A quicker way to 

understand users’ perceptions toward an interactive technology is to survey them and include elements of 

the Technology Acceptance Model (TAM). TAM is a theoretical model that predicts how a user comes to 

accept and use a given information technology. It specifies casual relationships among external variables, 

belief and attitudinal constructs, and actual usage behavior (Davis, 1989). The model suggests that when 

users are presented with a particular information technology, a number of factors, notably Perceived 

Usefulness (PU) and Perceived Ease of Use (PEU), influence their decision of how and when they will 

use the technology. The original TAM evaluates users’ cognitive, affective, and behavioral responses 

toward the particular technology in question. The PU and PEU elements represent users’ cognitive 

responses to using the technology. These cognitive responses then influence the users’ affective (attitude 

toward using) and behavioral (future usage intentions) responses toward using the technology (Davis, 

1989). The survey of discussed in this paper only included the PU, PEU, and future usage intentions 

elements of the TAM.  
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Methodology 

A GIFT satisfaction survey was developed and sent out to the GIFT community via email. Of the 300+ 

GIFT users registered on gifttutoring.org, 8 users responded to the survey. It is important to note that the 

GIFT developers did not participate in this survey to ensure the results were not biased. Four users of the 

respondents were researchers/analysts, two users were ITS authors/training developers, one user was an 

instructor/trainer, and one user was a software developer. The respondents identified the following as 

primary purposes for using GIFT: seven users reported using GIFT for research and development purpos-

es; three users reported using GIFT for experimentation; and two users reported using GIFT for evalua-

tion of its capabilities. The questions of the survey were divided into the following sections: 

1. GIFT’s Installation, Documentation and Support (4 questions) 

2. GIFT’s Perceived Ease of Use (11 questions) 

3. GIFT’s Perceived Usefulness (5 questions) 

4. The Future Use of GIFT (2 questions) 

5. Potential Features and Functionalities that could be added to GIFT (i.e., recommendations for 

improvement) (5 questions) 

Results for results for each section are provided in the next segment of this paper. 

Results and Discussion 

GIFT’s installation, documentation, and support 

Table 1 presents the results of users’ perceptions of GIFT’s installation, documentation, and support. The 

questions of this section were based on a 6-pt Likert Scale where 1 = strongly dissatisfied and 6 = 

strongly satisfied.  

Table 1: Results of perceptions of GIFT installation, documentation and support 

# Statement: Min., Max. Mean Std. Dev. 

1 The ease of installation of GIFT 1,6 4.00 1.852 

2 The completeness and accuracy of GIFT installation instructions 1,6 4.13 1.553 

3 The completeness and usefulness of the GIFT user documentation 1,5 3.63 1.408 

4 The availability of technical support (i.e., gifttutoring.org forums, 

etc.) 4,6 4.88 0.991 

 

These findings suggest that GIFT users generally find GIFT easy to install (M = 4.0, SD = 1.852). They 

are generally satisfied with the completeness and accuracy of the GIFT instructions (M = 4.13,  

SD = 1.553) as well as the completeness and usefulness of the GIFT documentation (M = 3.63,  
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SD = 1.408). They are highly satisfied with the availability of GIFT technical support (M = 4.88,  

SD = 0.991). 

GIFT’s perceived ease of use 

Table 2 presents the results of GIFT’s perceived ease of use. PEU is defined as “the degree to which a 

person believes that using a particular system would be free from effort” (Davis, 1989). The questions of 

this section were based on a 6-pt Likert Scale where 1 = strongly disagree and 6 = strongly agree. 

Table 2: Results of GIFT’s PEU 

# Statement: Min., Max. Mean Std. Dev. 

1 My interaction with GIFT is clear and understandable. 1,4 2.63 1.188 

2 Interacting with GIFT does not require a lot of mental effort. 1,5 2.75 1.488 

3 I find GIFT to be easy to use. 1,5 2.38 1.302 

4 I find it easy to get GIFT to do what I want it to do. 1,4 2.63 1.061 

5 I have control over using GIFT. 1,4 3.25 1.165 

6 I find using GIFT enjoyable. 1,4 2.88 0.991 

7 I find GIFT to be flexible to interact with. 1,4 2.25 1.035 

8 Learning how to perform tasks using GIFT was easy. 1,5 2.75 1.488 

9 GIFT has good functionality (features). 4,5 4.50 0.535 

10 I feel I have an intuitive sense on how to operate GIFT. 1,6 2.88 1.642 

11 I find it easy to remember how to perform tasks using GIFT. 1,5 3.63 1.302 

 

The primary findings suggest that users think GIFT has good functionality and features (M = 4.50,  

SD = 0.535) and that it’s easy to remember how to complete tasks in GIFT (M = 3.63, SD = 1.302). 

However, they do not feel as though GIFT is easy to use. While this is the case, these results can serve a 

baseline for future satisfaction surveys. A recommendation based on these results for future GIFT 

development would be to increase the flexibility in the authoring capabilities that GIFT can support. 

GIFT’s perceived usefulness 

Table 3 presents the results of GIFT’s perceived usefulness. PU is defined as “the degree to which a 

person believes that using a particular system would enhance his or her job performance” (Davis, 1989). 

The questions of this section were based on a 6-pt Likert Scale where 1 = strongly disagree and 6 = 

strongly agree. 

Table 3: Results of GIFT’s Perceived Usefulness. 

# Statement: Min., Max. Mean Std. Dev. 

1 Using GIFT improves my performance in my job. 1.4 2.63 1.188 

2 Using GIFT in my job increases my productivity. 1,4 2.50 1.195 

3 Using GIFT enhances my effectiveness in my job. 1,4 2.75 1.035 

4 I find GIFT to be useful in my job. 1,5 3.13 1.356 

5 In my job, usage of this technology is relevant. 2,6 4.38 1.302 
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Based on these results, respondents do not feel as though GIFT improves their job performance  

(M = 2.63, SD = 1.188), increases their productivity (M = 2.50, SD = 1.195), or enhances the effective-

ness of their job (M = 2.75, SD = 1.035). However, they do agree that GIFT is a relevant technology in 

their job (M = 4.38, SD = 1.302). In essence, GIFT’s perceived usefulness among the respondents is 

currently low. This is not surprising for two reasons: (1) PEU is a primary element that contributes to PU 

in TAM and (2) the level of PU depends on the necessity of the technology directly impacting job 

productivity. For example, email applications will produce high levels of PU as it is heavily intertwined 

with most communication among employees. When revisiting the job categories of GIFT users and their 

purposes for using GIFT, it is apparent that the roles and responsibilities of such categories are vast and 

their use of GIFT is a small part. As PEU increases, so will PU, especially since the respondents feel that 

GIFT is a relevant technology for their job. One recommendation, based on these findings, to increase 

GIFT’s PU is to highlight and extend the features and functionalities of GIFT based on the roles of 

different types of users. 

Future use of GIFT 

Table 4 presents the results of user’s likelihood of future GIFT usage. The questions of this section were 

based on a 6-pt Likert Scale where 1 = very unlikely and 6 = very likely.  

Table 4: Results of likelihood of future GIFT usage 

# Statement: Min., Max. Mean Std. Dev. 

1 
What is the likelihood that you will use GIFT in the future for the 

purposes you previously identified? 
3,6 5.13 1.126 

2 

What is the likelihood that you will contribute to the future of 

GIFT by expanding the code base and returning your findings to 

the GIFT community? 

3,6 4.63 0.916 

 

These findings suggest GIFT users are very likely to continue to use GIFT in the future (M = 5.13,  

SD = 1.126) and are likely contribute to the future expansion of GIFT code base by returning their 

findings/changes back to the GIFT community (M = 4.63, SD = 0.916). This is important as it shows that 

GIFT users appreciate the value and motivation behind GIFT development. This also supports the 

previous finding of GIFT being a relevant technology in the jobs of the respondents. 

Additional features and functionality needed 

This section consisted of five open-ended questions. Presented below are the questions and the responses 

for each.  

1. What authoring features do you need in your ITS framework that GIFT does not provide? 

a. Natural Language Conversation 

b. Rapid iteration features (survey authoring, course authoring) 

c. A way to tutor teams 

d. A more logical course authoring system that isn’t based on editing XML files. Something that 

is more flowchart based.  

e. Unsure/None 
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2. What instructional features do you need in your ITS framework that GIFT does not provide? 

a. Integration with an LMS 

b. Ability to prioritize which instructional strategy is selected for remediation if multiple condi-

tions are simultaneously below expectation. 

c. In the XLM tree structures, it’s easy to lose track of where you are in the tree and what you 

are adjusting or what you have to add.  

d. Have not tried long enough to say about this/Unsure 

3. What analysis features do you need in your ITS framework that GIFT does not provide? 

a. For the expected time of finishing the activity, it would be nice to have a range or a probabil-

ity distribution. Also, more granularity according to the performance (not just below, at or 

higher than expectation) such as author defined levels of performance, using more sophisti-

cated rules. 

b. Merging multiple data channels into a dataset (e.g., sensor data, log data). Data exploration 

tools. 

c. The ability of analyze different members of a team at the same time. 

d. Have not tried long enough to say about this/None/Unsure/N/A 

4. Please list at least 1 suggestion for how to make GIFT more user-friendly or easier to use. 

a. Produce a demo video (or set of videos) to describe each of the features/functions. 

b. The XML tree needs to be polished. The topic of each branch and the parent can be high-

lighted in a bigger font or something. The validation of the tree is not real-time. You need to 

save the file, then validate it, then save it again. The buttons are not easy to find at some plac-

es. 

c. Install wizard with options for configuring GIFT setup. Minimize editing XML files during 

installation. Also, handle dependency issues (e.g., MySQL, PowerPoint) gracefully. If non-

essential software is missing, don’t prevent GIFT from running. Also, could be useful to con-

duct heuristic evaluation on survey authoring and course authoring systems. While these are 

great features, there are too many mouse clicks to set things up. Feature discoverability could 

also be strengthened.  

d. Documentation might be enhanced a little bit to help new GIFT users and developers.  

e. Expanded technical documentation for engineers/system integration. (e.g., use of XML 

config files, expected order of message generation and receipt during processing). 

5.  Are there any features and functionality that could be added to GIFT? 

a. Additional API calls surrounding the message system. For example, ability to add new mes-

sage types and tell the related components how to listen for the new messages and respond to 

them. 

b. A more robust domain logic API so that other simulations could send messages about their 

data without having to create new Conditions. And perhaps clearer documentation on how 

this could work in a non-trivial case. 

c. Previous feedback was based on GIFT 3.0 and earlier as opposed to the latest version (4.x). 

Despite critical feedback above, I’m very enthusiastic about GIFT. But I think there is a lot of 

opportunity for improving the user experience. 

d. Have not tried long enough to say this. 

 

These five open-ended questions provide a qualitative aspect to this satisfaction survey. The answers to 

these questions provide insight of ways to increase GIFT’s usability and user experiences. They also help 

explain the quantitative results of the survey previously presented. 
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Conclusions 

Overall the respondents of the survey exhibited positive perceptions toward GIFT in terms of future usage 

intentions as well as its installation, documentation, and support. However, their perceived ease of use 

and usefulness of GIFT is low, except for a few notable questions discussed the findings. Nevertheless, 

these finding will serve as a baseline for future satisfaction surveys. They appreciate the motivation and 

purpose of what GIFT is aiming for, now and in the future. The good news is that most of the desired 

features and functionality provided in the survey results are on the GIFT developers’ plans for implemen-

tation in future releases. Some of the requested features, such as a more user-friendly course development 

authoring tool, are in the latest GIFT version, GIFT-2014-1X (released April 2014). As the GIFT devel-

opers’ continue to increase GIFT’s usability and user experience, future satisfaction surveys will be 

presented to the GIFT community to ensure the progression of maximizing usage and acceptance. 
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DON’T PANIC 

I have a vivid memory of being a first-year graduate student sitting in my psychology research lab. I had 

decided that I wanted to learn how to use our lab’s eye-tracking equipment for a study that I would be 

conducting. The first step I took in trying to achieve this seemingly daunting task was to read the docu-

mentation that a former graduate student in our lab had left behind. I noticed that on the top of the page 

the phrase “DON’T PANIC” was typed in big bold letters. At first I looked at it puzzled, and then I 

realized that it served two purposes: 1) it was a message to all incoming graduate and undergraduate 

students that despite looking complicated, it was possible to operate the eye-tracker, and 2) it was a clever 

reference to the Hitchhiker’s Guide to the Galaxy, which stated that “It is said that despite its many 

glaring (and occasionally fatal) inaccuracies, the Hitchhiker’s Guide to the Galaxy itself has outsold the 

Encyclopedia Galactica because it is slightly cheaper, and because it has the words ‘DON’T PANIC’ in 

large, friendly letters on the cover” (Adams, 1979). After that experience, I decided that I would include 

the phrase “DON’T PANIC” at the beginning of instructional manuals that I wrote to provide reassurance 

and a laugh to those who read them. That is why, I now present to you, The Research Psychologist’s 

Guide to GIFT, a wholly accurate and encouraging guide for those who wish to use the Generalized 

Intelligent Framework for Tutoring (GIFT) in their own research and that has the phrase “DON’T 

PANIC” in large friendly letters on the top of the page.  

The Generalized Intelligent Framework for Tutoring 

What is GIFT? 

GIFT is an open-source, domain independent intelligent tutoring framework, which has multiple func-

tions (Sottilare, Brawner, Goldberg & Holden, 2013; Sottilare & Holden, 2013). It provides the tools for 

an individual instructor or researcher to create complete intelligent tutoring systems (ITSs) that can be 

used as a component of the classroom or as independent instruction. Additionally, GIFT can be used to 

conduct research. The functionality of GIFT and the tools included with it allow for the development of 

both experiments that examine individual components of ITSs, as well as more traditional psychology 

experiments in a computerized environment. In fact, GIFT has been used to conduct experiments on the 

self-reference effect and on receiving feedback from in-game vs. out of game characters (Goldberg & 

Cannon-Bowers, 2013; Sinatra, 2013). 

Why should a research psychologist use GIFT? 

For myself, as a research psychologist, I have found GIFT to be very useful in running experiments. 

While GIFT offers the capability of adapting to the individual learner and giving specific feedback based 

on performance, it also provides a means to present a traditional experiment.  
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Many of the experiments that research psychologists conduct involve providing materials (with a manipu-

lation of interest) and questionnaires to individual participants. Generally, in an experiment, except for the 

manipulation of interest, all of the materials, surveys, and their order of presentation are expected to 

remain constant. One difficulty that researchers often run into is the need to have undergraduate research 

assistants and research proctors present in order to run an experiment. The role that these proctors serve at 

times includes reading instructions to the participant, opening and closing programs, opening and closing 

websites, and providing printed surveys/questionnaires to fill out.  

GIFT provides researchers with the ability to create an individual course, which can automate many of the 

connective processes that research assistants traditionally are responsible for during an experimental 

session. With GIFT, the researcher can create a linear flow for their experiment, such that participants are 

given guidance, surveys, and program materials in a desired order. Currently, GIFT can interface with 

PowerPoint (in the form of a PowerPoint show, .ppsx or .ppsm), TC3Sim/vMedic, and VBS2. The ability 

to integrate a PowerPoint show into GIFT is extremely powerful, as Visual Basic for Applications (VBA) 

can be used to make PowerPoint interactive through the use of macros and simple visual basic program-

ming. Additionally, many instructional PowerPoint files are readily available, or can easily be created by 

an individual that does not have a computer science background. Once the GIFT course is constructed and 

run, the desired information, surveys, and programs (e.g., PowerPoint) can be automatically opened and 

closed as appropriate during participation. As the number of research assistants that are available is often 

limited, automating these experimental processes can increase the efficiency of those who are running 

participants and allow for multiple participants to be run simultaneously. Further, it removes the possibil-

ity of human error in opening and closing the wrong computerized windows or providing the wrong 

surveys. A further benefit of automating these processes is that research assistants can be shifted to 

different tasks that may offer a richer research experience for them, such as coding and analyzing data.  

GIFT provides researchers with the ability to create their own surveys and questionnaires that can be 

administered on the computer as part of a GIFT course. These surveys are hosted on the computer and do 

not need an internet connection in order to be completed. After data collection has been completed, the 

responses that were entered by the participants can be exported into a format that is easily compatible 

with Excel and SPSS using the Event Reporting Tool (ERT).  

Using GIFT to Create an Experiment 

To create a traditional psychology experiment using GIFT, the researcher will use separate tools that are 

provided to create surveys, create the flow of their “course,” and export the data. This paper focuses on 

the three tools and steps that are most crucial to creating an experiment using GIFT. There are also 

additional tools available to researchers who wish to include sensors and real-time adaptive feedback in 

their experiments.  

Designing your course 

In GIFT, a “course” is the file that is generated by the researcher, which determines the flow of experi-

ment and the activities that occur during it. Your “course” is designed with the Course Authoring Tool 

(CAT) or the GIFT Authoring Tool (GAT), which is included in the Administrator Tools of GIFT. In 



 

87 

GIFT 4.0 and earlier versions, the CAT is the only tool provided to design a course. However, in post-

GIFT 4.0 versions, starting with GIFT 2014-1X, a user friendly CAT, the GAT, is also available in 

addition to the original CAT. 

It is advisable that before sitting down to design your course, that you create an outline for your study, 

including each of the components that you want in it and their order. Doing this ahead of time will save 

time once you begin to use the authoring tools and will alert you to other steps that you may need to take 

before completing the design of your course.  

Both the CAT and GAT provide similar features and functionality in regard to GIFT course design. 

However, the user-interface that the experimenter interacts with to create the course is very different. The 

CAT is an .xml editor based tool, which allows users to add and expand nodes that represent components 

of their course. The GAT is a more visual tool that leads the user through the experience of designing a 

course with the use of more traditional menus and includes drag-and-drop functionality to rearrange 

course elements. For new users, and those who do not have a background in computer science, the GAT 

will likely be the preferred tool to use to create a GIFT course.  

Both course authoring tools allow you to provide guidance (messages given to the participants about what 

to expect and a continue button), provide questionnaires/surveys, go to external web sites, as well as open 

and close programs (such as PowerPoint). When you first create a new course using either tool, you will 

be prompted to give it a name and a description. Next, you will need to select a survey context, which 

indicates the pool of surveys that you will be using during your experiment. The survey context is created 

using the Survey Authoring System (SAS) prior to creating your course. The CAT is set up in the form of 

a customized .xml editor that has nodes that represent each course element. Nodes can be added and 

deleted. Additionally, you can reorder the nodes if you wish, after they are created. See Figure 1 for an 

example of a course loaded in the CAT. In the GAT, course elements are added through the use of a menu 

and are represented on the left side of the users screen. See Figure 2 for an example of a course loaded in 

the GAT. When you create a node in the CAT or create a new course element in the GAT, you have the 

option of what you would like it to provide. In an experiment the options that you are most likely to use 

are: Guidance, Training Application, and Present Survey. “Guidance” are text-based messages that are 

given to the participant during the experiment. “Training Applications” are external programs that your 

course will be launching. Currently, PowerPoint, VBS2, and TC3Sim/vMedic are supported. For each 

Training Application that you add, you will need to also provide an associated domain knowledge file 

(DKF). If you do not intend to use adaptive feedback during the application, then you can use the provid-

ed “simplest.dkf”. However, if you wish to have adaptive feedback you will need to create your own DKF 

using the DKF Authoring Tool (DAT) or Student Information Models for Integrated Learning Environ-

ment (SIMILE) workbench, which is included with GIFT. As the majority of psychology experiments do 

not offer adaptive feedback, creating a DKF is beyond the scope of this paper. When the “Present Survey” 

option is selected, you can choose from the surveys that are in the survey context, which you set for your 

specific course. 



 

88 

 

Fig. 1. An example of a course loaded in GIFT’s CAT. Each node represents a different course element, 

which has sub-nodes that can be expanded to add more details. 

 

Fig. 2. An example of a course loaded in the GIFT’s GAT. The transitions list indicates  

the elements of the course, and once selected, information can be entered for each element.  

Additional course elements are added using the menus.  

If you have multiple conditions in your experiment, you can make multiple courses that are identical 

except for your manipulation of interest. For instance, if each condition receives a different PowerPoint, 

then you can create one course that opens a specific PowerPoint and a second identical course that opens 

a different PowerPoint. In order to do this, you can provide individual names for both of these courses, so 

that the system realizes that they are different, and to make it clear to yourself/research assistants which 

course needs to be opened in which condition. For instance, in a study that I conducted, I named the 
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course for Condition 1: “1 – Logic Puzzle Tutorial”, and the course for Condition 2: “2 – Logic Puzzle 

Tutorial.”  

Creating surveys 

Surveys can be created using the Survey Authoring System (SAS), in the administration tab of the 

Module Monitor. The SAS allows the researcher to create individual questions, combine the questions 

into a survey, and then create a survey context. Each experiment or course has an individual survey 

context, which lists all of the surveys that will be used in that specific course. See Figure 3 for a screen-

shot of the SAS.  

 

Fig. 3. An example of GIFT’s SAS. The tabs at the top of the screen allow the user to  

switch between creating questions, surveys, and survey contexts. 

The SAS is a relatively straightforward and easy to use tool that provides the ability to create different 

types of questions such as fill in the blank, multiple choice, ratings scale, matrix of choices/matching, 

slider bar, essay, and true/false. After the questions have been created, they can be combined into full 

surveys. When a survey is created, the order of questions is determined and additional text/instructions 

can be added. Surveys can be created using questions that are already available in the SAS or can be 

created using questions entered by the researcher. When a survey is created, a “tag” (abbreviated name) 

can be provided for each question, if desired. This tag will be exported with the data and will be present at 

the top of data column associated with the specific question. Using a tag will make it easier to work with 

the data that is output after the experiment is completed.  

After all of the desired surveys are created for an experiment, the next step is to create a survey context. 

The survey context is a list of all the surveys that will be used for a specific course. Each survey will be 

associated with a specific “key” name that is entered by the researcher. When a course is created using the 

CAT or GAT, it is necessary to set an associated survey context. When you are designing your course and 

add a survey element, it will provide with a list of all the “key” names that you established during the 

survey context creation. Only surveys in the associated context will be available for use. When you export 
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your data, the “key” names are also present as part of the column titles in addition to the provided “tag” 

names for each question.  

Exporting data 

The ERT is used by the researcher to export the completed data. The researcher selects the desired data 

files, then can choose a merge type and the types of data he or she wishes to export. It is likely that for a 

traditional psychology experiment, the only necessary data will be the survey responses, which are called 

“Submit Survey Results” in the ERT. The ERT provides a number of different ways to merge data; 

however, merging by UserID is very useful for a researcher. This merge type provides an output file that 

has each participant represented by a row, and each survey question response is represented in a column. 

This output can be easily opened as an Excel file, then imported into SPSS for analysis. See Figure 4 for 

examples of the report generation and merge options in the ERT. 

 

Fig. 4. Left: Screenshot of the events of interest that can be selected in the ERT.  

Right: Screenshot of the merge selection and column sorting options in the ERT.  

Tips for Running Experiments with GIFT and Future Directions 

Assigning/managing participant numbers 

In GIFT 4.0 and earlier, an important issue to be aware of is how to organize participant numbers. When 

you create a new participant, you are asked to enter an LMSName and the participant’s gender. Afterward 

this new participant is assigned a participant number, which is in sequence of the previous participants 

that were created on that specific instance of GIFT. When you log the individual into the computer, you 

will use this UserID number, rather than the LMSName that you entered. Additionally, when you export 

your data, it can be merged by UserID, but not LMSName. Therefore, it is important to determine a way 

to match the participant number that you have assigned to your participant to the appropriate UserID. The 

entered LMSName will not be available in relationship to the exported data. There are a few different 

solutions/workarounds for this, which include creating a demographics questionnaire in the SAS that asks 

the participant to enter their participant number that you gave them. Additionally, you can assign your 

participant numbers based on the actual UserID that is given from the GIFT system, rather than a self-

entered number.  

In post 4.0 versions of GIFT, starting with GIFT 2014-1X, the UserID and login process remains the 

same; however, the exported data merge will be based on the entered LMSName, rather than the UserID. 
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For example, if you would like to name your participant “P05,” you would enter that as the LMSName 

when you register them, and if you merge the data by UserID when you export it, that is the name that 

will be associated with it. 

Editing surveys 

In GIFT 3.0, and GIFT 4.0, the SAS became more sophisticated. In addition to this, it also lost the ability 

for the researcher to be able to edit surveys after data has been stored in them. This means that if you 

create your GIFT course, run through it to make sure everything works, while either answering or leaving 

the survey questions blank, you will no longer be able to make any edits to the surveys themselves. One 

of the simpler workarounds for this issue is to use the “Test” function within each survey in the SAS. This 

gives you a preview of what the survey will look like and how you can interact with it without saving the 

data. Additionally, if you have already run through the surveys and need to edit them, you can do so by 

copying the surveys, making your changes, and updating/creating your survey context to reflect the 

appropriate surveys.  

GIFT 2014-1X includes an option that allows you to delete any previous survey data that were stored, 

which would allow you to once again make edits to your surveys. This future feature should be used with 

caution; however, it should give researchers more flexibility in making edits to their surveys. 

Exporting your data 

In GIFT 4.0, when you merge your survey data by UserID (such that each participant’s data are on one 

single line), duplicate entries are present. When the data are output in spreadsheet form there will be one 

column with the initial copy of the data (e.g., “PreTestMoodRating”), then there will be a column next to 

it with the same name and a “(2)” (e.g., “PreTestMoodRating (2)”). The second column is a duplicate of 

the first. To deal with this issue, the researcher can go into Excel or SPSS and delete every other column, 

to ensure that the duplicate data are not accidentally analyzed.  

In GIFT 2014-1X, these duplications will still exist. However, once the researcher has exported the 

survey data using the ERT, there will be a popup indicating the existence of duplicate data. Additionally, 

rather than duplicate data being present in every other column, there will be an empty column at the end 

of the first copy of all the data. This empty column will then be followed by the duplicate data columns. 

This allows the researcher to easily identify the duplicate data and quickly delete them rather than having 

to do considerable edits to the entire outputted data file. 

The Future of GIFT and Conclusions 

GIFT is constantly evolving and user feedback can have a great impact on GIFT’s future directions. The 

changes to the UserIDs, SAS, and ERT mentioned in the above tips section were a result of user feed-

back. One of the current goals of GIFT is to become more user-friendly. In GIFT’s current form, it is a 

great tool for research psychologists. As GIFT continues to develop, it will gain new functionality, and 

through improvements in usability, it will be accessible to researchers of all skill levels. While at first 

glance, GIFT may seem complicated; after getting some experience with it, it can be a powerful and easy 
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to use tool for conducting research. Hopefully this guide will assist you in creating your own psychology 

research experiments using GIFT, and when you approach a new challenge in GIFT, remember, “DON’T 

PANIC”. 
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Introduction 

Simulation-based instruction can motivate students and more readily lead to the transfer of skills to real-

world situations. This transfer can be increased when the simulation is paired with instruction based on 

principles of human learning. In this paper, we describe an instructional environment in which students 

receive performance feedback that follows good instructional principles. An assessment engine triggers 

instructional remediation based on 1) student violations of good performance policies and 2) the severity 

of the violation. In our approach, we present adaptive instruction to students while not overloading their 

cognitive resources by identifying the aspect of the student’s performance that is most discrepant from 

good performance and guiding the student through an intervention that targets that topic. Thus, our 

system’s design goal is to create instruction that is contextualized, adaptive to student violations, interac-

tive, and not taxing on student cognitive load. This paper describes our approach to building this kind of 

instruction and how we implement it using the Generalized Intelligent Framework for Tutoring (GIFT). 

Presenting instructional interactions within simulations using GIFT 

Simulations on their own are a motivating and contextualized tool for helping students learn. However, 

the instructional power of simulations can be greatly increased if feedback is adapted to students’ needs. 

Two important challenges we address are to identify 1) the topic(s) on which students need assistance and 

2) the kind of instructional intervention that can be provided within a simulation. One of the primary 

challenges in developing instruction is knowing how and when to intervene when a student needs help.  

In this paper, we describe an instructional system that presents instructional interactions within a simula-

tion environment using GIFT. We provide the rationale for the instructional design, followed by a 

discussion of mechanisms within GIFT that support this instructional approach. 

Instructional principles 

The following research-based instructional principles can be used to develop effective instruction: 

1. Instruction is embedded within a realistic representation of the targeted environment for using the 

content of the instruction. Most commonly, this will be a computer simulation of the real envi-

ronment. These environments are instructionally beneficial because students can see how the con-

tent they are learning can be used, and students can use the learning environment to practice the 

skills required to perform well in the real-world target situation (Collins & Greeno, 2010).  

2. Within the instructional environment, instructional interventions will target specific areas of stu-

dent performance and knowledge based on an assessment of student performance. By following 

this principle, the instruction adapts to student needs (Woolf, 2009). 
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3. Over time, the instructional environment will present scenarios that change and adapt to what 

students need. Generally, simulation scenarios will become more complex. Additionally, if stu-

dents need to practice specific skills, scenarios will be selected in which those skills are likely to 

be exercised (vanLehn, 2006). 

4. The instruction will consist of more than telling students how to perform better—the instruction 

will engage students in an interaction with the content. Interactions with content support more 

performance improvement (Chi, 2009) so that students learn more about the area in which their 

performance needs to improve. 

5. The instruction needs to consider cognitive load. The instructional interaction should not be so 

complex as to overwhelm the student’s attention. This is particularly important for instruction 

within a simulation, as the students need sufficient cognitive attention to keep the simulation sce-

nario in mind (DeJong, 2009). 

6. The simulation-based instruction should provide opportunities for the students to apply what they 

need to learn in a variety of contexts. With simulations, this is most often accomplished through 

the use of different scenarios (Bransford, et. al, 2000). 

7. The instructional environment should foster positive student affect. Students should feel good 

about their learning and their progress (Graesser, et. al. 2006). 

Micro-Strategy Pedagogy 

While the seven principles just described are all important to instruction, our focus is on micro-strategies 

within a lesson rather than macro-strategies involving sequencing of scenarios and pacing. Thus the two 

principles we address are 1) instructional interactions and 2) cognitive overload. Some of the interactions 

students can have with automated instructional systems include hints, feedback, challenges, articulations, 

reflections, explanations, and scaffolding. Cognitive overload can be reduced by not attempting to address 

all areas in which students should improve at once. Simulations heighten the need to consider cognitive 

overload because the thread of the scenario must be kept in mind by the student.  

When the balance between inducing cognitive processing and cognitive limitations is appropriate, 

simulations can be a superb learning environment. In a recent study investigating the effectiveness of 

embedding instruction within a simulation, an additional hour of instruction distributed across a 12-day 

class led to the students in the instructional treatment condition performing 24% better than students who 

used the simulation without instruction (Pokorny, Haynes, Gott, Chi & Hegarty, 2013). The instruction 

was crafted to both induce cognitive processing of the domain knowledge (in this case, system function 

and maintenance procedures) that students needed to know while not interfering excessively with the flow 

of the scenario.  

The context for this study was a procedural maintenance task in which students practiced conducting 

procedures within a simulation. The procedural task was occasionally interrupted when students perform-

ing the procedure reached the end of a sub-goal. At this point, the students were asked a question which 
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targeted the primary function of the system examined by the last set of procedural steps. Examples of 

primary function questions included a) How was the system configuration changed by the last few steps? 

b) What was the rationale of the test being conducted? and c) What interpretations should be made if a 

specific reading of a test was obtained? The instructional sequence is shown below: 

 Students are asked a question 

 Students answer the question 

 Students are given an expert’s answer to the question 

 Students compare their answer to the expert’s answer on a few key features.  

We are studying the effectiveness of this kind of instructional intervention in a training environment that 

focuses less on procedural knowledge and more on decision making. In a turn-based game, we are 

creating instruction that mirrors the pattern described above. The decision-making instructional environ-

ment requires students to do more than follow a procedure; students have to select choices. The rest of 

this paper explains the instructional design we are implementing, and how we are using GIFT to imple-

ment the pattern. 

instructional Design 

The instructional design balances the instructional need to induce cognitive processing while limiting 

cognitive overload. The instructional context is a turn-based game in which students make many deci-

sions per turn. An assessment system identifies student decisions that differ most from experts’ decision-

making policies. To help the students make decisions that are more like experts, instruction is provided on 

the aspect of performance identified as needing attention.  

Three instructional flows 

A model of the instructional flow which is similar to the pattern described above for the procedural task is 

shown in Figure 17. This model of instruction assumes a turn-based instructional game. The same basic 

mechanism would be applied to continuous simulations, though the instruction is easier to describe with 

turn-based remediations.  

The most significant difference between the current study (turn-based, decision-making game) and the 

earlier study (procedural maintenance simulation) is that the turn-based design enables scaffolding. On 

the first turn in which a topic is identified for remediation, the instruction consists of a relatively simple 

question to the student. This question might lead to better student understanding and performance. If it 

does not, a more focused question is asked of the student.  
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Figure 17. Instructional flow; two levels, with response to coaching 

We are investigating the above instructional flow, as well as two others. It is possible that the intervention 

presented in Figure 17 will yield excellent results. It is also possible that the this intervention is too 

demanding for students; students might be cognitively overloaded, not improve much, and complain of 

losing the context of the simulation scenario. If this occurs, we could make the instructional interventions 

less complex, by removing the need for students to directly respond to the questions as shown in Figure 

18.  

 

Figure 18. Instructional Interactions; two levels; no response to coaching 

Another possible result of the experiments is that the instructional remediation designed to increase 

student knowledge and performance is not powerful enough, and neither students’ knowledge nor 

performance will improve. If this is the case, we would move the instructional balance more toward 
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inducing cognitive processing by adding another level of hints. This instructional flow is depicted in 

Figure 19. 

 

 

Figure 19. Instructional Interaction; three levels, with response to coaching 

Instructional content 

In addition to the instructional design flow, we also discuss the content of the instructional remediations. 

The domain of our example instruction is counter-insurgency and the training environment is UrbanSim, 

a counter-insurgency game developed by the University of Southern California, Institute of Creative 

Technologies. 

The assessment system we are building evaluates and scores each decision that students make. The worst 

decisions that students make will become targets for instruction. This assessment approach is based on 

expert evaluations of student performance. For more details, see Pokorny, Haynes, and Gott (2010). In 

this paper, we describe the instructional interactions that students should have (as determined by our 

assessment system) and how they can be implemented in GIFT.  

As an example, a student playing UrbanSim may need remediation on the topic of “applying excessive 

force.” Using the instructional flow of Figure 17, the first question shown to the student could be the 

following: 

 Are your security actions consistent with doctrine? 

After the student enters an answer, the instructional system presents an expert’s answer to the question: 
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 While security is a priority of your Commander’s intent, you also have to address other concerns. 

If the student’s next action improves, i.e., the student does not use too much force, the instructional 

system responds with a message indicating compliance to good performance: 

 Your security actions showed a more even-handed approach to balancing security concerns and 

other needs of your mission. 

If the student continues to use too much force, the next hint would be more specific:  

 As tribal zones transition from Clear to Hold, are you ordering excessive security actions given 

the current security risks? 

After the student enters an answer, the instructional system follows up with a message that provides 

specifics about the student’s actions with respect to desired performance: 

 Your security risks were the continued existence and activity of the Shia Death Squads.  

 Your security actions were a patrol in the Market District, seizing a residence in the Merkel Dis-

trict, joint investigations of IEDs, and vehicle checkpoint near the cement factory.  

 Experienced commanders, applying Clear, Hold, and Build, would use fewer security actions 

The pattern of instruction uses the first hint to direct the student’s attention to the major category of 

violation. After the student responds, the instructional system gives a simple recommendation about what 

category of performance the student should focus on.  

For the second level of hints, the question attempts to focus the student on the specifics of the violation. 

After the student responds, the instructional system provides feedback about what the student should do 

to improve, using specific examples from the student’s action. 

Integrating the Assessment Engine with GIFT 

The first step towards integrating our assessment engine with GIFT is to establish a method for sending 

student violation scores to GIFT. To achieve this, we wrote a custom Gateway module plugin. This plugin 

opens a socket connection between the assessment engine and GIFT, allowing for scores to be sent to 

GIFT after each UrbanSim turn. Scores are sent as binary information that is converted by the Gateway 

plugin into a GameState class. Once all data about a turn have been received by the plugin, the current 

GameState is sent to the other GIFT modules using the sendMessageToGIFT function. 

A series of Conditions for each of the scores were also implemented and placed in the Domain module. 

Each of these Conditions processes the GameState data in the message sent by the Gateway plugin in 

order to determine whether a score is above, at, or below expectation. The result of this expectation 

assessment is returned and eventually sent to the GIFT Pedagogy module for instructional feedback 

selection. This process is illustrated by Figure 20. 
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Figure 20. Flow of data from a training simulation through GIFT 

Potential instructional feedback is entered into the domain knowledge file (DKF) associated with our 

assessment engine. GIFT automatically handles the selection of which level of feedback is needed for a 

given score. So, the first time a Condition is found to be below expectation, the first level of feedback is 

provided. If that same Condition is again found to be below expectation, the second level of feedback is 

provided. Thus, integrating our instructional interventions simply requires that we specify a series of 

tactics linked to strategy calls in the DKF.  

For example, the instructional intervention for excessive force outlined previously could be implemented 

in GIFT through the following strategy/tactic pairing: 

<strategy name=“Excessive Security Strategy”> 

 <p0:instructionalIntervention> 

 <p0:strategyHandler> 
 <p0:impl>domain.knowledge.strategy.DefaultStrategyHandler</p0:impl> 

 </p0:strategyHandler> 
 <p0:feedback> 
 <p0:message> 

 <p0:content>Are your security actions consistent with doctrine?</p0:content> 
 </p0:message> 
 </p0:feedback> 

 <p0:feedback> 
 <p0:message> 
 <p0:content>As tribal zones transition from Clear to Hold, are you ordering 

excessive security actions given the current security risks?</p0:content> 
 </p0:message> 
 </p0:feedback> 

 </p0:instructionalIntervention> 
</strategy> 

Gift Extensions 

We are making two extensions to GIFT to support student learning without inducing cognitive overload: 

providing remediation for the worst performing concept and integrating context relevant feedback into the 

remediation messages. 
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Each GameState message sent to the Domain module contains scores for many concepts. Our strategy to 

reduce cognitive load is to focus on the concept that stands to gain the most improvement. As such, we 

only provide remediation for the concept on which the student has performed worst relative to all other 

concepts. Essentially, this is a prioritization problem. Thus, we need a way to dynamically prioritize 

concept scores as the Domain module receives them. 

While GIFT does include a method to set concept priority, by default it is intended for a priori use. 

Therefore, we have expanded the GIFT concept priority methods within the Domain module to support 

the dynamic adjustment of concept priority as the Domain module receives new concept scores. 

Next, for students who need multiple levels of remediation, it is helpful to provide specific context 

relevant information to help them perform better. For example, students who are performing infrastruc-

ture improvements in the UrbanSim game should receive feedback such as “You repaired the school first, 

but it is more important to repair the concrete plant and gas station first.” Including specific student 

actions in the remediation helps students to target the cognitive resources conceptually important to 

improving their performance. 

Supporting this in GIFT requires a multi-stage approach. First, contextual information must be sent from 

the external simulation to GIFT. In our case, we bundle the contextual information with the score messag-

es. As the information is sent to the Domain module, it is stored for later use with a custom 

StrategyHandler. Next, within the DKF we support the use of wildcard symbols that can be replaced with 

stored contextual information.  

 <p0:content>Your repaired the * first, but it is more important to repair the 
concrete plant and gas station first.</p0:content> 

Conclusion 

Our approach demonstrates one method for using GIFT to implement instructional interactions for 

students using a training simulation. The approach we took is especially beneficial if the student perfor-

mance assessment engine already exists or needs to perform scoring logic that would be quite complicat-

ed to implement in a GIFT DKF. Nevertheless, even when scoring calculations are performed outside of 

GIFT, it is still possible to use the other GIFT modules. In particular, the Pedagogy module can be used to 

handle the selection and presentation of instructional content, which can be further enhanced by GIFT’s 

Learner and Sensor modules. 
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Introduction 

Traditionally, student models in intelligent tutoring systems (ITSs) are based on the student’s knowledge 

of the content area. Recently, there has been increasing interest in additionally assessing student cognitive 

and affective states as the basis for training adaptation. Several research challenges exist in realizing this 

goal. We have developed a model for adapting training using physiological measurement based on 

Vygotsky’s (1934) model of the zone of proximal development (ZPD). This approach not only provides 

the ability to assess the student’s workload level without disrupting the training process, but it also 

enables the prediction of when the student is about to fall out of the optimal training state. This paper 

summarizes work done to date in support of the U.S. Army Research Laboratory’s (ARL) Generalized 

Intelligent Framework for Tutoring (GIFT) and related efforts to further the science of integrating 

cognitive and affective physiological measurement into ITSs, and describes potential ways forward.  

The U.S. Department of Defense has expressed an increasing interest in incorporating learning technolo-

gy in training as a means of providing a flexible, engaging, and cost-effective means of maintaining 

Warfighter readiness in an ever-evolving operational environment. For example, the Army Learning 

Model as described in The Army Learning Concept for 2015 (Department of Army, 2011) calls for the 

inclusion of adaptive training technologies in Soldier education as part of developing a persistent culture 

of learning within the Army. Toward achieving this goal, there has been a recent resurgence in the 

popularity of ITSs as a means of adapting instruction. Initiatives such as ARL’s GIFT have provided a 

test bed for research into addressing some of the challenges associated with incorporating intelligent 

tutoring into military settings, including reusability of content, cross-platform training, and content 

authoring.  

One area of research interest, both within the GIFT user community as well as in the intelligent tutoring 

field more broadly, is the development of multi-faceted student models. The student model (or learner 

model) refers to the intelligent tutor’s representation of the learner’s internal state. Traditionally, the 

student model reflects the status of the student’s knowledge of the domain area, but recently, research 

efforts have focused on how to incorporate additional aspects of the learner into the student model 

(Holden et al. 2012). Stable, or “trait-based” aspects of the learner include a student’s information 

processing capability, attentional capacity, motivation, and emotional regulation ability (Gully & Chen, 

2010). In addition, more fluid aspects such as cognitive and emotional state have shown to play a role in 

student learning (see Carroll et al., 2011, for a review). By incorporating this additional information into a 

student model, the ITS can adapt the learning experience not only based on how much the student has 

learned, but also how much the student is capable of learning.  
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While research in this area is promising, it is far from complete. Two research questions involved in 

developing complex student models are first, how to obtain them, and second, what to do with them once 

we have them. The first question speaks to identifying both the critical learner states that should be 

assessed and integrated into a student model and the technology required to do so. The second speaks to 

the development of advanced instructional models that can incorporate information about both students’ 

performance but also their internal state into ITS. In this paper, research conducted to address these 

questions is described, with the goal of providing a framework for the inclusion of multi-faceted student 

models in GIFT. First, research to evaluate low-cost sensor technology for the assessment of learner 

cognitive and affective state is reported. Second, the concept for an instructional framework incorporating 

a student’s cognitive state based on Vygotsky’s (Vygotsky, 1978) model of the ZPD is described. The 

goal of this paper is to inform the development of multi-faceted student models within GIFT and ITSs 

more generally. 

Assessing Learner Internal States 

In order to tailor training to a learner’s internal state, measures of this state must first be implemented. 

Stable learner characteristics such as intelligence, personality, and motivation, while not typically 

included in student models, could be assessed prior to training through existing, validated questionnaires 

(Holden et al. 2012). In terms of inclusion in GIFT or other military ITSs, a major barrier to their inclu-

sion is cost, as many measures of constructs of interest are proprietary. However, the Department of 

Defense has conducted considerable research into developing their own measures of personality con-

structs of interest, and these could be leveraged for inclusion in student models. Examples of these 

include the Army’s Tailored Adaptive Personality Assessment System (Drasgow et al., 2012) and the 

Navy Computer Adaptive Personality Scales (Schultz et al, 2011).  

Assessing more fluid cognitive and emotional states is considerably more complex because these states 

have the potential to fluctuate over the course of training. To account for this variability, real-time 

assessment of these states is ideal. Cognitive and emotional states have been assessed in ITS through self-

report questionnaire (Sottilare and Proctor, 2012), inferred through behavior (D’Mello and Graesser, 

2007), and assessed physiologically (Cooper et al., 2009) although each of these methods leaves some-

thing to be desired. Self-report measures are inherently subjective and are therefore prone to effects of 

positive self-presentation and other biases. More importantly, administering them with the goal of real-

time assessment requires interrupting the flow of training, which is particularly disruptive to scenario-

based training. Assessments of cognitive and emotional state through behavior such as facial expressions 

and vocalizations is promising (D’Mello and Graesser, 2007); however, these measures often require the 

participants to speak, which may disrupt the flow of training. The primary barriers to leveraging physio-

logical measurement have historically been the expense of sensors and the expertise required to imple-

ment them; however, recent advances in sensor technology have reduced the expected costs associated 

with implementing them. While these new sensors are relatively inexpensive, their accuracy with regard 

to enabling classification of emotional and cognitive state is not clear.  

In support of the GIFT initiative, a suite of low-cost sensors was evaluated to determine whether they 

could reliably predict targeted cognitive and affective states (Kokini et al., 2012). Specifically, the goal of 
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this research was to determine if correlations exist between low-cost sensor metrics and associated 

ground-truth measures of targeted cognitive and affective states in a training context, and determine if 

such low-cost sensors could accurately and reliably measure distinct cognitive and affective states. The 

methodology and data analysis techniques used in this research are described in detail elsewhere (Kokini 

et al., 2012). This paper provides a brief overview of the research, but focuses on the issues involved with 

implementing low-cost sensors to assess cognitive and affective state, and then discusses the potential 

uses for the findings.  

Two experiments were completed to compare low-cost physiological sensor output to validated bench-

mark measures of affective and cognitive states while participants performed a number of tasks designed 

to elicit these states. These tasks included a visual vigilance task, video clip observation, and videogame-

based training scenarios. Both experiments involved the same experimental sensor suite, target cognitive 

and emotional states, validated measures of these states, and performance tasks. In the interest of brevity, 

the experimental procedure is described once. They differed in participant population (25 civilians in 

Experiment 1; 20 U.S. Military Academy (USMA) cadets in Experiment 2) and order of task perfor-

mance, but these differences were unrelated to results. The findings of the first experiment did inform the 

second experiment, but this was more in terms of how the low-cost sensor data were collected, and is 

discussed later. 

Experimental protocol 

Methodology. A review of the literature identified three target affective states (anger, fear, and boredom) 

and three cognitive states (engagement, distraction, and workload) for evaluation based on 1) their impact 

on learning, and 2) their potential to be measured with inexpensive sensor technology. Each of these 

states had previously been correlated with physiological data (Lisetti and Nasoz, 2004; Woolf et al., 

2010). In addition, each of these states was shown to impact learning performance.  

To measure these states, a suite of low-cost, minimally intrusive sensors was selected from a market 

survey of sensors completed during this effort. Final requirements for each of the selected sensors were  

1) candidate sensor can measure at least one target state, 2) cost less than $500, 3) good access to sensor 

data stream, 4) low level of intrusiveness, and 5) preferably commercial off the shelf (COTS). The 

sensors selected are listed in Table 1.  

Table 1. Low-cost sensors for measuring affective and cognitive states 

Type Product Name Associated State 

EEG  NeuroskyMindSet Distraction, engagement, workload 

Heart Rate Zephyr HxM Developer Kit Anger/frustration, fear/anxiety, boredom, 

engagement 

Eye Tracking Developed in-house Distraction, workload 

Motion 

Detection 

VernierGo!Motion Anger/frustration, boredom, engagement 

Chair Pressure Trossen Robotics 4-6 1.5 inch Force Sensor Kits; 

Phidgets Control Board 

Anger/frustration, boredom, engagement 
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For purposes of comparison, a number of “ground truth” measures of affect and cognitive state were 

identified. These included EmoPro™, an electronic emotional profiling tool validated to accurately 

measure emotions (Champney and Stanney, 2007) and ABM’s B-Alert™ X-10 EEG headset. The 

associated B-Alert™ analysis software includes electroencephalography (EEG) indices of workload, 

engagement, distraction, and drowsiness.  

To conduct the comparison, participants performed three tasks while wearing both the low-cost sensor 

suite and the EEG headset. At specified intervals, participants completed an EmoPro™ assessment to 

report their emotional state. The tasks included a visual vigilance task in which the user had to press the 

space key every two seconds with a visual reminder, observation of movie clips validated to induce 

affective states including anger, fear, and a neutral state; and completing videogame-based training 

scenarios in Virtual Battlespace 2 (VBS2). In these scenarios, the overall goal was to search and eliminate 

enemy threats in an urban environment (e.g., a building or street).  

Procedure. After participants were briefed and consent was received, they donned the ABM headset and 

completed an EEG baseline task. They then donned the Zephyr heart rate sensor around their chest and 

the NeuroSky EEG headset was placed on their head. The participants sat in the pressure sensor chair in 

front of a display, motion detector, and eye tracker, and completed a calibration session with the eye 

tracking system. Adjustments were made to all sensors as needed until continuous data collection was 

attained. Once all sensors were in place and successfully collecting data, participants performed the series 

of tasks outlined above. First, participants performed a three-minute vigilance task on a personal comput-

er, which consisted of pressing the space bar every time a red circle appeared on the screen. Participants 

completed an EmoPro™ evaluation just before and just after this task. Next, participants observed three 

video clips, completing an EmoPro™ evaluation just after each video clip. Next, experimenters described 

the VBS2 task in detail and had participants go through training to familiarize them with how to interface 

with the software. Participants were then asked to complete a trial scenario to gain an understanding of 

what would be expected of them during the experimental task. Next, participants completed a total of four 

scenarios, with 3-6 critical events per scenario. Following each critical event within a scenario, partici-

pants were prompted to complete an EmoPro™ evaluation to indicate their emotional state during the 

event. Upon completion of the VBS2 scenarios, participants received a short debriefing. 

Results. For a more detailed discussion of data analysis techniques, see Kokini et al. (2012). Findings 

from the first experiment were largely inconclusive. First, both the eye-tracking and chair pressure data 

were found to be unreliable and were excluded from further analysis. To calculate classifier strength, 

three runs of a 10-fold cross-validation procedure were executed for each model, and their corresponding 

receiver operating characteristic (ROC) curves were plotted. The overall quality of each classifier was 

assessed by averaging the areas under its ROC curves (AUC values; Fawcett, 2006). As a rule of thumb, 

excellent classifiers are those having AUC values between 0.9 and 1. Classifiers with AUC values from 

0.8 to 0.9 are typically considered good, and those having AUC values from 0.7 to 0.8 are considered fair. 

Each classifier evaluated in this research showed an AUC value of about 0.5, which is very weak. While 

other analyses showed significant effects, the lack of reliable classifiers called into question all other 

findings. 
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The inconclusive results in the first experiment were explainable by complications with the low-cost 

sensor hardware. Sensor-related issues identified included the following: 

 The eye tracker was unreliable in tracking pupilometry due to the movements of the participants 

and changes in ambient lighting. 

 The chest strap of the heart rate monitor did not have good conductance due to a lack of moisture. 

 The chair sensors showed low variability, due to a tendency to detach from their original loca-

tions.  

 Administering the EmoPro
TM 

required a break in task performance, breaking immersion in the 

scenarios. 

To address these issues, methodological changes were made and incorporated into Experiment 2. A new 

eye tracker was developed to address the unreliability found in the original apparatus. The pads on the 

heart rate monitor were moistened prior to application to ensure good conductance. In addition, small 

changes to the scenarios were made to enhance emotional response to account for the influences of 

EmoPro
TM

 administration time. 

As a result of these changes, in Experiment 2, good classification models based on data from the low-cost 

sensor suite were developed for the affective states of fear and boredom, and the cognitive states of 

distraction, engagement, and workload. The methodology used to induce identified states proved success-

ful for five of the six states, as a significant difference in presence/absence or high/low levels of states 

were identified using the “gold standard” metrics. The one exception was anger, where there was not a 

clear distinction between high/low experiences of this state using the methodology outlined. Of the low-

cost sensors utilized in this effort, it was found that low-cost EEG and motion sensors were effective in 

capturing the majority of affective states, while heart rate, chair pressure, and motion sensors were 

effective in capturing cognitive states. Using this combination of sensors, the set of five states can be 

captured unobtrusively for approximately $600. For more detail on how these classifiers were calculated, 

see (Kokini et al. (2012). 

Lessons Learned. The findings of this research are promising; however, the research team encountered 

considerable issues with regard to implementing the low-cost sensors. The most substantial challenge was 

the noise inherent in the sensor data. Even after identifying a new eye-tracking solution in Experiment 2, 

15% of these data were removed due to noise. While this was a vast improvement, losing 15% of data in 

any situation is not ideal. The chair sensor, while a significant contributor to classifiers of the cognitive 

states (engagement, distraction, and workload), was consistently noisy, perhaps due to the amount of 

padding between the chair and the participant. Finally, single channel EEG data have a high potential of 

contamination from electromyographic (EMG) or electro-oculographic (EOG) activity, which may have 

added noise.  

This research suggests one could indeed leverage low-cost sensors for real-time classification of cognitive 

and emotional states; however, another major takeaway is that you get what you pay for. Sensor technol-
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ogy has become less prohibitively expensive in recent years, and popular fitness tracking trends and 

interest in the “quantified self” will push low-cost sensors forward toward a price point accessible to the 

general public. Assessments based on these sensors may be sufficient for utilization in training, but 

further research must be conducted to verify that this is the case. 

Adapting Training Based on Learner States 

The findings from the two experiments described here imply that affective and cognitive state can be 

assessed using low-cost sensors and potentially integrated into multi-faceted student models. The question 

remains: how should the data from these advanced student models be leveraged to enhance student 

learning? That is to say, if a student model incorporated data about a student’s affect or cognitive state, 

how should training content and feedback be adjusted to maximize the learning potential of the student? 

For example, if a student shows signs of being bored, perhaps the ITS should increase the difficulty of the 

training to maintain the student’s interest by increasing the complexity of problems to solve. Similarly, if 

a student is experiencing a high cognitive workload, the ITS may decrease the training difficulty by 

slowing the pace of instruction. While ongoing research focuses on developing complex student models, 

guidelines for adjusting the ITS instructional model based on them have yet to be developed.  

The zone of proximal development 

The benefit of incorporating cognitive and emotional states into student models is the potential to adapt 

training content and feedback on not only the student’s knowledge, but also on their readiness to learn. 

One way of conceptualizing student readiness is through Vygotsky’s concept of the ZPD (Vygotsky, 

1978). According to Vygotsky, the ZPD reflects the difference between what a learner can perform on his 

or her own and what is not possible for the learner without assistance from an instructor. This reflects the 

ideal learner’s state between being overwhelmed by difficulty and bored by a lack of challenge. If the 

student is too challenged, scaffolding on the part of the instructor alleviates the difficulty. On the other 

hand, if the student finds the content too easy, fading removes this scaffolding. The ZPD concept is 

depicted in Figure 1. 
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Fig. 1. Zone of Proximal Development 

Conceptualizing the ZPD for training has been discussed by several authors, largely in the context of 

performance-based student models. For example, Murray and Arroyo (2002) propose using a mastery 

learning criterion to determine when the student is ready to move on and using the ZPD measurement to 

determine the efficiency of student learning. First, the number of hints (i.e., assistance) needed to correct-

ly answer an item are recorded, and the sequence of this metric across the problem set is analyzed to 

understand the student learning model. Their proposed ZPD method then has three parameters: 1) a goal 

number of hints for each problem set (H), 2) the allowed variation in the goal number of hints to consider 

the ZPD (DH), and 3) the minimum number of problems the student will see (P). These authors instanti-

ate their ZPD approach in their ITS for elementary school mathematics, AnimalWatch [19] In this 

research, a student’s ZPD was defined by performance; specifically, if a student made on average one 

mistake per problem, he or she was considered to be within the ZPD. It is not clear why the authors chose 

this particular value; however, it does follow the general idea that if the problems were too easy, no 

mistakes would be made.  

Another approach to assessing ZPD could involve integration of real-time sensor data to represent 

cognitive and affective states such as boredom, frustration, or engagement. While Murray and Arroyo’s 

(2002) methodology makes assumptions about cognitive and affective state based on performance, 

integrating the physiological classifiers allows for a more granular diagnostic approach, ensuring that the 

instructional strategies are most effectively and efficiently inserted into the content. The findings of the 

research described here suggest that classifiers of states such as these can be developed and validated 

using low-cost, non-intrusive physiological sensors. Ideally, the data from these sensors could be com-

bined with training performance data to define a student model based on what a student has learned and 

what the student has the potential to learn. Table 2 describes potential instructional interventions based on 

cognitive state. 
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Table 2. Instructional Interventions by Cognitive State 

ZPD Status Boredom Workload Intervention 

Unable w/o Assistance Low High Scaffolding 

Able w/Assistance (ZPD) High Low Scaffolding & increase 

challenge 

 Low  High Scaffolding & decrease 

challenge 

Able w/o Assistance High Low Increase challenge & fade 

scaffolding 

 

Consider an ITS that adapts based on student performance. If the student is challenged but not over-

whelmed, the addition of an assessment of cognitive state would not prescribe a change in instructional 

strategy. However, if the student demonstrates domain knowledge but is under high workload, it may be 

an indication that he or she is about to fall out of ZPD into “unable with assistance.” In this instance, 

scaffolding may not enable the student to maintain ZPD; rather a decrease in complexity may also be 

needed to reduce the student’s cognitive workload. Alternatively, if the student is performing well but is 

experiencing high boredom, it may be an early indication that he or she is about to fall into the “able 

without assistance” status, meaning that challenge should be increased. In addition, fading could be used 

to increase the student’s challenge.  

Under an effort performed for the Office of Naval Research, a framework for adapting training based on 

maintaining a student within the ZPD was conceptualized Carroll et al., 2013). This framework leveraged 

a combination of performance data with measures of trainee state to predict when a student is on the verge 

of leaving ZPD. This is achieved by increasing difficulty until performance starts to decrease, at which 

point scaffolding is applied. The framework adjusts both training challenge and scaffolding in real time to 

maximize performance; however, it does not specify the specific cognitive and emotional states that 

would be incorporated or how they would be weighted relative to performance criterion.  

The science of adapting training based on emotional state within the context of ITS is relatively new. 

Some remaining foundational research questions are described below: 

 Do we adapt the training content or the context? If a student is failing and measure of cognitive 

state implies that the student’s workload is high, for example, is the appropriate intervention an 

adjustment of training content (e.g., reducing difficulty) or adjusting the training environment? 

While research has been conducted in both these areas, findings have not been operationalized in 

fielded systems (Sottilare et al., 2013). Although reducing problem difficulty should in turn re-

duce workload, it may be the case that the problem is sufficiently difficult, but aspects of the 

training environment are preventing learning. Unfamiliarity with training technology, excessive 

ambient noise, and training in group settings may cause increased workload. These aspects are al-
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so characteristic of scenario-based training often implemented by the military, and currently uti-

lized within GIFT.  

 What instructional strategies should be employed? The ZPD model described above calls for 

scaffolding, but instructional interventions span the range of adaptive spacing to hints to meta-

cognitive prompting (see Durlach and Ray (2011)). Which interventions are most effective for al-

leviating negative states has yet to be researched. 

 Which cognitive and emotional states are most relevant? The ZPD model is currently conceptual-

ized in terms of challenge and competence, which suggests states such as workload, fatigue, 

boredom, and anxiety may be the most relevant for inclusion in a multi-faceted student model. 

However, other states may be just as relevant to success in ITS-based training, particularly within 

a military context. These states may include stress, trust, or sadness. Frustration in particular has 

been researched in the context of intelligent tutoring (Arroyo et al., 2003). 

 How should these states be weighted with regard to domain knowledge? If cognitive and affective 

states are integrated into a student model, to what extent should these states be given importance 

relative to a student’s understanding of the training domain? It would stand to reason that a multi-

faceted student model would involve an amalgamation of both factors, but how that should be 

computed is not clear, and is probably domain dependent. In addition, training platform should be 

represented in this calculation, as the same content presented in a videogame-based scenario may 

be more inherently cognitively demanding (and thus result in more variability along this dimen-

sion) than a text-based presentation. 

These questions, and others, will doubtlessly be the focus of research going forward. This is an exciting 

time to be involved in ITS research and implementation, as current technology is enabling training 

personalization in new, more comprehensive ways. However, clearly more research is needed to inform 

how these new capabilities, including the incorporation of cognitive and affective state, should be 

implemented to maximize the utility of ITS.  
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Introduction 

Recently, there has been increasing research in intelligent tutoring systems (ITSs) on improving learning 

by automatically detecting affect and providing affective support. Systems have been developed to detect 

affect from both physiological sensors and students’ interactions with an online learning system. In this 

paper, we discuss ongoing efforts to construct sensor-free detectors of trainee affect and behavioral 

engagement for vMedic, an immersive software used to train military trainees in combat medic field 

procedures. This paper reviews rationale and plans to develop models of affect and engagement based on 

log files and field observations from a September 2013 study at West Point conducted jointly by the U.S 

Army Research Laboratory (ARL), Teachers College, and North Carolina State University. Additionally, 

this paper discusses the preparation for the distillation process, plans for development of the affect 

detector model, and the implications of future integration into the Generalized Intelligent Framework for 

Tutoring (GIFT) Framework’s Pedagogical module. 

In recent years, developers of ITSs have turned their attention toward understanding student affect and 

engagement. It is widely known that the interaction of affect and engagement shapes learning in complex 

ways (Baker et al., 2010; Baker et al., 2011; D’Mello et al., 2007; Dragon et al., 2008; Lee et al., 2011; 

Sabourin et al., 2011). Take boredom, an affective state replicably shown to be associated with poorer 

learning and educational outcomes (Pardos et al. 2013). For instance, boredom can lead either to gaming 

the system (Baker et al., 2010) and off-task behavior (Baker et al., 2011). When boredom leads to 

gaming, boredom persists, creating a vicious cycle (Baker et al., 2010). By contrast, off-task behavior 

relieves boredom (Baker et al., 2011). Since gaming the system is much more strongly correlated with 

learning and educational outcomes (negatively) than off-task behavior (Pardos et al. 2013; Cocea et al., 

2009), the different student responses to boredom matter. So, too, the affective states of confusion and 

frustration can be associated with positive or negative learning outcomes, depending on the length of their 

duration (Lee et al., 2011; Liu et al., 2013). Affect also influences learning through its effects on memory, 

attention, and strategy use (Pekrun, 1992; Schunk & Zimmerman, 2007). Learners who experience 

positive emotions are better able to retrieve information connected with such feelings (Forgas, 2000). 

Research has also shown that negative states may trigger greater cognitive load, which reduces working 

memory (Linnenbrink & Pintrich, 2000). While these processes are not thoroughly understood, it is likely 

that affective states such as frustration and anxiety can draw cognitive resources away from the task at 

hand to focus on the source of the emotion (Zeidner, 1998). Because of the range of impacts that affect 

can have on learning, systems that explicitly consider affect have been able to positively impact students’ 

engagement and learning (Baker et al., 2010).  

Researchers have relied on a variety of strategies when constructing models of engagement and affect. 

One approach that has been popular and successful is to utilize physical sensors such as video cameras 
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that capture facial expressions, posture sensors that detect when a student is shifting positions, and 

galvanic skin response sensors that detect sweating (Conati, 2002; Mohammad & Nishida, 2010; Alzoubi 

et al., 2009). The use of sensors has yielded successful detectors of a range of affective states (Alzoubi et 

al., 2009), but it is not always feasible to implement the resulting detectors into the field. As such, other 

researchers have turned their analysis toward the fine-grained interaction logs produced by online 

learning systems, developing sensor-free detectors of affect and engagement. 

Previous research on sensor-free detection has shown that this modeling strategy can be successful and 

affords analysis of learner actions at multiple levels. Successful results have been obtained for a variety of 

systems, including straightforward problem-solving ITSs (e.g., Baker et al., (2012) and Rodrigo & Baker 

(2009)), dialogue tutors (e.g., Litman & Forbes-Riley (2006)), science simulations (e.g., Paquette et al. (in 

press)), and narrative-based virtual environments (e.g., Baker et al. (in press)). Across these systems, 

models have been developed for affective states such as boredom, frustration, confusion, and engaged 

concentration, and for disengaged behaviors such as gaming the system and off-task behavior. Although 

the resulting models are often quite complex, detectors constructed solely from interaction log data offer a 

significant advantage: they can be used in settings where physical sensors are unavailable, enabling 

greater scale.  

So far, one of the important lessons of developing sensor-free models of affect and engagement for a 

range of different environments is that the types of behaviors associated with the same affect may differ 

substantially between systems. For example, affective models developed for ASSISTments (Pardos et al. 

2013), an ITS that provides scaffolded instruction for middle-school mathematics problems, demonstrate 

that the timing of learner actions is almost as important as the actions themselves. On the other hand, 

models constructed for EcoMUVE (Baker et al., in press), an immersive virtual environment that teaches 

environmental science, relied more heavily on the type of action the student was making to predict affect, 

such as whether the student was repeating specific kinds of measurement and what information pages the 

student was accessing in the virtual data manual (Baker et al., in press). Understanding the different 

behaviors commonly associated with affect and engagement in different systems is an important step 

toward the development of general frameworks for affect/engagement detection that facilitate the devel-

opment of affect and engagement detectors for new learning environments. 

In this paper, we discuss plans to build upon this body of previous research in the context of vMedic, an 

immersive ITS integrated with GIFT (Sottilare et al., 2012) provided through the GIFT framework’s 

Trainee module. We provide an overview of the methods that will be used to construct these detectors, 

developed through a combination of quantitative field observation (QFO) methods and educational data 

mining (EDM) techniques. These detectors will serve as an example of how to integrate this type of 

model into GIFT, will offer insight into the sorts of behavior that are correlated with learner engagement, 

will be useful for automated interventions, and will serve as a springboard for further research on learning 

and engagement within the vMedic software.  
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Data and Methods 

Two sources of data will be used for this study: log file data produced by learners using the vMedic 

software and quantitative field observations of those learners while using the system. This section 

describes both sources of data, providing information about learning system (and module) that the 

subjects will participate in, the subjects themselves, and the field observations. It then describes the data 

mining techniques that will be used to generate our automated detectors.  

Learning System and Subjects 

We will model engagement within the context of hemorrhage control learning materials in vMedic (a.k.a. 

TC3Sim) serious game used to train U.S. Army combat medics and lifesavers on tasks associated with 

dispensing tactical field care and care under fire. It is part of the U.S. Army’s objective to devise portable 

learning platforms that can be deployed quickly, effectively, and inexpensively to U.S. warfighters 

stationed around the world. vMedic has been integrated with GIFT (Sottilare et al., 2012) that monitors 

real-time interaction and can trigger feedback scripts for participants based on actions in the game and 

performance.  

Designed to support real-time performance messages, current and predicted cognitive and affective states, 

GIFT is modular and service-oriented. GIFT contains the components of Sensor, Trainee, Pedagogical, 

learning management system (LMS), and Domain modules. The automated detectors developed in this 

project will enhance the Trainee module, toward providing support for creating pedagogical interventions 

(driven by the Pedagogical model) associated with game-specific actions in vMedic. By better modeling 

trainees’ states, and understanding the roles different affective states and disengaged behaviors play 

during learning, we can generate pedagogical support tailored to individual trainees, helping to realize 

ARL’s vision of tailored, self-regulated, individual tutoring experiences for U.S. Army trainees. 

Compared with other systems, game-based environments like vMedic, where trainees interact with a 

virtual world through an avatar, place fewer constraints on learner actions than problem-solving systems 

(Pardos et al. 2013; Baker et al., 2012) or dialogue tutors (Litman & Forbes-Riley, 2006)]. Some virtual 

environments may present more constraints on learner behavior than others. vMedic is more restrictive 

than EcoMUVE (Baker et al., in press), where students have considerable freedom to explore the virtual 

world as they please. While vMedic allows a considerable amount of learner control, scenarios impose 

structure on trainee experiences through events that are triggered within the scenarios independent of the 

participant’s actions (e.g., explosions and injuries occur and require attention irrespective of the actions of 

the participant within the scenario). These scenarios provide help in focusing the participant’s attention to 

the objectives of the game (administering care) and implicitly guide trainee experiences toward key 

learning objectives.  

For this study, predominantly first-year cadets from West Point will be observed at the beginning of the 

academic year. The cadets’ voluntarily participation in a one-hour session will be held in a West Point 

computer laboratory. At the start of the session, cadets will be fitted with Q-sensors and synchronized 

with Kinect depth sensors (for subsequent analyses, outside the scope of this paper, of the relative value 

of sensor-based detectors and interaction-based detectors). Cadets then initiate a unique user profile by 
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logging into GIFT. Cadets will be asked to answer questionnaires on self-efficacy, complete a pre-test on 

hemorrhage control, and review a PowerPoint presentation on hemorrhage control. Following the Power-

Point presentation, the cadets engage in approximately 20 minutes of the vMedic game, and then com-

plete a post-test.  

Quantitative Field Observations (QFOs)  

In this study, QFOs will be collected using the Baker-Rodrigo Observation Method Protocol (BROMP) 

(Wixon et al, 2012). As mandated by BROMP, coders must be certified, achieving an adequate inter-rater 

reliability of Kappa = 0.6 with another BROMP-trained coder. BROMP has been used for several years to 

study behavior and affect in educational settings (Baker et al., 2010; Baker et al., 2011; Baker et al., 2012; 

Rodirgo & Baker, 2009) and has been used as the basis for successful automated detectors of affect 

(Pardos et al. 2013; Baker et al., 2012). Observations in this study will be conducted by two BROMP-

certified coders. 

Within the BROMP protocol, behavior and affective states are coded separately but simultaneously using 

the Human Affect Recording Tool (HART), an application developed for the Android platform (and 

freely available as part of the GIFT distribution). HART enforces a strict coding order, determined at the 

beginning of each session. Students or trainees are coded individually, and coders are trained to rely 

primarily on peripheral vision in order to minimize observer effects. The coder has up to 20 seconds to 

categorize each trainee’s behavior and affect, but records only the first thing he or she sees. In situations 

where the trainee has left the room, where his or her affect or behavior do not match any of the categories 

in the current coding scheme, or when the trainee can otherwise not be adequately observed, a “?“ is 

recorded, and that observation is eliminated from the training data used to construct automated detectors. 

The typical coding schemes used by BROMP will be modified to accommodate the unique behaviors and 

affect that manifest for this specific cadet population. Affective states observed will include frustration, 

confusion, engaged concentration, boredom, surprise, and disdain. Behavioral categories will consist of 

on-task behavior, off-task behavior, psychopath (friendly fire, killing bystanders; may not be observed in 

practice), and WTF (“without thinking fastidiously”) behavior (Goldberg et al., 2011). 

Feature Distillation 

In order to distill a feature set for our affect detectors, trainee actions within the software will be synchro-

nized to the field observations. During data collections, both the handheld computers and the GIFT server 

will be synchronized to the same internet NTP time server. Actions during the 20 seconds prior to data 

entry by the observer will be considered as co-occurring with the observation. It is anticipated that the 

following features will be engineered using data from the actions that co-occurred with or precede the 

observations: 

 Changes in the state of the casualty, both recent and since injury, including:  

o Blood pressure and volume 

o Heart rate 

o Bleed rate 

o Lung efficiency 
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 Attempts by player, both during clip and overall, to treat patient 

o Application of tourniquet 

o Checking vitals 

o Conducting a blood sweep 

o Communicating  

o Requesting medevac 

 Player state in terms of attackers 

o Is player under fire? 

o Is player under cover? (Are they currently taking cover?) 

o Is player with unit? 

o Is casualty safe from further attack? 

 Time between actions 

These features will be initially constructed within Microsoft Excel as a rapid prototyping method. After 

we have determined which features are predictive of affect, these features will be integrated into the GIFT 

platform and automatically distilled. Other features may also be developed through the process of feature 

engineering and studying their effects when integrated into the system. 

Machine Learning Process  

It is anticipated that separate detectors will be built for each affective and behavioral construct studied, 

although detectors for very rare behaviors or affective states may not be developed, due to lack of data. 

Each detector will be evaluated using leave-one-out trainee-level cross-validation. In this process, a 

detector is built using data from every trainee except one before being tested on that student. By cross-

validating at this level, we increase confidence that detectors will be accurate for new trainees. In addi-

tion, re-sampling will be used to make the class frequency more equal for detector development. Howev-

er, all performance calculations will be made with reference to the original dataset, as in Baker et al. 

(2012). 

Conclusion 

It is the intent of the investigators on this project that the results will contribute to ARL’s goal of further 

developing the GIFT framework (Sottilare, et al, 2012). Developing automated detectors that can inte-

grate sensor and interaction (including performance and history of the trainee) but can function effectively 

absent sensor data, is an important step in developing affect interventions for U.S. Army trainees across a 

range of settings.  

Optimally leveraging these detectors will depend on several additional steps. First, it is essential to study 

the relationship between affect, engagement, and outcome variables, toward understanding which affec-

tive states and engagement variables need to be responded to in a suite of optimally effective computer-

based tutoring systems for Army use. The data collected to develop these detectors can be expected to 

also be useful in accomplishing this goal. Second, interventions will need to be developed which leverage 

the detectors to effect change in trainees. There is an extensive literature on interventions for behavioral 
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disengagement and affect, in online learning systems; however, it is not fully known which of these 

approaches will be effective with military trainees, a different population than the much younger popula-

tions these interventions have typically been developed for. Once interventions have been developed and 

tested, integrating automated detectors and interventions into vMedic through GIFT’s Trainee module and 

Pedagogical module will provide a valuable example of how to respond to trainees’ negative affect and 

disengagement, a valuable contribution in improving vMedic and similar interventions used by the U.S. 

Army.  
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Introduction 

One major goal of our Advanced Distributed Learning (ADL)-funded “Hyper-Personalized Intelligent 

Tutor” (HPIT) project is to develop an architecture that allows for personalization of educational software 

based on non-cognitive factors including student preferences, motivation, affect, and other features 

(Fancsali, Ritter, Stamper & Nixon, 2013). We are particularly interested in using such information to 

improve instruction within intelligent tutoring systems (ITSs) like Carnegie Learning’s Cognitive Tutor
®
 

(CT) (Ritter, Anderson, Koedinger & Corbett, 2007) and in educational games like the mathematics 

“fluency challenges” developed by the Math Fluency Data Collaborative project 

(http://fluencychallenge.com). To better understand architectural features conducive to such “hyper-

personalization,” we have built on learning science researchers’ recent work focusing on particular 

aspects of personalization and non-cognitive factors in both the CT and a middle school mathematics ITS 

based on the CT called MATHia.
TM

  

We review results of two recent observational studies with respect to the U.S. Army Research Laborato-

ry’s (ARL) Generalized Intelligent Framework for Tutoring (GIFT). In the first, we provide a causal 

model of measures of goal orientation and self-efficacy (at multiple grain-sizes), behavioral measures in 

the CT, and learning outcomes (Fancsali, Bernacki, Nokes-Malach, Ritter & Yudelson, in press). These 

findings are consistent with research (Bernacki, Aleven & Nokes-Malach, 2012) showing that “domain-

level” (for the mathematics domain) and “unit-level” (for a CT unit of instruction) measures of goal 

orientation and self-efficacy provide different information about learners and their outcomes. Such results 

suggest that these measures are contextually bound and thus need to be assessed relatively frequently. 

In the second study, we consider aggregate associations of in-tutor measures of performance with “honor-

ing” student preferences for interest areas (e.g., “sports & fitness”) around which mathematics word 

problems have been authored. We adopted a different approach from past research by considering 

aggregate associations between honoring preferences and learning outcomes, in order to assess whether, 

at the timeframe of a school year, we see influences of honoring student preferences. We found little if 

any association between honoring student preferences and learning outcomes (Fancsali & Ritter, 2014; 

Ritter, Sinatra & Fancsali, in press). Past experimental studies (Walkington 2013) have found effects at 

finer levels of granularity (e.g., at the level of problems and skills). We speculate that the failure to find 

such effects in our study may reflect the fact that, in the context of the full-year course, the opportunities 

to honor student preferences are limited. This finding suggests that taking advantage of preference 

honoring in an extended course may require more frequent or overt signaling about attention to student 

interests. 
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With respect to the GIFT architecture, we discuss a response to recent work (Otieno, Schwonke, Salden & 

Renkl, 2013), due to Fancsali et al. (submitted), suggesting that using relatively simple log traces from 

CT as “online measures” of goal orientation and how the aforementioned goal orientation and self-

efficacy study informs this response. Generally, we provide new recommendations for GIFT and a better, 

data-driven foundation for recommendations concerning GIFT made by Fancsali, Ritter, Stamper & 

Nixon (2013). We suggest future research in the areas of non-cognitive factors and personalization for 

ITSs and development areas for HPIT and GIFT. Specifically, we emphasize that the grain-size of 

measurement and analysis required for adaptation within a particular ITS or instructional system may be 

different than that at which meaningful inferences (and corresponding adaptive instruction or tutoring 

decisions) might be made across different ITSs or instructional systems. 

Preliminaries 

We begin by describing Carnegie Learning’s CT, the ITS which provides the impetus for our thinking 

about hyper-personalization of instructional systems as well as the target platform for the research 

projects we explicate. We then describe the HPIT project as well as two non-cognitive factors and a facet 

of personalization along which such a hyper-personalized instructional system might tailor instruction. As 

we proceed, we note an important aspect of adaptation or personalization in any such system: the level of 

granularity or grain size at which adaptation or personalization occurs.  

Cognitive Tutor (CT) 

Carnegie Learning’s CT (cf. Figure 1 screenshot) is an ITS for mathematics that has been demonstrated 

effective by one of the largest experimental trials of its kind (Pane, Griffin, McCaffrey & Karam, 2013). 

CT provides adaptive instruction based on cognitive factors, specifically by tracking learners’ mastery of 

fine-grained knowledge components (KCs) (i.e., skills) using a probabilistic framework called Bayesian 

Knowledge Tracing (BKT) (Corbett & Anderson, 1995). 



 

125 

 

Figure 21. Problem solving in Carnegie Learning’s CT 

Mathematics curricula are divided into topical sections, each of which is associated with a set of KCs that 

a student is required to master before progressing on to another section of instruction. Each multi-part 

problem in a section is associated with a subset of its section’s KCs. Students are provided immediate 

feedback about the correctness of attempts to complete steps in each problem; sometimes CT provides 

just in time, context-sensitive feedback when students make errors that reflect known misconceptions. At 

any step of problem solving, students can also request context-sensitive hints. While using ITSs to adapt 

mathematics instruction based on cognitive factors like skill mastery is relatively well-understand (but 

still a topic of on-going research), the use of non-cognitive factors to personalize and adapt instruction in 

ITSs presents a wide variety of unanswered and open questions. 

Hyper-Personalized Intelligent Tutors (HPIT) 

Our HPIT project (Fancsali, Ritter, Stamper & Nixon, 2013) aims to develop a plug-in based architecture 

and infrastructure to support personalized and adaptive learning, based on both cognitive and non-

cognitive factors, in a variety of computer-based instructional settings, including, but not limited to, ITSs 

like CT and educational games. To truly “hyper-personalize” ITSs and other instructional systems, it is 

necessary to better understand how non-cognitive factors can be harnessed to enhance learning in such 

systems, and the HPIT project will provide a framework within which such research can take place, for 

example, by allowing developers to integrate plug-ins to drive personalized instructions based on particu-

lar non-cognitive factors in which they are interested.  
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To facilitate the development of such a software framework, a better understanding of particular meth-

odological and measurement issues that will arise in such personalization efforts is also required. This 

understanding will not only improve the development of HPIT but will also help to drive integration and 

interoperability (as well as illustrate possible contrasts) between HPIT and projects like GIFT. Findings 

relevant to HPIT may also drive new recommendations for future development of GIFT. Specifically, we 

briefly summarize recent work on goal orientation and self-efficacy as they relate to performance in the 

CT as well as “honoring” student interest area preferences in an ITS for middle school mathematics that is 

based on the CT. From methodological concerns and findings about specific non-cognitive constructs, we 

hope to generalize insights to provide recommendations for GIFT. We focus on issues of measurement 

and analysis grain-size and discuss implications for adaptation and tutoring within an instructional system 

as well as open problems about making transferable inferences across instructional systems, both of 

which are important issues relevant to GIFT. 

Grain size and non-cognitive factors 

We now turn our focus to analyses of process data and learning in the CT environment relative to two 

non-cognitive factors: goal orientation and self-efficacy
1
. We begin by briefly introducing these con-

structs before considering issues about their measurement and grain-size before considering relationships 

of these factors with learning outcomes in the CT in the following section. 

Goal orientation and self-efficacy  

Students’ achievement goals for learning are a key component of their motivation for learning. Dweck 

(1986) identifies performance and achievement as two particular goal orientations. Students with a 

performance goal orientation tend to define their goals relative to the performance of their peers or some 

other group (i.e., to perform better than their peers) while those with a mastery goal orientation take 

understanding a particular task or aspect of a domain as their goal. Elliot & McGregor (2001) later 

distinguish between two “valences,” approach (success) and avoidance (of failure), for mastery and 

performance goal orientation. For example, performance avoidance as a goal orientation is attributed to 

students who seek not to perform worse than their peers (i.e., to demonstrate that they are no worse than 

their peers). A performance approach orientation is attributable to students who seek to demonstrate their 

competence by out-performing their peer group. Students with mastery approach goals tend to seek to 

develop competency for a learning task by achieving at levels above their past performance or by setting 

other criteria for judging increased or developing mastery (Ames, 1992; Elliot, 1999).  

Learner self-efficacy, or beliefs a learner has about his or her abilities in performing in a particular 

domain or task may also play a role for setting goals, self-regulation, and other factors important for 

learning (Bandura, 1994). Learners with high self-efficacy, for example, may be more willing to set more 

difficult or less easily attainable goals that require working through difficult tasks. Self-efficacy is also 

related to persistence and better performance on learning tasks (Bandura, 1997). 

                                                           
1
 We here provide a brief summary of the explication of these non-cognitive factors found in Fancsali et al. (in 

press). 
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Self-report questionnaires, especially those given before or after a particular learning task, are frequently 

used measure goal orientation and self-efficacy. However, several authors note that factors like goal 

orientation can change as learners progress in a learning experience or over longer periods of instructional 

time (e.g., an academic year) (Richardson, 2004; Fryer & Elliot, 2007; Muis & Edwards, 2009). A 

propos, we consider work that takes such differences in measurement grain size into account. Later, we 

consider the possibility of “online” measures (e.g., log traces from ITSs) of such non-cognitive factors. 

Grain size 

Given the possibly dynamic nature of non-cognitive factors, including goal orientation, Bernacki, Nokes-

Malach & Aleven (2013) raise concerns for the granularity at which factors like goal orientation are 

measured in conjunction with use of ITSs like CT. Beyond reliable changes in learners’ goal orientation 

from unit to unit of CT instruction found by Bernacki, Nokes-Malach & Aleven (2012), the same authors 

also found that domain-level measures of goal orientation (e.g., for the mathematics domain) versus unit-

level measures of goal orientation (e.g., for CT units of instruction) have different levels of association 

with various behaviors, which provides for the possibility that different measurement grain sizes are 

providing different information in possibly important ways (Bernacki, Nokes-Malach & Aleven, 2013). 

We report recent work due to Fancsali et al. (submitted) that provides a linear structural equation model 

relating data collected on self-efficacy at the unit- and domain-levels and learners’ goal orientations. This 

work suggests that the move from self-report questionnaires to relatively simple log traces to measure 

achievement goals, including counts of hints and glossary access in the CT, is likely more nuanced than 

suggested by recent work of Otieno, Schwonke, Salden & Renkl (2013). Before describing this work, we 

briefly consider one facet of personalization based on non-cognitive factors that provides the basis of the 

second study we report. 

Student preferences, interest area personalization, and grain size 

Computer-based ITSs like CT can provide functionality that allows for context personalization, roughly 

aligning instructional content to interests of an individual learner (Anand & Ross, 1987; Cordova & 

Lepper, 1996; Walkington, 2013). For instance, Carnegie Learning’s MATHia product, an ITS for middle 

school mathematics based on CT, provides for mathematics word problems to be tailored to specific 

interest areas of learners for domains outside of the classroom (e.g., “sports & fitness”) as well as based 

on student-entered names of their favorite classmates or friends. Personalizing instruction based on both 

of these non-cognitive factors (i.e., problem content and names) has been demonstrated effective by 

previous experiments (Anand & Ross, 1987; Cordova & Lepper, 1996; Ku & Sullivan, 2002). With 

respect to CT, research using an experimental version of this ITS finds that personalizing mathematics 

word problems based on student interest areas improves learning outcomes (i.e., performance) at the 

problem-level, especially on problems with a relatively high reading level that involve difficult KCs 

(Walkington, 2013). One posited mechanism at the level of KCs is that personalization improves stu-

dents’ ability to symbolically represent word problems at a higher reading level. However, as we describe 

later, at a higher level of granularity, when we have considered the aggregate association of “honoring” 

student preferences with learning outcomes, our results are less clear (Fancsali & Ritter, 2014; Ritter, 

Sinatra & Fancsali, in press). 
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Goal Orientation, Self-Efficacy, Behavior, and Learning 

To better understand, among other things, the proposal of Otieno, Schwonke, Salden & Renkl (2013) that 

“online” measures from ITS log data, simple counts of hints requested and glossary use, be used to assess 

achievement goals or goal orientation (performance approach and mastery approach goals, respectively), 

Fancsali et al. (in press) learned qualitative causal structure, using data-driven procedures based on 

conditional independence tests and background knowledge (Spirtes, Glymour & Scheines, 2000), to 

specify a linear structural equation model (estimated and illustrated as Figure 2
2
) over features represent-

ing goal orientation, self-efficacy, math grades (pre/post), and process data from CT.  

 

Figure 22. Estimated linear structural equation model reported by Fancsali, Bernacki, Nokes-Malach, Ritter 

& Yudelson (submitted), including standardized path coefficients. 

Data were collected for 273 pre-algebra, algebra, and geometry students using the CT during an experi-

ment run by Matthew Bernacki, Timothy Nokes-Malach, and Vincent Aleven in a school district in 

western Pennsylvania to investigate issues of grain-size and measurement of performance goals and self-

efficacy. Self-report survey items
3
 for achievement goals were original items from subscales for perfor-

mance approach, performance avoidance, and mastery approach on the Achievement Goals Questionnaire 

– Revised (Elliot & Murayama, 2008). The study designers crafted self-efficacy survey items according to 

guidance provided by Bandura (2006). Domain-level survey items (i.e., with respect to learner’s feeling 

about mathematics) were administered within the CT software at the beginning of the school year, while 

unit-level items (with language adapted to refer to the particular CT unit of instruction students had just 

completed) were presented after every other unit of instruction (alternating with unit-level self-efficacy 

items).  

                                                           
2
 Their reported model fits the data well according to the appropriate chi-square statistical test for such a model 

comparing its implied covariance matrix to the observed covariance matrix (χ
2
(43) = 49.19, p = 0.239) (Bollen, 

1989). 
3
 For complete details of survey items, see Fancsali et al. (in press). 
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While the proposal of Otieno, Schwonke, Salden & Renkl would have us count Glossary Use as a 

measure of mastery approach, we find that it is weakly linked only to domain-level learner self-efficacy 

(i.e., for mathematics); the model of Figure 2 implies that conditional on Self-Efficacy for Mathematics, 

Glossary Use is independent of all other variables included in the model. Similarly, Hint Requests in Unit, 

a proposed measure of performance approach goal orientation, is strongly correlated with Errors Made on 

Problems in Unit, which in turn is only weakly linked to Self-Efficacy for Unit Topic (i.e., unit-level self-

efficacy). The model is inconsistent with any strong link between hint use and achievement goals.  

The model posits that three variables are directly linked to Math Grade: Prior Math Grade, Self-Efficacy 

for Unit Topic, and Performance Avoidance Goals for Mathematics. Notably, this set of variables 

includes both a unit-level and domain-level variable, and we see that these different levels of granularity 

do provide different information about behavior in CT. Direct links in this model, and especially the weak 

correlation of Performance Avoidance Goals for Mathematics with Math Grade should be interpreted 

cautiously, as the algorithm used to infer the structure of the model in Figure 2 assumes there are no 

unmeasured common causes of measured variables, and this assumption is unlikely to obtain in this 

application domain (i.e., the adage to not confuse correlation and causation is operative). Nevertheless, 

the model is useful for providing basic structural relationships from correlational data and providing 

information about what relationships are not consistent with observed data. Further, the pattern of high 

correlations among goal orientation variables is consistent with previous literature positing a “goal 

complex” (Barron & Harackiewicz, 2001; Senko, Hulleman & Harackiewicz, 2011); one explanation of 

such a “complex” would include one or more latent variables representing some more complex factor(s). 

We return to the problem of developing online measures for important non-cognitive factors like goal 

orientation and self-efficacy as well as issues of grain size and implications for GIFT in the discussion 

section. 

“Honoring” Student Preferences and Learning 

While previous CT experiments had demonstrated improved problem-level learning outcomes from 

personalizing mathematics word problems based on student interest areas, less clear was whether “honor-

ing” interest area preferences, in the aggregate, is associated with better performance in an ITS like CT. 

To begin considering this question, we analyzed observational data from Carnegie Learning’s MATHia 

ITS, which is based on CT (Fancsali & Ritter, 2014).
4
 While MATHia allows students to (optionally) rate 

four interest areas with one to five “stars,” (cf. Figure 3) we found, in a sample of 104,197 learners, 

62,168 learners (59.7%) set interest areas, but 16,003 learners (25.7% of those who set interest areas) 

provided the same rating to all interest areas. 

Consequently, we employ a notion of strong student preferences according to which a student has strong 

preferences if (and only if) they rate at least one interest area with five stars and at least one area with one 

star (or leave at least one area un-rated). From a smaller sample of 1,230 learners (from eight randomly 

selected schools that completed at least five instructional sections that contain preference-tailored prob-

lems and upon whom our detailed analysis focused), we found that 518 students had strong preferences 

                                                           
4
 Results reported in this section are described in detail by Fancsali & Ritter (2014). 
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according to this definition. We then calculated the proportion of problems presented to each of these 

students (in sections that contained preference-tailored word problems) that corresponded to their highly 

rated interest area as a measure of the extent to which their preferences were “honored.” 

 

Figure 23. MATHia’s preference dashboard 

We found that the probabilistic provision of preference-tailored problems led to a relatively restricted 

range of proportions of preference-honoring per student, with the majority of students seeing somewhere 

between 10%–40% of problems in preference-tailoring sections that corresponded to their interests. Given 

that MATHia does not explicitly signal to students that problems have been provisioned according to their 

preferences, there is some question as to whether students generally realize that the software is adapting 

to their interests. Further, we considered correlations of proportion of preference-honoring problems to 

four process variables found in past work to be predictive of standardized test scores (Ritter, Joshi, 

Fancsali & Nixon, 2013): assistance per problem (i.e., number of hints requested & errors committed per 

problem), number of MATHia sections encountered, number of sections completed per hour (i.e., roughly 

efficiency), and amount of time logged into MATHia.  

While three of four correlations with proportion of preference-honoring problems were significant (at the 

α = 0.05 level), no correlation had an absolute value greater than 0.14, and it is unclear that there is any 

substantive use to be made of such weak, aggregate correlations. Further, the directions of these correla-

tions imply a slight negative relationship between preference honoring and MATHia performance, but it 

is unclear whether this also has any substantive significance. Interestingly, we found that there were 

statistically significant differences (at the α = 0.05 level) between strong and weak preference students, as 

strong preference students worked through MATHia material more efficiently (i.e., greater sections 

completed per hour) (Welch two-sided, two sample p = 0.01, Cohen’s d = 0.2)
5
, and students who merely 

set preferences require (statistically) significantly less assistance per problem than those who do not set 

                                                           
5
 We omit mean values since Fancsali & Ritter (2014) normalize and transform process variables, following Ritter, 

Joshi, Fancsali & Nixon (2013) in such a way that mean values would be relatively un-interpretable without more 

significant explanation, which we omit for brevity. 
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preferences (p = 0.03, d = -0.12). Perhaps even more interestingly, students who set names of 

friends/classmates in MATHia outperformed those who did not set such names on all four process 

variable measures, requiring less assistance per problem (p < 0.001, d = -0.27) and encountering more 

MATHia sections (p =0.009, d = 0.16) while working more efficiently (p < 0.001, d = 0.12) in less time 

(p < 0.001, d = -0.23).  

These results raise questions about the nature of the factor(s) (either cognitive or non-cognitive) for which 

use of the preference dashboard is serving as a proxy; possibilities include conscientiousness or attentive-

ness to the MATHia environment, but since total login time is not significantly different in two out of the 

three comparisons, possible notions of engagement for which dashboard use might serve as a proxy may 

be constrained. It is also possible that students may simply appreciate the opportunity to set preferences to 

which the ITS responds and adapts. Future versions of MATHia should make more explicit the prevision 

of problems to students based on their interests, while also honoring preferences overall more frequently 

and with greater variability to avoid the restricted range pitfall that we have discovered in our current 

implementation. 

Discussion and Implications for GIFT 

One immediate implication, if our hypothesis about learners’ appreciation of an instructional system’s 

personalization to their interest areas or adaptation based on other non-cognitive factors is true, is that 

GIFT might also benefit from providing means by which training applications can not only provide 

adaptive instruction but also make explicit (at least aspects of) the decision making process that led GIFT 

to “choose” a particular adaptive, instructional strategy. We now discuss several other implications 

derived from the above presentation of recent research on specific non-cognitive factors in practice. 

Online measures 

We agree with the argument of Otieno, Schwonke, Salden & Renkl (2013) that developing appropriate 

online measures of non-cognitive and other factors is important to improving the state of the art of ITS 

research because surveys tend to be (at least) time-consuming while providing only noisy measures of 

intended phenomena. One implication for an intelligent tutoring architecture, then, is that the tutor may, 

in addition to its role as a source of instruction, play a role as a “sensor” for various characteristics and 

states. As noted by Fancsali, Ritter, Stamper & Nixon (2013), developments in sensor-free, data-driven 

“detectors” (e.g., Baker 2007; Baker & de Carvalho 2008) of both relatively complex behavior and 

affective states might be extended to factors like achievement goals, providing important avenues for 

future research into data-driven, online methods for making inferences about such phenomena. 

Transferable inferences and grain size 

We have provided concrete examples of (still unresolved) issues raised by Fancsali, Ritter, Stamper & 

Nixon (2013) in the ever-growing body of research on ITSs. Differing levels of granularity in measure-

ment and analysis provide disparate but possibly important information about learners“ interactions with 

ITSs like CT, and the effects of some types of personalization (e.g., preference-tailored word problems) 
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may only be seen at the fine-grained level of individual problems, based upon their composition in terms 

of KCs. 

While much of the work we have presented and our previous recommendations describing the integration 

of HPIT and GIFT (Fancsali, Ritter, Stamper & Nixon, 2013) has focused on relatively fine-grained 

measurements and inferences necessary for a particular ITS or instructional system to provide appropri-

ately adaptive educational experiences, relatively coarse-grained assessments and inferences may be most 

appropriate for GIFT to provide rich learner models for multiple instructional systems or training applica-

tions. However, it is not, at this stage, clear how, for example, non-cognitive (and meta-cognitive) factors 

like achievement goals or affective states like boredom in an ITS for mathematics might transfer to other 

training applications (when even factors like achievement goals, as noted above, have variability at 

different grain sizes during instruction that can provide important information about learning outcomes). 

It isn’t necessarily true that, for example, detection of a student as bored in one tutor has any relevance to 

another tutor; perhaps the second tutor is more exciting to the student. For this reason, it makes sense to 

consider communicating not just conclusions (e.g., “boredom”) to the Learner module but also some of 

the evidence leading to that conclusion. A subsequent system or training application, coordinating with 

the Pedagogical module and Domain module, could then judge whether the conclusion is likely to obtain, 

given evidence. 

Contrast these factors with what could plausibly be transferable assessments of other factors like learner 

interest areas, assuming such factors are relatively stable over time. Nevertheless, a great deal of factor-

specific research across ITS platform, educational games, simulation-based training environments, and 

others is required to determine those factors (and at what level of granularity) that will allow for transfer-

able inferences across training applications and at what level of granularity these factors are sufficiently 

“domain-independent” to be tracked by GIFT’s Learner module. The type of factor-specific research 

described above (though only in the CT and MATHia platforms) and also pursued by a wide variety of 

researchers in the educational data mining community and elsewhere is a step in the right direction (cf. 

the brief review for ITSs like CT in Fancsali, Ritter, Stamper & Nixon, 2013), but determining how 

findings transfer across domains and training applications is vital.  

This problem is not limited to non-cognitive factors: Even certain cognitive factors like low-level skill 

models may not transfer from one ITS for mathematics to another. For example, the types of errors that 

students can make in a desktop version of the CT’s equation solver units are different than those that can 

occur in a tablet-based version of these units we are currently implementing as a part of the HPIT project 

that will use handwriting recognition. This has important implications for the types of competencies 

and/or skills that can be usefully tracked by the Learner module and the Persistent Learner Model in 

GIFT. Finding appropriate levels of granularity (i.e., grain sizes) for various factors that must be meas-

ured, assessed, and tracked by systems with ambitious goals like HPIT and GIFT is paramount to deliver-

ing intelligent tutoring in a variety of educational and training contexts. 
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It’s All About the Process: Building Sensor-Driven Emotion 

Detectors with GIFT 

Jonathan P. Rowe, Bradford W. Mott, James C. Lester  

North Carolina State University 

Introduction 

Over the past decade, there have been major advances in research on affective computing (Calvo & 

D’Mello, 2010). In education and training, computational models of affect are widely recognized as 

integral parts of adaptive learning technologies, and their promise has been demonstrated in intelligent 

tutoring systems (ITSs) that model students’ affective states (Conati & Maclaren, 2009), model virtual 

agents’ affective behaviors (Marsella & Gratch, 2009), and detect student motivation and engagement 

(Forbes-Riley & Litman, 2013). Considerable work on affective computing has sought to increase the 

fidelity with which affective processes are understood and utilized in learning environments. Equally 

important is work on generalized models of affect to be used across a range of educational settings, 

populations, and subject areas. 

In this paper, we describe operational details of an ongoing project to create multi-channel computational 

models of affect and engagement with the Generalized Intelligent Framework for Tutoring (GIFT). We 

describe the process of collecting and analyzing a corpus of affect sensor data for inducing emotion 

detector models in a serious game for tactical combat casualty care. We provide details about the research 

study conducted to collect a corpus of affect and learning data during the first phase of the project. 

Further, we describe the dataset produced by the study, as well as the data analysis pipeline that has been 

implemented for building and evaluating sensor-based emotion detection models. As the work is still in-

progress, we conclude by discussing lessons learned from the data collection and analysis conducted thus 

far, as well as recommendations for enhancements to GIFT, to support members of the user community 

interested in computational models of affect. 

Affect Corpus Collection 

To illustrate how GIFT is used to collect affect sensor data, we describe a study conducted with a popula-

tion of U.S. Army trainees. The study was part of a collaborative project between North Carolina State 

University, Teachers College Columbia University and the US Army Research Laboratory to create 

computational models of affect and engagement. The collected data serves as a corpus for machine 

learning emotion detection models that will ultimately be integrated with GIFT. 

During the study, all participants completed the same training module. The training module focused on a 

subset of skills for tactical combat casualty care: care under fire, hemorrhage control, and tactical field 

care. The study materials, including pre-tests, training materials, and post-tests, were administered 

through GIFT. At the onset of each study session, learners completed a brief demographic questionnaire 

and content pre-test on tactical combat casualty care. Afterward, participants were presented with a 
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PowerPoint presentation about tactical combat casualty care. After completing the PowerPoint, partici-

pants completed a series of training scenarios in the vMedic serious game environment where they 

applied skills and procedures presented in the PowerPoint. In vMedic, the learner adopts the role of a 

combat medic faced with a situation where one (or several) of her fellow soldiers has been seriously 

injured. The learner is responsible for properly treating and evacuating the casualty. After the vMedic 

training scenarios, participants completed a post-test, which included the same content assessment items 

as the pre-test. 

During the study, ten separate research stations were configured to collect data from multiple participants 

simultaneously (Figure 1). Each station consisted of an Alienware laptop, a Microsoft Kinect for Win-

dows sensor, and an Affectiva Q-Sensor, as well as a mouse and pair of headphones. The study room 

layout is shown in Figure 1. Participant stations are denoted as ovals with assigned station letters. Red 

cones show the locations of Microsoft Kinect sensors, as well as the sensors’ approximate fields-of-view. 

The dashed line denotes the walking path for the field observers. Participants’ learning behaviors in both 

PowerPoint and vMedic were logged by GIFT, writing all events to text files stored on the Alienware 

laptops’ hard disks. Participants’ pre- and post-test responses were also logged to these files.  

 

 
As participants completed the study materials, a pair of field observers regularly recorded participants’ 

physical displays of emotion using hand-held Android devices running the HART field observation 

software. The field observers followed an observation protocol developed by Baker, D’Mello, Rodrigo, 

and Graesser (2010), in which observers walked around the perimeter of the study room, discreetly 
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Figure 1. Study room layout. 
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recording observations of each participant’s affect in a round robin sequence. The field observers’ 

walking path is shown with a dashed line in Figure 1. The HART software application enabled the field 

observers to select an emotional state that most closely corresponded to the participant’s displayed state at 

that time. The seven candidate emotional states included concentration, confusion, boredom, surprise, 

frustration, contempt, and other. In addition to emotional states, field observers recorded participants’ 

learning behaviors during every observation. Categories of learning behavior included on-task, off-task, 

and without thinking fastidiously. Each observation was marked with a timestamp and written to a text 

file residing on the field observer’s Android device. In order to ensure synchronization between the field 

observations’ timestamps and the GIFT timestamps assigned to the sensor and log data, all devices were 

synced to the same time-server prior to each session. 

Kinect sensors recorded participants’ physical behavior during the study, including facial expressions, 

posture shifts and hand gestures. Each Kinect sensor was mounted on a tripod and positioned in front of a 

participant (Figure 1). The Kinect integration with GIFT provided four data channels: skeleton tracking, 

face tracking, RGB (i.e., color), and depth data. The first two channels leveraged built-in tracking 

algorithms (which are included with the Microsoft Kinect for Windows SDK) for recognizing a user’s 

skeleton and face, each represented as a collection of 3D vertex coordinates. The RGB channel is a 

640x480 color image stream comparable to a standard web camera. The depth channel is a 640x480 IR-

based image stream depicting distances between objects and the sensor. 

Q-Sensors recorded participants’ physiological responses to events during the study. The Q-Sensor is a 

wearable arm bracelet that measures participants’ electrodermal activity (i.e., skin conductance), skin 

temperature, and its orientation through a built-in 3-axis accelerometer. The wireless sensor collected data 

at 10Hz, and was primarily used for real-time arousal detection. A Q-sensor was worn on each partici-

pant’s left wrist. Sensors were calibrated at the beginning of each study session, immediately before 

participants completed the study’s pre-test measures. The calibration process took no more than a few 

minutes for each session. 

Affect-Sensor Data Analysis Pipeline 

To produce an automated, reproducible data analysis pipeline for machine learning emotion detection 

models from raw study data, a collection of Python scripts were written to automate data cleaning, 

filtering, integration and distillation phases of analysis. This pipeline is implemented separately from 

GIFT. With this infrastructure in place, all stages of data analysis can be reproduced, inspected, and 

validated by members of the research team, as well as members of the outside research community. 

Currently, the implemented data analysis infrastructure has focused on integrating Kinect and HART 

data, with a particular emphasis on encoding shifts in posture and their relation to observed emotional 

states. 

Affect-Sensor Dataset 

Different data channels in the corpus were encoded in different forms. GIFT log data from PowerPoint 

and TC3Sim was encoded as a series of text-based JSON messages distributed across multiple text files 
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marked with timestamps. These text files also contained participants’ pre-test and post-test responses, 

which were encoded as JSON messages as well. In general, there was one text log file for each participant 

present during the study. However, if the software crashed or required a restart, then an additional log file 

was generated.  

Kinect sensor data was stored in four different types of files. Face and skeleton mesh data were recorded 

in csv format. In these files, each row corresponded to a single observation from the Kinect sensor. The 

first column contained timestamps for the observations. Subsequent columns contained the 3D coordi-

nates for all vertices tracked in the skeleton and face meshes. In total, 91 vertices were tracked, with the 

majority of vertices originating from participants’ faces. Kinect data was recorded at 10-12 Hz, or 10-12 

rows per second. Two types of Kinect csv files were generated by GIFT: unfilteredKinect and 

filteredKinect files. UnfilteredKinect files included position data for every vertex tracked by the Kinect. 

FilteredKinect files contained position data for a select subset of tracked vertices.
1
 The Kinect csv files 

did not include explicit information about participants’ identifiers, station identifiers, or session numbers. 

However, the start time for each session (i.e., when GIFT was launched on the participant’s laptop) was 

included in the filename for each csv file. This start time can be used to recover the session number for 

each file. 

In addition to face and skeleton mesh data, two types of dat files were generated by GIFT’s Kinect 

module: binary-encoded files that contain raw RGB channel data and depth channel data. These two types 

of files were separate from one another, and they quickly grew very large: a single hour-long session 

produced tens of gigabytes of compressed RGB and depth data. Both types of data were compressed 

using LZ4 compression, and they were written directly to external hard disks in order to save the study 

laptops’ hard drive storage space. The GiftKinectDecoder, included in all versions of GIFT since v3.0, is 

necessary to decompress and transform this data for analysis. At present, analysis of raw RGB and depth 

channel data is not part of our automated data analysis pipeline.  

Q-Sensor data recorded by GIFT was stored in csv files. Observations were recorded at approximately 10 

Hz for the duration of each session. Among the columns, the first held timestamp information. Subse-

quent columns stored information about skin temperature, electrodermal activity, and the sensor’s 3D 

coordinates measured by the built-in accelerometer. The QSensor data files also did not include explicit 

information about participants’ identifiers, station identifiers, or session numbers. However, the start time 

for each session (i.e., the time that GIFT was launched on the participant’s laptop computer) was included 

in the filename for each csv file. 

Field observation data from the HART app was stored in csv format. One file was generated for each 

study session, and each file encompassed field observation data for every participant in the session. The 

files included a multi-line preamble denoting the coder’s name, start time, emotion set, behavior set, and 

related meta-information. After the preamble, each row corresponded to a single observation of a partici-

pant. The columns contained information about participants’ identifiers, observation timestamps, ob-

                                                           
1
 An error in the version of GIFT software used during the study introduced column-alignment errors in the 

filteredKinect files. Consequently, the project’s data analysis pipeline is based on unfilteredKinect files. 
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served learning behaviors, and observed emotional states, respectively. Separate sets of files were 

produced for each field observer. 

Data Cleaning  

The first stage of data analysis was cleaning: removing unnecessary files and header information from the 

dataset that did not comprise actual participant data. Empty log files corresponding to test runs and false 

starts were removed. Header information was parsed to determine the contents of each file for use in 

subsequent stages of the pipeline, and this information was separated from the participant data.  

 

Anomalies in the dataset were also removed during cleaning. Upon closely inspecting our corpus, it was 

apparent that sudden jumps in the coordinates of posture-related vertices occasionally appeared across 

adjacent frames. Notably, these jumps were much larger than typically observed across frames, and they 

occurred due to an issue with the way GIFT logged tracked skeletons: recording the most recent detected 

skeleton, rather than the nearest detected skeleton. If a bystander comes into the Kinect’s field-of-view, 

and her skeleton is recognized by the Kinect, GIFT will log the bystander’s skeleton rather than the 

participant’s skeleton. This leads to a sudden jump in the coordinates of nearly every vertex in the tracked 

skeleton. In our case, this occurred whenever the Kinect detected a field observer behind the participant. 

Unfortunately, this issue was a symptom of the room configuration (Figure 1) employed for the data 

collection. 

Figure 2. Screenshot from Kinect visualization tool. 
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In order to investigate the skeleton mistracking issue, a prototype Kinect visualization tool was imple-

mented in Unity3D (Figure 2). The tool reads and parses a filtered Kinect data file and then replays the 

session by rendering small white spheres corresponding to skeletal vertices at their appropriate locations 

in 3D space over time. Each sphere was labeled with its associated vertex name, enabling the posture and 

behavior of a participant to be visually inspected using only the Kinect mesh data. 

To identify observations that corresponded to field observers rather than participants, Euclidean distances 

between subsequent observations of a central vertex were calculated. The distribution of Euclidean 

distances was plotted to inspect the distribution of between- frame movements of the vertex. If the Kinect 

tracked field observers, who were physically located several feet behind participants, the distribution was 

likely to be bimodal. In this case, one cluster would correspond to regular posture shifts of a participant 

between frames, and the other cluster corresponded to shifts between tracking participants and field 

observers. This distribution could be used to identify a distance threshold for determining which observa-

tions should be thrown out, as they were likely due to tracking field observers rather than participants. 

Data Filtering 

After cleaning, a filtering process was performed to remove data that were unnecessary for planned 

analyses. For example, in analyses of Kinect data investigating participants’ posture shifts, a majority of 

face mesh vertices recorded by the Kinect were not necessary. Among the 91 vertices recorded in the 

unfilteredKinect log files, we preserved only seven for posture analysis: top_skull, head, center_shoulder, 

left_shoulder, right_shoulder, left_hand, and right_hand. These vertices were selected based on prior 

findings about postural indicators of emotion measured by Kinect sensors (Grafsgaard, Boyer, Wiebe, & 

Lester, 2012). Although the face mesh vertices were removed from the perspective of downstream 

analysis, they remained in the raw dataset; they can easily be re-added to the pipeline at a later time if 

analyses of participant hand gestures and facial behavior are undertaken.  

Data Integration 

GIFT’s Kinect data files do not include explicit records of participant identifiers. However, determining 

the unique identifier for each log is critical for integrating the Kinect data with other data channels, such 

as field observation data or Q-Sensor data. By contrast, HART data files do include unique identifier 

information. In our dataset, every field observation included an explicit record of the participant’s unique 

identifier as the first attribute in the row. Participants’ unique identifiers consisted of a combination of 

study day, session number, and station letter, and fortunately this information could be recovered from 

start time information stored in each Kinect log’s filename, along with station identifier information 

denoted in the directory structure of the raw dataset. For the most part, the participant identifier recovery 

process could be automated. However, some sessions started several minutes early due to early arrivals of 

participants, making it more challenging to detect session boundaries automatically. These exceptional 

cases were handled case-by-case. 

After both the Kinect and HART data were cleaned and filtered, and unique participant identifiers had 

been assigned to each observation in the dataset, the two data sources were integrated. To perform this 

integration, the timestamps for each observation across the two data sources were aligned. Even though 
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both HART and GIFT were synchronized to the same time-server during data collection, they were 

generally launched at different times. Consequently, the timestamps for each observation could not 

immediately be aligned, because they denoted relative time elapsed since application start, not clock time. 

Therefore, an offset had to be calculated between the two data sources’ start times in order to establish a 

shared time scale. After a shared time scale was established, and the timestamps for each observation 

were adjusted, the two data channels could be integrated. 

To perform the integration, the HART dataset’s columns were appended to the Kinect dataset’s columns, 

and field observations were interspersed with the Kinect data at the appropriate timestamps. The HART 

columns included observations from both field observers involved in the study. This integration produced 

a dataset that consisted of long series of Kinect observations, which include blank values for the HART 

columns, and occasional instances of field observations that included blank values for the Kinect col-

umns. In rare cases where both a Kinect observation and HART observation occurred during the same 

shared timestamp, both Kinect and HART values were contained in the data vector. 

Feature Distillation 

After the data sources were integrated, predictor features were derived from the Kinect data for associa-

tion with the field observations. Long series of Kinect observations were distilled into one-dimensional 

vectors of Kinect summary statistics, which were then prepended to vectors of field observation data. 

Afterward, rather than having many instances of Kinect observations for each field observation, the 

distilled dataset consisted of a series of one-dimensional vectors with Kinect summary statistics and field 

observation attributes. In machine learning terms, the Kinect features served as predictor features, and the 

field observations served as class labels.  

Currently, the engineered predictor features are inspired by related work in the affective computing 

research literature (Dragon et al., 2008; D’Mello & Graesser, 2010; Grafsgaard et al., 2012). To date, 

much of the work investigating posture as a predictor of learners’ emotions has leveraged pressure-

sensitive chairs (Dragon et al., 2008; D’Mello & Graesser, 2010). More recently, Grafsgaard and col-

leagues have used Kinect to investigate posture and hand gestures as predictors of self-reported engage-

ment during tutorial dialogues (2012). Several research groups have converged on common sets of 

postural indicators of emotional states. For example, in several cases boredom has been found to be 

associated with leaning backward, as well as increases in posture variance (Grafsgaard et al., 2012; 

D’Mello & Graesser, 2010). Conversely, confusion and flow have been found to be associated with 

forward-leaning behavior (Grafsgaard et al., 2012; D’Mello & Graesser, 2010). Given these findings, we 

have begun to identify analogous predictor features that can be generated from our dataset. Specifically, 

we calculate depth statistics characterizing each skeleton vertex’s distance from the camera. Distilled 

features for each of the vertices include the following:  

 

 Most recently observed distance, 

 Minimum observed distance observed thus far, 
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 Maximum observed distance observed thus far, 

 Median observed distance observed thus far,  

 Variance in distance observed thus far, 

 Median observed distance during the past five seconds, 

 Variance in distance during the past five seconds,  

 Median observed distance during the past twenty seconds, 

 Variance in distance during the past twenty seconds, 

 Median observed distance during the past forty seconds, 

 Variance in distance during the past forty seconds, 

 Median observed distance since the last emotion observation 

 Variance in distance since the last emotion observation. 

From just these features, 91 predictors are available for training emotion detection models. Of course, 

additional predictor features can be engineered as well.  Afterward, the dataset is written to disk to serve 

as an intermediate representation for analysis and modeling. Alternatively, the dataset can be provided 

directly to a machine-learning toolkit for model training and validation. 

Emotion Detector Modeling 

Rather than attempt to train a classifier capable of discriminating among all seven emotion states, we 

instead train seven binary classifiers that discriminated between the occurrence and non-occurrence of 

each emotion. In order to train and validate these classifiers, we produce seven separate datasets, one for 

each emotion in the corpus. The emotion labels from both field observers are used as separate class labels 

for these datasets. The emotion labels are recoded into binary variables that indicate whether the target 

emotion is observed or whether some other emotional state is observed. This approach mirrors techniques 

used in related work with HART-generated affect data (Baker et al., 2012). Given the project’s goal of 

eventually integrating the emotion detectors with GIFT, a hierarchical classification scheme leveraging 

these binary classifiers at the base level will likely be employed (D’Mello & Graesser, 2009). 

In order to train and validate emotion detection models from the corpus, we are using the Waikato 

Environment for Knowledge Analysis (WEKA), a popular open-source toolkit that provides a collection 

of machine-learning algorithms and analysis tools (Hall et al., 2009). Prior to machine learning, our 

distilled datasets are reformatted and written in ARFF format, the standard data format for WEKA. Next, 

the dataset is processed by a short Java program that divides the corpus into 10 independent folds for 

cross-validation. These folds are used to train and test several emotion detection models using a range of 

classification algorithms, including J48 decision trees, naïve Bayes, support vector machines, logistic 
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regression, JRIP, k-nearest neighbor, and neural networks. Feature selection is performed using forward 

selection techniques. The detector models’ performance is compared using Cohen’s kappa and A’ (area 

under the ROC curve). Different combinations of classification techniques, parameter settings, predictor 

features, and field observer emotion labels are compared to identify the most effective emotion detection 

models for integration with GIFT. At the time of writing this process is ongoing, as we are currently 

investigating which predictor features and modeling techniques are most effective. 

Recommendations and Lessons Learned 

We have described a collaborative project between North Carolina State University, Teachers College 

Columbia University, and the US Army Research Lab to investigate computational models of affect and 

engagement for a serious game on tactical combat casualty care. Although the project is ongoing, we have 

described operational details of a study to collect a corpus of affect sensor data for inducing emotion 

detection models, as well as the data analysis pipeline to clean, filter, integrate, distill, analyze, and model 

the dataset. It is our hope that by sharing details of the study setup, dataset, and data analysis process, we 

have provided a useful account for other GIFT users interested in investigating generalizable models of 

affect and engagement. 

Through our experiences collecting and analyzing affect sensor data with GIFT, we have learned several 

lessons that will inform our subsequent data collections. First, it is clear that seemingly innocuous details 

of a research study, such as the physical configuration of a room, can have significant implications for the 

dataset that is collected, as well as the data analysis process that will follow. In our case, considerable 

time and effort has been dedicated to understanding and resolving the Kinect mistracking issue, which 

was a consequence of our particular study room configuration and idiosyncrasies in the way GIFT records 

Kinect data. Furthermore, we have been reminded that any shortcoming in pilot testing in advance of a 

research study creates openings for surprises and headaches later on. Although our team ran several pilot 

tests with individual participants before the study, we overlooked running pilot tests with bystanders 

walking behind participants to simulate actual study conditions, a factor that contributed to the skeleton 

mistracking issue. 

Fortunately, these oversights have not adversely affected the corpus that we collected in any major 

capacity, and most of the challenges we encountered have been addressable through automated techniques 

implemented in the data analysis pipeline. As the project progresses, we will continue to investigate 

alternate combinations of predictor features, machine learning algorithms, parameter values, and field 

observations to devise effective emotion detection models for integration with GIFT, and we will report 

these findings to the research community as they emerge. In addition, we should note several promising 

areas for implementing future enhancements to GIFT to support affective computing research. At a low 

level, logging participants’ identifier information in sensor data files would significantly reduce the 

burden of recovering identifier information from logs’ timestamp information. At a higher level, provid-

ing tools for automatically integrating data channels and exploring sensor data would significantly 

streamline research on affective computing with GIFT. Currently, these types of functionality must be 

implemented separately from GIFT on a project-by-project basis. Although cleaning, filtering, distilling, 

and modeling data will likely best be performed outside of GIFT, phases that can be standardized across 
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datasets—such as data integration and exploration—are likely to prove useful for the GIFT user commu-

nity. 
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Introduction 

As we continue to progress in the development of effective Intelligent Tutoring Systems (ITSs), it is 

important to design systems that facilitate more comprehensive, supportive, and natural learning envi-

ronments (Sottilare & Holden, 2013). One way to do this is to incorporate multiple intelligent agent roles 

into the system, thus offering the opportunity for greater and more varied learning support. Of particular 

and novel interest are systems that include both a teachable agent and a virtual tutor. Teachable agents are 

pedagogical agents in which the human learner assumes the role of the teacher and the agent assumes the 

role of the student. Systems using these agents have been shown to increase both learning gains and 

motivation in students, leading to greater reasoning skills even when the student is no longer using the 

system (Biswas et al., 2005). However, evidence indicates that students who are insufficiently prepared to 

teach a subject might benefit more from tutored problem solving (Matsuda et al., 2011), such as seen in 

traditional ITSs like AutoTutor (D’Mello & Graesser, 2012).  

Therefore, merging teachable agents with traditional ITSs to form multi-agent systems featuring both 

virtual tutor and teachable agent roles poses an ideal way to build a medium between the two systems, in 

turn, realizing the benefits of both. Such systems can offer a more comprehensive mode of initially 

teaching students than is currently seen in teachable agent systems, while still capitalizing on their 

motivational benefits and increased learning gains, ultimately creating a stronger overall tutoring system. 

Here the expected advantages of multi-agent learning systems of this nature are detailed, as well as some 

of the design challenges that arise in creating these systems. Recommendations for accommodating these 

design challenges are provided, and additionally some example instructional strategies that a teachable 

agent in such a multi-agent system could use to exact higher, longer-lasting learning gains are proposed. 

Finally, the conclusion discusses how the Generalized Intelligent Framework for Tutoring (GIFT) could 

be used as a framework for this type of multi-agent system. 

Expected Advantages of the Proposed Learning System 

ITSs in general have already proven to be an invaluable learning aid in a diverse array of learning 

contexts, including academic, professional, and military domains. In fact, they have been shown to 

perform nearly as effectively as human one-on-one tutoring (VanLehn, 2011) and have been successfully 

used as classroom aids for more than fifteen years (Koedinger et al., 1997). Many existing ITSs have 

featured a single virtual tutor agent, but with growing frequency developers have demonstrated an interest 

in moving beyond this model, to the increased potential for personalization and realistic classroom 

scenarios offered by multi-agent systems. This trend indicates that to most effectively enable the system 



 

148 

to evolve and adapt to a wide variety of learner requirements, an ideal cast of pedagogical agent roles 

should be designed to realistically simulate the multiples roles present in a physical learning environment. 

Many other agent roles besides the virtual tutor have been explored already in pedagogical systems, 

particularly in Serious Games (Prensky, 2005) and story-based learning environments. Agent roles have 

included the learning companion (Chou et al., 2003), teachable agent (Blair et al., 2007), collaborator 

agent (Goodman et al., 1997), and critic agent (Wißner et al., 2012), among others. The potential benefits 

offered by these different pedagogical agents are vast; they can be used to promote deeper learning 

(Moreno et al., 2001), increase student motivation (Lester et al., 1997), and even improve metacognitive 

skills (McNamara et al., 2007). One way to harness both the documented benefits of ITSs and the motiva-

tional advantages offered by weaker pedagogical agents while also offering the potential to sustain the 

learning environments currently supported by either is to pair an intelligent tutor with a teachable agent in 

a multi-agent learning system, either as two externally separate agents or as two agents embodied as a 

single peer agent. Some specific advantages to doing this are outlined in the following sub-sections. 

The advantages of varied pedagogical agent knowledge levels 

Before discussing the advantages of using pedagogical roles of varying knowledge levels in learning 

systems, it is beneficial to define the terms “strong agent” and “weak agent” as they are used in this work. 

A strong agent here is defined as an agent with a high externally evident knowledge level that can be 

relied upon for correctness—thus, a strong agent makes no errors. A weak agent, on the other hand, is 

prone to error and likewise possesses a low externally evident knowledge level. Thus, a virtual tutor can 

be seen as a strong agent and a teachable agent can be seen as a weak agent. A major expected advantage 

from using both strong and weak agents is that the system is likely to appeal to a broader range of 

learners. In fact, previous studies have indicated that different types of students prefer different types of 

pedagogical agents. For instance, students who are introverted or more capable have empirically been 

shown to prefer strong agents, whereas students who are extraverted or less capable have in contrast been 

shown to prefer weak agents (Hietala & Niemirepo, 1998). Furthermore, when examining the relationship 

between learning competency and agent competency, Kim (2007) found that strong students learned 

better with strong agents and weak students learned better with weak agents. 

In addition to satisfying a larger number of learner preferences and needs, research has indicated that 

students simply find learning easier when they use systems featuring multiple agent roles and knowledge 

levels (Baylor & Ebbers, 2003). One explanation for this is that the ability for students to attribute 

different learning tasks (such as teaching or learning information for the first time) to different agent roles 

may help them to reduce their cognitive load. Regardless of whether or not this is true, the existence of 

both strong and weak agent roles in learning systems serves to satisfy a greater amount of students’ 

learning needs by allowing for more diverse pedagogical interaction. 

The expected advantages offered by teachable agents 

Including teachable agents in learning systems not only offers the advantages correlated with weaker 

agents in general, but also can be expected to increase student motivation and learning gains. One reason 

why this can be expected is that by their nature, teachable agents require active rather than passive 

learning—the act of teaching requires a concerted effort on the part of the user to organize learned 
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knowledge and understand it more deeply in order to be able to teach it themselves. The advantages of 

this have been empirically demonstrated: in a study comparing students using a teachable agent system 

and those using an intelligent tutoring version of the same system, students in the teachable agent condi-

tion experienced higher motivation and learning gains than their counterparts (Leelawong & Biswas, 

2008). Teachable agents have also been shown to be particularly beneficial with lower-achieving students 

(Chase et al., 2009). In fact, the use of teachable agents has even shown promise for affecting long-term 

metacognitive change – students using the agents have demonstrated heightened reasoning skills even 

when they are no longer using the agents (Biswas et al., 2005). 

The expected advantages of pairing teachable agents with virtual tutors 

Teachable agents offer numerous expected advantages when included in learning systems, but that does 

not mean that virtual tutors should not play an important role as well. Many students prefer strong agent 

roles, as shown by Hietala and Niemirepo (1998), and moreover, virtual tutors should be present in 

learning systems to initially teach the requisite domain knowledge. Without first having a sufficient level 

of prior knowledge regarding the domain material, learning gains from using teachable agents could be 

limited, leading students to instead benefit more from traditional tutored problem solving (Matsuda et al., 

2011). Thus, the virtual tutor should actually be a key role in the overall learning system, helping to make 

the system more comprehensive and effective. Without their help, students may fail to take full advantage 

of a teachable agent system and instead simply “game the system” to achieve correct answers. Shallow 

strategies such as these have been found to cause the long-term benefits of teachable agents to dwindle 

(Roscoe et al., 2013). Therefore, the greatest learning advantages will be seen when the system can both 

initially teach students using a virtual tutor and then later reinforce their learning by asking them to teach 

the information that they learned previously to a teachable agent. 

Existing work 

It is already common for multi-agent systems to include either a virtual tutor or a teachable agent. Multi-

agent systems featuring at least one virtual tutor agent include MetaTutor (Azevedo et al., 2009), iStart 

(McNamara et al., 2007), Geometry Cognitive Tutor (Roll et al., 2011), and Wayang Outpost (Arroyo et 

al., 2011). The additional agent roles in these systems are primarily used to provide metacognitive support 

to students. Betty’s Brain (Leelawong and Biswas, 2008) is a multi-agent system featuring a teachable 

agent, and the supplementary agent role in this system, Mr. Davis, provides metacognitive support. 

However, few systems to date include both virtual tutor roles and teachable agent roles. One system that 

does include both is DynaLearn, which provides separate agents playing the roles of a mechanic (to 

diagnose the learner’s model), a critic (to provide feedback), and a quizmaster (who can quiz both the 

user and the teachable agent) in addition to a virtual tutor agent and teachable agent (Wißner et al., 2012). 

Another system that features both virtual tutor and teachable agent roles is Operation Aries! (Millis et al., 

2011), which tailors a peer agent role according to learner strength. In Operation Aries!, learners engage 

in “trialogs” with Dr. Quinn (a teacher agent) and Glass (another student). When students are performing 

well, they teach Glass as Dr. Quinn observes, whereas when they are performing poorly they observe Dr. 

Quinn teaching Glass. Otherwise, Dr. Quinn teaches the student as Glass observes. 
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Design Challenges 

Creating systems capable of accommodating teachable agents poses several unique design challenges, and 

even more challenges arise when the design of multi-agent systems including teachable agents is consid-

ered. This section first discusses the challenges unique to designing teachable agents, followed by a 

broader discussion of challenges that may materialize when designing multi-agent systems with one or 

more teachable agents. 

Design challenges in creating teachable agents 

One of the primary design differences between virtual tutors and teachable agents lies in their domain 

knowledge base. While a virtual tutor can easily function using only a static internal domain knowledge 

source, a teachable agent must also contain a dynamic knowledge base in order to accommodate for its 

growing externally evident “brain” of information. Depending upon the developer’s needs and prefer-

ences, the amount of initial information that the teachable agent’s dynamic knowledge base includes can 

vary greatly. One design challenge arises in determining what, exactly, the teachable agent should and 

should not know. To most closely mirror a human tutoring scenario, it should be assumed that the 

teachable agent has an adequate amount of prerequisite background knowledge, which is defined herein 

as knowledge not specifically within the agent’s learning domain but that is still required to achieve a full 

understanding of the domain material. An example of this would be basic arithmetic knowledge when 

learning middle-school science – such a domain is almost certain to require at least some level of mathe-

matical problem solving, but it does not specifically seek to assess or improve upon a student’s 

knowledge of math. 

Aside from prerequisite background knowledge, considerations must also be taken to determine how 

much prerequisite domain knowledge the teachable agent should have. An early teachable agent proto-

type, DENISE, proposed by (Nichols, 1994) featured an initial domain knowledge base that was entirely 

empty with no accompanying domain model. The complete absence of these components made it impos-

sible for the designer to control the direction of the system’s interactions, since the system could not 

determine whether or not it was being taught the proper subject material. A natural human tutoring 

environment typically operates under two assumptions: 

 Tutoring is limited to a predefined domain 

 The tutee has at least enough prerequisite knowledge to be able to formulate appropriate ques-

tions regarding the subject matter 

To fulfill these requirements and to facilitate the teachable agent in a simulated tutoring environment, the 

teachable agent should have an expert domain model with which to compare its dynamic student-taught 

knowledge base. However, the teachable agent’s student-taught knowledge base should be the only set of 

knowledge that is externally evident to the student.  

Another design challenge with teachable agents lies in instructional strategy. Many previous strategies are 

incompatible with teachable agents, due to the agents’ intentional naïveté. A teachable agent cannot offer 
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didactic instruction, but must instead formulate dialogue to invisibly guide students toward reaching 

correct conclusions. In a later section, instructional methods suitable for teachable agents are discussed in 

detail. 

Additional design challenges for multi-agent systems 

One challenge of a standalone teachable agent system is that it requires students to gain an initial domain 

understanding elsewhere before they can teach material to their agents. Thus, the system must serve as a 

supplementary, rather than comprehensive, learning aid. Multi-agent systems can remedy this problem, 

but present some additional design challenges. For example, a system featuring both a teachable agent 

and a virtual tutor, and possibly even more agents, must allow for interactions between the various agents 

as well as with the user. This requires a centrally accessible dialogue context containing not only the 

information obtained from user interactions, but also from interactions between agents. Furthermore, each 

separate agent must have access to the appropriate pedagogical strategies for its respective role, and it is 

also beneficial for agents to have the ability to access one another’s externally evident domain knowledge. 

For example, if the virtual tutor is asking the teachable agent to explain its reasoning regarding specific 

subject material, it should first ensure that the teachable agent has already been taught that information by 

the student to prohibit detracting from the realism of the learning environment. 

One way to capitalize upon the benefits of a virtual tutor-teachable agent pairing without having to create 

the capability for external interaction between multiple agents, thus minimizing design challenges, is to 

internalize the pairing and encapsulate both roles within one greater role as a peer learning agent. A peer 

learning agent is defined herein as a non-authoritative pedagogical role designed to mimic a learner at a 

similar overall skill and knowledge level as the student, and thus having the ability to occasionally 

scaffold the student’s knowledge by offering direct suggestions in addition to asking questions. A peer 

agent including both the virtual tutor and the teachable agent roles described in this paper could then 

alternate between tutor and tutee depending on learner preferences and perceived knowledge strength to 

select the best strategy for furthering each individual student’s learning progress.  

In a hypothetical interaction, the peer agent could function initially as a teachable agent, asking the 

student for help with a given subject, after a separate agent serving as an authoritative virtual tutor to the 

student has taught an adequate amount of background knowledge. In the event that the student began to 

struggle with the topic to the point that he or she no longer possessed sufficient knowledge to effectively 

teach it, the peer agent could take on aspects of a virtual tutor role to provide scaffolding hints, thereby 

guiding the student toward a deeper understanding of the topic or toward a solution to his or her problem. 

Once the student again demonstrated sufficient command of the subject, the peer agent could transition 

back to its original role as a teachable agent. The main design challenge of encapsulating the virtual tutor 

and teachable agent within a peer agent would lie in restructuring the pedagogical module to accommo-

date alternating roles. 

Recommendations for Accommodating Design Challenges 

The design challenges discussed in the previous section can be accommodated by adhering to several 

recommendations: 
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 Create a dynamic knowledge base for teachable agents to store their externally evident 

knowledge, as taught by the user 

 Develop new instructional strategies meant to specifically take advantage of the unique features 

of teachable agent systems, as discussed in the following sections 

 Allow cross-accessibility between all agents and the internal information stored in the system  

This section shows how these recommendations can be accommodated in GIFT (Sottilare et al., 2012) by 

making some changes to its local tutoring processes. The local tutoring processes existing in GIFT 

include a sensor module, user module, pedagogical module, domain module, tutor-user interface, training 

application client, and sensors. Of these processes, the recommended changes would focus on the user 

module, pedagogical module, domain module, and tutor-user interface. Currently, the user module 

determines learners’ states and tracks relevant learner trait and lesson data, and sends this information to 

the pedagogical module. The pedagogical module determines which instructional strategies should be 

used and sends this information to the domain module. The domain module defines and structures domain 

knowledge and chooses which specific content should be used in the specified instructional strategy. It 

then can return this information to the user module or send it onward to the tutor-user interface, with 

which the domain module has a bidirectional connection.  

To store the externally evident, student-taught version of the teachable agent’s knowledge base, a second-

ary domain module can be inserted in the pipeline at the same level as the original domain module. This 

new module, rather than the original domain module, would possess a bidirectional connection with the 

tutor-user interface. Information from both this module and the original domain module would feed into 

the user module. The data passed between this module and the other modules would primarily consist of 

triples of two concepts and a label describing the relationship between them. An example of this type of 

data could be a triple indicating the directional relationship between nucleotides and phosphate molecules, 

e.g., nucleotides (Concept A) contain (relationship label) phosphate molecules (Concept B). These triples 

would be sent to the user module to update its learner model, and to the tutor-user interface to create the 

content for the next dialogue act. Data passed to this new module from the pedagogical module would 

indicate the type of information (i.e., a triple containing a specific relationship role or target concept) that 

the module should then send to the tutor-user interface, and data passed to this module from the tutor-user 

interface following input from the human learner would be used to grow the module’s externally evident 

knowledge base. An illustration of the modified architecture can be seen in Figure 1. The figure represent-

ing the original version of this GIFT architecture can be found in (Sottilare et al., 2012). 
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Figure 1: Local processes in the GIFT framework can be modified to accommodate teachable agents by 

inserting a visible knowledge module to show what has been taught by the student. 

To additionally accommodate the integration of multiple agent roles, such as both a teachable agent and a 

virtual tutor agent, the pedagogical module can be used to determine which agent should interact with the 

user based on input from the user module indicating how closely the user’s knowledge compares with the 

expert knowledge contained in the system’s domain module. Students with a perceived domain 

knowledge level falling below a threshold set by the system’s authors would receive additional prerequi-

site tutoring on the subject by a virtual tutor agent, whereas students perceived to have a higher aptitude 

for the subject would interact with a teachable agent instead to deepen their existing comprehension of the 

subject. The pedagogical module would additionally consider the differing anticipated learning and 

cognitive benefits of each of the strategies available to the agents in order to choose an optimal agent-

strategy pairing. Ideally, the dual processes of agent selection and strategy selection would coincide, since 

a strategy’s specific anticipated benefits could serve as a factor in selecting which agent to use, particular-

ly for students with perceived domain knowledge levels near the system’s default threshold. Alternative-

ly, it may be that in some cases the user directly chooses to interact with a specific agent, in which case 

the pedagogical module could launch immediately to selecting a strategy available to that agent. Thus, the 

pedagogical module in a multi-agent system should include two integrated processes in order to determine 

the most beneficial agent-strategy pairing to be presented to the learner. A sample of this is seen in Figure 

2. To support the two-process approach, the pedagogical module should implement policies to assess the 

user’s current state and determine how his or her knowledge compares with the expert knowledge 

contained in the domain module, as well as his or her perceived learning rate, based on the number of 

misconceptions versus correct conceptions observed by the system. In more advanced implementations, 

the pedagogical module could also consider affective features such as positive or negative sentiment, and 

optimistic or pessimistic explanatory style in determining the appropriate agents and respective strategies 

to use. 
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Figure 2: The pedagogical module can be modified to accommodate multiple agents by organizing its func-

tions into two processes including both agent selection and strategy selection. 

Instructional Strategies for Teachable Agents 

Since a teachable agent offers an entirely different role from the teacher agent seen in traditional ITSs, it 

also presents the opportunity for different pedagogical strategies to be implemented and tested. In fact, 

many traditional pedagogical strategies are incompatible with the concept of a teachable agent, since they 

are used in ITSs to disseminate expertise presumably known to the agent but not the student. Teachable 

agents work on the opposite premise: they are used to draw out knowledge presumably known by the 

student (but possibly inaccessible until appropriate pedagogical strategies are used) that must be per-

ceived as being “unknown” by the agent. To date, most teachable agent systems have relied upon asking 

the user to create a visual knowledge representation to teach the agent, and then having the teachable 

agent take a quiz so that its present knowledge of the subject can be evaluated. Although systems using 

this technique have proven functional, we believe the full potential for teachable agents to improve 

learning gains can be better realized with more interactive, dialogue-based strategies. 

One obvious instructional strategy that fits perfectly within the dialogue capacity of teachable agents is 

Socratic questioning. Although Socratic questioning has previously been a strategy used with traditional 

ITSs (Graesser et al., 2001), teachable agents present the opportunity to create a new twist on the tradi-

tional Socratic question – the agents can ask the question from a convincingly naïve perspective. In 

traditional ITSs, although Socratic questions are open-ended, they are still posed by an authoritative 

teacher agent, and thus students retain an awareness that the question is directed and that their knowledge 

is being tested. On the other hand, the teachable agent is viewed by students as a peer without a prede-

fined set of correct answers. As such, the prospect of answering believably authentic questions (cf. Otero 

& Graesser, 2001) is likely to serve as a better motivator, since students will feel less responsible for 
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failure and less like they are being tested, as well as more responsible for their own role in the improve-

ment of their agent’s knowledge base. 

To effect this strategy, questions can be generated based on the misconception types observed in students’ 

concept maps. A taxonomy of different question types for use in question generation is described in 

(Nielsen et al., 2008) and in particular the question types found in (Collins, 1985) can be used to promote 

deeper reasoning in students who have demonstrated misconceptions in their knowledge of a subject. To 

create a training dataset for the system, a set of questions regarding concepts and their relations can be 

annotated according to which question type they fall under, and pattern-based question templates relevant 

to individual question types can then be extracted from this dataset via machine learning. Following this, 

the misconception type identified by the system can be used to determine which question templates to 

use, and the chosen question template can be filled with the appropriate concepts and relationships 

accordingly to pose a relevant question to the user. An example of how this might be done with two of 

Collins’ question strategies, “overgeneralizing the misconception” and “testing the hypothesis,” is shown 

in Figure 3. 

  

Figure 3: Different types of question strategies can be used to guide students toward recognizing their 

misconceptions. 

Another more complex strategy that can be used by teachable agents involves exploring the use of 

metaphor as a means of guiding students toward recognizing misconception. A visual representation of 

the matching process between expert and student-taught knowledge can be seen in Figure 4. In the case of 

this figure, the solid connections and concepts represent information taught by the student, and the dashed 

connection represents conflicting knowledge from the domain model. Thus, it is determined that the two 

concepts, “Separate Strands” and “Nucleotides,” do exist in the domain model but that the student has 

reversed their relation. Once a misconception type has been identified, the system can search for analo-

gous concepts and relationships to the set that has been misconceived, and these sets can be presented to 

the user in a peer-like, interactive manner, as described in the following paragraphs and figures. The 

hypothesis is that this will often cause the student to draw his or her own parallels between the analogous 

correct conception and the misconception, hopefully recognizing the contradiction between the two 

without the use of any didactic correction from the virtual tutor. 
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Figure 4: Teachable agent systems can detect misconception types by comparing user-taught knowledge to 

that of an expert concept map. One misconception type that could be detected, as seen in this example, is the 

reversal of the relationship between concepts. 

Of course, a matter that remains to be determined is of what type of analogy will be most effective in 

promoting learning gains. Three possible conceptual analogies for the misconception in Figure 4 are 

presented in Figure 5. These are followed in Figure 6 with an example of how each would look when 

placed into the same question template. One focuses on prior correct knowledge that the student has 

already taught, one presents a socially relevant analogy that could increase student interest by making the 

material more relatable, and one features common sense knowledge likely to be readily understood by 

anyone.  

 

Figure 5: A number of different types of conceptual analogies may be presented to students to help them 

understand the correct relationship between misconceived concepts. Possible conceptual analogy domains 

include prior knowledge, socially relevant knowledge, and common sense knowledge. 
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Figure 6: Analogous concepts and relations can be inserted into question templates created for specific 

conceptual relationship models. The resulting questions can then be presented to learners to prompt them to 

restructure their thinking. 

There are advantages and disadvantages to each analogy type, and different types may be best suited for 

different learning contexts. An advantage of using pre-existing knowledge is that the system knows for 

sure that the student already understands the analogous conceptual relationship enough to teach it correct-

ly. However, this can also pose risks, since bringing this otherwise resolved information into an analogy 

with a concept that the student has misconceived may cause the student to rethink the wrong concept, or 

at the very least introduce an unnecessary degree of confusion. Alternatively, an advantage of using 

socially relevant knowledge is that the correct relationship between the analogous concepts is likely to be 

immediately clear to the student, and moreover is not likely to be a relationship that could be second-

guessed. The disadvantage to this strategy, of course, is that if the student is not familiar with the socially 

relevant analogy then he or she is unlikely to find much help from its use as a propositional metaphor. 

Care must be taken to ensure that if socially relevant analogies are used, they are known almost to the 

point of being common sense knowledge. To that end, an advantage of using common sense knowledge is 

that it is almost always immediately obvious to students. Its disadvantage, however, is that the analogy 

may not seem as relevant or exciting to students as the other analogy types. It also may be more difficult 

to introduce a common sense analogy as an authentic question, rather than as a means of pointing out an 

obvious misconception. As long as the strategy of using a propositional metaphor to effect conceptual 

change existed in the system, these analogy domains themselves could be easily interchanged according 

to the system author’s preference. 

Implications for GIFT 

These recommendations lead to several main implications for GIFT as a whole. First, the proposed 

instructional strategies will allow GIFT to diversify its pedagogical agent roles by introducing the ability 

to directly promote more active learning characteristics, through acting as a naïve teachable agent rather 

than dispensing purely didactic dialogue. The only assumption associated with this approach, aside from 
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what is already associated with any ITS or educational system, is that the student is able to teach. An 

architectural implication of the approach is that the domain module may need to be expanded to include 

more background knowledge, particularly if propositional metaphors from common sense or socially 

relevant domains are used to guide students toward diagnosing their misconceptions. Models required for 

implementation will include a learner model located in the user module, a learned teachable agent model 

located in the visible knowledge module, and a domain model containing a “gold standard” of the 

concepts and relations to be learned located in the domain module. The incorporation of multiple roles in 

this approach will allow students to experience a more realistic and thus effective learning environment, 

and this will broaden the educational scope of GIFT to include domains that may not have previously 

been feasible with the use of only a single pedagogical role. Of course, the structural implication to this is 

that the pedagogical module must be modified so that it can include the two related processes of (1) agent 

selection and (2) strategy selection. 

With the addition of a teachable agent role to GIFT, lower-achieving learners in particular are likely to 

experience increased learning gains and motivation. Since teachable agents must simulate having a 

weaker knowledge base, an obvious interface implication has already been discussed—the teachable 

agent’s visible knowledge base should not be the entire expert domain knowledge base, but rather the 

current knowledge base reflecting concepts and relationships already taught by the student. The exact 

approach to doing this should reflect the design impacts on the system as a whole, and careful considera-

tions should be made to how they may affect overall flexibility and modularity. 

Conclusions 

In conclusion, GIFT can be adapted for use with teachable agents, as well as with a multi-agent system of 

any type, according to the recommendations within. In particular, doing so requires the addition of 

targeted, question-based strategies designed to promote deeper learning and resemble the queries of a peer 

learner rather than the didactic suggestions of an authoritative tutor. To accommodate multiple agents of 

any type, it requires a small set of structural modifications to the pedagogical module as well as additions 

to the domain module. Recommendations for these modifications include revising the pedagogical 

module so that it exhibits a structure capable of selecting both an interactive agent and a strategy, and 

adding an additional externally evident knowledge module to demonstrate the knowledge taught by the 

learner. The beneficial implications of these changes are manifold: through the ability to portray weaker 

agent roles as well as tutor roles, the system can be expected to see an increase in learner motivation and 

learning gains, and through the ability to portray multiple roles within the same system, learners will be 

presented with a more realistic learning environment that can be tailored to their individual pedagogical 

needs, likely multiplying the efficacy of the system even more. 
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Introduction 

The Generalized Intelligent Framework for Tutoring (GIFT) (Sottilare, Brawner, Goldberg et al., 2012; 

Sottilare & Holden, 2013b) is a flexible, open-source platform that can be used to implement a variety of 

Intelligent Tutoring Systems (ITSs). Developed by the U.S. Army Research Laboratory (ARL), GIFT 

uses a modular architecture in which various components communicate via a messaging bus. Major 

components include a domain module that defines domain knowledge, a pedagogical module that deter-

mines which instructional strategy to apply, a user or learner module that maintains a learner model, and a 

sensor module that GIFT uses to collect and process data from biometric and other sensors. As reported in 

the inaugural GIFT symposium (Sottilare & Holden, 2013a), GIFT has been integrated with game 

engines, used to create cognitive tutors, used to combine multiple forms of learning experiences, and even 

used to conduct surveys. In this paper we describe an application of GIFT arising from a Small Business 

Innovation Research (SBIR) project called Tools for the Rapid Development of Expert Models 

(TRADEM) in which GIFT is used as the adaptive engine for tutors that result from a semi-automated 

authoring process (or more accurately, transformation process) that is applicable to any domain of study.  

The TRADEM Process 

The goal of TRADEM is to reduce the time and expense required to produce ITS in arbitrary domains and 

to thereby create a means to develop training that is more effective than standard eLearning or Computer 

Based Training (Dodds & Fletcher, 2004; Fletcher, 2011; Graesser, Conley & Olney, 2012; K. VanLehn, 

2011). To accomplish this, TRADEM starts with a corpus of traditional content representing instruction 

and knowledge in a domain. TRADEM then uses natural language processing (NLP), machine learning 

(ML), and statistical techniques to analyze the corpus and automatically generate topics and a pre-

requisite structure. TRADEM also associates a variety of content with each topic, including instructional 

material, media references, assessment questions, and prompts derived from the source corpus. Together, 

the data generated by TRADEM are an expert model (Murray, 2003; Woolf, 2009) that can be used to 

present and sequence learning, ask learners questions, and evaluate learner responses. The tools devel-

oped for TRADEM allow the topics, prerequisites, paragraph content and ordering, media references, 

instructional strategy preferences, and questions in the expert model to be edited and exported in a JSON 

file (referred to hereafter as the Export). The JSON representation of the expert model is further trans-

formed by TRADEM to an intelligent tutor. Figure 1 shows the TRADEM process; further details may be 

found in (Ray, Brawner & Robson, 2014; Robson, Ray & Cai, 2013).  
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Figure 24: TRADEM Process 

T-Tutors 

The TRADEM process is designed to generate tutors that operate and interact with learners in multiple 

ways. To date it has been used to generate a family of conversational tutors (called T-Tutors for 

“TRADEM-Tutors”) that interact with learners using a simple dialogue interface. T-Tutors combine 

features of the AutoTutor family of ITS (Graesser, Person, Lu et al.; 2005; Graesser, Wiemer-Hastings, 

Wiemer-Hastings et al., 1999) with mastery-based sequencing (Bloom, 1968; Stern & Woolf, 1998) and 

instructional strategies based on work of Gagne, Merrill and others (Gagne, 1985; Merrill, 1994, 2002). 

The following features of T-Tutor are planned, with the majority implemented at the time of this writing: 

Conversational interface with 2D Avatar: Learners converse with T-Tutors using verbal input with 

written input as an alternative. Verbal exchange is supported by text-to-speech and speech-to-text tech-

nology. As shown in Figure 2, T-Tutor displays a) a 2D image of a face selected from a small set of 

expressions and b) contextually relevant learning resources during the dialogue. Resources can be 

anything from links or documents to videos and simulations. While research has demonstrated that 

nonverbal communication of pedagogical agents contributes to improved learner attention, engagement, 

social connectedness, and understanding (Doering, Veletsianos & Yerasimou, 2008; Veletsianos, 2009), 

some studies warn designers of the strongly negative “uncanny valley phenomenon” resulting from a 

learner’s impression of not-quite-human likeness (Tinwell, Grimshaw, Williams et al., 2011; Yamada, 

Kawabe & Ihaya, 2013). Veletsianos (2009) demonstrated that animated pedagogical agents were often 

distracting to the learner, and (Baylor & Kim, 2008, 2009) found that simplified nonverbal communica-

tions such as facial expression were most effective for improving learning outcomes. The approach of 

using 2D avatars representing simple emotions was chosen to provide a pedagogically effective level of 

nonverbal expression while reducing overhead and bandwidth for smartphone delivery. 

 

Figure 25: T-Tutor Interface 
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Natural Dialogue: T-Tutor engages the learner in natural dialogue using the capabilities of ChatScript 

(Wilcox, 2013; Wilcox & Wilcox, 2013). ChatScript is a chatbot engine and scripting language that 

provides a rich vocabulary of rules and pattern matching and interprets semantics based on the WordNet 

ontology (Wordnet, 2012). It implements conversational strategies such as gambits and responders, and it 

has been used to construct chatbots that have won the Loebner Prize in artificial intelligence (Bradeško & 

Mladenić, 2013). 

Instructional Phases: T-Tutor implements four basic instructional phases: Contextualization, Learning, 

Practice, and Assessment. T-Tutor uses different strategies within each phase, which are aligned with 

Gagne’s Nine Events of Instruction (Doube, 1998; Gagne, 1985). During contextualization, T-Tutor 

introduces a topic and explores readiness, motivation and interest. During learning, T-Tutor conversation-

ally presents information, displays resources, and provides prompts to retain interest and maintain 

interactivity. During practice T-Tutor asks questions about the information and provides contextual 

guidance. During assessment ,T-Tutor presents a series of questions with no feedback until the end. T-

Tutor continuously tracks the learner state during each of the instructional phases. 

Adaptations: T-Tutor adapts to the learner in multiple ways. The tutor follows a sequence of topics 

ordered by the prerequisite structure in the TRADEM expert model. A learner can only enter a topic if all 

of its prerequisites have been met. Similarly, T-Tutor skips topics that a learner has mastered and can 

return to pre-requisite topics if a learner does poorly. During the presentation of a topic, T-Tutor dynami-

cally evaluates learner responses and adjusts the level of material along multiple dimensions, including 

speed, intrinsic difficulty (e.g., reading level), interactivity, and levels of knowledge in Bloom’s taxono-

my (Forehand, 2010; Milman, 2009; Ruskov, Ekblom & Sasse, 2013). During the learning and practice 

instructional phases, T-Tutor implements conversational moves that use pumps and hints when learner 

responses do not fully address a question (Wolfe, Widmer, Reyna et al., 2013; Zhou, Freedman, Glass et 

al., 1999) and adapts to off-topic responses by using conversational gambits to bring the learner back on 

task (Wilcox & Wilcox, 2013).  

Granules 

The data used to populate and instantiate a T-Tutor come from the TRADEM export and undergo a series 

of transformations, most of which are automated. 

A single T-Tutor may cover one or more topics in the TRADEM expert model, and within each topic, 

TRADEM produces a set of granules. A granule is the smallest block of knowledge around which a 

conversation can be held. TRADEM uses NLP and machine learning to generate attributes, which, in 

turn, are used to map granules to instructional strategies. These attributes can be edited by the user. 

Although granules are generally equivalent to paragraphs, a single paragraph of text may be converted 

into multiple granules tagged with different instructional strategies:  

 A learning granule covering the facts or concepts expressed in the paragraph. 

 A practice granule that includes open-ended questions about the facts or concepts and guidance 

that is given to the learner if an answer appears to be incomplete, irrelevant or incorrect.  
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 An assessment granule that quizzes the user on the content of the paragraph. The assessment 

granule may include explicit answers used to score responses or text that is used to evaluate re-

sponses via semantic analysis as is done by AutoTutor (Graesser, Chipman, Haynes et al., 2005; 

Hu, Cai, Han et al., 2009; Wolfe, Widmer, Reyna et al., 2013). 

Each granule goes through two more processes: dialogue transformation and annotation. The purpose of 

dialogue transformation is to convert the granule into content appropriate for use in ChatScript. This 

transformation uses templates, NLP, ontologies, dialogue moves, and other techniques. The purpose of 

annotation is to edit or add metadata that enables T-Tutor to operate on the granules as instructional 

elements and select responses based on changes in learner state. Each granule is annotated with a title; a 

level in Bloom’s taxonomy; a difficulty level; an interactivity level; and its stages in three instructional 

strategies: the GIFT Engine for Macro/Micro-Adaptive Pedagogy (eM
2
AP) (Goldberg, 2013), T-Tutor’s 

four phases, and Gagne’s nine events. Topics that were exported from the TRADEM expert model are 

also annotated with titles, prerequisites, and associated granules.  

T-TUTOR User Interface (UI) 

The T-Tutor Agent delivers instruction using the Extensible Messaging and Presence Protocol (XMPP) 

for client-server chat. Originally derived from Jabber™ (Ozturk, 2010), XMPP is used by many estab-

lished networks such as Google™, Facebook™, and WebEx™ (Burt, 2011; Facebook, 2014; Warne, 

2006). XMPP servers are often deployed in large enterprises to facilitate private conversation among 

employees in the office, in the field, and abroad. 

The T-Tutor client interface is built using responsive design (Frain, 2012; Gardner, 2011; Marcotte, 

2010). The version previously shown in Figure 25 is the full-screen browser version. Information is 

delivered to the UI as web content. This obviates the need for a learner to install additional software or 

viewers in most cases. At the same time, T-Tutor can gracefully degrade for Mobile devices and, in fact, 

can be delivered through other XMPP client applications such as Google Hangouts™ and may be easily 

integrated into simulations and other e-learning applications. 

The T-Tutor client connects to the T-Tutor Agent web service and waits for conversations to start. The 

web service can handle any number of simultaneous conversations. During a conversation, the T-Tutor UI 

delays dialog by an appropriate amount of time to allow users to read or listen to what has been said.  

T-Tutor Sessions  

Within a tutoring session, adaptation and sequencing takes place at three levels: 

 At the macro level, the learner is moved from topic to topic (macro-sequencing). Sequencing 

based on recorded completion and mastery of topics is considered to be macro-adaptation. 

 At the mezzo level, different instructional strategies are selected within a topic. These are not true 

macro-adaptations because they are selected based on active learner state, nor are they micro-

adaptations because they are above the level of conversational interactions and are not part of the 
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inner loop of the tutor as described by (Aleven, Mclaren, Sewall et al., 2009; Durlach & Ray, 

2011; Kurt Vanlehn, 2006). We call these mezzo-adaptations. 

 At the micro level, the tutor interacts directly with the learner to present a particular instructional 

strategy and alters its behavior based on learner responses.  

When a tutoring session is initiated, the T-Tutor Agent loads the files produced from the TRADEM 

export by the transformations discussed above. The learner interacts with and is guided through the 

session by the T-Tutor UI. At the macro level, learners may initiate a session and select topics from a 

menu that offers only those topics for which prerequisites have been met.  

Once a topic is selected by the learner, mezzo-adaptation is guided by the GIFT framework using a 

common pattern sequence governed by learner states and rules. As is illustrated in Figure 3, for each topic 

selected by the learner, the T-Tutor Agent sequences through instructional strategy stages, displays the 

content matching each stage to the user one granule at a time, collects learner state information, and 

passes state information to GIFT. After each instructional strategy stage, GIFT examines the learner state, 

uses rules to detect state transitions, and tells the T-Tutor Agent which instructional strategy stage (or 

tactic) should be presented next. T-Tutor Agent then retrieves the granules that match the desired strategy 

stage and proceeds to deliver the granules to the T-Tutor UI. This mezzo-sequencing loop is repeated 

until the learner exits or there are no more instructional strategy stages for the topic. At this point, the T-

Tutor resumes macro-level sequencing and allows the learner to select the next topic or tutor. 

 

Figure 26: T-Tutor Session Mezzo Sequencing Loop 

Micro-adaptation takes place within a granule, where a learner may interact in multiple ways with T-

Tutor. For example, a practice granule might ask a question, evaluate a response, offer a hint, evaluate a 

second response, and offer remediation. If a learner wanders off topic, T-Tutor will respond with a 

conversational gambit that attempts to re-focus the conversation on the learning material. T-Tutor can 

also respond to queries about the meaning of terms and provide help when asked.  

The next section provides detail about using the components of GIFT to implement T-Tutor sessions.  
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GIFT Integration 

GIFT’s architecture is described in detail in these references (Goldberg & Cannon-Bowers, 2013; Nye, 

2013; Ragusa, Hoffman & Leonard, 2013), in other articles in the referenced workshop volume from the 

2013 AI in Education (AIED) conference, and in documentation from (GIFT Project, 2014). In this 

section, we list the components of GIFT used by T-Tutor, explain how data for T-Tutor are consumed by 

these components, and describe how the components of GIFT and the T-Tutor UI and Web Service 

interact with each other. 

As depicted in Figure 27, GIFT support files are generated from the export through the use of the Student 

Information Models for Integrated Learning Environment (SIMILE) Workbench during an authoring 

phase. The files required to inform adaptation within the GIFT portion of T-Tutor include the domain 

knowledge file (DKF), course file, and SIMILE IXS file. The TRADEM export is used to generate a 

course file (representing the topic structure in the expert model). The course file may be further refined 

using the GIFT Course Authoring Tool (CAT). The DKF and IXS files define rules, transitions, and 

tactics for T-Tutor mezzo-sequencing behavior, and this information may be edited and exported from 

SIMILE Workbench. After the automated T-Tutor data transformations are complete, the T-Tutor import 

contains the topic outline, prerequisites, and all of the granule content with mezzo- and micro-sequencing 

strategy and level-adaptation metadata.  

 

Figure 27: GIFT Authoring (as used by TRADEM) 

SIMILE Workbench: SIMILE Workbench is a client application that enables a user to define tutor states 

and reasoning logic and export these in a format understood by GIFT. SIMILE Workbench is used to 

generate the DKF and IXS file from the TRADEM export, i.e., to effect the transformation from the 

TRADEM export to the data required by T-Tutor. Generally, the same set of DKF and IXS rules can be 

used across multiple tutors since they serve to define mezzo-state transitions for instructional strategies, 

which we assume to be independent of the topic and domain. However, SIMILE Workbench can be used 

to create different rules for different topics or domains if needed.  

Domain Knowledge File: The DKF is an XML file that includes data used by the Domain and 

Pedagogical modules in GIFT. The data in the DKF include all of the information needed to execute a 

single tutor, including possible states, rules, and tactics that determine which pedagogical actions are 
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triggered by changes in learner state. This is related to pedagogical metadata encoded in the export 

produced by the TRADEM process and defines the mezzo-sequencing rules in a topic-independent 

manner. 

IXS File: The IXS (also known as the SIMILE knowledge base file) is the SIMILE runtime logic file, 

which also serves as the SIMILE Workbench project file. It contains objects, states, and reasoning logic 

(or rules) needed to detect state transitions and trigger the next action (or tactic) within GIFT. This file is 

generated or updated when a user saves a SIMILE Workbench project.  

GIFT CAT: The CAT is included in the GIFT suite of XML authoring tools and is used to validate and 

edit a domain structure in the course file. The tool is not modified for use by TRADEM. 

Course File: The GIFT course file represents the overarching sequence of topics within a tutor with 

integrated guidance to be presented to the learner. The TRADEM export process auto-generates the 

course file from its expert model, and the XML can be further edited using the CAT. The course file is 

used for macro-sequencing, but another architecture is possible in which the course file is not used and a 

mechanism such as SCORM is used for sequencing instead (Robson, Ray & Cai, 2013). 

Figure 28 shows how T-Tutor uses GIFT services during the execution of a tutor to direct mezzo-

sequencing. The following provides details for how TRADEM integrates with each component. 

 

Figure 28: GIFT runtime architecture (as used by TRADEM) 

Gateway Module: The Gateway module is the primary interface between GIFT and training applications, 

in this case, between GIFT and the T-Tutor Agent services. T-Tutor uses a Gateway Interop plugin to 

communicate with the GIFT Gateway module. The Gateway transports GIFT messages through an 

ActiveMQ™ message bus. This message bus is built into GIFT and distributes each message to the 

appropriate module. For TRADEM we developed a generic JSON message for the Gateway module that 

wraps JSON messages. This new message supports a data-driven approach to messaging that does not 

have to be re-programmed for each instance of a training application message – developers instead must 

define a JSON structure for each message payload, but that is the extent of the work that needs to be done.  

Domain Module: The Domain module selects concepts from the DKF based on the current learner state 

and an instructional strategy recommended by the Pedagogical module. In T-Tutor, the learner state 
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consists of topic, objective and granule completion and mastery data as well as the current stage in an 

instructional strategy. The Domain module adaptively selects instructional strategy stages while a learner 

sequences through a tutor and its topics. The instructional strategy stages are passed through the Gateway 

module to the T-Tutor Agent, which, in turn, launches the content into the learner’s T-Tutor UI. We note 

that in developing T-Tutor we were somewhat limited by the types of messages that GIFT could process. 

Originally, we had hoped to pass rich recommendation data that included multiple characteristics of 

granules. In practice, we had to use workarounds to encode this data in “tactics” recommended from the 

DKF. 

SIMILE: The SIMILE runtime engine is tightly integrated with the Domain module and assists with the 

tasks of interpreting the T-Tutor JSON messages and determining transitions and tactics for the learner’s 

next phase of instruction. SIMILE uses the IXS file to reason on state transitions. 

Pedagogical Module: The Pedagogical module recommends the next instructional strategy using the state 

transition rules represented in the DKF applied to the learner’s current state data. In the TRADEM-GIFT 

integration the “instructional strategy” is a stage within a strategy, e.g., the “gain attention” stage of 

Gagne’s nine events (Gagne, 1985) or the “recall” stage within the GIFT eM
2
AP strategy (Goldberg, 

2013).  

Learner Module: The Learner module within GIFT maintains learner state data. As indicated above, this 

is currently mastery and completion data, but we plan to include other types of interaction data gathered 

from the T-Tutor UI, and GIFT has the ability to add affect data gathered through sensors. 

LMS Module: The LMS module provides learners access to GIFT courses and works closely with the 

User module and Survey module to validate and collect learner information. After a tutor is imported into 

GIFT, it appears in the LMS course list. Since it is a requirement of the TRADEM project to integrate 

with a customer’s existing infrastructure, TRADEM does not solely rely on the GIFT LMS to launch a 

specific T-Tutor.  

Discussion 

We encountered several challenges in designing and developing the GIFT integration approach described 

in this paper, but the chief issue was how to divvy up responsibilities for sequencing and adaptation and, 

correspondingly, whether to architect T-Tutor as a module contained within GIFT or implement GIFT as 

a service contained within T-Tutor. The former would have been possible. We could have treated each 

topic and granule as a separate executable to be referenced in the GIFT Course File and DKF and  

launched by GIFT. Instead, we integrated GIFT into the web services framework used to run T-Tutor and 

used GIFT as a mezzo-adaptation engine. We believe this is the more flexible approach. As implemented, 

the T-Tutor Agent can sequence topics and granules based on grounded instructional strategies without 

using GIFT but can also can leverage GIFT’s features if GIFT is present. In the future, we expect that 

other GIFT tutors will use the T-Tutor Agent, whether or not it is used with a TRADEM-generated tutor.  
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Division of Adaptations 

In addition to being technically more flexible, the approach we chose embodies a basic design principle: 

 In using GIFT as an adaptation engine for a tutor, GIFT should be used for macro- and mezzo-

adaptations that apply to any form of tutor. The portion of the tutor that interacts directly with the 

learner should be responsible for retrieving content based on GIFT recommendations and for any 

micro-adaptations based on learner interactions. 

This design principle is reflected in T-Tutor and is hypothesized to be applicable in other contexts. It is 

significant because it separates the role of determining strategy (GIFT’s job) from providing an engaging, 

unique and effective tutoring experience (the tutor’s job). As pointed out in (Robson & Barr, 2013), the 

latter is an area where competition may lead to better tutoring systems, while the former is an area that 

can be standardized to lower the costs of production and barriers to adoption.  

Anticipated Improvements 

Both TRADEM and GIFT are ongoing projects, but the basic frameworks for each are established. 

Integration will continue as improvements are released. Currently, TRADEM effectively uses automation 

to identify topics and topic names, align content, and generate simple questions, and the edit tools allow a 

designer or SME to further modify and tag attributes as needed. The focus of ongoing TRADEM research 

is on improving the auto-generated expert model, improving the algorithms used to transform the 

TRADEM export to a T-Tutor, and on improved conversational tutor behavior. 

Design-based Research 

Consistent with design-based research (Amiel & Reeves, 2008; Barab & Squire, 2004; Hoadley, 2004), 

the key question raised by this paper is whether the design principle above is broadly applicable and how 

it should be modified. One way to explore this question is to apply the same design principle to multiple 

types of tutors. We have not used TRADEM to produce example-tracing (Aleven, Mclaren, Sewall et al., 

2009) or constraint-based (Mitrovic, Martin, Suraweera et al., 2009; Ohlsson & Mitrović, 2006) tutors, 

but the data required to construct the mastery-based outer loop (Vanlehn, 2006) of such tutors is present 

in TRADEM expert models, and we believe that the data required for the inner loops of such tutors can be 

similarly derived by using similar transformation techniques. Developing an example-tracing or con-

straint-based export would provide an opportunity to test and refine both the technical approach and 

design principle. 

Conclusion 

In this paper, we have described a process (the TRADEM process) that applies NLP and text mining to 

analyze didactic content and produce data for developing and populating dialogue-based intelligent 

tutoring systems called T-Tutors. Each T-Tutor has an adaptive front end that interacts with the learner 

through natural language and uses GIFT as an adaptation engine. GIFT recommends instructional 

strategies and T-Tutor translates these recommendations into action. We have described technical aspects 

of this integration and derived a general principle for how such systems should be built.  
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Our work has demonstrated that the TRADEM process and the proposed approach to developing ITS are 

feasible. Our work also suggests further investigating the use of GIFT as an adaptation engine for differ-

ent types of tutors and highlights the importance of GIFT’s capabilities to pass messages to externally 

running systems and agents. We recommend that these capabilities be expanded. Currently, GIFT selects 

strategies using fixed rules applied to changes in a pre-defined set of learner states. By passing learner 

model parameter values between GIFT and an external system, GIFT could be modified to recommend 

both strategies and interventions based on combinations of states and learner attributes.  
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Introduction 

Time costs for authoring content have traditionally been a hurdle for Intelligent Tutoring Systems (ITSs). 

This paper introduces a novel form-based authoring tool for rapidly developing natural language intelli-

gent tutoring dialogs and trialogs. This tool is designed to have a minimal learning curve and require no 

understanding of programming, formal logic, or rule-based systems. These tutoring scripts are based on 

the Shareable Knowledge Object (SKO) framework and the AutoTutor tutoring engine. Tutoring content 

is authored by instructors or content specialists in a step-by-step process through web-based forms, which 

are stored in cloud servers. These objects are processed to populate tutoring scripts that drive dynamic 

interactions with learners. Up to three trialogs can be authored to form a series (e.g., an introduction, main 

dialog, and exit dialog). These conversations can be either interactive tutoring sessions or vicarious 

dialogs (e.g., agents talking to each other). The SKO tutoring modules generated by this system can be 

delivered using AutoTutor Lite and AutoTutor Web services, which are integrated with recent versions of 

the GIFT framework. Challenges and opportunities for this authoring tool are discussed. 

Authoring tools for ITSs are an important topic for reducing the cost and expanding the applications for 

ITSs. Considering that estimates for ITS content development can range up to 200 hours of development 

for a single hour of instruction, rapid authoring tools are vital for scalability (Koedinger et al., 2004). 

Prior work on authoring tools has found that simplifying the authoring process can result in tenfold 

increases in the speed of developing an hour of new content (Koedinger et al., 2004; Heffernan et al., 

2006), though it could be argued that such tools do so at the expense of less powerful or less generalizable 

tutoring behavior. Reusability is a related issue: if the same content can be applied to multiple situations, 

then the ratio of hours of authoring to hours of instruction can be improved. This is particularly relevant 

for conceptual knowledge, where it may be important to emphasize the same skills or concepts across a 

variety of tasks for the learner to understand that they represent a general principle. So then, tutoring 

content could ideally be authored with different degrees of task-specificity: some ITS authoring may only 

be relevant to a specific problem, some might be relevant to all problems of one type, and some might 

even be relevant to all problems in a domain (e.g., basic numeracy for mathematics). 

The goal of the authoring tool described in this paper is to rapidly develop tutoring conversations for 

natural language ITS content. A natural language tutoring system differs from a traditional problem-based 

ITS, in that users express all or part of their input in either speech and/or free text input and because the 

tutoring system responds back using speech and/or free text. In some respects, these requirements make 

natural language tutoring more complex: the correctness of student input is often less clear-cut in a verbal 

statement. These limitations are not limited to ITSs, but are also shared by human tutors, who may not 

understand a student’s explanations or misconceptions (Graesser & Person, 1995).  
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On the other hand, these limitations have caused natural language tutors such as AutoTutor to focus on 

robust and fault-tolerant strategies for natural language understanding and feedback (Graesser et al., 

2012). These include applying multiple semantic analysis techniques, such as latent semantic analysis 

(LSA) (Landauer et al., 1998), pattern matching, and frequency-weighted content word overlap (Cai et al., 

2011). They also include discourse strategies such as trialogs, where the human talks with a computer 

tutor and a computer peer student (Millis et al., 2011). Trialogs enable interaction patterns where the 

computer student can react to potentially wrong answers by stating the misconception themselves, 

allowing the computer tutor to correct them. This pattern allows a human student’s misconception to be 

corrected, but does not require the tutor to explicitly correct them. In general, AutoTutor focuses on trying 

to help students explain the expectations (ideal answers) for a conceptual question and also tries to correct 

any misconceptions that they address (Graesser et al., 2005). Interventions such as hints (leading ques-

tions), prompts (fill-in-the-blank type questions), and assertions (providing some or all of the answer) are 

used to help the student cover the key concepts. 

Specializations for Authoring: Content vs. Logic 

Due to its origins in discourse theory, AutoTutor differentiates between speech acts (the functional 

purpose a piece of dialog) and the specific speech and/or text used when delivering the utterance. To a 

significant extent, this decouples the logic that drives pedagogy from the specific content associated with 

ideal answers, misconceptions, hints, or other discourse acts: the production rules that drive an AutoTutor 

script seldom (if ever) explicitly refer to specific text or student responses (Graesser et al., 2005). This 

decoupling offers a significant opportunity: the same content for a dialog script can be delivered using 

different pedagogical rules for interactively tutoring the student. 

Decoupling content authoring from logic and programming authoring lies at the heart of the authoring 

tool presented in this paper. This is an important division: as a general rule, experts in domain content are 

not experts in programming concepts (even simpler ones such as rule-based authoring). Since the reverse 

is also true (programmers are seldom experts in domain content), many authoring tools are only fully 

effective in the hands of interdisciplinary experts, such as specially trained graduate researchers. 

AutoTutor has an effective general-purpose tool called the AutoTutor Script Authoring Tools (ASAT), 

which allows a trained author to create a tutoring script in under an hour (Song, Hu, Olney & Graesser 

2004). However, both the ease of authoring and the reusability of the script depend on the author’s ability 

to conceptualize an effective rule set that drives tutoring: a novice might need dozens of rules where an 

expert might need only a handful. While authoring these rules does not require knowledge of a program-

ming language, it does involve programming reasoning and concepts. While even laymen (e.g., recent 

high school graduates) can learn to use the tool fairly quickly, ideal content authors are subject matter 

experts and teachers. The time of such authors is valuable and often highly constrained, making this type 

of learning curve unpalatable.  

The goal of this work was to develop a tool that allows an author to create natural language ITS content, 

without any knowledge of programming, to even at a conceptual level. A second AutoTutor authoring 

tool suite called AutoTutor Lite authoring tools, already allows basic authoring without programming 

knowledge (Hu et al., 2009). However, the AutoTutor Lite tool has a large number of nested menus and 
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features that increase the learning curve and make simple authoring tasks more difficult. The authoring 

tools described here simplify the process further, building a step-by-step set of forms to guide the author 

through creating the tutoring content.  

In the following sections, we describe a form-based authoring tool for natural language tutoring trialogs. 

This tool authors the content for the tutoring trialog only, using a simple step-by-step authoring process. 

This tutoring content is then combined with a set of production rules from an ASAT template, which 

determine how this content is interactively tutored. This research builds on work with ASAT, which has 

been looking into generic templates that drive different pedagogical strategies. Research on such tem-

plates is still in its early phases. However, even a single effective and generic template can be a powerful 

tool. As such, this splits the authoring process into separate phases: one for experts in subject matter and 

the other for experts in rule-based pedagogical strategies. It is hoped that this approach should accelerate 

the authoring process by matching tool specializations to user specializations. 

Form-based Authoring Tool Design 

The intended author for the new form-based authoring tool has high domain knowledge and moderate 

pedagogical knowledge, and requires no knowledge of programming concepts. Murray (2003) lists six 

main design tradeoffs for tutoring: breadth, depth, learning curve, productivity, fidelity, and cost. This 

research focuses on optimizing for the breadth (variety of topics), learning curve, productivity, and cost. 

To keep the learning curve at a minimum, a sequential form-based approach is followed. This approach 

has the advantage that a new author should be able to easily populate new content and learn the basic 

functionality. The tool is also designed for fast input (e.g., limited mouse clicks and the ability to quickly 

enter many pieces of content). This should allow fast production of content. With that said, being a series 

of forms, it is not optimized as much for maintenance and viewing of the tutoring content. As a dialog-

based authoring tool, a wide variety of topics can be tutored, translating to high breadth of coverage. 

This tool does not focus on optimizing fidelity, depth, or ITS modules other than domain content. Fidelity 

is hard to qualify in this context: while the natural language tutoring is intended to emulate real human-to-

human tutoring, conversational tutoring typically talks about topics rather than emulating them (as 

opposed to a simulation, for example). However, in domains such as reading comprehension, understand-

ing natural language is also a central part of the domain. This form-based research also does not focus on 

the depth of tutoring, such as by allowing arbitrarily complex knowledge structures to drive conversa-

tions. AutoTutor shows strong gains for deep learning and concepts (Graesser et al., 2005), but this 

authoring tool does not address complex authoring scenarios, which are left to the ASAT tool. Instead, the 

knowledge representation for the form-based tool is one-size-fits-all, with the understanding that different 

pedagogical rule sets may process it quite differently. Finally, it is notable that the form-based authoring 

tool only provides functionality for authoring domain content. Pedagogical strategies, student models, and 

communication through user interfaces and learning environments are not authored using this tool. This 

research assumes that pedagogical strategies are handled by ASAT authoring and that other modules 

(student model and communication) are developed primarily by programmers. 
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Content data model 

The data model for this tutoring content is based around AutoTutor’s discourse moves, which is a set of 

speech acts that tutors perform (Graesser et al., 2005). The core discourse moves include 1) Main Ques-

tions, which are a question that starts off the dialog, focused on a particular topic or goal; 2) Pumps, 

which ask the student to provide more information; 3) Hints, which are leading questions or statements 

that attempt to direct the student to answer part of the main question; 4) Prompts, which lead the student 

to express a missing word from an important idea for the main question (e.g., “Is it moving up or 

down?”); 5) Short Feedback, which signals about the quality of the student’s last statement; 6) Correc-

tions, which correct a misconception or incorrect statement by the learner; 7) Assertions, which present an 

important idea within the problem or the answer to the problem; 8) Answers, which are responses to 

questions about a concept; and 9) Summaries, which present a full answer to the main question. In 

addition to these, a full AutoTutor script includes information about expected student responses (e.g., 

good answers vs. bad answers) that are associated with certain conversational states. 

To keep the authoring process streamlined, some constraints and assumptions were designed into the 

authoring tool. First, not all speech acts are authored using this tool. The form-based tool focuses exclu-

sively on main questions, hints, prompts, corrections, assertions, and summaries. The remaining speech 

acts were omitted because they tend to be more general and reusable. Pumps, such as “Can you say a little 

more about that?”, can be designed in a domain-agnostic fashion and included as part of a template. 

Likewise, short feedback can be drawn from a pool of general statements (e.g., “Great!”). AutoTutor 

student question and answers were not included in the tool because students seldom ask questions and, 

when questions are asked, they could be touch on a wide variety of concepts that are not the main focus of 

the current session. As such, these may also be better suited for being handled by a domain-level template 

rather than ad-hoc for each conversation. 

This tool allows the author to create the six types of speech acts noted. For example, assume that a speech 

act for a main question is created. To deliver this question, the system needs sufficient information to 

know what to say (the text of the question), who should say the question (e.g., the computer tutor vs. 

computer student), and also some expected responses to help evaluate human input (e.g., good and bad 

answers). Notably, this tool, unlike ASAT, does not distinguish between authoring the agents’ speech acts 

and the expected human student responses. Instead, the agents’ speech acts are also used to populate data 

about expected human responses (e.g., good answers, bad answers, misconceptions, etc.). While this adds 

extra burden on the semantic analysis, it also reduces the number of authored fields by up to half. 

Two types of conversations can be authored using the tool: vicarious and tutoring. Figure 1 shows a high-

level view of how each type of content is authored as part of larger content objects. To note, this is not a 

representation of how the data is stored or used by AutoTutor, but is a conceptual grouping used to design 

the tool. Vicarious conversations (Figure 1, left) do not react dynamically to the human student, and 

typically shows a computer tutor tutoring a computer student (Craig et al., 2006). While the human can be 

addressed during this type of tutoring (e.g., “Do you think he’s right?”), the human response does not 

impact the flow of the conversation. As such, vicarious tutoring is also sometimes called information 

delivery or a “rigid” pack. Vicarious tutoring is particularly helpful for low-knowledge learners. 
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Fig 1. A high-level view of the content model for the form-based authoring tool that shows vicarious conversa-

tions on the far left and tutoring conversations on the right. 

On the converse, Tutoring conversations (Figure 1, right) are determined by the content of human 

responses and require the full set of speech acts noted previously. As shown in this figure, the high-level 

components are the main questions, expectations, misconceptions, and summaries. Main questions are 

authored as role-based statements: who says them and what they say. This allows different levels of 

formality (e.g., computer tutor vs. computer student) and emphasis. Summaries are the full, complete 

answer to the question. These consist of one or more main ideas, which are used to develop the expecta-

tions. Expectations are authored by creating only their answers (good and bad), hints, keywords, and 

prompts. Misconceptions are constrained even further and include only an assertion that would indicate 

that misconception and corrections, in the form of a role-based statement to clarify the misunderstanding. 

In the AutoTutor data formats, AutoTutor scripts represent expectations and misconceptions using the 

same data structure, but they are authored quite differently in this tool. This simplification was done for 

pedagogical reasons, since encouraging students to explain their misconceptions can sometimes reinforce 

those misconceptions. While experienced authors can navigate such nuances, this level of authoring 

complexity would not be in line with a minimal learning-curve. 

Form-based authoring process 

Dialog creation starts with the SKO Wizard Panel, shown in Figure 2. SKOs are containers for tutoring 

content and web service information, which are stored in cloud-based storage. The author first determines 

the type of dialog they want to create, and the system will display a border on the author’s selection. The 

system will create a dialog group object in a cloud-based storage and associate this group with a unique 

identifier. Each individual dialog object in this group is also associated with a unique id. When the edit 
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button is clicked, the author will begin adding and editing content that is stored inside the dialog object 

that is currently highlighted in the wizard. 

 

Fig 2. The SKO Wizard Panel is used to author and edit up to three related dialogs that work as a group  

(e.g., Intro, Main, Closing) and associate them with a concept. 

Authoring a dialog occurs through step-by-step forms. Two types of conversations are possible: vicarious 

or tutoring. The type of dialog is selected using a panel containing a simple drop-down (not shown). The 

type of dialog selected determines the next forms that are displayed. Vicarious dialogs are very simple to 

author, but do not take advantage of AutoTutor’s intelligent, interactive tutoring. All authoring for a 

vicarious dialog is performed in a single form, after which the author is returned to the SKO Wizard 

Panel. 

Authoring tutoring conversations is more complicated and requires a number of steps. The first step is to 

choose a main question to start the overall dialog (Figure 3). Multiple ways of asking this question may 

be created, which can be helpful if the learner does not understand the question initially and the system 

needs to restate it. Next, the main ideas contained in an ideal response to that question are authored. These 

main ideas are each an ideal answer for an AutoTutor expectation (Figure 4). In addition to entering a 

main idea, the author can associate specific keywords with that main idea. These keywords must be stated 

by the learner to fully answer the main question. When the author clicks next an expectation will be 

generated, and contents of later pages (good/bad answers, hints, and prompts) will be stored as sub-

components of the current expectation. Once an expectation is filled out, the form repeats each step for 

the next expectation, until all expectations are completed for the main question. 
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Fig 3. The author writes one or more ways to say the main question that will drive the conversation. 

 

Fig. 4. Main ideas are each a distinct part of an ideal summary to the main question. 

After this page, there are two important components of dialog we must create: hints and prompts  

(Figures 5 and 6, respectively). When the author types a hint in the top-most entry box and clicks enter, a 

hint object is generated. Hints are leading questions that try to help the learner fully answer the main idea 

for the current expectation. For each hint, the author can input multiple good or bad answers. The good 

answers are used to compare against the learner’s response to the hint. These answers are also used by the 

computer tutor and computer student, such as the computer student proposing a wrong answer and the 

computer tutor correcting them. The specific logic driving these interactions depends on the ASAT 

template rules. Next, the author creates prompts for the dialog. Prompts help the user cover a specific 
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keyword by asking them a specific question to help elicit it. The author types in a prompt and hits enter. 

Each prompt is shown in the list below, where the author can select a keyword from the dropdown to its 

right. This set of keywords is populated from the keywords entered in the Main Ideas panel (see Figure 4). 

On this page, the author can also open the Keywords control to edit this set of keywords. 

 

Fig 5. The author creates hints that help the learner cover the expectation’s main idea. 

 

Fig 6. The author writes prompts that help the learner cover keywords for a main idea. 
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After finishing the prompts, the author has completed an expectation. If additional expectations have 

already been authored, the next expectation will be loaded for editing. If this was the last expectation, the 

author will be asked if they wish to add an additional expectation (which would also start at the Main 

Questions panel). If they do not wish to add another expectation, the Misconceptions Panel will open. In 

this authoring tool, a misconception is authored as a single wrong answer that is associated with one or 

more correction responses. This panel is similar to the hints panel, in that the author first writes a miscon-

ception (e.g., “Perpendicular lines never intersect.”). After pressing enter, a group is created in the 

authoring tool that allows them to author corrections, similarly to how they can provide multiple answers 

to a hint. However, unlike hints, misconceptions do not have bad answers. Instead, the author can write 

different ways the computer tutor or computer student would correct this misconception. 

After misconception authoring is completed, the author will be presented with an Outline Panel with a 

summary of the tutoring content (the first main question, the list of main ideas, etc.). From the Outline 

Panel, the author will be able to return to specific authoring steps to edit content. This final panel is still 

under development. Once the Outline Panel is finished, it will be available for viewing at all steps of the 

authoring process, allowing the author to easily skip to editing various components of the tutoring 

content. A second panel under development is the Media Panel, which will allow associating pictures and 

videos with specific statements by the computer agents. After the author has reached the outline panel, the 

Next button will return them to the SKO Wizard Panel. 

Challenges and Future Directions 

This tool is approaching its first prototype and associated usability testing. A significant challenge for this 

tool has been the issue of hierarchical object creation and management across multiple HTML pages. 

While the entire content authored for a tutoring script is stored as a single object, its authoring is distrib-

uted across an arbitrary number of HTML pages. At present, the entire object is saved after editing each 

part. However, this has significant drawbacks for a cloud-based tool, since multiple authors might wish to 

work on different parts of the same dialog at one time and could overwrite each other’s changes. Version 

control systems and partial-update patterns are being considered as possible solutions to this problem. A 

related difficulty is that this tool does not allow viewing or editing certain tutoring content that is accessi-

ble in a tool such as ASAT. As such, translation between the tools must be lossy (e.g., the form-based tool 

clears fields that it cannot see) or partly opaque (e.g., the form-based tool cannot see certain changes). 

Expanding the number of templates is another challenge. At present, a single template set is combined 

with the authoring tool content that is produced. In the future, more templates will be added so that a 

wider variety of pedagogical strategies can be employed. Significant debate exists about the balance of 

allowing authors to specify the templates employed, as opposed to dynamically triggering different 

pedagogical rule sets using a student model or other features. It is expected that authors will be able to 

select templates, with the understanding that in some contexts these selections may be used as sugges-

tions, rather than followed consistently. For example, swapping out templates dynamically might be used 

to help evaluate their effectiveness for different learners, such as Mostow and Beck’s (2006) recommen-

dation to randomize interventions to support effective data mining. 
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Finally, once this tool is tested and mature, a version is expected to help support AutoTutor script devel-

opment required by the Generalized Intelligent Framework for Tutoring (GIFT) system (Sottilare et al., 

2012). Recent releases of GIFT have integrated elements of the AutoTutor framework for delivering 

conversational tutoring, which must currently be authored using ASAT or the AutoTutor Lite web-based 

authoring tool set (Hu et al., 2009). This form-based tool should hopefully offer a third method that 

allows rapid authoring with a minimal learning curve. With testing and refinement, this tool should be a 

useful piece of the AutoTutor authoring process. Particularly when considering the wide range of poten-

tial authors, this approach to form-based authoring seems particularly relevant to a system such as GIFT, 

as it can be applied to a wide variety of topics and author experience levels.  

Supporting the needs of GIFT authors will have challenges, however. First, unlike traditional ASAT 

scripts, form-based content must be combined with an ASAT rule template. This requires automated pre-

processing, so scripts must either be pre-processed before storage (i.e., generate and store a full ASAT 

script) or a specialized storage service must do this processing on the fly. It is unclear which approach 

would be most appropriate for GIFT’s storage needs. Second, pedagogical strategies rely on ASAT rule 

templates. As such, to edit or create new strategies, authors still need to learn the ASAT authoring tool. 

While a visual, flow-chart style of authoring ASAT rules has recently started (ASAT-V), creating 

templates currently requires authoring production rules. ASAT is also a desktop application, adding 

additional installation dependencies. Finally, the form-based tool needs requires scaffolds to help design 

scripts that process human input effectively. For example, ASAT uses regular expressions as a more 

powerful alternative to keywords in the script content. While it is possible for authors to enter a regular 

expression instead of a keyword into the form-based tool, it is unlikely that a non-technical author will 

understand how to do this. Additional interface controls may be required to help authors build common 

types of regular expressions that are necessary to accurately understand human natural language input. 

Initial testing without regular expressions has found that the accuracy of parsing human input is some-

times suboptimal. AutoTutor’s use of LSA (Landauer et al., 1998) also has authoring implications, since 

the answers to main questions, expectations, and hints should ideally be aligned semantically (i.e., 

answers to hints help cover the main ideas). If a script does not do this, the learner could answer all the 

hints correctly but still be treated like they did not fully answer the main question. Additional design will 

need to make it easier to diagnose problems with scripts whose semantics match poorly, from the stand-

point of the LSA space. Despite the challenges to refine this tool for a GIFT’s wider user base, we feel 

believe that a form-based tool should make authoring simpler and more accessible. Hopefully, with 

additional development, we can achieve that goal. 
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Introduction 

While significant research has been done on teams and teaming (Salas, et al. 2004), less work has been 

done to characterize teams and team tasks in terms of the feasibility for them to benefit from intelligent 

tutoring. This theoretical paper begins to describe how the parameters of team structures addressed may 

affect the ways in which a team can accommodate external guidance. In addition, parameters of team 

tasks and resulting team tutors are also described. Examples of both team structures and team tasks are 

provided so that the resulting theoretical framework offers guidance for design decisions during the 

construction of intelligent tutoring systems (ITSs) for teams and the Generalized Intelligent Framework 

for Tutoring’s (GIFT) supporting team architecture. 

ITSs have been successful at improving performance in a wide variety of domains ranging from academic 

topics such as math (e.g., Koedinger, Anderson, Hadley & Mark, 1997) to work-based tasks such as 

management of power plants (Faria, Silva, Vale & Marques, 2009). However, there have been few ITSs 

designed for educating or training teams (Sottilare, Holden, Brawner & Goldberg, 2011). Despite much 

research on teaming since the 1970s, team performance is widely variable and difficult to predict (Sims & 

Salas, 2007), and there is a significant need for team-based ITSs. A taxonomy of team tutoring is present-

ed (see Figure 29 for top level key elements). This paper describes three taxonomies: teams, team tasks, 

and relevant tutoring factors. The taxonomies are based on reviewing the teaming literature with a 

particular focus on the characteristics of each that would influence the design of a team-based intelligent 

tutoring system. This work leverages the extensive literature review of teaming by Burke et al. (in 

progress) as well as recent work that has sought to identify those major factors which impact team 

performance Salas, Shuffler, Thayer, Bedwell & Lazzara (in press).  

 

Figure 29. The three key elements of a team tutoring taxonomy. 

The taxonomies provided below are designed to help guide the design of software architecture to support 

team ITSs within GIFT. GIFT is a powerful software architecture designed to support a wide spectrum of 

intelligent tutoring. It supports the traditional components of most ITSs: the learner model, the domain 

model, the pedagogical model, and the learner interface, but does so generically (Sottilare, Brawner, 

Goldberg & Holden, 2012; Sottilare, Graesser, Hu & Holden, 2013). Thus, a multitude of learners might 

manipulate a wide range of user interfaces as they engage with various domains while being taught using 
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a variety of pedagogies. However, the GIFT architecture does not naturally support teams. Team compo-

nents are necessary if GIFT is to support team tutoring, but they are not present in the current release. In 

their 2011 paper, Sottilare et al., the creators of GIFT, describe the challenges of creating team tutors in 

detail.  

Team Tutor Taxonomy 

The three key elements of the taxonomy are described below, followed by examples and implications for 

the GIFT architecture. The first key element in the taxonomy is based on team characteristics. This 

element of the taxonomy notes the factors that can vary within teams that would have an impact on the 

design of a team tutor. The second key element in the taxonomy is based on the characteristics of team 

tasks. The final key element in the taxonomy focuses on team tutors itself, and the potential features that 

must be considered.  

Teams 

Characteristics of teams and team members that are important to consider when designing a team tutor 

can be seen in the taxonomy in Figure 2. Parameters of team structures such as leadership (e.g., vertical, 

shared, mixed, leaderless, and confederate), organization, communication styles, and location (e.g., co-

located or distributed, asynchronous or not) affect the ways in which a team can accommodate external 

guidance such as tutoring feedback. The leadership structure of a group varies. For instance, there may be 

a shared responsibility, or the team may use a leaderless structure in which members are accountable 

primarily for their own roles and/or responsibilities. The organization of a team can dictate collaboration 

as well. Communication styles can determine how groups coordinate responsibility and facilitate collabo-

ration, which eventually affects performance.  

 

Figure 30. Characteristics of teams and team member characteristics. 
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When assessing teams, it is also important to consider the team’s purpose as well as the members’ roles 

(Salas et al. 2004, Sottilare et al. 2011). Different teams have unique rosters including special roles as 

well as varying levels of expertise. For example, when comparing an infantry squad with a combat 

engineer squad, both consist of team members who have a contribution appropriate to the squad’s purpose 

or overall goals. An infantry squad will be better trained to handle a fire fight while the combat engineers 

would be the preferred choice to construct bridging for heavy vehicles over rough terrain. Team skills are 

parameters of teams that further support the team’s purpose. Differing from roles, skill division refers to 

the distribution of competencies possessed by team members that they can apply towards goal comple-

tion. These competencies may relate to the task or to teaming itself. Within teams there can also be 

varying levels of familiarity. How long the team members have been working together can influence a 

team’s success. Finally, within a team there may exist a learning culture in which individuals contribute 

their knowledge to other members of the team as the task requires, which ultimately makes the team more 

effective. 

In the creation of a team intelligent tutor, it is critical to consider these team variables. A tutor designed 

for highly vertical leadership structure, for example, would likely offer differentiated feedback for 

members at different levels. For a leaderless team, the feedback would have to be structured more for 

peers. In general, the timing, structure, and level at which feedback is given (to the individual vs. the 

whole team) may differ based on the characteristics described in the taxonomy as well as on the team’s 

current developmental trajectory.  

When appreciate the implications for the GIFT architecture, consider the above team taxonomy with the 

only the elements that is relevant to individual tutors: the skills. Structure is not relevant without the other 

team members, and the subcomponents of skills are also not relevant (e.g., level of familiarity). This 

significant difference in the complexity of the taxonomy means that GIFT must be able to maintain the 

state of many more elements of a training mission: skill state for each team member, skill state of the 

team as a unit, and all the parameters of the team structure. This more complex set of information can be 

then used to make decisions such as giving feedback to individuals vs. to the whole team.  

Tasks  

The taxonomy of task characteristics in Figure 31 is again an initial attempt to establish a checklist of key 

factors that must be considered in the design of a team-based ITS. Tasks are the activities teams perform. 

In the context of this research, the tasks would be performed within a training environment with the 

purpose of providing a detailed assessment. The task at hand has a strong influence on how an intelligent 

tutor is designed, and with team tasks, the numerous roles and relationships between members’ tasks can 

make the tutor design much more complex than the sum of analogous tutors for individuals. Factors that 

influence tasks as a whole are solutions, task interdependence, routine, complexity, time constraints, 

information exchange, environmental fidelity and task type (Figure 2). Solutions refers to how tasks are 

negotiated and solved. There may be a single solution, multiple solutions, or the task may be open-ended, 

with no particular solution planned. Training tasks focused on reaching a specific outcome typically have 

a small number of solutions, while training focused on a process is typically more open-ended. In some 

tasks designed to teach compromise and negotiation, the scenario may be specifically designed so that 

there is no solution. 
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The interdependence of tasks is also a key factor. Task interdependence consists of four types: pooled, 

sequential, reciprocal, and team interdependence (Saavedra, Earley & VanDyne, 1993). Pooled interde-

pendence occurs when members of a group complete similar tasks mostly independently, such as a team 

of customer service support agents. With sequential interdependence, members all perform separate but 

related tasks in a specific order to accomplish a greater goal, e.g., in an assembly line. Members’ tasks 

depend on the work of previous members. With reciprocal interdependence, members’ tasks mutually 

depend on each other’s work, and the order is flexible, e.g., the writing of a paper between co-authors. 

Lastly, team interdependence is the most dynamic structure, in which each member’s tasks and the 

particular sequence of work are unspecified and are decided within the team.  

 

Figure 31. Characteristics of team tasks.  

Furthermore, it is important to characterize the variability of the routine and the task complexity, because 

both affect the learning curve and overall performance. Tasks become less strenuous or challenging as 

they become familiar to the learner. For instance, in the process of two people stocking the back room of 

a coffee shop, the members may at first become overwhelmed with the complexity of the task and 

figuring out how to work together, but over time the process becomes less complex as the members build 

a shared mental model of the equipment, the task, and their team members, which allows them to effi-

ciently coordinate. The cognitive load is reduced as the task becomes familiar. A tutor for a team must be 

able to accommodate these team learning curves.  

Time pressure typically occurs as a result of a set time constraint, although time constraints do not always 

lead to time pressure (Ordonez & Benson, 1997). It can also be caused by a factor of increased workload. 

The amount of time pressure felt by participants in an exercise may positively or negatively affect the 

team’s performance, and can at times be an effective motivator (Andrews & Farris, 1972; Stewart, Lam, 

Betson, Wong & Wong, 1999). Information exchange within the current context is related to team 
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communication, but refers to the forms of information that are generated by the systems used within the 

task, the user interfaces used by the team members, and how easily the information may be shared. 

Environmental fidelity, in a tutor design context, is the degree to which the team task is conducted in the 

actual context of practice (e.g., the “field”) as opposed to within a lab or simulation. The necessary degree 

of fidelity varies according to the skills being trained. The feedback given to a team and its members by a 

team ITS might not differ in the field vs. in the lab, but the thresholds for feedback activation might vary, 

since team members in the field might be experiencing a higher levels of stress.  

Task types include, but are not limited to, managing, advising, negotiating, performing a service, problem 

solving, and psychomotor action (Wildman, Thayer, Rosen, Salas, Mathieu & Rayne, 2012). Managing 

tasks involves directing, supervising, or overseeing the work of others in an authoritative role for the 

specific purpose of achieving a goal despite given conditions. Meanwhile, advising refers to providing 

means to solve a problem remotely via professional support through expert assistance in a consultative 

role where the advisor does not have managerial. A service task is a social interaction in which another 

individual or group. Negotiating involves coming to a compromise or successfully overcoming differ-

ences. Psychomotor action is the operation of a product, machine, or object. Problem solving can refer to 

solving ill-defined or novel problems.  

One implication of this task taxonomy for GIFT is the needed support for a wide variety of methods of 

monitoring individual and team performance—not only the typical individual performance with a system 

but also the communications between team members, and the actions of the team as well as actions of 

individuals. Also, whenever a team is at work on a task, there is the metatask of performing well as a 

team. GIFT will need to support these parallel tasks simultaneously. For example, it’s possible that a task 

is being accomplished well, but the team members doing it don’t trust each other and are not collaborating 

well. GIFT will need to be able to tutor on both the task work and the teamwork.  

Team Tutor Structure 

Once the team structure is defined and the task is chosen, the team tutor can be initiated. However, there 

remain a number of choices in tutor design. This section describes a taxonomy (Figure 32) of the varia-

bles that characterize team tutors in particular. Tutors are broken down into categories consisting of 

feedback, pedagogy, adaptivity, environmental context, and evaluation. The subcategories of these 

variables are not intended to be exhaustive; there are additional options under each, but these categories 

offer a list of decisions that must be made during tutor design.  
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Figure 32. Characteristics of team tutors. 

The pedagogical decision includes options such as apprenticeship scaffolding, in which the tutor guides 

the learner to mastery in a series of successive approximations with less and less scaffolding. A Socratic 

dialogue, on the other hand, would promote reflection by the learner in a series of questions and answers. 

Both of these are common approaches in existing one-on-one ITSs, but are complicated when tutoring a 

team. Performing Socratic dialogue at a team level requires interrupting the team (e.g., event-based 

training (Fowlkes, Dwyer, Oser & Salas, 1998)), waiting until the task is complete and doing an after 

action review (AAR), or offering the team advice when the team decides on its own to pause and consult 

the tutor.  

Feedback is also an important element of tutoring. Individuals are motivated upon receiving feedback as it 

informs them of their progress and directing the learner towards a desired behavior. In terms of timing, 

real-time feedback provides the learner instruction without delay and avoids the development of inaccu-

rate cognitive structures, behaviors, and attitudes that could be difficult to mitigate later. A primary 

challenge with this approach is that it may interrupt action or team communication, adding to members’ 

cognitive load. Thus, after AARs are favorable when evaluating learner’s progress through the entire task 

scenario. The tutor may observe the team’s performance without interfering with the task. Feedback 

modality can also vary, and must be considered based on the cognitive loading of the tasks. If the learners 

have visual tasks, for example, feedback should probably arrive in a different modality such as audio. If 

team members are moving during the task, strong vibrotactile feedback might be useful. See the compan-

ion paper in this volume (Walton et al., 2014) for a further look into feedback for team tutoring. 
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The adaptability of the tutor is also a design decision. A simple tutor will contain mainly a set of static 

feedback responses that are triggered by behavioral predicate rules: If the learner does X, display feed-

back Y. A more complex tutor will make the conditional of that rule more complex, changing the feed-

back depending on the learner’s history and accumulated skills, e.g., “If the learner does X, and has low 

skill ratings on skills A, B, or C, then display feedback Y.” A yet more complex adaptive approach is 

changing the consequent of the rule, changing the feedback itself based on learner behavior or conditions 

within the training environment, e.g., “If the learner does X, and has a history of other actions A, B, C, 

then give feedback Y(A, B, C, X).” Finally, the tutor may also adapt to overall team behaviors, which 

could become inputs to both the conditional and the consequent, e.g., “If 70% of team members do A and 

B, then give the entire team feedback Y(A, B).” The balance between individual vs. team feedback 

depends on many of the characteristics described above. DeShon, Kozlowski, Schmidt, Milner, and 

Wiechmann (2004) offer a brief overview of this issue.  

The tutor may vary based on environmental context. In the field, the tutor must consider a broader variety 

of states within the training scenarios; it may not have specific feedback for all possible actions. In the 

lab, or an embedded context (a simulated training scenario is embedded within a more realistic setting in 

the field), the tutor authors have more control over the scenario and its possible states, and can build a 

more exhaustive tutor.  

Finally, the evaluation approach of a team tutor may vary significantly based on the task and the learning 

goals. However, the mechanics of the evaluation affect the design of the tutor. For example, if perfor-

mance evaluation is based on direct, accurately measurable actions by learners, the evaluation is simpler 

than if the learner’s performance must be inferred from a variety of indirect cues, such as biometrics.  

The implications for GIFT are significant. Most notably, GIFT must be able to consult multiple individual 

learner models and a team learning model when choosing its next pedagogical action. Also, GIFT must be 

able to support the increased complexity of scoring rules that 1) take multiple individuals’ states into 

account, and 2) take team roles into account, e.g., “If the pilot-learner has done X and said Y to the co-

pilot-learner, but not said Z to the crew-learners, and the co-pilot-learner has done A but not B, then give 

feedback F1 to the pilot-learner, F2 to the co-pilot-learner, and F3 to all learners.” 

Examples 

Advanced Embedded Training System 

An example of a team tutoring in practice is the Advanced Embedded Training System (AETS). AETS is 

an ITS focused on improving training and reducing manpower usage within shipboard simulation training 

(Zachary et al., 1999). While effective, it does not replace the role of a human instructor, but rather makes 

the workload lighter for an instructor through the use of multiple feedback components. The AETS 

focuses primarily on the Air Defense Team, which is considered one of the most important groups within 

a ship’s Combat Information Center: that team focuses on representations of airborne objects around the 

ship and differentiates threats from friendly entities. 
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AETS touches on several points contained within the taxonomies. The use of an experienced team with a 

distributed skillset is identified in the team taxonomy. There is a shared responsibility as each member 

plays their role on the team, which is co-located in a real-world environment setting. The apprenticeship 

pedagogical style is used, since the team is monitored by a human instructor who uses a defined problem-

solving method. Due to this intensity of the work task, real-time feedback was a detriment to task atten-

tion and AAR was chosen.  

Jigsaw II 

While not an ITS, Jigsaw II is a team learning technique that heightens a student’s sense of responsibility 

for learning by making each team member an expert for a particular portion of an instructional unit 

(Slavin, 1978). In using that sense of responsibility, the concept of team maintenance is applied to this 

activity. Each student is responsible for mastering a segment, and then teaching that segment to the rest of 

their team.  

The activity begins when each student is assigned a chapter to read and given what is called an “expert 

sheet” with necessary benchmarks to meet. This can be seen as role definition within our taxonomy of 

teams. Once the material is reviewed, member from various teams who studied the same portion meet to 

compare notes on their topics for a period of 30 minutes. After this session, each expert returns to their 

respective teams and then teaches their subject while learning their compatriots’ designated subjects. 

Finally, the team takes a quiz on all of the subjects. This is a form of evaluation, with the team score as a 

form of AAR. A key feature of this task is reciprocal interdependence (see task taxonomy) as each 

member depends on his or her teammates to provide the information needed to succeed. 

Hidden Profile Task 

This classic well-studied problem-solving task (Lu, Yuan & McLeod, 2012; Stasser & Titus, 1985) gives 

a small group the role of a hiring committee and distributes information about candidates to each member. 

However, the information varies by team member and is designed to mislead each team member about the 

best candidate. Only by pooling their information can the group make the best decision as a team. The 

leadership structure (see team taxonomy) may vary, being leaderless in some groups or with a specifically 

defined group leader in others. Task actions are mainly discussion, though they are based on a number of 

written documents. It can be easily done with co-located or distributed teams. An effective team is able to 

share all needed information with each other, and this is typically difficult (see communication in team 

taxonomy). 

Small Group Survival Scenario 

This classic small group problem-solving task, typically based on variations of the NASA Moon Survival 

scenario (Hall, Mouton & Blake, 1963), the Winter Survival Scenario (Johnson & Johnson, 1975), assigns 

the challenge of planning for survival by prioritizing the importance of 20–30 items. Task actions are 

mainly discussion, and therefore can be easily done with co-located or distributed teams. An effective 

team is able to elicit ideas from all members and come to consensus on a plan. To measure individual 

performance, the individual’s contribution is assessed. This can be done by recording the number of ideas 

initiated by an individual as well as affirmation of teammates. In this task, there is a correct solution, 
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though the process is also key to the learning. For the session to be an effective learning experience, 

participants must reflect on their behaviors, so a Socratic pedagogy, accompanied by video or audio 

replays of what happened, is effective.  

Conclusion  

These team, task, and team tutor taxonomies can be used to identify the variables that must be considered 

when designing ITSs for teams. Similarly, they can also be used to guide functional requirements for 

software like GIFT, so that it may support a large variety of team tutoring experiences. Identification of 

the key elements in a team tutor can be used to inform the GIFT development roadmap. The biggest 

impact is that GIFT should be able to consult multiple learner models when choosing its next pedagogical 

action. For users of GIFT, this addition will translate to an increase in the expressiveness of the tutor. In 

addition, our taxonomies may be used individually to compare other tutors by placing their characteristics 

within the taxonomies. Future work will include the expansion of these taxonomies and validation of 

them through the development of actual team tutors.  
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Introduction 

This paper discusses considerations relevant to the design of team feedback in intelligent tutoring systems 

(ITSs). While team tutoring is a goal for the Generalized Intelligent Framework for Tutoring (GIFT), 

further research must be done to explore the focus, modalities, and timing of feedback for teams. Alt-

hough there have been a number of studies on feedback, there are a limited number of studies on feedback 

for teams. This theoretical paper leverages previous research on ITSs, training, individual feedback, and 

teamwork models to inform appropriate decisions about the most effective feedback mechanisms for 

teams. Finally, the implications of team feedback on the design of GIFT are discussed. 

Teams have the ability to achieve goals that are unobtainable by individuals alone. It is important to 

implement effective training for teams to support performance effectiveness. An important element of 

training is feedback. Feedback has the function of guiding or motivating individuals based on their past 

performance. The purpose of guiding feedback is to direct an individual to a desired behavior. The 

purpose of motivational feedback is to motivate the individual by mentioning future rewards (Ilgen, 

Fisher & Taylor, 1979). Although there have been a number of studies on feedback, there are a limited 

number of studies on feedback for teams. A common theme among these studies is determining whether 

feedback should be given at an individual or team level (Tindale, 1989). Some studies for teams suggest 

that team performance is influenced by feedback on an individual level (Berkowitz & Levy, 1956) and 

some studies suggest that groups outperform individuals when feedback is given to the entire team after 

each decision is made (Tindale, 1989). The purpose of the current paper is to characterize the range of 

modalities of feedback, timing of feedback, focus level of feedback, and who should receive feedback 

(i.e., individual vs. feedback) for teams to assist in the design of feedback for ITSs for teams. Finally, the 

implications of team feedback on the design of GIFT is discussed. 

Related Work and Implications for Team Feedback 

There are several aspects that are relevant to a discussion of team feedback. A definition and description 

of feedback is given in the next subsection. Feedback itself has several considerations, including 1) the 

type, or focus, of the feedback given, 2) the timing of feedback, and 3) to whom feedback is given. 

Previous work related to these aspects are discussed in the following subsections, as well as some initial 

discussion of the implications towards effective feedback for teams. 

Taxonomy of teams 

Feedback is an important aspect of team tutors. In addition to feedback there are other aspects to consider 

in team tutors: Teams, tasks, and tutoring approach. A companion paper in this symposium (Bonner et al., 
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2014) presents a taxonomy of team tutoring, of which feedback is one element, and serves as the basis for 

design decisions on the interaction between team variables and tutor decisions for team feedback.  

Feedback 

There are a number of studies that have been conducted on feedback. DeShon, Kozlowski, Schmidt, 

Milner & Wiechmann (2004) present a model of how feedback on goals and performance influences 

learning and performance. Dominick et al. (1997) studied the influence of behavioral-based peer feedback 

on team behavior that occurs in a team-based task. Ilgen et al. (1979) provided a process-orientated 

review of how feedback influences behavior of individuals in organizations. Kluger and Denisi (1996) 

sought to show that the assumption that feedback intervention consistently improves performance is a 

result of the disregarded fact that the influence of feedback on performance varies. 

Ilgen et al. (1979) describes feedback as a unique case of a communication process where a source 

conveys a message to a receiver. Ilgen et al. (1979) defines three different sources of feedback: 1) 

individuals who are in a position to evaluate a recipient’s behavior, 2) task environment, and 3) self-

evaluation from recipients. The information in feedback that an individual receives from any source deals 

with his or her past performance.  

Focus level of feedback 

Hattie and Timperley (2007) make the claim that there are four levels of focus for feedback: 1) feedback 

can focus on the task at hand and whether or not it is correct, 2) feedback can focus on the process used to 

complete a task, 3) feedback can focus on the user’s ability to self-regulate (e.g., self-evaluate), and  

4) feedback can focus on the “self”. They argue that the levels of feedback that focus on how a user 

processes a task and the level that focuses on the user’s self-regulation are both powerful with respects to 

the deep processing and mastery of tasks. This suggests that if an ITS should give feedback that focuses 

on the user’s process of task completion and the user’s self-regulation ability. 

Individual vs. team feedback 

Feedback for a team is different from feedback for an individual because of the information and the 

ability of a team member to act on the information. The three types of feedback are individual feedback, 

individual feedback in groups, and group feedback (Nadler, 1979). A study conducted by Zander and 

Wolfe (1964) concluded that the teams that received both individual feedback and group feedback had the 

greatest individual performance increase. This conclusion suggests that a tutor needs to provide individual 

and group feedback in order to effectively train a team. This method of mixed individual and group 

feedback has been implemented in existing training systems such as the Advanced Embedded Training 

System (AETS). Zachary et al. (1999) found the traditional feedback approach with ITSs difficult to 

apply to teams. The traditional feedback approach is difficult to apply because all the members of a team 

are collaboratively and simultaneously working together during the simulation. As a result, it was not 

possible for one team member to stop the simulation without hindering the mental flow the whole 

problem-solving process for the other members of the team.  
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Timing of feedback 

The timing of feedback is important to consider. Feedback during task execution may interrupt task 

performance, interrupt the cognitive process of task execution, and prevent users from learning how to 

identify their own error (Corbett & Anderson, 2001). The timing of feedback given to a user can be 

influenced by the user’s affect state. Common affect states that occur within students are confusion, 

frustration, engagement, and boredom (Calvo & D’Mello, 2012). For example, a user who is being trained 

on a topic, especially if the topic is novel, will most be confused as a result of irregularities, inconsisten-

cies, and qualms in subject matter. (Calvo & D’Mello, 2012). Confusion, however, should not be avoided 

by an ITS, rather an ITS should adapt to the user’s uncertainty. Studies have shown that the users overall 

learning is improved when an ITS is able to recognize and adapt to confusion or uncertainty (Forbes-

Riley & Litman, 2011).  

The timing of feedback for teams and individuals may differ. Some research suggest that delayed feed-

back for individuals is more beneficial to students’ retention (Butler, Karpicke & Roediger, 2007) and 

learning (Walsh, Ling, Wang & Carnahan, 2009) when compared to immediate feedback. This finding 

suggests that an ITS should give feedback at the end of a given task (e.g., After Action Review). Delayed 

feedback would be most beneficial for tasks that are complex and fast-paced because it would allow a 

team to finish a task without interrupting the team member’s flow. Once the team has completed the task, 

the ITS can identify problems and offer suggestions on how to address any problems that are identified. 

However, other research suggests that delayed feedback would decrease the group motivation as com-

pared to receiving immediate feedback (Gabelica, Bossche, Segers & Gijselaers, 2012). This suggests that 

individual feedback should be given immediately, or close to real time, to be most beneficial. This 

method may not be ideal for complex tasks but there are task that are more easily interrupted and could 

allow for real-time feedback without interrupting the flow of the task. Corbett and Anderson (Corbett & 

Anderson, 2001) identified two principles of immediate feedback from the results of their research. The 

first principle was that giving feedback on each problem-solving step is an effective form of tutor support 

for students attempting to understand a complex problem solving skill. The second principle was that 

although lessening of immediate feedback on tasks (e.g., coding) may be essential, it will not promote 

error detection and other process monitoring skills of individuals.  

Teamwork 

Teams are becoming more important today as the complexity of tasks increase. Research on teamwork is 

sometimes difficult to generalize because different teams function differently depending on the task and 

the domain. Salas, Sims, and Burke (2005) proposed a model that is supported by empirical evidence and 

practically relevant. The authors described five important components of teamwork that they call the “big 

five.” They argue that the big five are required to complete any team task. The big five include team 

leadership, mutual performance monitoring, backup behavior, adaptability, and team orientation.  

Team Leadership 

Though some research concludes that team leadership is not important in most situations (Fransen, 

Weinberger & Kirschner, 2013), others contend that leadership of a team is an important contribution to 

the effectiveness of a team (Zaccaro, Rittman & Marks, 2001). There are certain functions that a team 
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leader must be capable of in order for a team to be successful. The team leadership needs to facilitate 

team problem solving through mental processes (e.g., shared mental models), coordinating the team, and 

keep the team motivated (Salas et al., 2005). The team leadership should receive feedback that shows how 

well they are facilitating the team. If the team leadership is in training and is learning how to properly 

facilitate a team then that would suggest real-time feedback should be used. Giving real-time feedback on 

each problem-solving step is an effective form of tutor support for users attempting to understand a 

complex problem solving skill (Corbett & Anderson, 2001). The feedback given to the leadership team 

and the timing of that feedback would change if the focus of the task at hand changes (e.g., if the team 

already had the knowledge to complete the task and was focus on efficiency).  

Mutual performance monitoring 

Mutual performance monitoring is the ability of each team member to keep track of other members’ work 

while continuing to carry out tasks, make sure that everything is functioning as expected, and make sure 

the other members are following procedures (Mclntyre & Salas, 1995). This component of the big five is 

important for a team throughout a team task but it becomes especially important when the task has a high 

stress level. However, it is difficult to give feedback on mutual performance monitoring because it is 

difficult to measure, due to a lack of an accepted method of detecting when is occurring (Salas et al., 

2005). Feedback pertaining to the mutual performance monitoring of a team would most likely be focused 

on the team’s process of the given task. If a team processes a task correctly then they will be able to 

determine when members need additional help. If members of the team do not give support to members 

then feedback should be given on how the team is processing the task at hand. If the purpose of the 

training is to teach members to recognize when another member needs additional help then feedback 

should be delayed. It is difficult to determine if members of a team exhibit successful mutual performance 

monitoring if no problem ever arises during a task.  

Backup behavior 

Backup behavior is defined as providing resources and task-related efforts to another member when it is 

recognized by possible backup providers that there is a problem with the distribution of workload within 

the team (Porter et al., 2003). There are different ways that members of a team can provide backup 

behavior. For example, members of a team can provide verbal feedback and coaching to help improve 

performance (Marks, Mathieu & Zaccaro, 2001). Members of a team can go beyond providing feedback 

and coaching to other members by assisting a teammate in performing a task (Marks et al., 2001; Salas et 

al., 2005). Doing this will allow other members to observe a task conducted correctly and allow members 

to correctly complete the task themselves. Lastly, if assisting a team member is not enough to help 

improve team performance then members of a team can complete tasks for other team members when an 

overload is detected (Marks et al., 2001; Salas et al., 2005). Feedback pertaining to backup behavior 

depends on the goal of the task at hand. If the goal of task is teach members to identify and take action 

when other members need help, then feedback should be given in real time. However, if the task at hand 

is to give the team a chance to practice their skills, then feedback should be delayed until the end of the 

end of the task.  
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Adaptability 

Teams need to be able to adapt to tasks that are continuously changing. A team is required to have the 

ability to utilize knowledge, skills, and attitudes that allow members to recognize deviations from antici-

pated actions and readjust actions accordingly to acquire the adaptability component of the big five 

(Priest, Burke, Munim & Salas, 2002). There are many different ways that adaptability can appear, 

depending on the task and the challenge the team face (Salas et al., 2005). For example, let’s assume a 

football team (specifically the offensive line) was told to run an offensive play. A coach may first allow 

the team to run the play as if everything ran perfectly. Once a team has mastered that play, a coach may 

have the defensive line set up to defend against the offensive line. The coach may have the defense set up 

in a way where another play (modified from the play they plan to run) may be more successful. The 

Quarterback (QB) can change the play by calling an audible and changing the play. Feedback can be 

given on how well the QB handles the situation. The QB can be evaluated on whether or not an appropri-

ate play was called or if an audible was called at all. Similarly, an ITS should be able to compare the 

actions of a team during a task to the expected action in order to understand adaptability. 

Team orientation 

Team orientation does not focus on that behavioral aspect of teams but rather the attitudinal. It has been 

found to improve satisfaction of individuals, individual effort, and performance (Salas et al., 2005); 

facilitate overall performance (Driskell & Salas, 1992; Eby & Dobbins, 1997), and influence team 

cooperation behaviors (Eby & Dobbins, 1997). Feedback pertaining to team orientation should be given 

no matter the focus of feedback. If the team orientation is not sufficient (i.e., if the members of negative 

attitudes toward the team) then the teams efficiency will suffer. Feedback that pertains to a teams’ 

orientation, also called collectivistic orientation (Eby & Dobbins, 1997), can be gathered from members 

of a team using a desired data collection method (e.g., Wagner and Moch’s (1986) individualism-

collectivism measure). 

Modality 

An issue to address when building an ITS is the modality of feedback. For instance, should the feedback 

given to a team be text, visual, verbal, or tactical? The domain of athletic sports teams can provide useful 

insight to team feedback because players are continuously receiving feedback from their coaches and 

teammates in order to improve their skill levels. Literature suggests that the combination of visual and 

vocal feedback is beneficial to performance. A study conducted on high school football athletes by Stokes 

et al. (2010) concluded that vocal and visual (and sometimes acoustical) performance feedback improved 

the players’ pass-blocking skills. Another study conducted by Smith and Ward (2006) showed that 

performance was the best during the goal-setting condition where verbal feedback was given during 

practice. Smith and Ward also discovered, via a questionnaire, that players did not prefer individual goal 

setting intervention because it was missing the visual feedback. These conclusions suggest that an 

intelligent tutor should, at minimum, give visual and vocal forms of feedback.  



 

204 

 

Team Feedback and Implications for GIFT  

There are several factors that are important to team feedback. The first factor is the how feedback is given 

to teams. In order to provide effective feedback in team training, there needs to be both individual and 

group feedback. Although both group and individual feedback should be administered to a group, Smith 

(1972) concluded that individual reinforcement feedback produced more satisfaction with the task than 

group reinforcement feedback. A feature that allows GIFT to give feedback to the individual members of 

teams and to the team as a whole should be added to the roadmap for GIFT. The second factor that is 

important to team feedback is the timing of the feedback. Literature suggests that individual and group 

feedback should be given at the end of a task. Real-time feedback is more difficult to apply to a team task, 

although the benefits can also be immediate. Often the timing of feedback is governed by the nature of the 

focus of the feedback. A feature that allows users to set parameters to tell GIFT when to give feedback to 

a team should be added to the roadmap for GIFT. The third important factor is feedback that describes 

how effectively a team completes a task. Salas et al. (2005) suggest that teamwork has five components 

that influence the effectiveness of task completion. These five elements are team leadership, mutual 

performance monitoring, backup behavior, adaptability, and team orientation. Feedback about the 

different elements of the team should be given when feedback is given to the team. A feature that allows 

GIFT to determine if a team is effectively completing a task should be added to the roadmap for GIFT. 

Ultimately GIFT should be able to use different models for effective teams but the big five presented by 

Salas et al. (2005) could be used as a starting point. The fourth important factor of feedback is the 

modality of feedback. Research suggests that the mode of feedback that benefits performance the most is 

visual and vocal (Smith & Ward, 2006; Stokes et al., 2010). 

There are several implications for GIFT functional requirements in order achieve effective team training: 

1) GIFT should to be able to differentiate different members of the team, 2) GIFT should collect data to 

support different metrics to evaluate team performance, 3) GIFT should have the ability to collect and 

evaluate data in real-time, and 4) GIFT should be able to understand the goal of the training and the 

current state of the team as a whole. 

GIFT needs to be able to track different members of the team in order to provide individualized feedback. 

Team members may have the same role but tracking of team members increases in complexity if team 

members have different roles. If the members have different roles then the members are more likely to 

need feedback that is unique to their assigned role. GIFT would need to be able to track the members, 

differentiate each member, understand that member’s role within the team, and then understand how that 

member’s role relates to the task at hand. Tracking the different members will look different depending 

on the task. For example, if the members are in the same room then GIFT will need to track the member’s 

different locations and know where they are in relation to the task space. If GIFT cannot track team 

members then the feedback that GIFT gives will be limited. Furthermore, tracking the team members will 

allow GIFT to evaluate how the members interact with one another.  

GIFT also needs to have the ability to collect data to support different metrics to evaluate team perfor-

mance. It is difficult to tell which metrics are important for determining team performance because little 

research has been conducted in that area. Further research is needed to understand the different metrics 
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that are domain independent indicators of team performance. Once these metrics are identified then 

research will need to be conducted to better understand how those metrics connect to the different 

elements (i.e., the big five) of teams.  

Once these metrics are explored then the understanding of those metrics will need to be translated so that 

GIFT can accurately interpret the data input. For example, the way that members respond when a member 

experiences a very high workload during a team task can indicate how well a team shows backup behav-

ior. If a tutor notices that a lot of time passes before any assistance is given to the team member with a 

high workload then that may indicate that the team, as a whole, lacks backup behavior. On the other hand, 

if little time passes before the team member with the high workload receives assistance from the other 

team members then that team may be able to effectively show backup assistance. This example may also 

indicate something about mutual performance monitoring as well since backup behavior and mutual 

performance monitoring are closely related. The resulting backup behavior that a team exhibits may be a 

result of good mutual performance monitoring.  

Research indicates that it would benefit a team member’s performance to give feedback to a team after 

the task (e.g., After Action Review) but ultimately GIFT should have the ability to collect and evaluate 

data in real-time. This ability may not be used to give feedback to the student participating in the task but 

it may be used to give feedback to the instructors that are overseeing the task. For example, imagine a 

team conducting a task in a virtual world. During that task in the virtual world there is a scenario where 

GIFT notices that the team is currently lacking in team leadership. If GIFT were to notify the instructor 

about the team’s lacking leadership, then that instructor can throw in an unexpected task to the virtual 

world that exploits the team’s lack of team leadership. However, further research needs to be done in 

order to evaluate if the previously mentioned scenario is achievable and the impact it would have on 

student and team learning. 

In order for GIFT to have the ability to give influential feedback it needs to be able to understand the goal 

of the training and the current state of the team as a whole (Ilgen et al., 1979). If GIFT is unable to 

understand the current state of the team as a whole then it will not be able to determine what the team 

needs to do in order to reach the goal. Further research is needed to better understand the different 

independent elements of team that will allow the evaluation of a team. Once these elements are identified 

then those elements need to be translated into empirical data that can be automatically tracked by GIFT. 

The better GIFT understands the current state of a team the better feedback it will be able to give teams.  

Conclusion 

While feedback to teams in tutoring contexts has many implications for GIFT, there are still many areas 

that warrant further research. For example, research needs to explore the different empirical data that will 

allow us to evaluate a team’s effectiveness relative to a given task. Further research is also needed to 

explore the different types of feedback (e.g., immediate vs. delayed) and provide evidence of how the 

feedback influences the team and its members. For GIFT, the next step is to develop different modules 

that allow GIFT to handle giving and receiving information from multiple team members simultaneously. 

GIFT modules to support team evaluations need to be developed. As the modules are incrementally and 



 

206 

 

iteratively developed they should be tested and evaluated to better understand the accuracy of the module. 

The ultimate goal is to develop GIFT’s ability to support evaluation of a team in real time and to provide 

effective feedback to positively influence team learning. 
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