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This book is the first in a planned series of books that examine key topics (e.g., learner modeling,
instructional strategies, authoring, domain modeling, learning effect, and team tutoring) in intelligent
tutoring system (ITS) design through the lens of the Generalized Intelligent Framework for Tutoring
(GIFT; Sottilare, Brawner, Goldberg, and Holden, 2012), a modular, service-oriented architecture created
to develop standards for authoring, managing instruction, and analyzing the effect of ITS technologies.

This preface introduces tutoring functions, provides learner modeling examples, and examines the
motivation for standards for the design, authoring, instruction, and analysis functions within ITSs. Next,
we introduce GIFT design principles, and finally, we discuss how readers might use this book as a design
tool. We begin by examining the concept of learner modeling.

Learner modeling (also known as student modeling or user modeling) is one of the major components of
ITS. Learner modeling is a key to the computer-based tutor’s understanding of the learner.
Comprehensive, real-time modeling of the learner is a critical element in the design and development of
truly adaptive tutoring systems that can tailor tutoring experiences to the needs of the individual learner
and teams of learners.

It is generally accepted that an ITS has four major components (Elson-Cook, 1993; Nkambou, Mizoguchi
& Bourdeau, 2010; Graesser, Conley & Olney, 2012; Psotka & Mutter, 2008; Sleeman & Brown, 1982;
VanLehn, 2006; Woolf, 2009): The domain model, the student model, the tutoring model, and the user-
interface model. GIFT similarly adopts this four-part distinction, but with slightly different corresponding
labels (domain module, learner module, pedagogical module, and tutor-user interface) and the addition of
the sensor module, which can be viewed as an expansion of the user interface.

(1) The domain model contains the set of skills, knowledge, and strategies of the topic being tutored.
It normally contains the ideal expert knowledge and also the bugs, mal-rules, and misconceptions
that students periodically exhibit.

(2) The learner model consists of the cognitive, affective, motivational, and other psychological
states that evolve during the course of learning. It is often viewed as an overlay (subset) of the
domain model, which changes over the course of tutoring. For example, “knowledge tracing”
tracks the learner’s progress from problem to problem and builds a profile of strengths and
weaknesses relative to the domain model (Anderson, Corbett, Koedinger & Pelletier, 1995). An
ITS may also consider psychological states outside of the domain model that need to be
considered as parameters to guide tutoring.

(3) The tutor model (also known as the pedagogical model or the instructional model) takes the
domain and learner models as input and selects tutoring strategies, steps, and actions on what the
tutor should do next in the exchange. In mixed-initiative systems, the learners may also take
actions, ask questions, or request help (Aleven, McClaren, Roll & Koedinger, 2006; Rus &
Graesser, 2009), but the ITS always needs to be ready to decide “what to do next” at any point
and this is determined by a tutoring model that captures the researchers’ pedagogical theories.

(4) The user interface interprets the learner’s contributions through various input media (speech,
typing, clicking) and produces output in different media (text, diagrams, animations, agents). In
addition to the conventional human-computer interface features, some recent systems have
incorporated natural language interaction (Graesser et al., 2012; Johnson & Valente, 2008),
speech recognition (D’Mello, Graesser & King, 2010; Litman, 2013), and the sensing of learner
emotions (Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 2010; Goldberg,
Sottilare, Brawner, Holden, 2011).
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The designers of the learner model need to decide what content, fields, variables, and parameters need to
be included in the representation. The representation needs to be complete with respect to handling the
distinctions made in the domain model, tutoring model, and user interface. Such representations vary in
grain size, reflecting the complexity of the ITS. There is a comparatively small number of distinctions
made in conventional computer-based training (O’Neil & Perez, 2003). For example, a simple system
would just keep track of whether the learner has mastered (yes versus no) a set of N learning objects in
the curriculum and the objects in a curriculum would be ordered theoretically, perhaps from simple to
complex or along a prerequisite ladder (Gagne, 1985). The tutoring module would select the next learning
object that the learner has not mastered and places that as lowest/earliest in the ordering. This kind of
simple system may go a long way. However, ITSs presume to go a large step further in grain size and
adaptability. Some of these ITSs are listed below, but there are many others that can be discussed at the
workshop. One foundational question is whether the increased grain size and adaptability has an
incremental return on investment with respect to learning gains.

Learner Modeling Examples

The following sections briefly describe four examples of learner modeling that have been developed and
tested in contemporary ITSs.

Knowledge Tracing in the Cognitive Tutor

This approach to learner modeling tracks the learner’s progress from problem to problem and builds a
profile of strengths and weaknesses relative to the production rules (Anderson et al., 1995). A production
rule is an “IF<state>THEN<action>" expression that specifies that a particular action, step, or cognitive
event occurs in a particular state of the task or cognition. Information from knowledge tracing can be
presented as a skillometer, a visual graph of the learner’s success in each of the monitored skills related to
solving problems in a step by step fashion. The skillometer is updated as the learner performs correct
actions, commits errors, and requests a hint. Step-by-step knowledge tracing is incorporated in a number
of tutors in the Pittsburgh Science of Learning Center (Aleven et al., 2006; Anderson et al., 1995;
Heffernan, Koedinger & Razzaq, 2008; Ritter, Anderson, Koedinger & Corbett, 2007; VanLehn, 2006).

Constraint-based Modeling

In constraint-based tutors, a good solution is represented as a declarative structure and the learner’s
actions are compared with these constraints (Mitrovic, Martin & Suraweera, 2007; Ohlson, 1992). Each
constraint is a declarative statement composed of a relevance condition (R) and a satisfaction condition
(S). The relevance condition specifies when the constraint is relevant and only in these conditions is the
state constraint meaningful. The satisfaction condition specifies whether the state constraint has been
violated. A relevant, satisfied state constraint corresponds to an aspect of the correct solution. A relevant,
unsatisfied state constraint indicates a flaw in the solution. Learner modeling is tracked by considering
what constraints are followed as learners solve problems. Successful constraint-based tutors include
Structured Query Language (SQL) tutor, Knowledge-based Entity Relationship Modeling Intelligent
Tutor (KERMIT), and Addison-Wesley’s Database Place (Mitrovic, Martin & Suraweera, 2007).

Knowledge Space Models

Knowledge space modeling underlies the Assessment and Learning in Knowledge Spaces (ALEKS)
mathematics tutor (Doignon & Falmagne, 1999; Hu et al., 2012). The domain model of knowledge space
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theory is a large number of possible knowledge states on a topic, whereas the learner model is a record of
which of the knowledge states are mastered, essentially a fine-grained overlay model. A learner’s
competence is reflected in the types of problems that the learner is capable of solving (among 250-350
problems), given the profile of knowledge states mastered among millions of possible states. Bayesian
statistics are used to select the next problem to work on that is sensitive to the learner’s competence by
filling in deficits and correcting misconceptions. If a learner solves the next problem correctly, then each
knowledge state containing that problem incrementally increases in probability; if the learner answers
incorrectly, then the knowledge states are decreased in probability. Categories of skills are represented in
a pie chart that reflects the competence of the learner.

Expectation and Misconception Tailored Dialogue

This type of learner modeling is typical for ITSs that help learners learn by holding a conversation in
natural language, such as AutoTutor or Why-Atlas (Graesser et al., 2012; VanLehn et al., 2007). An
answer to a question is a set sentence-like expectation (good answer), but the tutor also anticipates the
learner articulating misconceptions (errors). An expectation or misconception is scored as being
expressed by a learner if the learner articulates it in natural language with a high enough semantic match.
Semantic matches can be assessed by a number of methods in computational linguistics, such as content
word overlap, latent semantic analysis, regular expressions, semantic entailment, or Bayesian statistics
(Cai et al., 2011; Graesser et al., 2007; Rus et al., 2009; VanLehn et al., 2007). When the total set of
problems is considered, there is a universal set of expectations (called principles or facets) and
misconceptions that are relevant to the various problems. These principles can be tracked over problems
and guide the selection of the next problem to work on.

Motivations for Intelligent Tutoring System Standards

An emphasis on self-regulated learning has highlighted a requirement for point-of-need training in
environments where human tutors are either unavailable or impractical. ITSs have been shown to be as
effective as expert human tutors (VanLehn, 2011) in one-to-one tutoring in well-defined domains
(e.g., mathematics or physics) and significantly better than traditional classroom training environments.
ITSs have demonstrated significant promise, but fifty years of research have been unsuccessful in making
ITSs ubiquitous in military training or the tool of choice in our educational system. Why?

The availability and use of ITSs have been constrained by their high development costs, their limited
reuse, a lack of standards, and their inadequate adaptability to the needs of learners (Picard, 2006). Their
application to military domains is further hampered by the complex and often ill-defined environments in
which our military operates today. 1TSs are often built as domain-specific, unique, one-of-a-kind, largely
domain-dependent solutions focused on a single pedagogical strategy (e.g., model tracing or constraint-
based approaches) when complex learning domains may require novel or hybrid approaches. Therefore, a
modular ITS framework and standards are needed to enhance reuse, support authoring, optimize
instructional strategies, and lower the cost and skillset needed for users to adopt ITS solutions for training
and education. It was out of this need that the idea for GIFT arose.

GIFT has three primary functions: authoring, instructional management, and analysis. First, it is a
framework for authoring new ITS components, methods, strategies, and whole tutoring systems. Second,
GIFT is an instructional manager that integrates selected tutoring principals and strategies for use in ITSs.
Finally, GIFT is an experimental testbed to analyze the effectiveness and impact of ITS components,
tools, and methods. GIFT is based on a learner-centric approach with the goal of improving linkages in
the adaptive tutoring learning effect chain (Figure P-1).
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Figure P-1. Adaptive Tutoring Learning Effect Chain (Sottilare, 2012)

A deeper understanding of the learner’s behaviors, traits, and preferences (learner data) collected through
performance, physiological and behavioral sensors, and surveys will allow for more accurate evaluation
of the learner’s states (e.g., engagement level, confusion, frustration), which will result in a better and
more persistent model of the learner. To enhance the adaptability of the ITS, methods are needed to
accurately classify learner states (e.g., cognitive, affective, psychomotor, social) and select optimal
instructional strategies given the learner’s existing states. A more comprehensive learner model will allow
the ITS to adapt more appropriately to address the learner’s needs by changing the instructional strategy
(e.g., content, flow, or feedback). An instructional strategy that is better aligned to the learner’s needs is
more likely to positively influence their learning gains. It is with the goal of optimized learning gains in
mind that the design principles for GIFT were formulated.

GIFT Design Principles

The methodology for developing a modular, computer-based tutoring framework for training and
education considered major design goals, anticipated uses, and applications. The design process also
looked at enhancing one-to-one (individual) and one-to-many (collective or team) tutoring experiences
beyond the state of practice for ITSs today. A significant focus of the GIFT design was on domain-
dependent elements in the domain module. This was done to allow large-scale reuse of the remaining
GIFT modules across different training domains and thereby reduce the development costs for ITSs.

One design principle adopted in GIFT is that each module should be capable of gathering information
from other modules according to the design specification. Designing to this principle resulted in standard
message sets and message transmission rules (i.e., request-driven, event-driven, or periodic
transmissions). For instance, the pedagogical module is capable of receiving information from the learner
module to develop courses of action for future instructional content to be displayed, manage flow and
challenge level, and select appropriate feedback. Changes to the learner’s state (e.g., engagement,
motivation, or affect) trigger messages to the pedagogical module, which then recommends general
courses of action (e.g., ask a question or prompt the learner for more information) to the domain module,
which provides a domain-specific intervention (e.g., what is the next step?).

Another design principle adopted within GIFT is the separation of content from the executable code (Patil
& Abraham, 2010). Data and data structures are placed within models and libraries, while software
processes are programmed into interoperable modules. Efficiency and effectiveness goals (e.g.,
accelerated learning and enhanced retention) were considered to address the time available for military
training and the renewed emphasis on self-regulated learning. An outgrowth of this emphasis on
efficiency and effectiveness led Dr. Sottilare to seek external collaboration and guidance. In 2012, U.S.
Army Research Laboratory (ARL) with the University of Memphis developed advisory boards of senior
tutoring system scientists from academia and government to influence the GIFT design goals moving
forward. An advisory board for learner modeling was completed in September 2012, and future boards
are planned for instructional strategy design, authoring and expert modeling, learning effect evaluations,
and domain modeling.
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Design Goals and Anticipated Uses

GIFT may be used as any of the following:

1.

2.

3.

4.

An architectural framework with modular, interchangeable elements and defined relationships
A set of specifications to guide ITS development
A set of exemplars instantiating GIFT to support authoring and ease-of-use

A technical platform or testbed for guiding the development of concrete systems

These use cases have been distilled down into the three primary functional areas, or constructs:
authoring, instructional management, and analysis. Discussed below are the purposes, associated design
goals, and anticipated uses for each of the GIFT constructs.

GIFT Authoring Construct

The purpose of the GIFT authoring construct is to provide technology (tools and methods) to make it
affordable and easier to build ITSs and ITS components. Toward this end, a set of extensible markup
language (XML) configuration tools continues to be developed to allow for data-driven changes to the
design and implementation of GIFT-generated ITSs. The design goals for the GIFT authoring construct
have been adapted from Murray (1999, 2003) and Sottilare & Gilbert (2011). The GIFT authoring design
goals are as follow:

Decrease the effort (time, cost, and/or other resources) for authoring and analyzing ITSs by
automating authoring processes, developing authoring tools and methods, and developing
standards to promote reuse.

Decrease the skill threshold by tailoring tools for specific disciplines (e.g., instructional designers,
training developers, and trainers) to author, analyze, and employ ITS technologies.

Provide tools to aid designers/authors/trainers/researchers in organizing their knowledge.

Support (structure, recommend, or enforce) good design principles in pedagogy through user
interfaces, and other interactions.

Enable rapid prototyping of ITSs to allow for rapid design/evaluation cycles of prototype
capabilities.

Employ standards to support rapid integration of external training/tutoring environments (e.g.,
simulators, serious games, slide presentations, transmedia narratives, and other interactive
multimedia).

Develop/exploit common tools and user interfaces to adapt ITS design through data-driven
means.

Promote reuse through domain-independent modules and data structures.

Leverage open-source solutions to reduce ITS development and sustainment costs.

Vi
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o Develop interfaces/gateways to widely used commercial and academics tools (e.g., games,
sensors, toolkits, virtual humans).

As a user-centric architecture, anticipated uses for GIFT authoring tools are driven largely by the
anticipated users, which include learners, domain experts, instructional system designers, training and
tutoring system developers, trainers and teachers, and researchers. In addition to user models and
graphical user interfaces, GIFT authoring tools include domain-specific knowledge configuration tools,
instructional strategy development tools, and a compiler to generate executable ITSs from GIFT
components in a variety of formats (e.g., PC, Android, and IPad).

Within GIFT, domain-specific knowledge configuration tools permit authoring of new knowledge
elements or reusing existing (stored) knowledge elements. Domain knowledge elements include learning
objectives, media, task descriptions, task conditions, standards and measures of success, common
misconceptions, feedback library, and a question library, which are informed by instructional system
design principles that, in turn inform concept maps for lessons and whole courses. The task descriptions,
task conditions, standards and measures of success, and common misconceptions may be informed by an
expert or ideal learner model derived through a task analysis of the behaviors of a highly skilled user.
ARL is investigating techniques to automate this expert model development process to reduce the time
and cost of developing ITSs. In addition to feedback and questions, supplementary tools are anticipated to
author explanations, summaries, examples, analogies, hints, and prompts in support of GIFT’s
instructional management construct.

GIFT Instructional Management Construct

The purpose of the GIFT instructional management construct is to integrate pedagogical best practices in
GIFT-generated ITSs. The modularity of GIFT will also allow GIFT users to extract pedagogical models
for use in tutoring/training systems that are not GIFT-generated. GIFT users may also integrate
pedagogical models, instructional strategies, or instructional tactics from other tutoring systems into
GIFT. The design goals for the GIFT instructional management construct are the following:

e Support ITS instruction for individuals and small teams in local and geographically distributed
training environments (e.g., mobile training), and in both well-defined and ill-defined learning
domains.

e Provide for comprehensive learner models that incorporate learner states, traits, demographics,
and historical data (e.g., performance) to inform ITS decisions to adapt training/tutoring.

e Support low-cost, unobtrusive (passive) methods to sense learner behaviors and physiological
measures and use these data along with instructional context to inform models to classify (in near
real time) the learner’s states (e.g., cognitive and affective).

e Support both macro-adaptive strategies (adaptation based on pre-training learner traits) and
micro-adaptive instructional strategies and tactics (adaptation based learner states and state
changes during training).

e Support the consideration of individual differences where they have empirically been documented

to be significant influencers of learning outcomes (e.g., knowledge or skill acquisition, retention,
and performance).

Vil
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e Support adaptation (e.g., pace, flow, and challenge level) of the instruction based the domain and
learning class (e.g., cognitive learning, affective learning, psychomotor learning, social learning).

e Model appropriate instructional strategies and tactics of expert human tutors to develop a
comprehensive pedagogical model.

To support the development of optimized instructional strategies and tactics, GIFT is heavily grounded in
learning theory, tutoring theory, and motivational theory. Learning theory applied in GIFT includes
cognitive learning (Anderson & Krathwohl, 2001), affective learning (Krathwohl, Bloom, and Masia,
1964; Goleman, 1995), psychomotor learning (Simpson, 1972), and social learning (Sottilare, Holden,
Brawner, and Goldberg, 2011; Soller, 2001). Aligning with our goal to model expert human tutors, GIFT
considers the INSPIRE model of tutoring success (Lepper, Drake, and O’Donnell-Johnson, 1997) and the
tutoring process defined by Person, Kreuz, Zwaan, and Graesser (1995) in the development of GIFT
instructional strategies and tactics.

INSPIRE is an acronym that highlights the seven critical characteristics of successful tutors: Intelligent,
Nurturant, Socratic, Progressive, Indirect, Reflective, and Encouraging. Graesser & Person’s (1994)
tutoring process includes a tutor-learner interchange where the tutor asks a question, the learner answers
the question, the tutor gives feedback on the answer, then the tutor and learner collaboratively improve
the quality of (or embellish) the answer. Finally, the tutor evaluates learner’s understanding of the answer.
As a learner-centric architecture, anticipated uses for GIFT instructional management capabilities include
both automated instruction and blended instruction, where human tutors/teachers/trainers use GIFT to
support their curriculum objectives. If its design goals are realized, it is anticipated that GIFT will be

widely used beyond military training contexts as GIFT users expand the number and type of learning
domains and resulting ITS generated using GIFT.

GIFT Analysis Construct
The purpose of the GIFT analysis construct is to allow ITS researchers to experimentally assess and
evaluate ITS technologies (ITS components, tools, and methods). The design goals for the GIFT analysis
construct are the following:

e Support the conduct of formative assessments to improve learning

e Support summative evaluations to gauge the effect of technologies on learning

e Support assessment of ITS processes to understand how learning is progressing throughout the
tutoring process

e Support evaluation of resulting learning versus stated learning objectives
o Provide diagnostics to identify areas for improvement within ITS processes

e Support the ability to comparatively evaluate ITS technologies against traditional tutoring or
classroom teaching methods

o Develop a testbed methodology to support assessments and evaluations (Figure P-2)

viii
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Figure P-2. GIFT Analysis Testbed Methodology

Figure P-2 illustrates an analysis testbed methodology being implemented in GIFT. This methodology
was derived from Hanks, Pollack, and Cohen (1993) to allow manipulation of the learner model,
instructional strategies, and domain-specific knowledge within GIFT, and support analysis of artificially-
intelligent agents that influence the adaptive tutoring learning effect chain. In developing their testbed
methodology, Hanks et al. reviewed four testbed implementations (Tileworld, the Michigan Intelligent
Coordination Experiment [MICE], the Phoenix testbed, and Truckworld) for evaluating the performance
of artificially intelligent agents. Although agents have changed substantially in complexity during the past
20-25 years, the methods to evaluate their performance have remained markedly similar.

The authors designed the GIFT analysis testbed based upon Cohen’s assertion (Hanks et al., 1993) that
testbeds have three critical roles related to the three phases of research. During the exploratory phase,
agent behaviors need to be observed and classified in broad categories. This can be performed in an
experimental environment. During the confirmatory phase, the testbed is needed to allow more strict
characterizations of agent behavior to test specific hypotheses and compare methodologies. Finally, in
order to generalize results, measurement and replication of conditions must be possible. Similarly, the
GIFT analysis methodology (Figure P-2) enables the comparison/contrast of ITS elements and assessment
of their effect on learning outcomes (e.g., knowledge acquisition, skill acquisition, and retention).

How to Use This Book

This book is organized into four sections:

I.  Fundamentals of Learner Modeling

Il.  Current Learner Modeling Tools and Methods
1. Emerging Learner Modeling Concepts
IV.  Future Learner Modeling Concepts

The Fundamentals of Learner Modeling section provides an overview of learner modeling terms and
concepts along with discussion topics, and a review of the learner modeling literature. The Current
Learner Modeling Tools and Methods section reviews current learner modeling tools and methods and
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provides design recommendations for GIFT and adaptive ITSs. The Emerging Learner Modeling
Concepts section analyzes emerging learner modeling concepts and discusses their potential impact on
design recommendations for GIFT and adaptive ITS. Finally, the Future Learner Modeling Concepts
section projects how ITSs might be applied in the future and provides design recommendations to realize
innovative capabilities in GIFT and adaptive ITSs.

Chapter authors in each section were carefully selected for participation in this project based on their
expertise in the field as ITS scientists, developers, and practitioners. Design Recommendations for
Intelligent Tutoring Systems: Learner Modeling (Volume 1) is intended to be a design resource as well as
community research resource that can be of significant benefit as the following:

e An educational resource for developing ITS scientists: Section | provides a wealth of
information about ITS concepts and design, and presents an in-depth review of the learner
modeling literature.

o A roadmap for ITS research opportunities: Sections Il, Ill, and IV present current, emerging,
and future concepts about learner modeling. This sampling of authors’ perspectives is based on
hundreds of cumulative years of experience in the ITS research domain and identifies significant
gaps in current and emerging ITS technology (tools and methods). Each of these gaps points to
yet unanswered research questions.

o A roadmap to the development and application of GIFT: As noted previously, GIFT is an open-
source, publically available ITS architecture that is intended to make it easy to author ITSs;
reduce the cost of ITS development by promoting reuse; automatically manage instruction based
on best pedagogical practices; and allow scientists to compare and contrast evolving ITS
capabilities to determine future best practices. As this book outlines issues and challenges
associated with learner modeling, it also provides guidelines on how GIFT might be designed to
address identified capability gaps. Future volumes of the “Design Recommendations for
Intelligent Tutoring Systems” book series will provide insight to other ITS design domains
including instructional strategy and tactics design, authoring and expert modeling, domain
modeling, learning effect assessment, and team tutoring design. We encourage readers to become
members of the GIFT community to build on its existing capabilities and support its future
capabilities with us. More information on GIFT can be found by registering at
www.GIFTtutoring.org. Registration provides access to GIFT source code, documentation, and
related publications.
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cHapTER 1 — A Guide to Understanding Learner Models

Arthur Graesser
University of Memphis

Introduction

The core notion of a learner model is not complex intuitively. We simply need to record, represent, and
track characteristics of the learner before, during, and after learning. The mission is accomplished when
the learner model accommaodates all of the variables that are ever considered in the history and future of
intelligent tutoring systems, with all variables being adequately represented for all systems. The
theoretical problem is that the set of variables and their representation is not a closed system, but rather
grows over time as a moving target. The practical problem is that it is expensive to identify, track, store,
update, and later retrieve the ever-growing universal set of variables. The mapping problem is that the
alignment between the theoretical variables and computer code is often vague, incomplete, or
incompatible. The computational problem is that complex interactions among learner variables create a
combinatorial explosion that is temporally insurmountable. In light of these multiple problems, there is
no alternative than to pursue sensible compromises.

The chapters in this section have identified the major challenges in developing a learner model for GIFT.
Simply put, there is no consensus in how the community of researchers is to handle the theoretical,
practical, mapping, and computational problems. They all offer hints toward a solution, which was their
charge. It is difficult to decide whether any of them have answered the challenge. Perhaps yes. Perhaps
no.

The chapter by Robson and Barr expresses the need to establish standards. They argue that the standards
should be pitched at the macro level rather than the micro level. That is, the community of researchers
should agree on the ingredients of major content objects (i.e., knowledge, skills, procedures) but leave it
to the individual learning environments to realize the dynamics of mastering these learning objects. This
would require an agreement among curriculum experts and system developers in converging on an ideal
grain size that differentiates macro and micro.

The chapter by Olney and Cade recommends that researchers take stock of the pedagogical strategies
offered by researchers and to identify the learning model variables that support such strategies. The
Army Research Lab conducted a systematic study to identify the strategies from hundreds of studies.
Olney and Cade identified the classes of learner model variables that would support these strategies. This
is a sensible approach to identifying a complete set of learner variables, including cognitive, social,
emotion, and motivation dimensions.

The chapter by Lesgold and Graesser raised the persistent problem of transfer. It is comparatively easy to
develop a system that efficiently trains learners on the knowledge and skills of a specific learning object,
but it is difficult to do so in a way that transfers to a new learning object with related knowledge and
skills. Specific is easy, but general is difficult. The authors emphasize that it is absolutely critical to
acquire the materials in a general way during training that transfers to a broad range of situations later on.
If not, the learning episode is destined to reside in a very narrow corner of the space to be mastered.

The chapter by Pavlik, Brawner, Olney, and Mitrovic provides a serious comprehensive review of the
learning models in ITS applications over the decades. They take stock of the learner models in a variety
of ITS frameworks, including step-based cognitive tutors, constraint based tutors, knowledge space
models, dialogue systems, and trait-based assessments. They point out the value of systems with
branching architectures and identify the alternative grain sizes of the branching, as well as the
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consequences. They also urge the GIFT to build on the major progress that has been made on previous
ITS with general architectures and empirical validation.

The four chapters in this section together have suggested a number of factors that need to be considered as
GIFT takes on the challenge of learner modeling. The goal of this section introduction is to provide a
landscape of relevant dimensions rather than to offer concrete solutions.

Landscape of Variables for Learner Models

The number of learner variables is potentially large and unlimited but a small number of variables is
typically tracked in systems that scale up. For example, the variables tracked in educational systems
throughout the country rarely go beyond attendance and 1-3 high stakes tests per year. The collection of
fine grained measures and learning portfolios are boutique enterprises that interest researchers and
teachers of the future. Consequently, any convergence on an intermediate, manageable set of learner
variables will need to satisfy numerous political and practical constraints.

The number of learner variables being considered in ITS research has substantially increased over the
decades. There are many measures of learning gains that assess changes between pretests and posttests.
The efficiency of learning is measured in economic models that consider how much learning occurs per
unit time. The mastery of specific knowledge, skills, and strategies is assessed at ever increasing grain
sizes. The learners’ engagement and persistence can be tracked by recording time on task, reactions to
computer requests, non-invasive measures (e.g., eye movements, body posture), and physiological
measures. The emotions and motivation of the learner are tracked by algorithms that mine the log files of
the person-system interactions. These behavioral measures are arguably more valid than self-report data,
such as rating scales that are contaminated by the learners’ metacognitive folklore. Measures of
personality, leadership, and social responsiveness are also tracked by algorithms that have evolved from
the educational data mining community. Contemporary ITS applications routinely collect thousands of
measures during a time span of 2 to 20 hours. The grain size of ITS measurement is currently 3 orders of
magnitude beyond the data collected in school systems throughout the country.

Farming and Mining the Landscape of VVariables

Researchers need to be selective when analyzing the rich log file data that tracks the learner models. The
most straightforward approach is to focus on those raw or composite measures that are anticipated
theoretically. This top-down approach is the perfect place to start and impresses most reviewers of
academic journals and funding agencies. Large data sets can be “farmed” by researchers in a manner that
systematically tests and revises theories in the face of empirical data. Data are selected and organized to
test major learning theories of the day, well established ITS applications (see Pavlik et al. chapter),
educational standards (such as the Common Core or certification on specialty topics), the learning
strategies documented by the ARL (see Olney and Cade chapter), an existing repository of learning
objects that are shared by the community (see Robson and Barr chapter), and transfer between learning
objects, tasks, and subject matters (see Lesgold and Graesser chapter).

Theories are unfortunately limited and frequently not confirmed. Consequently, there is a need for
bottom-up methods to discover new learner measures and patterns from the log files. During the last
decade, the field has experienced the evolution of the data mining revolution. New categories of learners
are revealed by clustering analyses on learners and on tasks, as well as the tracking of individual learner
data over time. Longitudinal research designs (which track individuals over a long period of time) are
preferred over cross sectional research designs. Sequences of events in the log files are diagnostic of
specific psychological attributes. Once these patterns are discovered, they can be tracked automatically
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and tested further. This approach is expected to lead to the development of more sophisticated learning
theories that have a better chance of scaling up.

Representing Learner Models

ITS developers are known to disagree over the representation of knowledge, skills, and strategies in the
learner model. This is because the computational models are very different in the cognitive tutors,
constraint-based tutors, knowledge space tutors, dialogue-based tutors, scenario-based tutors, and other
classes of ITS architectures. The representation of production rules also may differ in ITS applications
that adopt production rules. The primitive elements, symbolic expressions, and quantitative parameters
differ among production rules systems because the subject matter applications have very different
constraints.

It is too early in the history of ITS development to force researchers to adopt a particular representation of
knowledge, skills, and strategies. The SCORM initiative never was able to achieve such a lofty objective,
even though there were some discussions to try. Researchers are deeply wedded to their pet
computational architectures and algorithms as they pursue cycle after cycle of model testing. With this
context in mind, GIFT developers may consider focusing on specific exemplar ITS applications that have
proven the test of time and empirical validation (see Pavlik et al. chapter). There are a limited set of
successful ITS applications so this approach would be a practical first step that is within reach. New ITS
applications can build upon these prototypical exemplar ITS applications. The learner models of these
exemplars could be expressed in a general formal notation in addition to the actual software residing in a
repository of concrete applications. The specific ITS developers would of course need to agree to
annotate and release the software. Once the collection of ITS exemplars is available, the time would be
ripe to identify a first-cut landscape of variables for learner modeling.

The complexity and variations in representations have left us with some significant barriers in scaling up
ITS. There are not enough trained personnel to build new applications on new subject matters because of
the idiosyncratic features of the ITS representations. An ideal author would have expertise in the subject
matter, cognitive science, information sciences, education, ITS pedagogy, human computer interaction,
and sometimes computational linguistics. Authoring tools are often created to minimize this barrier, but
there have never been sufficient efforts to build high quality authoring tools. There needs to be
systematic R&D on authoring tool development that is tested on personnel outside of the camp of the
original ITS developers. We need an applied empirical science of authoring tool development that has
analogues to research on writing or to design. To what extent are the learner model representations
developed with sufficient fidelity, scope, grain-size, and level of abstraction? How much training is
needed for new personnel to develop learner models for new applications? What is the time course and
costs of developing new learner models?

GIFT in the Short-Term Horizon

As mentioned earlier, the contributors to this section of the book offered different recommendations for
developing the learner model component of GIFT. The recommendations addressed challenges and
pressure points that need attention in the roadmap ahead. This final section enumerates some actions that
might be considered in the short-term horizon.

(1) A prototype has been developed that implements characteristics of GIFT, including the learner model.
A systematic analysis could be conducted on the learner model variables in order to assess the extent to
which they cover the variables present in the learner models of different classes of mainstream ITS
applications (e.g., cognitive tutors, constraint-based tutors, knowledge space tutors, dialogue-based tutors)
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and the pedagogical strategies identified by the ADL. A repository of variables could be assembled with
definitions and links to alternative ITS applications.

(2) It is widely acknowledged that it is difficult to achieve successful transfer from one domain or subject
matter to that of another. The field would benefit from an analysis of training strategies, representation
specification, degree of abstraction, grain size, and other characteristics of learner models of ITS
applications that have achieved good transfer.

(3) Shareable learning objects (such as SCORM) have been a persistent dream of many communities that
want to scale up advanced learning environments. The field would benefit from a review of the successes
and failures of these attempts. This includes an analysis of the level of abstraction and types of
representations that are likely to be shareable and serve as standards.

(4) Authoring tools have nearly always been difficult to use for ITS as well as other learning
architectures. The field could benefit from a review of empirical research that has systematically
analyzed how new personnel use such tools as well as the quantity and quality of their products from the
standpoint of learner modeling in particular. New empirical studies are needed that are more systematic
than anecdotal.

(5) The time and costs of developing an ITS on a new subject matter has frequently been a focus of
guestions with respect to scaling up the ITS enterprise. The field would benefit from an economic
analysis that helps answer these questions. It is important to segregate the initial up-front costs in
developing initial ITS applications, incremental costs in developing new ITS applications that piggyback
on existing systems, and scale-up costs after an existing system is ready to be used by thousands or
millions of students.

(6) Classes of ITS are ideally tailored to different types of learning, such as strategically guided
perception, memory for facts, execution of procedures, explanations of events within complex systems,
principle-based prediction/forecasting, and removal of chronic misconceptions in mental models. The
field would benefit from a typology and possibly a consensus on what learning environments are
appropriate for each type of learning.
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CcHaPTER 2 — Lowering the Barrier to Adoption of Intelligent

Tutoring Systems through Standardization

Robby Robson' and Avron Barr?
'Eduworks Corporation; >Aldo Ventures

Introduction

To have an impact, a learning system must be effective and must be used. In the case of ITSs, studies
have repeatedly and consistently shown significant learning gains (Dodds & Fletcher, 2004; Durlach &
Ray, 2011; Kulik & Kulik, 1991; VanLehn, 2011). Despite their demonstrated value and over thirty-year
history (Barr, Beard & Atkinson, 1975; Sleeman & Brown, 1982), the use of ITSs remains restricted to
research projects and a few commercial applications. There are success stories, but in general, such
systems are not being adopted at the rates that their effectiveness would justify. As stated by Blessing,
Gilbert, Ourada & Ritter (2009) in a paper on authoring model-tracing cognitive tutors, “ITSs, including
model-tracing tutors, have not been widely adopted in educational or other settings, such as corporate
training. Perhaps the most successful deployment of model-tracing tutors is Carnegie Learning’s
Cognitive Tutors for math, which are in use by over 1300 school districts and by hundreds of thousands
of students each year. After this notable success, however, most educational and training software is not
of the ITS variety.”

Multiple factors could be impeding adoption, but two factors in particular stand out. The first is that ITSs
are designed to be standalone systems that do not communicate or interoperate with other systems used to
support learning, education, and training. The second is the sheer complexity of ITSs and the concomitant
effort it takes to develop them (Murray, 2003).

With this as motivation, this chapter explores how standardization might help ITSs fit into learning
ecosystems and simplify their design. Here we suggest focusing on standards for exchanging learner
information among systems, not on standards for internal components. We also point out that the
requirement to exchange learner information emphasizes the problem of determining which adaptations
are responsible for the positive learning effect sizes observed when using ITSs. We believe that the
suggested approach will enrich learner models, encourage developers to separate their innovative and
proprietary adaptation engines from the portions of ITSs that interoperate with other learning systems,
and ultimately, transform ITS architecture in ways that will make them easier to implement and adopt.

Standards

As Christensen & Raynor (2003) point out, interoperability and standardization enable competition and
the growth of supply chains. In learning technology, for example, the emergence of learning management
systems (LMSs) in the 1990s disrupted the print-based supply chain from authors to publishers to schools
to learners. Standards such as IMS Content Packaging (IMS Global Learning Consortium, 2004), AICC
Computer Managed Instruction (AICC, 2004), Sharable Content Object Reference Model (SCORM) 1.2
(Dodds, 2001), SCORM 2004 (ADL, 2006), and IMS Common Cartridge (IMS Global Learning
Consortium, 2011) reestablished much of the same chain by allowing courseware to be produced
independently and used by any compliant LMS. Arguably, the eLearning industry, which is a multi-
billion dollar industry today (Adkins, 2011; Bersin, 2012; Global Industry Analysts, 2013), would not
exist without these standards, and it is reasonable to assume that some standardization is needed to spur
the adoption of ITSs.
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At the same time, many proposed learning technology standards have failed to be completed or failed to
achieve significant adoption. These proposals include standards for learner information and learner
models, architectures, repository interoperability, intelligent agent communication, competency
definitions, student identifiers, and many others. For example, the IEEE Learning Technology Standards
Committee web site from December 2000 (IEEE, 2000a) shows 17 standards projects, almost all of which
are still relevant today (including a standard for learner models). Less than half of these were completed
in any form, and almost none have achieved any significant adoption. In most cases, failed efforts were
driven more by an example and a vision rather than by a market/adopter pain point and real products.
These failed standards, as described in Robson (2006), were “innovation and research-driven standards”
rather than “market-driven standards.” If standards are to be developed to spur the adoption of intelligent
tutoring systems, they must be defined by market needs, or else they will have little effect.

Market Needs

What are those market needs? If we accept that ITSs are effective, the immediate market needs of
potential customers are to (1) implement them with as little integration effort and work disruption as
possible; and (2) obtain the data that are required for learning management and talent management and
that can be used to demonstrate pedagogical impact and monitor costs. Customers may tolerate some
inconvenience to get a more effective learning solution, but they are probably not willing to reconfigure
their entire learning infrastructure, retrain all of their users, radically alter their established workflows, or
give up on tracking grades and course completion status.

Unfortunately, ITSs make little or no attempt to exchange even basic results data with other systems. This
isolationism is typical of new learning technologies. Early LMS and assessment engine products were the
same, and so are massive open online courses (MOOCS) and the Khan Academy. The following
exchange from the Google Khan Academy Developers Group (Azevedo & Ojeda, 11/19/12) typifies the
reluctance of new product developers to address interoperability and the frustration of early adopters who
typically run their daily operations via institutional learning management systems. (Typos and spelling
corrected).

DA: Hello developers. Is Khan Academy / Khan Exercises SCORM Compliant?

MO: hi D. Sorry to say, we do not. Is there some definite advantage to supporting it other than
this graphic from scorm.com?” (Graphic shows reduced costs from using SCORM)

DA: Hello and thanks for the quick response. | find one big use for SCORM. If a student uses
multiple learning platforms it would be nice for grades and progress to be shared across the
platforms. One example would be: 1’'m attending a class in Khan Academy, like Algebra 11, but |
find another site/course and | want to make Algebra Ill in that new site/course. If I could
export/import my certified data across platforms that would be very flexible for students. In the
long run people will like that the time spent on Khan or another site/course is certified and
flexible, like in real universities there is equivalence in subjects and grades/progress.

The immediate market needs of potential customers are to track results and hold down implementation
costs. These are conditions for diffusion of the technology, but once diffusion starts, other requirements
will appear. For example, since ITSs provide individualized learning, it is likely that students will
frequently switch among different systems. If the one system has gathered data about a learner’s cognitive
or affective characteristics, other systems can make use of it. Existing standards such as IMS GLC

! We note that one of the motivations for moving from SCORM to the Experience API is that SCORM does not address learners
working on multiple platforms.
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Learner Information Package (IMS Global Learning Consortium, 2005) and the Europass (Cedefop,
2012) can be used for transcript data, curriculum vitae (CV) data, and high level competencies (e.g.,
language skills), but new standards will be needed for expressing and comparing learner information.

In addition, adoption will bring renewed demands for N Interface for

avoiding lock-in. Even if the same content cannot be 5 USER INTERFACE s type of ITs
plugged and played in multiple intelligent tutoring i
systems, customers will want to leverage content
they have already acquired and will want to
outsource ITS development to multiple sources. To
achieve this requirement, there must be some

Shareable Content for this
instance of this
type of ITS

Proprietary to this
type of ITS

CONTENT

reasonable  separation between the “system” (3 g -
software, “content” such as text and multimedia cl— &=
presented to the learner, and “interfaces,” including g E * Learner model The engine
the user interface and those that exchange data with | 9 s | * Expertmodel that runs this
other learning systems. This is diagrammatically | £ | | Domainmodel type of ITS
shown in Figure 2-1. Sl & [ FPedagosicalmodel

— SYSTEM
Standards for Learner Information Figure 2-1. System, Content and Interfaces

The first requirement for adoption is for ITSs to “play well” in current learning environments. This can be
done by requiring conformance to SCORM and the Experience APl or Tin Can API (Advanced
Distributed Learning, 2013) or by adopting the IMS approach based on Learning Tools Interoperability
(IMS Global Learning Consortium, 2012). The important point is that ITS developers should not ignore
these standards if they want their systems to be adopted.

Requirements to exchange even very coarse data such as completion status and quiz results will naturally
lead developers to reexamine their system architectures and, hopefully, lead to a separation of
components such as that illustrated in Figure 2-1. For example, the Experience API, planned for the next
generation of SCORM, uses an “actor — verb — activity” paradigm and is designed for compatibility with
semantic inference engines (Poltrack, Hruska, Johnson & Haag, 2012). Using this application
programming interface (API), a score on a quiz can be reported as a series of statements such as “Student
completed quiz” and “Student scored 95.” An inference engine embedded in an LMS or other learning
system might additionally know that “Quiz assesses Quadratic Formula” and conclude that “Student
demonstrates competency in Quadratic Formula.” The requirement to generate such triples and support
the API will suggest using a similar structure to store and exchange other data, including learner
information. This may or may not be the optimal design choice for a particular ITS, but experience shows
that developers of new systems often use standards as guidelines for functionality and design (Devedzic,
Jovanovic & Gasevic, 2007).

Independent of how it is represented, the key question for standardization is what information should be
exchanged. In other words, what should an ITS be telling other systems, including other ITSs, other
enterprise learning systems, and other applications used by instructors, students, managers, and
researchers? Since ITSs are valuable because of their positive effects on learning, this information should
consist of the data responsible for attaining this effect. In other words, the question of what information
should be exchanged is the question of what student data are required to achieve near optimal adaptation.
This is a special case of the more general question, posed by Durlach (2012) and Ray Perez (personal
communication), of what functionality in ITSs has the most effect on learning outcomes and how much of
this functionality is needed in practice. We do not know the answer, but we can nonetheless make some
reasonable conjectures concerning the types of learner information might be included:
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e Educational records and high level competencies such as language skills and flight certifications.
Standards exist for these data. It is not clear what inferences an intelligent tutor can make directly
from them, but since human tutors find them valuable, there is an argument for including them.

o Competencies (including Skills, Knowledge, Abilities, Outcomes, Objectives) and level of
competence. These have also been standardized and represent data that are crucial for talent
management, job placement, and many other applications. They are also used for AICC/SCORM-
type sequencing, and at a fine level of granularity, can be equated with domain topics.

o Data in affective, motivational, and social dimensions. Cognitive models are more common and
better understood, but many adaptations rely on data in these dimensions (Dimitrova, 2009). For
example, tutors may observe how students react to different types of stimuli and discover beliefs
and attitudes that other systems could use to select instructional content and strategies.

e Goals, including learning goals and mission/task goals. These goals are also data that a human
tutor would want to know and that might be important for adaptation.

o Physical adaptations, such as location, device capabilities, ambient light, and accessibility data.
Accessibility data have been standardized, and these other data can clearly be used in many ways.

As an historical note, we believe that the task of standardizing learner data was first taken up by the IEEE
Learning Technology Standards Committee. In 2000, the scope statement for the Learner Model working
group (IEEE, 2000b) read: “This standard will specify the syntax and semantics of a ‘Learner Model,’
which will characterize a learner (student or knowledge worker) and his or her knowledge/abilities. This
will include elements such as knowledge (from coarse- to fine-grained), skills, abilities, learning styles,
records, and personal information. This standard will allow these elements to be represented in multiple
levels of granularity, from a coarse overview, down to the smallest conceivable sub-element. The
standard will allow different views of the Learner Model (learner, teacher, parent, school, employer, etc.)
and will substantially address issues of privacy and security”

Its purpose consisted of five items:

1. To enable learners (students or knowledge workers) of any age, background, location, means, or
school/work situation to create and build a personal Learner Model, based on a national
standard, which they can utilize throughout their education and work life.

2. To enable courseware developers to develop materials that will provide more personalized and
effective instruction.

3. To provide educational researchers with a standardized and growing source of data.

4. To provide a foundation for the development of additional educational standards, and to do so
from a student-centered learning focus.

5. To provide architectural guidance to education system designers.

This project was known as “Personal and Private Information” (PAPI) and never turned into a standard
for reasons beyond the scope of this chapter. It did, however, have some important attributes. It
considered highly granular information, a consideration abandoned by the IMS Learner Information
Package and Europass standards. It had personalized learning and architectural guidance as important use
cases. Architectural guidance is important because the complexity of ITSs is a barrier to adoption.
Interchange standards do not dictate how data are stored or processed internally, but they tend to
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influence how systems are designed. Devedzic et al. (2007), for example, give an extensive overview of
eLearning standards aimed at developers of web-based eLearning systems because “they establish high-
level principles for organizing learning resources and developing web-based education (WBE)
applications.” As things stand, an ITS constructs its internal model of a specific learner solely from its
interactions with that learner. The modeling framework is constructed from cognitive and learning
science, but the only data used to instantiate the models come from interactions with the ITS. The ability
to retrieve learner information from other systems will change that and encourage developers to separate
their innovative and proprietary adaptation engines from the portions of their systems that interoperate
with other learning technologies.

Models Should Not Be Standardized

We have suggested that learner information should be standardized but have avoided suggesting the same
for learner models. In fact, we do not believe that standardization is appropriate for any of the models
associated with the inner workings of ITSs.

In the abstract, ITSs adjust their instructional strategy based on a learner model, expert model domain
model, and pedagogical model (Durlach & Ray, 2011), but very few real-world ITSs use all these
components and the nature of each of these components can vary wildly. For example, the model-tracing
cognitive tutors built by Carnegie Learning (Anderson, Corbett, Koedinger & Pelletier, 1995) encode
expert knowledge in logical production rules and give hints to students when their input violates one of
the rules, whereas ALEKS (2011) tracks which topics a student has mastered and, using data gathered
from a large population of previous learners, infers which new topics the student is likely to be able to
master next. In contrast to cognitive and model-tracing tutors, the AutoTutor family (Graesser et al.,
2004; Hu et al., 2009) has less explicit encoding of domain knowledge. These tutors use semantic analysis
to determine how relevant student input is to content that has been presented, and in some cases, adjust
their strategies based on affective states determined by sensor data (D’Mello & Graesser, 2010; D’Mello
& Graesser, 2012). An examination of examples cited in sources (Graesser, Jeon & Dufty, 2008; Murray,
2003; Ohlsson & Mitrovié, 2006; Woolf, 2009) reveals even further diversity in the way that ITSs
operate.

This diversity exists for a good reason. Motivated by the two-sigma effect size observed with one-on-one
human tutoring, ITSs attempt to replicate this experience with technology (Kulik & Kulik, 1991;
VanLehn, 2011). Each system’s technical approach to building and using models to achieve this goal is
its principal locus of innovation and a chief source of differentiation in the marketplace. There is a
significant difference between macro-adaptations, which persist over time and can be used by multiple
systems, and micro-adaptations, which are ephemeral and lie fully in the domain of a single system. The
candidate standardization categories in the previous section are all macro-adaptations. Since ITSs derive
their competitive advantage from micro-adaptations and the models that enable them, standardization of
these models would not be accepted and, if accepted, may hinder innovation.

Recommendations for GIFT and Future Research

GIFT (Sottilare, 2012) provides a testbed in which multiple ITSs can function. Its architecture
contemplates that ITSs will exchange data with an LMS. Adoption of GIFT would encourage ITS
developers to include LMS-compatible reporting mechanisms, which we argue is a necessary step for
market diffusion of ITS technology.

11
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GIFT also includes a learner module, which we would view as learner information exchange service.
There are existing standards that can serve as the basis for constructing such a service, and any reasonable
candidate standard for learner information exchange will be extensible enough to evolve over time.

The key question, however, is what data ITSs actually need to exchange to enhance learning gains and
support the other intelligent systems and apps used by teachers and students. This is a difficult research
guestion, and the history of learning technology standardization teaches that abstract and theoretical
answers to questions of this nature do not lead to practical and adoptable standards. The best approach is
likely repeated cycles of experimentation and observation. That approach may require creating tutors that
implement well-controlled and limited functionality, measuring their effect on learning, and iteratively
refining standards for learner information exchange based on the results. A framework such as GIFT is
ideally suited as the “breadboard” for such experimentation.
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cHapTER 3 — Important Considerations for Learner Models:
Transfer Potential and Pedagogical Content Knowledge

Alan Lesgold® and Arthur Graesser?
! University of Pittsburgh; % University of Memphis

Introduction

In the age of the intelligent machine, training of humans inevitably requires training for transfer. If we
knew exactly what a person should do in a situation, we could program a computer or robot to do it
instead. However, no two situations are exactly the same so uncertainty and differences arise in matches
between the current situation and episodes of the past. Modeling transfer has traditionally meant getting
as close as possible to modeling the total expertise trainees were expected to have in handling episodes of
the past and future. We suggest that there may be more effective approaches today. One possibility is to
model knowledge (general or specific) that would permit a person to represent a situation in a form that
can be handled by diverse training and transfer trajectories. A second possibility would be to establish a
principled way to prioritize which knowledge should be overlearned so that it can be “stretched” to novel
situations not covered in training. A related approach would be to do both. For example, one could
perform situation modeling within the domain of interest along with cognitive load analyses of the
situation modeling examples drawn from the target domain. This chapter explores these options and
considers what task analysis and expert modeling is needed to capture them.

If we want people to carry out performance of a task in a precise way, we can conduct a task analysis and
then teach each of the elements of the performance and directly measure how well each element is
acquired. This approach to training worked remarkably well for the training of line workers in the
industrial age and of enlisted personnel in the military prior to the knowledge revolution (Collins &
Halverson, 2009). It assumed availability of supervisors or officers who would creatively handle
unexpected challenges and provide direction that allowed teams to adapt to emergent situations. It was
generally assumed that these leaders did not need carefully monitored complete training for their roles but
rather that they would be selected as being intelligent enough to prove a useful bridge from the formal
training of their subordinates to the actual situations their unit might encounter.

Now that we are entrenched in the knowledge revolution, however, routine performance can be specified
so precisely that we can teach a person or program an intelligent machine to perform these procedures
competently. Moreover, once empowered by intelligent tools, every worker or soldier has a role akin to
the leaders or officers of times past. Nevertheless, experience has shown that most workers in intelligent
work environments need substantial training, even if we cannot fully drill them on every aspect of the
performances we hope they will exhibit. This creates a need to consider transfer in the design of training.
That is, we are no longer merely preparing people by teaching them all the elements, rules, or procedures
that define perfect performance in every likely circumstance. Rather, they need to be prepared for
emergent situations that deviate from original training. Our hope is that our trainees will show transfer
from the specific prescribed training to ideal performance on emergent tasks.

Related Research

The profound challenge is that there typically is unspectacular transfer from training to new situations
(Banich & Caccamise, 2010). A classical study by Hayes and Simon (1977) had college students
attempting to solve a series of problems that had structurally identical solutions but varied in surface
characteristics, such as substituting names of characters and objects (Hobbits and Orcs vs. Monsters and
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Globes). Transfer between four successive problems was near zero unless students were explicitly
instructed to make similarity connections between the problems. Gick and Holyoak (1980) investigated
whether the structure of a story about troops converging on a location would help college students solve a
radiation problem that had a direct structural isomorph to the story. The transfer was modest without
cognitive activities that intentionally tried to establish correspondences between the two representations.
At a more global practical level, the order of courses in a curriculum is rarely backed by substantiating
transfer data (Vuong, Nixon & Towle, 2011). For example, there is not an abundant body of empirical
evidence that calculus helps engineering or that physics helps students understand chemistry. Knowledge
and skills are highly constrained by specific characteristics of the subject matter.

The above examples present a dismal picture of transfer, but it can be countered by exemplars of
successful transfer. The literature is replete with evidence that training on particular tasks can facilitate
performance on similar tasks in the future. The devil is in the details of the similarity of the stimuli, tasks,
and associated cognitive representations (Gentner & Markman, 1997).

The transfer problem has enormous implications for the GIFT architecture (Sottilare, Brawner, Goldberg
& Holden, 2012), particularly with respect to the distinction between domain-independent and domain-
dependent modules. The current GIFT architecture specifies that the sensor and pedagogical modules are
domain-independent whereas the subject-matter knowledge is domain dependent. The implication of the
domain-independent modules needs to be clarified. Does that mean that there should be significant
transfer between tasks that have similar subject matters but different sensor and pedagogical modules?
Does that mean that the same pedagogical methods can be applied to a broad set of subject matters, as
opposed to the pedagogical modules being distinctively tailored for particular subject matters? Does
subject matter (domain knowledge) reign supreme over sensor and pedagogical modules? What are the
priorities among these GIFT modules on the matter of transfer?

We propose that a model of student® learning has two categories of knowledge in an intelligent training
system. First, it knows how well the student has mastered the elements specifically being trained. Second,
it knows how prepared the student is to confront categories of situations that cannot be predicted and
cannot be rehearsed adequately. This latter requirement means that such systems must embody a theory of
transfer that can allow us to know how far a student’s knowledge might stretch.

Consider, for example, a football coach. The coach might train the team to execute a particular kind of
play, such as an option running play. The team can practice each of the two or three ball carrier options,
so that every team member knows who to pass the ball to, who to get the ball from, or where the players
position themselves to block the defense. However, the practice sessions only rehearse some of the
possibilities because the defensive players are intelligent entities and do not necessarily behave exactly as
the sham defense set up during the practice sessions. Yet the coach is hopeful that the team will perform
well in every case.

Some of the performance environments are predictable. By having the defense behave intelligently and
conform to known football best practices, the coach can create a variety of practice situations that
anticipate what will happen in an upcoming game. However, the game will have situations that deviate
from the ones on which practice occurred. A theory of practice is useful to the extent that it allows the
coach to predict game performance from practice performance, select the right practice situations, and
decide when there has been enough practice.

? For simplicity of exposition, we use terms like “student model” and “students” even though the primary audience
for this volume are training developers and training system designers, not schoolteachers or professors.
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Unpredictable situations will nevertheless occur. It might be icy or rainy. The field might be muddy or not
the same surface as that on which practice occurred. The players may change as wounds heal, injuries
occur, and so on. Consequently, there need to be global indicators of whether team members are ready for
a wider range of unpredictable occurrences. A decision is needed as to whether the current situation is
under the realm of status quo or an unusual case. An adequate model would identify specific
performances that a player can do well in prototypical situations as well as some estimates of which
categories of unpredictable cases can be expected to be adequately handled. The latter models the transfer
potential of what was explicitly learned. One way to address the problem of transfer is to consider the two
skill sets separately. That is, there are the specific performance skills that encompass expertise in the
target domain. There are also situation representation capabilities that allow a student to classify a novel
situation as one in which particular learned performances can be successful. These situation
representational skills mediate the availability of learned rules to be applied in emergent situations. Our
experiences in building intelligent training systems have convinced us that these two skill sets should be
handled in different ways.

The first author has developed and tested intelligent training systems for maintaining equipment in the
military and business sectors, including troubleshooting equipment failures (Gott & Lesgold, 2000; Gott,
Lesgold & Kane, 1997; Lesgold & Nahemow, 2001). For the specific performance skills, there was the
standard approach of building an expert model that was capable of solving the range of tasks that was
targeted for training. The initial assumption was that once each rule in the expert model was demonstrated
by the student, training was considered completed. However, our experience quickly revealed that this
was not entirely the case because the target domains we addressed were extremely complex. All of the
information needed to trigger each of the rules relevant for a given task was present in the task domain,
but there was so much information that a serious challenge remained in representing the situation at hand
sufficiently to trigger appropriate rules.

The challenge of system complexity required us to train the situation representation skills needed to
perceive the problem domain adequately to trigger expert rules. Our expert informants initially believed
that this required training on recognizing the various components of the complex target domain. For
example, in the case of avionics test stations, this would include the system modules and the components
of the modules. However, it was apparent that all of the students could recognize all of the modules and
their components, even at the beginning of training. The needed situation representation skills were more
subtle than our expert informants realized.

A reasonable training method would be to directly teach how to recognize which aspects of a situation are
important. This is done in football when players are taught the names and overall strategies behind
various types of plays. It also is done in medicine when physicians in training directly learn to recognize
various syndromes for which diagnostic rule sets are known. This approach to teaching for transfer can
work when there are recurrent examples of these various plays or syndromes. In football, that happens
because the coach has studied game films and knows the patterns that the opposing team is likely to use.
In medicine, it happens because various genetic and environmental factors predispose human bodies to
exhibit various syndromes or patterns of malfunction (e.g., lots of us overeat and under-exercise, with the
bodily response being pretty stereotypic).

Engineered systems generally are built and modified to adapt to the range of circumstances in which they
are deployed, but unfortunately they often do not have predictable patterns of breakdown. If those existed,
they would be engineered away. This makes it harder to teach situation representation by teaching how to
recognize syndromes; there are few if any recurrent syndromes to teach. This required us to take a
different approach that did not explicitly teach students to watch for specific patterns, at least for the most
part. Instead, students were provided a useful range of experiences that prompted them to construct rule-

17



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

based knowledge on top of their prior experiences with the task domain. This more flexible emphasis on
the range of the situations was expected to extend the students’ knowledge to new situations.

The scheme that was developed was called intelligent coached apprenticeship. Basically, we pushed
students to go beyond their overlearned knowledge to solve novel problems (Gott & Lesgold, 2000). We
expected that none of the problem tasks our training system provided would be solvable by the students
without help. Five levels of help were available. The lowest level listed the sequence of actions the
student already had taken to address the problem. More than half of the time, that level of hint was
sufficient to keep the student moving toward a solution to the problem. If the student was still stuck, there
would be more explicit levels of hint (e.g., where to look for information) until a final hint level that told
the student exactly what to do on the next step. For the population our training addressed, the desire to
learn was strong, and students seldom asked for more help than they needed. After completing the
solution for the problem, they also were able to study a comparison of their solution path to that of an
expert.

The central hypothesis in this research (Gott & Lesgold, 2000; Gott, Lesgold & Kane, 1997) is that
scaffolding for students to shape their own construction of situation representation skills would produce
the needed development of those skills, even if we could not explicitly list them all and even if it was not
feasible to build a complete set of situation representation rules and train on each. It was reassuring that
our efforts were highly successful. We had expert technicians develop a collection of far transfer tasks
that involved applying the expert rules we taught to new hardware. The transfer hardware was a fictitious
piece of hardware that could still be diagnosed using the expert rule set that our training system
embodied. The students we trained performed in about the same range as experts on those problems (Gott
& Lesgold, 2000; Gott, Lesgold & Kane, 1997).

It may eventually be possible to teach the needed situation representation skills directly rather than to
assume them and indirectly stimulate their construction by the students. For example, Forbus et al. (2007)
have made progress in specifying what a computer needs in order to learn similar kinds of
representational skills. Nevertheless, the scheme we developed is worthy of further exploitation. On the
one hand, it focuses on the expert rules needed to do the necessary problem solving, and on the other
hand, it does not ignore the reality that some level of further knowledge construction is needed if those
rules are to be available when needed in addressing novel tasks.

There will always be uncertainty that an individual student’s understanding of the task domain embodies
entirely the same constructs that the training designer might have had. This is especially the case in
complex technical domains, where the training designers often know much more basic science than the
technicians being trained. As an example, consider the terms used in expert rules for diagnosing failures
of an ion beam system for writing circuits on computer chips (Lesgold & Nahemow, 2001). A complete
account requires knowledge of quantum physics, silicon chemistry, and optics. Technicians two years out
of high school could learn the diagnosis rules well enough to apply them in transfer situations using the
training technique of providing difficult problems with scaffolding and post-problem reflection (Lesgold
& Nahemow, 2001).

Discussion

The intelligent coached apprenticeship was impressively effective, producing learning effect sizes
exceeding one standard deviation. These results are on par with or exceed intelligent tutoring systems that
have been developed and tested during the last decade (Graesser, Conley & Olney, 2012; VanLehn,
2011). However, questions remain about the information that is needed in the students’ situation
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representation to assure adequate learning. There are also questions directly relevant to GIFT (Sottilare et
al., 2012).

The systems described in the previous section did not log information about the students’ situation
representation, and it did not retain its short-term estimations of student reasoning strategies. Instead, the
systems were validated by conducting far transfer studies. This is an expensive way to proceed. It is worth
considering simpler ways to assure adequate learning of rules that provide substantial transfer. Some of
these possibilities are presented in this section.

One important step would be to record information about the level of coaching/scaffolding that a student
requires. The systems described above did that, but the data were not retained beyond their presence in a
post-problem recapitulation of the student’s activity and a comparison of that to an expert solution. GIFT,
in contrast, routinely records in the log files the raw sensor data, computer-student interactions,
pedagogical strategies being implemented, expected student responses (both correct and misconceptions),
actual student responses, and other data that can be mined for system improvement. At any given moment
in solving a problem in the intelligent coached apprenticeship systems, the system kept track of what the
best next step for a student. Therefore, it would be straightforward to record data that indicates that the
student has a misconception or does not know what to do next (see, for example, the inference of
“malrules” by systems VanLehn [1981] has built). Informative episodes occur when the student asks for
coaching or performs a non-optimal next step. As the student starts taking appropriate actions, the past
records of incomplete learning could be retired and eventually there would be confidence that a rule has
been learned broadly. GIFT supports such data mining and machine learning activities.

Note that the approach is substantially different from direct training of a rule. In direct training, the
student is placed in circumstances where the rule should be triggered and then taught explicitly to apply it.
The problem with the direct training approach is that the rules flagged as learned may not be triggered in
circumstances where complex tasks are being performed without attention focused directly on possible
circumstances where the rule applies. We have known for almost a century (Whitehead, 1929) that
specifically learned bits of knowledge often are not used in broader circumstances where they should
apply. By focusing more of learning on explicitly stretching one’s knowledge, this problem has been
avoided. The question arises whether training of humans is needed at all, given that the intelligent
coached apprenticeship systems relied upon expert models to provide coaching. Expert models would
perhaps not be able to transfer to novel situations any more than novice technicians. We were able to
formally represent each problem in a way that permitted the expert system to solve it, but those
representations were only possible because of the additional knowledge of the experts who developed
them. That more implicit knowledge is exactly what intelligent coached apprenticeship endeavors to train.

Decisions will need to be made on how the above mechanisms in the intelligent coached apprenticeship
would be implemented in GIFT. The student-constructed situation representation is not merely stored in
the GIFT Domain Module, but rather is apparently derived in the Learner Module from a combination of
activities involving the Sensor Module, Pedagogical Module, the Domain Module, and history of the
logged data. Does this complex interactivity clash with the modular assumption that differentiates the
domain-dependent Domain Module from the remaining domain-independent components?

Another important step for implementing effective intelligent coached apprenticeship systems resides in
tracking mastery of rules in broad contexts. The problem sets presented to students need to be sufficiently
challenging and span a wide enough range of situations. They can never span all the situations a student
will encounter when applying what is being taught. However, they need to span a sufficiently wide range
that they force students to reflect on why each rule is applicable and the range of possible situations of
applicability. For the two rather different domains developed by Lesgold and his colleagues, the expert
technicians helped build problems that are sufficiently diverse that there was transfer to novel situations.
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One situation involved diagnosis of failures in complex switching systems designed to test electronic
components from military aircraft. The range of problems experts helped us develop was sufficient to
produce far transfer performance that was about as good as that of domain experts (Gott, Kane &
Lesgold, 1995; Gott, Lesgold & Kane, 1997). The second domain in which we did similar training and
testing with similar results was the diagnosis of failures in machines used to make computer chips,
notably ion deposition systems that put layers on chips and ion beam implant systems that write circuits
on those layers (Lesgold & Nahemow, 2001). The switching systems had underlying knowledge
associated with simple electrical properties of circuit continuity and magnetics (relays were involved).
The chip-making systems involved underlying knowledge of electrical systems, heat distribution, silicon
gas compounds, movements by robots, and to some extent, even more complex basic science.

The same basic approach worked for both domains so it is at least a reasonable conjecture that it can work
much more widely. It would be worthwhile, however, to study the utility of logging indications of
uncertainty, lack of knowledge, or misconceptions at points where the rules in an expert system are not
applied routinely or accurately. Such information might allow better decisions on how much training is
needed to produce mastery. Once again, the logged data, data mining, and machine learning facilities of
GIFT are, in principle, equipped to implement this approach. Decisions will need to be made on the
division of labor among GIFT modules when accommodating changes to the system.

Recommendations and Future Research

The intelligent coached apprenticeship system described in this chapter underscores the importance of
capturing situation representations that are constructed by the students in order to handle a diverse range
of cases applicable to transfer situations. Domain experts will be needed to select the problems that
deviate from routine cases that can be trained explicitly. Research will therefore be needed to understand
how these cases/problems are selected, the mapping between training and transfer cases, the situation
representations that students construct, and their ability to identify unusual cases. A detailed analysis of
the log data should be helpful in these research efforts and also in modification of the systems in iterative
development.

There are two major recommendations directly relevant to GIFT. First, decisions will need to be made on
how the specific modules will participate in the intelligent coached apprenticeship system. It is not a
simple matter of storing content in the Domain Module. Second, decisions will need to be made on how
to represent the information stored in the log files and the various modules. It is not a simple matter of
storing everything. The features, content, and structures will need to be able to support new cases and
situation representations in addition to domain-dependent and domain-independent information.
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cHapTER 4 —Matching Learner Models to Instructional

Strategies

Andrew M. Olney and Whitney L. Cade
University of Memphis

Introduction

Learner models represent key variables that guide instructional strategies during e-Learning. By
representing key variables about a particular student, learner models make adaptive instruction possible.
Without learner models, instruction cannot be individualized and instead is often calibrated to the average
ability learner or the lowest ability learner. Learner models enable instruction to focus on what the student
doesn’t know and adjust to the student’s abilities, motivation, and preferences. In other words, learner
models enable adaptive instructional strategies.

Given the tight correspondence between learner models and instructional strategies, they must be
considered in parallel when designing e-Learning systems. In fact, a strong argument could be made that
the choice of instructional strategy drives all other modeling decisions in e-Learning by placing
requirements on the learner model and other related models (see Pavlik et al., Chapter 5 in this volume,
for a review). Thus, one approach to studying learner models would be to conduct an analysis of all
possible instructional strategies and then examine what requirements they place on learner models.
However, the vast number of instructional strategies that have been proposed in the literature make this
approach somewhat impractical.

In this chapter, we explore an alternative approach to strategy-based analysis of learner models. The
Institute for Simulation and Training at the University of Central Florida has recently published an online
database known as the Instructional Strategies Indicator (ISI) (Tarr, 2012). The ISI contains 150
instructional strategies, indexed by when and where instruction occurs, the evidence for instructional
efficacy, the size of the group being instructed, the expertise of the learner, and the type of knowledge
being taught. The ISI represents an effort to organize the known instructional strategies into a
comprehensive framework, allowing for the optimal selection of an instructional strategy in a given
instructional setting.

The methodology used to create the ISI was qualitative and data-driven, using aspects of grounded theory
methodology to select relevant literature and create an analytic framework to describe the literature.
Vogel-Walcutt, Fiorella, and Malone (2012) conducted searches of Psychinfo, the Educational Resource
Information Center (ERIC), and Google Scholar using a predefined set of search terms and restricting the
dates of studies to between 2000 and 2010. Of the 4,515 articles returned, only 771 were retained as
relevant to the ISI criteria, which included relevance to military training. In addition to being coded
according to the dimensions mentioned above (e.g., when and where instruction occurs), instructional
strategies in the retained articles were rated by judges on their associated evidence for efficacy. Strategies
were ranked on a 0-9 scale based on multiple criteria of evidence, including empirical results and quality
of study, with judges’ ratings being checked for inter-rater reliability (Vogel-Walcutt, Malone & Fiorella,
2012). This process Yyielded 150 different instructional strategies that were included in the ISI. However,
only 13 of these strategies were given the highest rating of 7-9, which was reserved for strategies backed
by multiple randomized experiments with moderate to large effect sizes (d > 0.5; Cohen, 1992).

Table 1 presents these 13 strategies with a subset of the ISI dimensions. Missing dimensions include

hierarchical categorizations of the strategy type and the knowledge, skills, and abilities to be learned.
Included dimensions are (1) timing of instruction relative to the instructional event (pre/during/post), (2)
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setting of instruction (e.g., computer-based, classroom, or live-training), (3) group size (e.g., individual,
small group, or large group), (4) learner’s level of expertise (novice/journeyman/expert), (5) knowledge
type targeted (declarative/procedural/conceptual/integrated), and (6) rating of evidence for efficacy. Each
of these dimensions has previously been described in detail (Vogel-Walcutt, Fiorella & Malone, 2012),
but it is outside the scope of this chapter to evaluate the ISI framework or methodology. For the present
purposes, it is important to note that the ISI represents a serious attempt to frame the landscape of
instructional strategies, and as such it has implications for the study of learner models. The purpose of this
chapter is to consider the alignment of learner models to the instructional strategies in Table 4-1.

Table 4-1. Top 13 instructional strategies from the ISI

Name Time  Setting Group Size Level Knowledge Rating
Goal Setting Pre Any Individual Novice Declarative 7
Scaffolding During Any Individual Novice Declarative 8
Distributed Practice During Any Individual Novice Declarative 8
Massed Practice During Any Individual Novice Procedural 8
Adaptive Instruction During Classroom Individual Novice Conceptual 8
Multimedia Instruction During Computer-based Individual Novice Conceptual 8
Intelligent Tutoring Systems (ITS) During Computer-based Individual Novice Integrated 8
Affective ITS During Computer-based Individual Journeyman Conceptual 7
Bayesian Approach During Computer-based Individual Novice Conceptual 7
Peer Learning During Classroom Large group Novice Conceptual 7
Pedagogical Agent During Computer-based Individual Novice Integrative 7
Self Reflection Post Classroom Individual Novice Conceptual 7
Self Assessment Post Classroom Individual Journeyman Integrative 7

However, even a quick inspection of Table 4-1 reveals that these “strategies” are not equally comparable.
Adaptive Instruction is properly viewed as a category that includes ITS, affective ITS, Scaffolding, and
the Bayesian Approach, so it arguably could be excluded from further discussion. Likewise, ITSs are a
vehicle for delivering strategies; there is no a priori strategy associated with ITSs, except that they are
somehow individually adaptive. Finally, the Bayesian Approach is a specific modeling formalism, not a
strategy. Although some of the others are not well-defined “strategies” in a strong sense, they are
identifiable with strategies, such as Multimedia Instruction (optimal mode of presentation), Pedagogical
Agent (social enhancement of learning), and Affective ITS (learning enhancing affect). Therefore, only
the following ten strategies will be considered with respect to learner models in the remainder of this
chapter. These ten strategies form three natural groupings of self-regulated learning strategies (Goal
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Setting, Self-Assessment, and Self-Reflection), social constructivist strategies (Scaffolding, Affective
ITS, Peer Learning, and Pedagogical Agent), and memory-enhancing presentation strategies (Distributed
Practice, Massed Practice, and Multimedia Instruction). We discuss each of these in turn.

Self-Regulated Learning Strategies

Three of the above IS strategies are aligned with the four phases of self-regulation: planning/goal setting,
monitoring, control, and reflection (Pintrich, 2000). As we proceed, it is important to note that, in a tutor-
student or teacher-classroom context, these four phases may be enacted in a distributed way. For example,
while the student may have set the initial learning goals, the tutor may be monitoring the student’s
progress and controlling strategies to facilitate the student’s progress. E-learning environments likewise
have the same potential to distribute and scaffold self-regulation strategies.

The four phases of self-regulation may manifest in several ways. At any point during the learning session,
learners may set goals for learning or goals for performance. During the learning session, learners may
monitor their progress toward goals (e.g., judgments of learning or number of pages read). Depending on
perceived progress towards goals, learners may invoke a number of control strategies (e.g., paraphrasing,
summarizing, note-taking). Finally, learners may reflect on their performance in a more holistic sense and
make corresponding attributions (e.g., the material is difficult so this took a long time). Although the four
phases above were described from a cognitive viewpoint, the same phases can be applied to self-
regulation of motivation/affect, behavior, and learning context (Pintrich, 2000). The following sections
describe these four phases in more detail along with the learner model variables needed to support them.

Goal Setting

Reviews of goal setting have found that the specificity, proximity, and difficulty level of goals influence
the effects of goal setting (Schunk, 1990; Locke & Latham, 2002). Expended effort increases linearly
with task difficulty until the limits of ability are reached. Moreover, specific and difficult goals lead to
higher performance than general goals like “Do your best.” While general goals reference no objective
criterion and so may be ambiguous, specific goals allow a better determination of the required effort and
whether success has been achieved. Proximal goals likewise lead to better performance, because progress
towards proximal goals is easier to determine than it is for distal goals.

Four mechanisms have been identified that explain the effect of goals on performance (Locke & Latham,
2002). First, goals focus attention of goal-relevant activities. This can help learners ignore information
that is irrelevant to the goal. Second, goals activate relevant schemas and procedures for attaining the
goal. In cases where the task is familiar, planning and execution will be largely automatic. Third, as
mentioned above, level of effort is directly proportional to perceived difficulty. Therefore, more difficult
goals can lead to greater effort expended. Fourth, in tandem with increased effort, difficult goals tend to
increase the amount of time spent on a task. Given these basic mechanisms involved with goal setting, it
makes sense to design instruction so that the performance of the learner is maximized. A fuller
description of variables that interact with these mechanisms is reviewed by Locke and Latham (2002).

With these basic principles in mind, it is straightforward to outline some capabilities for a learner model
that supports goal setting. First, the learner model should support setting goals before the session that are
specific, difficult, and proximal. Thus, ideally, the learner model should not just be used to store arbitrary
goals in memory, but should also be used to assess these goals with respect to the student’s ability level
and the nature of the domain. To prevent goals that are vague, too easy/too difficult for the student, or too
distant for the learning session, the learner model should support both evaluation of goals and adaptive
guidance to give students feedback on goals. For example, if the goal is too vague, the system might say,
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“That seems a little vague. How about a more specific goal?” or if the goal is too difficult, the system
might say, “That’s a good long-term goal, but why don’t you simplify it to make it achievable in the
amount of time you have?” Of course, assessment of the dimensions of specificity, difficulty, and
proximity require complementary modeling of the domain, and the specific feedback offered requires
complementary pedagogical modeling (though of a relatively limited sort). Furthermore, if the learner
model contains longitudinal information about the student and their previous goals, this information could
also be applied to the current situation. For example, if the current situation were similar to a previous
situation, the system could remind the user of the associated goal from that previous situation.

Self-Assessment

Self-assessment, by which some criterion (e.g., a goal) is used as a reference to determine progress, is
central to monitoring in self-regulated learning. Criteria range from task-specific, as discussed above, to
general goal orientations (e.g., mastery and performance goals) (Pintrich, 2000). Externally supplied
feedback that link progress towards goals to student strategy use has been found in multiple studies to
promote skill and self-efficacy, both when the product of learning and the process of learning are
emphasized (Schunk, 1990). Self-assessments may also supply feedback by evaluating level of
understanding, personal interests, effort, strategies, history of improvement, and perceived strengths and
weaknesses, while fostering students’ sense of control over their learning (Paris & Paris, 2001). In a
review of the principles of self-assessment, Paris and Winograd (1999) identify three ways in which self-
assessment can improve learning. First, awareness of different ways of learning increases when the
learning styles and strategies of others are compared to those of the self. Second, efficient allocation of
attention and effort requires identifying weaknesses and gaps in knowledge. Finally, self-assessment
promotes a sense of self-efficacy and control by promoting effective monitoring and use of repair
strategies.

A learner model for self-assessment should incorporate both task-specific and general goal orientations.
Task-specific self-assessment is clearly yoked to task goals, as discussed above for goal setting. Thus,
task-specific self-assessment involves periodic judgments of progress, effort, effectiveness of employed
strategies, and perceived strengths and weakness with regards to specific, proximal, and appropriately
difficult goals. How best to represent these quantities is an open question. While some are easily
considered as quantities on an ordinal scale (e.g., progress, effort, and effectiveness), in order for a learner
model to be highly useful, it should support specific guidance and scaffolding of self-assessment. For
example, if the learner notes that some strategies being employed are not effective, the system should be
able to comment on the applicability of that strategy in the current context and suggest alternative
strategies if appropriate. Such specific remediation is necessary to handle situations where the learner is
using the correct strategy in name but is applying the strategy incorrectly. Thus, the learner model should
be able to infer strategy use from learner behavior or be able to use self-report (e.g., natural language
input) to identify what strategies have been used by the learner.

Self-Reflection

Self-reflection may be considered in terms of the more general goal orientations described above, such as
personal interests, history of improvement, and strengths and weaknesses in a less specific and distal
context. According to Zimmerman (2002), self-reflection occurs after the learning task but may involve
comparisons between self-performance and performance of others or some other standard. These
comparisons imply both a backward-looking judgment (at overall performance) and a forward-looking
judgment (what performance remains to be achieved). Although arguably these judgments could take
place during the learning task, self-reflection also includes attributions that explain overall performance
and thus may be considered distinct from self-assessment (Pintrich, 2000; Zimmerman, 2002).
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Attributions are causal beliefs about performance that explain performance based on factors that are either
outside or within the learner’s control. For example, the attribution, “I failed because I’m a stupid person”
is a maladaptive attribution because it implies that change is not within the learner’s control.
Alternatively, adaptive attributions cast failure in terms of specific decisions, like improper strategy use.
As reviewed by (Pintrich, 2000), adaptive attributions have been found to increase deeper cognitive
processing and improve motivation, affect, and effort.

The general goal orientations involved in self-reflection require tracking learners over longer periods of
time. Relevant variables include personal interests, history of improvement, and strengths and weaknesses
in a less specific and distal context. The temporal scale of self-reflection suggests that the variables in
guestion will change very slowly. Arguably, self-reflections at this temporal scale are more motivational
and affective than cognitive. This implies that a given learner model for general self-reflection can make
use of self-report and attempt to update these variables less frequently.

It is important to consider how the learner model of these variables may be used to support motivational
or affective functioning. Ideally a system would be able to enhance motivation by presenting the learning
task in a way that capitalizes on the learner’s interests. When appropriate, the system can use the learner’s
own sense of personal improvement as a motivational/affective intervention, e.g., “Don’t give up now —
you were just saying how far you’ve come.” In addition, learner models that track attribution may be
important for preventing maladaptive attributions. For example, if the learner articulates a maladaptive
attribution during self-refiection, the system would ideally challenge the maladaptive attribution and
suggest an alternative explanation.

Table 4-2 summarizes the important variables for learner models.

Table 4-2. Learner model variables for self-regulated strategies

Strategy Variables
Specificity
Goal setting Difficulty (relative to ability and domain)
Proximity
Progress

Effort
Strategy Effectiveness
Perceived Strengths and Weakness

Self-Assessment

Personal interests
Self-Reflection History of improvement
Strengths and Weaknesses (Traits)

Social Constructivism

Six of the ISI strategies displayed in Table 4-1 are deeply aligned with learning in a social context.
Vygotsky (1978, p. 88) championed the importance of social contexts in the development of learning,
writing that “human learning presupposes a specific social nature and a process by which children grow
into the intellectual life of those around them.” Although just one of the many forms of social
constructivism (Palincsar, 1998), Vygotsky’s framework is philosophically aligned with many
instructional strategies. Perhaps the single most influential idea in Vygotsky’s framework is the zone of
proximal development, which distinguishes between two levels of ability. The first level describes what
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children can do on their own. The second level, the zone of proximal development, describes what
children can do with the assistance of others. Vygotsky’s central claim is that abilities in the zone of
proximal development will mature and move into the first level, or in his own words, “What is in the zone
of proximal development today will be the actual developmental level tomorrow — that is, what a child
can do with assistance today she will be able to do by herself tomorrow” (Vygotsky, 1978, p. 87). The
zone of proximal development is consistent with accounts in linguistics and cognitive psychology, which
emphasize that “comprehension ... must precede production” (Wood, Bruner & Ross, 1976, p. 90). It is
well known that children’s comprehension, or receptive capability to comprehend language, precedes
their productive capability. Indeed, this is just another way of stating the zone of proximal development —
children can comprehend the necessary information with the assistance of others before they can produce
it on their own. Instructional strategies inspired by social constructivism and their requisite student
models place great emphasis on the adaptive, collaborative, and social nature of learning.

Scaffolding and Affective ITS

The instructional strategy that is perhaps the most aligned with social constructivism is scaffolding. In
scaffolding, a student’s progress in a learning task is supported by a more experienced other (i.e., person,
agent, system) such that scaffolding occurs in the student’s zone of proximal development. Scaffolding
can be seen clearly in a number of educational interventions in close concert with the instructional
strategies of modeling and fading (Collins, Brown & Holum, 1991). In modeling, the instructor
demonstrates the learning task, while in scaffolding, the student attempts the task with instructor support.
By the time the student has reached fading, the student can engage the task with no (or extremely little)
instructor support. This paradigm is also sometimes called ““I do, we do, you do.” If scaffolding is viewed
as a blend of student actions and instructor interventions, then it is clear that it is a continuum with
modeling and fading at opposite ends. Therefore, modeling and fading can be considered to be subsumed
under scaffolding, representing the two extremes of scaffolded support. An early and profoundly
influential study of naturalistic human tutoring describes the scaffolding process in great detail (Wood et
al., 1976). According to Wood and colleagues, scaffolding is meant to draw the student into participating
in the learning task to the point where the tutor can provide feedback. Over time, the tutor-provided
feedback diminishes as the student achieves mastery. A high-level description of the mechanisms required
to achieve scaffolding are described as follows:

The effective tutor must have at least two theoretical models to which he must attend. One is a
theory of the task or problem and how it may be completed. The other is a theory of the
performance characteristics of his tutee. Without both of these, he can neither generate feedback
nor devise situations in which his feedback will be more appropriate for this tutee in this task at
this point in task mastery. The actual pattern of effective instruction, then, will be both task and
tutee dependent, the requirements of the tutorial being generated by the interaction of the tutor’s
two theories. (Wood et al., 1976, p. 97)

Virtually all known ITSs recognize and embody these two models, generally known as the domain and
learner models, which underscores the importance of scaffolding as an instructional strategy. With respect
to specific variables in learner models, Wood et al. further specify the processes and mechanisms of
scaffolding as consisting of six components:

1. Recruitment. The tutor draws the student into the task by gaining their attention, stimulating their
interest, and fostering a level of commitment to the learning task.

2. Reducing degrees of freedom. The tutor reduces task difficulty to the appropriate level for the
student’s ability level.
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3. Direction maintenance. The tutor keeps the student on task by providing affective and
motivational support when needed.

4. Marking critical features. The tutor provides feedback, hints, and other kinds of guidance that
help the student progress in the learning task.

5. Frustration control. The tutor prevents negative affect that would impede successful learning.

6. Demonstration. The tutor models the learning task based on the student’s current attempt,
emphasizing the task components where the student is having trouble.

The emphasis on and seamless interweaving of affective and motivational considerations into the above
account of a scaffolding is noteworthy. It suggests that scaffolding divorced from these considerations has
drifted away from the evidence provided by natural observations of tutoring. We therefore consider what
capabilities a learner model should provide to support this entire account of scaffolding, component by
component.

Recruitment requires a model of attention such that the presence or absence of a student’s attention can be
determined. It further requires a notion of student interest in a general sense (i.e., what do
students/humans generally find interesting) and/or a notion of a particular student’s interests (see Self-
Reflection above). In either case, a model of interest informs tutor actions that make the connection
between student interests and the learning task manifest to the student. Finally, recruitment involves
fostering a sense of commitment to the learning task. Commitment may be relative to the student’s goals,
and so drawing a connection between the learning task and the student’s goals provides one approach to
fostering commitment (see Goal Setting above). However, commitment may also derive from social
norms and impulses, such as a desire to please the tutor or otherwise appear competent and
knowledgeable. We defer discussion of such matters to the Pedagogical Agent section below.

Reducing the degrees of freedom is commonly supported in learner models that assess the ability level of
the student and in domain models that represent the difficulty of the material. Ideally, the learner model
supports the selection of learning tasks at the appropriate level of difficulty for the student given the
student’s prior knowledge and progress. Direction maintenance, the third component of scaffolding,
entails a model of on- and off-task behavior. Furthermore, the tutor should be able to determine if off-task
behavior has resulted from a misunderstanding of the task or if off-task behavior has resulted from
negative affective/motivational states leading to an overt abandonment of the learning task or a covert
abandonment of the learning task, i.e., “gaming the system” (Baker, Corbett, Koedinger & Wagner,
2004). This distinction should inform whether the tutor uses a cognitive or an affective-oriented strategy
to redirect the student to on-task behaviors.

The fourth component, marking critical features, is commonly implemented in learner models that have
an overlay model structure (see Pavlik et al., chapter 5 in this volume). Overlay models typically associate
mastery scores with elements of the domain model and update these scores based on student progress.
Thus, overlay models allow the system to provide feedback to answers as well as hints that suggest what
the student should consider next.

Frustration control, the fifth component, again requires a model of learner affect, both in a general sense
and in an individualized sense. A general model of frustration includes such variables as affective traits,
affective states, and local/global models of task difficulty. Individualized models of frustration may track
whether a student has a greater or lesser tendency to become frustrated than the norm (a trait) and with the
appropriate sensors even predict frustration in real time at a point in the learning session (a state). Task
difficulty models of frustration may include the correlation amongst task difficulty, time on task, and
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frustration, taking into account that frustration may accumulate over extended periods of task difficulty.
Although some analyses of intelligent tutoring systems have found that frustration plays a minor role
(Baker, D’Mello, Rodrigo & Graesser, 2010), this could be attributable more to the ability of such
systems to maintain appropriate task difficulty rather than to the irrelevance of frustration in learning
contexts.

Finally, demonstration (modeling the learning task) requires knowing both when to demonstrate as well
as how to demonstrate. Knowing how to demonstrate is a matter decided by the domain model of the
learning environment. Knowing when to demonstrate, on the other hand, is an important component of
the learner model that relies on tracking the student’s ability as well as affective and motivational factors.
If the current learning task is judged by the system to be outside the abilities of the student even when
hints and feedback are given, then demonstration is warranted both to alleviate this impasse and prevent
demotivation and negative affect. An overlay model that accurately assesses the difficulty of the current
task, either by comparing it to tasks the student has already mastered or by considering the student’s
mastery of the component abilities underlying the task compared to other students, may be helpful in
determining when demonstration is necessary.

Pedagogical Agent

Pedagogical agents are computer characters who play a social role in a given learning environment. As
such, pedagogical agents fit well into the social constructivist perspective. Typically, pedagogical agents
are tutor agents, but they may also be peer agents (see Peer Learning below). Given the prominence of
scaffolding as an instructional strategy, tutor agents are perhaps best considered with regard to the six
components of scaffolding considered above. Since humans typically treat computers as social agents and
comparably to other humans (Nass, Steuer & Tauber, 1994; Reeves & Nass, 1996; Nass & Moon, 2000),
tutor agents have the potential to transparently replace human tutors in computer-based learning
environments like intelligent tutoring systems. But if this is the case, one might inquire whether a learning
environment, by virtue of running on a computer, is by default imbued with some sort of agency in the
mind of the user. If that is the case, then one may ask what pedagogical agents add over and above this
default social agency.

A number of additional contributions by pedagogical agents have been described (Johnson, Rickel &
Lester, 2000). Central to these contributions is the presentation of the agent as an animated agent, and
sometimes as an animated agent in a virtual environment. The first contribution is the ability to present
interactive demonstrations, whereby the student can watch the tutor agent demonstrate a motor skill or
complex manipulation of an object. Unlike a pre-recorded movie, such a demonstration is potentially
parameterizable and could be idealized according to the sixth component of scaffolding mentioned above.
The second contribution of animated pedagogical agents (APAS) is the ability to use gaze and gestures to
guide student attention (Lester et al., 1999). The ability to direct attention is important in the scaffolding
components of recruitment, direction maintenance, and marking critical features. The third contribution,
nonverbal feedback, may help with marking critical features. Finally, APAs may convey and elicit
emotions, which support the scaffolding components of recruitment, direction maintenance, and
frustration control. Given these considerations, it is debatable whether the addition of a pedagogical agent
requires changes in the learner model that are not already accounted for by the requirements for
scaffolding. If anything, the addition of pedagogical agents may have more implications for the
pedagogical model because of the additional capabilities they provide for delivering instructional and
affective cues.

It is important to note that APASs have the potential to support scaffolding, but only if they are designed to
take advantage of these capabilities. For example, one study that did not take advantage of these
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capabilities as described above found essentially no differences between three versions of an intelligent
tutoring system, namely, animated agent text only, versus synthesized speech only (Graesser et al., 2003).
However, a similar study that used a pre-recorded human voice and gestures as the tutor worked through
examples found significant learning gains compared to a text-only condition (Atkinson, 2002). Another
study manipulated persona to create an emotionless “expert” agent and an emotion-displaying “mentor”
agent for two versions of the same learning environment (Baylor & Kim, 2005). That study found that
while the expert agent promoted learning gains and was perceived as credible, the mentor agent not only
promoted learning gains but also increased self-efficacy. These various studies highlight the potential for
APA:s to support scaffolding.

Peer Learning

Although peer learning can take many forms, a well-known approach is “reciprocal teaching” (Palincsar
& Brown, 1984; Palincsar, 1986). In this program, as instructors read the text, they think aloud to model
their comprehension process to the student including their reasoning for when to use each strategy. In a
classic modeling-scaffolding-fading paradigm, the instructor and student take turns as the student
gradually learns the strategies and practices them while the instructor provides feedback. More
specifically, students read paragraph by paragraph and generate questions, summarize, clarify terms and
concepts, and make predictions about what is coming up in the text. These practices becomes a dialogue
as the instructor comments on and contributes to the student’s questions, summaries, and other activities,
or as other students make similar contributions in small group sessions. In other words, these activities are
situated in an interactive dialogue among instructor and students. In this way, reciprocal teaching creates
multiple opportunities for learning: one in the role of the answering student, one in the role of an
observing student, and one in the role of the teacher. Each of these roles has a slightly different
implication for learner models.

Like tutor agents, peer pedagogical agents may assume social roles in a given learning environment (Kim
& Baylor, 2006b), including teachable agent and peer agent. Teachable agents typically have a knowledge
representation that human students can directly manipulate (Reif & Scott, 1999; Biswas, Schwartz,
Leelawong & Vye, 2005). A well-known teachable agent system is Betty’s Brain (Biswas et al., 2005;
Leelawong & Biswas, 2008), in which students directly manipulate a concept map (the brain) in order to
teach Betty. In Betty’s Brain, the domain modeled is typically a causal system in nature, such as
ecosystems, the circulatory system, or climate change. Human students use an e-textbook to learn the
information to teach Betty. Once a student teaches Betty by building a concept map, Betty can employ
gualitative reasoning to reason through a chain of links. This allows Betty to answer questions, take a
quiz, or explain her reasoning. Recent experiments indicate that students who teach Betty spend more
time on learning tasks compared to students working with the same system but without Betty (Chase,
2011), suggesting that a teachable agent can increase student motivation to learn. The learner model for
Betty’s Brain mostly centers around the concept map, which is a kind of overlay model on an unseen
“expert map,” and so learner modeling in this scenario is largely congruent with the typical case in
intelligent tutoring systems. However, the special role of human student as teacher can create new
opportunities for learner modeling, including teaching-based activities like using the e-book, building the
concept map, and taking quizzes. Kinnebrew et al. (2013) explore patterns of student interaction and their
implications for student learning. Since the human student can decide what task to perform at any time,
they may exhibit learning-promoting behaviors, like careful reading, concept map building, and quiz-
taking, or they may exhibit maladaptive behaviors like rapidly alternating between skimming the text,
incremental concept map building, and many cycles of quiz failing and re-taking. In systems like Betty’s
Brain, it becomes even more important to track user interactions to infer what self-regulation strategies (if
any) the student is using. These variables are complementary to the self-regulation variables described in
Table 4-2.

31



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

Peer agents, unlike teachable agents, do not actually learn but instead model behavior to the human
student. Peer agents can give answers, express misconceptions, or display affect (Millis et al., 2011).
Although multiple dimensions describing peer agents have been proposed (Kim & Baylor, 2006b),
perhaps the two most important dimensions are competence and responsiveness. Competency refers to the
correctness or quality of the information provided by the peer agent. Responsiveness refers to the
initiative the peer agent demonstrates, typically whether it proactively gives advice or not. Note that these
dimensions may be applied symmetrically to the human student who is a peer of the agent. A study
examining competency and responsiveness found differential effects according to learning outcomes and
self-efficacy (Kim & Baylor, 2006a). Students with competent peer agents learned more, but students
with less competent peer agents expressed greater self-efficacy. Students with proactive peer agents
scored higher on tests of recall than students with low responsive peer agents. While overall these results
may suggest that peer agents should be competent and proactive, the study’s authors argue that the human
student’s ability level should be considered when setting the competency or responsiveness of a peer
agent. One system combines this suggestion with teachable agents to create a system that enters one of
three modes (regular ITS, teachable agent, and vicarious learning) depending on the current ability level
of the student (Millis et al., 2011). Significant differences in learning gains in delayed post-test have been
found between vicarious and non-vicarious conditions, and it is hypothesized that high ability students
should benefit most from teaching agents, and low ability students should benefit most from vicariously
observing peer agents model correct behavior.

Table 4-3 summaries important learner variables for the instructional strategies described in this section.
Parentheses indicate variables that overlap with previously stated variables in Table 4-2 or that are
typically considered part of the domain model.

Table 4-3. Learner model variables for social constructivist strategies

Strategy Variables

Attention

General interest

Specific student interest (self-reflection)
Commitment (goal setting)

Recruitment

Student ability

Reducing Degrees of Freedom Task difficulty (domain model)

Direction Maintenance On/off task behavior
Marking Critical Features Domain model
Affective traits

Affective states
Session difficulty (domain model)
Task difficulty (domain model)

Frustration Control

Task difficulty (domain model)

Demonsration Student ability

Teachable agents Patterns of interaction to infer strategies

Peer agents Student ability
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Improving Memory

Memory is one of the longest studied topics in the history of psychology (Ebbinghaus, 1913). The range
of topics in memory research is immense, ranging from language-based effects to multimedia effects
(Byrne, 2008). For the purposes of the present discussion, two topics are particularly relevant, namely,
how the temporal structure of practice affects recall and how multimedia presentation affects recall.

Distributed Practice and Massed Practice

The temporal structure of practice is primarily concerned with (1) the duration of study for an item, (2)
the temporal interval, or spacing, between repeated presentations of an item, and (3) the retention interval,
or time between the last study episode and a retention test (Cepeda, Pashler, Vul, Wixted & Rohrer,
2006). Given these distinctions, massed practice describes practice that emphasizes duration of study of a
single item, whereas distributed practice describes practice that emphasizes the spacing between repeated
presentations of an item. A recent meta-analysis reports two main finds with respect to distributed and
massed practice (Cepeda et al., 2006). First, distributed practice resulted in more correct responses than
massed practice for retention intervals ranging from less than 1 min to over a month when study time was
held constant. It should be noted that this comparison to “pure” massed practice is unlikely to be
consistent with realistic cramming before an exam, which would involve a single session of distributed
practice for particular items. Second, for distributed practice, increasing the temporal interval between
practices increases accuracy at retention up to a point, but then decreases accuracy after that point, and
this optimum spacing increases as the retention interval increases. In other words, for a given retention
interval, there is an optimum spacing of practice that maximizes recall. For longer retention intervals, the
optimum spacing is longer, and the optimum spacing is shorter for shorter retention intervals. These
temporal effects suggest that it is important for learner models to track the presentation history of
individual items in order to maximize recall.

Moreover, available research also suggests that individual items can be optimally spaced to maximize the
efficiency of learning per unit time (Pavlik & Anderson, 2005, 2008). The basic version of this model,
which exhibits good fits to five different human experiments, is based on the declarative memory model
of Adaptive Control of Thought-Rational (ACT-R) (Anderson & Lebiere, 1998). Unlike the ACT-R
model, which assumes that forgetting is constant, Pavlik and Anderson’s basic model assumes that the
forgetting rate is a function of the activation of an item. An elaborated version of this basic model
considers how to best balance spacing with studying, such that recall is optimized for a given period of
study (Pavlik & Anderson, 2008), which we summarize below. This optimization is important because
spacing and studying are somewhat at odds. Longer spacing improves long-term recall on retention tests,
but short-term is likely to increase forgetting and, by implication, restudying. However, restudying takes
time, so a successful recall trial takes less time than an unsuccessful trial that necessitates restudying.

Using the extended ACT-R model, Pavlik and Anderson define a learning rate measure by which they can
select the optimal item for practice on any given trial. The learning rate is based on the predicted
activation gain for an item at the retention interval, but normalized for the time cost to practice that item.
At any given moment, items will have different learning rate values, but one will be closest to its
maximum learning rate. Although the items are not explicitly compared with each other to select the
optimal item, because the basic model limits the gains of activation for items that are already highly
activated, the model has a preference for items with relatively low activation. In experimental
comparisons, the optimized schedule of practice was significantly better in terms of recall and latency,
with large effect sizes, than a flashcard-based system and another optimized schedule that predicted recall
as a function of practice. These findings suggest that both the presentation history of items (correct trials
and incorrect+restudy trials for each item) and the time cost to practice any item should be considered to
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optimize recall. Specific learner model variables include item probability of correctness, response latency,
and failure latency.

Multimedia Instruction

Multimedia consists of auditory and visual representations of words and images. Examples of multimedia
include illustrated books, television, and computer-based learning environments. According to Mayer
(2008), the fundamentals of multimedia learning are that (1) we have dual channels for processing
auditory and visual stimuli, (2) we have limited capacity to process information at a given point in time,
and (3) we learn deeply by organizing and integrating information during learning. Mayer elaborates
these fundamentals in ten principles that together optimize the active processing of information by
respecting the limitations of cognitive processing.

We briefly summarize these ten principles, each of which specifies how information should be presented
to the learner:

1. Extraneous material should be reduced to the extent possible
2. Essential material should be highlighted by overviewing the main ideas

3. Redundancy in separate channels helps learning, but redundancy in the same channel hurts
learning.

4. Spatial contiguity should be preserved, e.g., by placing words next to their respective images.

5. Temporal contiguity should be preserved by synchronizing presentation of related information
that is in different channels.

6. Material should be presented in small chunks.

7. Pretraining should be used to basic vocabulary and concepts before attempting to teach a complex
system.

8. Spoken text and images should be used instead of printed text and images.

9. Spoken text and pictures should be used instead of either alone.

10. Material should be presented in a personalized conversational style.
The extent to which the principles of multimedia instruction align with learner models is somewhat
suspect. These principles state general constraints with regard to human cognition, and so do not represent
variables that would be tracked for an individual in order to optimize instruction for that individual. The
theory of learning styles has been proposed, by which individuals may vary in how they best learn from
different modes of information presentation, but little evidence has been found to support these claims
(Pashler et al., 2008). Therefore, multimedia principles may be best applied to the domain or pedagogical
models — in the design of the instruction itself.

Table 4-4 summarizes the important learner model variables discussed in this section.

34



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

Table 4-4. Learner model variables for improving memory

Strategy Variables

Number of trials

Practice Delay between trials

Probability of correctness
Optimal practice Response latency
Failure latency

Conclusion

In this chapter, we examined the top ten strategies of the I1SI from the perspective of learner models. Most
of the ten strategies could be associated with concrete variables that a learner model must include in order
to support that strategy. This was true for the self-regulated strategies that included variables for proximal
and distal goals, personal interests, history of improvement, attributions, and strategy use either through
self-report or inference from student behavior. The social-constructivist strategies include the classic
learner model variables associated with scaffolding such as overlay models on the domain that specify the
difficulty level of material and the student’s ability, student interests, affect, goals, and on-off task
behavior. Pedagogical agents, while providing potential affective and gestural support for scaffolding,
have little correspondence to the learner model except perhaps by virtue of learner preferences. Peer
learning has different implications for learner models depending on whether the peer is a teachable agent
(with the human student as the teacher) or a collaborative peer. Teachable agents create a context for a
host of new variables tracking the strategies and behaviors used by the human student (e.g., quizzing the
teachable agent or studying an e-book in preparation of teaching the agent). Use of collaborative peer
agents may benefit from learner models that track the ability level and self-efficacy of the human student,
but this question awaits future research. Memory-enhancing presentation strategies likewise differ on
their learner modeling needs. Distributed practice (which subsumes massed practice in real-world
contexts) at the extreme can require extensive item level variables that track the accumulation of practice
and the rate of forgetting. Multimedia instruction, in contrast, is guided by a set of principles that are not
learner-specific. As a result they are perhaps best situated outside the learner model.
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Introduction

Generally, an ITS is considered to have four major components (Elsom-Cook, 1993; Graesser, Conley &
Olney, 2012; Nkambou, Mizoguchi & Bourdeau, 2010; Psotka, Massey & Mutter, 1988; Sleeman &
Brown, 1982; VanLehn, 2006; Woolf, 2008): the domain model, the student model, the tutoring model,
and the tutor-student interface model.

The domain model contains the set of skills, knowledge, and strategies of the topic being tutored.
It normally contains the ideal expert knowledge and may also contain the bugs, mal-rules, and
misconceptions that students periodically exhibit. It is a representation of all the possible student
states in the domain. While these states are typically tied to content, general psychological states
(e.g., boredom, persistence) may also be included, since such states are relevant for a full
understanding of possible pedagogy within the domain.

The student model consists of the cognitive, affective, motivational, and other psychological
states that are inferred from performance data during the course of learning. Typically, these
states are summary information about the student that will subsequently be used for pedagogical
decision making. The student model is often viewed as a subset of the domain model, which
changes over the course of tutoring. For example, “knowledge tracing” tracks the student’s
progress from problem to problem and builds a profile of strengths and weaknesses relative to the
domain model (Anderson, Corbett, Koedinger & Pelletier, 1995). Since ITS domain models may
track general psychological states, student models may also represent these general states of the
student.

The pedagogical model takes the domain and student models as input and selects tutoring
strategies, steps, and actions on what the tutor should do next in the exchange with the student to
move the student state to more optimal states in the domain. In mixed-initiative systems, the
students may also initiate actions, ask questions, or request help (Aleven, McLaren, Roll &
Koedinger, 2006; Rus & Graesser, 2009), but the ITS always needs to be ready to decide “what to
do next” at any point and this is determined by a tutoring model that captures the researchers’
pedagogical theories. Sometimes what to do next implies waiting for the student to respond.

The tutor-student interface model interprets the student’s contributions through various input
media (speech, typing, clicking) and produces output in different media (text, diagrams,
animations, agents). In addition to the conventional human-computer interface features, some
recent systems have had natural language interaction (Graesser, D’Mello, et al., 2012; Johnson &
Valente, 2008), speech recognition (D’Mello, Graesser & King, 2010; Litman, 2013), and the
sensing of student emotions (Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser,
2010; Goldberg, Sottilare, Brawner & Holden, 2011).

This review focuses on the approaches to student modeling, with particular attention to the implications of
these models for design of GIFT. GIFT similarly adopts this four-part distinction, but refers to the models
as modules, since GIFT is an actual software framework that reifies each of these models with modules in
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the software. GIFT also includes an optional sensor module, as a way to measure user states during
interactions with the tutoring system.

This chapter specifically focuses on the student model aspect of the ITS. In order to give a clear
perspective on the student model, it is essential to also address the domain, pedagogical, and interface
models because the models do not function in isolation. The connections between domain and student
models are tightly coupled. Less tightly coupled, but still substantial, is the dependence of the pedagogical
model on the student model. In contrast, the tutor-student interface model, while it clearly relates to the
domain and pedagogical models, is beyond the scope of this article. The structure of the domain model
may be necessary to consider in the context of student modeling, and to some small degree, the
pedagogical model. However, this chapter does not describe the complications of mapping domains to
interfaces or describing how different interfaces reify similar pedagogy. We leave interface issues to
subsequent volumes of this book series.

Assessing a Student Model - Criteria

When assessing models, it is appropriate to emphasize the limitations of complexity and fidelity of
representation. Consequently, all models of learning are wrong in certain ways because they cannot hope
to capture the full complexity of the real student’s mind. In the GIFT system, we want the designer to
implement the most useful student models, not necessarily the most correct student models. For example,
we might suppose that a multilevel neural network, such as the Leabra architecture (O’Reilly, 1998),
would be a more correct representation of a student. However, it would not be very useful because it
would be monumentally complex and impractical to use it for clear pedagogical inference and tracking of
the domain model. We therefore evaluate the student model options in regard to several criteria of
usefulness. These criteria include the following:

e Student model fit to data. This is a simple validity criterion that refers to how well the student
model can be used to simulate the quantitative and/or qualitative patterns of learning in real
students. Issues of model fit have been reviewed by Desmarais and Baker (2012) and more
generally by Schunn and Wallach (2005).

e Ease of understanding. The reality behind educational system design is that student modeling
methods need to be comprehensible to system designers and builders. Therefore, student
modeling techniques that require optimizing a Bayesian network using simulated annealing may
have limited applicability unless such complexity is easily approached by system designers. This
limitation of complex models parallels the tendency for complexity of student models in running
systems to lag behind the complexity of student modeling techniques presented in research. This
explains why existing systems are often less complex from systems invented 60 years ago
(Smallwood, 1962).

o Generality/flexibility. Many of the student models we review have only one or two primary
successful contexts, so some student models have limited generality. Generality may have a
downside in that more general models tend to be simpler, and therefore, lose power in specific
domains as they gain generality. To what extent can student models be reused in new contexts to
improve the adaptation to students? To what extent is a student model essentially chained to
specific domain content, so that after this domain content is learned, the student model is no
longer relevant?

e Cost of creation. Research often cites the high costs of creating content (Aleven, McLaren,
Sewall & Koedinger, 2006), and such costs also apply to student models. If a student model
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requires 2 years of data collection to determine the parameters, the cost may be prohibitive. The
issue of cost refers to person hours of production, while the issue of ease of construction involves
how skilled (professional degree) those workers need to be.

e Granularity. Grain-size may refer to steps, single problems, single curriculum units, multiple
curriculum units, whole domains, or multiple domains. Student models are typically applied to
pedagogical decisions at one or more levels of granularity. For example, a student model might
trace the state of the student within the steps of a problem, or how that state changes across
problems, units, or even different domains. One hypothesis we make in this chapter is that
different models may be more or less useful depending on the granularity of the pedagogical
decisions.

e Time scale. Time scale refers to the overall longevity of the student model.. A model of student
state at the step level might be created from only the current problem interaction, or it may take
into account prior actions in prior problems or earlier units. The time scale helps determine
whether an ITS system is actually a collection of independent units, or whether the student model
is cumulative across the domain as the student progresses.

e Learning gains in practice. Evidence of learning gains that are directly caused by pedagogical
inferences from the student model states is obviously an excellent feature for a student model.
However, it is very easy to argue that learning gains depend on far more than the student model,
since the pedagogical model and tutor-student interface feedback need to be appropriate for
learning gains. Furthermore, comparing learning gains carefully across different control
conditions, domains, research groups, and populations is difficult if not impossible to do in a
valid way.

To make the assessment according to these criteria requires us to group the student models into a
manageable number of categories whose members share deep similarities. One can make finer
distinctions in the categories we review, but these finer distinctions may not move us toward our goal of
making recommendations for GIFT. Finer distinctions do not highlight the overarching software
architectural issues involved in providing support for broad range of very different student models.

Programmed Student Models

Our first category has a long history that traces back first to Pressey in 1926, who is credited with the first
“teaching machine,” which was little more than a question and answer device with multiple choice
scoring and immediate feedback (Lumsdaine & Glaser, 1960). This initial start in the ‘‘teaching machine”
movement gained little attention until the 1950 when an explosion of automated teaching theories began
to emerge from various sources. Most notable was work by Skinner looking at linear programming of
instruction (not to be confused with the unrelated mathematical optimization procedure) and Crowder’s
work with branching programs (Thomas, Davies, Openshaw & Bird, 1963).

Skinner’s contribution came from his theory of behaviorism and the concept of error-free learning. While
a teaching machine with a linear program does provide feedback, the key to linear programming was to
provide a sequence of tasks where the sequence faultlessly provides the prerequisites in a serial order such
that a prepared student might be expected to proceed through the content without errors. To accomplish
this goal, detailed sequences of rule and exemplar practices are composed by the linear program designer.
These sequences can be derived from a task analysis that uses a rule by rule matrix to determine
associated rules as well as rules that need to be discriminated. From this rule matrix, the linear
programmer then lays out the faultless sequence, which is composed of several types of cloze (fill in the
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blank items) including examples, rules, generalizations, and discriminations in the domain (Lumsdaine &
Glaser, 1960; Thomas et al., 1963). Frequent reinforcement of prior learning was built into such
sequences.

One clear issue with linear programming is that it mandates that a single sequence is optimal for all
students. Crowder challenged this assumption with similar systems that branched extensively based on
the student responses, thus providing a basic means of individualizing instruction. Based upon student
actions, a student may be “branched” to a review, remediation, or additional content (Crowder, 1959;
Lumsdaine & Glaser, 1960; Thomas et al., 1963).

This category of student models as part of the discussion of ITSs raises the question of what we should be
counting as a student model. In other words, how smart does an “intelligent” tutoring system need to be to
qualify as a true ITS. While this question may have philosophical interest in that it deals with the general
question of what is intelligence, it does not seem to be a pragmatically helpful criterion. More sensibly,
we might ask how adaptive a system is by characterizing how much freedom the domain model allows in
measuring student states to infer one of many pedagogical choices. Typically, branched programming
student models offer less adaptivity because student states are hardcoded as triggers for specific
pedagogies since the development process for branched models handcrafts each state branch in the
student model space. Perhaps these systems do not qualify as ITSs, considering the student state space is
small and that pedagogical options are few.

Prior efforts such as this are particularly relevant since they help us see that new methods, such as
knowledge space theory (discussed further in the chapter), can be traced to antecedent methods of much
older pedigree. Indeed, sometimes these methods come back in similar form to their prior versions. For
example, work with “example tracing tutors” at the Pittsburgh Science of Learning Center (PSLC) seems
to involve a very advanced method for creating branching tutors by mapping out the possible “example”
paths a student may take in solving a problem. They argue that this work should be considered an ITS
because “example-tracing tutors are capable of sophisticated tutoring behaviors; they provide step-by-step
guidance on complex problems while recognizing multiple student strategies and (where needed)
maintaining multiple interpretations of student behavior.” (Aleven, McLaren, Sewall & Koedinger, 2009)

The main strength of programming methods is their simplicity of execution. Linear programming is the
perhaps the most simple, but arguably so simple that it misses the benefit of the many important
pedagogical moves that depend on attending to individual differences. Branched programming address
this shortcoming and is made easier when supported by technologies that allow branched program
authoring (Aleven et al., 2009). Where branched programming begins to break down is when branching
rules for addressing different student model states with different pedagogies become very sophisticated.
In this case, the fit of the branched programming model to student states becomes difficult to measure,
since it is idiosyncratic. Subsequent generality will then usually be very low. So, if a general system is
desired it makes sense to implement adaptation (pedagogy) using methods other than hard coding the
student states and their resulting pedagogy as branches in the domain model. We discuss many of these
alternative means for adaptation in the next sections.

Student models that consist of branching states now have a more than 50-year history. Despite their
shortcomings, they should be included in GIFT. Branched programming provides considerable power and
efficiency to a developer with a simple project, perhaps explaining why SCORM includes some simple
criterion based branching capability, with new proposals in the SCORM domain advocating deeper
personalization through more complex rule based branching (Rey-Lopez, Fernandez-Vilas, Diaz-
Redondo, Pazos-Arias & Bermejo-Mudz, 2006). However, the main advantage for robust support of
branching in GIFT may be in the potential ease of construction aspect. If GIFT provides a powerful and
easy mechanism to create adaptive branching tutors (perhaps by allowing the designer to graphically
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author possible student moves in the state space), there is the potential to attract a wider user base, with
consequent wider impact on the needs of the education and training community.

Overlay Student Models

The origin of overlay models is shrouded in history that reaches back to the heyday of behavioristic
thought in the late 50s and earlier. During these early years of educational software, designers were still
heavily influenced by the idea that speculating on “skills” and other unseen constructs was bad science, as
had been taught by Skinner. Fortunately however, some were beginning to speculate on deeper adaptivity
in “teaching machines.” In particular, Smallwood (1962) should probably receive credit for his work in
setting the stage for concept overlay models, Bayesian knowledge tracing (BKT), and economic
optimization of practice. To illustrate the groundbreaking nature of Smallwood (1962), it is useful to
guote a few points from the monograph where he proposes this structure (parenthetical comments added):

1. The decomposition of the subject matter into a set of concepts that the educator would like to
teach to the student. (Part of the domain model.)

2. A set of test questions, for each concept, that adequately tests the student’s understanding of the
concept. (Part of the domain model.)

3. An array of information blocks, for each concept that can be presented to the student in some
order (to be decided by the teaching machine)- and thus provide a course of instruction to the
student on the concept. (Part of the domain model.)

4. A model that can be used to estimate the probability that a given student with a particular past
history will respond to a given block or test question with a particular answer. (The student
model.)

5. Adecision criterion upon which to base the decisions mentioned in 3. (The pedagogical model.)

While Smallwood continued his explorations of optimal instructional policies (1971), Richard Atkinson, a
Stanford professor of psychology, who would later be nominated to head the NSF from 1975-1980 and
later head the University of California System, was busy over the 1960s testing a variety of Markov
models that captured learning in probabilistic state transition networks (Atkinson & Crothers, 1964;
Calfee & Atkinson, 1965; Groen & Atkinson, 1966). Atkinson endorsed many of Smallwood’s ideas, but
perhaps described them in a more accessible form in his “theory of instruction,” which he hoped to
formalize in computerized instructional systems (Atkinson, 1972a). Furthering these goals, he produced
an excellent demonstration of the utility of a single skill per item Bayesian overlay model, which he used
to optimize the learning of German vocabulary items. The strong results supported a student model,
which individualized instruction by using different parameters for each vocabulary item to control
practice sequencing, obtaining 79% performance at a 1-week test, compared to 38% performance for a
random sequence of practice (Atkinson, 1972b).

Work such as Atkinson’s, where there is a relatively complex mathematical model that tracks a collection
of independent item’s correctness (the simplest overlay), has been further exemplified by work with the
optimization of Japanese-English language pairs (Pavlik Jr. & Anderson, 2008) by taking account of time
costs in the model so as to make pedagogical decisions not just in reference to learning, but also in
reference to the time costs of this learning. Pavlik’s technology has been implemented in the X-Germs
series of arithmetic games from K-12, Inc. This work is arguably unique because of the complexity of the
mathematical model that captures several principles of memory and treats all the learned units as
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independent declarative chunks. The mathematical formalism is based on ACT-R’s declarative memory
system and involves using the full history of practice to compute when each item is at the temporal sweet
spot of optimal learning. Optimality is achieved by maximizing the expected long-term learning gains
against the current cost of additional practice.

Even the early work on overlay models makes clear that an overlay student model tracks some
pedagogically relevant quantity as a function of the overlay type (in this case, skills, facts, or concepts).
Modern work continues to follow this pattern despite at least three different kinds of overlay models that
went beyond this early work with learning sets of independent items. These methods include rule space
methods, model tracing, and constraint-based models. To add further complexity, however, each of these
methods has a variety of ways in which knowledge strength or probability is traced. To simplify the issue,
we associate each of the three methods with its most common long-term model tracing formalisms (e.g.,
BKT), but keep in mind that the overlay model is loosely coupled to the equation that tracks the strength
of overlaid model states. In other words, BKT could be used in a rule space context, just as logistic
regression could be used to trace the strength of model traced productions.

Rule Space Student Models

An important early student model was the rule space method, which was introduced as a modification of
Item Response Theory (IRT) to provide a way to categorize misconceptions in signed number arithmetic
problem solving data (Tatsuoka, 1983). This original approach has stimulated successively more
advanced efforts to develop the IRT approach as a student modeling method. Perhaps most important of
these efforts was the development of the idea that the count of prior learning attempts can be used to
predict later performance. This model has been developed by various authors and is often referred to as
the additive factors model (AFM; Draney, Pirolli & Wilson, 1995; Spada & McGraw, 1985).

More recently, researchers have come to refer to the rule space mapping as a Q-matrix, which stands for
“question matrix” to capture how it maps each of the questions to a number of proficiencies or
misconceptions (Barnes, 2005; Barnes, Stamper & Madhyastha, 2006; Pavlik Jr., Yudelson & Koedinger,
2011). Typically, a Q-matrix is a binary matrix that maps specific skills/ rules to particular questions or
types of questions. A main point of this section on overlay models is that the Q-matrix representation
could be considered a standard way to represent the domain model semantics. Once a Q-matrix has been
determined for some content domain, the main question becomes what mathematical formalism
(typically, Bayesian-Markov process models or logistic regression) should be used to represent the
student states relative to the possibilities the Q-matrix admits. The point of determining the Q-matrix with
parameterized equations is that this allows the ITS to mathematically infer an order of problems that
allows learning to be meticulously adapted based on prior knowledge with the goal of diagnosing and
providing instruction on the “rules” of the domain, as represented in the matrix.

Q-matrix models with logistic regression gquantitative tracking have become part of the modeling
apparatus the PSLC (DataShop) though they have not been employed in any running systems we are
aware of because the model is not adaptive (AFM, Draney et al., 1995; Spada & McGraw, 1985).
However, recent work to improve the fit of the additive logistic regression models has shown the
importance of capturing success and failure in this type of model, demonstrating that logistic regression
can be at least as accurate as the standard BKT (Corbett & Anderson, 1992; Gong, Beck & Heffernan,
2010; Pavlik Jr., Cen & Koedinger, 2009). In this performance factors analysis (PFA) model (an AFM
logistic regression variant), there are two fundamental categories of prior practice, namely, success and
failure (Pavlik Jr. et al., 2009), which contribute differently to future performance, unlike in the AFM
model where merely the count of prior experience is tracked. The better fit of the PFA model is sensible,
since the psychological literature shows successes (in contrast to review after failing) may lead to more
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production-based learning and/or less forgetting (Carrier & Pashler, 1992; Karpicke & Roediger, 2008;
Pavlik Jr., 2007; Thompson, Wenger & Bartling, 1978) and may lead to automaticity for shallow learning
tasks (Peterson, 1965; Rickard, 1997, 1999; Segalowitz & Segalowitz, 1993). Moreover, the logic of
representing additional factors of learning easily in the logistic regression model is resulting in further
model variants that capture a variety of instructional differences between different student interactions
(M. Chi, Koedinger, Gordon, Jordan & VanLehn, 2011) and transfer between related items (Pavlik Jr. et
al., 2011). These models may have the advantage of incorporating multi-factor complexity more easily
than BKT models. In general, this analytic approach attempts to decompose practice contexts to
understand what specific features of the practice can be useful for predicting future performance (Beck &
Mostow, 2008). Typically, such work is theory driven.

Model Tracing Student Models

Model tracing comes from Anderson’s work on the LISP programming tutor at Carnegie Mellon
University (CMU), which used what he called a variant of Atkinson’s (1972b) work (Anderson, Conrad
& Corbett, 1989). This approach created a student model that both quantitatively traced the learning of
production rules in a LISP programming language tutoring system at the same time as it traced the
students’ responses. Production rules are low-level cognitive steps in a problem solution encoded as IF-
THEN rules. For example:

IF the goal is to prove AABC | congruent to ADBE and AE and CD are collinear
THEN infer ABC is congruent to £DBE because they are vertical angles

Reactivity to user responses was engineered by a mechanism called model tracing. Model tracing has
developed from several implications of the ACT theory. These principles include (1) encoding the student
model as a set of production rules, (2) communicating these rules through problem-solving exercises,
(3) maximizing the learning rate by responding to the quantitative measurement of learning, and
(4) providing help for failure on the good answer rather than explaining bad answers (Anderson et al.,
1995). When a tutor is in model tracing mode, there are three possible outcomes as the tutor tries to
interpret each student action or sequence of actions:

1. The student’s action matches one of the production rules from the domain model. (This will later
result in an increment to strength in the quantitative model.)

2. Multiple sequences of production match, triggering a disambiguation question. (The
disambiguation question would then control what productions are learned.)

3. There is no interpretation of the error. This may result in matching of a buggy production that
leads to context specific messages for the student. If no buggy rule is matched, the student must
continue to respond until a production is matched. Since this can cause an impasse, the system
typically involves backup hints of greater and greater complexity to scaffold the student who is
producing unmatchable responses.

There is a distinction between this model tracing process of interpreting behavior and the knowledge
tracing process of inferring the growth of knowledge across the sequence of practice. Corbett later
presented a canonical paper on what has become known as BKT, which included detailed modeling of
individual student differences as well as the core Markov model knowledge tracing formalism (Corbett &
Anderson, 1995). This augmented overlay model was used to track the student’s progress from problem
to problem by building a profile of strengths and weaknesses relative to the production rules (Anderson et
al., 1995), rather than in relation to concepts or facts which had been tracked in previous domain overlay
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student tracing models. Step-by-step BKT is incorporated in a number of tutors in the PSLC (Aleven,
McLaren, Roll, et al., 2006; Anderson et al., 1995; Heffernan, Koedinger & Razzaq, 2008; Ruitter,
Anderson, Koedinger & Corbett, 2007; VanLehn, 2006) and is a method used heavily by Carnegie
Learning, Inc., to track skill progression in their various systems. Interestingly, however, many of the
running systems do not realize the full complexity of Corbett’s original models of individual differences
(Corbett & Anderson, 1995).

A primary weakness of this type of approach for domains with many skills or misconceptions is that the
skills and misconceptions must be reasonably enumerated in order to provide feedback (Brown &
VanLehn, 1980). The creation of this domain model can be time consuming. Although development time
is not widely reported, general ITS system design is estimated at 200—300 hours of development time per
1 hour of instructional content (Aleven, McLaren, Sewall, et al., 2006). Additionally, there is evidence
that the remediation of specific bugs may not have added instructional benefit over the alternative of
simply re-teaching the material that contained misconceptions (Sleeman, Ward, Kelly, Martinak &
Moore, 1991). There is potential to mitigate this weakness with recent efforts to focus misconception
database minimization, keeping the conceptual misconceptions to fewer than five in order to save
development time (VanLehn et al., 2007). Sometimes, for well-defined domains with substantial prior
data, the misconception or skill database may be automatically generated, saving a significant amount of
development time (Burton, 1982; Cen, Koedinger & Junker, 2006). The GIFT domain module currently
supports the communication of this information, but not the construction. Possibly, this type of
knowledge component overlay could be accomplished automatically from the relationship and
interactions inherent in textual information (Ahmed, Toumouh & Malki, 2012; Lahti, 2010). Practically,
this type of knowledge overlay should either be supported via automatic generation, the merging of
existing model structure, or a tool for authoring.

Perhaps more technically problematic than creating some list of skills is to describe in a meaningful way
how the skills interact in a way that is computationally tractable and not overly simplistic. In a highly
interactive system, the pedagogical model would be able to select items for practice that accounted for
prerequisite relations automatically. We might want a model where we can make inferences about the
item that is not yet mastered, but yet still the easiest item-type that the student might practice. For
example, in a unit on fraction skills, we might want the system to detect (based on a history of success
and failure) what basic skills a student has mastered (e.g., least common multiples) and avoid these,
identify the skills students are ready for (e.g., equivalent fractions), and similarly hold in reserve those
items that still have unmastered prerequisites. A related issue is when there are multiple skills needed to
produce a single response. In such cases, whether we model the relationship of the skills as additive (one
skill can compensate for others) or conjunctive (all skills must succeed to succeed in the response) has
implications for parameter estimation and what skills to credit in the case of success or failure. However,
in practice, it has been complicated to work out how skills should be combined (Ayers & Junker, 2006;
Cen, Koedinger & Junker, 2008; Koedinger, Pavlik Jr., Stamper, Nixon & Ritter, 2011).

Constraint-Based Student Models

In constraint-based tutors, the domain model consists of a set of constraints representing the basic domain
principles (Ohlsson, 1992). Each constraint is a declarative statement composed of a relevance condition
(R) and a satisfaction condition (S). The relevance condition specifies when the constraint is relevant and
only in these conditions is the constraint meaningful. The satisfaction condition specifies additional
conditions that must be satisfied by the student’s solution for which the constraint is relevant in order for
the solution to be correct. A satisfied constraint corresponds to an aspect of the solution that is correct. A
violated constraint indicates a mistake in the solution without explicitly representing the actual
misconception the student might have; it simply means that the student’s solution violates a domain
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principle. Therefore a constraint set explicitly defines the space of correct knowledge, without requiring
misconceptions to be identified and collected; the space of incorrect knowledge is represented implicitly
by violated constraints (Ohlsson & Mitrovic, 2007).

An example constraint from the cooking domain might be “when making French fries, the oil must be hot
before potatoes are added.” The relevance condition of this constraint specifies the task (making French
fries) and the current state of the solution (the student has put potatoes into the pan). The satisfaction
condition then specifies that the temperature of the oil must be within the appropriate range. This
constraint will be violated by various incorrect actions (like there is no oil in the pan, the oil is too hot or
too cold, etc). However, the tutor only needs to teach the domain principle (the required temperature of
the oil) to the student, rather than having to identify the exact misconception that caused the mistake.

One example constraint for the task of fraction addition might be relevant in situations when the student
has added two fractions, a/b + c¢/d, and the student’s solution is of the form (a+c)/n (Ohlsson, 1992). The
satisfaction condition of the constraint states that b=d=n; only in that case is the student’s solution correct.
This constraint can be violated because of many misconceptions; however, the tutor can simply reinstate
the violated domain principle (the numerators of the two given fractions can be added if their
denominators are equal).

Constraints can be syntactic or semantic in nature (Mitrovic & Ohlsson, 1999). Syntax constraints are
simpler than semantic ones, which need to ensure that the student solution is an appropriate solution for
the given problem. In domains where there are multiple correct solutions, the required properties of the
solution are captured in terms of a pre-specified (ideal) solution; the semantic constraints compare the
student’s solution to the ideal solution taking into account alternative ways of solving the same problem,
in terms of equivalent domain operators (Mitrovic, 2012).

Constraints specify what ought to be so, so they are evaluative in nature. They are not prescriptive in the
sense of generating behavior like production rules do. Therefore, a student’s solution is diagnosed by
matching it to the constraint set, identifying the relevant constraints, followed by checking the satisfaction
conditions of the relevant constraints. This process corresponds to what VanLehn (2006) calls the inner
loop. Information about satisfied and violated constraints is then used by the tutor to generate positive and
negative feedback for the student (Mitrovic, Ohlsson & Barrow, 2013; Zakharov, Mitrovic & Ohlsson,
2005).

The previous two example constraints demonstrate that constraint-based modeling (CBM) does not
presume any particular stepwise pedagogical approach. Instead, it is used to react to every action the
student makes (to provide immediate feedback) or wait until the solution is complete and thereby provide
delayed feedback. Usually feedback is provided on demand, when the student requires it, but can also be
provided at times when the pedagogical model identifies that the student would benefit from the feedback.
The granularity of constraints can also vary, and should be determined from the pedagogical point of
view, by designing feedback that is effective for learning a particular task.

Student models in constraint-based tutors are also overlays. That is, the student’s knowledge is
represented in terms of constraints that the student does or does not know, as demonstrated by the
submitted solutions. Each time the student’s solution is matched to the constraints, information about
violated and satisfied constraints is used to update the student model. The simplest way to represent the
student’s knowledge of a particular constraint is a simple frequency of correct use within a specified
window of opportunities to use the constraint. Some constraint-based tutors have probabilistic student
models, where information about the violated and satisfied constraints is used to update the probability of
the student knowing each constraint (Mayo, Mitrovic & McKenzie, 2000).
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This overlay student model is used by the pedagogical module to select problems of appropriate
complexity for the student. Problem selection could be based on simple heuristics, such as the one which
identifies the constraint(s) with which the student had the most difficulty (Mitrovic, 2003). Alternatively,
in one version of SQL-Tutor, there is a simple Bayesian network for each problem, which makes
predictions about the performance of a particular student on the problem. These multiple predictions are
then combined to give an overall measure of the value of the problem for a particular student (Mayo et al.,
2000). CAPIT, an ITS that teaches children about punctuation and capitalization rules in English, uses a
data-centric methodology, in which the structure of the Bayesian network is induced from the student data
(Mayo & Mitrovic, 2001). The Bayesian model predicts the student’s performance on each problem, and
utility functions are used to select the best problem for the student and also the best feedback to be given
to the student if there are errors. The classroom evaluation shows that such a decision-theoretic
pedagogical strategy results in reduced learning times and improved performance.

Early research on constraint-based tutors focused on a range of domains to which CBM is applicable.
Successful constraint-based tutors cover a wide variety of instructional domains, ranging from well-
defined to ill-defined design tasks (Mitrovic & Weerasinghe, 2009). Well-defined tasks have crisp rules
that govern them and often have incremental performance steps, while ill-defined tasks frequently have
performance described in terms of outcomes. Some examples from the latter category are the SQL-Tutor
(Mitrovic, 1998) that teaches database querying using Structured Query Language (SQL) and EER-Tutor
that teaches database design using the enhanced entity-relationship (EER) model (Mitrovic, Martin &
Suraweera, 2007). Learning gains have been between 0.6 and 1.6 sigma (Amalathas, Mitrovic & Ravan,
2012; Mitrovic, 2012; Suraweera & Mitrovic, 2004) after short learning sessions (less than 2 hours). Later
work includes using constraints to represent not only domain knowledge, but also collaborative skills
(Baghaei, Mitrovic & Irwin, 2007), to support tutorial dialogues (Weerasinghe, Mitrovic & Martin, 2009),
self-assessment and open student models (Mitrovic & Martin, 2007).

The CBM paradigm, like the other types of student models in this work, can be used to represent domain
knowledge. It has shown strength in its ability to instruct, but the largest limitation remains that that the
models must still be authored. However, there is evidence that the authoring of constraint-based tutors is
more rapid than their traditional counterparts (Mitrovic, Koedinger & Martin, 2003). These development
times have come down rapidly through the introduction of authoring tools: from 220:1 (Mitrovic &
Ohlsson, 1999) down to 30:1 (Heffernan, Turner, Lourenco, Macasek & Nuzzo-Jones). In addition,
ASPIRE is an authoring system for constraint-based tutors that is freely available (Mitrovic et al., 2009).

CBM is an attractive solution to the student knowledge modeling problem for several reasons. Firstly,
CBM does not require the large amounts of development time traditionally associated with production
rules. It does not require probabilistic estimates of student knowledge built upon a large database of
previous interactions, so it is a practical approach for instruction. Secondly, CBM supports both
procedural and open-ended task modeling because it does not have to exhaustively model task dynamics
(Mitrovic et al., 2003). Finally, CBM systems have been shown to be effective on a wide variety of
instructional tasks (Mitrovic, 2012).

Yet another advantage of CBM is that the created models of domain knowledge have the potential to be
transitioned to another system that embodies the same concepts. This is neatly aligned with the principles
of architecture creation. The method of model creation thereby has the capability to transfer. The lifespan
of the model is tied to the lifespan of the ITS, although fractional components of the model may be used
in the construction of a model for another system. The ability to cannibalize model components and
model construction components into a new ITS is a highly desirable architectural enhancement.

At the time of writing, GIFT supports the communication of student state information through a hierarchy
of “concepts” and “sub-concepts,” which have varying levels of grading. This fits well with the student
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modeling nature of evaluating the student model through mastered versus violated constraints. GIFT
currently makes an effort to describe a student model using a concept breakdown, where each concept is
not tied to a given domain of instruction, and is assessed simply (e.g., above standard, at standard, below
standard, or unknown); however, it does not currently support the seamless authoring of module
components which send these messages. The transfer of these tools and knowledge is the prime advantage
of the CBM approach, but future development should support the plugin of the existing authoring tools to
create CBMs for tracking student performance models.

Overall Considerations Underlying Overlay Models

Overlay models have two architectural components: the overlay objects and the mathematical tracking
formalism. The overlay objects are typically linked to inner loop immediate pedagogy provided through
the tutor’s interface, e.g., immediate feedback when a constraint is violated, while mathematical
formalisms are used by the outer loop to select which problem items are presented to students. Therefore,
general systems like GIFT will benefit from providing explicit support for defining overlay objects that
are linked both to tutor interface pedagogy and data recording that will enable the outer loop
mathematical model to compute the next best problem to present at any time. While overlay models can
function at one level or the other (e.g., with no immediate pedagogy or with no mathematical tracking),
most modern overlay systems include both immediate pedagogy in response to violations of the
assumption of the overlay objects and mathematical tracking of the overlay objects.

The strengths of the quantitative models underlying the overlays are not frequently realized in running
systems because they typically do not live up to the goals of economic optimization and student-level
individual difference tracking inherent in their configuration. Economic optimization takes account of the
costs of each possible pedagogical action in addition to the gains (Atkinson, 1972a; Smallwood, 1962,
1971). While efficiency tends to be ignored, there has been renewed attention recently, with some
researchers exploring how knowledge tracing models can be used to detect when skills are being over
practiced, and instead spend that practice time on items that need practice. Reducing such over practice in
existing systems has led to reduction in learning time, with no difference in gains (Cen, Koedinger &
Junker, 2007). This failure to address costs in learner models is similar to the general failure to address
student-level parameters in student modeling. Student-level parameters can be used for modeling
individual differences, rather than making the assumption that there is a global, generalized model that
fits all students. For example, despite work by Corbett showing that student-level parameters are
important to produce tight fits to students’ data (Corbett & Anderson, 1995), systems using BKT tend not
to use subject level parameters, e.g., Carnegie Learning, Inc., tutors do not use general parameters for
each student (Ritter & Anderson, 2006).

Because of the wide usage of component overlay models combined with mathematical tracing of
components, GIFT will likely need to provide some support of this sort of student model. To start with,
this implies support for a domain representation such as a Q-matrix, which assigns skills to each exercise
in the domain. These Q-matrices may be universally needed for almost all overlay model variants.
Secondly, GIFT needs to provide data structures to fully reload the students’ prior history within a system
to enable reconstruction of the user model. Third, GIFT should provide an APl for mathematical
functions that compute pedagogically relevant quantities using the history for the student. For example, in
the Fact and Concept Training system, the mathematical model includes a function “choose-trial,” which
analyses the full history for all the items for the student to determine the item that is closest to being at the
optimal point for rehearsal. In turn, this choose-trial function (called from the interface) depends on lower
level model computations of the probability of successful performance and time costs for each item.
Similarly, after practice, a model API function saves the result of prior practice as the history accumulates
(Pavlik Jr. et al., 2007).
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We advocate a three-pronged recommendation that the domain structure should be compatible with a Q-
matrix structure (Domain Module), able to reload the history of practice so as to compute the current
student model state (Student Module), and an interface for interpreting mathematical states of the student
model to make pedagogical inference in a tractable way (Pedagogical Module). If a basic model API that
includes some default models, GIFT users will be able to test and modify the mathematical component of
the overlay models quickly and easily. Additionally, by providing a standard Q-matrix support in GIFT
for the overlay of skills as a separate component of the architecture (a different API), it should be possible
for users to test different mathematical formalisms to capture in the context of the same Q-matrix. This
flexibility should speed development by modularizing the Q-matrix and mathematical tracing
individually, thus allowing easier reuse/generalization of Q-matrices or mathematical models. By
association, adherence to this recommendation will yield increased learning gains with decreased
development times.

Knowledge Space Models

The domain model of knowledge space theory is a large number of possible knowledge states in a domain
(or knowledge structure), whereas the student model is a record of which of the knowledge states are
mastered. It is essentially a fine-grained overlay model that is not based on cognitive structures (e.g.,
skills), but is rather based on problem types that are or are not mastered. A student’s competence is
reflected in the student model as a probabilistic estimate of the types of problems that the student is
capable of solving in the domain (Falmagne, Doignon, Cosyn & Thiery, 2003).

The knowledge structure in knowledge space theory is based on the precedence relation, in which ability
to solve one type of problem tends to precede solution of another type. Such precedence relations may be
due to the prerequisite structure of the domain, but also may be due to the order in which problem types
are currently taught (Falmagne et al., 2003). These precedence domain models are then used in a tutoring
context to select the next problem to work on that is sensitive to the student’s competence as tracked by
the overlay student model of the preceding problems currently known. Thus, depending on all the
problem types previously mastered in the student model, there is “just prior” (inner fringe) and a “next
subsequent” (outer fringe) of items in the problem. The outer fringe constitutes the pedagogical decision
of the knowledge space student model given current the probabilities of being in the various knowledge
states as inferred by the prior success on individual problem types (Falmagne et al., 2003).

A knowledge structure in knowledge space theory can be described as a Bayesian network without hidden
nodes, since each of the nodes maps to a concrete class of problems (Desmarais & Pu, 2005). Knowledge
spaces are often hand engineered because of the massive amounts of data needed to infer the complete
graph of the domain knowledge precedence relations but such structures also need to be refined with data
to enhance accuracy (Falmagne et al., 2003). Part of the reason for the large amounts of data that are
needed is because of the extraordinary flexibility of the knowledge space formalism to represent
AND/OR precedence relations in which the outer fringe can be arrived at through one or more pathways
(Desmarais, Maluf & Liu, 1996). In other words, C can be known if either A and/or B are known.

Partial Order Knowledge Structures (POKS) have been developed as an alternative to account for the
difficulties of inferring the AND/OR structure from data alone, as reviewed elsewhere (Desmarais et al.,
1996). As an alternative to the AND/OR graphs of the knowledge structure, POKS use a simpler
precedence relation that is less powerful but easier to estimate since it requires that all of the prior states
be present. Therefore, it captures an AND graph that can be laid out as a directed acyclic graph (DAG) in
which each problem type requires all prior problem types to be mastered with some threshold of certainty.
Arguments have been made that such a formalism is adequate in part because situations in which there are
alternative prerequisites can be quite rare (Desmarais et al., 1996). Conveniently, explicit mathematical
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examples and explanation on how to construct knowledge spaces using POKS are detailed in the literature
(Desmarais et al., 1996; Desmarais & Pu, 2005).

The best example of a fully deployed knowledge space based system is the ALEKS mathematics tutor
(Doignon & Falmagne, 1999; Hu et al., 2012). In this system, there is a very large knowledge space
model for mathematics. The system begins with a student model building phase in which it asks questions
without pedagogical intent, but rather to determine the student state. This assessment process is also
typically set to run after 5 hours or 20 item types are passed so as to recalibrate the state of the student
model. After the student model is determined (the state of the student relative to the domain
representation, i.e., the inner fringe), the outer fringe can be inferred from the domain structure. This
inference of the outer fringe appears to be the primary pedagogical move in the ALEKS system. The
pedagogical model is simply to give the student the choice of any problem type in their outer fringe. Once
working on a problem type the student model is straightforward, because it simply involves allowing the
student to branch to a new outer fringe problem type if they get the current problem type correct four
times in a row, though they have the option of more practice if they wish (personal communication,
ALEKS Inc.; http://www.aleks.com/about_aleks/research behind).

While some ITSs focus on context sensitive adaption either through constraints or skill models,
knowledge space theory systems (as exemplified by ALEKS) rely on a far more complex domain model.
This domain model essentially presolves the appropriate possible branches from one state to another. This
presolved domain-space solution maps to pedagogy through the detailed precedence relationships, leaving
the system very little “intelligence” in deciding content order. This methodology harkens back to the
branching systems discussed earlier. Essentially, ALEKS is a controlled branching network system with
limited student choice of options from the outer fringe of the network. Importantly, knowledge space
systems have not made a great effort to consider the different possible branching rules that might
determine which outer fringe item is given to a student (this is left in the student’s hands) or how many
repetitions may actually be needed to transition from one type to another. So, while knowledge space
student models provide a nice example of branching, this student modeling method, while parsimonious,
could be made more flexible if the permitted pedagogical inferences were allowed to be more complex as
a function of the student’s history of performance.

Systems other than ALEKS have also been developed, most notably the work on the Catalyst system for
chemistry (Arasasingham, Martorell & Mclintire, 2011; Arasasingham, Taagepera, Potter, Martorell &
Lonjers, 2005). This system seems to be quite effective, but relies on a strategy of breaking the
knowledge space up into different representational foci, including numeric, symbolic, and visual problem
types so as to be able to plan learning precedence relations that include attention to integrated
representations of the content for the students. We might speculate that this improves effectiveness based
on research on multiple representations, making it difficult to assess the pure contribution of the model.
Student modeling with knowledge spaces appears to be a fertile area to the point where other independent
groups are contributing significantly to development of the techniques (Albert & Lukas, 1999).

Intelligent tutoring frameworks like GIFT should certainly include support for knowledge space student
modeling. Knowledge space student modeling uses the structure of the domain (perhaps represented by a
matrix of problem to problem relationships) to assess where the students are in that domain (the student
model). In GIFT the Q-matrix formalism might be expanded to include matrices that encode precedence
relations, perhaps by referring to the matrix as the “domain map.” The student model using knowledge
space computes a likelihood across the possible states of the domain map based on some prior
assessment. While the procedure of updating the likelihood seems like it will be conceptually complex, it
also appears analogous to the process of inference in the overlay models that results in an update to their
long-term model quantities. In both cases (knowledge spaces and overlay models), the system makes
pedagogical inferences based on some numeric representation of the long-term student model state.
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Dialogue Student Models

This type of student modeling is typical for ITSs that help students learn by holding a conversation in
natural language, such as AutoTutor or Why-Atlas (Graesser, D’Mello, et al., 2012; VanLehn et al.,
2007). Although these conversational ITSs based in natural language vary in terms of the pedagogical
activities they support, they all share two defining attributes. First, these conversational ITSs are based on
naturalistic observations and computational modeling of human tutoring strategies embedded in tutorial
dialogue (D’Mello, Olney & Person, 2010; Graesser & Person, 1994; Graesser, Person & Magliano,
1995; Person, Graesser, Magliano & Kreuz, 1994). A common strategy is the so-called five-step dialogue
frame (Graesser & Person, 1994; Graesser et al., 1995; Person et al., 1994): (1) Tutor asks a deep
reasoning question, (2) Student gives an answer, (3) Tutor gives immediate feedback or pumps the
student, (4) Tutor and student collaboratively elaborate an answer, and (5) Tutor assesses the student’s
understanding. This strategy reflects the other defining attribute of conversational 1TSs, namely, the
emphasis on collaborative, constructive activities based in theories of learning and tutoring (Aleven &
Koedinger, 2002; M. T. H. Chi, 2009; M. T. H. Chi, Siler, Jeong, Yamauchi & Hausmann, 2001; Fox,
1993; Graesser et al., 1995; Moore, 1994; Shah, Evens, Michael & Rovick, 2002; VanLehn, Jones & Chi,
1992).

Because conversational 1TSs are fundamentally rooted in dialogue, their corresponding student models
are usually structured in dialogue-centric terms. A useful (though distinctly non-1TS) oriented framework
for modeling dialogues has previously be established by McTear (2002). This framework identifies three
major kinds of dialogue models: graph-, frame-, and agent-based. In a graph-based system, at any given
moment there are a fixed set of alternative user actions; analogously, each user possible input is
associated with an arc from a given node/state of a graph to a new node/state. A common example is a
phone-menu dialogue system, e.g., “Press 1 for directory, 2 for billing, or 0 to speak with an operator.”
Graph-based systems are relatively rigid because they restrict the user’s input. Analogously, one would
have to slowly progress through a phone-menu dialogue to get to the desired state, rather than being able
to say, “I need to speak to billing” at the first opportunity. Graph-based systems are largely comparable to
branching student models in terms of the tutor behavior they support. Frame-based systems are slightly
more flexible than graph-based systems. In a frame-based system, there is a single overall goal
represented by a frame, a fixed attribute-value data structure. The goal of the system is to fill each of the
value slots in the frame, in any order. For example, an online reservation system might have the slots
[departure date, departure time, destination city, departure city, arrival time, arrival date]. An initial
dialogue move from a frame-based system might be, “What reservation would you like to make today?”
If a user says, “I’d like to go to Vegas tomorrow,” the system would recognize and fill two of the needed
slots in the frame, and follow up with a question like, “What time would you like to leave tomorrow?”
Thus, if the user gives a full frame’s worth of information on the first turn, the system would not need to
ask any more questions. If the user gives some but not all of the information, the system would flexibly
request the missing information. Frame-based systems are loosely comparable to constraint-based models
in terms of the tutor behavior they support. Each slot in a frame specifies a constraint that must be met in
order for the frame to be complete. Agent-based systems are the most complex of the three types of
dialogue system identified by McTear. The hallmark of agent-based systems is that they are fully mixed-
initiative: the user can introduce new topics and goals for the system. This often (but not always) requires
that the system be able to recognize the intentions of the user. For example, if the user is trying to find the
area under a curve and says, “I don’t know how to do integration,” the system would (1) recognize that
the current goal requires integration, (2) recognize that the user is unable to perform integration (a
subgoal of the current goal), and (3) attempt to help by, for example, explaining integration to the user.
This is a stereotypical example of an agent-based system; however, there is substantial variation in how
much artificial intelligence (Al) and symbolic modeling is actually implemented in such a system.
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While the three kinds of dialogue modeling defined by McTear could theoretically be applied in a pure
fashion, in practice dialogue systems and ITSs blend elements of these three models, to varying degrees,
depending on the functionality of the system. Each of the three provides different functional properties.
Graph-based systems provide highly specific and state-dependent actions, are rigid in structure, and are
robust computationally because user input is unambiguous. Frame-based systems provide less specific,
context-free actions and are a flexible means of pursuing a single goal, though they are less
computationally robust than graph-based systems because user input is less constrained. Agent-based
systems are theoretically the most flexible because they allow unconstrained user input and interaction
patterns, but in practice they are computationally fragile because the Al behind agent-based systems is at
or beyond the current state of the art.

To better explain how these dialogue models interleave with student models in a conversational ITS, we
give a detailed example based on AutoTutor. However, similar examples may be given for a variety of
conversational 1TSs including Guru, GnuTutor, and Operation ARIES (Millis et al., 2011; Olney, 2009;
Olney, Person & Graesser, 2012). The overall structure of an AutoTutor session is as follows:

Problem statement— Pump — EXxpectation coverage* —Summary

In other words, each session begins with an introduction ending with a problem statement. When the
student responds, the tutor typically follows with a pump, e.g., “What else can you say?” Then the tutor
launches zero or more cycles of expectation coverage, and follows these with a summary of the answer to
the problem. From the above description, the overall structure of the dialogue is graph-based, with no
alternatives. Correspondingly, at this level, there is no real need for student modeling. However,
expectation coverage is not an automatic action, but rather a composite action or mode of the tutor; this is
where nearly all of the tutor-student interaction takes place.

AutoTutor’s expectation coverage is modeled after Expectation and Misconception Tailored (EMT)
dialogue found in authentic tutoring sessions (Graesser, D’Mello, et al., 2012). Human tutors typically
have a list of expectations (anticipated good answers, steps in a procedure) and a list of anticipated
misconceptions associated with each problem statement. For example, expectations E1 and E2 and
misconceptions M1 and M2 are relevant to the following example physics problem:

PHYSICS QUESTION: If a lightweight car and a massive truck have a head-on collision, upon
which vehicle is the impact force greater? Which vehicle undergoes the greater change in its
motion, and why?

E1. The magnitudes of the forces exerted by A and B on each other are equal.

E2. If A exerts a force on B, then B exerts a force on A in the opposite direction.

MZ1: A lighter/smaller object exerts no force on a heavier/larger object.

M2: Heavier objects accelerate faster for the same force than lighter objects
During expectation coverage, the goal of a conversational ITS is to elicit an explanation from the student
with regard to the problem statement or seed question. Since student explanations often contain multiple
propositions or sentences, this goal reduces to eliciting each sentence in the expected explanation. We
label these subgoals expectations, because they are expected parts of the overall explanation. The
similarity with frame-based systems should be evident: during expectation coverage, the goal of the ITS is

to fill out a frame corresponding to the complete explanation to the initial problem statement. Each
sentence of the explanation corresponds to a slot in the frame. The task for the ITS is to elicit each
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expectation in the frame, which involves two subtasks. First, the ITS must choose a strategy that results in
a student response matching an unsatisfied slot/expectation. Second, the ITS must evaluate the student
response to determine which (if any) of the unsatisfied slots/expectations it satisfies. Thus, the student
model during expectation coverage is largely a frame type structure representing what (if any) of the
expectations the student “knows.” The ITS uses this information to focus on slots the student does not
know, creating a more adaptive and efficient learning experience. Slots may be selected using criteria
such as semantic proximity to the current slot (i.e., zone of proximal development).

However, for each slot/expectation, the student model may be augmented with a measure of the student’s
ability, based on the strategy the tutor used that resulted in a satisfied slot/expectation. The connection
between tutor strategy and student ability is based on the observation that some strategies require more
effort from the student in terms of recall and cognitive processing (e.g., prediction, inference, causal
reasoning). A major strategy is asking questions ranging from vague to highly specific (Graesser et al.,
1995; Person & Graesser, 2003). For example, a pump is a vague question consisting of neutral back
channel feedback (uh-huh, okay, subtle head nod) or explicit requests for more information (what else,
tell me more). Pumping serves the functions of exposing student knowledge and encouraging students to
construct content by themselves. Hints give context to the question, but do not lead the student to a
specific answer, for example, “What about blood pressure in this situation?” In contrast, prompts are
highly specific questions in which tutors supply a discourse context and prompt the student to fill in a
missing word or phrase, for example, “As the heart beats faster, the blood pressure does what?” In
addition to pumps and prompts, many other question types exist that vary in specificity and depth of
processing required by the student, such as disjunctive questions or causal questions (Graesser & Person,
1994). For a given expectation, if a student generated an answer satisfying it when the tutor strategy was
more difficult, then the student may have greater ability/mastery of that expectation than if the strategy
was easy, for example a prompt. Thus, within an expectation coverage cycle, the point at which a student
satisfies the expectation is another aspect of the student model. In AutoTutor, the expectation coverage
cycle is as follows:

Hint — Prompt — Assertion

This provides two levels of mastery assessment, since a tutor assertion is a paraphrase of the expectation
given to the student. This cycle is graph-based, but the cycle terminates when the expectation is satisfied.

As mentioned previously, a conversational ITS not only uses strategies to elicit a student response but
also evaluates the student response to determine if it satisfies any expectation. In addition, a
conversational ITS typically anticipates student misconceptions. An expectation or misconception is
scored as being expressed by a student if the student articulates it in natural language with a high enough
semantic match. Semantic matches can be assessed by a number of methods in computational linguistics,
such as content word overlap, latent semantic analysis, regular expressions, semantic entailment, or
Bayesian statistics (Cai et al., 2011; Graesser, Penumatsa, Ventura, Cai & Hu, 2007; Rus, McCarthy,
Graesser & McNamara, 2009; VanLehn et al., 2007). Depending on the method used, the match between
an expectation/misconception and the student response can range from a single number between 0 (no
match) and 1 (identical), or can consider the response compositionally in order to debug the answer. In
either case, the evaluation becomes part of the student model.

If the evaluation is a single number, then the frame becomes a “soft frame,” where expectations are
satisfied if the evaluation is above a numeric threshold. Even when the expectation is satisfied, the
evaluation score can be used to indicate relative mastery. For example, if the evaluation score is above the
threshold of 0.5, then the ITS may decide that the corresponding expectation is sufficiently “known” that
the tutor can move on to other expectations. However, while evaluation scores of 0.6 and 0.9 would both
satisfy the threshold and result in the same tutor behavior, the latter student may have mastered the
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expectation to a higher degree than the former. Thus, the student model in this case is a soft frame where
each slot is weighted by the final evaluation score that led to the satisfaction of the expectation.
Complementary extensions to the student model include the entire history of evaluation scores for each
expectation. Even though these single number evaluations may appear one-dimensional, as part of the
student model they may be used to generate complex adaptive behavior by the ITS. For example, a
conversational ITS will usually select a specific question in order to maximize the chance that a student
will satisfy an expectation (assuming the student generates the correct response). Likewise, a
conversational ITS will usually select the next expectation to cover based on its similarity to the current
expectation.

The advantage to a numeric semantic match that it is very robust to noise. The standard approach is to use
latent semantic analysis (LSA), an unsupervised technique that creates numeric vector representations for
words in a large unstructured collection of texts (Landauer, McNamara, Dennis & Kintsch, 2007). The so-
called LSA vector space, together with the expectations and misconceptions described above, represents
the domain model for an AutoTutor session. The corresponding semantic match in LSA is the vector
cosine. This approach is very robust to ungrammatical and fragmentary user inputs and requires no
knowledge engineering expertise. LSA type approaches are generally applicable to natural language
inputs in domains where the order of words in the student’s answer have little impact on the meaning of
the answer. Counterintuitively, this order-free property applies in most cases (Landauer et al., 2007),
though would not apply in cases where the answer contained mathematical formulae or similar
representations.

As mentioned above, agent-based systems support the most sophisticated dialogue behavior but come
with the cost of added complexity and loss of robustness. While generally true, it is possible to satisfice
the problem of mixed-initiative in such a way that avoids the larger issues addressed by agent-based
systems. In some versions of AutoTutor, mixed-initiative dialogues are created by recognizing and
responding to student questions. Every student input is first analyzed to determine if it is an answer to a
current tutor question or is a new student question, using a speech act classifier (Olney et al., 2003). When
AutoTutor answers a question, it enters a sub-dialogue that is nested in the larger dialogue of the tutoring
session. In essence, AutoTutor temporarily suspends its tutoring agenda in favor of answering the
guestion posed by the student. Different student question types indicate shallow (e.g., verification or
definition) or deep level reasoning (e.g., causal consequence or inferential) and so can be used to inform
the student model (Graesser & Person, 1994). However, while question asking is an important part of
active learning, students tend to ask very few questions, even when specifically asked by AutoTutor, “Do
you have any questions?” Thus, the utility of question classification and corresponding mixed-initiative
dialogue may be low relative to the practical complexity of creating such a system. In addition, the
potential of misclassifying a student input increases with the number of speech act categories, meaning
that part of the cost of having a question-answering component is incorrectly classifying student answers
as questions.

Dialogue-based student models have several advantages that make them attractive for a domain-
independent, general purpose framework like GIFT. Numeric semantic matches (e.g., LSA) are highly
robust when used to evaluate student input. Students can use fragmentary language or synonyms and still
have their answers accepted by the tutor. However, numeric semantic matches are also prone to biases
implicit in the corpus of texts used to create them. These biases can be invisible to authors who are
creating dialogues for the tutor. For example in biology, the terms “prokaryotic” and “eukaryotic” are
often mentioned in the same paragraph but compared and contrasted with each other. Because of this, a
biology LSA space will give a high numeric semantic match between the two, even though they are quite
different (eukaryotes have a nucleus and membrane-bound organelles, e.g., animals and plants, and
prokaryotes do not, e.g., bacteria).
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Because of this problem (and biases in semantic spaces more generally), we propose the following for
GIFT as well as future work that uses numeric semantic matches in dialogue student models. First, the
semantic space should be developed before the dialogues are created and incorporated into the dialogue
authoring tool. Second, when the expectation and misconception dialogues are created, the authoring tool
should use the semantic space to evaluate the dialogue as it is authored and offer real-time feedback. For
example, suppose that the author has just created a prompt, “What do we call cells that have a nucleus?”
with the correct answer “eukaryotic cells.” If the authoring tool lists the near neighbors of “eukaryotic
cells” in the semantic space, then the author will become aware that an incorrect answer, “prokaryotic
cells,” would be accepted as a correct answer for this prompt. This gives the author the opportunity to
apply additional constraints, like regular expressions, to ensure that only correct answers will be accepted
(Graesser, D’Mello, et al., 2012). This kind of feedback will help keep the student model from being too
forgiving of student input.

A second kind of real-time feedback that we propose involves checking the correspondence between the
expectation and the ideal student responses to questions involving that expectation. For example, if the
expectation is, “Eukaryotic cells have a nucleus,” with only the associated prompt “What do eukaryotic
cells have that contains DNA?” then it’s possible that the student could type “nucleus” but not actually
cover the expectation. In other words, it’s possible to write dialogue that would never guide the student to
cover the expectation, leading to a malformed student model. A solution to this is to provide real-time
feedback that computes the semantic match between all of the ideal student answers to the hints and
prompts associated with an expectation and the expectation itself. If the match is very low, this could
indicate a problem. Moreover, the threshold for the expectation itself is probably best determined by some
percentage of this score rather than being held constant for all expectations in a problem. Following this
recommendation should prevent the student model from being too harsh with student input.

State and Trait Identification Models

This category includes student models that capture affective/motivational constructs that are either
transient or trait like. This category is distinct from overlay models that capture some sort of learnable
skill (e.g., self-regulation). Since traits tend not to change (unlike skills) and states tend to fluctuate in
reaction to stimuli (unlike skills), this category logically excludes any learned proficiency based models.
Despite this, it seems likely that state and trait models would be used in conjunction with learned
proficiency models as an additional input to infer student states and make pedagogical decisions.

Because of the role of affect and cognition in the learning process, a significant amount of ITS research is
focused on measurement and detection (Cerri, Clancey, Papadourakis & Panourgia, 2012). This occurs
through the incorporation of hardware sensors of software detectors into the standard learning system.
Examples of these include an electroencephalography (EEG) head-cap (Goldberg et al., 2011), Al-based
software models (Wixon, Baker, Gobert, Ocumpaugh & Bachmann, 2012), or a combination of both
(Kapoor & Picard, 2005).

Human tutors are known to be as devoted to the motivation of the student as much as their cognitive and
informational goals (Lepper & Hodell, 1989; Woolf, 2008) Affective characteristics have also been
highlighted in the literature as an important area to learning (Woolf, 2010). While there has been
significant research in their development, there has been limited transition to usable systems. One nice
example of a strong success comes from feature detection in spelling learning (Baschera, Busetto,
Klingler, Buhmann & Gross, 2011).

While this category has few example contexts where there are significant benefits to learning in a running
ITS, the category has distinct potential, particularly as machined learning and sensor technologies develop

56



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

to the point of practical application. The state and trait distinction has particular relevance to the
architecture of general systems such as GIFT. In particular, GIFT should be able to handle stable student
parameters that feed into the student model as individual differences. For instance, a prior assessment of
each student’s self-efficacy could be passed to the dialog based student model which would lead to the
pedagogical inference to adjust the scripts to be more encouraging with low efficacy students. Similarly,
sensor modules data would feed into student models in a continuous fashion so that it could be
incorporated into any long-term student model (e.g., BKT) and thus affect pedagogical decision making
(e.g., D’Mello & Graesser, in press).

Discussion

An ITS functions by having a domain model which defines the space of possible student states. The
student model keeps tracks of each individual student within this possible state space. The pedagogical
model is a set of rules that define when interventions are triggered as a function of the student state and
the tutor interface. The student model represents the student state as a function of prior actions, either
tracking these prior actions dynamically so that prior states are not necessarily stored or by keeping track
the history of prior practice in order to compute student prior knowledge as the context demands.
Pedagogical rules aim to maximize a measure of learning amount or efficiency.

We began our discussion of student models in the late 1950s with the invention of branched
programming. Branched programming addresses student state differences by applying different
pedagogical moves at fixed branch points afforded by the domain model. Branching models are also
discussed because fundamentally all student models “branch” in the sense that any pedagogical move we
might take is in essence a branch in response to the student state as encoded in the possibilities expressed
by the domain model. These branches or adaptive choices must depend on something, and the student
model state is the independent input (derived from student actions) that leads to the inferences about
adaptive pedagogy. However, a universal branching system in the context of GIFT, or more generally, as
how to use them as an effective generic design pattern for tracking student states to make rich and
powerful pedagogical moves, is currently unclear.

VanLehn helps provides a design pattern for us to consider in his proposal about the behavior of tutoring
systems where he proposed inner and outer loops to characterize common ways that ITSs have been
configured (VanLehn, 2006). In this taxonomy, the inner loop was construed as the individual problem,
which would be intelligently tutored in small cycles of interaction between the student and ITS as the
student works on the problem. This is also known as microadaption. In contrast, the outer loop was
described as a problem selection loop, from which a problem selection algorithm might choose the next
item based on higher criteria than behavior at the single problem level. This is known as macroadaption.
Essentially, this is a hierarchy of kinds of branching, with the inner loop often representing stereotyped
branching schema within problems for individual steps, and the outer loop specifying sequencing/
branching between exercises. Of course, within this hierarchy we might describe more levels. For
example, Pavlik Jr. & Toth (2010) proposed an additional level of branching complexity, the curriculum
loop, which assumes that a student model would track states for broad categories of problems (units of
content) and would allow pedagogical models to execute actions at an additional level, as in the case of
sending a student into a basic skills review unit if repeated arithmetic errors are made in an algebra unit.

In mature ITS, there is a blend of student models. For example, in cognitive tutors, problem selection
occurs with some version of BKT (Corbett & Anderson, 1995) used as a student model for the outer loop,
but within problems the student model tends to be more like a constraint-based model (even though often
represented as production rules) with inner loop pedagogical responses to student actions disconnected
from the outer loop BKT student model. For instance, error flagging or on-demand hints to the student
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represent the within problem student model as a collection of response constraints. These “should”
statements define what features of the interface need to be modified in what way to solve the problem,
while the pedagogical model specifies what inference to make based on the current state of the interface.

The cognitive tutor example illustrates how a learning system could potentially have a student model that
allows state branches at multiple levels of the domain (problem step, overall problem, curriculum unit),
where the means of modeling the branching at each level of the student model may be different due to the
pedagogical needs of that level of the domain. Similarly, we could imagine a ITS with a constraint-based
student model for tutoring algebra problem solving as the inner loop, a knowledge space domain model
used for the outer loop problem selection, and a curriculum branching loop that that branches students
into a basic skills unit if arithmetic constraints are not met. The second arithmetic outer loop might use an
overlay model for all the facts in the times tables, with no inner loop for these simple facts. This
discussion places further constraints on GIFT by illustrating the advantage of having a hierarchical
organization of student models for the multiple levels of domain structure so as to facilitate maximum
flexibility for pedagogical strategies at these multiple levels.

Figure 5-1 shows the three levels at which pedagogy occurs that seem important to allow in GIFT. The
figure attempts to convey the relationship between the three levels, in that the inner loop, which itself
represents a collection of states and consequent pedagogical moves) is entered from the outer loop
problem. Similarly, an outer loop sequence of problems is selected as the pedagogical decision from the
curriculum student model. A simulation scenario example should help clarify. If the curriculum involves
practicing team search and reconnaissance missions, we might suppose the curriculum loop would be a
number of different contexts for reconnaissance, such as night missions, search and recovery missions,
rough terrain missions, etc., each of which of needs to be completed with a certain criterion (according to
the student model) before the next context is selected (according to the pedagogical model). Each outer
loop problem might be viewed as a specific scenario within a context (e.g., rescue mission in Mogadishu)
that itself has to be mastered or repeated, according to the decisions of the outer loop. Finally, within each
scenario (the inner loop in this context) we might expect that there would be specific tasks, each with
their own states for the student that warrant specific pedagogies.

Quter

Curriculum

Figure 5-1. Pedagogical levels at which a student model may be used to make decisions

This discussion is useful because it helps set the stage for considering the specific usefulness of particular
student models. Student models may generalize to content, but may not as easily generalize to different
pedagogical levels. So, for instance, dialogue-based tutoring seems ill suited to handling the problems of
curriculum sequencing or outer loop management (e.g., problem selection). Similarly, selection of steps
based on some mathematical model makes little sense since the steps of a problem are more or less fixed
once that problem is selected. Table 5-1 attempts to summarize our assessment of the student models we
have reviewed.
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Table 5-1. Summary evaluation comments

Quantitative Ease of Generality and Cost of Granularity Time Scale Learning gains
Fit Understanding Flexibility Creation in practice
Programmed  N/A High Low Low Any Short-term Depends on
Branching adequacy of
specific domain
model
Rule Space High High High Low Any Short or Long-  Little direct
term evidence
Model High Low Moderate High Production Potential long- Yes, strong
Tracing rules term but not gains for
always realized particular
domains
Constraint- High Moderate High Moderate Any Potential long-  Yes, strong
Based Tutors term but not gains for
always realized particular
domains
Knowledge Good at item- Low Low High Item-categories  Long-term Yes, strong
Spaces category level gains for
particular
domains
Dialogue N/A Moderate Moderate Moderate Inner loop Short-term Yes, strong
gains for
particular
domains
State and Generally low Moderate Unclear Moderate Any Short- and/or Unclear
Trait long-term
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Conclusions

There is significant challenge in developing a standard, or framework, to support an existing field. The
goal behind developing standards is that they will be adopted, which can only happen if the individual
adopters find the new standard useful to their practice. As such, it is important to discuss the benefits of
adopting such standards.

GIFT will enable new ITS creators to experimentally test their methods of student model creation with
differing domains of instruction, pedagogical strategies, and ways of assessing user states through
sensors. GIFT will enable the experimental comparison of one type of model against another, while
keeping the other portions of the ITS exactly the same, thus enabling good unconfounded comparisons in
the ITS. GIFT will enable quicker construction of ITS application through the ability to standardize user
tools for student model construction.

However, these advantages come at a price. This is the price that all standards impose on the community
of adoption. At the simplest level, conforming to a “Phillips” screw-head standard destroys the potential
for the creation of alternate screw-head designs. No one framework, standard, architecture, or toolset can
accommodate for all possible solutions. Despite this, to promote adoption, the created solution should
support as many of the current practices as is possible. With these tradeoffs in mind, we conclude with a
few points about the process of developing GIFT.

The first point is that the standard approach to instruction remains simple branching programs with
multimedia content. Therefore, most student models are merely a record of the place in such a branching
program structure. Such systems are still important because intelligent tutoring is not required for many
kinds of instruction, such as first-time information presentation. This first assumption leads to the first
recommendation: GIFT should support authoring of simple branching programs.

The second point is that the most mature and applicable forms of student modeling are those which have
had the most research and software development effort. These are the methods for adaptive instruction
that have been empirically proven to work, have multiple research teams working on them, have deployed
ITSs to classrooms, and have developed authoring tools to speed developments and research. GIFT, in
order to support successful adoption, needs to be inclusive of these models. Becoming inclusive of these
models implies that GIFT becomes inclusive of the tools that are used to create them. This second
implication is that GIFT should support the importation, with very minimal change, of student models and
authoring tools created within CBM, model tracing, and dialog-based paradigms for inner loop mediation.
They have proven to be successful and widely adopted.

A third point is that several of the methods, most notably overlay and knowledge spaces, employ “domain
maps” that characterize the tasks and the relationships between these tasks. Because of this commonality,
it seems likely that GIFT would benefit from providing such a domain map data structure that could be
referenced when making pedagogical decisions in reference to the student model. Further, such domain
maps are typically connected to a long-term computational student model that mathematically traces the
probability of the tasks relative to the prior progress of the student. This implies GIFT will be well served
by providing the capacity to mathematically compute pedagogically relevant student model quantities at
any time by processing the student’s prior data (which is encoded relative to the domain map).
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cHaprTer 6 —Understanding Current Learner Modeling
Approaches

Heather K. Holden
U.S. Army Research Laboratory (ARL) - Human Research and Engineering Directorate (HRED)

Introduction

We’ve learned in the previous section some of the fundamental limitations and challenges that surround
learner modeling development. However, this section continues to provide insight on these challenges and
design recommendations for GIFT based on a current perspective of learner modeling tools and methods.
As the core module of an ITS, the learner model is a representation of the learner’s state of knowledge at
any given time. ldeally, this model would be comprehensive enough to include and analyze information
on the learner’s individual difference characteristics as well as past, current, and predicted competencies,
performance, cognition, affect, behaviors, etc. This model would also be flexible enough to support a
variety of learning/instructional activities and types of learners. Realistically, such a model does not exist
among current learner modeling research.

Current State of Learner Modeling Research

Based on the previous section of this book, we observe that learner models are built for different
purposes, such as recognizing solutions paths, evaluating problem-solving abilities, or describing
constraints for violations made by the learner. Current techniques of generating learner models include
Bayesian networks, belief networks, case-based reasoning, and expectation maximization. Methods such
as model-tracing are more cost-effective, but do not have the ability to record or monitor learner’s
behavior. Learner models are commonly classified according to their relationship to an expert model, but
can be classified by their performing function (i.e., corrective, elaborative, strategic, diagnostic,
predictive, or evaluative).

The content within learner models is usually categorized in two components: domain-specific or domain-
independent information (learner-specific characteristics/individual differences). Domain-specific
information represents a reflection of the learner’s state and level of knowledge or ability within a
particular domain. This type of information primarily includes historical competency (domain knowledge
and skills measured over time), misconceptions, problem solving strategies, etc. Domain-independent
information consists of all relevant characteristics of an individual learner and can include, but is not
limited to, the following elements: learning goals; cognitive aptitudes; measures of motivational state;
learning preferences (including styles and personality); interest; demographics; past performance and
competency (non-domain-specific); behavioral/psychological measures; cognitive and affective
dimensions; and personal control beliefs (including general self-efficacy; locus of control).

First-generation ITS implementations primarily adapted instruction based on learner performance and
current state of knowledge domain-specific information. These systems used learner models with
corrective or elaborative functionality, but lacked any strategic, diagnostic, or predictive capabilities. The
advantage of modeling this type of information is that it allows the model to be more generalized across
multiple populations. Although useful, such information alone is not sufficient enough for providing the
highly adaptive individualized training needed for ITSs of the next generation. Learner characteristics can
be significantly different between learners and, collectively, is not the same for any two learners.
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Primary sub-research areas of current learner modeling include, but are not limited to, learner state
classifications, cognitive modeling, affect modeling, the impact of individual differences, behavioral and
physiological sensing, and performance assessments. As the demand for higher adaptation and flexibility
of learner models increases, so does the necessity to understand the interrelationship between all aspects
of learner modeling content and assessment accuracy. Within the past 10 years, learner model research
has extended to consider a broader range of learner characteristics as difficulty in addressing learner’s
knowledge gaps has become more apparent. Since the beginning, the learner modeling research
community continues to help address this two-part question: what aspects of the learner should be
modeled and how can we achieve the best possible levels of state and performance classification and
predictive accuracy? Therefore, we can observe an increase in studies blending the sub-areas of learner
modeling research as well as the emergence of other key areas of student modeling research, i.e.,
motivation, disengagement, metacognition, self-regulated learning, open learner modeling, group and
collaborative learner modeling, and long-term learner modeling.

These newer areas of research present their own challenges in addition to the ones already surrounding
the general research area. Some of these areas are covered in a later section of this book; however, the
purpose of this section is to present the “bridge” to a new era of learner modeling research. The five
chapters of this section discuss current areas and challenges surrounding learner modeling. Each chapter
presents its own voice to a particular area of interest and gives recommendations on how GIFT can use
the information within the chapter to enhance future GIFT versions.

The chapter by Tomar and Nielsen, entitled Affective-Behavioral-Cognitve (ABC) Learner Modeling,
presents a framework for modeling interlocutors (i.e., users of e-learning systems) that integrates
inductive and abductive reasoning over observations including the interlocutors’ past and current behavior
to develop a joint model for predicting their emotions, behaviors, and cognitive states. Their Affective-
Behavioral-Cognitive (ABC) Learner Model follows an approach that users’ behavioral responses can be
a path to predict, recognize, and interpret their affective state. These behavioral responses are analyzed
using a cognitive theory of emotions, which gives us inferences about the possible affective states of the
learner. An appraisal component of the model relies on the desirability of events based on the learners’
objectives, the affective and cognitive states predicted to result from the events, and the consequent
expected behaviors. They discuss the specific aspects of their model and the interrelationship between
these elements; provide an example of how the model can perform within an e-learning scenario; and
highlight recommendations for how GIFT can use such a model for its learner modeling approaches.

The chapter by Holden and Sinatra, entitled The Need for Empirical Evaluation of Learner Model
Elements, highlight issues with the lack of standardization on the structure of learner models and
modeling techniques as it inhibits the validation and reusability of learner model elements. They argue
that there are several aspects of user modeling, of which learner modeling is a subset, which have yet to
be explored by the ITS learner modeling community. Such factors include learner’s expertise, skills,
attitudes, perceptions, and self-efficacy toward both computers/technology in general and the specific
ITS. As we progress toward extending ITSs to be inclusive of job-related training and education, these
factors may prove important in classificating learners’ states, performance, and system behaviors. They
also argue that more empirical evaluations are essential to better understanding the impact and interaction
effects of current and potential learner model elements. Practical implications for researchers as well as
design recommendations for such evaluations in GIFT are provided within this chapter.

The chapter by Hu, Morrison, and Cai, entitled On the Use of Learner Micromodels as Partial Solutions
to Complex Problems in a Multi-agent, Conversation-based Intelligent Tutoring System, argues that at
some point a general-purpose system, like GIFT, would employ an open, multi-agent architecture in
which some agents will perform simple tasks, while others will take on more complex ones, such as
generating appropriate responses to user questions. They describe an autonomous software agent that
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produces turn-by-turn analysis of a user’s discourse moves on two dimensions: novelty and relevance.
This process includes building a “micromodel” of the learner’s current state, including a relevance-
novelty measure for single turns and a series of turns. They provide an example of a highly specialized
agent within a currently existing multi-agent, conversation-based ITS architecture that is capable of
making assertions about the learner micromodel information that is of value to other agents and/or for
their own purposes.

The chapter by Douglass, entitled Learner Models in the Large-Scale Cognitive Modeling Initiative,
presents an Air Force Research Laboratory (AFRL) research effort to develop training capabilities for
live, virtual, and constructive systems, as such system face challenges of (1) increasing the scale of
cognitive models and (2) integrating them into software-intensive training environments. The AFRL
Large-Scale Cognitive Modeling (LSCM) initiative is developing solutions to these scale and
interoperability challenges based on high-level languages for describing cognitive models and net-centric
simulation frameworks supporting them. This chapter introduces the LSCM initiative and explains how
learner models are represented and used in the systems developing in its scope. The author illustrates how
formal models of behavior models are specified and used to track events and build/refine representations
of the knowledge, conceptual weaknesses, and procedural skills of monitored learners. He also explains
how performance prediction and optimization capabilities based on mathematical extensions of the
General Performance Equation (Anderson & Schunn, 2000) monitor learner actions, trace models of
behavior, and use knowledge about learners to track and predict performance.

After reading these chapters, we can see that the lack of consensus and standardization for developing
learner models is still apparent just as in the previous book section. We are now at the point of which such
research can no longer ignore the necessity of building and enhancing standards for creating learner
models with higher-level functionality to fulfill the ideal vision previously mentioned. Each of the
chapters within this section provides a suggested method for aiding GIFT’s future learner model design
and functionality. Tomar and Nielsen, emphasize the importance of assessing the interplay between
learner’s cognition, affect, and behavior. Holden and Sinatra, emphasize the possibility of GIFT’s ability
to do comparison between learner model elements to support the validation of impact and interactions
between learner characteristics. The last two chapters provide explicit examples and implementations of
work-in-progress. Hu, Morrison, and Cai propose the use of multi-agents and micromodels as
advantageous for reusability, a key element and motivation of GIFT. Moreover, Douglass highlights
similarities between AFRL’s LSCM and ARL’s GIFT and views the use of research modeling language
(RML) intelligent agents to effectively use behavior models to trace trainee’s actions as beneficial to
include within GIFT’s design.

Recommendations for GIFT’s Immediate Direction

Each of the chapters within this section provided recommendations for GIFT in regards to its learner
modeling approaches. In sum, they are as follows:

1. GIFT should consider incorporating the ABC model to observe learner performance over a period
of time and to create affective and cognitive profiles which have threshold values and decay rates
associated with the states in consideration. This process will allow GIFT’s learner model to
determine states more effectively.

2. Future learner modeling researchers should consider using GIFT for their research since the

system provides plans to have the ability to interchange and learner models and its elements.
Therefore, researchers will be able to understand how learner-specific characteristics,
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perceptions, and preferences interplay and influence the learning process as well as how they
dynamically change throughout instruction.

3. GIFT should consider adopting a common agent communication language (ACL) as the bases for
a new generation of agent-based intelligent learning systems that are capable of autonomous
cooperation. The instantiation of a common ACL and the development of a shared ontology can
bring great benefits to GIFT’s ultimate vision.

4. Integration of AFRL’s LSCM/RML and ARL’s GIFT would be an advantageous system that
could serve as a technical solution to the problem of monitoring trainee actions and delivering
contextually relevant instruction.
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cHaprTeR 7 —Affective-Behavioral-Cognitive (ABC)

Learner Modeling

Abhiraj Tomar and Rodney D. Nielsen
University of North Texas

Introduction

This chapter presents a framework for modeling users of e-learning systems that integrates inductive and
abductive reasoning over observations including the learner’s past and current behavior to develop a joint
model for predicting emotions, behaviors, and cognitive states. This ABC Learner Model follows an
approach that learners’ behavioral responses can be a path to predict, recognize, and interpret their
affective state. These behavioral responses are analyzed using a cognitive theory of emotions, which gives
us inferences about the possible affective states of the learner. An appraisal component of the model relies
on the desirability of events given the learner’s objectives, the resulting affective and cognitive states
predicted to result from the events, and the consequent behaviors expected.

Most current techniques for modeling learners make relatively strong assumptions about what affective,
behavioral, and cognitive states are best for learning, and about what to do in a single interaction turn to
maximize immediate learning based on the current states. Most ITSs typically do not learn which user
states optimize short- or long-term learning goals, learn what sequence of events will likely elicit
particular user states, appraise system attempts toward these goals, or learn appropriate corrective actions
based on this appraisal. The ABC Model attempts to fill these gaps by learning to make predictions that
take these more complex relations between events, learner states, and time-dependent scenarios into
account.

We begin by describing user models in general and the various user states incorporated by the ABC
Model. We explain a cognitive theory of affect and behavior and its use in creating user profiles. In the
following section, we give an overview of the various categories of knowledge and information about the
learner, which are required for creating a learner-specific profile and the methods for obtaining them.
After this, we discuss the categorization of events that can occur in an e-learning scenario and the
relationship these events have with the learner models. Then, we move on to describe the ABC Model’s
appraisal mechanism, which relates learner states to their goals. Based on this, the system provides
suggestions for the learner in support of the e-learning process. Finally, the system updates the learner
model based on observations of the effects resulting from its decisions. In the last section, we provide
recommendations for GIFT and how the various aspects of the ABC Model can support the modules
present in GIFT to enhance their performance for e-learning environments.

The ABC User Model

The ABC User Model (Figure 7-1) tracks the affective, behavioral, and cognitive states and patterns of
the user and applies a cognitive theory of emotions to infer and analyze these states and patterns. This
analysis is then used to provide an adaptive and interactive e-learning environment to learners intended to
optimize learning based on their individual characteristics, requirements, and preferences. The affective
states store the information relevant to the learner’s emotions. The behavioral patterns store the
information associated with the way the learner interacts with and reacts to events within the system and
their apparent objectives. The cognitive states store information associated with the learner’s mental
processes. This section gives a description of these states and the aspects covered by each.
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USER INFORMATION

ABC MODEL

Affective States
Behavior Patterns
Cognitive States

APPRAISAL MECHANISM

Desirability of Events
EVENT Prediction of Learner’s States
Feedback to Learner Model

Suggestions for Learner

Figure 7-1. The ABC Model

Affective States

The learner model needs to represent and acquire the learner’s emotional states. It needs to develop
techniques to make predictions and inferences about and based on these emotions. In the ABC Model,
emotions are ascribed to the learner based on not only the sensory inputs, but also the learner’s behavior
and on the events of the world (Martinho et al., 2000). Hence, it needs a cognitive theory of emotions that
considers and works with such stimuli. Ortony, Clore, and Collins’ Theory of Emotions, OCC Theory
(Ortony et al., 1988), is one such cognitive appraisal theory and forms the basis for the affective aspect of
the ABC Model.

OCC Theory: Ortony, Clore, and Collins proposed a cognitive appraisal theory that is structured as a
three-branch typology, corresponding to three kinds of stimuli: consequences of events, actions of agents,
and aspects of objects. Each kind of stimulus is appraised with respect to one central criterion, called the
central appraisal variable (Adam et al., 2009). An individual judges the following:

1. The desirability of an event
2. The approbation of an action
3. The attraction of an object

The OCC typology contains 22 emotions, grouped in 6 classes. These are depicted in Figure 7-2. The first
branch contains only one class of emotions related to aspects of objects, triggered by the appraisal of the
objects with respect to the individual’s likings. This class is seldom involved with e-learning
environments, usually limited to the cases having virtual characters involved with the learning process.
The second branch contains three classes of emotions triggered by the appraisal of the consequences of an
event as to its desirability. Different emotions arise depending on the prospect and the focus of the
desirability of consequences of events. Individuals can focus desirability either on themselves or on other
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individuals. The third branch contains two classes of emotions triggered by the actions of agents, which
are appraised according to their compliance and conformity to norms and standards.

Emotion
Aspgcts of Consequence Actions of agents
objects of events
Love, | | ’—k—‘
Hate
Self Other Self Other
‘ Happy-for, Pride, Admiration,
| | Pity, Shame, Reproach,
Resentment, Gratification, Gratitude,
Prospect .
Prospect relevant ) Gloating Remorse Anger
irrelevant
Hope,
Fear, Joy,
Satisfaction, Distress
Fears-confirmed,
Relief
Disappointment

Figure 7-2. The OCC Theory of Emotions typology

Based on the OCC theory, the learner’s affective states can be characterized by two types of data: the
learner’s emotional profile and the emotional states (Martinho et al., 2000).

Emotional Profile: The emotional profile represents the emotional pattern exhibited by the learner and is
constituted by the following:

e Emotional Class Thresholds: These represent the assumed emotional “resistance” to the different
classes of emotions.

o For instance, emotional thresholds can model how easily the learner can be disappointed
upon not being able to solve a problem. The amount of effort produced by a learner in
trying to solve a difficult problem can be used to state the learner’s level of resistance to
disappointment. If learners have a tendency of not producing enough effort in solving
problems related to topics in which they have been performing poorly, it indicates a low
level of resistance to disappointment.

e Emotional Class Decays: These represent the extent to which emotions represent self-sustaining
processes or how long the emotions being experienced by the learner last.

o ltis very difficult to assign emotional decay values, but they can have a significant effect
on how the learner behaves in a learning session. They can be inferred from past trends,
for instance, some learners get excited upon solving a problem they perceive as difficult
and, in such a state, they might make mistakes while working on subsequent relatively
easy problems. A decay rate for such an emotion can be assigned by observing patterns
and the average time required for saturation.
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Emotional States: Two types of emotional states are stored in an ABC Model:

e Potential Emotional States: These represent the particular classes of emotions the current
situation is likely to provoke according to the learner’s inferred attitudes, goals and standard of
behavior. Additionally, the model predicts how strong those potential emotions are likely to be.

o For instance, learners might be expected to feel angry if they get confused by a hint
suggested by the system and then fail to solve a particular problem, while they would feel
gratitude for the system if the hint helps them solve the problem correctly.

o Active Emotional States: The ABC Model classifies the ongoing active emotions of learners
based on sensory inputs, system interactions and predictive models.

o It stores these emotions, along with their intensity, that is, the distance between the
learner’s estimated threshold and the actual current value measured for the respective
emotion — the greater this distance, the greater the intensity of the experienced emotion.
The active emotional states are one component in the appraisal process discussed later.

Behavioral Patterns

There are two key dimensions of an individual that are most responsible for the way they act: behaviors
and personality traits. Personality traits are persistent characteristics that are demonstrated often under
specific circumstances or environments. Because they define habitual patterns of thought and emotion,
they provide a foundation for predicting behavior. Personality traits seldom change over time but these
can trigger different behaviors under different circumstances and emotional states. The ABC Model
incorporates representations of the personality traits and learner objectives, which combined with the
affective states, predict the behavior of a learner under given circumstances.

Personality Traits: The ABC Model follows the Five-Factor Model of personality (Conati et al., 2002),
which structures personality traits as five domains:

1. Openness: the degree of intellectual curiosity, creativity, and a preference for variety.

2. Conscientiousness: a tendency to show self-discipline, act dutifully, aim for achievement, and
plan behavior.

3. Extraversion: sociability and the tendency to seek stimulation in the company of others.

4. Agreeableness: a tendency to agree, be cooperative, and go along with others, as well as how
important it is for a person to please others.

5. Neuroticism: the tendency to experience unpleasant emotions easily, such as anger, anxiety, or
depression, indicating the degree of emotional stability and impulse control.

All these dimensions of personality are closely related to the expressional, logical, and emotional
personification to varying degrees. Depending on the application being implemented, a different
combination of these personality traits might be considered significant for the context of usage. However,
it is advisable to use all the dimensions in the model, as some changes in the learner’s states might go
unnoticed leading to inaccurate predictions under certain conditions. Since the model states that these five
factors form the basis of the personality space, one should be able to represent any personality as a
combination of these factors.
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Goals: Goals are used in problem solving or task execution in learning environments. The learners using
an e-learning system have goals and objectives to carry out an associated task or to perform and learn at a
certain level. There can be different types of goals depending on the application that is using the ABC
Model. A few examples follow:

e Performance related goals with respect to a specific task in an application.

e Goals related to achieving a certain level of understanding of concepts.

e Goals to avoid making errors and mistakes

e Goals to find the most efficient solution to problems

e Goals to perform well with minimum assistance from the system

e Goals to perform better than other students

e Goals to have fun in the learning process
Each of these goals has a different degree of relevance to a particular learner, which leads to events
having varying effects on the affective states of the learner (Elliott et al., 1999). The relevance is

represented using the following intensity variables:

1. Importance to the learner

2. Effort
3. Anxiety
4. Arousal

These variables are assigned a value by using the user information and the personality traits, for instance,
the domain knowledge and preference decide the importance and effort associated with a goal and anxiety
and arousal depend on specific personality traits and past record.

Cognitive States

Cognitive states represent the state of a person’s cognitive processes or their state of mind. They represent
the way a learner thinks, perceives, remembers, or solves problems under given circumstances. Hence,
they have a large effect on the way a learner assimilates and retains information while using an e-learning
system. Similar to the affective aspects of a learner, cognitive aspects are characterized by two types of
data: the learner’s cognitive profile and the learner’s cognitive states.

Cognitive Profile: The cognitive profile represents the habitual pattern of cognitive behavior exhibited
by the learner and is constituted by the following:

e Cognitive State Thresholds: These represent the assumed cognitive “resistance” to the different
cognitive states.

o For instance, cognitive thresholds can model how easily the learner can get confused. The
rate at which the system provides information to the learners might be beyond their
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ability to grasp it. Information about the learner states is monitored and recorded to
assign threshold values to the parameters associated with the state and the signals sent by
the sensors used for identifying the cognitive state.

o Cognitive State Decays: These represent the extent to which cognitive states represent self-
sustaining processes or how long the learner persists in the states.

o As with emotional class decays, it is very difficult to assign values to cognitive state
decays. They can be inferred from past trends, for instance, some learners get bored while
they are being taught a subject they are poor at and they pay less attention to a system
that inhibits the learning process. A system typically responds to such a situation by
attempting to refocus the learner’s attention. The time span over which the system needs
to take such measures can be observed and a decay rate can be assigned accordingly.

Cognitive States: Two types of cognitive states are stored in an ABC Model:

e Potential cognitive states: These represent the particular cognitive states the current situation is
likely to provoke according to the learner model. For instance, learners might be expected to feel
drowsy if they are currently getting bored and confused by a topic being taught by the system.

e Active cognitive states: The ABC Model classifies the ongoing active mental states of learners
based on sensory inputs, system interactions, and predictive models. It stores these states, along
with their intensity, that is, the distance between the learner’s estimated threshold and the actual
current value measured for the respective mental state — the greater this distance, the greater the
intensity of the experienced state.

Based on the information representing the learner’s affective, behavioral, and cognitive states, the ABC
Model predicts how a learner is going to behave on the occurrence of an event. The next section describes
the various types of user information required to build the user model and the ways of collecting the
information.

User Information

The information about the user forms the basis of a user model and is a primary means of characterizing
it. User models are created by processing different types of user information such as beliefs,
characteristics, preferences, objectives, etc. The raw information about the user is processed to create the
ABC Model. The user information can be classified into five categories: characteristics, capabilities,
preferences, domain knowledge, and goals. Each of these categories is briefly described in this section
followed by some means of gathering the information about the user.

Types of Information

Characteristics: These are normally captured within a profile of the user, such as gender, age, interests,
and personality traits. This information helps in predicting the user’s behavior under specific
circumstances and aids the agent in making better decisions. This information can also be relevant to infer
other more specific information such as preferences.

Capabilities: Some systems need to model the capabilities of their learners (e.g., the ability of the learner
to understand a recommendation or explanation provided by the system). Modeling capabilities include
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modeling human learning, memory, and cognitive load limitations, which would allow a system to adjust
the length and content of explanations as appropriate to ensure the learner is capable of assimilating it.

Preferences: These are used in interactive systems to make suggestions for the learner or in interface
agents to select the information that is most relevant to the learner. The preferences often help the system
recognize any tendencies of a learner toward particular options or solutions, which, in turn, helps in
estimating the mistakes and errors made by the learner.

Domain Knowledge: These represent the learner’s beliefs about a specific domain of knowledge. The
knowledge of the concepts and terms the learner understands, allows the system to produce responses
incorporating those concepts and terms while avoiding the concepts that the learner might not understand.
This type of content is relevant for intelligent learning environments, which aim at considering the
learner’s state of knowledge to facilitate generation of explanations.

Goals: Goals have already been described briefly in the previous section on behavioral states. The effort
that a learner puts in depends on the goals, and hence, the need to store information on these is an
immediate result of the need to support the learner to adequately achieve their tasks and performance
level. We describe later in this chapter how these goals and objectives affect the desirability of the events
in an e-learning environment which in turn helps in modeling the learner’s state.

Methods of Gathering Information

There is no absolute method for collecting the above-mentioned types of information; instead, a
combination of methods should be used. This helps in gathering different segments of information, which
can be combined together and then classified accordingly to generate a holistic model of the learner. The
following are some of the methods that can be employed for this purpose:

e Survey Forms: These are often seen as a quick and easy means of collecting valuable learner
information. These allow information collection in an objective and standardized manner, which
helps in direct storage, usually without any need of further processing. For example, the learners
can be asked about their specific traits on a particular scale and they can be asked to choose their
preferences from a list. This is not usually possible with open-ended questions having a
subjective nature since they can generate huge amounts of data. This makes their handling and
processing a complicated task as the relevant information needs to be extracted from the learner’s
responses. This, survey forms should be used mostly for specific information about the learner,
for instance, the characteristics, likes, dislikes, and basic objectives.

e Learner’s Academic Records: These often reveal a huge amount of information about the
academic background of the student learner. The knowledge of academic background helps in
analyzing the familiarity the learner has over specific domains covered by the learning
environment and, to some extent, describes the learner’s relative ability to grasp different content.
Learner records also help in estimating a range in which the learner can perform, which can be
used to deduce the learner’s objectives and expectations associated with the e-learning system.

e Pretest and Questionnaires: These are used to evaluate comprehension and deduce high level
goals while using the e-learning system. The pretest can have different sections aimed at
assessing the learner’s skills related to various domains like mental ability, problem solving, and
initial understanding of different subsections of a topic. Some questions can be specially designed
in order to get information on the personality traits of the learner. Depending on the learner’s
performance, a basis can be created for the goals, focus areas, and most frequent errors.
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e Sensors: The ABC Model gathers information about the learner’s affective and cognitive states
by the use of various sensors. These can be based on audio, video, infrared signals, thermal
imaging, heart rate, respiration rate, etc. Passive sensors can be used to sense learner behavior
unobtrusively, avoiding any negative impact on learning process (Sottilare et al., 2012). Sensors
send signals to the learner model indicating the current state being experienced by the learner and
this information is used to infer profiles related to emotional and cognitive states.

Events

In the context of the ABC Model, an event is an activity or a happening that can affect the realization of
learner’s goals and has the potential to modify the learner’s affective and behavioral states, either directly
or indirectly. Events can result from the actions of either the learner or the system, and hence, can be of
two types based on the source of origin: learner-generated events and system-generated events. Based on
their effect on the realization of the goals and objectives, events can be classified into the following two
categories (Martinho et al., 2000):

o Desirable Events: events that lead to or facilitate the realization of goals and objectives.
o Undesirable Events: events that prevent or inhibit the achievement of goals and objectives.

In both cases, the degree of desirability is proportional to the importance of the goal and the degree to
which the event contributes to or impedes the achievement of the goal.

Relation Between Events and Learner Model

The ABC Model recognizes the emotions based on the OCC cognitive psychological model of emotion,
which considers 22 categories of emotions. Relevant categories of emotions are selected depending on the
e-learning application for which the model is being used. Some of the emotional and mental states most
relevant to e-learning environments are joy, distress, fear, disappointment, surprise, anger, boredom,
confusion, attention distraction, and shame.

The events are assigned a desirability value based on their predicted effect on achieving goals, which is
directly related to the learner model states. The desirability helps the system decide how a learner is
expected to react to a particular event, under a given state. For example, an event inhibiting the
achievement of a goal will be much more undesirable for a learner who has been ascribed a high value for
the neuroticism trait and is already in a distressed emotional state compared to a happy learner with a
positive attitude. According to OCC, joy and distress are elicited when a person focuses on the
desirability of an event in relation to the individual’s goals. Joy occurs when a person is pleased about a
desirable event that takes place and distress when that person is displeased about an undesirable event.
For instance, for learners who have the intention of pleasing the teacher and their parents, obtaining a
good grade is a desirable event. Similarly, different cognitive states become active depending on the
desirability of an event.

It is necessary to determine the learner’s goals in order to verify the desirability of events. Students who
have a learning goal are oriented toward developing new skills and abilities, and try to understand their
work, improve their level of competence, and learn new things. When learners have performance goals,
they want to demonstrate that they have the associated abilities. They feel successful when they please the
teacher or do better than other learners, rather than when they understand something new.
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Moreover, different classes of emotions are elicited depending on the source of an event. For example, an
event that facilitates the learner’s goals can generate positive emotions such as joy for the event, gratitude
toward the system for system-generated events, or pride in the case of a learner-generated event.
Corresponding negative emotions for an event inhibiting one’s goals are anger and shame.

Appraisal Mechanism

A user modeling system needs to have a mechanism to appraise emotion-inducing stimuli, so that the
affective and cognitive states are predicted with a high level of accuracy. People have a perception of the
world and this leads to activation of emotions. The appraisal structure makes use of inductive and
abductive reasoning over these perceptions. Induction allows inferring the conclusion from the premise
with a high probability. For example, if learners have a tendency to behave in a particular way while
experiencing some specific states, then the system predicts that behavior under similar circumstances in
future. On the other hand, abduction allows inferring a premise as a plausible explanation of a
consequence. For example, if undesirable events result in particular learner states, then these states arising
after the occurrence of an uncategorized event can be used to classify it as undesirable. According to OCC
theory, emotions are elicited from three different perspectives: consequences of events happening in the
world, action of agents, and aspects of objects existing in the world. Based on the learner information, the
ABC Model attempts to predict how the learner perceives different events. The predicted learner
perception is used to infer the changes expected in the learner’s affective, behavioral, and cognitive states
on the occurrence of an event.

Desirability of events is estimated with respect to the learner’s goals and this may elicit consequence of
events emotions like satisfaction and distress. Appraisal of actions, whether of the learner or the system is
done with respect to the learner’s predicted standard of behavior and this may elicit action of
agents emotions like admiration and remorse.

The ABC Model keeps a record of the past changes in the learner’s affective and cognitive states, which
is used to ascribe the potential states. Based on these and the information about the learner, the system
makes predictions regarding the learner’s expected behavior. This predicted behavior is compared with
the actual observed behavior of the learner and depending on the level of conformation between the two,
appropriate modifications are made to the learner model and the prediction models. Now based on the
observed events or actions and the learner’s current state, the system infers the changes activated by the
event and the further actions expected to result from these changes. These inferences are then stored in the
learner’s model to be used for appraisal of future events. The system appraises events by assigning them a
relevance related to the learner’s goals and then estimates them using the OCC theory of emotions to
evaluate each affective and cognitive parameter. This can be done using machine learning and pattern
matching techniques. Predictions regarding the learner’s behavior are also made using machine learning
techniques based on the affective state of the learner and the information in the learner model.

Now based on the observed changes resulting from an event or an action and the knowledge of how the
learner behaved under similar situations in the past, the system incorporates pedagogical strategies and
provides suggestions to help the learner acquire states that enhance the learning process (D’Mello et al.,
2009). For problem solving environments, the ABC Model keeps track of the possible steps at each stage
and if the learner solves a problem incorrectly, then the system appraises the point of error in the solution
and highlights it to the learner (Balakrishnan, 2011). When the learner makes an error, the ABC Model
records the learner’s states and associates them with the error. This helps in identifying the potential
mistakes the learner might make in specific states, so when such a state arrives in the future, the system
helps the learner to avoid making the mistake by producing hints.
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Discussion and Recommendations for Learner Modeling

The ABC Learner Model framework described here integrates inductive and abductive reasoning to
develop a learner model for predicting the learner’s affective, behavioral, and cognitive states in an e-
learning environment. We have described a convenient approach for the implementation of learner
models based on the affective, behavioral, and cognitive states of the learner. It allows the system to
predict learners’ future ABC states based on their personal information and cognitive evaluation of events
that elicited a specific emotion or behavior. The ABC model appraises events in terms of desirability and
learns about the events that elicit specific emotions, and hence, decides the appropriate tactic to apply to
enhance learning. Being independent of domain and not involving any predetermined assumptions, the
proposed framework can be integrated into any e-learning environment. The affective and cognitive
profiles can be used to focus on specific challenging states of a learner demanding special attention.
Incorporating predicted future states allows the system to modulate learners’ critical behavior in advance
by giving appropriate suggestions.

GIFT, a service-oriented framework of tools, methods, and standards to aid computer-based tutoring
systems described in previous chapters, can benefit by incorporating aspects of the ABC Model into its
framework. The various types of information required to create the learner models can support GIFT’s
Domain Module in assessing the learner’s performance and providing relevant content as feedback.
GIFT’s Learner Module functions to determine the learner’s affective and cognitive states and this
module can use the method in the ABC Model for predicting learner states. The ABC Model observes and
analyzes learner performance over a period and creates affective and cognitive profiles that have
threshold values and decay rates associated with the states in consideration. Incorporating these
parameters can assist the learner module in determining learner states more effectively.

The ABC Model’s appraisal mechanism predicts the changes resulting from an event and facilitates
suitable interactions to enhance the learning process. GIFT’s Pedagogical Module decides when feedback
needs to be provided to the learner, and hence, can benefit from the ABC Model’s appraisal mechanism.
The appraisal mechanism can also support the trainee module for predicting the learner’s state. Moreover,
the Assessment Construct of GIFT, which is used for post-hoc analysis, can utilize the learner’s affective,
behavioral, and cognitive profiles created by the ABC model.
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Introduction

The data stored in a learner model are used by an ITS to adapt and customize instruction based on the
learner’s state of cognitive and affective knowledge. Ideally, this model would include information about
the learner’s individual characteristics, past and current competency, performance, cognition, affect,
behaviors, etc. The higher the level of functionality and capability of a learner model to interpret and
accurately classify the comprehensive knowledge of an individual learner, the better the ITS can adapt to
the individualized needs of the learner. For expert human tutors, this process is easy since they have the
natural ability to interpret and assess the learner’s current and predicted state of readiness for instruction.
However, equipping learner models with such capabilities is a computationally complex problem ITS
researchers have been trying solve over the last 15 years. The primary sub-research areas of learner
modeling research include, but are not limited to, learner state, cognitive modeling, affective modeling,
individual differences, behavioral and physiological sensing, and performance assessment.

Most learner modeling research is conducted within academic populations (primarily K-12) and well-
defined, domain-specific ITSs, such as mathematics and physics. The next-generation ITSs aim to be
more inclusive of adult learners and job-related training; however, little is known about the transferability
and validation of previous research findings as well as the investigation of other useful learner aspects
that scale beyond academia. While great strides have been made among learner modeling research, there
are several factors that limit the future progression/development of comprehensive learner models: (1) the
lack of understanding of the impact and interaction effects of learner model elements; (2) the lack of
reusability and transferability of learner models between ITSs, domains, and populations; (3) the
nonexistence of the measures from user models/modeling of which learner models/modeling is a subset;
and (4) the lack of standardization for learner model development and structure.

These limiting factors can be addressed through the process of empirical evaluation in future learner
modeling research and learner model development. For years, these issues have been ignored by the user
modeling community at large (Adikari & McDonald, 2006; Glavinic & Granic, 2008; Granic & Adams,
2011; Johnson, 1994; Kobsa, 1994) due to the constraints surrounding the needed experimentation.
However, GIFT, an experimental testbed that can accommodate such evaluations and comparative
analyses, is now available to conduct such experimentation realistically and affordably.

The purpose of this chapter is to provide justification for the need of empirical evaluation by taking
lessons learned from the human-computer interaction (HCI) perspective of user modeling research.
Moreover, we present guidelines and suggestions on how to conduct such evaluations using GIFT.
Specifically, this chapter is divided into three sections: (1) the current understanding of learner model
elements; (2) the incorporation of the missing link of HCI user modeling research; and (3) suggestions on
how to conduct experimentation using GIFT toward the development of standardizing and generating
comprehensive learner models capable of accommodating user and domain diversity.
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Current Understanding of Learner Model Elements

The content within learner models is generally categorized in two parts: domain-specific or domain-
independent information (i.e., learner-specific characteristics [individual differences]) (Abdullah, 2003;
Gonzalez, Burguillo & Llamas, 2006). Domain-specific information reflects the learner’s state and level
of knowledge or ability within a particular domain. This type of information primarily includes historical
competency (domain knowledge and skills measured over time), misconceptions, problem-solving
strategies, etc. Most learner models, particularly those of first-generation ITSs, are concerned with
modeling this type of information because this allows the model to be more generalized across multiple
populations. While this information is useful, it alone is not sufficient for providing the highly adaptive
individualized training. Domain-independent information consists of all relevant characteristics of an
individual learner and can include, but is not limited to, the following elements: learning goals; cognitive
aptitudes; measures of motivational state; learning preferences (including styles and personality); interest;
demographics; past performance and competency (non-domain-specific); behavioral/psychological
measures; cognitive and affective dimensions; and personal control beliefs (including general self-
efficacy; locus of control). These individual difference variables are significantly different between
learners and, collectively, are not the same for any two learners.

To accurately classify a learner’s state and performance at any given time, the learner models must have
all-inclusive understanding of learner’s cognition and affective states, influential individual difference
characteristics, and performance. One area of learner modeling research is dedicated to understanding the
influence of and interrelationship between domain-independent information (e.g., learner-specific
characteristics) and how it can be best used in conjunction with the domain-specific information to
optimally classify a learner state and performance. Understanding impact and interaction effects of
individual learner model elements takes “big data,” recurring empirical evaluation and experimentation,
and the ability to dynamically incorporate multiple models and modeling techniques simultaneously.
However, learner models have limited reusability since they are typically developed standalone and
tightly coupled within the specific ITS within which it is integrated. Most of these systems typically can
only accommodate one well-defined academic domain (i.e., mathematics, physics, computer science),
resulting in the lack of standardization of learner model elements and ideal learner modeling techniques.
The review of HCI user modeling research shows the same limitations are present in that area of research.
While the approach to user modeling is different, lessons can be learned from the HCI user modeling
research area. The next section discusses how ITS learner modeling research can be enhanced by
leveraging some of the research of its parent research area, user modeling (from the HCI prospective).

The Missing LINK: The Human-Computer Interaction (HCI) User Modeling
Perspective

There are several social and economic factors influencing the evolution of technology; however,
technology progression is directly correlated to changes in user requirements. Consider the evolution
chain of the personal computer (i.e., desktop to laptops to netbooks to tablets and smartphones) as an
example. This progression was accomplished by user’s desire to have these devices more portable, faster,
and useful to accommodate users with diverse computing purposes. User requirements for the successful
and beneficial usage of ITSs are also changing as their need to account for learner and domain diversity
increases. Long gone are the days in which user-initiated and user-selected adaptation techniques, such as
completing preference menus and editing profile files, are sufficient for personalizing interactive
computer systems (Kobsa, 1994). In most cases, especially ITSs, learners (users) do not have the
necessary knowledge about the subject area, their own errors, or the system’s adaptive abilities to select
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adaptation preferences. Moreover, adaptation methods in current and future ITSs dynamically occur and
are too numerous for learners to customize each potential adaptation path.

User and learner modeling research have the opportunity to significantly enhance the adaptive capabilities
of intelligent, interactive interfaces and learning environments; however, there is a rather large disconnect
between these two research areas limiting their forward progressions. Learner models and modeling is a
subset of user models and modeling (Self, 1988). User models, like learner models, contain the system’s
assumptions about all user characteristics that are relevant for tailoring system behavior to accommodate
the individual user. Furthermore, both user and learner modeling share common tasks including (1)
initializing the user or learner model; (2) drawing assumptions about the user or learner based on system
interactions and updating the user or learner model accordingly; and (3) supplying other system
components with assumptions about the user or learner, as needed. While user and learner modeling share
common performing functions, there seems to be a rather large disconnect between these areas. They
differ in the following ways:

= Primary Area of Research
o User modeling is a subdivision of HCI
o System goal is to build useful and usable systems
o Learner modeling is viewed as a subdivision of Al. This terminology is essentially used
for the primary user (i.e., student, learner, trainee, pupil, etc.) of an ITS and other
learning environments.
o System goal is to build systems that portray intelligent behavior
= Model Content
o Both user and learner models can contain personal data associated with a specific
user/learner including demographics, past experience, goals, interests and motivation,
knowledge and skills, preferences, etc.
o User models also include and emphasize users’ system preferences and dislikes,
behaviors and interactions with the system, system acceptance (including perceptions,

satisfaction, and usability), and general technology acceptance.

o Learner models also include and emphasize learner’s cognitive and affective states,
domain competency and self-efficacy, cognitive aptitudes, etc.

o There is no current standardization on how to structure and employ these models;
therefore, not all current models contain the above information.

= Adaptation Techniques

o User modeling focuses on modifying/adapting the system’s interface design based on the
user model. Considers other elements of HCI such as usability and user-centered design.

o Learner modeling focuses on modifying/adapting instruction based on the learner model

(not including the change to the physical user interface, but may change the interface
feedback via agent, text, audio, etc.).
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=  Presence in the Literature:

o ltisrare to find representation of ITSs and learner models in user modeling research, and
it’s even more scarce to find reference to user modeling in ITS and learner modeling
research. Basically, these two research areas and system development are conducted
entirely independently (Johnson, 1994).

Johnson (1994) suggested that regardless the past neglect of combining the research and
development of HCI- and Al-based user models, the two communities will come together
in the near future due to the increase of intelligent interface and agents; however, 20
years later, gap and disparities still remain. If both communities understand the
importance of optimizing the user’s system interactions and have had significant progress
within their respected fields, why is the gap between these two areas still as widespread
as it was 20 years ago? Why does this issue still matter?

Returning to the notion of technology evolution being driven by user requirements, the need for
understanding how an interactive system can dynamically capture/model users’ needs and adapt its
interaction accordingly has become more vital due to the increase in range and complexity of user
requirements for such systems (Granic & Nakic, 2007). In order for ITSs to optimize learning experiences
and system intelligent behavior, a greater understanding of the interaction between the learner and system
is needed. We can no longer ignore the needed synergy between the learner’s learning process (inclusive
of individual differences) and the learner’s interaction with the learning application (i.e., ITS) (Granic &
Adams, 2011; Squires & Preece, 1996). HCI user modeling research can provide the ITS learner
modeling community with a potential solution to ascertaining such an understanding, which will directly
attribute to better understanding the impact and interactions of currently researched learner model
elements.

User Modeling in Human Computer Interaction (HCI) Explained

The general goal of HCI is to facilitate the development of systems that are enjoyable and easy to use.
User modeling in HCI research was originally aimed at investigating the different types of user models
and their role in supplying information for designers throughout various stages of the system development
process (Johnson, 1994). Over the last 10 years, HCI research has realized that understanding users’ needs
is at the core of successful interactive technology design and adoption. Therefore, this research area has
expanded to investigating user-centered, user-sensitive, and learner-centered design approaches toward
the development of transparent interfaces and flexible interactions that can account for user diversity
(Glavinic & Granic, 2008). Thus, such research has extended its objective to gaining a thorough
understanding of the cognitive, perceptual, and motor components of user interactions with interactive
systems (Olson & Olson, 2003).

User-sensitive design places equal focus on user requirements and the diversity of such requirements
among all intended users (both typical and extraordinary) (Granic & Adams, 2011). Learner-sensitive
design (Soloway et al., 1996) expands user-sensitive design by accounting for learner’s unique needs,
objectives, knowledge, abilities, and other learner-specific characteristics. Since it is known that one
single interface design will not satisfy every user, HCI user modeling research looks to intelligent user
interfaces (IUIs) as a means of (1) providing more individualized and personalized interactions, (2)
enabling adaptation of interface behavior to match user individual characteristics (adaptive systems), and
(3) enhancing system acceptance, usability, flexibility, and attractiveness (Granic, 2008b; Hook, 2000).

90



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

Adaptive, 1UIs rely on the use of user models, which contain a collection of information and assumptions
about particular users that guide the adaptation process of the system for an individual (Kobsa, 1995),
thus an intelligent system’s behavior strongly depends on the impact of user individual characteristics on
interaction with the system (Granic & Nakic, 2007; Magoulas, Chen & Papanikolaou, 2003). This is
similar to the use of learner models in ITSs. Like ITS research, HCI research has acquired inconsistent
results on the impact of individual differences on user performance; however, the underlying cause in
HCI research attributing to user performance with a particular system largely depends on the system alone
(Granic & Nakic, 2007). In HCI user modeling research, elements of users’ acceptance, preferences,
usage behavior, perceptions, perceived usability and usefulness, and attitudes toward the system and
computers in general are considered as a part of modeling users’ system interactions.

ITS learner modeling research can leverage some of these elements to ascertain a clearer distinction
between factors influencing a learner’s cognitive and affective knowledge during the learning process and
factors that are directly linked to system interaction and usage behavior. With this concept in mind,
several HCI researchers have investigated the link between users’ individual differences and their usage
of e-learning applications (as ITSs fall under the same umbrella of educational technology). Adams
(2007) evaluated eight hypothetical criteria e-learning systems need to accommodate individualized
student learning against five e-learning platforms. Accessibility and student modeling for user diversity
were the weakest points among all cases. The Cognitive Tutor Authoring Tool (CTAT) was found to
address the most criteria among the five platforms; however, the difficulty and time involved in
developing a cognitive model limits its universal usability (Adams, 2007). An experiment conducted to
investigate the existence and level of interaction among users’ individual differences and learning
outcomes through the use of an e-learning application also garnered interesting results. The individual
differences that were evaluated within the experiment include both personal user characteristics (i.e.,
intelligence, emotional stability, extraversion, mental stability, experience) and system-dependent user
characteristics (experience using computers and Internet, motivation to learn programming, expectations
from e-learning, and background knowledge material to be learned). The study found significant
correlations between mental stability and motivation, and emotional stability and expectations from the
system; however, only learner’s motivation to learn programming and their expectations of e-learning had
a significant impact on the knowledge acquired through their system interaction (Granic & Nakic, 2007).
A follow-on study also found motivation to learn and expectations about e-learning (both for e-learning in
general and the specific application) to significantly influence learning achievement (Granic & Adams,
2011). These findings support the need for researching the impact and interaction of individual
characteristics (inclusive of system-dependent/specific characteristics) and how users’ expectations of the
system can impact their successful system interactions.

For learners, their interest and motivation to learn pertains to their willingness, direction, intensity, and
persistence of learning-directed behavior. It influences their choices during learning activities as well as
cognitive engagement during instruction and training (Schultz, Alderton & Bordwell-Hyneman, 2011).
The level of a learner’s intrinsic motivation, goal orientation, and need for achievement are also directly
related to an overall motivation to learn and has been shown to be directly related to learning performance
and other learning outcomes (Schultz et al., 2011). Furthermore, learners’ self-efficacy beliefs are also
related to their motivation to learn, learning, performance, and job performance (Glavinic & Granic,
2008) and have been shown to influence learners’ decision making during instruction and training
(Soloway et al., 1996). These aspects should be contained within the learner model structure; however,
research assessing the influence of learners’ motivational characteristics on outcomes and their
relationships to other individual difference variables is practically non-existent. Although ITS research
has found interrelationships among learner-specific characteristics (for examples, personality and
cognitive abilities [(Kobsa, 1994; Schultz et al., 2011)], and learning styles and cognitive traits (Graf, Liu,
Kinshuk, Chen & Yang, 2009), current learner models have a limited capability to account for individual
differences as explanations of learner’s cognitive and affective knowledge. Based on the studies
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previously mentioned, user models also have limited capabilities for accounting for individual
characteristics.

Another important area of HCI user modeling research to consider is end-user technology acceptability
and adoption. While technology has been deemed as the “salvation” to education by providing
individualized learning, it rarely meets this “broad expectation” (Healey, 1999). Authoring tools and
shells, such as CTAT, are designed to accommodate teachers by supporting them in the development of a
series of ITSs; however, the ITS adoption and usage for tutoring in real classrooms has been a slow
progression. HCI researchers attribute this slow adoption rate to the fact that ITS interaction mechanisms
have not been accompanied by an adequate user interface design (Granic, 2008a).

In addition to its focus on user expectations and requirements, technology acceptance also considers user
perceptions of a specific technology’s usefulness and usability. Liu, Laio, and Peng (2005) found
significant evidence that learners of e-learning applications have two identities, one as a system user and
the other as a learner, and both identities are influenced by the “flow” (concentration) and perceived
usefulness of the e-learning system (Liu, Liao & Peng, 2005). A recent meta-analysis of research found
solid evidence that supports perceived usefulness is the strongest predictor of a learner’s adoption of an e-
learning technology (Sumak, Hericko & Pusnik, 2011). Usability evaluation is an important role in user
interface design; however, the number of usability studies on e-learning is limited and the consolidated
evaluation methodology for e-learning is non-existent (Ardio et al., 2006; Costabile, Marisco, Lanzilotti,
Plantamura & Roselli, 2005; Granic, 2008a). These studies mention the need for further research and
empirical evaluation of usability assessment of e-learning applications. Usability assessment and
measurement are always among HCI’s approach to investigating the interactions between users and the
system; determining its value in modeling interactions between learners and ITSs is a valuable factor to
consider. Squires and Preece (1996) affirm that “there is a need to help evaluators consider the way in
which usability and learning interact” (Squires & Preece, 1996); Costabile et al. (2005) also argue that the
usability of an e-learning application can directly affect learning (Costabile et al., 2005).

Usability evaluation can be measured by objective performance metrics of efficiency and effectiveness as
well as the user’s subjective assessment of the system usage. These objectives quantify user performance,
satisfaction, and terms by which they find the system acceptable. Adikari and McDonald (2006)
constructed a science-oriented research design to test the value of incorporating conceptual user modeling
and usability modeling into product requirement specifications for improving design (Adikari &
McDonald, 2006). For authoring shells and ITSs, such evaluations can help identify the exact problems of
a particular system (Granic, 2008a) and help separate problems/issues pertaining to the learning process.

The ITS and learner modeling community can benefit from these aspects of HCI user modeling research.
By combining the same evaluated user modeling elements of perceptions toward learning, learner models
could potentially increase explanation of states, performance, and system behavior. Little ITS research
has been done in this area; however, preliminary findings have shown that there is a significant
relationship between learners’ acceptances of pedagogical agents, or virtual tutors, embedded within a
learning environment and the learners’ acceptances of the learning environment itself (Adams, 2007). A
prior study also identified links between students’ behaviors with a tutor and their attitudes and
perceptions (Healey, 1999). Research blending these areas will also be beneficial to HCI user modeling as
both HCI and ITS user modeling research areas have the same issues of no standardization, the inability
to accommodate individual differences, and the need for empirical evaluations to validate modeling
elements. HCI user modeling has expresses the need for empirical research over the last 20 years, but this
is a concept that has become more apparent recently within the ITS community.
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Recommendations and Future Research: Towards the Development of
Reusable and Standardized Learner Models

While much research is needed to investigate the transferability of previous findings, future ITS
researchers and developers should consider the following: model development and evaluation of a few
elements at a time to identify interrelationships between elements and their influences on learner state;
controlled experimentation (including sensor validation and comparisons to self-reported data and user-
experience post-experiment interviews); and increased collaboration and data sharing.

Practical Implications for Researchers

The field of ITS learner modeling research has close ties with other adaptive computing in fields such as
user modeling, HCI, and Al. A common problem among these fields is the limited amount of empirical
evaluation associated with the adaptive systems that they produce (Chin, 2001; Mulwa, Lawless, Sharp &
Wade, 2011; Weibelzahl & Weber, 2002). One of the main reasons for this is the inherent difficulty of
separating out the pieces of an adaptive system. Many of the existing ITSs are tied to one specific domain
(e.g., physics, mathematics) and the learner model used within it is closely tied to the system. The cost,
time, and difficulty that goes into developing these systems results in inflexibility and an impracticality of
many experimental evaluations. In many cases, a non-adaptive, or control, group may make very little
sense or be difficult when trying to evaluate the impact of differing adaptations in an empirical manner
(Mulwa et al., 2011).

An additional challenge to ITS research is that it is difficult to separate out the user’s learning outcomes
from their ability to understand and use the system. One approach that has been taken to studying
adaptive systems and user models has been to layer evaluations. Rather than trying to examine the entire
system, individual pieces are evaluated and empirical studies are run at each part to make sure that it is
effective (Mulwa et al., 2011). This approach is a step in the right direction for making it more practical to
effectively evaluate the impact of adaptations and information stored in user or learner models.

It is of great importance to researchers, specifically in the field of ITSs, to ensure that information that is
contained in the learner model and to which it is being adapted to actually provides a benefit. One way to
do this is by examining the specific content of what is included in individual learner models and its
impact on learning outcomes. Presently, each individual ITS uses its own combination of domain-
independent components in the learner model (e.g., motivation, personality scores, cognitive measures).
Many learner models may not even include information pertaining to computer familiarity and system
acceptance, which have previously been found to be heavily correlated to overall performance in HCI and
user modeling research (Granic, 2008b). Therefore, one of the next necessary and useful steps in ITS
research is to empirically evaluate the impact and interactions of specific learner model elements.
Through this empirical research, a set of useful and standardized domain-independent learner model
components can be developed.

As it stands now, when researchers do examine the individual difference elements within their learner
models, it is within specific domains with limited generalizability (Granic, 2008b). Studies such as those
reported by Granic (2008b) have begun to examine which learner model elements have an impact on
performance outcomes in a specific ITS system. The next step is to continue generating empirical studies
that examine the learner model elements and their utility, and then build a body of knowledge, which can
be examined as a whole looking for commonalities in the useful elements between domains. This
examination can then lead to a generalizable learner model, which will contain useful information that can
be applied in ITSs of varying domains.
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While many of the components included in learner models have been shown to impact performance in
traditional and classroom environments, they may behave differently when computer delivery is added to
the equation. Therefore, it is important to conduct studies on these individual difference components
within a computerized tutoring environment to see which one impact learning outcomes.

Experimental Design Recommendations

In general, there is a need for more empirical evaluations of learner model elements. There are a number
of different steps that can be taken to increase our knowledge about the impact and interactions of learner
modeling elements:

Literature review and meta-analysis. A thorough and formal literature review of current empirical
research into learner model elements is necessary. It can provide an overview of the different
techniques that are used to assess ITSs and learner model elements. It may also lend insight into
which elements are commonly included in learner models and which ones have been found to be
effective. A meta-analysis could give researchers a better picture of the types of domains that
have been examined (e.g., algebra, physics), the number of tutors that have been assessed in each
area, and what elements were included in those user models. The meta-analysis would show
which elements of learner models were consistently helpful between these domains and which
ones are domain specific. This would then give researchers a direction to take when generating
specific experiments to test what elements matter in what situations. It also would give
researchers a better understanding of potential interactions that exist between learner model
elements. The meta-analysis and literature review will also highlight specific gaps in the literature
and areas that have not received much attention.

More empirical evaluations. Granic (2008b) examined the different components of a learner
model used in a computer programming tutor. Correlations were found between certain elements
of the model (e.g., motivation to learn programming) and performance. However, personality
factors did not have many correlations with performance (Granic, 2008b). More research of this
type should be done with different domains, and different ITSs. Once a large body of empirical
evaluation literature has been built up it, can be further examined to see what elements have
utility throughout varying domains and which ones appear to be less generalizable. By expanding
research in this manner, it will move our learner models to be more consistent with each other,
and more easily comparable. GIFT is an ideal experimental testbed to use for such experiments.

Advantages of Using GIFT as an Experimental Testbed and Design
Recommendations

A majority of learner modeling research has not focused on examining the same learner model in multiple
domains. Since GIFT is a domain-independent framework, it allows teachers and researchers to design
their content to work with it, rather than having to develop their own delivery system. One of the main
benefits of designing content in this manner is that it will significantly reduce the amount of time and
effort that would go into developing an ITS. This also allows for consistency between generated ITSs.

One of the intentions behind GIFT is to be able to easily interchange the pieces of a system, and even,
components of the learner model. Further, an additional capability would be to provide a consistent
structure for the development of ITSs. Therefore, GIFT is an ideal system to use for the development of
ITSs and the empirical evaluation of learner model elements. A researcher can design a tutor with GIFT,
and then use the architecture to plug in and hold constant the elements of the learner model to be tested
(for instance, testing one condition where motivation level is adjusted, another where personality type is
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adjusted, and finally, one where both motivation level and personality type are adjusted, and measuring
performance). This allows for the examination of the impact of individual learner model elements, and the
possible interactions between them. In a custom system that is tied tightly to its content and learner
model, these types of experiments would either be extremely difficult or impossible to complete. As
GIFT’s features continue to develop in the future, it will provide even more flexibility and granularity in
the types of manipulations that researchers can conduct in their experimental evaluations of the
components of learner models.

Conclusions

The learner model is a vital part of an ITS. The learner model often contains domain-independent
information (such as individual differences) about the specific learner, and then adjusts instruction based
on these differences. However, there has been very little research on the individual difference components
that have been included in learner models, and there is no standardization of the models between systems.
It is important for research in the ITS field to (1) examine the impact and interaction effects of learner
model elements; (2) increase the reusability and transferability of learner models into different domains;
(3) look to fields such as HCI for guidance into elements that may be useful within the learner model; and
(4) begin to move toward standardization of learner models. GIFT provides an ideal testbed to use for
affordable and efficient experiments into the impact and interaction effects of different learner model
elements. Through further empirical evaluations and the use of GIFT as a research tool, the ITS field can
move toward generating more comprehensive and consistent learner models that are highly generalizable
between domains
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CHAPTER 9 —On the Use of Learner Micromodels as Partial
Solutions to Complex Problems in a Multiagent,

Conversation-based Intelligent Tutoring System
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University of Memphis (UM)

Introduction

More than 40 years since their origins in the early days of computer-assisted instruction in the 1970s (e.g.,
Carbonell, 1970), considerable progress has been made in developing “intelligent” (computer-based)
tutoring systems that successfully scaffold learning in specific domains and for specific purposes (for a
recent review, see Graesser, Conley & Olney [2012]). Frequently cited examples include Cognitive Tutor,
which supports learning in algebra, geometry, and programming languages (Ritter, Anderson, Koedinger
& Corbett, 2007); AutoTutor (Graesser, Olney, Haynes & Chipman, 2005; Graesser, Jeon & Dufty, 2008;
Graesser, Lu et al., 2004), which does the same thing for college-level computer literacy, physics, and
critical thinking skills; and the so-called “constraint-based” systems developed by Mitrovic’s group in
New Zealand (Mitrovic, Martin & Suraweera, 2007), which, among other topics, help students learn to
program in SQL.

In spite of these advances at local research and development sites, the field has yet to produce a truly
general-purpose system that is capable of supporting rapid development of high-quality applications
across a broad range of domains. GIFT, currently under development at the U.S. Army’s Learning in
Intelligent Tutoring Environments (LITE) Laboratory, is intended to fill this gap. Citing Picard (2006),
the developers claim that the availability and use of ITSs has been limited by the high cost of
development, lack of reusability, lack of standards, and “inadequate adaptability to the needs of learners”
(Sottilare, Brawner, Goldberg & Holden, 2012:1). These systems, they write, tend to be built as “domain-
specific, unique, one-of-a-kind, largely domain-dependent solutions focused on a single pedagogical
strategy.” GIFT is presented as a solution to this problem. The modular framework and standards built
into the system could “enhance reuse, support authoring and optimization of CBTS?® strategies for
learning, and lower the cost and skill set needed for users to adopt CBTS solutions for military training
and education” (Sottilare et al., 2012:1).

The development of a general-purpose, domain-specific ITS framework is indeed an important goal, but
numerous barriers block the way. These include (but are not restricted to) a lack of agreement in the ITS
community about how the different components of an ITS ought to fit together; what the structure and
content of the components ought to be; and how knowledge of the world is to be represented, both for
experts and learners.

The argument made in this chapter assumes that a general-purpose system will at some point employ an
open, multiagent architecture, meaning that core functions are carried out by more or less autonomous
software agents united by a common ACL. Some of these agents will perform simple tasks (such as
analyzing a learner’s facial expressions), while others will take on more complex ones, such as generating
appropriate responses to user questions. As an example, here we describe an autonomous software agent
that produces a turn-by-turn analysis of a user’s discourse moves on two dimensions: relevance and
novelty (R-N). In the process, it builds what we call a micromodel of the learner’s current state, including

% Here we use the term ITS to mean the same thing as a computer-based tutoring system (CBTS), a class of adaptive
educational system (AES).
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a relevance-novelty measure for single turns and for a series of turns.* This micromodel allows the R-N
agent to make assertions about the learner’s current and recent contributions to a conversation—assertions
which may be broadcast generally or addressed directly to other agents, such as a conversation agent, a
pedagogical agent, an agent responsible for constructing aggregate learner models from multiple
micromodels, an agent that analyzes the effectiveness of instructional modules, or, where the ITS
employs an “open” learner model (Bull, 2004; Bull & Pain, 1995; Kay, 2001; Mitrovic & Martin, 2002),
an agent responsible for providing access to the learner model through the user interface.

The Standard Four-Component ITS Model

As noted elsewhere in this book, it is customary to identify an ITS as consisting of four major
components, referred to as “models” — the learner model (sometimes called the “student model™); the
expert domain model; the tutor model, and the user interface (Elson-Cook, 1993; Graesser et al., 2012;
Nkambou, Mizoguchi & Bourdeau, 2010; Psotka, Massey & Mutter, 1988; Sleeman & Brown 1982;
VanLehn, 2006; Woolf, 2008). In an ITS where the tutor is capable of mixed-initiative dialog with the
user (Carbonell, 1970; Allen, Guinn & Horvtz, 1999; Graesser et. al, 2005), the tutor takes the form of an
intelligent conversation agent, backed by a Dialog Advancer Network (Person, Bautista, Kreuz, Graesser
& Tutoring Research Group, 2000). Figure 9-1 illustrates the relationship among these four components.

User
Interface
Learner | Tutor | Expert
Model | Model } Model

Figure 9-1. Standard ITS components

In general terms, the learner model represents what the tutor has established to be the learner’s current
level of knowledge, skill, and affective state, while the expert domain model represents the knowledge
and skills the learner is supposed to acquire — and has therefore been called the “ideal student model”
(Corbett, Koedinger & Anderson, 1997). Through interactions with the learner via the user interface, the
conversation agent, playing the role of the tutor, seeks in some way to bring the learner model in line with
the expert model. In this sense, the learner model is said to be an “overlay” of the expert model Wenger,
1987)

Although the various ITS research and development communities seem to agree that these are the main
components, the model is really more of a conceptual framework than a working blueprint. In practice,
different systems employ quite different architectures, data structures, and strategies, reflecting different
instructional philosophies and purposes (e.g., Nkambou et al., 2010, Schatz & Folsom-Kovarik, 2011).
While this makes sense locally, the lack of a standard overall system architecture and way of constructing
the different system components is problematic for a number of reasons.

For one thing, it means that components that have proven to be effective in one system are not easily
imported into another, thus limiting progress that might be made through the collective efforts of the
rapidly expanding network of ITS research and development groups around the world. Also, the lack of a
standard method of structuring the learner model means that when a learner moves from one system to the

* Although we refer here to “user” as a “learner,” in fact the agent we describe here is capable of evaluating the
discourse moves of any interlocutor, including those of another agent.
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next, the new system must start from scratch in establishing the learner’s history and current state of
knowledge. To use an analogy from medicine, it is as if different doctors had different languages for
describing a patient’s health, so, when dealing with a new patient, each doctor would have to reassemble a
patient’s history from scratch.

What then, in the absence of a standard architecture and data structure for representing learner and expert
domain knowledge, is one do to? The 60s-era slogan “If you’re not part of the solution, you’re part of the
problem” seems relevant here. Specific solutions to general problems of learner modeling ought to be
crafted in such a way that they are generally useful no matter what environment they are asked to work in.
To return to the medical records analogy, if we are developing a new procedure for say, measuring pupil
dilation or “knee-jerk” reflex response, so long as we have a standard way of reporting our results, we
don’t have to worry about how our “microrecord” fits into the overall structure of the patient’s medical
record, which can be assembled by someone else. In other words, we can be part of a solution without
knowing exactly what that solution is.

The Argument for a Multiagent Architecture

The notion of an ITS as a multiagent system is not new. Of course, any ITS is a multiagent system in the
gross sense that there are two autonomous agents at work: the user and intelligent tutor. However, recent
years have seen an increasing emphasis on development of ITSs with multiagent architectures in the more
interesting sense that overall system functionality emerges from the collective work of individual
software agents (Bittencourt et al., 2007; Chen & Mizoguchi, 2004; EI Mokhtar En-Naimi, Amami,
Boukachour, Person & Bertelle, 2012; Lavendelis & Grundspenkis, 2009; Zouhair et al., 2012). Through
the use of a shared, speech-act-based agent communication framework such as Knowledge Query and
Manipulation Language (KQML) (Finin, Fritzson, McKay & McEntire, 1994), Foundation for Intelligent
Physical Agents (FIPA)-ACL (O’Brien & Nicol, 1998), or Java Agent Development Framework (JADE)
(Bellifemine, Caire, Poggi & Rimassa, 2008), combined with a set of domain-specific ontologies
(concepts and their relations specific to the system domain), the agents in the system assert beliefs, make
requests of other agents, deny requests, and so forth, much as human workers in a large collective
enterprise do (see Chaib-draa & Dignum, 2002; Kone, Shimazu & Nakajima, 2000).

For example, in a multiagent ITS, different agents can take on the different tasks of user registration and
authentication, interfacing with learning management systems, building learner models dynamically,
monitoring learner affect through the use of various sensing systems, and managing conversations among
users and other agents. Further, agents with especially complex tasks, such as a conversation agent, may
be supported by a network of specialized agents dedicated to specific subtasks. Each of these agents can
have its own internal algorithms, data structures, and local methods of obtaining data. Importantly, as
long as the agent “knows” the system’s ACL, i.e., can post, send, and read messages in a shared language,
it doesn’t matter how it is organized internally, in the same way that different sort functions can take the
same input and produce the same output using different internal algorithms.

In the remainder of the chapter, we give an example: an agent that is capable of evaluating a learner’s
discourse moves on two important dimensions: relevance and novelty. Instantiated as a highly specialized
agent within a multiagent, conversation-based ITS architecture, the R-N agent is capable of making
assertions about a small but important piece of the learner model (a learner micromodel), information that
may be of some value to other agents, such as conversation agents and learning model agents, for their
OWN PUrposes.
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The Problem of Conversational Relevance and Novelty

Designing a computer program that can carry on a conversation with a human, one of the oldest and
arguably the hardest challenge in Al, is exactly the sort of problem that lends itself to multiagent
treatments. For example, different agents may be responsible for converting speech to text, parsing text
into its grammatical elements, classifying utterances as different kinds of speech acts, and extracting (or
estimating) meaning through some form of semantic analysis. Other agents, or clusters of agents, can be
responsible for generating responses in the form of text strings, while still other agents convert the text
strings into speech, and have them spoken by an animated avatar.

The agent responsible for generating responses to a user’s utterances (discourse moves) arguably has the
most complex task and is most likely to benefit from the assistance of simpler agents that can take on
pieces of it. The task is hard because it is really a special form of mind-reading, requiring an ability to
continuously create and test theories about an interlocutor’s present state of mind. Bakhtin’s distinction
between monologic and dialogic discourse (Bakhtin, 1981; Wells, 2007) is a useful way of framing the
problem. In a conversation that is primarily monologic, the speaker’s purpose is to convey information in
such a way as to “duplicate one’s own idea in someone else’s mind” (Bakhtin, 1986:69), without the need
to be concerned about what is already in the listener’s mind, what the listener may be thinking at the
present moment or in expectation of a particular response. This is the discourse stance of a lecturer.
Dialogic discourse, on the other hand, is inherently a “social form of thinking” (Wells, 2007:256), a much
harder form of discourse, at least for machines, in which interlocutors must work to understand each
other’s “present state,” and thereby arrive at a shared understanding.” Consider, for example, the
following exchange:

A: So, what did you do today?
B: Attended a physics lecture.
A: What did you learn?

B: It was really hot.

Given such a response, if A is a human speaker, A will assume, on the Gricean principle, that B is a
cooperative interlocutor; that B’s response must be in some way relevant (Grice, 1975); and that “it”
refers either to the lecture or the lecture hall. In the former case, “hot” would be an attribute of the lecture,
representing a positive reaction, implying that speaker B had liked the lecture and possibly learned a lot
from it. In the latter case, “hot” would be an attribute of the lecture hall, implying an uncomfortable
temperature. Because the word “hot” is more commonly associated with rooms than lectures, A would
probably test the latter case first:

A: So, are you saying the lecture hall was uncomfortable?

B: Yes.

A: I’m sorry to hear that. It must have been hard to concentrate. What were you able to learn?
B: We learned about physics.

A: Okay, but what about physics?

> In a paper titled “Why is conversation so easy?” Garrod & Pickering (2004) argue that, for humans, dialog is easier
than monologue because interlocutors automatically align linguistic representations at various levels (phonological,
syntactic, semantic, and situational), thus building up a shared workspace. This joint construction of meaning and
purpose has the effect of distributing the processing load, thus making conversation relatively easy. Humans, as they
put it, are “designed for dialog.”
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In order for an intelligent conversation agent to carry on such a conversation, it would need, among many
other things, to have some knowledge of the world, of the following type:

1. Lectures are a method of teaching.

2. Lectures are about something.

3. A person may learn something from a lecture.

4. Lectures take place in rooms called lecture halls.

5. Rooms may be comfortable or uncomfortable.

6. Humans are sensitive to temperatures that are outside their comfort range.

7. “Hot” refers to a temperature that is outside a human’s comfort range.

8. Learning requires concentration.

9. When a person is uncomfortable, it is hard to learn.

10. “Hot” is a slang word for something that a human finds attractive...

and so forth. In other words, A’s ability to judge the relevance of B’s utterance “It was very hot” depends
very much on a complex set of concepts and relationships.

However, relevance is not the only important measure of the degree to which a discourse move is felt to
be cooperative. In addition to the principle of relevance is that of quality (Grice, 1975), which includes
the assumption that an interlocutor’s move will add something new to the conversation. In the imagined
conversation considered here...

Learner (B): We learned about physics.
Tutor (A): Okay, but what about physics?

A’s “Okay, but what about physics?” is exactly the right thing to say because B has already reported that
it was a physics lecture, so of course it was about physics. In other words, B has violated the Gricean
maxim of quality by failing to make a truly novel contribution.

So, if it is to possess anything remotely like the intelligence of a human speaker, it seems that an
intelligent conversation agent must have a way of evaluating both the relevance and novelty of an
interlocutor’s discourse moves. Admittedly, this is just one part of the problem of natural language
understanding by a machine, perhaps even a minor part, and so a solution, which itself is likely to be only
partial, will be worth little if not combined with many others. That said, within a multiagent environment,
it might be useful to have an agent that is capable of sending messages like:

json={“target”:”conversation manager”,”learner”:”5021”,”time”:72013-02-01
10:45:22 UTC”, “novelty”:” .3”,”relevance”:”.5"}

or
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json={“target”:”learner model manager”,”learner”:7”1259",
” ”

“session”:”5”,”date”: “2013-02-01",”average novelty”:”medium”, “average
relevance” :”high”}

where the language is an ACL, the decimals represent Bayesian estimates of likelihood, and the assertions
are addressed to other agents with a “for your information” (FYI) intention, i.e., the originating agent is
agnostic as to how other agents will use the information (beliefs) it asserts.®

An Example from Physics
As an example, assume that an intelligent tutor is provided with the following instructional script:

ASK: Suppose a football player is running in a straight line at a constant speed, while carrying a football. Suddenly
he throws the football straight up, over his head, and keeps running at the same speed. Explain where it will land.

EXPECTED ANSWER: In accordance with Newton’s first law of motion, the ball will continue to travel in the
same direction, unless there is an opposing force. In this case, the main opposing force is gravity, but gravity only
affects the vertical component of the motion vector. It is true that the particles in the air, such as oxygen molecules,
exert an opposing force, which pushes against the ball in the opposite direction, but this force is very small
compared to the accelerating force of gravity.

Now, compare the following two transcripts from an imaginary tutoring session:

Transcript A

Tutor: Suppose a football player is running in a straight line at a constant speed, while carrying a
football. Suddenly he throws the football straight up, over his head, and keeps running at the same speed.
Explain where it will land.

Learner A: It will continue along in his direction and come back down where he can catch it.

Tutor: | agree. But why?

Learner A: Well, the ball and the runner both have the same forward speed.

Tutor: Okay...and....

Learner A: So when gravity pulls the ball down, it just affects the vertical speed.

Tutor: What about the horizontal speed?

Learner A: It remains the same. It’s Newton’s second law of motion.

Tutor: Do you mean Newton’s first law?

Learner A: Oh right. First law.

Tutor: Good. Let’s go on to the next problem. What if, instead of a ball, it’s a balloon? On the moon?

Transcript B

Tutor: Suppose a football player is running in a straight line at a constant speed, while carrying a
football. Suddenly he throws the football straight up, over his head, and keeps running at the same speed.
Explain where it will land.

Learner B: i don’t know. somewhere behind him.
Tutor: Why?
Learner B: cause it will fall back behind him so he can’t catch it.

® The syntax used here is JavaScript Object Notation (json), a message format used for communication between
agents in multiagent systems. See http://www.json.org/.
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Tutor: Why do you think that?

Learner B: i just think it will fall behind him
Tutor: Okay...but why?

Learner B: cause

Tutor: Okay, let’s look at that video again....

Clearly, there is quite a lot going on here; however, a key difference between the two transcripts is that
whereas Learner A’s contributions are all relevant (consistent with the expected contribution) and novel
(providing additional information); in the same sense, only Learner B’s first contribution is novel, and
none are relevant.” More generally, the relevance and novelty of given discourse move may be mapped
onto a Venn diagram such as that shown in

Figure 9-2.

Expected Current
contribution contribution
Previous

contribution

72.R N-R

?-1

Figure 9-2. Mapping relevance and novelty

This gives a matrix (Table 9-1) with four quadrants:

Table 9-1. Novelty and Relevance Matrix
Old New

Relevant | O-R N-R
(Not new but relevant) (New and relevant)

Irrelevant | O-IR N-IR
(Not new and irrelevant) | (New but irrelevant)

Assuming that this kind of information would be useful to other agents (notably the agent handling the
conversation with the learner), we can now ask how an agent might go about determining the relevance
and novelty of a given utterance.

" Note that we are using the term “relevant” here in a special, non-intuitive sense. Whereas a contribution may be
“relevant” in the sense that it relates in some way to the topic, it is considered irrelevant if it is inconsistent with a
model answer.
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Quantitative Measures for Novelty and Relevance

A rough-and-ready relevance measure for a given learner contribution to a dialog with an intelligent tutor
can be defined as the extent to which the learner’s answer to a tutor’s question is “semantically similar” to
the answer the tutor expects. In the same way, a measure of the novelty of the learner’s most recent
contribution can be defined as the extent to it resembles the learner’s previous contributions to the same
conversation, i.e., attempts to answer the same question. In other words, if the R-N agent is passed two
strings — one representing the expected answer and the other the learner’s most recent contribution — then
it can it can come up with a relevance score using any one of several methods used to compute semantic
similarity, including Latent Semantic Analysis (LSA; Landauer & Dumais, 1997), Hyperspace Analogue
to Language (HAL; Burgess, Livesay & Lund, 1996), Latent Dirichlet Allocation (LDA; Blei, Ng &
Jordan, 2003), Non-Latent Similarity (NLS; Cai et al., 2004); Word Association Space (WAS; Steyvers,
Shiffrin & Nelson, 2002), and Pointwise Mutual Information (PMI; Recchia & Jones, 2009). For a
discussion of the use of LSA in ITSs see Hu et al. (2007).

Also, so long as it knows that the topic has not changed (e.g., the tutor is still prompting for an answer to
the same question), then, using the same method, it can calculate the semantic similarity of the learner’s
most recent contribution to her previous contributions. This produces values seens in Table 9-2.

Table 9-2. Sample relevance and novelty measures

Old New
Relevant | 0.4 (O-R) 0.2 (N-R)
Irrelevant | 0.1 (O-IR) 0.3 (N-IR)

In addition, two other measures are obtained by combining current and previous contributions. A Current
Relevant Contribution (CRC) score is obtained by adding O-R and N-R (in this case, 0.6), while the CRC
score combined with all previous CRC scores gives a Total Coverage (TC) score.

Together, for any given dialog move, these six measures may be viewed as constituting a micromodel of
the learner’s “current state.” An agent that is capable of evaluating a given dialog move on these measures
can pass along the micromodel it has built for the use of other agents in the community. For example, in
Transcript A, an agent’s analysis of Learner A’s contribution “Well, the ball and the runner both have the
same forward speed” might be communicated as follows:

Jjson={“target”:”all”,”learner”:”71259”,”input string”:”Well, the ball and the
runner both have the same forward speed”,”time”:72013-02-05 11:25:27
urc”,”R/N”:”0.3”,”R/0"”:”0.4"”, “I/N”:70.28”,”1/0”:70.01",
“CRC”:”0.17"”,”TC”:70.24"}

...whereas Learner B’s contribution “cause” could yield the following:

json={“target”:”all”,”learner”:”1147”,”input string”:”cause”,”time”:”2013-02-
05 11:25:27 UTC”,”R/N”:70.0",
\\R/O//:IIO‘O/I,/II/N/I:/IO‘O//,//I/O//://O.:LO//,//CRC//://0.04I/,IITCII:II0.0BBII}

Over a series of moves, the cumulative scores constitute what Hu & Martindale (2008) refer to as a

Learner Characteristic Curve (LCC), which may be displayed in the form of a set of graphs, as illustrated
in Figure 9-3.
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This information, the relevance and novelty of a given utterance, combined with the cumulative relevance
measures, can be viewed as constituting a small, localized micromodel of the learner’s current cognitive
state and as such has practical utility. In fact, it is on the same level as micromodels developed by other
agents in a multiagent ITS community that provides both real-time and historical information about a
user’s apparent affect.

Relevant and New Relevant and Old Total Coverage
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0.80 0.80 0.80
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8 040 l 8 040 - 8oan
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0.00 0.00 ' Turns
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Figure 9-3. Sample LCC output

For example, an agent that monitors a learner’s facial expressions might make an assertion in the form:

json={“target”:”all”,”learner”:”1147”,”facial
expression”:”puzzled”,”value”:”.3”,”time”:”2013-02-01 10:45:22 UTC"}

which constitutes a component micromodel of the learner’s affective state. Combined with the preceding
message from the R-N agent, the conversation manager (more specifically, a response generation agent)
now has two pieces of evidence to consider, i.e., that the user appears confused and that the novelty and
relevance measures for the user’s most recent utterance were both low. Given this information, the
response agent could decide to send a message such as this to an avatar:

Jjson={“target”:”avatar”,”learner”:”1147"”,"”output string”:”You seem confused.
Are you?”,”time”:”72013-02-01 10:45:24"}

Assuming they have ways of understanding messages such as these, other agents in the system can use
them for their own purposes. For example, a response generation agent might use the information in the
first message to generate the turn:

Learner A: Well, the ball and the runner both have the same forward speed.
Tutor: Okay...and....

and the information in the second message to produce:

Learner B: cause
Tutor: Okay, let’s look at that video again....

As another example, a pedagogical agent might take an LCC representing repeated non-novel,
“irrelevant” learner contributions as evidence of a possible misconception.
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Opening the Model to the Learner

In a system where the learner model is “open” to the learner (Bull, 2004; Bull & Pain, 1995; Dimitrova et
al, 2001; Kay, 1997; Mitrovic & Martin, 2002), a user interface agent might use the micromodel to create
a set of graphs, as in Figure 9-4.

Tutor: Suppose a foothall player is running in a
straight line at a constant speed, while carrying a
foothall. Suddenly he throws the football
straight up, over his head, and keeps running at
the same speed. Will he be able to catch it?
Learner:no

Tutor: Why not?

Learner: cause it will fall back behind him so he
can'tcatch it

Tutor: Why do vou think that?

Learner:ijust think it will fall behind him

Tutor: Okay..but why?

Okay, let's look at that video again. Learner. cause
Tutor: Okay, let's look at that video again
| Y
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Figure 9-4. Opening the micromodel to the learner

Giving the learner feedback on the relevance and novelty of her discourse moves in this way could
conceivably encourage her to focus her attention on maintaining higher levels of relevance and novelty
than she might otherwise, thereby increasing the likelihood that the conversation will lead to real learning.

Discussion

In this chapter, we have explained how a specialized agent within a conversation-based ITS can monitor a
learner’s discourse moves on two dimensions: novelty and relevance. In this way, over a series of moves,
it builds up a “micromodel” of the learner’s cognitive state, called a Learner Characteristic Curve (LCC),
which it can then pass along in the form of messages (assertions of belief) to other agents, assuming a
common ACL. As a result, the agent can contribute to the solutions of larger problems without needing to
know what the solution is. Importantly, such an agent is both reusable and replaceable. It is reusable in
the sense that it can be used in any number of different ITSs where measures of novelty and relevance are
considered useful in some way. It is replaceable in the sense that another agent that performs the same
analysis, but more effectively, could be brought in to take over. This form of loose coupling (Orton &
Weick, 1990; Weick, 1976) allows for the rise of mutations at both the local (agent) and system
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(multiagent) levels, thus allowing gradual evolution toward increasingly sophisticated systems that may
eventually approach the effectiveness of a highly skilled human teacher.

What, then, are the implications of the preceding argument for a “generalized intelligent framework” like
GIFT? More precisely, how can we, as a community of ITS researchers and developers, possibly move
forward from our current world of “domain-specific, unique, one-of-a-kind, largely domain-dependent
solutions focused on a single pedagogical strategy” (Sottilare, Brawner, Goldberg & Holden, 2012:1)
toward a future of open, domain-independent systems with shareable, reusable tools and components,
efficient authoring, transportable learner models, cross-platform functionality, and so forth. Given our
rapidly evolving technological environment (e.g., the sudden ubiquity of smartphones and tablets, the
explosion of massive, text-based knowledge representations in the Semantic Web, the magnetic attraction
of social media such as Facebook and YouTube, etc.), it seems unlikely that a single, intelligent tutoring
solution will ever be more than temporarily useful. Rather, it seems what we can look forward to, and
should build toward as a community of practice, is some evolving collection of workable, partial, and
loosely coupled solutions, which, while provisional, are built in such a way that they can evolve both with
and apart from each other. Specifically, the recommendation is that we begin to think seriously about the
adoption of a common ACL such as KQML (Finin, Fritzson, McKay & McEntire, 1994), FIPA-ACL
(O’Brien & Nicol, 1998), or JADE (Bellifemine, Caire, Poggi & Rimassa, 2008) as the basis for a new
generation of agent-based intelligent learning systems that are capable of autonomous cooperation
(Hulsmann, Scholz-Reiter, Freitag, Wucisk & De Beer, 2006; Windt, Bose & Philipp, 2005). Importantly,
because the contributing agents can have their own internal databases and algorithms, we can move in this
direction without wholesale reengineering of our existing systems. Rather, once we agree on a common
ACL and begin to build a shared ontology (which can occur incrementally), then we can “simply”
encapsulate our existing (and evolving) systems in wrappers that allow these systems, whatever their
function, to take part in whatever communities may arise, both adding and receiving value, in ways that
are now only dimly imaginable.
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CHAPTER 10 —Learner Models in the Large-Scale Cognitive
Modeling (LSCM) Initiative

Scott A. Douglass
U.S. Air Force Research Laboratory (AFRL) - Cognitive Models and Agents Branch (RHAC)

Introduction

AFRL research efforts seeking to exploit cognitive modeling are growing in scale and complexity. These
efforts are struggling to meet the challenges of increasing the scale of cognitive models and integrating
them into software-intensive training environments. The struggle has two sources: (1) the need to specify
detailed knowledge and process descriptions in currently available modeling frameworks; and (2) a
dependence on specialized simulators in contemporary cognitive modeling frameworks that isolate
models from standards, methods, and tools used by the larger systems engineering community. As long as
the struggle remains, AFRL faces capability gaps preventing cognitive science and cognitive modeling
from having maximal impact on training and human effectiveness.

For the last three years, an AFRL LSCM research initiative has sought to close capability gaps retarding
the development and fielding of intelligent training systems technologically based on cognitive models
and agents. Generally, the LSCM initiative has endeavored to enhance and accelerate the practice of
cognitive modeling. Specifically, the LSCM initiative has researched and developed the following:

1. Domain-specific languages (DSLSs) tailored to the needs of cognitive modelers.

2. Authoring environments in which users employ these DSLs to specify models and agents that are
“correct by construction.”

3. Code-generation technologies that transform models and agents specified in these authoring
environments into executable artifacts.

4. A cognitively enhanced complex event processing (CECEP) architecture in which models and
agents are executed.

5. A massively concurrent net-centric associative memory application (Douglass & Myers, 2010)
enabling models and agents executing in the CECEP architecture to store and remember vast
guantities of declarative knowledge.

6. A constraint-based knowledge representation and mining application (Douglass & Mittal, 2013)
that allows models and agents executing in the CECEP architecture to produce and recognize
actions using domain knowledge.

7. Cognitive model behavior analysis and visualization capabilities (Bogart et al., 2011) that help
users understand and analyze models functioning more like autonomous agents than programs.

This chapter explains how learner models are represented and processed by instructional agents executing
in the CECEP architecture. The chapter uses three sections to achieve this objective. The first section
describes cognitive modeling and simulation in the LSCM initiative. This section introduces the reader to
a LSCM DSL and the CECEP architecture in which models and agents specified in this DSL are
executed. The second section extends the content of the first section to demonstrate how LSCM
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instructional agents track and make sense of learner actions. This section explains how LSCM
instructional agents use behavior models (representations of procedural knowledge) and cognitive domain
ontologies (representations of domain knowledge) to trace learner actions. The third section of the chapter
explains how behavior models and cognitive domain ontologies constitute a learner model. This section
describes how LSCM instructional agents use event monitoring based on behavior models and hypotheses
about learner behaviors based on domain knowledge to evaluate the adequacy of learner actions, track
skill acquisition, and predict future performance.

Cognitive Modeling and Simulation in the LSMC Initiative

Modeling in the LSCM Initiative

To decrease the time and cost of model and agent development in the AFRL, the LSCM research
initiative is developing a domain-specific language DSL called the research modeling language (RML).
The RML DSL is used by AFRL research scientists to specify cognitive models and agents that execute in
a net-centric CECEP architecture. The RML DSL has been developed using the Generic Modeling
Environment (GME), a meta-modeling tool for creating and refining domain-specific modeling languages
and program synthesis environments (Ledeczi et al., 2001; Molnar et al., 2007). The abstract syntax of
RML is influenced by the ACT-R cognitive architecture (Anderson, 2007). The graphical/textual concrete
syntax of RML is designed so that modelers with experience in ACT-R, or domain experts with little
modeling and programming experience, can specify models at a high level of abstraction. When the GME
application is configured to “interpret” RML, it is transformed into the authoring environment shown in
Figure 10-1.
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Figure 10-1. The RML agent authoring environment.
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The authoring environment consists primarily of four interface panels: (1) an “Object Inspector” that can
be used to inspect or edit textual attributes of RML specifications: (2) a “GME Browser” that can be used
to organize and share repositories of RML specifications; (3) a “Part Browser” presenting contextually
appropriate RML constructs to the user; and (4) tabbed work spaces in which users construct RML
specifications. The RML authoring environment is based on a hybrid graphical/textual concrete syntax to
support domain and subject matter experts rather than programmers. Constraints included in the formal
abstract syntax of RML are used at runtime by GME to prohibit users from specifying invalid models and
agents. If a models or agent can be specified in the authoring environment, they will produce “correct”
executable code artifacts.

The RML DSL is designed to facilitate the specification of models and agents. In order to maximize
scalability and interoperability during execution/simulation, RML and the GME-based authoring
environment require users to conceive of and specify their models and agents as complex event processing
agents (Luckham, 2002). The graphical/textual DSL allows cognitive modelers to rapidly specify models
and agents in this way using representations of the following:

= Events: Events are objects that serve as records of activities in a system. Objects capture the
details of events with attributes and data properties. In the context of an ITS, event objects
represent trainee actions (user interface events, trainee eye movements, and trainee vocalizations,
for example) tracked by instructional agents during performance monitoring.

= Event Patterns: Event patterns are templates matching one or more events in an event cloud
constituting a representation of context functionally equivalent to a working memory. In the
context of an ITS, event patterns enable instructional agents to detect correlational, temporal, and
causal relationships between events representing activities in the training environment.

= Event Pattern Rules: Event pattern rules are associations specifying actions that are to occur after
an event pattern is matched with a subset of events in the event cloud. In the context of an ITS,
event pattern rules are used by instructional agents to produce abstract events that combine and
aggregate attributes of event patterns. Abstract events are used to monitor trainee actions
occurring at multiple levels during hierarchical tasks.

= Behavior Models: Bahvior models are sets of event pattern rules arranged into automata that
explicitly represent behavior-specific combinations of cognitive state, contextual factors,
alternative courses of action, and failure. In the context of an ITS, behavior models are used by
instructional agents to monitor simple, complex, concurrent, and hierarchically organized trainee
activities.

= Cognitive Domain Ontologies: Cognitive doman ontologies (CDOs) are representations of
domain knowledge capturing: (1) entities, structures, and hierarchies in a domain; and (2)
relations between these entities. In the context of an ITS, CDOs represent constraint knowledge
that can be mined by and instructional agent to assess the intent and effectiveness of trainee
actions.

Modeling in RML is based on the specification of procedural knowledge (behavior models) and domain

knowledge (CDOs). Modelers do not have to attend to the details of how models and agents technically
execute in simulations.
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Simulation in the LSCM Initiative

To increase performance and maximize interoperability in training environments based on service-
oriented architectures (SOAs), the CECEP architecture has been developed to serve as the execution
framework for RML models and agents. The CECEP architecture consists of the following central net-
centric components:

= soaDM: an associative memory application that allows RML models and agents to store and
retrieve declarative knowledge. Declarative knowledge is represented and processed in a
semantic network (Douglass & Myers, 2010).

= 50aCDO: a knowledge representation and mining application that allows RML models and
agents to store and exploit domain knowledge. Domain knowledge is represented in CDOs,
which are processed by a constraint-satisfaction framework (Douglass & Mittal, 2013).

= Esper: a complex event processing framework that allows RML models and agents to base
actions on context assessment and procedural knowledge. Procedural knowledge is
represented in RML behavior models and processed using pattern matching and event
abstraction capabilities provided by Esper (http://esper.codehaus.org/).

Through these components, the CECEP architecture incorporates model and agent capabilities based on
declarative, procedural, and domain knowledge processing to the Esper framework. The resulting event-
driven architecture is an advanced cognitive modeling and simulation framework with which AFRL
research scientists can develop and field performance assessment and instructional technologies based on
cognitive models and agents. A functional representation of the CECEP architecture is shown in
Figure 10-2.

10 “Adapters”

Event Output Streams

Event Cloud

(SUJE'E)JJ.S induj Juang )

Pattern Matcher )

Agent Logic Decl. Memory

(Domain Knowledge) ( Databases

Figure 10-2. The CECEP architecture in which RML models and agents are executed

The CECEP architecture includes a number of input/output (10) “Adapters” or event 10 streams. These
adapters allow models and agents specified in RML to be integrated into software-based instructional
systems. The architecture includes event sources based on soaDM, soaCDO, and Esper. RML behavior
models interacting with Esper enable agent logic. CDOs processed in soaCDO enable domain knowledge.
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Finally, semantic networks processed in soaDM enable declarative memory. Figure 10-2 illustrates with
arrows how these event sources produce events through: (1) the execution of agent logic; (2) the querying
of databases containing long-term knowledge; (3) the mining of domain knowledge; and (4) interactions
with a large-scale associative or declarative memory capable of mimicking the ACT-R cognitive
architecture’s activation-based declarative memory. It is these event sources based on agent logic,
declarative memory, domain knowledge, and databases that “cognitively enhance” CEP in CECEP. The
event cloud (a form of working memory) and pattern matcher (a form of rule engine) in the architecture
are technologically realized through Esper.

Models and agents specified in the RML authoring environment are not directly executed. RML
specifications are instead translated into executable code artifacts in the following ways:

= Declarative Knowledge is specified as events and relations and processed by code generators that
produce files that configure the soaDM semantic network.

= Procedural Knowledge is specified as behavior models and processed by code generators that
produce NERML, a text-only DSL formally equivalent to RML that is then translated into Java
(Hansen & Douglass, submitted). Code generation is divided into these steps to support modelers
that prefer to specify models and agents directly in NERML. Java files generated from either
RML or NERML interact with Esper and govern the behavior of models and agents.

= Domain Knowledge is specified in CDOs and processed by code generators that produce
constraint-networks for use in s0aCDO.

Esper is capable of monitoring in excess of 500,000 events per second and therefore allows the CECEP
architecture to scale. The architecture’s 10 Adapters interface greatly simplifies integration and
interoperability with services in a broader SOA-based training and operational systems; new capabilities
and training environments are integrated into CECEP through a new adapter and shared events.

Tracking and Recognizing Learner Activity with RML

In this section, learner models are discussed in the context of an anti-air warfare coordinator (AAWC)
task described by Anderson et al. (2004). Fu et al. (2006) comprehensively describe the AAWC task
requirements and a model-based AAWC training system used to instruct human trainees and ACT-R
trainee models. The tutor discussed in Fu et al. (2006) instructed trainees learning how to relate
information cues describing aircraft (altitude, speed, type of radar, etc.) in a monitored airspace to
categories of intentions (hostile, friendly, etc.) and aircraft types (commercial, strike, etc.). Trainees were
instructed to investigate and classify as many aircraft as possible during dynamic 6-min scenarios.

To assess the usability of RML, its developers used it to build an instructional agent replicating all of the
functionality of the AAWC tutor described in Fu et al. (2006). The RML AAWC instructional agent is
based on events, event patterns, event pattern rules, and behavior models. The agent additionally exploits
domain knowledge specified in CDOs. This section of the chapter describes examples of the events, event
patterns, event pattern rules, and behavior models making up the AAWC instructional agent. This section
then introduces CDOs and illustrates how they can capture knowledge about the AAWC task domain.
This section discusses these aspects of an RML instructional agent in order to illustrate how learner
actions are tracked and assessed across events, behavior models, and CDOs in the CECEP architecture.
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Composing Activities with Event Abstraction Hierarchies

The RML AAWC instructional agent functions in an event abstraction hierarchy. Figure 10-3 illustrates
the portion of this hierarchy relevant to the discussion of a simplified instructional agent that helps
trainees learn how to classify aircraft on the basis of the type of radar they employ.

—.j Events

= = A
-1l Hook
+-Tal KeyPress
+-f& MenuTransition
H TRAReport

;;T HookedTrack
o4 MenulD

L3

Tl AbortedEWSRequest
T EWSRequest

T GenerclD
’T HelpRequest

’T SingleEWS5_ID

Figure 10-3. An event abstraction hierarchy displayed in a component of the RML authoring environment

The event abstraction hierarchy in Figure 10-3 consists of four levels:

L1:

L2:

L3:

L4:

Events inserted into the event cloud by the adapter translating state changes in the AAWC task
application into recognizable events. Events produced by the AAWC task application indicating
aircraft selection events (Hook), key press events (KeyPress), control menu transition events
(MenuTransition), and aircraft information display events (TRAReport) are translated by the
AAWC task adapter and inserted into the event cloud.

Events inserted into the event cloud by behavior models monitoring simple trainee actions.
Behavior models translate fleeting Hook and MenuTransition events into persistent HookedTrack
and MenulD events to maintain information about currently selected aircraft and the current task
menu state in the event cloud.

Events inserted into the event cloud by behavior models monitoring unit task-level trainee
actions. Each event represents a sequence of L2 HookedTrack and MenulD events produced
during fundamental information gathering and aircraft classification part-tasks required of the
AAWC trainee. A behavior model monitoring HookedTrack and MenulD events traces trainee
“electronic warfare signal” (EWS) activities and inserts EWSRequest and AbortedEWSRequest
events into L3. A separate behavior model monitoring trainee classification activities inserts
GenericlD events into L3.

The SingleEWS_ID event is inserted into the event cloud by a behavior model monitoring
strategically sequenced EWS and aircraft classification unit tasks.

The event abstraction hierarchy allows the instructional agent to comprehend activities occurring in the
AAWC task at four levels of abstraction. Events in each level of the abstraction hierarchy are derived
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from behavior models that aggregate, correlate, or abstract events in the previous level of abstraction. For
example, information about an aircraft’s radar informs trainee decisions about its intent and type. To
obtain information about an aircraft’s radar, a trainee must select it and precipitate a series of menu
transitions (through key presses). L1 events resulting from these actions will, in turn, lead to L2
HookedTrack and MenulD events. These L2 HookedTrack and MenulD events can be correlated and
aggregated in a behavior model capable of asserting L3 EWSRequest and AbortedEWSRequest events into
the event cloud. To illustrate how the abstraction of events can be increased in the event cloud, a behavior
model capable of increasing event abstraction from L2 to L3 are now discussed.

Tracing Trainee Actions with Behavior Models

RML behavior models are automata whose nodes are labeled states indicating the steps of the represented
behavior and whose edges are event patterns or event pattern rules. Edges based on event pattern rules
allow a behavior model to transition states and insert new events into the event cloud. Figure 10-4 shows
a behavior model that enable the AAWC instructional agent to monitor trainee EWS request activities.
The figure includes (1) a single start state; (2) a single Select EWS Request state; (3) a single stop state;
(4) a single track variable used to hold information about the aircraft hooked prior to the initiation of the
EWS request; and (5) four named edges, each embellished with a circular check mark.

3
9

started_ews_request

»
1 |

Select EWS Request
o—
help_requested ‘
1 1
Complele_Tws_request )
s

abort_ewp_request

Figure 10-4. RML behavior model capable of monitoring trainee EWS request activities

The formal attributes of event patterns and event pattern rules are specified graphically in the GME-based
authoring environment. The event pattern constituting the start_ews_request edge of the behavior model
in Figure 10-4 is shown in Figure 10-5. The event pattern consists of the following elements: (1) a single
conjunction indicator; (2) three event templates labeled menu, hooked, and key; (3) a single integer literal
0; (4) a single string literal “f70”; and a reference to the track variable. The conjunction indicator is
connected to all three of the event templates indicating that they must all be co-present in the event cloud
for the pattern to match. Events are represented as rectangular “containers.” Event attributes are visible as
labeled “ports” in the containers. The O literal is connected to menu.id via a connector terminating with an
open diamond. This type of connector is used to indicate correlations between event properties and
variables, literals, or other event properties. Note that attribute correlation connections are based on
comparison operators (=, =, <, >, <=, >=, etc.). The “f10” literal is correlated to key.key. The hooked.tra
event property is connected to the track variable reference via a connector terminating with a solid circle.
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This type of connector indicates an assignment. In this instance, the connector indicates that the track
variable is to be assigned the value of the hooked.tra event property. Essentially, the event pattern shown
in Figure 10-5 specifies a template that will enable an instructional agent to notice when the trainee is in
menu.id = 0 (the top menu), an aircraft is hooked, and the “f10” key is pressed. This event conjunction
will enable the behavior model shown in Figure 10-4 to transition to the Select EWS Request state and
bind the hooked aircraft to the locally scoped track variable.

track

and

menu hooked

Figure 10-5. RML start_ews_request event pattern

The complete_ews_request edge in Figure 10-4 is shown in Figure 10-6. The event pattern rule essentially
requires that an /71" key be pressed when an aircraft with an id equal to track is hooked. Notice how the
value of track is correlated to hooked.tra and how hooked.tra is used to assign a value to the tra property
of a new EWSRequest event. Note that since the pattern rule in Figure 10-6 inserts the new EWSRequest
into the event cloud, it can be considered functionally equivalent to a production in a rule-based system.

track

and

|+

ees ——<iskey tralL

key hooked EWSRequest
Figure 10-6. RML complete_ews_request event pattern rule

RML behavior models can be based on event patterns and event pattern rules capable of matching events
from any level of the event abstraction hierarchy. This capability allows a modeler to specify and exploit
behavior models that monitor events and trainee activities at high levels of abstraction. The behavior
model shown in Figure 10-7 allows the instructional agent to monitor sequences of high-level events
indicating that a trainee is efficiently sequencing EWS and aircraft identification tasks.

118



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

1
0

EWS Completed
Q—u

help_requested ‘
1 1

geniﬁ:_id 9

other_Fctions

Figure 10-7. RML behavior model capable of monitoring trainee EWS and subsequent identification actions

The “ews” edge in Figure 10-7 allows the behavior model to transition from the start state to the EWS
Completed state. The generic_id edge allows the high-level behavior model to recognize a completed
identification action; insert and even more abstract event into the event cloud, and transition to the stop
state. Note how the help_request edge can detect help request events and deliver precise instruction.

More abstract events inserted into the event cloud indicate that a trainee has successfully performed a
sequence of actions indicating they have acquired an AAWC task-critical composite skill. Sequences of
events, event patterns, and event pattern rules producing abstract events operationally define the abstract
events. When abstract events reflect the completion of task-critical actions, the operational definitions
underlying the events describe observations or measurements of performance. For example, EWSRequest
event instances added to the event cloud by the event pattern rule in Figure 10-6 can be considered
reflections of an operational definition of EWS information request performance based on one aircraft
selection action followed by “f10” and “f1” key press actions. These three events related through patterns
and rules in a behavior model, operationally define successful trainee EWS request performances. Events
higher in the event abstraction hierarchy provide even more useful information to an intelligent agent. For
example, SingleEWS_ID events inserted into the event cloud by the behavior model shown in Figure 10-7
indicate that the monitored trainee: (1) has mastered the EWS request process; (2) can remember
information about reported radar systems; (3) can correctly classify aircraft on the basis of this
remembered information; and (4) has mastered part of the AAWC aircraft identification process.

Transition paths through behavior models leading to new events in the event cloud are formally specified
operational definitions of performance. Since behavior models can match against and produce new events
at all levels of an event abstraction hierarchy, operational definitions of trainee activity are available at all
levels of task hierarchy. Instructional agents developed in RML capitalize on this by monitoring the
frequency and recency of events using an extension of the General Performance Equation (GPE)
(Anderson & Schunn, 2000; Jastrzembski, et al., 2006). Instructional agents can be configured to monitor
task or trainee generated events and use extensions of the GPE to assess and predict performance.

Using CDOs to Evaluate the Appropriateness of Trainee Actions

RML intelligent agents can effectively use behavior models to trace trainee actions. Behavior models are
particularly effective in task contexts where it is relatively easy to capture anticipated (correct or
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incorrect) sequences of action. In training contexts where multiple actions are appropriate, it can be
difficult to specify RML behavior models covering large spaces of alternative trainee actions. Intelligent
agents executing in the CECEP architecture use CDOs to assess the appropriateness of trainee actions
under these circumstances. This section demonstrates how a CDO can be used to capture structural and
relational domain knowledge in such a way that constraint-satisfaction processes in soaCDO allow an
RML instructional agent to (1) make sense of a trainee’s actions and intentions; and (2) determine the
appropriateness of a trainee’s actions and intentions. Capturing and processing domain knowledge this
way in the CECEP architecture greatly reduces the burden of behavior model specification.

Figure 10-8 shows a CDO capturing structural domain knowledge related to the AAWC task described in
the previous section. CDOs capture structural domain knowledge in tree-like structures consisting of the
following:

= Entities: Indicated by gray circles. Entities represent domain constructs. In Figure 10-8, entities
describe the structural attributes of the set of track (or aircraft) entities that a trainee is tasked
with classifying. Note that in CDOs, the root entity determines the entity set of interest.

= Structural Decompositions: Indicated by rectangles labeled “and.” Decompositions represent
fixed entity sub-structures. In Figure 10-8, a track_decomposition indicates that track entities are
comprised of position, movement, ews, model, and assessment sub-entities. Additionally,
assessment entities are comprised of threat and type sub-entities.

= Choices: Indicated by rectangles labeled “xor.” Choices represent alternative entity sub-
structures. In Figure 10-8, ews_choices, model_choices, threat_choices, and type_choices capture
alternative sub-entity choices the trainee will ultimately have to choose between. For example, to
classify a track, the trainee will likely have to determine its ews choice and certainly have to
determine/assume its threat and type choices.

= Entity Properties: Indicated by attached “~ values. Attached values represent entity properties.
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CDOs additionally capture relational domain knowledge in a constraint language. Domain-specific
constraints specified in the constraint language express complex relationships between entities
represented in the tree-like structure. Tables 10-1 lists example constraints that capture a sub-set of the
classification “rules” AAWC task trainees were endeavoring to memorize and act upon.

Table 10-1. Domain-specific constraints integrated into the track entities cognitive domain ontology

Name Specification

c1 iff ews choices is arinc 564 then model choices is b 747
Cc2 iff ews choices is apg 120 then model choices is f 4

c3 iff ews choices is apg 63 then model choices is f 15

c4 iff ews choices is foxfire then model choices is mig 25
C5 if model choices is f 4

then threat choices is assumed hostile hostile assumed friendly or friendly
type choices is strike
cé if model choices is f 15
then threat choices is assumed friendly or friendly
threat choices is not (assumed hostile or hostile)
type choices is strike
c7 if model choices is b_ 747
then threat choices is friendly
threat choices is not (assumed hostile or hostile)
type choices is commercial
cs if model choices is mig 25
then threat choices is assumed hostile or hostile
threat choices is not (assumed friendly or friendly)
type choices is strike
Cc9 if speed is between 350 and 550,
altitude is between 25000 and 36000
then model choices is b 747
threat choices is friendly
type choices is commercial

CDOs are transformed into constraint networks by soaCDO. These constraint networks are then searched
over by a non-deterministic constraint solver. Without additional domain-specific constraints, the search
process yields multiple “solutions” consisting of various combinations of choices specified in the original
CDO. CDO solutions are conveyed as sets of events into the CECEP event cloud through an adapter.
Choices can be limited through “assertions” that essentially insist that a choice have a certain value.
When additional domain-specific constraints are incorporated into a CDO, constraint propagation
utilizing assertions can produce solutions that can be exploited by an RML model or agent. For example,
when an RML instructional agent is executing in the CECEP architecture, it can use task events and
trainee actions to assert the values of choices in a CDO. Table 10-2 shows the impact assertions can have.

Table 10-2. Illustration of how speed and altitude assertions allow an instructional agent to determine the
single correct action a trainee should take. Note: solution is an abstraction of events returned by soaCDO

Assertions speed is 500
altitude is 30000
Solutions Track
position {~ altitude = 30000}
movement {~ speed = 500}
ews {ews choices = arinc 564}
model {model choices = b 747}
assessment {threat choices = friendly}, {type choices = commercial}

Table 10-2 shows how constraint-based search in soaCDO can determine from observed speed and
altitude track values that a trainee should assess the track as friendly and commercial. Notice how the
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bidirectional implication (iff) underlying C1 in Table 10-1 allows the instructional agent to infer that the
trainee will additionally expect the ews choice of the track to be arinc_564. Under these circumstances,
the RML instructional agent can assess the adequacy of a trainee’s classification action without requiring
a specific behavior model. Procedural knowledge that could be captured in a behavior model is instead
captured in more flexible structural and relational knowledge in a CDO.

In instructional contexts where ambiguity or equally effective actions impact trainees, it would be
virtually impossible to develop an effective RML instructional agent using only behavior models. In such
contexts, it is often the case that multiple trainee actions should be considered adequate. Specifying all
possible event patterns and event pattern rules under these circumstances would be costly and error prone.

Domain knowledge in CDOs significantly decreases the burden of specifying instructional agents under
these circumstances. Table 10-3 shows how constraint-based search in soaCDO can determine from
observed ambiguous speed and altitude and ews_choice track values that a trainee can appropriately
classify a track 4 ways. Solution events returned by soaCDO can be exploited by “streamlined” behavior
models.

Table 10-3. llustration of how speed, altitude, and ews_choices assertions allow a tutor agent to determine the
courses of action a trainee can undertake when the threat_choices aspect of a track is ambiguous

Assertions speed is 500

altitude is 15000

ews choices is apg 120
Solutions Track

position {~ altitude = 15000}

movement {~ speed = 500}

ews {ews choices = apg 120}

model {model choices = f 4}

assessment {threat choices = hostile}, {type choices = strike}
Track

position {~ altitude = 15000}

movement {~ speed = 500}

ews {ews choices = apg 120}

model {model choices = f 4}

assessment {threat choices = friendly}, {type choices = strike}
Track

position {~ altitude = 15000}

movement {~ speed = 500}

ews {ews choices = apg 120}

model {model choices = f 4}

assessment {threat choices = assumed friendly}, {type choices = strike}
Track

position {~ altitude = 15000}

movement {~ speed = 500}

ews {ews_choices = apg 120}

model {model choices = f 4}

assessment {threat choices = assumed hostile}, {type choices = strike}

To further sharpen an agent’s understanding of task ambiguity, additional domain knowledge could be
added to the track CDO. For example, additional structural and relational knowledge could be used to
inform an instructional agent that in ambiguous situations similar to those underlying Table 10-3, a
trainee should assign an “assumed” threat_choice and take additional actions as an AAWC to acquire
additional information and resolve the ambiguity.
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Learner Models in RML

According to Bull (2004), “The learner model is a model of the knowledge, difficulties and
misconceptions of the individual. As a student learns the target material, the data in the learner model
about their understanding is updated to reflect their current beliefs.” In this section, three facets of learner
models in RML are defined by relating knowledge representations and processes in the CECEP
architecture to components of Bull’s definition.

In the CECEP architecture, RML instructional agents represent the knowledge, difficulties, and
misconceptions of trainees in behavior models and CDOs. RML instructional agents executing in the
CECEP architecture trace trainee actions through event monitoring. Technologies underlying the
execution of RML models and agents in the CECEP architecture allow behavior models to both generate
and recognize behavior. When used to recognize trainee actions, behavior models support a type of model
tracing. Therefore, the subset of behavior models an RML instructional agent currently/actively tracing
actions constitutes the first facet of the learner model.

Event monitoring by RML instructional agents can also drive a constraint-based domain knowledge
mining process. This capability, based on structural and relational constraint knowledge, enables RML
instructional agents to develop and refine hypotheses about trainee behaviors. These agents make sense of
trainee actions and intentions by contrasting traced actions to hypotheses (explanatory or predictive)
about actions and intentions obtained from the mining of domain knowledge. When used to ascertain
trainee intentions and evaluate trainee actions, CDOs support a type of trainee understanding. Therefore,
the subset of a solution space resulting from the constraint-based exploration of a CDO constitutes the
second facet of the learner model.

Events operationally defined at any level of an RML instructional agent’s event abstraction hierarchy can
be treated as performance indicators and analyzed using an extension of the General Performance
Equation (Anderson & Schunn, 2000; Jastrzembski, et al., 2006). Events in the CECEP architecture can
be produced by behavior models tracing trainee actions or by constraint-based domain knowledge mining
processes making sense of trainee actions. Regardless of their source or level of abstraction, all events in
the event cloud of an executing RML instructional agent can be analyzed by extensions of the GPE in
order to track and predict performance. Therefore, the set of events being treated as performance
indicators and analyzed using extensions of the GPE constitute the third facet of the learner model.

Summary and Conclusions

The LSCM initiative has invested in the development of authoring environments and advanced cognitive
modeling and simulation architectures. These authoring environments allow users to specify models and
agents at high levels of abstraction, often using domain constructs directly. The LSCM initiative has
developed a DSL called the RML. The RML is tailored to the needs of cognitive scientists developing
models and agents that engage in complex event processing. Models and agents specified in RML are
transformed by code generators into all code artifacts necessary for execution and simulation in a net-
centric, event-driven CECEP architecture.

RML agents represent and process declarative, procedural, and domain knowledge. To allow agents to
represent and process declarative knowledge, the CECEP architecture includes an associative memory
system functionally equivalent to the declarative memory system in the ACT-R cognitive architecture. To
allow agents to represent and process procedural knowledge, the CECEP architecture includes behavior
models, a type of automata representing behavior above the level of conventional rule-based systems.
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Finally, to allow agents to represent and process domain knowledge, the CECEP architecture includes a
constraint-solver.

This chapter described cognitive modeling and simulation in the LSCM initiative. The chapter
demonstrated how LSCM instructional agents track and make sense of learner actions using behavior
models and CDOs. The chapter finally described how behavior models, CDOs, and events tracked using a
performance monitoring model based on the GPE (Anderson & Schunn, 2000; Jastrzembski, et al., 2006)
make up the facets of learner model in RML.

Two things conspicuously missing from the LSCM/RML cognitive modeling and simulation framework
are (1) constraints reflecting rigorous instructional science and (2) the support of a general learning
management and instructional delivery system. While RML instructional agents can use behavior models,
CDOs, and derivatives of the GPE to build student models that monitor/predict trainee actions, intelligent
agent authors are ultimately responsible for the instructional science underlying their agents. Simply put,
this means that researchers developing instructional agents using RML must work with subject matter and
educational experts to ensure that their agents instruct effectively. Lacking a comprehensive learning
management system, the LSCM/RML cognitive modeling and simulation framework is fundamentally
dependent on complementary capabilities such as the ARL GIFT. Researchers developing intelligent
tutors in RML conceive of CECEP as a technical solution to the problem of monitoring trainee actions
and delivering contextually relevant instruction. These same researchers conceive of GIFT as a broader
ITS framework that will provide critical services missing in RML and CECEP.
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CHAPTER 11 —Emerging Learner Modeling Concepts

Xiangen Hu and Donald M. Morrison
University of Memphis - Institute for Intelligent Systems

Introduction

While the authors of previous chapters have addressed fundamental issues of learner modeling such as
common limitations and challenges (Section 1) and state-of-the-art implementations (Section Il), the
authors of chapters in this section present arguments that raise, in various ways, an important issue that is
central to the whole notion of a general-purpose ITS framework—the nature of the relationship between
the learner model and domain model, and the possibility of defining these models in a way that allows for
transportability across systems, or at least allows for different systems to communicate with each other
intelligently about what different learners know and are able to do.

The idea that shareable models might exist, or ought to, emerges from the following observations. First,
systems based on the same architecture and underlying cognitive theory have been successfully
implemented in different domains. For instance, the dialog-based AutoTutor architecture has been used to
support learning in physics, computer science, and research design; the model-tracing approach used in
Cognitive Tutor supports different domains within mathematics; and the constraint-based tutors
developed at the University of Canterbury, New Zealand, have been used in domains as various as
electronics, discrete mathematics, language learning, and Newtonian physics. Second, systems based on
different theories and architectures have been developed to support learning in the same domain. For
example, Cognitive Tutor and ALEKS are based on different architectures and underlying theories of
learning, but both have demonstrated effectiveness in support of mathematics. Third, similar learner
models, pedagogical strategies, and forms of knowledge representation are observed in different ITS
implementations. For example, all ITSs find a way to measure the learner’s current state of knowledge
against some ideal state, ask questions or help the user solve problems designed to help her move in the
direction of the ideal state, and keep track of progress over some period of time.

Given these observations, it is natural to consider whether there might be some universal principles of
learner modeling that could be generally applicable. The practical advantages of a universal learner
model, and the implications for a general-purpose framework such as GIFT, are obvious. For one thing,
the ability to import a learner model from one ITS into another would help to solve the “new-user”
problem, i.e., how to efficiently initialize the model when an ITS first encounters a learner. For example,
an intelligent calculus tutor would obviously benefit from knowing an individual learner’s knowledge of
algebra, assuming this knowledge came in a form it could understand. An ITS-independent learner model
would allow the ITS to initialize its local model by importing relevant portions of a learner model from
another ITS, or perhaps from a central learner model server or learning management system. Also, to the
extent that the learner model is in some sense an “overlay” of the domain model, a transportable learner
model might imply the existence of a universal structure for domain models. Given the two in
combination, it would possible to test the relative efficacy of different pedagogical approaches across
different ITSs, thereby advancing our scientific understanding and technical expertise in ways that are not
currently possible.

Chapter Summaries

The chapters in this section approach the problem in different ways. Robson, Hu, Morrison, and Cai (The
Need for a Mathematical Model of Intelligent Tutoring) take a highly theoretical approach, imagining the
existence of a unified mathematical model in which the learner’s current cognitive and affective state is
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represented mathematically as a finite set of state variables, named S. A model of this type makes it
possible to measure the precise distance between a learner’s current state and some ideal state. Further, a
unified mathematical model could be used to model not just the learner’s domain knowledge, but other
factors that influence learner performance such as affect, motivation, and social environment. Within a
framework such as GIFT, the learner model could be represented mathematically, with the other
components of the systems providing mechanisms for reading, manipulating, and outputting values for
the set of state variables.

In their chapter, Rus et al. (Towards Learner Models based on Learning Progressions in DeepTutor)
discuss the implications of learning progressions (LPs), an approach to domain modeling that has gained
currency over the past decade, primarily in the science education community. Unlike curriculum
standards devised by panels of domain experts that define what students ought to know and be able to do
at certain grade levels, LPs are empirically based descriptions of the paths that learners tend to take from
naive to more expert understanding of central concepts in a domain. As such, Rus et al. argue, LPs fit well
with the central purposes of an ITS, which seeks to identify a learner’s current level of understanding,
then help that person move along to the next level. As an example, the authors describe a LP in
Newtonian physics, which forms the basis for DeepTutor, the first LP-based ITS. DeepTutor’s LP is two-
dimensional, where one dimension represents seven strands ( “big ideas” such as Kinematics, Force and
Motion, Newton’s Third Law), and the other up to seven progressive levels of understanding within each
strand, based on empirical studies of student learning. The result is a reasonably granular representation
of domain knowledge that can be used to identify a student’s current state of understanding and select a
topic for tutorial discourse that can serve as a bridge to the next level. Importantly, the learner and domain
models are tightly linked, with learner model becoming a set of pointers to a LP, which constitutes the
domain model.

In their chapter (Modeling Student Competencies in Video Games Using Stealth Assessment) Shute,
Ventura, Small, and Goldberg consider the use of “stealth assessments” embedded within the structure of
a serious game. As an example, the authors describe the case of Newton’s Playground, a game that
challenges players to guide a green ball to a red balloon using combinations of inclined plane/ramps,
pendulums, levers, and springboards. Because all of the objects obey the basic rules of physics relating to
gravity and Newton’s three laws of motion, success depends on an intuitive understanding of these
principles. To the extent that a set of embedded assessments can infer a learner’s developing mastery of
these principles from the learner’s gameplay, the game combines informal learning with assessment of a
learner’s current state of conceptual understanding. The authors report the results of an experiment in
which a sample of 165 middle-school students played the game over a period of six 45-min sessions,
totaling approximately 5 hours. Learning gains from pretest to post-test were significant
(t (154) = 2.12, p < 0.05). Importantly, the authors claim that their “stealth” assessment indicators (based
on analysis of the log files generated from user’s gameplay) correlate with a player’s knowledge of
physics concepts as measured by the tests.

In Knowledge Component Approaches to Learner Modeling, Aleven & Koedinger describe the
construction of learner models organized around collections of interrelated knowledge components (KCs),
where a KC is defined as “an acquired unit of cognitive function or structure that can be inferred from
performance on a set of related tasks.” An example is the ability to compute the area of a circle given the
radius. Expertise in a given domain is performance-based, defined not so much as what a person knows,
but what the person is able to do; thus, a given domain is defined as the set KCs that are required to solve
a finite set of problems (or complete tasks) of particular types. Note that here again we see the close
connection between the learner model and the domain model within the context of an ITS. The learner
model is the system’s estimate of the subset of KCs within the domain the learner has mastered, and the
“psychological reality” of the model is its ability to predict the student’s performance on given tasks
within the domain of interest. Given this framework, the authors discuss what they identify as three major
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challenges inherent in the KC approach: the challenge of building “psychologically-real” domain models
from scratch, determining the learner’s level of mastery of the component KCs, and, given an accurate
learner model, determining how best to tailor instruction in a way that helps the learner master those KCs
that remain to be learned. The paper focuses primarily on the first challenge, the notoriously labor-
intensive process of authoring new domain models. The authors argue that so-called “manual”
approaches, in which domain experts identify component KCs using a process of cognitive task analysis,
provide useful first-order descriptions. However, automated approaches to creating and refining KC
models can substantially improve on models initially developed using “manual’ approaches.

Broadly speaking an ITS’s learner model is a formal representation of a learner’s cognitive and affective
state. In the final chapter in this section (Assessing the Disengaged Behaviors of Learners), Baker and
Rossi focus on what is arguably the messier of these two components — the learner’s affective state,
particularly as evidenced by off-task behavior, gaming the system, carelessness, and what the authors
term “Without Thinking Fastidiously (WTF) behavior. While such behaviors are probably easy enough
for humans to observe in real time, the trick is to devise machine-based detectors that are capable of
making reasonably accurate assessments of the degree to which learners are engaging in these behaviors
at any given point in a tutorial session. The resulting data can be used to modify instructional strategies on
the fly, and, perhaps more importantly, to provide useful feedback to system developers on the relative
effectiveness of different strategies in maintaining student engagement, and help researchers better
understand relationships among variables such as a student’s off-task behaviors, attitudes toward
computers in general and automated tutors in particular, attitudes toward the domain, and academic drive.
A number of algorithms and approaches that have been found to effective in detecting these forms of
disengaged behavior are described. For example, one of the authors (Baker) built an automatic off-task-
behavior detector based on multiple inputs such as the difficulty of a given interaction, and how many
standard deviations longer or slower it took the student to complete the action compared to other students.

Recommendations for GIFT

A theme running through a majority of the chapters has to do with various possible uses of log data, i.e.,
records of the tutor-learner interactions, what Robson et al. refer to as “the paths traced through the
learner state data.” Many of the authors recommend that their own tools be integrated into GIFT for this
purpose. For example, Baker and Rossi suggest that GIFT could provide support for the construction of
learner engagement detectors by creating API-level links between GIFT and the educational data mining
(EDM) Workbench. As a result, data could be pulled directly from GIFT, and detectors exported back to
GIFT for use in the learner model. The authors also recommend that GIFT incorporate tools for labeling
engagement data, especially through the use of “text replays,” i.e., re-runs of interaction logs that allow
for the careful study of these interactions for the purpose of system improvement. This feature is also
provided by the Workbench. Similarly, Aleven and Koedinger recommend that, as a first step,
participating ITSs log student-tutor interactions in the format employed by DataShop, the data mining
tool used with the Cognitive Tutor. For their part, Shute and her colleagues recommend the future
developmental efforts of GIFT should aim at identifying authoring tools and methods that ease the
process of embedding stealth assessment capabilities in whatever game-based learning environments are
being employed, because different games link game performance with demonstration of targeted expertise
in different ways. To solve this problem, Shute et al. recommend that GIFT incorporate a “Gateway
Module,” which would be responsible for rapidly translating performance in a given game to a data
structure that could be understood from within GIFT’s domain model. Rus and company take a somewhat
different approach, focusing on modifications that would be necessary if their own ITS, DeepTutor, were
to be in some way integrated into the GIFT framework. Although DeepTutor also employs a modular
design, the architecture is fundamentally different; for example, whereas in GIFT the domain module
performs assessments, this function is performed by a separate module in DeepTutor. Also, the
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DeepTutor learner model does store information about levels of domain understanding separately, but
instead maintains a set of pointers to the learning progressions in the domain model; in other words, the
learner and domain models are more tightly coupled than is currently specified in GIFT. To get around
this problem, the authors suggest that GIFT provide different specifications for different types of ITS.

Read together, the chapters in this section highlight the importance of the effort to better understand the
relationship between learner and domain models, and find ways of sharing models across systems. For
example, given that both DeepTutor and Newton’s Playground share a common domain, the principles of
Newtonian physics, it is natural to consider the possibility of using the two in combination. It would be
interesting to see, for example, whether learners who receive tutoring from DeepTutor and then go on to
play the game are more successful than those who have not been tutored, or, conversely whether
DeepTutor finds that students who have played the game are farther along on a relevant learning
progression than a similar group of students who have not played the game. However, it is even more
interesting to consider how the relationship between the two might work in a world of shareable domain
and learner models. For example, given a common learner model with pointers to a domain model
organized as a set of learning progressions in Newtonian physics, Newton’s Playground might be able to
give a learner problems consistent with her current level of knowledge, while DeepTutor could offer a
tutorial dialogue designed to help a learner work through misconceptions that might have been revealed
by the stealth assessments embedded in the game. In this scenario, a framework like GIFT might support
the collaboration between the game and the tutor primarily by providing a framework for communication
of learner data between the two systems. In other words, the domain model would not need to be
incorporated into GIFT itself so long as DeepTutor and Newton’s Playground agree to maintain learner
models that point to the same domain model, perhaps housed on a separate, web-based domain model
server.
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cHAaPTER 12 —T he Need for a Mathematical Model of
Intelligent Tutoring

Robby Robson?, Xiangen Hu? Donald M. Morrison?, Zhigiang Cai?
'Eduworks Corporation; ?University of Memphis

Introduction

ITSs are a large family of technologies that attempt to replicate the experience and learning gains derived
from one-on-one human tutoring (for recent reviews, see Durlach & Ray, 2011; Graesser, Conley &
Olney, 2012). While these systems are notoriously diverse in their functionality and construction, several
authors have created abstract models of ITSs that attempt to capture common components, generally
accepted to be the learner model (sometimes called the “student model”), the domain model, the tutor
model, and the user interface (Durlach & Ray, 2011, Elson-Cook, 1993; Graesser et al., 2012; Nkambou,
Mizoguchi & Bourdeau, 2010; Psotka, Massey & Mutter, 1988; Sleeman & Brown 1982; VanLehn, 2006;
Woolf, 2008). ITS have also been classified into categories such as model-tracing, example-tracing,
constraint-based, and dialogue-based tutors. Finally, VanLehn has observed that in describing an ITS, it is
useful to distinguish between an outer loop of a tutor, which focuses on task selection and macro-
adaptation, and the inner loop which handles in-task interactions and micro-adaptation (VVanLehn, 2006).

Gaps

These descriptions, however, are largely qualitative descriptions that help researchers understand how a
given tutor works, but do not help answer guantitative questions about how well they work and ultimately
how they can be improved. In this chapter, we consider what type of model is needed for answering
guantitative questions such as the following:

= What is the gap between the behaviors exhibited by a student and by an expert?
= Atwhat rate is an ITS closing the gap?

= How accurately does an ITS assess knowledge, skills, affective states, and other attributes of a
learner?

= Among all possible strategies that an ITS has available, which are likely to lead to the most
learning gains in a given situation?

= Given two strategies, which leads to desired learning outcomes in the least amount of time?

= Among the algorithms used by the inner and outer loops of a tutor, where will improvements
have the greatest impact?

Most of these questions require measuring two basic quantities about an ITS: Its effectiveness in helping
learners achieve learning goals and how efficiently it helps students achieve them. To date, effectiveness
is usually measured in terms of the effect size (Cohen’s d) of learning gains. While aggregate, summative
measures such as these are useful in determining how well a tutor is working, they do not tell us what
caused the learning, what is happening as learners use the tutor, or how we can improve the tutor.
Efficiency, if it is measured at all, is measured by comparing how long it takes to learn concepts or
behaviors using an ITS to how long it takes to learn them using other instructional means. Once again,
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this does not help us make improvements because we don’t know what in the tutor causes faster or slower
learning, and it does not give us any information about an ideal efficiency against which we can measure
how well a tutor is working. To answer these questions, we need models that enable us to measure learner
progress and learner rate of progress towards a goal as the tutor operates. The word “measure” is key here
and implies quantification.

Exploration of the General Model

Two Analogies

Before discussing the quantification problem, we present two analogies that may help explain why a
formal mathematical model is so important. The first is mechanical and views the problem of tutoring a
student as analogous to using an autopilot to guide an airplane. As with an ITS, an autopilot is a machine
substitute for a human. Its goal is to steer an aircraft to a destination, much as the goal of an ITS is to
guide a learner to a learning objective. The autopilot operates using real-time data on position,
atmospheric conditions, trim of the aircraft, and other factors and attempts to follow a flight path, which,
in many cases, has been calculated to maximize efficiency given constraints such as atmospheric
conditions, terrain, the flight paths of other aircraft, the cost of flying at different altitudes, and the
ultimate destination. It controls the path by adjusting the ailerons, elevators, rudder, and thrust.

We can think of the data that defines the current state of an aircraft as analogous to the learner model that
defines the current state of the learner. But whereas an autopilot continually measures this state and
follows a path, ITSs typically measure only the initial and end states, or possibly a small number of
intermediate states. This is not sufficient to quantify the dynamics of an ITS or create the analog of a
guidance system, which is what we want.

Of course, a learner is not a machine, and an autopilot does not teach a plane to fly. A better analogy, in
some ways, is that of a doctor treating a patient. Unlike the autopilot, the doctor, even with modern
imaging technologies, cannot observe the precise state of a system as complex as the human body. At best
the doctor can talk to the patient, take the patient’s history (or look it up), conduct a physical examination,
if necessary order some lab tests, and then, using knowledge of the relationship between clusters of
symptoms and disease processes, make some guess about what is likely going on. If the doctor finds that
the patient is unhealthy, the goal is to find a course of treatment, which, if followed, will return the patient
to a state of health, but since the doctor cannot know the actual state of the patient, in practice, the doctor
can, at best, monitor the patient’s symptoms, with the expectation they will go away. If this is achieved,
the patient is presumed to be healthy.

Although an ITS operates more like an autopilot in the sense that it uses a guidance system to steer
learners towards a goal, it operates more like a doctor in that it cannot measure the precise state of learner
and must rely on models of generic learners to interpret the measurements made of any specific
individual. The ITS must therefore rely on a set of measurements and models of how humans learn to
infer the state of the learner and prescribe interventions that change the state to a desired one, usually the
state of an “expert.” However, to discover which interventions should be prescribed, the ITS must have a
means to observe how (and how much) the inferred learner state changes in response to specific
interventions. This requires a well-defined mapping between what an ITS can measure and a model of the
learner state. In today’s practice, it is often difficult to specify what measurements an ITS is taking and
how those are being translated into a model whose distance from an ideal model can be measured.
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A Conceptual Model for Tutoring

Although ITS developers employ different approaches to the problem of guiding human learning, there is
a great deal of similarity in how their systems function. Conceptually, each ITS uses interactions between
the student and the system (verbal, written, haptic, biometric, etc.) to infer and alter what the learner
knows or can do. The ITS observes these interactions and translates them into machine-readable data.
These data, and possibly other data that are known to the ITS, are used to estimate the learner’s current
state of knowledge and skill. Knowledge states are typically represented as mastery levels of concepts or
skills, knowledge components (Koedinger, Corbett & Perfetti, 2012), or a similar set of parameters. In
addition to using estimates derived from interaction data, some ITSs use the structure of the knowledge
domain and history of learner’s interactions to make inferences about knowledge states, e.g., by inferring
that if a learner has demonstrated mastery of concept C or successfully performed task T several times,
then the learner has also mastered concept D and can perform task U. In some instances, affective states
are estimated by the ITS in analogous ways. Once the state of the learner is estimated, the ITS uses this
state to determine what interaction or interactions will next take place.

It is useful to separate the foregoing description of an ITS into two parts:

1. State modeling and estimation: Through the use of data collection devices and strategies such as
emotion sensors, observation of game performance, responses to test questions, and direct
guestions (in the case of dialog-based systems), the system estimates where the learner currently
lies in a multidimensional model of possible cognitive and affective states.

2. Evaluation and decision making: Given the model of possible states and the estimate of the
learner’s current state, the system decides that either (1) the learner’s state is optimal with respect
to normative expectations, in which case it moves to the next step in the outer loop; or (2) the
learner’s state is suboptimal, in which case it selects and enacts what it considers to be the best
intervention in the inner loop.

State modeling and estimation is the general form of learner modeling, and the second step is the
functional view of how an ITS uses expert, domain, and pedagogical models to direct its operation based
on a state model. The cycle of estimation, evaluation, and decision making is repeated until the outer loop
is exited.

Ultimately, we want to evaluate how well the tutor is working and how to improve it by improving its
ability to estimate, evaluate, and change the learner’s state. For this purpose, a slightly more formal
formulation is needed and can be given as follows:

1. A learner model (the learner’s present state) can be represented by a (finite) set of state variables.
Each ITS represents a learner’s state by the values of these variables as they vary over time. In
more formal terms, there is a space S that represents all possible states of a learner. These states
can ostensibly include motivational, affective, cognitive, and social factors ranging from mastery
levels of domain concepts to frustration and motivation levels and certain individual or cultural
beliefs, which might affect how a learner approaches a task (e.g., see Arroyo et al., 2009;
D’Mello & Graesser, 2010). In the autopilot analogy, S is the position of the aircraft and in the
patient analogy, S is the actual state of the patient (which can only be inferred and not directly
measured).

2. The state of a learner at any time t is estimated based on a set O of observable variables. These

are obtained through interactions with the ITS or through data communicated to the ITS from
other systems, e.g., from a LMS or a game operating in a multi-system framework such as GIFT
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(Sottilare, 2012). The ITS contains an algorithm a that maps the history of observations about a
learner to the learner’s current state. This is a function a:0O x T — S, where T is the time interval
during which observations are available. The variables in O can be thought of as the symptoms
and measurements taken by the doctor, and a is the process the doctor uses to infer the state of the
patient. (Note: The function a may, in practice, use past values of a in computing the present
value of a. In other words, the history of estimates of the learner’s state may be used to estimate
the current state.)

3. Within S there are target states, and the goal of the ITS is to move the learner’s current state to a
target state. In the analogies, these are the destination of the aircraft and the state of health of the
patient, which is a range of states. In an ITS, these may be defined by an expert model or the
expected behavior of a learner at a particular developmental stage.

4. The ITS functions by doing the following:
a. Interacting with the learner.
b. Measuring the values of variables in O.
c. Applying a to estimate the learner’s state in S.
d. Selecting a strategy and associated actions that will move the learner to the target state.

e. Implementing those actions through (and only through) a set of interactions with the
learner.

Observations about this Model and Questions Raised

All Tutors Trace a Learner Model: Our first observation is that this model is an abstraction of model-
tracing tutors but applies to almost all ITSs. For example, the constraint-based tutors described by
(Mitrovic, Mayo, Suraweera & Martin, 2001) analyze student answers against a set of constraints to
determine the student state and take appropriate actions. The example-tracing tutors of (Aleven, Mclaren,
Sewall & Koedinger, 2009) compare student input to correct and incorrect problem-solving behaviors.
These constraints and reference examples define points in S that the tutor tries to steer toward or away
from. Autotutor Lite (Hu et al., 2009) constructs a “learner’s characteristic curve” based on semantic
comparisons of student input to text that represents expected answers (Robson & Ray, 2012) calculated
over a series of turns in the inner cycle. Even if an ITS does not have an explicit expert model or domain
model, it computes some set of state variables and takes actions to move the learner state to a desired
state. Conceptually, every ITS is a”learner model tracing” tutor. Even if different tutors estimate the
learner state in different ways and take different actions to change the state, the existence of a
parameterized state space makes it feasible to quantify and compare tutors on the basis of how learners
move through this space.

Optimal Paths: Our second observation is that the ideal ITS moves a learner along a path in S that
minimizes “cost” (e.g., time to mastery or actual cost of running a simulation) and maximizes “benefit”
(e.g., how close the learner is to the target state and how long the learner will retain that position.) A good
test of whether a particular S (i.e., a particular set of parameters used to model the learner state) is viable
is whether its properties allow for the optimization of paths between any two states with respect to a
suitable utility function that reflects cost and benefits. This raises the question of whether existing tutors
have either explicit or implicit state models that are sufficient to do this. In most cases, the answer is
likely no, and we see this as a limiting factor to making progress in the area.
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We observe that most existing tutors focus on cognitive (and possibly affective) state variables that
describe learning goals. These state variables are often represented as levels of competency with respect
to a set of objectives, knowledge components, or similar constructs, and are implicitly considered to be
observable (with error) through assessment. In reality, the situation is more complex, more akin to the
patient analogy than the aircraft analogy.

If we picture S as a higher dimensional s s e i I B
object, then the typical tutor works in a

projection of S onto a discrete structure (see

Figure 12-1). This results in loss of

information and makes it impossible to Used toinfer learner state
measure the distance between two learner — CurrentLeamerState Inzctual tate space
states because there are many points in S b "

that correspond to each point in the discrete
structure. Moreover, the observability
assumption means that, as far as the ITS is
concerned learners never stop between
observable states. For example, an ITS
might observe through assessment that a
learner knows or does not know a fact but ‘ \ Whichis projected ontoa

Data observed from
interactions with ITS

Target
State

.. simplified model used by the ITS
cannot observe where the learner is in the

process of learning the fact. No intermediate /\\
state between “not knowing” and “knowing” -—

This model is used to guide

exists. Even if the discrete structure could be T Interactions with the learner
used to estimate distances between states in
S, this further loss of information makes it Figure 12-1. How an ITS works*

hard to determine the learner’s path through

S. ITS authors can program the inner and outer loops of a tutor, and they can empirically determine the
effects of this programming on learning outcomes, but they cannot measure the effects on a utility
function and cannot determine whether the tutor is close to ideal.

Universal Components: An obvious question, whose answer has many implications, is whether there is a
universal state model. In other words, is there a set of state variables that can be used across multiple
tutors? Even if a tutor has a different state space, could it be reduced to a common space without suffering
a significant loss in effectiveness? Or, phrased differently, is there universal learner model that can and
should be programmed into a framework such as GIFT? As argued in Robson & Barr (Chapter 2 in this
volume), this is a key question, and it has been asked in various forms by Durlach (2012), Goldberg,
Holden, Brawner & Sottilare (2011), and others.

It is doubtful that a universal state space exists if one includes the cognitive dimension since concepts and
knowledge constructs differ from domain to domain. Even should an “ontology of everything” be
achievable, it may not be practical to maintain this for all systems at all times. However, if we separate
these parameters into a domain model (as is done in GIFT), then it is reasonable to ask whether there is a
formulation of domain models that can be used as a template for any S and, more importantly, whether
motivational, affective and social parameters are sufficiently domain-independent to allow for a
manageable set of associated state variables that can be effectively used across most ITSs.

We do not know the answer to these questions, but we observe that affective, motivational, and social
components are increasingly being inferred from sensor data and in-system responses (Arroyo et al.,

“ Surface image from http:/en.wikipedia.org/wiki/File:Calabi_yau.jpg.
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2009; Calvo & D’Mello, 2010; D’Mello & Graesser, 2010; Robison, McQuiggan & Lester, 2009; Woolf
et al., 2009). Since target states in S are usually defined in the cognitive or behavioral domain, these
components are used primarily as control variables. A universal representation of these components could
significantly improve the ability of the ITS to use them to effectively guide learning along optimal paths.

Estimation: The algorithm a maps ITS observations to learner states. In real-world examples, a operates
on data ranging from simulation and game data (Engineering & Computer Simulations, 2013) to data
generated by LSA (Wiemer-Hastings, Graesser & Harter, 1998) and by using production rules to analyze
student answers (Blessing, Gilbert, Ourada & Ritter, 2009). The challenge of transforming observables
into a state model may be equal to (or greater than) the challenge of determining the state model and is
just as critical. The ability of an ITS to follow an optimal path is limited by its ability to detect learner
state.

Intuitively, an ITS that continually tracks observable state changes along numerous dimensions, including
multiple micro-adaptations, has a better chance at accurately estimating the learner’s state than an ITS
which relies on static models, discrete measurements, and only on macro-adaptations. However, a
relatively small number of observables may be sufficient to account for most of the variance in learner
state. This has been observed in affect detection (Graesser, Rus, D’Mello & Jackson, 2008) and is a fertile
area of research that can be supported by GIFT.

Intervention Selection: Our final observation is that if we understood how different interactions affected
the trajectory of the learner in S, it would seem relatively straightforward to design algorithms for
selecting the best interactions. In other words, assuming we can estimate and evaluate reasonably,
empirical experimentation can be used to come up with a potential set of interventions for which selection
should be straightforward. Frameworks such as GIFT that can be used to integrate disparate types of
interventions are ideal for developing this type of understanding, assuming we a reasonable model of S
and estimation function a.

Future Research and Recommendations for GIFT

To be of general significance, the model presented in this chapter must be more precisely formulated and
tested for its ability to model and provide useful insight into existing ITSs. This requires understanding
what motivational, affective, cognitive, and social environment data is likely to be represented in S, which
is perhaps the central problem addressed in this volume. As stated in (Goldberg et al., 2011:10), “While
we intuitively know that it is better to have more information when we are making decisions to tailor
instructional feedback and content to individual trainee needs, the influence of specific trainee attributes
on instructional decisions can be debated. Additional experimentation is needed to quantify the impact of
trainee attributes. ”

This chapter suggests that as this central question is addressed, it will be important to observe the paths
traced through the learner state data collected by GIFT and not just the data themselves, and that it will be
important to test whether the parameters in a learner model can be used to answer optimization questions.
In addition, this chapter points out that GIFT can be used to empirically evaluate the effects of individual
interventions, probably at a more granular level than the typical complete ITS, and that a lot of thought
should be given to observables. Experiments that investigate what data is required to sufficiently
determine affective states provide good models for analyzing data coming out of simulations, games, and
sensors with regard to their ability to determine the parameters in S.
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cHaprTER 13 —Modeling Student Competencies in Video Games
Using Stealth Assessment
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Introduction

We have been examining ways to leverage video games to assess and support important student
competencies, especially those that are not optimally measured by traditional assessment formats. The
term “stealth assessment” refers to the process of embedding assessments directly and invisibly into the
learning or gaming environment. Though this approach produces ample real-time data on a player’s
interactions within the game environment and preserves player engagement, a primary challenge for using
stealth assessment in games is taking this stream of data and making inferences about players’
competencies that can be examined at various points in time (to see growth) and also at various grain
sizes (for diagnostic purposes). In this chapter, we present recent work related to creating and embedding
various stealth assessments into Newton’s Playground, a computer game that emphasizes nonlinear
gameplay and puzzle-solving in a two-dimensional (2-D) physics simulation environment. We conclude
with a discussion on stealth assessment within GIFT, highlighting research recommendations for
enhancing the architecture to support robust methods of evidence-centered assessment.

In this chapter, we examine the possibility of using well-designed games as vehicles to assess and support
learning. There are several factors motivating this research. First, our schools have remained virtually
unchanged for many decades while our world is changing rapidly. This lack of reform in our schools
could be a contributing factor in high dropout rates, especially among Hispanic, Black, and Native
American students, which were described as “The Silent Epidemic” in a recent research report for the Bill
and Melinda Gates Foundation (Bridgeland, Dilulio & Morison, 2006). According to this report, nearly
one third of all public high school students drop out and the rates are higher across minority students.
Importantly, when 467 high school dropouts were asked why they left school, 47% of them simply
responded, “The classes were not interesting.” In light of this finding, we need to identify ways (e.g.,
video games) to get young people engaged in learning the skills needed to succeed in today’s competitive
economy.

A second reason for using games as assessments is a pressing need for dynamic and ongoing measures of
learning processes and outcomes. Interest in alternative forms of assessment is driven by dissatisfaction
with and limitations of multiple-choice items. In the 1990s, interest in alternative forms of assessment
increased with the popularization of what became known as authentic assessment. Authentic assessment
refers to tasks that resemble academic and real-world activities (e,g., Hiebert, Valencia & Afflerbach,
1994). A number of researchers found that multiple-choice and other fixed-response formats substantially
narrowed school curricula by emphasizing basic content knowledge and skills within subjects and not
assessing higher-order thinking skills (e.g., Kellaghan & Madaus, 1991; Shepard, 1991). However, as
Madaus and O’Dwyer (1999) argued, incorporating performance assessments into testing programs is
difficult because they are less efficient, more difficult and disruptive to administer, and more time-
consuming than multiple-choice testing programs. Consequently, multiple-choice has remained the
dominant format in most K—12 assessments in our country. New performance assessments are needed that
are valid and reliable, and can be scored automatically.

A third reason for using games as assessment vehicles is that many games typically require a player to
apply various competencies (e.g., creativity, critical thinking, problem solving, persistence, and
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collaboration) to succeed in the game. The competencies required to succeed in many games also happen
to be the same ones that companies are looking for in today’s highly competitive economy (Arum &
Roska, 2011; Gee, Hull & Lankshear, 1996). Moreover, games are a significant and ubiquitous part of
young people’s lives. For instance, the Pew Internet and American Life Project surveyed 1,102 youth
between the ages of 12 and 17. They reported that 97% of youth — both boys (99%) and girls (94%) — play
some type of digital game (Lenhart et al., 2008).

In addition to the arguments for using games as assessment devices, there is growing evidence of games
supporting learning (e.g., Tobias & Fletcher, 2011; Wilson et al., 2009). However, we need to understand
more precisely how and what kinds of knowledge and skills are being acquired. Understanding the
relationships between games and learning is complicated by the fact that we don’t want to disrupt players’
engagement levels during game play. Consequently, learning in games has historically been assessed
indirectly and/or in a post hoc manner (Shute & Ke, 2012; Tobias, Fletcher, Dai & Wind, 2011). What’s
needed instead is real-time assessment and support of learning based on the dynamic needs of players. We
need to be able to experimentally ascertain the degree to which games can support learning, and how they
achieve this objective.

A challenge with developing a performance-based measure is crafting appropriate situations or problems
to elicit a competency of interest. One way to approach this problem is to use video games to simulate
problems for performance-based assessment (Dede, 2005; DiCerbo & Behrens, 2012; Quellmalz, Timms,
Buckley, Silberglitt & Brenner, 2012). Digital learning environments can provide meaningful assessment
environments by providing students with scenarios that require the application of various competencies.
In this chapter, we introduce research that explores a variant of this assessment approach by investigating
how performance-based assessments can be used in a video game we created called Newton’s
Playground.

Stealth Assessment

Given the goal of using well-designed games to support learning in school settings and elsewhere, we
need to ensure that the assessments are valid, reliable, and also unobtrusive (to keep engagement intact).
The output from the assessments, however, should be transparent. That is, players should be aware of how
they are doing relative to important competencies at any point in time to motivate learning. One way to
meet these requirements is to use “stealth assessment” (Shute, 2011; Shute & Ventura, 2013). Stealth
assessment refers to Evidence-Centered Design (ECD)-based assessments that are woven directly and
invisibly into the fabric of the gaming environment. During game play, students naturally produce rich
sequences of actions while performing complex tasks, drawing on the very skills or competencies that we
want to assess (e.g., scientific inquiry skills, creativity). Evidence needed to assess the skills is thus
provided by the players’ interactions with the game itself (i.e., the processes of play), which can be
contrasted with a summative score — the norm in educational environments.

Making use of this stream of gameplay evidence to assess students’ knowledge, skills, and understanding
(as well as beliefs, feelings, and other states and traits) presents problems for traditional measurement
models used in assessment. First, in traditional tests, the answer to each question is seen as an
independent data point. In contrast, the individual actions within a sequence of events in a game are often
highly dependent on one another. For example, what one does in a particular game at one point in time
affects subsequent actions later on. Second, in traditional tests, questions are often designed to measure
particular, individual pieces of knowledge or skills. Answering the question correctly is evidence that one
may know a certain fact: one question — one fact. But by analyzing a sequence of actions within gameplay
(where each response or action provides incremental evidence about the current mastery of a specific fact,
concept, or skill), stealth assessments can infer what learners know and do not know at any point in time.
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Now, because we typically want to assess a whole cluster of skills and abilities using evidence coming
from learners’ interactions within a game, methods for analyzing the sequence of behaviors to infer these
abilities are not as obvious. As suggested above, evidence-based stealth assessments can help address
these problems. The next section reviews the game we created called Newton’s Playground and the
associated development of stealth assessments for monitoring learner knowledge and progression.

Stealth Assessment in Newton’s Playground

Research into what’s called “folk” physics demonstrates that many people hold erroneous views about
basic physical principles that govern the motion of objects in the world, a world in which people act and
behave quite successfully (Reiner, Proffit & Salthouse, 2005). For example, when asked to draw the water
level on a picture of a tilted drinking glass, about 40% of young adults draw lines that are not horizontal
(McAfee & Proffitt, 1991). When asked to predict the path that a pendulum takes when the string is cut at
various points, a large percentage of people make systematically incorrect judgments (Caramazza,
McCloskey & Green, 1981). The prevalence of these systematic errors has led some investigators to
propose that incorrect performance on these tasks is due to specific “naive” beliefs, rather than to a
general inability to reason about mechanical systems (McCloskey & Kohl, 1983). Recognition of the
problem has led to interest in the mechanisms by which physics students make the transition from folk
physics to more formal physics understanding (diSessa, 1982) and the possibility of using video games to
assist in the learning process (Masson, Bub & Lalonde, 2011; White, 1994).

One way to help remove misconceptions in physics is to illustrate physics principles with physical
machines (Hewitt, 2009). In physics, a machine refers to a device that is designed to either change the
magnitude or direction of a force. Teaching about simple machines (e.g., lever, pulley, and wedge) is
widely used as a method to introduce physics concepts (Hewitt, 2009). Recent research on science
education also indicates that learners’ hands-on experience with such machines (both virtually and
physically) support applicable understanding of important physics concepts (Hake, 1998).

We developed a video game called Newton’s Playground (NP) to help middle school students experience
and understand what we call informal physics. We define informal physics as a nonverbal understanding
of how the physical world operates. Informal physics is characterized by an implicit understanding of
Newton’s three laws, balance, mass, conservation of momentum, Kinetic energy, and gravity. NP is a 2-D
game that requires the player to guide a green ball to a red balloon. The player can nudge the ball to the
left and right (if the surface is flat) but the primary way to move the ball is by drawing/creating simple
machines (which are called “agents of force and motion” in the game) on the screen that “come to life”
once the object is drawn. Everything obeys the basic rules of physics relating to gravity and Newton’s
three laws of motion. The 74 problems in NP require the player to draw/create four agents: inclined
plane/ramps, pendulums, levers, and springboards. All solutions are drawn with colored lines using the
mouse.

A ramp is any line drawn that helps to guide a ball in motion. A ramp is useful when a ball must traverse
over a gap or obstacle. A lever rotates around a fixed point, that is, a fulcrum or pivot point. Levers are
useful when a player wants to move the ball vertically. A swinging pendulum directs an impulse tangent
to its direction of motion. The pendulum is useful when the player wants to exert a horizontal force. A
springboard (or diving board) stores elastic potential energy provided by a falling weight. Springboards
are useful when the player wants to move the ball vertically. For example, in the “golf problem” (see
Figure 13-1), the player must draw a golf club on a pin (i.e., little circle on the cloud) to make it swing
down to hit the ball. In the depicted solution, the player also drew a ramp to prevent the ball from falling
down a pit.
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The speed of (and importantly, the impulse delivered by) the swinging golf club is dependent on the
size/mass distribution of the club and the angle from which it was released. The ball will then move at a
certain speed, length, and trajectory. If drawn properly, the ball will hit the balloon.

,~~ Drawing

Figure 13-1. Golf problem in NP (left is solution; right is path of motion)

All solutions are drawn with colored markers using the mouse. In a number of cases, the ball must go
over a pit. If the ball falls into the pit, the player must start the problem over. Players can replay a problem
as often as they like — even after successfully solving it. One motivation to replay a problem is to find
even more elegant and creative solutions than were generated before. It is not uncommon for a player to
revisit/replay particularly challenging problems multiple times, striving for a better, more elegant
solution.

Our system for agent identification (i.e., detecting the creation and use of simple machines) ignores visual
data and instead uses information from the underlying physics simulation to classify agents of force and
motion. We identify a primary object (PO) for each agent that provides the most salient features for the
identification of that agent. That is, the ramp and pendulum agents each use only one object, thus it is the
PO. For a springboard, the PO is the one that “springs” up to propel the ball. Finally, the PO in the lever
agent is the object that rotates under the load of another object, to lift the ball. Our method continuously
monitors all objects in the game for telltale characteristics of the PO in each particular agent of force and
motion.

We divide the agent identification process into three stages: default, monitor, and identify. All objects
start in the default phase for each agent. When an object exhibits characteristics of the PO for any
particular agent, it is elevated to the monitor stage. Once an object is in the monitor stage for a particular
agent, detailed data about its movement and interactions with the game world are recorded and the object
will inevitably move on to the identify stage, where the gathered data are analyzed and a decision is made
about whether it is indeed the primary object in a current manifestation of the corresponding agent of
motion.

To illustrate our agent identification system, we now describe the process of identifying the pendulum
agent of motion (which is the agent used in Figure 13-1 to solve the golf problem). A drawn object begins
in the default stage for the pendulum agent. When the object meets the following criteria it is elevated to
the monitor stage: (1) the object is attached to a single pin, and (2) the object has rotated more than 20°.
The monitor stage will gather physics data for % second and then the agent identification stage will be
triggered. A positive identification is made if, during the monitor phase, the object made contact with the
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ball (i.e., pendulum strike) and the ball moved more than a preset distance. Regardless of whether the
identification is made, the object is then lowered back down to the default stage. The classification of
other agents occurs in a similar manner.

Task Modeling for Informal Physics

All NP problems require the player to use one or more agents of force and motion in the solution.
Successful solutions thus inform one or more of the competencies that we hope to develop in the student.
As an illustration, consider the problem called ballistic pendulum, shown in Figure 13-2.

159

Figure 13-2. Ballistic pendulum problem

This problem requires the student to create a pendulum shape with sufficient mass and positioning so that
the pendulum will fall down and “kick” the ball into a free-fall trajectory that ends up landing on the red
balloon (the figure shows the ball en route to the balloon). Successfully solving this problem suggests that
the student has an intuitive grasp of the concepts of torque, linear, and angular momentum since the
correct application of each is required to get the ball to the balloon. Incidentally, the ballistic pendulum is
also an experiment often done in introductory physics courses in high school or college.

Other Gameplay Features

NP consists of 7 playgrounds (each one containing around 10-11 levels) that progressively get more
difficult. The difficulty of a problem is dependent on a number of factors including: relative location of
ball to balloon, obstacles, number of agents required to solve the problem, and novelty of the problem. NP
also has introductory videos that show how to use the various agents of force and motion. These tutorials
illustrate how to draw each agent to solve a simple problem (during gameplay, students have the option to
watch any agent-drawing video at any time).

145



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

Object Limit

In pilot testing, we discovered that players sometimes opt to draw lines under the ball in order to move it
(called line stacking). Repeated use of line stacking can lead players to not learn the agents of force and
motion. In order to preclude line stacking to obtain a solution we implemented an “object limit” of 10
objects per level. Once a player draws 10 lines no more lines can be drawn until a line is deleted or the
problem is reset (by hitting the space bar). Students can see their line limit in the bottom right hand side
of the screen.

Trophies

NP also displays silver and gold trophies in the top left part of the screen, which represent progress in the
game. A silver trophy is obtained for any solution to a problem. Players receive a gold trophy if their
solution is under a certain number of objects (the threshold varies by problem, but is usually less than
three objects). So a player can receive a silver and gold solution for each problem. It is not uncommon for
a player to revisit/replay particularly challenging problems multiple times to receive a gold solution.

Log Files

The heart of the stealth assessment lies in the log files generated by NP. NP automatically uploads log
files to a server for a session (i.e., log activity between login and log out). Figure 13-3 displays what the
log file looks like for one problem.

"time stamp": 12.163,

"level path": ".\\levels\\p4\\diving board.level",
"game time": 130.526001,

"pause_time": 1.54,

"restart count": 2,

"object_count": 14,

"object_ limit_count": 1,

"nudge count": 42,

"erase count": 13,

"pin_count": 1,

"agent vector":"61.78 SB, 98.08 SB, 131.60 SB"..
"ball trajectory": "<0.733, 0.427> <0.766, 0.394>..
"silver": true,

"gold": false,

"solved": true

Figure 13-3. Example log file

The session log displays counts and times for several features of gameplay relevant to physics. For
example, the “object limit count” reports the number of time a player exceeds the object limit, which can
be seen as a lack of knowledge of a particular agent of motion (depending on the problem). Also the
“agent vector” reports the agents used in the problem along with the time stamp it was executed (e.g., at
timestamp 61.78, a springboard [SB] was created). Finally, the “ball trajectory” reports the 2-D
coordinates of the ball over the last few seconds of a solved problem (i.e., the “solution path” of the ball).

A second log file NP reports is called a “replay file.” The replay file records all player interactions with

the game while attempting to solve a problem. Such interactions include drawing and erasing game
objects, creating pins and nudging the ball. NP can read this file to render a visual replay of a problem
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attempt in real time. The replay system was integral in tuning and verifying the accuracy of the automatic
agent identification system.

Preliminary Results

We recently conducted a study where we had middle school students (n = 165) play NP for around
5 hours (split into six 45-min sessions). Working with a physics professor, we developed a physics test
that assesses informal physics knowledge and does not require math for solutions to physics problems.
For example, Figure 13-4 shows an item involving a pendulum. The correct answer is “B.” We
administered the informal physics pretest at the beginning and a post-test at the end of the gameplay
sessions.

85=

The pendulums are swinging down to hit gray balls. The
pendulums each have the same length, but they start
their swings from different angles andthey have

a)A
b) B
c)The grayballsin Aand Bwill move at

the same speed after being hit
d) Ido not know

different masses. Inwhich figure willthe gray balltravel
the fastest after being hit by the pendulum?

Figure 13-4. Example item from informal physics test

So far, we have found a significant difference between the pre-test and post-test scores
(t (154) = 2.12, p < 0.05). Students playing the game improved in their informal, conceptual physics
understanding over time. Current analyses are revealing that our stealth assessment indicators correlate to
a player’s knowledge of physics concepts as measured by the tests.

We now turn our attention to how stealth assessment may be employed within the GIFT architecture.
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Stealth Assessment within GIFT

With domain-independency being a major requirement in the development of GIFT, it is important that
the architecture supports varying open and dynamic game-based learning environments that apply
distinctively different messaging protocols. This involves embedding components and processes within
GIFT’s domain module to support the authoring of stealth assessments regardless of the game-engine
being used. Rules and models built around game interaction must be explicitly linked to concepts defined
inside the GIFT architecture. This enables the assessment of concepts within GIFT’s domain schema as it
relates to evidence captured in a game. Based around this notion, GIFT must support the linkage of
activities in a game with defined objectives that denote competent behavior within a given domain,
regardless of the data structure being extracted from the game environment. For this purpose, a “Gateway
Module™ is incorporated that associates an external educational/training system’s state data with a domain
or competency model built within GIFT. This linkage allows for two disparate systems to communicate
with one another. In the case of GIFT, this enables the application of Al tools and methods that facilitate
real-time assessment of player actions as they relate to desired learning and performance processes and
outcomes.

The challenge is that a majority of gaming platforms apply different messaging protocols. Developing
approaches to rapidly pair GIFT with any platform is recommended, which will increase its utility across
multiple learning environments. This allows any system to link interaction with GIFT’s domain model,
where assessments are conducted and progress is communicated to the learner model for determining
transitions in performance or competency. This approach to assessment is ideal in game-based
environments as tracking interaction data as they relate to objectives can denote comprehension and
understanding that is difficult to gauge in traditional assessment techniques. The application of stealth
assessment within GIFT potentially provides further diagnosis of game performance, which can be
communicated to the pedagogical model for more focused selection of feedback and remediation tactics.

As discussed earlier, stealth assessment is dependent on data streams that can be pulled out of the system.
In the example of NP, player interaction is monitored for the purpose of capturing a player’s creation and
use of the relevant agents and inferring how their actions relate to mastery of informal physics knowledge
within a specified problem space. Here, user interaction is monitored to determine the application of
agents for solving a problem.

Within the context of game-based systems, the domain model in GIFT must accommodate the inclusion
of stealth assessment techniques, such as those implemented in NP, that distinguish competency from
interaction within a dynamic environment where learners have free control of their movements. These
relationships are currently authored in GIFT’s Domain Knowledge File (DKF), where a structured XML
schema is used to associate specific domain content with generalized tags that can be communicated to
the learner model (i.e., concepts, objects, and assessment logic). In the initial releases of GIFT, each of
these components are hand-coded by programmers as they link available gameplay data with defined
concepts as they relate to the objectives being instructed. This is not ideal, as the goal of GIFT is to enable
instructors and trainers to author intelligent tutoring capabilities without possessing skills across the
multiple disciplines (e.g., computer science, instructional design, psychometrics, cognitive psychology)
required to build such a system.

To ease this burden, research is necessary to identify and develop tools that intuitively guide a course
developer through the authoring process. Ultimately, the overarching goal is for this process to involve
minimal to no programming by using natural language and well-developed user interfaces to express
policies that can be converted to code and implemented for real-time application. One such emerging
technology is InternationalTechnology Alliance (ITA) Controlled English, which is a controlled natural
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language that is unambiguous for computers and allows for the definition and expression of concepts,
rules, and relationships (Harries, Braines & Gibson, 2012). Another available tool is Engineering and
Computer Simulations® (ECS) Student Information Models for Intelligent Learning Environments
(SIMILE), which uses a set of standards-based data models and protocols that associate events within a
game to learning objectives, tasks conditions, and standards for a given lesson/scenario. Researchers
should explore the application of these tools and others like it for authoring assessments as they relate to
particular activities taken within a gaming environment.

In the current version of GIFT, there is a use case within Virtual Battle Space 2 (VBS2), a game-engine
used by the Department of Defense for training purposes. In this instance, assessments are based around
Distributed Interactive Simulation (DIS) Protocol Data Units (PDUs) that provide entity and environment
state data information, and how they relate to defined objects (e.g., waypoints and time sequences). An
example is determining what entrance a player used to enter a building, with waypoints placed at each
entrance. When a player crosses one of these objects, the system can determine exactly which doorway a
player used and this is then passed to GIFT for assessment purposes. If the intention is for a player to
select a specific entrance, formative feedback can be triggered when a non-optimal doorway is selected.
Currently, each defined object is identified through the VBS2 mission editor and then translated into the
DKF. Research should be conducted looking at approaches to link game mission/scenario editors with the
associated DKF. This would enable autonomous populating of fields within the XML schema based on
defining attributes among available elements within the application. As related to the building entrance
example above, an author could identify a location on a scenario map as an object for use in GIFT
assessment, rather than the individual having to pull the data and entering them manually into the DKF.

Another area of interest in game-based intelligent tutoring is being able to predict performance as a player
progresses through a scenario so that interventions can be applied before user actions lead to poor
performance outcomes. Research related to this function is the application of Markov decision processes
(MDPs) that map associated goal objectives to state spaces in a game. Current applications include
reinforcement learning and partially observable MDPs (Sigaud & Buffet, 2010; Folsom-Kovarik,
Sukthankar & Schatz, in press). MDPs can be applied to determine if a player is heading down a non-
optimal path as it relates to defined standards, and can be used to deem what goals are being valued as it
relates to meeting scenario objectives. It is recommended that researchers look into how MDPs can be
used in GIFT for predicting performance outcomes and providing diagnostics into what elements of their
interaction are causing the decrements in performance.

Discussion and Future Research

Well-designed games can provide meaningful assessment environments by providing players with
problems that require the application of various competencies, then monitoring their performance. In this
chapter, we presented an assessment methodology that enables us to develop tasks in digital games
designed to elicit specific performance data that are then statistically linked to our focal competencies.

The research can expand in a number of general directions. That is, we can push the bounds of our stealth
assessments relative to implementing the models in additional digital games as well as other digital
learning environments to determine the range of environments that may employ the same competency and
evidence models for scalable, cost-effective, and engaging solutions to the assessment of complex
competencies. In addition, we can examine any added value of including exploratory, data-mining
methods to stealth assessment’s more theoretically driven approach regarding the quality of the
assessment.
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As we consider the development of stealth assessments for a diverse range of games and other learning
environments, the need for an interface to communicate equally diverse data to GIFT’s domain module
becomes apparent. As we alluded to in the previous section, the interface must be portable and flexible,
both in terms of technology and content. Thus, it is important to research elements that are common to
stealth assessments across learning environments and areas of assessment. The evidence-based models we
developed for NP is a good start.

Regarding future research related to learning, stealth assessment has the potential to be quite useful for
diagnostic purposes due to the fine-grained analysis of student behavior in situated contexts. In addition,
real-time information about player competency states can be useful to support learning through hints and
feedback, as well as dynamic matching of game difficulty level to player ability (e.g., providing more
challenging problems for those with high levels of various skills). Regarding the example used in this
chapter, the indicators linked to the agents of force and motion can serve as the basis for diagnoses. For
instance, if a student created a lever that did not successfully solve a problem that could have been solved
with a lever, the indicators would inform the most likely reason(s) why. That is, the lever may have failed
given (1) the wrong mass of an object that was used on one side of the lever, (2) the fulcrum was
positioned inaccurately, and/or (3) the size/length of the lever was too short or too long. Those data (mass,
position, and length) are calculated as part of the stealth assessment.

We are excited that researchers are starting to use digital games for learning and assessment. We think
stealth assessment is one way to maximize the positive impact digital games can have on students. As a
result, the future developmental efforts of GIFT should aim at identifying authoring tools and methods
that ease the process of embedding stealth assessment capabilities in game-based learning environments.
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CHAPTER 14 —Assessing the Disengaged Behaviors of Learners

Ryan S.J.d. Baker!, Lisa M. Rossi’
Columbia University Teachers College, 2Worcester Polytechnic Institute

Introduction

In recent years, an increasing number of models have been published that can infer if a learner is
behaviorally disengaged while working within an interactive learning environment, and can conduct
inference using features of data focused on learner interaction with the learning system. In this chapter,
we discuss some of the behaviors that have been shown to be amenable to this type of modeling,
including off-task behavior, gaming the system, and carelessness. We also consider some of the
algorithms and approaches that have been found to be particularly effective. We contemplate the relative
merits of knowledge engineering and data-mining approaches for this type of model, and focus on the key
validity concerns that must be addressed for these types of models to be used with confidence in a
comprehensive framework such as GIFT.

Gaps

Over the last decades, adaptive computerized instruction has become increasingly effective at assessing
the knowledge state of a learner (Corbett & Anderson, 1995; Martin & VanLehn, 1995; Shute, 1995;
Pavlik et al., 2009; Pardos et al., 2011), supporting automated decisions about which content to assign to
students through the implementation of strategies such as mastery learning, where a student is assigned
content for a specific skill or knowledge component until demonstrating mastery (Corbett, 2001).

However, despite recent advances in the assessment of student disengagement (discussed in this chapter),
and a small number of successful cases of models of disengaged behavior being used in learning
interventions (Baker et al., 2006; Walonoski & Heffernan, 2006; Arroyo et al., 2007), adaptive
computerized instruction is generally not as adaptive to engagement as it is to student knowledge.

There are likely multiple reasons for this. First, engagement models thus far have had to be created for
specific learning environments, with only moderate similarity for models of the same construct created
for different learning environment. By contrast, creating knowledge models often involves applying one
of a small set of known algorithms to a data set in a standard fashion (Pardos et al., 2011). This often
requires some knowledge engineering and rational modeling to create mappings between items and
cognitive skills, but that process is relatively well known and has been conducted for a large range of
learning environments. Second, validating models of engagement is more challenging than validating
knowledge models; knowledge models are often validated in terms of whether predictions of future
student behavior are correct (Corbett & Anderson, 1995; Pavlik et al., 2009; Pardos et al., 2011), but
validating an engagement model beyond face validity requires collecting human labels of data in terms of
the target construct, typically involving external coders (Baker et al., 2004; Baker, 2007b; Cetintas et al.,
2010; Walonoski & Heffernan, 2006; Wixon et al., 2012). These labels often must be collected at
considerable scale to ensure generalizability to a large and diverse target population.

Emerging Concept, Model, or Method

One of the challenges with modeling engagement within the context of adaptive computerized instruction
is deciding which dimension(s) of engagement to model. Fredricks, Blumenfeld, and Paris (2004) have
proposed that engagement be studied as a multifaceted construct, with behavioral, affective, and cognitive
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dimensions. These dimensions can be understood as follows: behavioral engagement centers on the action
of participation in an educational interaction (including academic, social, and extracurricular activities),
affective engagement focuses on both positive and negative emotional reactions (with regard to teachers,
peers, or academics), and cognitive engagement is based on investment at a cognitive level and
thoughtfulness. Within these dimensions, there are many constructs, e.g., many behaviors that indicate
engagement or disengagement. Each of these constructs can also be defined in a range of ways. This
multifaceted view of engagement imposes added complexity to our ability to infer disengagement, as it
broadens the breadth of behaviors necessary to detect in order to achieve a full multidimensional picture
of a learner’s engagement. Fortunately, however, not all dimensions (or aspects of each dimension) need
to be detected in order to support effective intervention. In addition, specific behaviors impact learning
outcomes and longer-term engagement in different ways, and some are more important to identify and
adapt to than others, depending on the learning context.

Despite these complexities, opportunities exist for a combination of rich logs of student interaction and
EDM methods to be used in concert to create richer detectors of student disengagement with regard to all
three facets of the construct.

In this chapter, we look at work that models the behavioral dimensions of engagement, focusing on work
to identify behavioral disengagement in the types of adaptive computerized instruction being integrated
with the GIFT framework (such as intelligent tutors, simulations, and serious games). We discuss the
following behaviors: off-task behavior, gaming the system, carelessness, and WTF behavior (Wixon,
Baker, Gobert, Ocumpaugh & Bachmann, 2012), which have been detected with validated models
operating on data from learner interactions with adaptive computerized instruction (e.g., no physical
Sensors).

Modeling Off-Task Behavior

The first automated detector of whether a student is off-task within adaptive computerized instruction was
published in Baker (2007b), which presented a machine-learned model to detect off-task behavior of
students using an ITS for middle-school mathematics. Off-task behaviors were defined as behaviors that
do not involve the system or learning task (including off-task conversation, off-task solitary behavior, and
inactivity), building off past work studying off-task behavior within traditional classroom settings
(Karweit & Slavin, 1982; Lahaderne, 1968; Lee, Kelly, and Nyre, 1999). These models were built using
data from quantitative field observations conducted in middle-school classrooms by trained field coders,
as training data. Models were validated by conducting cross-validation at the student level. Data features
included in the model were the following:

e Details of student actions, such as whether the action was correct and the type of user interaction
used in the current problem step (e.g., choosing from a set of options, inputting an answer, or
plotting points; some types of interactions naturally take longer than others).

o Whether it was the student’s first attempt at the problem.

e Time taken to complete a problem, expressed in three ways: (1) how many seconds the action
took, (2) how many standard deviations faster or slower the action took compared to other
students, and (3) time taken in the last three or five actions expressed as the sum of standard
deviations faster or slower than other students.

In order to model off-task behavior, Latent Response Models (LRM) were used as the statistical basis for
all detectors in this study, as they are able to easily and naturally integrate multiple data sources at
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different grain sizes. This framework included one observable level (assessing how frequently each
student is off-task) and two hidden (latent) levels. The detector determines the proportion of time spent
off-task by making a binary assessment as to whether each individual student action is off-task and
determining the percentage of actions which are assessed to be off-task for each student. Model selection
for the multiple-feature models were validated by adding parameters to the model until the parameter
worsened the model’s performance in a student-level tenfold cross-validation. It was found that the best-
fitting multiple-parameter model fit the data with a cross-validated correlation of 0.55.

A second automated detector of whether a student is off-task was developed by Cetintas and colleagues
(2010), who added data on mouse movement to the features used in Baker (2007b), modeling student off-
task behavior within a math tutoring program designed to help elementary school students with learning
disabilities and/or emotional disorders learn problem solving skills for Equal Group and Multiplicative
Compare problems. This more multimodal approach extended past work that had not considered mouse
movement data. Their approach also includes personalization of the detector to account for inter-user
variability of behavior. The personalized version of the model incorporates data from a student’s past
trials on each problem, which are used to generate a student-specific version of each feature while
predicting that student’s behaviors for the current trial. The same general approach to coding students as
on-task or off-task as was used in Baker (2007b) was used in this work. Quantitative field observations
were conducted in the classrooms by trained field coders and synchronized with the log data. Students
were observed sequentially (to avoid observer bias) and were coded as off-task if they were observed
doing any of the following for more than 30 seconds: talking with another student about anything other
than the subject material, being inactive, or exhibiting off-task solitary behavior.

Within this work, ridge regression (Hoerl & Kennard, 1970) was used to estimate model parameters, and
it was found that this approach (including mouse movement data and student-specific models) led to
better detection of off-task behavior than approaches lacking one or more of these features.

Modeling Gaming the System

Gaming the system is defined as attempting to succeed in an education environment by exploiting
properties of the system rather than by learning the material and trying to use that knowledge to answer
correctly (Baker et al., 2006). The first automated detectors of gaming the system were presented by
Aleven et al. (2004) and Baker, Corbett, and Koedinger (2004).

One category of gaming detectors was developed using knowledge engineering (Beal, Qu & Lee, 2006;
Buckley, Gobert & Horwitz, 2006; Shih, Koedinger & Scheines, 2008), where rational analysis is applied
by a human analyst to derive a model that can be applied. Within knowledge engineering approaches,
there is typically no gold standard used to validate models; models and their parameters are generated
based on the judgment of the researcher(s), although in some cases research models are compared to
learning outcomes. The first such detector was presented in Aleven et al. (2004) and refined within
Aleven et al. (2006). This detector was developed using a knowledge engineering approach and took the
form of a set of simple production rules. The detector was initially developed in the context of data from a
Cognitive Tutor on geometry, but has since been applied to other intelligent tutors. Within this model,
gaming behaviors were defined by a pair of rules, Clicking Through Hints, which consists of requesting a
hint, and then requesting another hint too rapidly to read the first hint (defined as under 5 seconds), and
Try-Step Abuse, where a student response took under 7 seconds. In related work, Beck (2005) looked at
quick responses on difficult items, parameterizing “quick” and “difficult” and fitting values for these
parameters based on data. Similar knowledge engineered models have been presented by Beal et al.
(2006), Johns & Woolf (2006), Gong, Beck, and Heffernan (2010), and Muldner et al. (2011).
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A second category of gaming detectors was developed using a combination of human labels of gaming
behavior and data mining/machine learning methods, where a model is trained to infer what the human
coder’s labels are. The first such detector was presented in Baker, Corbett, and Koedinger (2004) and
refined within Baker et al. (2008). This detector identified gaming the system and distinguished between
gaming behaviors characterizing unsuccessful students and gaming behaviors characterizing more
successful students (the primary distinction was in terms of when gaming occurs, with unsuccessful
students gaming on difficult material and successful students gaming on easier material). This detector
was built for students using a Cognitive Tutor for middle school, using quantitative field observations and
tutor log data collected across a total of four tutor lessons used by over 400 students in two separate
school districts. Data features used in the model included time expressed in terms of how many seconds
the action took, how many standard deviations faster or slower the action took compared to other
students, and time taken in the last three or five actions expressed as the sum of standard deviations faster
or slower than other students. Details about the interaction were also included regarding the learning
system’s assessment of the action (as correct; incorrect, indicating a known bug; or a help request), the
type of interface widget involved in the action, and whether this attempt was the student’s first attempt.
The automated detectors, developed using a LRM framework (Maris, 1995) integrated the field
observations and tutor logs, at different grain sizes, into a single model. In a gaming detector’s
outermost/observable layer, the gaming detector assessed how frequently each of n students is gaming the
system. The gaming detector’s assessments for each student were then compared to the observed
proportions of time each student spent gaming the system. The detector was validated to be able to
generalize to new students and new tutor lessons.

In later work to detect gaming using machine-learning and human labels, Walonoski and Heffernan
(2006) improved on the very coarse-grained label synchronization in Baker’s work by using time
windows of five different sizes (30 seconds, and 1, 2, 4, and 6 min), increasing the degree to which the
model was fine-grained. Next, work by Baker and de Carvalho (2008) achieved 20-second-level
synchronization by using text replays rather than quantitative field observations, for human labeling. Text
replays are log files presented in textual form, and represent a segment of student behavior during a pre-
selected duration of time or length. It has been shown that text replays have good inter-rater reliability and
agree well with prediction made by models generated using quantitative field observation data (Baker,
Corbett & Wagner, 2006). Using labeling at this label made it possible to use off the shelf classifiers, in
this case J48 Decision Trees, an open-source implementation of C4.5 Decision Trees (Quinlan, 1993). In
further work, this approach was extended to a constraint-based tutor for database programming (Baker,
Mitrovic & Mathews, 2010) and a handheld app was developed to support synchronization of field
observations with similar precision to what can be achieved with text replays (Ocumpaugh et al., 2012).

Modeling Carelessness

The construct of carelessness has been defined in two ways: as an error made on a task that the student
already knows (Clements, 1982), or as impulsive and/or hurried actions (Maydeu-Olivares & D’Zurilla,
1995). San Pedro and colleagues (2011a) identified Clements’s definition of carelessness as being the
same as the contextual probability of slipping on a problem or problem step in an intelligent tutor, a
construct that it was previously shown can be inferred through manipulating a BKT model (Baker,
Corbett & Aleven, 2008). Based on this theoretical link, San Pedro and colleagues (2011a) manipulated
the internal structure of a BKT algorithm in order to develop a model of carelessness, doing so using log
files produced within a Cognitive Tutor for Scatterplots. The model of carelessness was developed by first
obtaining ground-truth labels using future knowledge to drive a machine-learned model that can predict
careless errors without using future data. Then, a model that only uses data from the past was created
using sixfold student-level cross-validation linear regression modeling. Creating this model also serves a
function of smoothing extreme estimates. The model achieved A’ and BIC’ values, which indicated that
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the detector performed better than chance. The same approach was replicated within Science
ASSISTments, a set of scientific simulations that scaffold student inquiry processes and assess students’
inquiry skill (Hershkovitz et al., 2013).

This model has been validated to work for new students (Baker, Corbett & Aleven, 2008), new
populations in different countries (San Pedro et al., 2011a), and additional tutoring systems (Hershkovitz
et al., 2011). It has been also been shown to predict student post-test score even when controlling for
student knowledge (Baker et al., 2010).

Modeling WTF Behavior/Off-Task Behavior within environment

Rowe and colleagues (2009) reported that students sometimes engage in behavior within online learning
that seems unrelated to the student’s learning task, giving the example of students climbing on top of (in-
game) buildings or putting (in-game) bananas in an (in-game) toilet. They identified this construct as off-
task behavior within the learning environment. In 2012, Wixon and colleagues (2012) argued that this
term may obscure considerable differences in why students engage in this behavior compared to
traditional off-task behavior (where the student ceases to work on the task at all), as well as differences in
impact, and suggested the alternate term of WTF behavior.

Rowe and colleagues proposed an operational definition as behaviors that are clearly unrelated to the
narrative and curriculum, and built a knowledge-engineered model to infer this construct in a narrative-
centered learning environment called Crystal Island, in which students solve scientific puzzles presented
through interactive story scenarios. Their definition when expanded by Sabourin et al. (2011) consisted
of: interactions with in-game objects that are not relevant to the scientific puzzle, moving a task-related
object to an unrelated location, spending too much time in an irrelevant location, or exceeding a height
achievable by normal navigation.

Wixon and colleagues (2012) developed a data-mined automated detector of WTF behavior, within the
context of Science ASSISTments. Within this environment, WTF behavior involves behaviors such as
changing variable values many times without running trials, or rapidly pausing and unpausing a
simulation. Ground-truth labels for this behavior were developed using text replays, and then a set of
features were distilled using code that had been previously developed to detect student use of
experimentation strategies and hypothesis testing within Science ASSISTments. Eleven common
classification algorithms were attempted to fit detectors of WTF, and the best model performance was
achieved by the Projective Adaptive Resonance Theory Model (PART) algorithm (Frank & Witten,
1998), which produces rules out of C4.5/J48 decision trees. The models were evaluated using a process of
sixfold student-level cross-validation, and the detectors were assessed using four metrics: A’, Kappa,
precision, and recall.

Use of Detectors in Intervention and “Discovery with Models” Analyses

Once detectors of disengaged behavior have been developed, they can be used in two fashions: within
“Discovery with Models” analyses to understand the relationship that the disengaged behavior has to
other constructs, and within interventions, by embedding the detectors in running software to drive
adaptation, and using them to change the system’s behavior.

Automated detectors of off-task behavior, gaming the system, carelessness, and WTF behavior have been
used in several “discovery with models” analyses. Early analyses on gaming the system indicated that
gaming was associated with poorer learning (Baker et al., 2004; Beck, 2005), although fast responses are
positively correlated with learning if correctness is not taken into account (e.g., Aleven et al., 2006). This
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research was followed up by work by Cocea, Hershkovitz, and Baker (2009), who studied whether off-
task behavior and gaming the system had an immediate impact on learning or a more aggregate impact on
learning, and found evidence that off-task behavior was not associated with worse performance in the
short-term, but that it led to the student having fewer opportunities to practice the skill, leading to smaller
learning gains over time. By contrast, gaming the system was found to be associated with worse
performance in the short-term as well as the long-term. Both Rowe et al. (2009) and Sabourin and
colleagues (2011) found evidence that WTF behavior is associated with lower learning gains.

Baker (2007a) used an automated detector of gaming the system to determine whether differences in the
frequency of student gaming were better predicted by tutor content than by which student was using the
software. Interestingly, knowledge-engineered models have produced the opposite finding, that students
were better predictors of gaming behavior than the lesson (Gong et al., 2010; Muldner et al., 2011), a
contrasting finding which has not entirely been reconciled, although recent collaborative work between
some of the authors of Baker (2007a) and Muldner et al. (2011) suggest that this contrast may be because
the different detectors identify different behavior in general. Baker et al. (2009) and Baker (2009)
followed up the finding in Baker (2007a) by studying which differences in lesson features predict the
degree to which students will go off-task or game the system in a lesson, by combining data from a
taxonomy of differences between 22 lessons with assessments of how often a set of students was off-task
or gaming in each lesson, across the course of a year. They found that several features were associated
with gaming, including ineffective or overly abstract hints, unclear toolbar icons or problem flow, and the
lack of (interest-increasing) extraneous text in problem statements.

Detectors of off-task behavior, gaming the system, and carelessness were used in Baker and Gowda
(2010) to study the differences in the proportion of these behaviors between students in an urban, rural,
and suburban school, across an entire year of usage of a Cognitive Tutor for Geometry. They found that
urban school students go off-task and are careless significantly more than rural and suburban school
students, and also that gaming the system was most prominent in the urban school. In work within a
single population, Rowe and colleagues (2009) found that WTF behavior was significant more common
among male students than female students.

San Pedro and colleagues (2011b) used a machine-learned detector of student carelessness to study the
relationship between carelessness and affect in high school students using a Cognitive Tutor for
Scatterplots. It was found that errors made by students who are confused or bored are less likely to be
careless errors. The negative correlation between confusion and carelessness increases in magnitude as
students used the tutor more, even as confusion itself decreases in frequency. This suggests that students
who were struggling the most and remained confused were less likely to become careless. It was also
found that students displaying engaged concentration were more likely to make careless errors, a finding
which seems strange but which may be consistent with offline findings in Clements (1982) that successful
students are more likely to become careless. Affect was also studied in relation to WTF behavior by
Sabourin and colleagues (2011), who investigated the affective role of this category of behavior in Crystal
Island. They found that no emotional states were more likely than chance to lead to WTF behavior.
However, it was found that students who had remained on-task after reporting confusion were more likely
to report feeling focused next, while students who went off-task (in the environment) after reporting
confusion were more likely to report boredom or frustration next. It was also found that frustrated
students who went off-task (in the environment) were more likely to report feeling focused next, while
confused students who went off-task (in the environment) were more likely to report a negative emotion
next. By contrast, frustrated students who remained on-task were also more likely to report boredom next.
This suggests that this type of behavior may be beneficial to frustrated students by allowing them to
distance themselves from the problem.
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Research has also been conducted to model the relationship between disengaged behavior and
motivational variables. Baker (2007b) found that off-task behavior was associated with disliking
computers, disliking mathematics, passive-aggressiveness, and lack of educational self-drive. Baker and
Walonoski et al. (2008) investigated which student behaviors, motivations, and emotions are associated
with gaming the system, across multiple studies with two different systems. They found that gaming the
system was associated with disliking the software’s subject matter, lacking self-drive, disliking computers
and the learning environment, believing that mathematics ability is innate, and believing that the tutor is
not helpful for learning. Beal, Qu, and Lee (2008), using the gaming detectors from Beal, Qu, and Lee
(2006), found that students with low math self-concept were most likely to engage in guessing gaming
behavior. Hershkovitz and colleagues (2013) studied the relationship between carelessness and motivation
within Science ASSISTments, finding carelessness is higher in students characterized by high levels of
learning goal orientation and academic efficacy (in the case of academic efficacy, replicating off-line
results by Clements [1982]), and high levels of both performance-approach and performance-avoid goals.
By contrast, carelessness was lower in students having neither learning nor performance goals.
Hershkovitz et al. (2011) also found that students with performance goals demonstrated an increase in
carelessness earlier within the set of trials than students with learning goals. On the other hand, students
who lacked either type of goal demonstrated consistently higher carelessness over trials.

Detectors of this type have also been used to drive automated interventions, with the goal of improving
student engagement and learning. One of the first examples of this can be seen in Baker et al. (2006),
where an automated detector of gaming the system was embedded into an interactive agent (similar to
non-player characters [NPCs] in games), who displayed negative emotion when students gamed, and who
provided supplementary exercises designed to support students in learning material bypassed via gaming.
This intervention improved student learning and reducing gaming behavior in the United States (Baker et
al., 2006), although its results did not replicate in the Philippines (Rodrigo et al., 2012). Another
intervention using gaming detection was developed by Arroyo and colleagues (2007), who provided
meta-cognitive messages to students on the negative impact of gaming, combined with visualizations of
students’ recent gaming behavior. This intervention also reduced gaming and improved learning. Off-task
behavior detection, carelessness detection, and WTF behavior detection has not yet been used as the basis
of automated intervention, although research projects along these lines are currently underway (Inventado
& Numao, 2012).

Discussion, Recommendations, and Future Research

As this chapter indicates, the last several years have seen considerable work in modeling a range of forms
of student disengagement, including gaming the system, off-task behavior, WTF behavior, and
carelessness. These detectors have been developed through a range of approaches, and a consensus
appears to be emerging that disengaged behaviors can be assessed in a range of different online learning
environments.

As such, there is an opportunity for a framework such as GIFT to incorporate models of this type.
Historically, the ITS field has been better at developing these types of models and using them within
discovery with models analyses than it has been in using them to modify tutor pedagogy and adaptivity
(although successful examples of the latter exist, particularly for gaming the system — cf. Baker et al.,
2006; Walonoski & Heffernan, 2006; Arroyo et al., 2007; Roll et al., 2011). This limitation is holding
back the potential of these approaches to provide information that can be used to reengage learners and
enhance learning.

A key step that could facilitate incorporation of these types of models into GIFT would be to incorporate
tools that support detector-building into the GIFT framework. Several types of tools have been developed
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to support this process, but the tools have been developed by a variety of research groups and are not well
integrated with specific I1TSs, or for that matter, with one another. For example, tools have been
developed for automated feature generation by a wide variety of research groups, but have been often
scoped for use with a single learning environment. One exception is found in the EDM Workbench
(Rodrigo et al., 2012), which can generate a range of features for data in the format used by the PSLC
DataShop (Koedinger et al., 2010), but can only do so post-hoc. Still, this system’s feature generation
could be extended and used as a basis for feature generation within the GIFT framework. Ideally, feature
generation should be conducted both on existing data sets, and at run time within a tutor, in order to
facilitate both the creation and use of automated detectors of disengagement. A tool such as the EDM
Workbench could be incorporated into the GIFT framework via creating explicit API-level links between
GIFT and the EDM Workbench, where the EDM Workbench could pull data directly from GIFT, and
export detectors back to GIFT for use in the user model. In addition, the feature generation code in the
EDM Workbench could be integrated into the GIFT framework, so that distilled features could be directly
used by detectors exported to GIFT’s user model. Simply making these tools available to GIFT users is
useful but not sufficient. The process of importing data from GIFT to the EDM Workbench is time
consuming if formats do not match, and an unnecessary step compared to the direct approach possible
with API-level links. Similarly, the process of manually taking detectors and associated feature distillers
from the EDM Workbench and building them into GIFT’s user model is challenging if integration is not
created between these tools. These issues are not unique to the EDM Workbench, but are general to the
problem of using tools for feature distillation or detector building to enhance GIFT. It is worth noting also
that tools like the EDM Workbench are useful for modeling a range of behaviors, beyond the disengaged
behaviors discussed in this chapter.

A second opportunity is to integrate tools for labeling data in terms of engagement into the GIFT
framework. There are currently tools for collecting both text replays (discussed above) and quantitative
field observations of disengagement that could be integrated into GIFT. The EDM Workbench offers
support for conducting text replays, though in a less visually attractive format than tools designed
explicitly for conducting text replays in a single learning system. Tools for generating tailored text replays
have also been designed for a variety of learning environments. Integrating text replays into GIFT would
be a useful step towards a framework that can incorporate engagement detectors into a wider number of
ITSs. Similarly, integrating code into GIFT for conducting field observation of student disengagement,
such as the HART app for Android (Ocumpaugh, Baker & Rodrigo, 2012), would support the
development of detectors for ITSs using GIFT. Another potential opportunity can be seen in work to
develop detectors of carelessness. The development of detectors of carelessness relies upon initial
estimates of carelessness computed using student knowledge models. Extending the knowledge modeling
in GIFT to produce carelessness labels would be a valuable step towards incorporating this type of
adaptation capacity into GIFT.

Through these steps, it will become easier to build automated detectors of student disengagement into the
GIFT framework. Doing so will make it feasible to conduct further research on how these models can best
be used to reengage learners toward developing understanding in the field as to how ITSs can best adapt
to differences in student engagement.
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Introduction

A distinguishing characteristic of ITSs is that they engage in learner modeling, meaning that they estimate
key characteristics of each learner based on interactions with the tutoring system. Although learner
modeling is not fundamentally different from other forms of formative assessment, some properties of the
learner modeling approaches applied in ITSs are not widely shared with other forms of formative
assessment. First, learner modeling methods used in ITSs typically assess learners over time and across
many measurement moments. Therefore, they tend to take into account that the learner is learning.
Second, the assessment is done primarily to support pedagogical decision making by the tutoring system.
Third, learner modeling and instruction go hand in hand; the learners are assessed on the same problems
on which they are receiving instruction. Finally, although the term “assessment” is typically associated
with a focus on learners’ knowledge and skills, across the spectrum of ITSs, learner models hold many
different types of information.

In this chapter, we focus on models that represent the knowledge targeted in the instruction and also
knowledge that may be used to learn target knowledge (e.g., metacognition or motivational beliefs related
to learning). These kinds of learner models capture what a given learner knows (tacitly or explicitly) and
does not know yet, so that the system can tailor its instruction accordingly. In particular, we focus on
approaches that aim to model the learner’s knowledge with sufficient specificity that the learner’s
performance on future tasks can be accurately predicted. In pursuit of this goal, it has turned out to be
useful to model the learner’s knowledge as a set of inter-related KCs. The Knowledge-Learning-
Instruction (KLI) Framework defines a KC as “an acquired unit of cognitive function or structure that can
be inferred from performance on a set of related tasks” (Koedinger, Corbett & Perfetti, 2012). Examples
of ITSs that have taken a KC approach to learner modeling are Cognitive Tutors (Anderson, Corbett,
Koedinger & Pelletier, 1995; Koedinger & Aleven, 2007), constraint-based tutors (Mitrovic, Mayo,
Suraweera & Martin, 2001), and Andes (VanLehn et al., 2005).

The KC approach to learner modeling comes with a number of key challenges. First, in any domain of
interest, how can we determine what the KCs are that learners acquire? Put differently, how can the
targeted expertise be decomposed into a set of KCs that have psychological reality, as evidenced by the
fact that the model can be used to accurately predict student performance across tasks and over time?
Second, given a KC model, how can a tutoring system accurately determine, for any learner at any point
in time, what that learner’s level of mastery is for each of the individual KCs? Third, given an accurate
model of an individual learner, how can an ITS tailor its instruction so learners learn more effectively
and/or efficiently? In this chapter, we focus primarily on the first question while briefly touching on the
other two. A key point in our chapter is that automated approaches to creating and refining KC models
can substantially enhance “manual” approaches.

In the KC approach to learner modeling, building an intelligent tutor for a new domain requires a KC
model. Since existing KC models are rarely available or “just right,” typically, a new model needs to be
built. Doing so, however, requires a substantial amount of effort. In a traditional approach to KC
modeling, an author creates a model by hand, based on careful cognitive task analysis. Ideally, the author
would conduct both theoretical task analysis and empirical task analysis (Lovett, 1998). In theoretical
cognitive task analysis, an author elucidates the knowledge demands of a task by carefully analyzing its
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structure (e.g., its possible goal/subgoal hierarchies). In empirical task analysis, by contrast, an author
collects data about problem solving in the given task domain, employing methods such as think-alouds,
interviews of experts, analysis of errors novices make on written tests, difficulty factors analysis (DFA),
and so forth (Baker, Corbett & Koedinger, 2007).

Given that creating a KC model tends to be labor intensive, ITS authoring tools support aspects of
cognitive task analysis and KC modeling. In this chapter, we review how one set of authoring tools (the
Cognitive Tutor Authoring Tools or CTAT, for short) support theoretical cognitive task analysis and KC
modeling as an integral part of the process of building a tutor, with substantial gains in authoring
efficiency (Aleven, McLaren, Sewall & Koedinger, 2009). However, it is becoming clear that manual KC
modeling does not always yield optimal KC models. Manual KC modeling efforts have produced multiple
cases where KC models created or refined through automated or semi-automated methods did better (e.g.,
on predicting student performance) than real-world models created by hand. For example, our original
assumption in building the cognitive model (a kind of KC model) for story problem solving within
Cognitive Tutor Algebra was that story problems are hard because it is challenging to comprehend a story
and translate it to an equation. Without collecting data, these hand-crafted models would have been
wrong. For beginning algebra students, introductory story problems are not solved using equations and
are actually easier to solve than the matched equation (Koedinger & Nathan, 2004). Further, the challenge
in translating a story to an equation is more in the difficulties in producing the symbolic equation than in
comprehending the English (Koedinger & McLaughlin, 2010). As a second example, in the Geometry
Cognitive Tutor, the cognitive model in the fielded tutor did not make a distinction for “decomposition
problems” between those where the decomposition was scaffolded and those where it was not. Data
mining showed a large and important difference between these two situations, however (Stamper &
Koedinger, 2011), and a tutor redesigned based on the data-discovered new model yields more efficient
and effective learning (Koedinger, Stamper, McLauglin, Nixon, in press). Third, across 11 datasets, an
automated model refinement algorithm called Learning Factors Analysis (LFA) found better cognitive
models than the original models and than best data-driven models (Koedinger, McLaughlin & Stamper,
2012).

Part of the problem may be that in practice, the manual approach to KC modeling relies too much on
theoretical task analysis and not enough on empirical task analysis. It may be fair to say that the first cut
at a KC model is often created without much empirical task analysis. In the process of developing a tutor,
it can be difficult to find the time to collect data with students from the target population. A second reason
why hand-crafted models can be suboptimal is that even common methods for empirical cognitive task
analysis may not be able to address all modeling decisions that arise (often, there are simply too many of
them) and may not uncover subtle over-generalizations and under-generalizations that novices make
while learning new material. Such discoveries may require larger data sets than those typically collected
in empirical task analysis, such as those collected as tutor log data.

As second focus of the chapter, therefore, is on methods and tools for discovering or refining KC models
using data on task performance (e.g., tutor log data). Specifically, we concentrate on three data-driven
and/or machine learning approaches: (1) use of visualization and statistical modeling tools for analysis
and refinement of existing models based student log data for example, by using the DataShop (Koedinger
et al., 2010); (2) combining human expertise, machine learning, and log data to automatically discover
better KC models (LFA) (Koedinger et al., 2012), again using tutor log data, and (3) using machine-
learning-based model of student learning (e.g., SimStudent) to learn an accurate KC model from being
tutored in the domain (Li, Matsuda, Cohen & Koedinger, 2011).
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Background: What Is KC Modeling?

In this section, we review the notion of a KC as a central element in learning modeling. In the next
section, we review some of the key evidence in the ITS literature in support this approach — instances in
which a KC-based learner model was used in an ITS to adapt instruction with measurable impact on
student learning.

But first, what is a knowledge component? Does any decomposition of the knowledge needed for a
particular task result in a KC model? And what does it mean for a KC model to have psychological
reality? As mentioned, in the KLI framework (Koedinger et al., 2012), a KC is an acquired unit of
cognitive functioning, which (being a latent construct) has to be inferred from learners’ performance. This
definition encompasses a wide range of knowledge types, not just procedural knowledge. A complex
cognitive task is viewed as involving many fine-grained KCs (Anderson, 1993). These KCs are learned
separately in the sense that practice with one does not cause improved mastery of another. While there is
no possibility of transfer from one KC to another, KCs provide a good way of thinking about transfer
between problems or problem steps. In many domains (e.g., mathematics) different problems require use
of overlapping sets of KCs. One expects to see transfer between different problems or problem steps, in
the sense that practice on one leads to improved performance on the other, exactly to the extent that there
is overlap in the KCs needed for these problems or steps. A key characteristic of the KC approach to
learner modeling (which is not shared with other approaches to assessment, even prominent ones such as
IRT analysis, cf., Wilson & De Boeck, 2004) is that such transfer relations are explicitly accounted for.
The KCs are considered to be the units of transfer.

We can now state what it means for a KC model to have psychological reality. Put simply, it means the
model can be used to make accurate predictions of a given student’s performance on future problems
based on that student’s performance on past problems. Put differently, it means that the transfer
predictions that are implied by the model are actually observed in data about student performance,
typically, tutor log data (Aleven, 2010). This description leaves open how a KC model can be used to
predict future performance. There are multiple ways of doing so; below we describe one often-used
method. A key pre-requisite for making accurate predictions is that the model captures knowledge at the
right level of generality.

It may be helpful to contrast the KC approach to learner modeling with an alternative but incorrect
viewpoint, namely, that “students learn what they spend time on.” While that statement may have a ring
of truth to it, it is actually misleading. It depends critically on how we categorize student activities. When
we look at student activity at the level of problems, we may go wrong. We need to categorize problem-
solving steps, not problems, and we need to do so with respect to their cognitive demands. In a study on a
tutor unit with geometry area composition problems, model discovery revealed a different skill is needed
for unscaffolded decomposition steps than for scaffolded ones (Stamper & Koedinger, 2011). In these
decomposition steps, students must realize that they can compute the area of irregular geometric shapes as
the sum or difference of the area of two different regular shapes. In the fully-scaffolded tutor, students did
not need to plan to decompose the irregular area shape on their own, as the tutor prompted for the areas of
the regular shapes and then for their sum or difference. A redesigned tutor included unscaffolded
problems where students were not prompted to decompose the figure; they basically had to figure it out
themselves, as one big step in the tutor problem. New problems that isolate the decomposition planning
step and did not require its execution were also created and used in the redesigned tutor. The students in
the redesigned tutor condition learned better (Koedinger, Stamper, McLaughlin & Nixon, in press). All of
the problems that both groups solved in this study were composition problems, and the students who
worked with the scaffolded tutor spent more time on these problems overall. Thus, by the simple
statement above, they should have learned the decomposition skills better. They did not. Students using
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the redesigned tutor learned the decomposition skill better, because only they had practiced that skill — in
the scaffolded group, the tutor’s scaffolding took over a critical part of the work. Generally, students learn
the KCs they spend time practicing. However, what these KCs are is not obvious. KCs are not directly
observable and most are not open to conscious reflection, despite our strong feelings of self-awareness of
our own cognition. They can, however, be inferred and discovered from student performance data across
multiple tasks via a statistical comparison of alternative categorizations, that is, of alternative KC models.

As another contrasting case, we consider the ALEKS system and its underlying knowledge space
algorithm (Falmagne, Koppen, Villano, Doignon & Johannesen, 1990). ALEKS is a commercial system
for mathematics practice, focused on individualized problem selection to diagnose a student’s knowledge
state. It presents problems to students and provides mathematical tools to solve them (e.g., digital version
of a compass, on-screen calculator, grapher, etc.) but does not provide the step-by-step guidance (or
equivalently, an “inner loop”) characteristic of ITSs (VanLehn, 2006, 2011).

The adaptive problem selection technique in ALEKS relies on a “knowledge space” created offline that
captures presumed precedence relations among problem types. That problem type A precedes (i.e., is a
prerequisite of) type B is determined empirically. In essence, A is assumed to precede B if most students
that get B right also get A right and if of those that get B wrong many get A right. In other words,
evidence that a student knows B implies they know A. These precedence relations define a partial order
among all problem types and this partial ordering is used to diagnose a student’s knowledge state, defined
as the set of problem types that the student masters (i.e., can solve correctly). From the knowledge state,
ALEKS can select an appropriate next problem — one of the problem types that follow those on the edge
of what that student knows.

The KC approach described in the current chapter and ALEKS’ approach using knowledge spaces share
an important goal, namely, learner modeling in support of individualized problem selection. They also
share the view that student performance data is a valuable source of information for model building
beyond intuition or analysis. A key difference is that the KC approach attempts to explicate what the KCs
are, whereas there is no such attempt in the knowledge space approach. Whereas the ALEKS approach
uses data in place of theory and intuition, the KC approach uses data in addition to theory and intuition.
To illustrate the difference, the knowledge space algorithm will identify A as a prerequisite of B if A is
consistently easier than B (for the same students)®. However, unless the KCs used in A are also needed in
B (e.g., A is finding factors of a number and B is finding the least common multiple of two numbers,
which requires finding factors), the statistical regularity used to infer a prerequisite may be spurious. A
second reason why the KC model approach values explication of the KCs is that the resulting explanatory
model may not only enhance generalization, but can better be interpreted for use in course redesign
(Lovett, Meyer & Thille, 2008) and in tutor redesign (Koedinger & McLaughlin, 2010; Koedinger,
Stamper, McLaughlin & Nixon, in press) .

It is worth noting that a knowledge space approach is not incompatible with a KC modeling approach and,
indeed, we would recommend analysts using a knowledge space to try to explicate the in-common KCs
implied by the links in the prerequisite graph. Links should be eliminated (or not produced) when a
plausible KC cannot be generated.

° Note that the knowledge space algorithm is more nuanced then this treatment might imply: It is possible for A to
be easier than B, but still have a number of students getting B right and A wrong and if that happens enough, a
precedent relation from A to B will not be inferred.
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Use of KC-Based Learner Models and Evidence of Effectiveness

To motivate the KC approach, we briefly touch on the second and third key challenges identified in the
introduction: Once a KC model has been created for a given task domain, how can an ITS assess an
individual student’s mastery of the KCs in the model? Also, what are good ways of using that assessment
to individualize instruction? We review some of the key studies in the literature.

A widely used approach to tracking individual learners’ knowledge growth using a KC-based model is
BKT (Corbett & Anderson, 1995). In this approach, the posterior probability of mastering a KC is
updated each time a student encounters a problem step involving that KC. The posterior probability
depends on the performance on that step, the prior probability of mastery, the likelihood of learning from
a step, and conditional probabilities that allow for the possibility that the student may guess the step or
slip. These parameters are typically set separately for each KC and are sometimes estimated from data
(Corbett & Anderson, 1995). As an alternative to BKT, Bayesian Networks are often used to maintain
KC-based learner models (Conati, Gertner & Vanlehn, 2002). Further, recent EDM research has
developed new methods for tracking individual learners’ knowledge growth in terms of KCs (e.g., Gong,
Beck & Heffernan, 2011; Lee & Brunskill, 2012). Some of these methods have been shown to have
greater predictive accuracy than BKT. To the best of our knowledge, these methods have not yet been
used for online learner modeling or online individualization of instruction, although one of them, AFM
(described below) has been used offline for KC model and tutor improvement, and there is much ongoing
work in this area.

The primary use of KC-based learner models in ITSs is to support individualized problem selection
(Corbett, McLaughlin & Scarpinatto, 2000; Corbett & Anderson, 1995; Mitrovic & Martin, 2004). In this
approach, the system uses its learner model to select problems that (for the given student, at the given
point in time) target unmastered KCs. It continues to do so until the learner model indicates that the
learner has reached mastery of the targeted KCs. This approach to individualized problem selection, often
called “Cognitive Mastery,” is used in Cognitive Tutors, a type of ITS used widely in American
mathematics education (Anderson et al., 1995; Koedinger & Aleven, 2007). Individualized problem
selection based on a KC model can be very effective in enhancing student learning. In studies with the
Lisp Tutor, an early Cognitive Tutor, Corbett et al. (2000) found substantial improvement in student
learning outcomes, due to this form of individualization, with on average only a very modest increase in
the time spent. Also, a study by Cen et al. (2007) showed that improving the accuracy of learner modeling
— by tuning the parameters of the BKT procedure — leads to more efficient learning by students. These
studies on individualized problem selection provide key evidence that adaptive individualization by an
ITS enhances student learning, an important argument in favor of this advanced learning technology.

KC-based learner models have also been used for individualizing a number of other aspects of tutoring
systems. For example, they have been used to individualize ways in which worked examples are used in
ITSs. In the SE-COACH by Conati and VanLehn, a KC-based learner model is used to decide what steps
in a worked example a particular learner should be prompted to explain, which for early learners was
shown to be helpful, compared to a system in which the steps to explain were not selected on an
individual basis (Conati & Vanlehn, 2000). In other work, a KC-based learner model was used to select,
on an individual basis, suitable examples for analogical comparison (Muldner & Conati, 2007). In a study
by Salden and colleagues, a KC-based learner model was used to transition adaptively (KC by KC) from
studying worked examples to solving problems. In a lab study and a classroom study, this adaptive
technique led to better or more efficient learning (Salden, Aleven, Renkl & Schwonke, 2009). KC-based
learner models have also been used as components in models of metacognition, affect, and specific
(desirable or undesirable) learning behaviors. For example, in work on modeling adaptive help seeking
behavior (a key metacognitive skill), the learner’s decision to seek help depends on the student’s level of
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mastery of the given KCs. Help requests are deemed to be adaptive only on steps that involve KCs that
are unfamiliar to the student at the given point in time (Aleven, Roll & Koedinger, 2012; Roll, Aleven,
McLaren & Koedinger, 2011). Further, in work on creating machine-learned models of various aspects of
learners and learner behaviors (e.g., gaming the system, off-task behavior, affective states, etc.) the level
of mastery of a KC is one of the features that serves as input to the machine-learned classifier (Baker et
al., 2006; Baker, Goldstein & Heffernan, 2011). Finally, KC models are often used as open learner
models (OLMs) (Bull & Kay, 2007; Long & Aleven, 2013; Mitrovic & Martin, 2007), which have
become a common feature of ITS. The OLM communicates a sense of progress and may support useful
self-assessment and reflection. A recent study showed higher post-test scores in a tutor for linear equation
solving with an OLM, compared to a version without the OLM (Long & Aleven, 2013).

One way to generalize from this body of empirical work is to say that individualization of instruction
based on a KC-based learner model has been shown to be especially effective in the system’s outer loop
(VanLehn, 2006), as studies on individualized problem selection and example fading indicate, while also
being somewhat effective (but not as effective) in the inner loop. This generalization is quite coarse,
however — future work may provide a more nuanced perspective.

Tutor Authoring Tools and the KC Approach to Learner Modeling

Let us now return to the first of the three challenges listed in the introduction of the chapter: How can
accurate KC models be created? In the remainder of the chapter, we discuss the pros and cons of a variety
of approaches, starting with ITS authoring tools that support a “manual” approach to KC modeling. By
manual we mean an approach unaided by data mining or machine learning algorithms, although it could
involve data collected in the course of doing cognitive task analysis. There are many ways in which
authoring tools for ITS can support a manual KC approach to learner modeling. We see two broad areas
of functionality. First, tools can provide support for defining/building KC models as part of an iterative
tutor development process. This kind of tool support is used offline, when authoring or refining a tutor.
Second, authoring tools can provide mechanisms that tutors can use at run time to maintain/update KC-
based learner models and tailor aspects of the instruction. While there are many ITS authoring tools
(Murray, Blessing & Ainsworth, 2003), we focus on how these two areas of functionality are
implemented in CTAT, a tool suite with which they have been involved in the past 10 years (Aleven et
al., 2009). Many of our points hold for other ITS authoring tools as well.

CTAT s suite of tools for ITS authoring that has been used to build a wide range of tutors, many of
which have been used in actual classrooms or other real educational settings. These tools support KC
modeling as an integral part of tutor development. CTAT supports the authoring of two types of tutors:
example-tracing tutors and Cognitive Tutors, both of which reflect a KC approach to instruction and
learner modeling. Example-tracing tutor rely on behavior graphs to evaluate and interpret student
behavior, cognitive tutors rely on a rule-based cognitive model. We view both behavior graphs and rule-
based cognitive models as a form of KC models.

A behavior graph is a map of the solution space for a given problem (Koedinger, Aleven, Heffernan,
McLaren & Hockenberry, 2004; Newell & Simon, 1972). Creating behavior graphs is a key activity in
creating an example-tracing tutor. The tutor uses the graph to interpret student behavior (Aleven et al.,
2009). As a first step toward creating such a KC model, an author can use a CTAT tool called the
Behavior Recorder to record a behavior graph for a given problem, simply by demonstrating the solution
paths on the tutor interface designed for the given problem type. The Behavior Recorder records the
demonstrated steps in a graph; the graph may have multiple solution paths corresponding to different
ways of solving the problem. The links in the graph represent the steps, and the nodes represent problem-
solving states. Behavior graphs are not in and of themselves KC models, however, until the author
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annotates the links with KC labels. These labels (essentially, names of hypothesized KCs) characterize the
knowledge each step is hypothesized to require. Thus, the Behavior Recorder helps an author in coming
up with a decomposition of the knowledge in the given task domain, as a form of rational task analysis. A
key assumption is that — in creating a KC model — it helps to think at the grain size of problem steps
rather than whole problems and it helps to have laid out (and thought about) these steps explicitly.
Creating a mapping between steps and KCs can be viewed as implicitly formulating transfer predictions
(Koedinger et al., 2004). Annotating two steps with the same KCs implies that one expects to see full
transfer between these steps; practice on one improves the other, and vice versa. Conversely, assigning
different KC labels to two steps implies that one does not believe such transfer will occur. Partial transfer
between steps can be modeled by annotating steps with multiple KCs, some of which are shared between
the two steps.

Although behavior graphs labeled with KC names are useful KC models, one limitation is that they do not
explicitly state the conditions under which the KCs apply. Put differently, the KCs are defined
intensionally, by labeling steps in solution graphs, but not extensionally, by stating applicability
conditions. This state of affairs is not ideal, because it means that the exact range of transfer for any given
KC is not defined. Rule-based cognitive models (the second kind of KC model an author can create with
CTAT) address this limitation (Aleven, 2010). Rule-based cognitive models are computer-runnable
simulations of student thinking that can solve tutor problems in the ways that students do. In these
models, KCs are expressed in IF-THEN format. The IF-part captures the conditions under which a KC is
applicable — in other words, it captures how far the KC transfers. Thus, in creating a rule-based model, an
author is forced to think hard about these conditions, more so than when creating example-tracing tutors.
CTAT provides a host of tools that help in creating production rule models, including tools for visualizing
and debugging production rule models (Aleven, McLaren, Sewall & Koedinger, 2006). Interestingly, in
the process of creating a rule-based model, it is often very useful to have behavior graphs with KC labels.
These graphs are a specification of how the production rule model should behave. CTAT also supports
the use of the behavior graph for testing of rule-based cognitive models.

In addition to supporting the development of KC models, CTAT supports the use of such models within
running tutors for purposes of assessment, learner modeling, and individualization. Both example-tracing
tutors and Cognitive Tutors built with CTAT use their KC model in the inner loop to assess student
problem solving and interpret it in terms of KCs. Both types of tutors are capable of tracking learners’
knowledge (i.e., their mastery of the KCs in the tutor’s KC model) over time using BKT, briefly
described above (Corbett & Anderson, 1995). They also provide individualized problem selection based
on Corbett’s cognitive mastery mechanism, also described above (Corbett et al., 2000). Thus, as one
would expect from an ITS authoring tool, CTAT supports use of the learner model for outer loop decision
making, namely, problem selection (VanLehn, 2006). It does not support use of the learner model in the
inner loop to individualize instruction, given the limited empirical evidence that inner loop adaptivity
leads to improved student learning. Nonetheless, it will be helpful if ITS authoring tools can support use
of a learner model to individualize various aspect of the inner loop (e.g., deciding what type of hints to
give (cf. Arroyo Beck, Woolf, Beal & Schultz, 2000), if only so that more studies can be done to evaluate
what kinds of inner loop individualization are most effective.

Returning to an issue raised in the introduction, the CTAT tools for KC modeling primarily support
theoretical cognitive task analysis. Behavior graphs and production rule models help in thinking about
what knowledge may be needed to solve particular problems, how that knowledge might be decomposed
to capture distinctions that students might make, and how widely specific KCs will transfer. It is left up to
the author however whether or not to do so with the aid of empirical task analysis. The tools themselves
do not directly support empirical task analysis or the use of data to help create KC models, with one
exception: a tool called “novice bootstrapping” supports a process in which behavior graphs are created
directly from log data of novice problem solving, rather than from expert demonstrations (Harrer,
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McLaren, Walker, Bollen & Sewall, 2006). This capability is though to be useful especially for problems
with large solution spaces or in ill-defined domains. While CTAT proper provides limited support for
using data in tutor or KC model development, it is fully integrated with the DataShop (Koedinger et al.,
2010), which provides many tools for this purpose.

Tools for Data-Driven KC Model Validation and Refinement

Once a tutor has been created, log data from the tutor can be used in a variety of data-driven methods to
evaluate how well the tutor’s KC model captures the psychological reality of student problem solving in
the given task domain and how it might be refined/improved. We look at a set of tools we have developed
called the DataShop. The DataShop is geared toward supporting a KC-based approach to learner
modeling. The DataShop is a large, open, online repository for process data from ITSs and other
advanced learning technologies. In addition to being a repository with data sets available for secondary
analysis, the DataShop supports KC model analysis, discovery, refinement, and testing. It also offers a
standardized format for tutor log data. Given that the DataShop offers an extensive set of tools for KC
modeling, logging in DataShop format is a useful feature for any ITS authoring tool. CTAT is fully
compatible with the DataShop in this sense. That is, all tutors built with CTAT write detailed logs of
student-tutor interactions in DataShop format, without extra work by the author.

Using DataShop tools, an author can perform the following:

e Visually inspect learning curves for individual KCs or groups of KCs extracted from log data.
Analysis of a KC model often starts with visual inspection of the learning curves. The learning
curves may be based on an existing KC model, such as the one that the given tutor is using, or a
new model created by hand. Learning curves capture the performance of a group of students on
successive opportunities to apply the given KC or KCs. The learning curves show how
challenging the KC is for the target population and the rate at which it is learned. Learning curves
are useful tools for visualizing student learning with an ITS, both for researchers and developers.
The visual appearance of the learning curves can indicate whether the KC model is
psychologically real, with smooth, gradually declining curves suggesting that it is, and ragged or
flat curves suggesting it might not be.

e Evaluate or validate a KC model by testing how well it predicts performance in the given log data
set. As described below, the DataShop uses a logistic regression model called AFM to predict
student performance based on a given KC model (Cen et al., 2006; Spada & McGaw, 1985).

e Search for explanations and newly hypothesized model features when learning curves fail to have
their theoretically predicted shape (e.g., are ragged) or when a KC model has poor fit with the
data (i.e., leads to inaccurate performance predictions using AFM). An author may try to pinpoint
where in the tutor’s problem set deviations from ideal learning curves occur, so as to come up
with hypotheses for how the KC model might be improved. For example, an author might look at
problem steps that are notably easier or notably more difficult than the theoretically predicted
value. This type of analysis is supported by a DataShop tool called the Performance Profiler.

e Compare learning curves or learning rates (obtained from fitting AFM) across conditions in an
experiment, e.g., does one condition lead to a more efficient or more effective learning process
than another? (cf., Mathan & Koedinger, 2005).

e Compare how well different KC models fit the same data set (using the AFM). This type of
analysis is a way of exploring transfer or lack thereof or equivalently, of exploring the level of
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generality/specificity at which students learn skills or acquire knowledge. Comparing alternative
KC models may help an author understand student learning and may be a key step towards
finding a better KC model. An author may create alternative models by hand and upload them
into the DataShop. The DataShop presents a “score board” ranking the different KC models for a
given data set in terms of their predictive accuracy.

e Analyze what errors are frequent in the data set, for purposes of both tutor improvement (e.g., an
author might add error feedback messages for the most common or the most confusing errors) as
well as model exploration focused on errors.

e Automatically refine a KC model by running an automated best-first search procedure over a
space of model variations; this procedure, called LFA, is described below.

Now let us turn to the question how KC models can be evaluated beyond visual inspection of learning
curves, a fundamental concern in the KC modeling approach. Above we said that KC models should be
judged by their ability to support accurate predictions of student learning across tasks and over time, but
we left open the question how exactly a model can be used to make predictions. Although there is not a
single right way of doing so, a good way is to use a logistic regression model known as the AFM, shown
in Figure 15-1 (Cen et al., 2006; Spada & McGaw, 1985). This model is used in the DataShop.

log :i;,i], =0, + Z Br Qij + Z Qrj Vi Tik
3 K

Given:

Dij (0 or 1) probability that student i gets step j correct

Qk;j (0 or 1) whether KC k is needed for step j

Tix number of opportunities student i has had to practice KC j
Estimated:

0; proficiency of student i

B ease of KC j

Vi gain for each opportunity to practice KC j

Figure 15-1. AFM built into the DataShop for using a KC model to make predictions about student
performance

AFM can be used to estimate the probability that the student will get a step in a tutor problem right, based
on that and other students’ history on problem steps that involve the same KCs. Each step is assumed to
involve one or more KCs. Thus, to use the model it is necessary to have a mapping between tutor problem
steps and KCs. In a running ITS, this mapping is typically created in the system’s inner loop (VanLehn,
2006), using the tutor’s KC model; the mapping is then recorded in the tutor log data. In offline
approaches to KC model validation, a static “Q matrix” is often used, which specifies the mapping
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between steps and KCs. This mapping is essentially what is meant by a KC model in this context. A
mapping created dynamically by an ITS can be more flexible than a Q matrix, in the sense that the KCs in
a step can depend on the particular solution path the student takes through the problem (Aleven, 2010).

AFM estimates the log odds of the probability that the student will get the step right as the sum of three
key quantities: the proficiency of the student (i.e., how good the student is in general, across all KCs, or
6,), the ease of each KC involved in the step (8), and how much the student has learned on prior
opportunities to practice each of these KCs (y Ti). Thus, the model captures effects of practice over time
and takes into account that a student is learning, essential characteristics of learner modeling approaches
in ITS. Further, the model assumes that practice with a given KC does not have any direct effect on other
KCs, a fundamental assumption in KC modeling discussed above. This regression model also makes a
number of simplifying assumptions. First, it assumes that all students learn the same KCs. Second, it
assumes that a KC that is more difficult than other KCs is so for all students. That is, the model does not
allow for the possibility that a particular KC is harder than other KCs for one student, but easier than
other KCs for other students (i.e., the model has no student x KC interaction term). Also, the model
assumes that the effect of past practice opportunities is measured accurately solely by the number of such
opportunities, and that there is no additional information to be gained for example from how successful
these past opportunities were. In spite of these assumptions, the model has the virtue of (relative)
simplicity and works well in practice. Addressing some of these assumptions leads to more complex
models, as has been explored in later work by various researchers (e.g., Gong, Beck & Heffernan, 2011).

In order to use the model to predict student performance, it is necessary to estimate the values for the
parameters in the model, specifically, the proficiency of each student (8;), the ease of each KC (By), and
the learning rate for each KC (y;), as shown in Figure 15-1. These parameters can be estimated through
standard logistic regression modeling techniques, such as generalized linear modeling (in R, the gim
function with family= binomial). With such parameter estimates in hand, it is possible to calculate the
predictive accuracy of the model on held-out data (i.e., cross-validation). Alternatively, predictive fit
indices such as Akaike information criterion (AIC) and Bayesian information criterion (BIC) can be used,
especially when the focus is on comparing alternative KC models for the same data set.

How does a KC model’s psychological reality relate to its predictive ability? The short answer is, if a KC
model is incorrect in the sense that it does not capture the true KCs that students acquire, then the
parameter estimates obtained through logistic regression process described above will be inaccurate and
therefore lead to inaccurate predictions. To illustrate, consider a model that models KCs at too high a
level of abstraction, meaning that it misses distinctions that students actually make. This model models as
one KC what for students are two separate KCs. To make the example concrete, consider a model for
geometry problem solving that uses one KC for steps that use the circle area formula. Let us assume,
however, that in reality, using the circle area formula when the radius is given is different for students
from using it when the area of the circle is given — going from area to radius involves a square root, a
difficult mathematical operation. As a consequence, the S (ease of KC) estimate for the overly abstract
KC in our model would be a rough average of the g;’s of the two true KCs, which may have different
true B ’s. Similarly, the learning rate parameter (y;) for the overly abstract KC might also not accurately
reflect those for the true KCs. Similar comments can be made for a model with overly specific KCs. In a
model with overly specific KCs (i.e., a model that misses abstractions that students actually make), the
practice opportunities are not assigned correctly to the true KCs, which will lead to inaccurate parameter
estimates.
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Automated Methods for KC Modeling Learning Factors Analysis (LFA)

While tools for data-driven KC model analysis and validation such as those provided by the DataShop are
very helpful, a model author still needs to do a substantial amount of work to come up with model
variations and test whether they have greater predictive accuracy than the model from which they were
derived. In any realistic KC modeling effort, there may be many modeling decisions about which there is
uncertainty. As a result, the space of models that might potentially do a better job than an initial model
created by hand is often quite large. It would be difficult for an author to optimize a model by searching
this large space by going through the manual (though tool-supported) model refinement process described
in the previous section. Therefore, EDM research has started to produce automated methods for
discovering and refining KC models.

LFA is one such method (Cen et al., 2006). It automates the process of hypothesizing alternative
cognitive models and testing them against data. This method searches a space of KC models, given (1) an
initial model, (2) information from which model variations can be generated, and (3) a data set with step-
level problem-solving data from a group of students on relevant problems (a typical tutor log data set, in
other words, such as those captured in the DataShop). The method does a best-first search, using AFM as
described above to evaluate each model variation and using the AIC metric for relative model fit.

To use LFA for model refinement, an author must provide information that the LFA algorithm uses to
derive new KCs, item b in the list above. To this end, an author needs to identify factors in the given
problem set that are hypothesized to make a difference in how students view or approach problems and
therefore in the KCs that they acquire when they work through these problems. For each of these
hypothesized difficulty factors, the author also needs to specify in which problems that factor occurs, a
so-called “P matrix.” The LFA algorithm uses this information to split KCs into more specific KCs, based
on the difficulty factors, resulting in a finer-grained model. The algorithm also is capable of merging two
KCs under appropriate circumstances, resulting in a coarser-grained model. The new model (with the split
and/or merged KCs) is evaluated using the AFM described above and it is retained in the best-first search
process if the AIC criterion shows improved fit over the model from which it was derived. The LFA
algorithm can be run, on request, on any DataShop dataset and has been run on tens of datasets.

As a hypothetical example, a KC model for geometry problem solving might have a KC for applying the
isosceles triangle theorem to infer the measure of one of the two angles opposite the congruent sides,
given the measure of the other such angle. (The two angles are congruent.) A model author might wonder
whether it makes a difference whether the isosceles triangle is acute or obtuse — students in the target
population may be more familiar with acute triangles and recognize them more readily as being isosceles.
Similarly, an author might wonder whether the triangle’s orientation in the diagram matters — the third,
non-congruent side may be at the bottom (fir tree configuration) or at the top (ice cream cone) or one of
the congruent sides may be at the bottom (lying on the side). Perhaps the fir tree configuration is more
familiar and recognizable for students. Our author would therefore define two difficulty factors, one
capturing the obtuse/acute distinction, the other the tree/cone/on-the-side distinction. These two factors
together would yield 12 possible ways of refining the KC model for the isosceles triangle skill, all more
fine-grained than the original model. The LFA search would test if any of the more fine-grained KC
models better accounts for the student data that was observed, based on its AIC score. The example
illustrates how the space of models can be quite large, which is a key reason why automated methods are
useful.

In a study by Koedinger, McLaughlin, and Stamper (2012), the LFA method was applied to 11 DataShop

data sets from a variety of Cognitive Tutors and an educational game in a variety of domains. Models
generated by LFA were found to improve upon handmade models in all 11 cases, demonstrating the
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potential of the method for automated model generation. Among the improved models was one for
problem solving with the geometry area formula. As described above, the method discovered that for
circle area problems, it mattered whether the radius of the circle or the area of the circle was given,
whereas for other formulas, it did not make a difference whether the formula was applied forwards or
backwards — only the circle formula required use of the square root when applied backwards.

A limitation of LFA is that it needs an initial KC model and therefore does not obviate the need for
manual KC modeling. Some attempt at indicating categories of problem (steps), as simple as topics or
learning objectives, is necessary. More desirable is to use LFA as supplement to cognitive task analysis
done in the early stages of tutor building. Further, LFA cannot compensate for limitations in the breadth
of the problem-solving tasks used in a tutor. Task difficulty factors that have a large effect on student
performance can be recognized with just one or a few problems involving them. For LFA to detect
smaller effects, however, a larger number of problems with and without a difficulty factor are needed.
This frequency and variety may or may not occur when a problem set has not been designed with these
difficulty factors in mind. Finally, better results can be achieved if there is at least some randomness in
the order in which problems are assigned to students, which is not always the case in tutor problem sets.

Use of Mixed-Initiative Machine Learning for KC Modeling

As a final tool for KC modeling, we look at a machine-learning approach to rule-based KC modeling. As
mentioned, advantages of rule-based models over other types of KC models are that transfer predictions
are made explicit in the conditions of the rules (i.e., in their IF part, given they are written in IF-THEN
format) and that they deal well with problems that have a large solution space, as occurs for example in
algebraic problem solving (Waalkens, Aleven & Taatgen, 2013). However, writing rule-based KC models
requires a substantial amount of work and technical expertise (i.e., Al programming skill). The machine
learning approach described in this section helps address this shortcoming.

Li, Matsuda, Cohen, and Koedinger (2011) developed an approach that automatically discovers student
models using a state-of-art machine-learning agent, SimStudent. They show that the discovered model is
of higher quality than human-generated models and demonstrate how the discovered model can be used to
improve a tutoring system’s instruction strategy. SimStudent learns a rule-based KC model, of the kind
that CTAT authors can create by hand, by being tutored. An author (e.g., a subject matter expert without
programming expertise) interacts with SimStudent by first presenting it with a problem using a CTAT
interface (e.g., an equation to solve like 100-4x=40). SimStudent uses any productions it has learned so
far to try to generate a first step in solving the problem. If none apply to the current state, SimStudent asks
the author to demonstrate the next step. It then uses multiple inductive learning mechanisms to learn the
IF-part (information retrieval and conditions of applicability) and THEN-part (a function sequence) of a
production rule that can reproduce the demonstrated step and generalize to other similar steps. If
SimStudent has a production that applies (its IF-part matches the current state), it displays the resulting
action (by executing the THEN-part) in the CTAT interface to be checked by the author. If the author
confirms the step, this action is added as a positive example of the production. If the author rejects the
step, the action is added as a negative example and the productions IF-part will be refined (e.g., by adding
a condition that stops the rule from firing in states like this one in the future). SimStudent tries again,
perhaps grounding out in asking for a demonstration of the next step.

The author may (but need not) provide guidance to SimStudent about what steps to try to generalize
across by providing the same skill label to these steps, similar to labeling steps in behavior graphs. Even
when a label is provided for a set of steps, SimStudent may not find a single general production that
works across all same-labeled steps. In those cases it creates multiple productions and these, then, are the
key basis for theoretical discovery of a better cognitive model (these are an automated generation of the
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equivalent of a factor used to perform a split in LFA). For example, in Li et al. (2011), equation-solving
steps involving dividing by a coefficient (e.g., 3x=12, 15=-5x, or —x=8) were all given the same label
(meaning that the author hypothesized that these steps involve the same KC). However, SimStudent
learned separate productions for steps where there is number before the x (e.g., 3x=12 or 15=-5x) vs.
steps where there is just a “~ sign before the x (e.g., —x=8 or —13=—x). In other words, SimStudent, at its
own initiative, refined the KC model proposed by the author, by splitting the author’s hypothesized KC.
The KC model created by SimStudent (it made other novel distinctions besides this one) was compared
(using AFM) with the best existing hand-created model. It led to better prediction fit as measured both by
AIC and root-mean-square error (RMSE) on the test set in cross-validation. In particular, the cognitive
model SimStudent learned better captured that human students find the second category of problems, with
no explicit numerical coefficient (e.g., -x=8 or —13=—x), to be much more difficult than the first category
(60% vs. 30% error rate). This kind of cognitive model discovery via SimStudent has now been tested
across multiple domains: algebra equation solving, fraction addition, chemistry stoichiometry problems,
and English article choices.

In some cases (e.g., algebra equation solving), the SimStudent-discovered cognitive model beat the prior
best hand model and the prior best LFA model. However, adding the SimStudent discovered factors as
input to LFA has so far always produced a better model (e.g., in fraction addition) than SimStudent or
LFA alone.

Discussion

In this chapter, we focused on a key challenge in the KC approach to learner modeling, namely, that of
accurately determining what the KCs are that learners acquire in a given task domain. While up until now,
manual approaches to KC modeling have been prevalent, data-driven approaches have progressed to the
point that they can at least be a useful supplement and perhaps even a substitute. The ways in which
manual models based on intuition fall short provide interesting feedback on our intuitions about learning.
Perhaps the examples given in the chapter illustrate that even experienced KC modelers tend to be over-
optimistic about transfer. Perhaps the exercise of refining handmade models through data-driven,
automated methods will eventually lead to a better general understanding when transfer is and is not
likely to occur. Interestingly, the educational impact of KC modeling approaches will reach well beyond
ITS development, as lessons learned through KC modeling can be applied to the design of a wide range of
instructional materials, not just advanced learning technologies and ITSs. For example, many or all of the
examples of discoveries about student learning given in the chapter could be applied to textbook and
(non-tutored) homework assignments.

Given that we have described a range of tools for KC modeling, each with pros and cons, it may be useful
to reflect on how these tools might feature in a realistic tutor development scenario. In an ideal scenario,
an author might first build a tutor based on manual KC modeling. For example, the author might use an
ITS authoring tool that supports KC modeling as an integral part of tutor development, such as CTAT.
The author might build an example-tracing tutor, hand-write a production rule cognitive model, or
automatically develop a production rule cognitive model by tutoring SimStudent. Ideally, the author
would not rely on theoretical cognitive task analysis only but also do a substantial empirical task analysis
(e.g., think-alouds and difficulty factors assessments), so as to increase the quality of the initial KC
model.

However, even with empirical cognitive task analysis up front, there is still room for improvement
through data-driven discovery from search over a larger space of tasks and models. After deploying the
initial version of the tutor in a real educational setting, an author might use the data-driven tools described
in this chapter to analyze the tutor log data. Specifically, the author evaluates how effective the tutor is in
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helping students learn the targeted KCs and explores ways in which the KC model can be refined using
DataShop tools, using its learning curves display, fit indices for the AFM predictions, and the DataShop’s
performance profiler. For example, the author might investigate the causes of ragged learning curves
using the performance profiler and try out a few model extensions by hand to see if AFM fit improves. In
a more systematic approach, the author may use LFA to find a better model. Having found a better KC
model (i.e., one that better matches the data about student learning), the author updates the tutor to
improve its effectiveness (“closing the loop”). We emphasize that although the data-driven approaches
such as use of DataShop tools, LFA, or SimStudent are helpful, in our opinion, they do not do away with
the need for a careful cognitive task analysis at least to interpret the resulting data, but better yet toward
creating a good KC model for use in the first version of the tutor.

Implications for GIFT

In this final section, we discuss implications for GIFT and other ITS authoring tools. We started the
chapter by identifying three key challenges related to KC approaches to learner modeling: identifying
psychologically accurate KCs, modeling the knowledge of individual students, and using KC models to
individualize instruction. To support a KC approach to learner modeling, an ITS authoring tool would
ideally address all three challenges. We illustrated how CTAT, in combination with the DataShop,
successfully addresses these three challenges.

How could new authoring tools, such as GIFT, address these same challenges? Could they borrow from
the CTAT/DataShop approach? We see some low-hanging fruit in particular with respect to the first
challenge (creation/discovery/refinement of KC models). A good start is integration with the DataShop
(Koedinger et al., 2010; Stamper & Koedinger, 2011). All that is needed is that tutors log student-tutor
interactions in DataShop format (see http://pslcdatashop.org/dtd/). This integration is a good first step
even before the authoring tool supports any kind of KC model. Even in the absence of any KC model
within the tutoring system itself, the DataShop can be used for offline KC modeling based on tutor log
data, which can lead to recommendations for improving the tutoring system. DataShop logging requires
that the student interactions are divided into steps, which can involve successful attempts, unsuccessful
attempts, and hint requests. VanLehn (2006) illustrates how interactions from many different tutoring
systems can naturally be thought of as involving steps.

In addition, behavior graphs may be useful in GIFT and other authoring tools. Mapping out the solution
space for tutored problems (as behavior graphs do) is useful for purposes of theoretical task analysis, as
illustrated in the current chapter, and is compatible with a range of different types KC models.

Beyond this low-hanging fruit, the main challenge we see in supporting a KC approach in an authoring
tool such as GIFT is in representing a particular type of KC model. Ideally, the authoring tool also makes
it considerably easier for an author to build KC models of the targeted type in a range of application
domains. A key related challenge is to the use of the KC model in the system’s inner loop to interpret and
assess student behavior. The commitment to support a particular type of KC model influences many
aspects of the authoring tool and should be made early on in the tool’s development. Different authoring
tools address this challenge in their own way. CTAT supports two types of KC models, rule-based models
and annotated behavior graphs. ASPIRE supports the authoring of constraints as key KCs with various
tools (Mitrovic, Martin, Suraweera, Zakharov, et al., 2009).

With respect to the second and third challenges (using a KC model to track individual students’
knowledge growth and individualizing instruction), innovative ITS authoring tools such as GIFT may
include mechanisms or algorithms that enable tutors built with the tools to track over time how well
individual learners do in terms of a given KC model. Also, they may offer a range of different ways of
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adapting the instruction based on such models of individual learners (the third challenge). By supporting
easy customizability with respect to a range of options, authoring tools can do much to advance research
into the benefits of different ways of individualizing instruction, a forte of ITSs.
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CHAPTER 16 —TOowards Learner Models based on Learning
Progressions (LPs) in DeepTutor

Vasile Rus, William Baggett, Elizabeth Gire, Don Franceschetti, Mark Conley, and Arthur Graesser
The University of Memphis

Introduction

Learner modeling is a central component in any tutoring system that also claims to be intelligent. A
learner model is a set of learner characteristics that impact learning, and therefore, is important for
adapting instruction to each individual learner and thereby maximize learning. Indeed, research has
shown that learners’ diverse backgrounds require tailoring instruction to each individual learner or, more
realistically in classroom settings, to homogeneous groups of learners (Corcoran, Mosher & Rogat, 2009).
It should be noted that a major advantage of computer-based instruction, including ITSs, over classroom
instruction is the potential of offering tailored instruction to each and every learner. These systems
presumably can be scaled up in the sense that once developed for one user they could be easily replicated
or modified to handle many users. Learner modeling is a particular case of user modeling, which
constitutes a central component in any user adaptive system. User adaptive systems tailor their behavior
to the individual user’s characteristics in order to optimize the value of their function with respect to the
user (Conati, Gertner & VanLehn, 2002; VanLehn, 2006). We focus here on user models in ITSs, i.e., on
learner models.

The learner model plays a role in both the outer and inner loop of ITSs (VanLehn, 2006). The outer loop
handles macro-adaptivity in the sense that it selects tasks and other instructional materials to present to
the learner. The outer loop also selects a mode for the task, e.g., demonstrating a step-by-step solution to
the task or just providing hints. The inner loop manages the tutor-tutee interaction within a task by
monitoring the learners’ actions while she is working on an instructional task. The inner loop handles
micro-adaptivity.

We present in this chapter a novel approach to learner modeling that enables improved macro- and micro-
adaptivity. We emphasize here the impact of the new approach on macro-adaptivity. The novel approach
relies on a research framework, called Learning Progressions (LPs), developed recently by the science
education research community as a way to increase adaptivity in traditional instruction. Indeed,
“assessment for learning” (Black & William, 1998) has been a focus in this community for more than a
decade (National Research Council, 2001, 2005, 2007). This effort led to the emergence of the framework
of LPs, defined as “descriptions of the successively more sophisticated ways of thinking about an idea
that follow one another as students learn” (NRC, 2005, 2007). Corcoran, Mosher, and Rogat (2009) state
“progressions can play a central role in supporting the needed shift toward adaptive instruction as the
norm of practice in American schools.” Importantly, LPs provide a promising means to organize and
align content, instruction, and assessment strategies to give students the opportunity to develop deep and
integrated understanding of science ideas. The time is ripe for the ITS community to integrate in
computer tutors such advances in assessment and instruction proposed by the assessment and science
education research communities in order to increase 1TSs’ adaptivity and, in turn, their effectiveness at
inducing learning gains in learners.

Our dialogue-based ITS DeepTutor (Rus et al., to appear) incorporates the framework of LPs (National
Research Council, 2007) as a way to improve assessment and better tailor instruction to each individual
learner. DeepTutor is under development as of this writing, which explains the preliminary flavor of the
ideas presented in this chapter. Because DeepTutor is a dialogue-based ITS, the main form of interaction
in DeepTutor is tutorial dialogue that mimics interaction between human tutors and learners. Deep natural
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language processing technologies are also needed to accurately assess students’ level of understanding
while interacting with DeepTutor. In fact, the quality of the algorithms for dialogue and language
processing has a direct impact on other core ITS tasks such as feedback generation. An authoring tool that
allows us to explore and design algorithms for deep natural language processing has been developed (for
more information about the Semantic Similarity, or simply SEMILAR, toolkit, see
www.semanticsimilarity.org).

Based on (1) LPs that promote deep and integrated understanding of science and (2) deep natural
language processing algorithms (as well as several other novel aspects of DeepTutor such as advanced
tutorial strategies which we do not discuss here), DeepTutor is expected to provide better assessment and,
in turn, better adapt instruction to each individual learner. This will lead to learning gains beyond the
interaction plateau, i.e., the hypothesis that as interactivity of tutors increases, their effectiveness plateaus
(VanLehn, 2011). VanLehn’s interactivity plateau finding calls for ITS researchers to propose qualitative
advances that can increase the learning effectiveness beyond the interactivity plateau. Indeed, the
proposed advances in DeepTutor are meant to address this challenge by proposed qualitative shifts for
core ITS components such as the domain and student modeling components through the use of LPs.

The rest of this chapter is organized as follows. After a brief general discussion of learner modeling in
ITSs, we describe the framework of LPs. Then, we describe general ideas about the development and
validation of LPs and illustrate how this process is implemented in DeepTutor, the first ITS based on LPs.
The role of LPs for macro-adaptation in our DeepTutor project is then highlighted. We conclude with a
discussion about how GIFT can accommodate LP-driven ITSs.

Learner Modeling in ITSs

ITS researchers have investigated and integrated learner models in their systems to increase the
effectiveness of these systems (Conati, Gertner & VanLehn, 2002; Corcoran, Mosher & Rogat, 2009;
Lintean, Rus & Azevedo, 2012; Sottilare et al.,, 2012; VanLehn, 2006). Although other learner
characteristics such as emotions have been considered recently, researchers and developers of ITSs have
focused primarily on learners’ performance with respect to the target domain, i.e., knowledge assessment,
to guide adaptivity.

Different ITSs employ different approaches to the problem of learning modeling, including knowledge
tracing in the Cognitive Tutor (Anderson et al., 1995), constraint-based modeling (Mitrovic, Martin &
Suraweera, 2007), and the Expectation-Misconception approach used in AutoTutor (Graesser, Rus,
D’Mello & Jackson, 2008). In all of these models, the emphasis is on supporting micro-adaptivity.
Attempts to handle macro-adaptivity have been modest. The Student Modeling Approach for Responsive
Tutoring (SMART) student model (Shute, 1995) uses regression equations to estimate students’ mastery
of each curriculum element. Conati, Gertner, and VanLehn (2002) describe the learner model used in their
Andes system that tutors students on Newtonian physics. The model is based on Bayesian networks in
which explicit domain-general and context-specific rules are encoded. Conati and colleagues describe the
use of the model for micro-adaptivity during example studying and problem-solving, but they do not
report any use for macro-adaptivity. The mathematics tutor ALEKS (Doignon & Falmagne, 1999) relies
on the knowledge space theory (KST) for domain modeling. KST relies on the precedence relation that is
evident for some domains like mathematics where a student must learn a concept A before learning
another that relies on A. A student’s knowledge state is the set of items mastered. Not all subsets of items
are feasible knowledge states due to the precedence relations among items. Based on assessment, a
student’s knowledge state is inferred, which guides instruction. Learning occurs on the outer fringe of the
knowledge state that is the immediate successor state in the knowledge structure of the domain. The
knowledge structure is the collection of all possible states. ALEKS offers macro-adaptivity but the

184



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

organization of the domain is based on a logical organization provided by experts according to intrinsic
dependencies among concepts in a domain. There is no emphasis on the developmental milestones
students pass while learning a topic. KST may be suitable for domains where precedence relations are
well defined such as mathematics but for domains where there is no such clear structure KST is less
useful. An interesting research question is about how KST for well-defined domains can be transformed
into or combined with the LP framework.

There are three general challenges with deriving knowledge assessment learner models for each
individual student based on her actions during learning: (1) determining how much activity from an
individual learner the system must monitor and analyze to reliably estimate the parameters of the learner
model, (2) keeping the parameters up to date while the student’s level of understanding of a domain
evolves, and (3) representing and handling misconceptions. The knowledge assessment learner models
encode primarily what the students are supposed to learn, i.e., true knowledge, while not embedding
explicitly alternative conceptions. These alternative conceptions, or misconceptions, are handled
separately. Novel solutions based on LPs can better address these issues as shown next in the context of
our DeepTutor ITS.

We use the framework of LPs as a paradigm shift in learner modeling for ITSs. LPs model and organize
domain knowledge based on what is known about how learners actually progress through that content as
opposed to a logical decomposition of the content by a domain expert. LPs explicitly consider the
alternative conceptions, mapping how they developmentally emerge. This learner-centered organization
of content enables improved macro-adaptation and micro-adaptation. We focus here on the role of LPs in
supporting better macro-adaptation. Coupled with appropriate assessment instruments and instructional
strategies, LPs offer the possibility of qualitative shifts in learner modeling and learner experiences with
ITSs.

The Framework of Learning Progressions

The National Research Council (NRC) (2001) report called for better descriptions of how students learn
based on models of cognition and learning. Based on such descriptions of how students learn,
“assessments can be designed to identify current student thinking, likely antecedent understandings, and
next steps to move the student toward more sophisticated understandings” (NRC, 2001, p. 182). This was
basically a call for developing LPs (Corcoran, Mosher & Rogat, 2009). The term “learning progressions”
was first used in a subsequent NRC report (2005). According to Corcoran, Mosher & Rogat (2009), LPs
in science are “empirically grounded and testable hypotheses about how students’ understanding of, and
ability to use, core scientific concepts and explanations and related scientific practices grow and become
more sophisticated over time, with appropriate instruction” (p.8).

Corcoran, Mosher, and Rogat (2009) also mention as major conceptual contributions (although they did
not use the term LP): (1) the work of Lehrer and Shauble (2000) on model-based reasoning in science;
and (2) research by Valverde and Schmidt’s (1997) on the relationship between content and structure of
curricula and student achievement. It is also worth mentioning the work of Roberts,Wilson, and Draney,
(1997) on “construct maps” and work on progress maps by Masters and Fosters (1996). Wilson and
colleagues and Masters and Fosters pushed for a concentrated effort on improving assessment to guide
instruction. Work on learning trajectories in mathematics (Driver, Leach, Scott & Wood-Robinson, 1994)
as well as work on cognitive development maps (Baxter & Junker, 2001) further contributed to the
development of LPs.

LPs can be viewed as incrementally more sophisticated ways to think about an idea that emerge naturally
while students move toward expert-level understanding of the idea (Duschl et al., 2007). LPs define
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gualitatively different levels of understanding of big ideas. The levels can be sequentially related or the
relation could be more complex. For instance, topic A may develop the ideas from a less sophisticated
topic B but also connect to other topics. LPs model how students develop deep and integrated
understanding of complex science topics. The emphasis on increased sophistication (i.e., depth) and
integrated understanding of ideas sets LPs apart from classroom instruction and assessment, which are
typically based on curriculum materials that follow local, state, and national standards. These standards
tend to support compartmentalized understanding and shallow coverage of a broad range of topics instead
of a deep, integrated understanding of few key ideas (Schmidt, Wang & McKnight, 2005; Stevens,
Delgado & Krajcik, 2009). The bottom line is that LPs adopt a learner-centric view of a topic, modeling
students’ successful paths towards mastery as opposed to paths prescribed by domain experts following a
logical decomposition of big ideas. The logical decomposition provided by experts could be useful as a
starting point but then needs be reorganized based on evidence of how students actually develop mastery
of the big ideas. These actual paths must be documented and guide instruction. While some paths towards
mastery defined by domain experts may be successfully followed by some students, some other students
may follow other paths, i.e., might be more responsive to different topic sequences as well as instructional
tasks that help their conceptual change.

LPs are organized in levels of understandings that reflect major milestones in learners’ journey towards
mastery. The lower level, called the Lower Anchor, represents naive thinking that usually novices hold.
The top level, called the Upper Anchor, represents the mastery/expert level of understanding. If targeting
a particular population, e.g., high school students, the Lower Anchor would coincide with the Upper
Anchor of grade 8 students. Such an assumption is not always practical, as we learned during the
development of our DeepTutor system, because not all students entering high school are at the Upper
Anchor of grade 8. Furthermore, if someone develops an instructional intervention such as DeepTutor to
be used by learners of all ages then the Lower Anchor should be specified accordingly, i.e., to reflect the
lowest possible level of understanding. The anchoring of the Upper Level in an LP raises the issue of
whether standards should indicate what the best and brightest students can achieve in a particular grade or
whether standards should consider what average students can do (Corcoran et al., 2009). It is beyond the
scope of this chapter to discuss this issue. In our work, we use standards to specify the Upper Anchor for
a particular grade level. Our true Upper Anchor specifies the true and strongest scientific conceptions.

Open Issues

While there are many commonalities and a general understanding of what LPs are, some aspects of LPs
are open for debate and interpretation and vary from one developer to another. For instance, the span of
an LP can vary from one instructional unit that is covered over several weeks during a semester in a
particular grade to covering multiple grades, e.g., 6-8 years of instruction. Alonzo and Steedle (2009)
differentiate between broad LPs and small LPs that cover in more detail a particular idea or construct in
the sense proposed by Wilson in his Structured Construct Model (SCM; Wilson, 2009). That is, broad
LPs may cover the development of a set of big ideas with each big idea constituting a small LP. The
broad LP has the advantage of providing the big picture: the big ideas and how they develop across grades
as well as the inter-dependencies among these big ideas. The smaller LPs provide sufficient detail such
that instructors can use them to track students’ progress over instructional units and guide their
instruction.

Another varying aspect of LPs is their granularity. Fewer levels described in summary core ideas means a
more general LP and also more reliable diagnostics. However, finer-grained LPs offer a more sensitive
instrument to measure progress, have more explanatory power, and can be more useful in guiding
instruction. A related contentious aspect of LPs is their relationship with curriculum and instruction.
Some developers do consider instruction as an integral part of LPs (Songer, Kelcey & Gotwals, 2009)
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while others develop LPs independent of instruction (Mohan, Chen & Anderson, 2009). The approach
adopted affects the LP validation process.

We conclude this section by noting that research on LPs is thriving with many LPs being developed
(Alonzo & Steedle, 2009; Songer, Kelcey & Gotwals, 2009; Jin & Anderson, 2012; Neumann, Viering,
Boone & Fischer, 2012; Johnson & Tymms, 2011), many LPs conferences and other events being
organized, and LPs being adopted by various states. Of note are the LPs adopted by the state of
Massachusetts (Foster & Wiser, 2012).

The Development and Validation of LPs in Deeptutor

We now describe the structure and process of developing and validating LPs. LP development is driven
by assessment, i.e., what gets measured and what counts as evidence for learning, and should include the
following:

1. Content and conceptions (student thinking) — what gets measured. That is, LPs must specify what
students need to know and the various alternative conceptions they may have.

2. Learning performances, which are the “operational definitions of what learners’ understanding
and skills would look like at each of these stages of progress” (Corcoran et al., 2009) — what
counts as evidence of level of understanding.

3. The Upper Anchor describes the set of knowledge and skills students are expected to have at the
end of the progression. These expectations can be found in state or national science standards and
recent learning research on the subject matter.

4. Progress levels or steps of achievement (intermediate levels) include both correct and
incorrect/weak conceptions that learners consistently use to reason about phenomena in a given
domain. Some of the correct conceptions are held early on. Some weak conceptions (or
misconceptions) can be extremely persistent across many progress levels.

5. The Lower Anchor describes student conceptions at entry level, i.e., when they start learning
about something.

6. Assessments that measure student understanding of the key concepts or practices.

7. Purposeful curriculum and instruction that mediates targeted student outcomes (Duschl, 2011,
Corcoran et al., 2009).

We describe next the process we followed in developing the Force and Motion LP in our DeepTutor
project. We adopted a design-based research iterative process that allowed us to develop and validate the
progressions (Mohan, Chen & Anderson, 2009; Stevens et al., 2009). The process first conjectured a
hypothetical learning progression (HLP) and then derived an empirical progression (EP), which is a
refined version of the HLP. After several iterations of refinements and empirical validations, the HLP
became an empirically tested LP. We used the following three criteria to guide our validation process:
conceptual coherence, compatibility with current research, and empirical support from real student data
(Mohan et al., 2009). The development of the initial HLP presupposes defining the ideas and concepts to
learn at an appropriate level of detail while considering recent cognitive and education research that could
provide insights about potential challenges students face or typical prior knowledge students may be
expected to have.
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The result of our LP design effort in the DeepTutor project is a broad Newtonian physics LP structured in
seven strands, or smaller LPs in the sense of Alonzo and Steedle (2009). We have one small LP for each
of seven themes or big ideas in Newtonian physics: Kinematics, Force and Motion (linear motion), Mass
and Motion, Free-Fall new Earth, Newton’s Third Law, Vectors and Motion (motion in two dimensions),
and Circular Motion. Each strand is organized in a number of levels. The number of levels in the broad
LP varies from strand to strand, e.g., the Mass and Motion strand has three levels while the Free-Fall near
Earth strand has seven levels. Levels are not equivalent across strands, i.e., level 2 in the Mass and
Motion strand is not equivalent to level 2 in the Free-Fall strand. The strands, in turn, are ordered in terms
of their complexity and prerequisite requirements. For instance, understanding the basic concepts of
position, velocity, and acceleration covered in Kinematics is needed before studying Newton’s second
law in the Force and Motion strand. That is, we have a 2-D broad LP in which one dimension illustrates
students’ level of understanding and the other the complexity and interdependencies among the big
themes (see the left side of Figure 16-1). The broad LP can also be regarded as a one-strand LP with
seven levels of understanding, each level corresponding to one of the big physics themes/topics (see
Figure 16-1, right side). This HLP has been validated based on data collected from high school students.
The HLP is now an EP. Several more iterations of refinement are needed to obtain an empirically tests
LP.

Topic Complexity

Level of
Understanding

Circular motion

Vectors-motion

Free-fall

3" law

Mass-motion

Force-motion

kinematics

Topic Complexity
Figure 16-1. The Newtonian physics LP: 2-D depiction (left) vs. 1-D, broad LP depiction (right)

Our LP works in close relationship with a set of assessment items that allows the instructor, in our case
DeepTutor, to place the student somewhere in the LP. Based on where the student is placed in the LP,
instructional tasks and materials that are appropriate for that level of understanding are assigned to the
student. Because the LP levels are so designed to encode the most successful paths to mastery followed
by students, the LPs greatly facilitate the selection of tasks to be given to a particular student, i.e., LPs
enable macro-adaptation of instruction. Tasks and materials associated with a level in the LP are so
designed to help students improve their understanding and move up the LP hierarchy.

It should be noted that tasks based on an LP can be sequenced in various ways, leading students on
different learning trajectories. For instance, drilling tasks, which offer training on one big theme modeled
by one LP strand, will more likely help students move up the level of understanding within that strand
while not making progress on other big ideas. For some strands, e.g., Newton’s 3 law, for which the
correct answer to many problems is the same (the tasks are isomorphic at some degree), a repetitive
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drilling strategy is problematic as students may learn the jingle (“for every action there is an equal and
opposite reaction”) after seeing the solution to a few problems and just recite the jingle when prompted
for solutions to subsequent tasks without actually developing a deep understanding of Newton’s 3" law.
Smarter sequencing of problems must be adopted as isomorphic problems lead to copying and therefore
shallow learning (VanLehn, 2011; Renkl, 2002).

DeepTutor infers learners’ levels of understanding of the target domain using both summative and
formative or embedded assessment. Summative assessment consists of pre- and post-tests. The inferred
levels of understanding based on the pre-test are continuously updated based on learners’ performance
while working on various tasks with the system, i.e., through formative assessment. Formative assessment
is seamless as learners are assessed as they work on a problem without being aware of this type of
assessment. Formative assessment directly and immediately impacts micro-adaptation while indirectly
impacting macro-adaptation through the continuous update of the learner model. For instance, learners
who embrace many misconceptions or confuse concepts such as velocity and acceleration or do not
understand the fine difference between velocity and speed will have their level of understanding updated
accordingly even though they might have done well on the pre-test. We are moving toward a cloud-model
of student assessment in which we allow students to simultaneously hold in their minds different models
of reasoning or levels of understanding of a target domain (Rus et al., in press). Students will activate one
model or level with a certain probability distribution. Improving the alignment between assessment and
instruction using LPs is a major feature in DeepTutor, which is expected to increase the adaptivity of the
system and in turn improve students’ learning experience and learning gains.

Discussion with Respect to the Generalized Intelligent Framework for
Tutoring

GIFT (Sottilare, Brawner, Goldberg & Holden, 2012) aims at providing a standard that unifies and
streamlines ITS development efforts. Modularity, communication among modules, and separation of code
from content are the driving principles of GIFT. Furthermore, GIFT supports a service-oriented
architecture to facilitate distributed and mobile learning. The GIFT framework includes the following
major modules: sensors module, user module, pedagogy module, and domain module. All these major
modules are domain independent except the latter. The user module includes the learner model among
models for other users such as trainer, expert, and designer. The domain module performs assessment
functions such that the only domain-dependent module is the domain module.

As a web service, DeepTutor is accessible by any learner, anytime, anywhere. Indeed, DeepTutor can be
accessed through an HTML5-compatible browser from desktop computers and mobile devices such as
smartphones and tablets. As such, it ought to be generally compatible with a generic framework such as
GIFT. However, integrating DeepTutor into the GIFT framework will require some important
modifications. For one thing, although DeepTutor also employs a a modular design, the modules are
organized differently than those in GIFT. For instance, assessment is a separate, independent module
from the domain module. More modules mean that the development and management of these modules,
especially when scaling up, are more feasible. Assessment is a big topic as well as is domain modeling
(knowledge acquisition and representation), which may suggest that they have to be separate modules for
scalability purposes. Also, because DeepTutor relies on LPs there is an intrinsic relation between the
domain knowledge and learner model. The learner’s level of understanding as modeled by the LPs is not
recorded in the persistent learner model, stored in a database to be updated and used over time, as a set of
learner characteristics and their values (as suggested by the GIFT developers) but rather as pointers to LP
levels. This arrangement makes the learner and domain modules tightly connected. If the two modules
should be decoupled as suggested by GIFT, then the learner module becomes domain-dependent. Indeed,
the characteristic-value learner model implies that the learner model should include domain-specific
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information because some of the learner characteristics reflect learner’s performance in a target domain,
e.g., how well the student understands Newton’s 3" law. That is, the learner module needs to include
domain-specific performance measures that need be traced. A potential solution would be for GIFT to
specialize its proposed specifications for various types of ITSs, similar to specialization principles
outlined in Pavlik, Mass, Olney, and Rus (2012).
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cHapTER 17 — Pushing and Pulling Toward Future ITS

Learner Modeling Concepts

Robert A. Sottilare
U.S. Army Research Laboratory - Human Research and Engineering Directorate

Introduction

In the previous sections, we examined the learner modeling literature, the state of current practice in
learner modeling, and emerging concepts in learner modeling. In this section, we examine ideas related to
future capabilities for adaptive tutoring systems, the technologies needed to realize these capabilities, and
the maturity of those technologies today. We discuss how breakthrough technologies perceived to be
outside the ITS domain today have the potential to change how we think about Al tutors in the future.
Recommendations for long-term research are also provided that support both identified needs (technology
pull) and innovation (technology push).

A Vision for Future Tutoring Systems

As we look forward toward increasingly intelligent and adaptable tutoring systems, an ontology is needed
to characterize essential capabilities and establish standards of performance. Capability definitions might
compare and contrast: the degree of tailored instruction that the tutor can provide; how effectively the
tutor can support/enable learning; the ability of the tutor to perceive the learner as a basis for tailoring
instruction and optimizing performance; or the tutor’s compatibility with existing training platforms (e.g.,
serious computer-based games). Whatever the capabilities of future ITSs, the real measures of success lie
beyond learning effect. Future tutoring systems must be easier to develop, access, and use than their
counterparts today. They must incorporate reuse standards to reduce time and cost for development. They
must provide tailored user interfaces to support usability by learners, domain experts,
teachers/instructors/trainers, ITS developers, instructional designers, and researchers.

The theoretical concepts of today will evolve into the practical implementations of tomorrow. The
capabilities characterized in ideal future tutoring systems will not just be the result of compromising
practicality, mapping (compatibility), and computational complexity (Preface in this book) to realize a
workable design, but instead will embody a collaboration between users and tutoring technologies over a
lifetime of learning. The seeds of future ITSs are being sown in research that expands the definition of
learner models in new directions. A future persistent learner model resides in the cloud, tracks long-term
performance, and models competency, values, preferences, goals, and beliefs to help foster trust,
creativity, and self esteem within individual learners and teams of learners.

Learner Models in the Future

The four chapters in this section highlight ongoing areas of research that were specifically broken out
from the emerging concepts discussed in Section 111 of this book due to their impact to learning and their
anticipated long-term evolution. Each chapter in this section identifies key challenges in developing a
more useful and comprehensive learner model, tools and methods for GIFT to build upon. The research
discussed points to the importance of comprehensive learner modeling in determining tailored learning
experiences over a lifetime.
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The chapter by Lester, Mott, Rowe, and Sabourin examines the detection of learner’s affective states and
their impact on cognition, motivation, and metacognition during game-based tutoring events. The
relationship between affect and learning is a critical link in determining optimal instructional strategies
and tactics to be employed by the tutor. Significant challenges exist in accurately and unobtrusively
determining affect in real-time. Affect detection is further complicated since affect is generally inferred
by through observation of the learner by a human or computer-based tutor. Additional challenges arise
when a computer must infer affect in complex training environments such as serious games with high
degrees of freedom of learner interaction or when a computer must resolve ambiguity between learner
behaviors and physiological measures.

The chapter by Burleson and Muldner discusses the future role of ITSs as intelligent creativity supporters.
Creativity is a key ingredient for moving learning forward beyond the sum of acquired knowledge and
skill. In traditional classroom settings (one teacher and many students), there is generally insufficient time
to support a creative curricula tailored to the individual needs of each learner. ITSs have an advantage as
one-to-one tutors to provide the special attention needed to foster creativity. Future tutoring systems may
be designed to adjust their instruction to promote risk-taking, support learner adaptability, encourage grit,
and assess options that lead to creative solutions. A significant challenge may be the ability to efficiently
author increased numbers of strategies and content as creativity support tools are linked with adaptive
tutoring systems to allow greater flexiblity and assessment of solutions. In other words, ITSs with creative
support should be capable of allowing more than a single “right” answer. On the flip side, a considerable
advantage might be realized as ITSs are applied to ill-defined domains where creativity is at a premium,
and there are multiple serviceable solutions.

The chapter by Regan, Raybourn, and Durlach puts forth a concept for a Personal Assistant for Learning
(PAL) that expands the capabilities of ITSs today to include advisory functions (coaching and mentoring).
As in GIFT and other tutoring architectures, the PAL learner model will be of central importance to
determine instructional strategies for learning, enhance creativity (see Burleson and Muldner, chapter 19
in this book), motivate, activate, and support decision-making. The importance of this chapter in
projecting learner modeling capabilities for ITS rests in its illustration of learners as drivers of their own
learning experiences as opposed to someone to be guided/led by the tutor. A wealth of information is
ready to be mined to enhance our future learner models. Social media is a goldmine of learner
preferences, interests, habits, goals, knowledge, and skillsets in time-stamped, context-related bundles of
information. These multiple sources of information call for standards for interoperability to support
consumption by current and evolving ITS architectures.

The chapter by Fletcher and Sottilare examines how the architectural principles and functions described
by GIFT might be extended to support the training of teams. Shared mental models represent team
objectives and the actions, both individual and collective, needed to achieve them. These models
represent team communication and coordination, team posture, situation, and environment, and team
member roles and responsibilities. The focus of this chapter is on shared mental models of cognition and
includes models of team purpose, behavior, and functions that are analagous to individual cognitive
models in most ITS today. Exploration of team affective models and physiological factors influencing
learning are left for future discussions, but an exploration and understanding of shared cognitive models
provides insight into how non-cognitive factors might be addressed in the future. Since teamwork differs
in the quantity and quality of communication and coordination required, major challenges rest in how to
measure how good communication, coordination, and other factors (e.g., goals, roles, individual
knowledge and skills, and preferences) support (or detract from) optimal team performance.
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The Long View of GIFT

The contributors to this section of the book offered recommendations for developing the learner model
component of GIFT across different dimensions (affect modeling, creativity support, data mining and
open learner modeling, and shared mental models). The recommendations addressed substantial
challenges and opportunities that are envisioned to evolve over an extended period of time due to their
complexity. The following enumerates recommended actions for consideration in the long-term view of
GIFT. Some of these recommended actions are already defined with known value (technology pull) and
some are more speculative (technology push) in that their impact is difficult to predict at this time.

1. Significant effort has been expended to develop affect detectors for individual learners. A
systematic analysis based on empirical studies should be conducted to evolve standards that can
be applied across training tasks and are suitable for both individual learners and teams of learners.

2. Advance a new class of learning technologies focused specifically on creativity support tools that
are linked directly to tutoring architecture components for domain knowledge and motivation. A
systematic analysis based on empirical studies should be conducted to evaluate the effectiveness
of these tools in teaching creativity and building innovation skills in individual learners and teams
of learner.

3. Develop open learner models to support intelligent selection of learner control during tutoring
sessions. A systematic analysis based on empirical studies should be conducted to develop and
evaluate open learner models to optimize learning.

4. Enhance data-mining techniques to support persistent learner models that are automatically
updated over time to reflect changes in preferences, interests, goals, knowledge, and skills. A
systematic analysis based on empirical studies should be conducted to determine the effect size of
various learner traits on cognition and motivation.

5. Enhance data analysis techniques to support rapid development of expert and misconception
models based on crowd sourcing. Develop standard tools and methods to allow for plug and play
expert and misconception models in standard ITS architectures like GIFT.

6. A prototype has been developed that implements characteristics of GIFT, including the learner
model. A systematic analysis based on empirical studies should be conducted to evolve a similar
comprehensive model for teams. These shared mental models should be applicable across various
task domains including cognitive (e.g., problem solving), affective (e.g., value judgments), and
psychomotor (e.g., controlled movement of the body) tasks. A library or repository should be
established to house these models and support standards for instructional design of team training.

7. Develop a formal ontology for GIFT with the support of the ITS community to help focus
attention on critical missing learner modeling elements to support authoring, instructional
management, and analysis constructs. Extend this ontology to incorporate other aspects of ITS
research over time.

8. Develop standards to classify tutoring system capabilities in critical areas (e.g., learning effect
size, accuracy of cognitive and affective state classifiers) per the adaptive tutoring learning effect
chain (see Preface of this book for individual tutoring or Fletcher and Sottilare, chapter 22 of this
book for team tutoring).
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For future capabilities to support adaptive tutoring of individuals and teams, tools and methods

are needed to deeply engage learners and support their deep learning; encourage adaptability, grit
(tenacity), and innovation in seeking solutions in military domains with multiple solutions;
appropriate control by the learner in their own learning experiences; and shared mental models
for teams. A stringent and extensive set design principles should be developed to support
enhanced tutor-learner interaction and higher learning effect. A systematic analysis based on
empirical studies should be conducted to develop and evaluate the following functions:

Sensors — behavioral and physiological sensor design should be unobtrusive so as not to
interfere with or distract from learning processes during tutoring sessions.

State classifiers — learner modeling processes should be very accurate (near 100%) in using
learner data to determine the cognitive, affective, and physical states (e.g., confusion,
frustration, engaged concentration, boredom, fatigue), which are most influential with respect
to readiness-to-learn and the learning gains of both individuals and teams.

Measures of success — tutor assessment engines should be designed to support easy authoring
and linkage of success metrics to knowledge and skill acquisition, and performance,

Adaptive instruction and support — knowledge of the learner’s states and traits should lead to
optimal selection of instructional content, strategies, and tactics along with additional
adaptation based on the learner’s questions and goals,

Individual and team modeling — information about individual learners and teams of learners
should represent their individual/collective domain competency, motivation, and expectations
of success based on competency and task complexity (e.g., cognitive problem solving,
affective valuing),
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cHarTER 18 — Learner Modeling to Predict Real-Time Affect
In Serious Games

James Lester, Bradford Mott, Jonathan Rowe, and Jennifer Sabourin
North Carolina State University - Department of Computer Science

Introduction

In recent decades research on human emotion has revealed that affect plays a central role in human
cognition. Historically, emotion was viewed as separate from cognition, and only recently has there been
consensus that affect is a central component of rational behavior and social interaction (Forgas, Wyland &
Lahan, 2006). These findings have motivated the goal of designing affect-sensitive computer systems
capable of recognizing and responding to users’ emotional states. This has led to the development of
affective systems with a wide variety of capabilities and purposes, such as therapeutic virtual agents,
mood detection of large social network groups, and empathetic tutorial systems (Picard, 1997).
Applications such as these require that three critical decisions must be made to inform how affect will be
modeled and detected: (1) How will affect be represented? (2) What signals will be used for affect
detection? (3) How will affect predictions be used?

Devising frameworks for representing affect has been the subject of considerable study in psychology and
cognitive science (Ortony, Clore & Collins, 1990; Russell, 2003). Psychologists have proposed a broad
range of solutions for representing affect. These representations have left computational researchers with
a variety of frameworks from which to choose. For example, affect may be viewed as a concrete
categorical state, such as anger or happiness. Alternatively, affect can be represented among a variety of
dimensions such as valence or arousal, where a state is only differentiated by its position on the scale.
Further, affect can be seen not as a state itself but as an emergent phenomena consisting of action
tendencies, physiological responses, and conditional precedents. Each of these representations introduces
benefits and challenges when used in computational systems, and these tradeoffs must be considered
within the contexts of specific applications. This chapter explores the role of computational models of
affect in serious games, with a focus on real-time affect prediction.

Unrealized Capabilities and Gaps

Computational Models of Affect

Affect is fundamentally a hidden state. Detecting affect, when performed by either humans or computers,
requires inference from observable signals. Selecting signals to incorporate into an affect-detection
system requires consideration of several factors such as cost, invasiveness, and predictive value (Calvo &
D’Mello, 2010). Common signals include physiological information such as heart rate and skin
conductance, which can be measured through physiological sensors. Expressive traits such as facial
expressions, posture, gaze, and gesture are other informative channels that can be measured with web
cams or specialized sensors. Behavioral evidence of affective states is a complementary modality, and it
is often inferred from logs of user interactions with software. Further, typed statements or spoken
sentiment can be analyzed in a variety of meaningful ways to infer emotion. Each of these channels can
be considered independently, but many successful approaches to modeling combine input from multiple
modalities to arrive at a more complete and accurate representation of the states they are endeavoring to
model.
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A primary concern that often guides investigations of affect is the application for which the inferred
knowledge about affective state will be used. In some cases, it is useful to simply know how the user is
feeling as an evaluation of the system itself. In other cases, this information may be incorporated into run-
time interactions to dynamically improve user experiences or other important outcomes. Differences in
objectives may lead researchers to consider multi-dimensional approaches, which are particularly
beneficial if a single trait is being monitored over time. However categorical definitions are better for
communicating with the user about their state. Similarly, if the application is multi-platform and intended
to be used by individuals in a broad range of settings, some physiological sensors may be impractical.
However, if the objective is inferring highly accurate representations of states, incorporating as many
signals as available may be the best route. In many ways, the final application of the affective information
drives all other decisions.

Modeling Affect in Serious Games

An important application of affective modeling capabilities is in serious games. Serious games combine
two affectively charged activities, learning and gameplay, making them an interesting avenue for
exploring issues of affective modeling. Affect is a critical component of learning and has been shown to
influence how students process information, approach learning activities, and feel about themselves and
their abilities (Baker, D’Mello, Rodrigo & Graesser, 2010; Pekrun, Goetz, Titz & Perry, 2002; Picard, et
al., 2004). Meanwhile, though enjoyment and happiness are viewed as fundamental components of play,
games can introduce degrees of frustration, confusion, sadness, and even anger. Together the rich
affective experiences associated with learning and gameplay motivate the need to explore affective
modeling in serious games.

Serious games have considerable capacity to evoke a broad range of emotions, because they can
contextualize learning and training activities within meaningful contexts that approximate authentic
settings. For example, games often incorporate narrative plots, which in many ways are fundamentally
emotion-inducing: interesting stories are defined by conflict, uncertainty, suspense, and surprise.
Furthermore, they are often host to interactions with believable virtual characters, fantasy or simulated
settings, and dynamically unfolding situations. These types of learning environments lend themselves to a
broad range of emotional responses that are likely to shape learning processes, but may be atypical of
alternate educational environments that deliberately separate educational content and application context.

For a range of educational settings, evoking these types of emotional processes during learning may be
desirable, or even essential, to produce learners who will be capable of performing skills in realistic
settings that will similarly evoke these emotions. However, creating educational environments that can
evoke these types of emotions raises a number of issues:

1. How can we recognize students’ emotional states, including emotions that may not be commonly
observed in non-game settings, such as fear, surprise, disorientation, anxiety, excitement,
curiosity, and sadness, so we that we can better understand which, and how, emotions impact
student learning?

2. How, and to what extent, can we effectively model students’ emotions of these types in real time,
including predictive models that converge on accurate predictions of student emotions in advance
of their occurrence based on expected narrative states and affect-sensitive learner models?

3. How can we devise models that dynamically tailor events in serious games, including tutorial

events, narrative events, and game parameters, to aid students in self-regulating their learning and
affective processes?
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Recent work in this area has explored many varied components of affect in serious games. For example,
Conati et al. (2009) have explored probabilistic models for affect recognition in Prime Climb, a serious
game for young children learning number factorization. These models incorporate in-game context data
along with physiological sensors to arrive at accurate predictions of student emotion. FearNot! is a
serious game for teaching anti-bullying behavior to school children (Paiva, Dias, Sobral & Aylett, 2004).
This environment seeks to model the affective states of virtual characters to drive empathetic relationships
with the learner. Robust emotion models have also been incorporated into the BiLAT serious game (Kim,
et al., 2009). This environment seeks to teach military personnel skills for multicultural negotiation and
uses affective information to drive character interactions and responses.

This work has highlighted the role that affect can play in the development and understanding of serious
games and points to areas where future work is needed. First, much work in modeling user affect takes
place in highly structured environments. In these systems, users typically have a small set of available
actions and have a clear indicator of correctness and progress. This simplifies the identification of features
relevant to affect modeling. However, it will be important to begin exploring how affect can be modeled
in more open-ended exploratory games. There may be different sets of affective phenomena at play in
these environments and it is likely that a different set of tools and techniques will be needed to build
successful predictive models in these systems. Another important area of future work is more exploration
of how affect models can be incorporated back into serious games. While FearNot! and BiLAT use
affective information to drive narrative and character interactions, there is less exploration on how this
information can be used to reason about the learner or guide tutorial strategies. A deeper understanding of
both sides of this affective picture is needed to fully describe the important role affect plays during
interactions with serious games.

Future Concept

Given these gaps in the research on computational models of affect, we envision three major thrusts of
research for real-time affect detection in serious games. First, we anticipate the potential for sizable
advances in early prediction of student emotions during game-based learning. Second, we anticipate that
data-driven models of student affect will be combined with theoretical frameworks of student learning
and emotion to improve models for assessing student knowledge acquisition and transfer. Third, we
anticipate that real-time models of student affect will be incorporated into tutorial systems capable of
personalizing events in serious games to scaffold student learning and promote sustained engagement.

Predicting Student Affect in Guided Inquiry-Based Serious Games

Modeling student affect in serious games poses distinct challenges relative to other educational systems.
These challenges primarily stem from two components of these systems: (1) user actions and goals often
unfold in a multitude of different orders within rich simulated environments, and (2) models must meet
the run-time performance requirements of games. The open-ended nature of many serious games means
that learners are free, and encouraged, to approach the task in any way they choose. This makes selecting
contextual features for modeling tasks significantly challenging. Furthermore, most contemporary
theories of emotion suggest that affect is often generated in response to the success or failure of one’s
goals, and how this success or failure came about (Elliot & Pekrun, 2007; Ortony et al., 1990). In serious
games, students’ goals may be unclear and without this knowledge, it will be difficult for the system to
reason about success or failure and resulting affective states.

Recent work has investigated predictive models of students’ educational goals and plans in serious games.
These models consider sequences of student actions in a game environment, and provide early predictions
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about the goal a student seeks to next achieve or the problem-solving plan currently being executed.
Models of student intentions hold considerable promise for informing predictions of students’ affective
states. Affective experiences are often a direct result of an individual’s intentions and how these are or are
not being realized in the world. An accurate prediction of a student’s goals or intentions enables a system
to make inferences on whether these goals are being achieved and offer the opportunity to reason about
attribution of success or failure. Together, intention and attribution offer significant insight into an
individual’s affective state (Ortony, Clore & Collins, 1990) and are an important component of a context-
based affect recognition model.

State-of-the-art serious games often employ computationally intensive graphics rendering and simulation
capabilities. These technologies require substantial computational resources, and therefore limit the
resources available for other system components such as real-time affect prediction models. While many
successful models of affect prediction have been achieved by combining multiple data streams, it will be
important to identify the data sources that provide the most benefit while imposing the least amount of
computational overhead. For example, rich data from physiological sensors may be highly informative,
but unless it can be effectively processed along with games’ other required computational requirements, it
may not be useful in practice. This highlights the importance of developing algorithms and data streams
that are able to use computational resources as they become available and make predictions efficiently in
real time.

Affect-Informed Models of Student Learning

While affect predictions alone can provide meaningful information about student engagement while
interacting with a serious game, another promising direction is identifying how affect predictions can be
incorporated back into the understanding of the user’s learning. Learner models are used to guide
interactions and understanding of the student in a variety of systems. These models first seek to assess
student knowledge, and then adapt tutorial interactions accordingly to maximize learning gains. A student
model that incorporates affect may provide a richer picture of student learning. For example, affect has
been shown to influence whether students are more likely process information in a bottom-up or top-
down fashion (Pekrun et al., 2002). By considering a student’s affective state as part of the learner model,
considerations can be made about how a student is processing information, the connections that are likely
being made, and how further information should be presented.

Incorporating affective channels into models of student knowledge acquisition and transfer for serious
games hold considerable promise, particularly in domains where real-world applications of the learned
knowledge are affect-intensive. Affect has been shown to influence cognition in many ways, and
exploration of how these relationships can be used along with students’ affective states is an important
direction for developing comprehensive learner models.

Affect-Informed Tutorial Planning in Serious Games

Real-time models of students’ affective processes could inform models for dynamically enhancing
students’ learning experiences in serious games. By combining serious games and ITSs, it is possible to
devise models that tailor game mechanics, missions, rewards, and difficulty levels to scaffold student
learning. In the case of story-based games, narrative-centered tutorial planners are a form of integrated
pedagogical planner and interactive narrative director agent that discreetly support students’ learning
processes by tailoring story events. Narrative-centered tutorial planners consider the state of the student,
interactive narrative, and learning progression to make decisions about how to adapt event sequences in
the storyworld to support students’ learning, problem solving, and engagement. For example, a narrative-
centered tutorial planner may modify a virtual characters’ behavior to provide additional hints and
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explanations to a student requiring special assistance. Alternatively, the planner could introduce novel
goals and sub-plots to provide remediation for students, or opportunities for assessing advanced skills.

Real-time models of students’ emotional states are well positioned to enhance the capabilities of these
narrative-centered tutorial planners. However, there has been little work to date investigating how real-
time affect models can enhance narrative-centered tutorial planners’ effectiveness. By making accurate
and early predictions of students’ emotions, narrative-centered tutorial planners could direct characters to
provide personalized affective assistance, such as encouragement when a student is feeling confused,
empathy when a student is feeling anxious, or advice to take a break when a student has experienced
prolonged frustration while investigating a complex problem-solving task. These types of capabilities are
poised to significantly enhance students’ cognitive-affective processes in story-based serious games.

Illustrative Scenario

In order to illustrate these future concepts about real-time affect modeling in serious games, we describe a
vision for affect-driven models in a game-based learning environment for middle school microbiology,
CRYSTAL ISLAND (Rowe, Shores, Mott & Lester, 2011). CRYSTAL ISLAND (Figure 18-1) features a
science mystery, in which the student has arrived on a remote island to discover that the research team
that has been established there has fallen ill. The camp nurse explains that they have not been able to
identify the cause or type of illness and asks for the student’s help. The student then works to collect clues
by talking with virtual characters, running tests on objects in the world, and reading related books and
posters. Once the student arrives at the correct source and type of illness and proposes a diagnosis, the
student has solved the mystery and completed the game.

Thank goodness you're here! I'm

Kim, the camp nurse. People on the
island are getting sick, and we don't
know why. Please, can you help us?

> Throat,
It

Figure 18-1. Screenshot of the CRYSTAL ISLAND game-based learning environment

As an open-ended game-based learning environment, CRYSTAL ISLAND features many goals and
objectives that students may be working towards at any given time. For example, one student may be
actively trying to identify the common symptoms among patients, while another may be trying to identify
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common food items that may be the source of the illness. Distinguishing between these two goals is
critical for identifying whether a student is being successful at their goals and how they may feel as a
consequence. If the student is trying to identify common food sources, but only hears about symptoms,
they will likely be frustrated, while the other student would be feeling confident and hopeful that they will
progress successfully.

Successful affect recognition in CRYSTAL ISLAND introduces opportunities for affect-driven learner
models. Affective information can provide insight into how a student is learning, and the activities they
are likely to pursue. For example, a student who is feeling confused is likely missing some piece of
information that is critical to their understanding. A learner model that is able to assess knowledge and
affect may be able to identify these gaps in understanding and drive tutorial planning so that the student is
able to overcome this cognitive dissonance.

Another possibility for incorporating affect in tutorial and narrative planning revolves around the
system’s ability to foster positive affective states and engagement. For example, if the system detects that
a student is frustrated or bored with the learning task, it may be advantageous to allow the student some
respite from the difficult material. Game-based learning environments like CRYSTAL ISLAND allow
opportunity for students to be engaged in the environment but not on the learning task specifically.
Students may interact with the game environment’s physics simulation by jumping on and stacking
objects, or by simply exploring the rich 3-D world. These types of actions may have positive affective
benefits that can be encouraged if the system recognizes the need for affective regulation.

Discussion

The opportunities that we have outlined for real-time affect detection in serious games highlight a number
of implications for research and design of intelligent tutoring systems and related learning technologies.
In particular, the key capabilities and tools provided by the GIFT framework are synergistic with the
requirements and opportunities that we have discussed for modeling student affect. GIFT provides three
primary functions: authoring capabilities for constructing novel learning technologies, instruction that
integrates tutorial principles and strategies, and support for evaluating novel educational tools and
frameworks. These capabilities provide a foundation for investigating real-time affect modeling in serious
games, and further extensions to GIFT will enable studies of generalizable affect modeling frameworks.

Affect in Serious Games

Creating serious games can pose significant costs, due to the need for aesthetic 3-D assets, novel
interactive narratives, robust simulation models, and believable virtual agents, all meeting the run-time
performance requirements of games. While serious games often do not compete directly with commercial
entertainment-focused games, the continually rising bar for games’ production values also increases
expectations of serious games’ complexity and aesthetics. Creating serious games requires close
collaboration between interdisciplinary teams of digital artists, computer scientists, subject matter experts,
game designers, and instructors. Consequently, devising tools that can reduce the authoring costs
associated with integrating adaptive tutoring capabilities for real-time affect modeling and scaffolding
will represent a substantial advance. Further support for reducing authoring costs and increasing
component reusability through GIFT, as well as research demonstrating the authoring benefits of these
technologies, would be valuable to serious game developers.

Many serious games take advantage of advanced 3-D graphics and real-time agent behavior algorithms to
create immersive, believable virtual environments. However, these characteristics are computationally
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intensive, and typically must be performed at more than 30 frames per second to preserve visual fidelity.
In many cases, this leaves limited local resources for updating computationally sophisticated models of
student emotion or learning processes. Offloading these modeling and reasoning capabilities to external
modules, especially modules hosted on external servers, is a promising approach for supporting
computationally intensive probabilistic models of students’ learning and affective processes, while
meeting the run-time performance requirements of serious games that run on students’ local computing
hardware. GIFT’s modular framework and service-oriented architecture are conducive to decoupling
learner modeling and pedagogical planning decisions from students’ client machines.

GIFT also provides broad support for external sensors, which can supply real-time data on students’
physiological state such as skin conductance, heart rate, posture, and eye gaze. Self-reports provide a
useful window into students’ affective processes, but they may be disruptive if presented during
gameplay, and have limited accuracy particularly in cases where they are provided after an experience has
concluded, and thus temporally removed from the actual occurrence of the emotion. Physiological sensors
in many cases may be able to provide complementary information about students’ affective states without
disrupting gameplay and learning experiences. Furthermore, sensor data are objective, which removes
some of the limitations in depending on students’ abilities to recognize their own emotions and effectively
and precisely report them.

Affect and the GIFT Architecture

The GIFT framework encompasses a modular architecture, which includes the following tutor
components: a sensor module, a learner module, a pedagogical module and a domain module (Sottilare,
Goldberg, Brawner & Holden, 2012). Given this architecture, there are a number of questions and
opportunities concerning how to effectively incorporate affect sensitivity within the GIFT framework.
Future extensions to GIFT in service of real-time affect modeling will likely touch upon each of these
four modules.

Each tutor module has its own distinct opportunities for processing affective information and
communicating this to other modules. The sensor module is responsible for collecting and synthesizing
information from various sources, such as webcams, electrodermal activity sensors, and pressure-sensitive
mice. This module must handle raw multimodal input from multiple concurrent sensors and provide
output metrics that are useful for modeling the affective states of users. For example, a webcam capturing
a large stream of video data could be analyzed to identify facial expressions, posture, or non-verbal
gestures indicative of affective states. In many cases, these sensors can produce large quantities of raw
data. Consequently, as additional sensors are incorporated into GIFT, the sensor module must be capable
of handling the memory and processing demands imposed by these new types of data, which are
distributed across the collection, storage, cleaning, and transformation stages of data management.

The learner module is responsible for representing the cognitive and affective states of learners using
processed sensor data as well as learner performance data from the environment. Affective
representations can include a variety of features, such as emotional state, self-efficacy, motivation,
interest, and intention. Accurately modeling each of these components may require detailed knowledge of
the task and learning environment in addition to inputs provided by the sensor module. For example,
modern appraisal-based theories of emotion depend heavily on how learners’ actions and intentions play
out in particular environments. Consequently, learner modules that implement these theories need to have
access to information about the learning environment. Furthermore, affective and cognitive states are
highly intertwined and must be considered in concert. For example, a learner’s performance and
knowledge may influence emotional state and self-efficacy, which will then impact how the learner
approaches the task moving forward.

205



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

The pedagogical module receives information about learners’ current and predicted states, and it uses this
to guide instructional strategies. One challenge that must be addressed by this module is balancing the
tutoring system’s affective and cognitive goals. For example, a more difficult learning task may be
beneficial for increasing knowledge, yet an easier task may increase confidence and enjoyment.
Furthermore, this module must consider a variety of strategies to bring about cognitive and affective
improvements. Hints and feedback are commonly delivered to guide students’ knowledge acquisition and
problem solving; however, these strategies may also include affective content. For example, empathetic
feedback may encourage students to continue feeling positively in spite of poor performance.
Alternatively, hints on effective emotion regulation strategies could be provided to students who appear to
be struggling. Tailored support of learners’ cognitive-affective states is likely to have substantial positive
impacts on increasing time-on-task and sustaining learner engagement.

The domain module contains information about both the content area and the task environment in which
learning interactions take place. It includes explicit representations of the types of feedback and
adaptation capabilities supported by the learning environment, which can be used to enact the proposed
strategies suggested by the pedagogical module. Such adaptations may involve virtual agents capable of
verbal and non-verbal affective expression, tailored events in the learning environment’s narrative, or
dynamic adjustments to task difficulty. This module is also responsible for assessing student performance
and identifying learner behaviors that are indicative of cognitive-affective states. For example, student
off-task or gaming behaviors may serve as powerful indicators of student engagement and motivation.

Devising computational models for real-time affect prediction in serious games offers significant promise.
Initial versions of GIFT have implemented modules primarily devised to effectively scaffold student
knowledge acquisition and skill mastery. Future efforts to endow GIFT with affect modeling capabilities,
such as the features described above, will require additional research and development efforts to expand
the capabilities of each tutor module.

Recommendations and Future Research

GIFT provides a technological foundation for investigating predictive models of affect that can be
generalized across different serious games. There are several promising directions for extending the
capabilities of GIFT’s modules to integrate comprehensive support for recognizing, understanding, and
expressing affect in support of learning. Specifically, achieving the vision we have outlined for real-time
affect detection in serious games through GIFT will require solutions to several research questions:

1. How can generalizable affect recognition, understanding, and expression capabilities be
implemented within each of the modules of tutoring architectures such as GIFT?

2. How should interfaces between tutoring modules be developed to ensure robustness in handling
different configurations of affect sensors and training environment capabilities?

3. How can generalizable, modular implementations of predictive affect models operate within the
run-time performance requirements of serious games?

4. How can game-specific models for affect support be incorporated into generalizable tutoring
architectures and transfer to alternate tasks and domains?

These questions highlight the challenges associated with investigating generalizable intelligent tutoring

architectures capable of real-time affect modeling in serious games. With regard to GIFT specifically, it
will be important to identify the key issues, and solutions, for incorporating affect sensitivity within each
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of the tutor modules in the GIFT architecture. When designing these components, one must consider how
these components communicate with one another, and how the system should be configured to support
cases where components are missing. For example, physiological sensors are highly beneficial for affect
recognition, but may not be available in all cases. Consequently, a learner model relying on output from
such a sensor would need to be adapted, or gracefully deactivated, in a manner that minimizes negative
impacts on other modules. Similarly, different genres of serious games have distinct capabilities and
affordances. For example, serious games with believable virtual agents or rich narrative contexts may
present different opportunities for affective feedback than serious games without these features. In cases
such as these, pedagogical modules that recommend empathetic character behaviors or story event
adaptations to provide affective support require mechanisms for handling cases where learning
environments do not support these types of intervention naturally.

Additional challenges are raised by the computational demands of serious games. Games impose
significant run-time performance requirements because they are computationally intensive, and they must
balance graphics rendering and simulation capabilities alongside affective and tutorial modeling.
Predictive affect models must balance efficiency, accuracy, and relevance to shape effective pedagogical
interventions embedded within game environments. Finally, it will be important to investigate the ways in
which findings related to the benefits and constraints of supporting affect in serious games extends to
other tutoring environments. Advancements such as these would likely reduce the costs of devising new
intelligent tutoring systems, as well as enhance their effectiveness for different learning settings.
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Introduction

We present an argument for the advancement of Intelligent Creativity Support (ICS) systems as an
integrating framework for ITSs, affective computing, and creativity support tools, in a manner that closely
aligns each of these technologies and research agendas with the componential model of creativity, i.e.,
domain-relevant expertise, intrinsic motivation, and creative thinking style. We also present strategies for
developing and evaluating student models for the just-in-time assessment of creativity.

While there are over one hundred definitions of creativity (Amabile, Barsade, Mueller & Staw, 2005),
there is consensus that it entails a product, idea, or process that is novel and useful (Mayer, 1999).
Creativity is at the core of all societal advancements. However, it is also present “not only when great
historical works are born but also whenever a person imagines, combines, alters, and creates something
new, no matter how small” (Vygotsky, 2004).

Creativity has been described as the most vital economic resource of our time (Florida, 2002; Kaufman &
Beghetto, 2009) and the U.S. Council on Competitiveness has indicated that it will be the top factor
determining America’s success in the 21st century (Robbins & Kegley, 2010; Wince-Smith, 2006). Thus,
understanding how to foster creativity skills is a crucial societal goal (Tripathi & Burleson, 2012). U.S.
universities, colleges, and K-12 school systems can play a fundamental role in producing an innovative
and creative workforce, by helping students develop such skills (Robbins & Kegley, 2010; Vance, 2007
Wince-Smith, 2006). Indeed, the 21° Century Skills initiative (Trilling & Fadel, 2009) and Common Core
Standards (NGA & CCSSO, 2012) call for teaching creativity, innovation, and deep problem-solving
abilities.

Unfortunately, various challenges have hindered the adoption of creativity instruction and practices in
traditional classrooms (McCorkle, Payan, Reardon & Kling, 2007). For one, few teachers have been
trained in how to teach creativity (Mack, 1987). More importantly, classroom settings do not enable
teachers to provide the individualized support needed for effective creativity facilitation. In particular,
while personalized instruction has tremendous potential to improve student learning (Cohen, Kulik &
Kulik, 1982; Lepper, 1988), affect (motivation and emotion) (Lepper, 1988; Picard, 1997), and
metacognitive skills (Bielaczyc, Pirolli & Brown, 1995), providing a human tutor for each student is
simply not practical. Given these challenges, most of the work thus far reflects anecdotal, descriptive data
(Ma, 2006; Robbins & Kegley, 2010; Runco, 2004; Scott, Leritz & Mumford, 2004), although some
exceptions exist (Cheung, Roskams & Fisher, 2006; Clapham, 1997; Dewett & Gruys, 2007).

Since ITSs can provide large-scale instruction that continuously adapts to learners’ needs (Aleven,
McLaren, Roll & Koedinger, 2006; Arroyo, Cooper, Burleson, Muldner & Christopherson, 2009;
Koedinger, Anderson, Hadley & Mark, 1997; Self, 1998; VanLehn et al., 2005), they present a unique
opportunity to address issues associated with teaching creativity. 1TSs have already successfully
improved domain learning by tracking students’ problem-solving progress, providing tailored help and
feedback, and selecting appropriate problems (Shute & Psotka, 1996; VanLehn et al., 2005). However,
ITS have also been criticized for over-constraining student problem solving and over-emphasizing
shallow procedural knowledge, and therefore not properly addressing 21st century higher-order skills like
critical thinking and creativity (Trilling & Fadel, 2009).
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We present strategies for designing a ICS system to foster student creativity during Science, Technology,
Engineering and Mathematics (STEM) activities. The ICS framework is situated within Amabile’s
validated and broadly adopted componential model of creativity (1983). Amabile’s model highlights three
factors within an individual that are needed for creativity: domain knowledge, motivation, and creative
thinking styles. Moreover, Amabile and others have demonstrated that positive affect contributes to
creative problem solving (Isen, 2004; Isen, Daubman & Nowicki, 1987), leading to increased intrinsic
motivation, deeper exploration, and more appropriate outcomes or solutions. Our goal is to have ICS
integrate and leverage traditionally isolated technological components that are critical to advancing a
student’s creative capacity (Figure 19-1): (1) domain relevant knowledge supported by ITS; (2) affect
(motivation and emotion) fostered by Affective Learning Companions (ALCs); and (3) creative thinking
skills scaffolded by Creativity Support Tools (CSTs). The ICS design can also implicitly account for
external factors that influence creativity, such as evaluation and time pressure (Amabile, 1983; Amabile et
al., 2005). The ultimate goal of the ICS strategy is to extend traditional ITS instruction with personalized
affective support and metacognitive creativity training to improve creativity and learning outcomes.

Creative Thinking
Style
(CST)

J

E 4

/ Intelligent Creativity
Support

Motivation
(ALC)

Domain Relevant
Knowledge
(ITS)

Figure 19-1. Advancing a new class of cyberlearning technologies, ICS will integrate personalized support
with Amabile’s componential model of creativity. ICS will combine ITSs to increase domain relevant
knowledge; ALCs to foster motivation; and CSTs to advance creative thinking styles.

Student Models for Just-In-Time Assesment

To provide creativity support tailored to a given student’s needs, an ICS requires a student model
(VanLehn, 1988) that assesses students’ attributes relevant to creativity processes and outcomes
throughout their educational activities. To prepare to conduct this research, we have taken steps in this
direction through related work searches that have highlighted a preliminary set of attributes that we will
take into account and extend as needed. These attributes are encapsulated by Amabile’s componential
model of creativity and related research as follows:
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Domain-Relevant Knowledge. Amabile (1983) shows that the more one knows, the more opportunities
there are for creativity, something the ICS student model needs to account for in its assessment of a
student’s creativity. Also related to the assessment of creativity is the fact that its very definition
involves the production of a novel idea or problem-solving step — the most natural way for a model to
determine novelty is whether the student already possessed the knowledge related to the idea or step or
if it was constructed on the spot.

Affect (Motivation and Emotion). How students feel greatly influences the creativity process and its
outcomes. Thus, the ICS model will rely on the data from affective sensing devices as well as tutor
variables to assess states like intrinsic motivation, central to Amabile’s theory (Amabile, 1983), as well
as other affective states such as frustration (e.g., indicating Stuck!) and flow.

Metacognition Related to Creative Thinking Styles. The third element of Amabile’s theory pertains to
what she terms as “creative thinking style,” such as how flexible and imaginative people are in their
approach to problems, indicating the metacognitive skills required for creativity.

The ICS creativity student model will represent and infer information related to these three attributes. For
the modeling of knowledge and metacognition, we will build student models via established techniques
(e.g., Conati, Gertner & VanLehn, 2002; Corbett, McLaughlin & Scarpinatto, 2000; Mitrovic, 2012;
Reye, 2004) for modeling of these attributes. Specifically, we will use cognitive and metacognitive task
analysis to identify fine-grained skills needed to solve a problem (knowledge) and for creativity in general
(metacognition, including, for instance, divergent thinking). These skills can be computationally
represented using a rule-based approach that enables the system to automatically model both the target
solutions and skills sets (Anderson, 1993). This is accomplished by tying parameters to each rule to
represent the probability that the student knows the corresponding skill, which “fire” when a certain
threshold is exceeded. In addition, this approach can be used to provide the backbone of a Bayesian
network that makes the structure of the student knowledge and metacognitive skills explicit, as in (Conati
et al., 2002). Overall, this probabilistic approach has the advantage of recognizing that modeling student
knowledge and metacognition is not a black and white process, since there is typically inherent
uncertainty arising from, for instance, student slips and guesses (Reye, 2004) and/or lack of direct
evidence on student state of interest (e.g., divergent thinking).

For the modeling of affect, initially, we will refine our existing student models developed in our work
(e.g., Arroyo et al., 2009) and use their output as inputs to the ICS creativity model. These models already
capture attributes that are relevant to the research at hand (e.g., interest, related to intrinsic motivation and
Flow, frustration) by relying on data from the sensing devices and tutor variables. However, as mentioned
above, these models do not take into account the uncertainty inherent in assessing affect as other existing
affective models do (e.g., Conati & Maclaren, 2009) and so we will extend and/or redesign them as
needed.

In order to calibrate the main ICS creativity model, as well as its knowledge, affect, and meta-cognition
sub-models, we will conduct empirical studies to collect data from students (high school and college) as
they interact with the target tutor while a target set of sensors captures their physiological responses. The
goal behind these evaluations will be to collect a rich data set that enable us to (1) evaluate the accuracy
of the student models for capturing the target student attributes and (2) analyze how student actions and
student affect influence the creative process during open-ended problem solving.

Model Accuracy: To determine student model accuracy we will compare model output to a gold standard
(Arroyo et al., 2009; D’Mello & Graesser, 2012; Muldner, Burleson & VanLehn, 2010). In the case of
student knowledge, this gold standard is typically a test targeting the domain concepts. For affect and
metacognition, the situation is more complicated since information on students’ feelings and high-level
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thoughts is not readily available. Thus, we will use a two-prong approach that we have relied on in the
past: (1) talk-aloud protocol by having students verbalize their thoughts and feelings (e.g., Muldner et al.,
2010) for a subset of the participants (since this is a laborious process that requires transcription and
analysis of many fine-grained events), and (2) for obtaining affect information, the target system will
intermittently ask students to report on their emotions (as in Arroyo et al., 2009). Note that these
techniques are only necessary during model-testing — once the model is calibrated, the self-report prompts
and talk-aloud protocol are removed. To use these data to assess model accuracy, we will transcribe the
talk-aloud protocols and identify metacognitive and affective events, and then use these data in
conjunction with the self-report data to compare against the corresponding submodel output.

Factors Influencing Creativity: While work in psychology has provided indications of how various
attributes influence creativity, the technological context of this approach affords opportunities for
investigating creativity beyond traditional settings. In particular, the PI’s suite of sensors provides a
unique chance for extending the community’s knowledge on factors that influence creativity. Thus, we
will rely on the EDM techniques we have used in the past (Muldner, Burleson, Van de Sande & VanLehn,
2011) and/or adopt additional ones as needed in order to mine the rich data set collected in this phase for
factors influencing creativity. Specifically, relevant features will be extracted, e.g., affective states,
productivity during problem solving, effort invested, and used as inputs to EDM techniques, e.g.,
Bayesian network parameter learning (Muldner et al., 2011) andlogistic regression (Cooper et al., 2009;
Cooper et al., 2010). This will inform how various events contribute to creativity (e.g., a student reported
frustration and this was related to a low creativity time span) and the relative utility of each event to the
overall creativity process. We also plan to analyze the relative utility of each sensor (as we did for
Muldner et al. [2010] and Cooper et al. [2010]) in order to understand which sensors are most valuable for
creativity assessment as well as what the trade offs are when not all sensors are available.

Realizing Creativity Support within the GIFT architecture

As we have described above, ICS requires modeling of a range of student attributes, from domain
knowledge, to meta-cognition, to affect. Aspects of the GIFT architecture are well aligned to support
these modeling requirements. In particular, this architecture includes the sensor module that provides an
interface for incorporating a range of sensing devices, which prior work has been shown to be useful for
modeling affect (e.g., Arroyo et al., 2009). The input from these devices can then be sent to the GIFT
learner module in order to map the low level sensor signals to the high level affective states of interest,
like interest, frustration and/or flow — this module can also be used to assess students’ domain knowledge
and meta-cognitive skills. The GIFT pedagogical modules can rely on this information to tailor
interventions in order to support and foster students’ creativity.

GIFT also includes a domain module, that is used to structure and represent the target domain knowledge
the student is expected to acquire — this is also relevant to creativity support, as students are expected to
learn about the domain through creative activities. However, one aspect that is not clear and will need
future exploration is how well the GIFT domain modules support the more open-ended domains that are
required for creative endeavors, i.e., domains that afford users opportunities freedom to explore multiple
solutions, apply divergent thinking and exhibit flexibility in their approaches. Many open-ended domains
are ill defined in that it is difficult to specify objective criteria for solution evaluation — consequently we
foresee this as one of the challenges in realizing creativity support in general and within the GIFT
architecture in particular.
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Conclusion

We have discussed the ICS framework and its application to the integration of ITS, affective computing,
and CST to foster students’ creativity. We have also outlined our research strategies for taking the next
steps to implement and evaluate this approach, as well as initial considerations on how ICS can be
realized within the GIFT architecture and challenges associated with doing so.
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Introduction

The Advanced Distributed Learning Initiative (ADL) has a vision for a Personalized Assistant for
Learning (PAL), which will help provide life-long, relevant, tailored, timely access to learning content
and performance aids. It will recommend topics and engagement modes appropriate to the learner’s
current context, and guide and support the user’s learning experiences. GIFT and PAL have compatible
goals in that both favor modular, service-oriented architectures, and learner-centric approaches (Sottilare,
Brawner, Goldberg, and Holden, 2012). Learner models used by GIFT and PAL should predict learner
state so needs can be best addressed by each system. Where GIFT and PAL differ is with respect to
emphasis on adaptive support during learning versus adaptive recommendation of learning activities.
Present day intelligent tutors use data from student-system interactions to build a learner model, and use
that model to support learning activities, but each tutor confines itself to guiding learning in a limited
domain and is pretty much ignorant of the user’s context or their knowledge of other domains. In contrast,
the PAL will need to aggregate data from student interactions with multiple systems and sensors in order
to make context-aware recommendations about which learning activities to engage in. This chapter
explores the challenges with establishing interoperability across sources of student data, so that the PAL
learner model can use this information to provide assistance tailored to user preferences, goals,
knowledge, and interests. These challenges are relevant to GIFT, because although not currently
implemented, GIFT also intends to have a persistent learner model that provides a cross-domain view of
the learner’s performance, experience, and preferences.

Today, our learning opportunities extend well beyond traditional classroom education or on-the-job
training. Recent years have seen the growth of educational technology such as distributed online content,
serious games, simulations, MOOQOCs, and ITSs. Moreover, the distinction between formal and informal
learning has become blurred through the availability of online resources such as Wikipedia and YouTube.
There are applications that support online discussions, in which people post questions, obtain advice, and
have discussions with both human and automated responders. Information pushed to users can be
personalized through rich site summary (RSS) subscription feeds and aggregators; and social
bookmarking allows users to add, annotate, edit, and share web documents. Learners “follow” the
bookmarks, blogs, and posts of others. Digital tools also help people keep notes on, and products of, their
activities (e.g., e-portfolios). The advent of cloud computing and mobile devices has freed these activities
from the desk. In fact, there are so many possibilities available that learners may feel overwhelmed
(Kuflik, Kay, and Kummerfeld, 2012). One of the overwhelming aspects is that each application or
resource used by the learner knows little to nothing about what the user really needs. Some applications
have the ability to collect user-system interaction data in order to alter or adapt future interactions
(personalization), but since these tend to consider only the data they capture themselves, the picture of the
user they create is just a tiny snapshot. Moreover, these adaptive systems tend to know little about the
user’s current context. True personalization would take into account some knowledge of the user’s current
situation and goals, and how these have changed overtime — context awareness.

Context awareness may encompass factors like location, task, role, and time. Recent developments in

device and environmental sensors (ubiquitous computing) offer the promise of providing digital
applications with some of this information. Coupled with a broader appreciation of learner knowledge,
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preferences, and interests, gleaned from user interactions with multiple applications, there is the potential
to provide learners with just-in time content highly matched to their immediate requirements.

With respect to learning, what is of most immediate use and relevance depends on what the learner needs
to know, why the learner needs to know it, and what the learner already knows. ITS and other adaptive
instructional technologies are the best examples of learning technologies that attempt to provide what the
learner really needs. By assessing performance of the specific skills the learner is trying to master, such
technologies build up a model of learning gains and learning needs in a particular domain. But ITSs are
closed systems. They only know how to instruct on a fixed skill set, using a limited array of teaching
tactics. If that doesn’t work, the learner is out of luck. They don’t know how to reach out to find other
resources (e.g., when it turns out, for example, that the user needs a refresher on prerequisite knowledge),
and they only have a limited way of teaching. Why can’t an ITS go out and find the user material on the
prerequisites, or find other ways of teaching the same material when its own teaching tactics don’t seem
to be working? What about when the user really doesn’t want a lesson, but just needs to get an answer
quickly? How can we go from the situation of today, where each application we use has only a little bit of
the picture — like the proverbial blind men feeling the elephant — to the situation in which these pieces of
the picture can be amalgamated to produce more context-aware and personalized support?

Future Concept

ADL is investigating solutions to these challenging questions, under the PAL project. ADL intends for a
PAL to enable learners to access personalized learning content and peer and mentor networks from
multiple devices or platforms. It will track performance throughout the learning process, whether formal
or informal. It will have a nonintrusive user interface and will consume data from device and
environmental sensors to support context awareness. In the short to mid term, we envision core PAL
services providing a user interface, experience tracking, user modeling, recommendation formulation, and
content discovery. In the longer term, we envision that a PAL could also provide coaching and guidance.
Thus, whereas GIFT has started out like an ITS (coaching) and will expand to encompass a persistent
student model that spans domains, the PAL is starting out like a recommender system. A PAL will be
knowledgeable about diverse domains and provide the appropriate level of guidance for the user’s current
needs and goals. A PAL should help create a self-regulated learner with a thirst for knowledge, and not
engender dependency on technology.

PAL Scenario

Consider the scenario of an U.S. Army Reserve soldier in 2020. Corporal Smith is about to deploy to
Haiti on a hurricane relief mission. Since her PAL is linked to the Army’s personnel system, it already
knows she is preparing to deploy and has recommended to her several relevant training exercises. Her
PAL knew that she already had a badge for Level 2 French (limited working proficiency) according to the
language competency criteria set by the Interagency Language Roundtable (ILR), and that she wants to
get to Level 3 (professional working proficiency). Her PAL recommended some lessons and game-based
scenarios so she could brush up on her old skills and learn some Haitian Creole. Her PAL knows that her
main job while deployed will be managing the X22 search and rescue robot, so it has selected new
vocabulary that will likely be useful in that situation. It also cued up the interactive technical manual for
the X22. On the flight to Haiti from Kansas, her PAL offers her various methods of passing the time. She
selects a documentary about the impact of the 2017 election to Pope of Archbishop of Port Au Prince, and
she reviews the latest footage and reports available about the hurricane damage. Once on the ground, with
a little free time, Corporal Smith networks with some colleagues back home who also have experience
with the X22. They all know that the X22 sensors have a tendency to malfunction in humid conditions
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and are discussing possible solutions. The corporal’s PAL suddenly alerts her network to a new blog it
has found discussing the exact same issue, with an offered solution, but will she really find BOUNCE® in
Haiti now? She wishes she had thought to investigate this issue before she left and asks the PAL for the
Haitian Creole translation for dryer sheets.

Omnipotent ITS or Interoperable Systems?

This vision of a PAL is of an intelligence that can make recommendations and monitor user activities in
real time. It has the ability to infer the user’s needs and respond by making recommendations for learning,
and it also is ready to provide information in the form of assistance (e.g., to provide the translation for
dryer sheets). Today’s ITS are not capable of this kind of support, because they are limited to intelligence
about learning a particular domain, and they also tend to have a limited way of interacting with the
student (e.g., designed to teach how to solve linear equations, but not prepared to help answer a real-
world problem the student needs to solve right now). It might be possible to grow an ITS into a PAL, by
expanding its breadth of expertise as well as the various services it provides (e.g., supporting social
networking, providing references, etc.). It might even be possible to create an ITS that can ingest
information from the web and “learn” new domains. Given the challenges and resources required for
creating an ITS for just one domain, this seems like a very daunting task. In addition, users will still
always have other activities that the ITS will be ignorant of. Finally, it is unclear how a monolithic system
could ever keep up with changing technologies. An alternative approach is to foster interoperability
among existing and future heterogeneous systems, all of which can contribute some knowledge of the
user to a persistent learner profile (Alrifai, Dolog & Nejdl, 2006; Carmagnola, Cena & Gena, 2011; Kay
& Kummerfeld, 2012; Kulik, Kay & Kummerfeld, 2012). This learner profile would exist independent of
any service or application, allowing those services and applications to both contribute and consume its
knowledge about the learner. As discussed by Kay and Kummerfeld (2012), there are many technical
challenges associated with persistent learner profiles. These include the learner’s ownership of their own
data, and their ability to inspect them, as well as privacy control and protection of personal data. Our
focus in this chapter, however, is on the interoperability challenge. How can we unlock the data from
heterogeneous systems and make open data, content, and web APIs the new default?

A Service-Based Approach

One potential solution to the problem of data being locked up inside of applications is to securely expose
the data through web APIs using common standards so that multiple applications can use the data (CIO
Council, 2012). While it is clear that learner data need to be exposed securely through web APIs, it is not
yet clear how that learner data should be represented. Approaches to represent interoperable learner data
have historically focused on XML and resource description format (RDF) standards in the W3C Semantic
Web stack (IMS, 2001; Dolog & Schafer, 2005). While these approaches have relied on standards, the
barrier to entry appears to be too high, perhaps due to the complexity of requiring all contributors to use a
common schema. Alternative approaches that exploit hypertext transfer protocol (HTTP), JavaScript
object notation (JSON), and Representational State Transfer (REST) may better facilitate the feasibility of
communication and the exchange of learner data (Carmagnola, Cena & Gena, 2011). The reason HTTP,
JSON, and REST are important is that they are the simple and lightweight methods that web developers
prefer to get started with — they lower the barrier to entry.

The Mozilla Open Badges project (http://openbadges.org/) provides a new way to think about
representing learner data that exploits HTTP, JSON, and REST. Mozilla Open Badges make it possible to
get recognition for skills and achievements that happen online or out of school by making it easy for any
organization to issue, manage, and display digital badges across the web. The Open Badges project
includes a badge format specification, APIs, and a reference implementation for “badge backpack”
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software. The badge backpack software, which keeps track of badges a user has been awarded, is a critical
collection of learner model data. Various organizations that may issue badges can choose the granularity
of a given badge.

The ADL Experience API (http://www.adlInet.gov/tla/experience-api) is another project providing a new
way to think about representing learner data that also exploits HTTP, JSON, and REST. The Experience
API provides a way to track and report learning activity using simple statements. Together, Open Badges
and the Experience API offer a new way to think about constructing interoperable learner model data.

To illustrate how these new projects may be used together, consider how badges may be issued. A
learning application can provide direct credit for a learner’s achievement using that platform in the form
of a badge. However, this is not the only way a learner could be given credit. The Experience API allows
many different learning experiences to be tracked and reported at a very granular activity level (e.g.,
Sarah watched Army Knowledge Online Video X). This activity data, for a given user, can be collected
and securely made available through a Learning Record Store (LRS; http://www.adlnet.gov/tla/Irs). The
data can then be analyzed independent of the learning experience. An assessment service for example,
using specialized techniques, could examine a learner’s activity data stored in an LRS and provide credit
(e.g., a badge) for relevant activity that may span different applications. Figure 20-11 shows these two
techniques for providing a learner with a badge.

Direct Badge Issuance

— baclgpack
learning
learner ——> .- —> badge — > badge
application
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l application,
learning —
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‘ > badge —{—> badge
system

Figure 20-1. Direct and indirect badge issuance. For direct badge issuance, a learning application assesses

learning activity and puts a badge in the learner’s badge backpack when the activity reaches an objective

criterion. That learning application may or may not also send information about the learner’s activity to a

separate LRS. For indirect badge issuance, an assessment system examines data in the LRS. Those data may

have been contributed by one or more learning applications. The assessment system puts a badge in the
learner’s backpack when the evidence in the LRS reaches an objective criterion.
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Open Badges and the Experience API also provide a way to capture evidence for achievements. In Open
Badges assertions (Cmcavoy, 2013), there is an optional field to track evidence for a given badge
issuance. The evidence field is simply a uniform resource locator (URL) that should point to information
about how the learner earned the badge. Given the Experience APl and the collection of data in a web-
accessible LRS, the Open Badges evidence field can point to specific experience activity data located in
an LRS as depicted in Figure 20-22.

— baclkpack

learning ‘
o2 ——> badge — | badge
application

|

LRS I<
evidence

Figure 20-2. A specific badge could point to the specific activities in the LRS as the evidence concerning how
the badge was earned.

leatner ——

The Experience API is the first web service specification and Open Source Software element in a
collection of web service specifications and Open Source Software elements that will make up the ADL
Training and Learning Architecture (TLA). In addition to services for tracking learning experiences, the
TLA will also include services for managing learner profiles (http://www.adlnet.gov/tla). It is anticipated
that Open Badges will be referenced by learner profiles, which will likely contain other learner data such
as goals, reflection, etc. The TLA will also include services for creating and accessing competency
definitions to serve as a common way to reference educational standards, learning objectives, and
competency definitions through web APIs. The Open Badges assertion specification also contains a field
to reference criteria for earning a badge. The criteria field is simply a URL that should point to the
badge’s criteria. Figure 20-3 illustrates how badge criteria could point to competency definitions. For
example, a badge that the Khan Academy might issue for a learner mastering algebra could reference
criteria for algebra using the Math Common Core standards accessible through the Achievement
Standards Network’s (ASN) web APIs.

baclpack
learning
learner S > badge — > badge
application
I criteria
I v
TLA Services

Figure 20-3. TLA services linking the learner profile to the badge backpack, and the badge itself to
sanctioned competency criteria
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A learner model used within an adaptive system can choose to model that learner data using any
representations the developer of the application wants to use. However, interoperable and shared learner
model data has to be represented and made available in standard ways to support as many applications
being able to use the information as possible. If the standard representation is complex, this may enable
some sophisticated applications to use very powerful representations of learner information. However,
other less sophisticated applications may be unable to use the information because it is simply too
complex. If the standard representation is simple, this will likely enable all applications to make
maximum use of learner model data. However, in order to extract the power of the learner model data,
specialized techniques will be required. The goal is find simple ways to share learner information that can
be used and extended in powerful ways with significant community adoption.

Machine Interpretation

The effort to enable machines to access as much shared heterogeneous learner model data as possible will
likely require making the effort to contribute that data from many applications as easy as possible. This
means removing as many complex constraints on contributors as possible. A significant constraint past
approaches have imposed on applications that contribute learner profile data is the requirement to
conform that data to common sophisticated representations based on Semantic Web technologies.
Simplified alternative approaches that impose less complex constraints are likely to make contributions
easier and promote greater adoption.

While the approach of removing as many complex constraints on contributors as possible may be good
for contributors, it may make it difficult for consumers of data. Flexibility on publishing leads to
complexity on consumption, where the machines have to be able to make sense of the data (i.e.,
translation). However, this seems to be as it should be, for each application that consumes learner model
data will likely want to use data in a particular manner for a particular application. While the skills
required to make sense of big data may be currently scarce and data science is a nascent field, it is taking
off in a big way, with educational offerings growing and the pipeline of talent expanding (Davenport &
Patil 2012).

The method for making sense of heterogeneous learner model data has been described as bootstrapping
learner models from external sources (Guo & Greer, 2007; Tiroshi, Kuflik, Kay & Kummerfeld, 2011).
Guo and Greer (2007) bootstrapped (i.e., created and initialized) learner models from e-portfolios for an
advanced programming course. The method of bootstrapping Guo and Greer (2007) employed involved
experts and students linking of e-portfolio evidence for skill level claims in the learner model using a
custom user interface and comparing their estimations. The system provided an evidence-recommending
feature when a given e-portfolio artifact was selected. It should be noted that during bootstrapping, the
raw experience data stored in a LRS referenced by an Open Badge, could be analyzed to perform an
application’s own interpretations of that evidence, as suggested by Carmagnola, Cena, and Gena (2011).
Guo and Greer (2007) concluded that the bootstrapping method showed promising benefits in adaptive
learning environments. Tiroshi, Kuflik, Kay, and Kummerfeld (2011) summarized various boostrapping
methods (i.e., content analysis, machine learning, and sentiment analysis) to initialize user models for
recommender services from social web APIs and proposed a theoretical example of using the users’ social
data to provide personalized tours tailored to users’ interests.

To better understand the potential for the vision of bootstrapping learner model data, consider its
application to a different kind of data. The Learning Registry is a distributed database for different
educational sites to share metadata about educational resources and information about how resources are
being used in different educational settings. The approach to make contributing as easy as possible was
similar to the approach being described here of making it as easy as possible for applications to publish
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learner model data. Thus, there were minimal constraints on the form metadata for resources needed to
take — contribution focused on flexibility.

The flexibility afforded contributors made it very difficult for consuming applications to use the large
volume of heterogeneous data, however. To address this difficulty, ADL developed an approach to make
sense of the data through an open source project called Ir-data (https://github.com/wegrata/lr-data), which
has subsequently been shared with and used by others. The technique is based on a distributed task queue
called celery (https://github.com/celery/celeryproject). Different tasks are assigned to process each record
of data (harvest it, clean it, filter it, augment it, store it, etc.). The beauty of the software is that it is open
source, visible (i.e., hosted on github), and written in the easy to read language of python. Different
applications can use and adapt this open source toolkit to process the data as they need for their specific
application requirements.

In the case of sharing and making sense of learner data, a similar model can be followed where any
contributing application (e.g., an ITS or game) could easily publish activity data to a LRS, Open Badges
to a learner’s badge backpack, or other learner model data to their shared learner profile as JSON over a
RESTful HTTP connection. The LRS, badge backpack, or learner profile can exist anywhere (e.g., an
employer organization, a commercial provider, or even self-hosted by a learner) — all the contributing
applications need to know are the URLSs and the learners credentials. If a learning application wants to
make sense of all this data, it too just needs the URLs and the learner’s credentials to get started. The
learner could set permissions concerning what applications can access their data. Then a bootstrapping
method can be used to make sense of the data leveraging open source software customized for the needs
of the learning application. The software would likely reference external ontologies, databases, and
services. Finally, a learner could ideally be involved in running such software to make sense of their own
data for their own purposes.

Discussion

The PAL, GIFT, and other learner applications that will exist in the future will benefit from sharing
learner model data with one another to improve the way each learning application can best adapt to the
learner. A flexible approach based on web services was proposed.

The data sharing design goals of PAL and GIFT are complementary. Each seeks to monitor progress and
provide tailored assistance by accessing heterogeneous data sources. For example both GIFT and PAL
offer integration of domain-specific data and domain-independent modules or plug-ins to contribute to
learner models. Key to both systems is the notion of data sharing via interoperable open standards. Data
and data structures in GIFT reside within models and libraries, while executable code is expressed as
interoperable modules (Sottilare, Brawner, Goldberg, and Holden, 2012). We are considering how PAL
can use elements of GIFT, but also how PAL might bootstrap learner data that resides anywhere (as long
as access permissions exist).

To support comprehensive and persistent learner models to enable the adaptive tutoring learning effect
chain (Sottilare, 2012), GIFT should plan to contribute and consume from external shared learner model
infrastructure such as badge backpacks, LRSs, and learner profiles. GIFT should plan to participate in
open source development of toolkits to support bootstrapping external learner data as part of the design of
the GIFT authoring, instructional management, and assessment constructs for more flexible data-driven
computer-based training systems (CBTS).

As we struggle to understand which data are most important in a learner model for the desired learning
outcomes (Holden, Sottilare, Goldberg & Brawner, 2012), having access to as much data as possible is
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critical to conduct the anticipated research. Given that GIFT is particularly focused on the needs of adult
learners (Holden, Sottilare, Goldberg & Brawner, 2012), capturing an understanding of their diverse
experiences seems paramount.

Finally, while much of the focus on GIFT learner modeling is on the current tutoring session and the
learner’s state in that session, it is important to keep in mind how the learner evolves between tutoring
sessions. When the learner begins a subsequent tutoring session, it would be valuable for a GIFT tutor to
know what the learner may have experienced and learned since the last tutoring session.
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Introduction

In this chapter, we review research on leveraging eye-tracking information to improve the depth and
accuracy of student modeling in ITSs. Eye-tracking has been extensively used both in psychology for
understanding various aspects of human cognition, as well as in HCI for offline evaluation of interface
design or as an alternative form of intended user input. In recent years, however, eye-tracking has also
been investigated as a source of information on relevant users states and processes (e.g., attention,
motivation, meta-cognitive activity) to inform the actions of an ITS. This chapter is an overview of some
of the recent trends in this area. The overview is structured in two parts. In the first part, we describe
existing research on investigating eye-tracking data as a direct source of information for student modeling
and personalized instruction. In this part, we discuss efforts to model the learner at the behavioral,
cognitive, meta-cognitive and affective level. The second part focuses on research that has used eye-
tracking mainly for the offline analysis of how students attend to specific elements of an ITS interface, in
order to understand relevant student behaviors and processes. Although this work is less directly related to
using eye-tracking data in student modeling than the work described in the first part, the results of this
research provide important insights on additional ways in which student models could leverage gaze-data
in the future. We conclude the chapter with a discussion of these insights and related recommendations
for GIFT design.

Investigating Gaze Data as a Direct Source Of Information for Student
Modeling

Leveraging Eye-Tracking Data to Capture and Adapt to Relevant Student Attention
Behaviors

The work by Sibert et al. (2000) represents, to our knowledge, the first attempt to use gaze tracking for
real-time student assessment. Sibert et al. (2000) describe GWGazer Reading Assistant, a system for
automated reading remediation that tracks a student’s reading patterns and provides support if these
patterns indicate difficulties in reading a word. In particular, raw gaze data tracked with an unobtrusive,
camera-based eye-tracker is parsed in real time to identify the word a student is currently reading, based
on a reading dwell threshold that essentially defines the minimum amount of attention needed to be
focusing on a word. A second threshold identifies delays in dwelling on a word that may indicate
difficulty in reading it. When dwelling on a word exceeds this second threshold, the Reading Assistant
pronounces the word for the student as an aid to reading it. Sibert et al. (2000) describe a preliminary
informal evaluation of the system, in which eight children age 10-14 read a series of textual passages
twice, with the help of the Reading Assistant. Results are presented in terms of changes in reading speed,
accuracy, and number of prompts received from the first to the second reading of each passage, showing
improvements on all measures. While these results do not provide any formal conclusions on the
effectiveness of the Reading Assistant gaze-drive audio prompts, a qualitative post-questionnaire revealed
that students liked the system and found it easy to use and unobtrusive. Thus, this work can be seen as an
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encouraging preliminary step in developing learning environments that leverage gaze information to
provide personalized support to their users.

Anderson (2002) conducted an early experiment with a gaze-contingent ITS. The study involved a
research version of the Pump Algebra Tutor (PAT), created specifically for use in eye-tracking studies
(e.g., the interface elements were spaced out more widely than in the standard tutor). The purpose of the
experiment was theoretical, namely, to provide an existence proof that paying attention to “fine-grained
temporal detail of the student’s behavior” can have instructional leverage. More specifically, building on
the work by Gluck and Anderson (2000), Anderson made the tutor respond to certain instructional
opportunities that could be identified only through eye-tracking. As one example, if following an error
message, the student did not read the error message (as revealed through eye-tracking) and did not correct
the error within 10 seconds, the tutor would give a brief auditory message (“Read the help message”). As
a second example, when — through eye-tracking — the tutor detected that the student used a problem-
solving strategy that bypassed the instructional objectives, instead of using an intended problem-solving
strategy, the tutor would give an auditory message suggesting that the student try the intended strategy
(e.g., one in line with the instructional objectives). This happened in algebra problems in which students
were given a problem statement describing a story context and were asked to (1) formulate an algebraic
expression that captures the algebraic relations described in a story context and (2) use that expression to
calculate specific quantities. On the second step (i.e., calculating quantities by applying the algebraic
expression), eye-movement data revealed that students sometimes ignored the algebraic expression that
they had created moments earlier and instead reasoned directly from the problem statement, a slower
strategy that bypassed the objective of learning to work with algebraic expressions. When the student
made an error on this type of step without fixating on the expression, the gaze-contingent tutor presented
another auditory message: “Try using the formula to compute your answer.” With these gaze-contingent
additions, the tutor helped students reach mastery 20% faster than the standard tutor, an impressive gain
in efficiency. Further, eye-movement data revealed that students who worked with the gaze-contingent
tutor attended to the algebraic expression more even before the gaze-contingent tutor would suggest they
do, evidence that the gaze-contingent messages had the desired result.

Wang et al. (2006) used eye data to control interaction with the Empathic Software Agents (ESAs) for
teaching biology. Eye-tracking data were used in two ways: as user input and also to provide information
for adapting the behavior of the pedagogical agents available in the ESA to the student. Using the gaze
input, it was possible for the student to choose a topic to study by simply looking at the appropriate area
on the screen for a pre-defined time period. The student could also reply to a yes/no question by using the
appropriate eye gesture (moving the eyes vertically for “yes” and horizontally for “no”). By analyzing the
eye-tracking data and pupil dilation, the system inferred the student’s focus of attention and responded to
it with affective behavior and/or feedback. When the student showed interest in a particular content by
dwelling on it, the agent moved to the appropriate location on the screen and provided additional
information. In addition, the agent also provided positive affective feedback to the student’s attentiveness
by showing facial expressions conveying happiness. In contrast, if the student appeared to lose
concentration (e.g., by looking away from the screen), the agent would say something to bring the
student’s attention back to the screen and showed mild anger. The agents also displayed adaptive
behaviors based on student’s states inferred primarily from student actions, e.g., providing feedback if a
student made a mistake, or trying to engage the student if she appeared bored or disengaged because of
lack of mouse or keyboard input. A small preliminary study with 10 participants revealed a beneficial
effect of the adaptive agents on the students’ motivation and concentration. The participants reported that
they were more attentive to additional information and explanations provided by the agent than to the
other content available in the system. Although the study does not provide sufficient information to
discriminate which role the gaze-adaptive components played in these evaluations, it shows that, overall,
an agent relying on both gaze and action data to provide cognitive and affective feedback has good
potential to enrich a student’s learning experience.
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D’Mello et al. (2012) provide the only demonstration so far (to the best of our knowledge) that an ITS
responding to student gaze in real time can improve student learning. (The study by Anderson [2002],
described above, demonstrated that adding gaze-contingent responses to an ITS can lead to more efficient
learning, but not that it leads to better learning outcomes.) The study involved Guru, a dialogue system
with an on-screen tutor agent that engages the student in a tutorial dialogue on instructional material
displayed on the screen. The system used eye-tracking to evaluate whether the student was paying
attention, as captured using simple rules (basically, not looking at the tutor agent or the relevant
instructional material was considered not paying attention). When the student did not pay attention, the
tutor interjected (in speech) any of the following messages: ‘‘Please pay attention,”” ‘‘I’m over here you
know,”” ““You might want to focus on me for a change,”” and ‘“Snap out of it. Let’s keep going.”’
D’Mello and colleagues conducted a study comparing tutor versions with and without these gaze-
responsive messages. The results were very interesting. First, there was substantial reorientation of gaze
after the gaze messages, meaning that the tutor agent did succeed in directing students’ attention back to
the tutor agent and the lecture. Further, students who worked with the gaze-reactive tutor did better on
deep learning questions on the post test than students who worked with the version that was not gaze-
reactive. In contrast, learning gains for assertion questions in the pre-post test, which tap into knowledge
of surface level facts, were higher with the non-gaze-reactive tutor.

All the work described in this section leverage gaze information to capture momentous student attention
patterns relevant to improving student interaction with the corresponding learning environments (i.e.,
patterns indicating reading difficulty in the GWGazer Reading Assistant, and patterns indicating attention
or lack thereof in ESA and Guru). None of this work, however, uses the captured gaze information to
make higher-level inferences regarding student’s states and processes. In the next section, we review
work that takes this extra step, using gaze data to model students at the cognitive, meta-cognitive, and
affective level.

Leveraging Eye-Tracking Data to Model Student Cognitive, Meta-Cognitive, and
Affective States

Conati and Merten (2007) use gaze data to improve the accuracy of a student model designed to enable
provision of personalized support to learning mathematical functions via exploration of an interactive
simulation (Adaptive Coach for Exploration [ACE]). Providing this adaptive support is challenging
because it requires assessing the effectiveness of behaviors for which there is no formal definition of
correctness. Conati and Merten (2007) tackled the challenge with a probabilistic model that assesses
exploration effectiveness by integrating information on (1) user actions in ACE, (2) user’s knowledge and
(3) whether users actually reason about (self-explain) their exploratory actions. Self-explanation —
generating explanations to oneself to clarify instructional material —is a well-known meta-cognitive skill
in cognitive science. This work is the first to consider and model self-explanation in the context of
exploration-based learning. To assess whether a student is self-explaining the outcome of an exploratory
action, the ACE’s student model combines information on the time the student spent on that action with
gaze information. This gaze information relates to the occurrence of a simple gaze pattern defined a priori
as being relevant for learning with this particular simulation: a gaze shift between two panels, one
showing a function equation and one showing the related plot. The main exploratory action available in
this simulation is to change either the equation or the plot, and see how the change affects the other
component. Hence the definition of the aforementioned gaze shift as a relevant pattern to indicate self-
explanation in ACE. A formal evaluation showed that the student model including eye-tracking
information provides significantly better assessment of both a student’s self-explanation behavior during
interaction with the simulation, as well as subsequent learning of the relevant mathematical concepts.
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In the student model described above, Conati and Merten used gaze information related to the occurrence
of a simple gaze pattern defined a priori as being relevant for learning with their target simulation. Kardan
and Conati (2012) and Kardan and Conati (to appear) extend this work by looking at a much broader
range of general eye-tracking features to capture student learning in the context of a different interactive
simulation (1S). This is an important difference, because pre-defining gaze patterns that indicate learning
in an IS may not always be easy or possible, due to the often unstructured and open-ended nature of the
interaction that IS support. Furthermore, such pre-defined patterns are task specific, and may not directly
transfer to a different IS. In contrast, the approach described in Kardan and Conati (2012) and Kardan and
Conati (to appear) is more general and can be applied to a variety of ISs. It relies on giving to a classifier
user model a broad range of standard eye-gaze features that are either task independent or based solely on
identifying the main components of the target IS interface. Then, it is left to the classifier to identify
patterns that are indicative of users’ learning with that IS. An evaluation of this approach was performed
on a data set encoding the gaze data of students working with the constraint satisfaction problem (CSP)
applet, an IS designed to visualize the workings of the AC3 algorithm for constraint satisfaction on a
variety of available sample problems. The CSP applet provides various functionalities that allow a student
to explore the run-time behavior of AC3 at their own pace. The evaluation described by Kardan and
Conati (2012) showed that a classifier using solely information on a student’s overall attention patterns
during a complete session with the CSP applet achieves an accuracy of 71% in distinguishing students
who learned well from the CSP applet from students who did not (where learning was measured via a pre-
test and post-test administered during the study). Furthermore, giving the classifier additional information
on how students’ attention patterns changed while solving two different problems of increasing difficulty
further improved classification accuracy to 76%, with better balance in classifying each learner type (i.e.,
high learners vs. low learners, with class accuracy of 77% and 78%, respectively). In a follow-up study,
Kardan and Conati (2013) showed that a student model for the CSP applet that combines information on
both gaze data and interface actions outperforms models that rely on either gaze data or action data only.
Kardan and Conati (to appear) also show that the action+gaze student model for the CSP applet reaches
and stays above 85% accuracy in classifying a new user as a high versus low learner after seeing 22% of
the overall interaction data (accuracy above 80% in each class), showing that the model can be used to
trigger real-time interventions aimed at improving the experience of low learners with the CSP applet.
Thus, Kardan and Conati’s work provides further evidence of the value of gaze data for user modeling,
especially for interactions in which it is hard to predefine a priory the learners’ behaviors that should be
detected as relevant or detrimental for learning.

Similar results were obtained by Bondareva et al. (2013), when using gaze data only to predict learning
with a different type of educational environment, namely, a multi-agent ITS (known as Meta-Tutor), that
scaffolds self-regulated learning (SRL) while students study science material (Azevedo et al., 2012).
MetaTutor is an adaptive hypermedia learning environment, which includes 38 pages of text and
diagrams, organized and accessible by an interactive table of contents. Text and diagrams are displayed
separately in the two central panels of the interface. In addition to providing structured access to relevant
content, MetaTutor also includes a variety of components designed to scaffold learners’ use of SRL
processes and their learning of a target science topic, e.g., the human circulatory system. Four
pedagogical agents (PAs) provide spoken prompts and feedback on various SRL processes. For example,
one PA assists the student in establishing two learning sub-goals related to the overall learning goal for
the session. Other SLR processes supported by the PAs include taking notes, writing summaries of the
viewed content, and evaluating one’s current understanding via interactive quizzes.

The results in (Bondareva et al., 2013) show that, by leveraging gaze features similar to those used in
Kardan and Conati (2013), a logistic regression classifier achieves 78% accuracy on predicting student
learning with Meta-Tutor, after seeing all data from an interaction. Accuracy already reaches 72%
accuracy after seeing 37% of the data. These results are especially important because, in combination
with the results in Kardan and Conati (2013), they confirm the importance of gaze data as a predictor of
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learning across different types of learning environments that can be leveraged for providing real-time
personalized support to student learning.

Qu et al. (2005) leveraged gaze data to assess student motivation in the Virtual Factory, an ITS that
teaches engineering skills (Johnson, Rickel, and Lester, 2000). They started from observations that human
tutors use information about a learner's motivational states related to effort, confusion, and confidence
during coaching. Based on these observations, Qu et al. (2005) enhanced an animated pedagogical agent
with the ability to infer the same motivational factors about students. Information about the student's
interface actions as well as gaze data tracking a student’s focus and duration of attention were used as
input for a dynamic Bayesian model, which inferred a learner’s confidence, effort, and confusion during
interaction the Virtual Factory. This student model was tested through a Wizard of Oz study during which
students were interacting with a version of the Virtual Factory with the PA’s interventions being directed
by an experimenter. During the study, log data were collected, along with videos of the students’ face and
student retrospective self-reports on their motivational states during interaction. Two judges labeled
replays of each session, synchronized with the videos of the students’ face, for confusion, effort, and
confidence (as Low, Medium, and High). The student model’s predictions over the three factors were
compared against both the judges’ generated labels and the students’ self-reports, showing very
encouraging accuracies between 70% and 82%. Thus, this work provides initial evidence that gaze
information can help assess student’s affective states in addition to more strictly cognitive factors.

Off-Line Analysis of Gaze Data to Understand Relevant Student Behaviors
and Processes.

Seminal work by Gluck, Anderson, and Douglass (2000) demonstrated that eye-movement data of
students working with an intelligent tutoring system contain information about students’ cognitive
processes that is not directly available from the regular stream of student-tutor interaction data (see also
Anderson, 2002). By performing offline analysis of eye-tracking data obtained with a simplified version
of the PAT algebra tutor (later named the Algebra Cognitive Tutor), these researchers were able to predict
certain errors even before they happened. They also showed that eye-tracking data could quite reliably
disambiguate domain-specific strategies even when they led to the same problem-solving steps. Finally,
using eye-tracking, it became apparent that students did not attend to as many as 40% of the system’s
error feedback messages. Although the work by Gluck et al. (2000) did not actually demonstrate a method
for updating a learner model based on eye-tracking, it is important for this survey because it clearly
indicates the potential of gaze data as a rich source of information for student modeling, especially the
strategy disambiguation work, in which inferences from eye-movement data to cognitive processes were
made quite successfully, which often tends to be rather difficult step, fraught with uncertainty.

In relation to using gaze data to evaluate whether students attend to an ITS’s adaptive interventions, Muir
and Conati (2012) performed offline analysis of gaze data to investigate not only if, but also why students
pay attention to adaptive hints generated by an educational game for math (Prime Climb). Prime Climb
provides game activities to help students practice skills related to number factorizations, and includes a
pedagogical agent that helps students learn from these activities by providing individualized hints. These
hints are based on a student model that assesses whether students are learning during a session with Prime
Climb, given their game actions. The hints are provided at incremental level of detail when the model
predicts that student’s knowledge of relevant factorization skills is low. The hints include (1) reminders to
use available tools that can show how a number is factorized; (2) definitions of relevant factorization
concepts, accompanied by illustrative examples; and (3) “bottom-out” hints that explicitly explain why a
student action was correct or incorrect based on factorization knowledge.
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Providing adaptive hints to support learning during game play is challenging because it requires a trade-
off between fostering learning and maintaining engagement, thus this study aimed at investigating if there
are factors that impact student attention to hints and that could be leveraged by a student model to make
these hints more effective. Offline statistical analysis of the gaze data collected from 12 students (age
10-11) playing Prime Climb showed that attention to hints is significantly affected by the following
factors: time of hint (i.e., whether a hint is given in the first or second half of a Prime Climb session), hint
type, attitude toward receiving help (i.e., whether a student likes receiving help or prefers to do things
without help), game action correctness and pre-test scores (i.e., how much factorization knowledge the
student has before starting to play the game). Thus, this offline analysis indicates that capturing these
factors and student attention to hints in the Prime Climb student model could help tailor hint presentation
to a specific student. Muir and Conati (2012) also found that increased attention to hints was significantly
correlated to increased correctness of the subsequent action, showing that further investigation on how to
increase student attention to hints is a worthwhile endeavor, because it can improve student performance
with the game, and possibly, help trigger student learning.

Eye-tracking has also been used to investigate the students’ interaction and usage of OLMS. Since the
mid-1990s, OLMs have attracted a lot of attention within the research community. Allowing the student
to access an abstraction of the student model is beneficial in several ways. First, by opening the student
model, ITSs become more user-friendly. Many projects have shown that students are capable of
scrutinizing their models in order to explore the adaptive nature of the systems, and are interested in
seeing the OLMs (Bull et al., 2005; Bull et al., 2007). Moreover, students can be actively involved in the
modeling process via OLMs, as some systems allow students to challenge or even update their own
student model. Finally, OLMs encourage students to think about their own knowledge, thus involving the
student at the meta-cognitive level.

Eye-tracking has been used in several projects to investigate how students process the information in
OLMs and evaluate the effectiveness of various types of OLMs. Bull, Cooke, and Mabbott (2007)
investigate students’ exploration of six different OLMs for the domain of C programming: a ranked list of
concepts, a textual summary of the student model, a hierarchical lecture structure, a concept hierarchy,
prerequisite relationships between concepts, and a concept map. In all views except the text summary,
color is used to indicate knowledge level, with shades of green indicating correct understanding, yellow
and white indicating low knowledge, and red indicating misconceptions. The participants were asked to
interact with the OLMs, edit them, and/or persuade the system to change student models. The eye-
tracking sessions lasted for 10 min, and students’ preferences for various OLM views were collected via a
user questionnaire. Participants generally found the OLMs useful, but had different preferences for which
OLMs to use, and spent more time viewing misconceptions in their preferred views. Participants spent
much more time examining their knowledge level (which promotes reflection) using the textual
representation and ranked concept in comparison to the concept map and the prerequisites. The more
complicated OLM views resulted in a broader spread of attention; for example, in the concept map
participants focused less on their knowledge level but instead examined the map itself (i.e., they focused
on the concepts for which there were insufficient data in their student models). Such more complicated
OLMs require more effort from the student to gain an overview of the relationships between concepts.

Mathews et al. (2012) also used gaze data to analyze how students interpret OLMs in the context of EER-
Tutor, a constraint-based ITS that teaches conceptual database design. The participants of the study were
familiar with EER-Tutor, having used it previously in a database course. The participants viewed four
different OLM views: concept tag cloud, kiviat graph, concept hierarchy, and tree map. The goal of the
study was to see whether the students understood the OLMs they were presented. The participants were
asked three questions about each of the OLM views. For example, participants were asked how much the
student (represented by a provided OLM view) had learnt about a particular concept. To answer
guestions, participants needed to examine the provided OLM. The eye-tracking data were collected in
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addition to the answers provided by participants. The efficiency of an OLM view was calculated as the
quotient of the participant’s score (on the answers) and the product of the time spent viewing the OLM
view and the number of fixations. A significant difference was found between the efficiencies of the four
OLM views. Kiviat graphs and concept hierarchies were significantly easier to interpret in comparison to
tag clouds and tree map according to the efficiency measure. Responses from the user questionnaire also
identified tag clouds and tree maps as difficult to use to answer precise questions about knowledge levels.
Participants were asked to rank the four OLM views by their preference: the highest ranked OLM was
kiviat graph, followed by tag clouds, concept hierarchy, and finally, tree maps. Participants commented
that the Kkiviat graph was best for an overall understanding of the student’s knowledge, but that the
concept hierarchy was valuable for more comprehensive understanding.

As the last chapter in this section, we report work indicating that an additional type of eye-based data,
namely, pupillary response, can be leveraged for offline analysis of relevant student states during
interaction with an ITS. Muldner et al. (2009) looked at the relationship between pupil dilation and
relevant student affective and meta-cognitive states during interaction with EA-Coach, an ITS that helps
students learn from analogical problem solving by scaffolding the relevant meta-cognitive skills of self-
explanation and analogical reasoning. A study was conducted with 15 university students who verbalized
their reasoning and affective states while interacting with the EA-Coach. The collected protocols were
coded for meta-cognitive events (e.g., student utterances indicating self-explanation, analogical
reasoning, and other forms of reasoning not falling into the first two categories), as well as for valence of
affective states (i.e., negative vs. positive affect). The data analysis revealed that type of meta-cognitive
event significantly affects pupillary response, with pupil size being statistically significantly larger for
self-explanation events than for other forms of reasoning. Affective valence also had a significant effect
on pupillary response, with pupil size being statistically significantly smaller during expressions of
negative affect than during expressions of positive affect. The analysis in Muldner et al. (2009) does not
provide concrete suggestions on how pupillary response can be used in real time for detection of positive
versus negative affect or different types of meta-cognitive events. However, the fact that an effect of these
states on pupillary response was found indicates that pupillary response should be further investigated as
an additional source of information for student modeling.

Recommendations and Future Research

In this chapter, we have discussed existing research relevant to understand the value of eye-tracking data
in student modeling for ITS. This research indicates that the potential of eye-tracking data for student
modeling is substantial, because there is evidence that these data can provide information on relevant
learner states at the behavioral, cognitive, meta-cognitive, and affective level. In particular, work by
Gluck et al (2000), Conati and Merten (2007), Kardan and Conati (2013), and Bondareva et al. (2013)
show explicitly that a learner’s eyes sometimes reveal more about cognitive and meta-cognitive processes
than “overt actions” in a tutor interface. It follows that eye-tracking has the potential to enrich “standard”
learner modeling techniques (i.e., those tapping only the regular interaction data).

Further research, however, is necessary to uncover the full extent of this potential. Eye-tracking data have
so far been used to direct the adaptive behavior of an ITS by capturing only simple gaze patterns
indicating attention or lack thereof (e.g., Silbert et al., 2000; Anderson, 2002; Wang et al., 2006; D’Mello
et al., 2012). Student models that leverage gaze data to capture higher level student states such as learning
(Kardan and Conati, 2012; Kardan and Conati, 2013, Bondareva et al., 2013), meta-cognition in terms of
self-explanation (Conati and Merten, 2007), and affect in term of motivation (Qu and Johnson, 2005)
have been developed, validated in terms of accuracy, but not integrated in an ITS. Although it is
encouraging that positive results in terms of ITS pedagogical effectiveness have already been obtained by
relying on simple gaze patterns (D’Mello et al., 2012), the next step for research in this area will be to see
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if and how ITS effectiveness can be improved by relying on more sophisticated gaze-enhanced student
models.

Another relevant next step is to exploit some of the insights generated by research on offline analysis of
gaze data described in this chapter, to extend the usage of gaze data in student modeling and ITSs. For
instance, although the findings of Gluck et al. (2000) on lack of attention to an ITS’s interventions were
exploited in Anderson (2002) to devise an ITS that can track this lack of attention and react to it, the work
of Muir and Conati (2012) on factors that affect attention to hints can be leveraged to further improve
how an ITS can increase this attention. For instance, Muir and Conati found that attitude toward receiving
help generates consistent patterns of attention to hints throughout the interaction with the Prime Climb
edu-game (low attention for those who do not want help, higher attention for those who do). Thus, if a
student model can “see” that the student is not attending to a hint and knows that the student has a
negative attitude towards receiving help, it can employ strategies specifically designed to increase
attention to hints in someone who does not like receiving help, as opposed to using generic prompts as in
Anderson (2002). It would also be interesting to investigate if and how the results uncovered by Muir and
Conati (2012) generalize to other types to edu-games and to ITSs at large, and whether other factors may
affect attention to hints (e.g., affective state, cognitive overload). A similar analysis could also be done for
gaining more detailed insights on which factors affect attention to OLMs in general, and to specific ways
to visualize them, especially considering recent results on the impact of individual differences (e.g.,
perceptual abilities and visualization expertise) and on visualization effectiveness (e.g., Conati and
Maclaren, 2009; Toker et al., 2012). Finally, the results in Muldner et al., (2009) indicate that further
research should be devoted to investigating how to use information on pupil dilation in student modeling.

Given that research on eye-tracking and student modeling is at a very early stage, as demonstrated by the
relatively short list of references at the end of this chapter (we included all relevant articles we could
find), should authoring tools for ITSs, such as ASPIRE, CTAT, and GIFT, support the use of eye-tracking
data? If so, how? The answer to these questions depends on whether one views the primary purpose of
such tools to support ITS research or support development of deployment-ready systems. Both are
legitimate purposes and truly versatile authoring tools would cover both. Given that resources for
development are always limited, however, existing tools tend to be more oriented towards either one
purpose or the other.

When supporting ITS research is a priority, supporting the use of eye-tracking data would be an
interesting forward-looking feature for an ITS authoring tool such as GIFT. Given that no best practices
for employing eye-tracking data in student modeling have emerged yet, the authoring tool should support
rapid prototyping of different ways of building student models that leverage gaze data. This capability
would be of tremendous help in studying how eye-tracking might enhance student modeling. A useful
first step is to enable researchers to do offline analysis of eye-tracking data combined with other key data
sources, such as tutor log data. At minimum, this would require syncing the different data streams so they
share common time stamps. A good next step would be to create a versatile architecture that enables the
student modeling module (and perhaps other key modules of the ITS) to have access, at run time, to data
from an eye-tracker. Steichen et al. (2013) have recently completed an eye-gaze service architecture to
address exactly this need for data at run time. Their system, called Eye Movement Data Analysis Toolkit
in Real Time (EMDAT-RT), is a standalone application that can provide real-time eye-gaze statistics to
third-party applications through a lightweight web service interface. A client application (e.g., an ITS) can
simply place a request for eye-gaze analysis (either at regular intervals or specific times), to which the
service responds with real-time statistics (calculated either starting from a specific start time or for a
specific time window, e.g., the last 10 seconds). Their system integrates a feature-rich open-source eye-
gaze analysis module (called EMDAT), capable of calculating numerous summative gaze statistics
beyond those usually provided by the analysis packages that come with commercial eye-trackers. The
application has been designed to be application-independent, and may therefore be reused for different
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application domains and purposes, including ITSs. The system (EMDAT-RT) and the internal analysis
module (EMDAT) are currently compatible with Tobii eye trackers and will be released as open-source
packages soon. Since both offline and online processing require interfacing with an eye-tracker’s low-
level API, an important goal would also be to make these tools independent of specific eye-tracker
models or manufacturers, to increase versatility.
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Introduction

This chapter discusses ways ITS principles and structures found in GIFT (Sottilare, Brawner, Goldberg,
and Holden, 2012) might be applied to the training of teams. It concerns using the cognitive models of
team purpose, behavior, and functions that are shared — held in common — by individual team members to
training for teams in a manner analogous to the use of cognitive models in ITS for individuals. We
recognize that non-cognitive factors (e.g., physiological and affective) influence team performance and
processes. For this chapter, however, we have chosen to focus on cognitive factors.

The use of fully automated, computer-based tutoring technologies to provide training for teams is as
embryonic as the problem space is complex. A necessary step in determining optimal strategies for team
learning is to assess the collective state of the team, which may be accomplished through the use of
shared mental models. Empirical evidence suggests that these models, contribute substantially to
successful team performance (e.g., Cannon-Bowers, Salas & Converse, 1993; Rentsch & Hall,1994;
Stout, Cannon-Bowers, Salas & Milanovich, 1999; Salas & Fiore, 2004; Banks & Millward, 2007;
DeChurch & Mesmer-Megnus, 2010; Espevik, Johnsen & Eid, 2011). However, the notion that shared
mental models of cognition within teams might somehow be additive or averaged among team members
appears untenable. If Al tutoring is to equal or perhaps exceed skilled human tutoring, success will
demand more elegant and powerful approaches for assessing these models and the learning state of teams.
These approaches must accurately sense and interpret the critical individual behaviors, team interactions,
and environmental factors that promote/inhibit team performance.

Shared mental models represent team objectives and the actions, both individual and collective, needed to
achieve them. These models represent team communication and coordination, team posture, situation, and
environment, and team member roles and responsibilities. They enable team members “to interpret cues
in a similar manner, make compatible decisions, and take appropriate action” (Cannon-Bowers & Salas,
2001, p. 196). Their application in the design and development of intelligent training capabilities for
teams appears to be a natural and promising approach for consideration.

The motivation for developing/maintaining shared mental models of cognition is much the same as for
maintaining individual models of cognition. For individuals, we refer to the adaptive tutoring learning
effect chain (Figure 22-1), where selective mining of learner data (e.g., behaviors and sensor inputs)
informs learner states (e.g., cognition, affect), which informs strategy and tactics selection by the tutor
and ultimately influences learning gains. Better models of learner cognition result in accurate strategy
selection and in improved learning (e.g., knowledge acquisition, skill acquisition).

instructional

learner informs 5, learner informs 5 7T nfluences 5, Jearning
strate _
data states 9y gains
T selection

Figure 22-1. Adaptive tutoring learning effect chain (Sottilare, 2012)
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When learners train as part of a group, they can encourage each other to ask questions, explain or justify
their opinions and reasoning, and actively reflect on their developing knowledge and team performance.
Research has shown these activities enhance group performance and individual learning outcomes
(especially motivation and engagement — Tchounikine, Rummel, and McLaren, 2010). However, these
benefits can only be achieved in well-functioning, actively learning teams (Jarboe, 1996; Soller, 2001).
While some teams may demonstrate successful interaction and communication naturally, others may be
incapable of developing a balance of participation, leadership, understanding, and encouragement (Soller,
2001). This inability can rapidly degrade group and individual performance, motivation, and engagement,
and thereby learning.

As Figure 22-2 suggests an adaptive tutoring learning effect chain model could be extended for teams and
then specifically adapted to focus on shared mental models of cognition.

> learner #1 learner #1 -

data state '"forms
s learner #2 informs learner %2 informs =1

data —>  state

) instructional ; team
f influences
—> feam Injoims s, strateqy — > learning —]

s learner #3 informs learner #3 informs —— state selection gains

data _ state
> learner#N = learner #N informs ——

data —>  state

Figure 22-2. Notional Adaptive Tutoring Learning Effect Chain for Teams

Mental Models — Shared and Otherwise

Rouse and Morris (1986) identified common themes in the use of mental models. They described these
models as “mechanisms whereby humans are able to generate descriptions of system purpose and form,
explanations of system functioning and observed system states, and predictions (or expectations) of future
system states” (p 351). Mental models are often dynamic — acting as mental simulations.

Shared mental models may then be viewed as descriptions, explanations, and predictions that the
members of a group, such as a team, hold in common. In the case of teams, they are defined by Cannon-
Bowers, Salas, and Converse (1993) as “knowledge structures held by members of a team that enable
them to form accurate explanations and expectations for the task, and in turn, to coordinate their actions
and adapt their behavior to demands of the task and other team members” (p. 228).

Research on mental models intensified in the mid-1960s with the evolution of general theories of
perception and learning. These theories evolved from the fairly strict logical positivism of behavioral
psychology, which emphasizes the study of directly observable and directly measurable actions, to what
researchers began to call cognitive psychology. Cognitive psychology gives more consideration to
internal, less observable processes, which are assumed to mediate and enable human learning and thereby
produce the directly observable behavior that is the subject of behaviorist theories.
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Cognitive psychology opened the door to consideration of mental models, but its theoretical and empirical
foundations preceded it. The notion of mental models may be found in the primordial origins of scientific
psychology. For instance, William James (1890/1950) stated his General Law of Perception as the
following: “Whilst part of what we perceive comes through our senses from the object before us, another
part (and it may be the larger part) always comes out of our mind” (p. 747, 1890/1950). A mental model,
then, is a mental representation of the perceived world informed, however imperfectly, by our senses.

Despite the early enthusiasm for behaviorism in experimental psychology, empirical support for a more
cognitive view continued to grow. In 1967 Ulric Neisser could point to a large body of empirical evidence
indicating that many aspects of human behavior, such as seeing and hearing, could not be accounted for
solely by external physical cues. His central assertion was “that seeing, hearing, and remembering are all
acts of construction, which may make more or less use of stimulus information depending on
circumstances” (p.10).

Neisser’s contribution helped free researchers to pursue new, more ‘“constructivist” approaches to
perception, memory, learning, and cognition by emphasizing their necessity. These approaches require an
active synthesis of the environment based on a runnable cognitive model — a cognitive simulation — that is
validated or modified by cues impinging on the senses. These actively evolving simulations, not the
external stimuli alone, are now assumed to account for what an individual understands about the
environment.

We can extend these notions to the functioning of teams. As information and data become available to
teams, they are not assumed to be taken in “neat.” Instead, they appear to be absorbed and integrated into
a rapidly evolving collective simulation of the external environment. Team decisions then result from
shared cognitive simulations that are run forward under various scenarios and parameters in order to
determine optimized courses of action. Team members must therefore take responsibility for the
correctness of their own models and for the ability of others to share them.

Determining how teams develop these models and/or simulations and then share their results should
considerably strengthen our procedures for assessing team decision making and performance. Creative,
accurate, and comprehensive mental models that take account of all salient cues and filter out others of
less immediate importance appear to be critical. Rapid decision making that quickly assesses situations
and selects among different decision choices may be at a premium. A large, collective working memory
seems especially important for tactical teams whose performance depends on the number of cues they
process rapidly and accurately.

Teams and Teamwork

As summarized by Salas and Cannon-Bowers (2000), teams may be described as groups consisting of two
or more individuals who must interact with one another in order to accomplish a common task, objective,
or mission. Roles and responsibilities of individual team members may be specifically assigned, or they
may arise spontaneously, depending on team size, team leadership, and presence of newcomers (Guimera,
Uzzi, Spiro & Amaral, 2005). These assignments include requirements for communication and
coordinated action — absent such requirements these collectives could be groups but not teams. There are,
of course, teams within teams — most teams are components of a larger enterprise.

Teamwork differs in the quantity and quality of communication and coordination required. For instance,
an early study by Jones (1974) compared baseball, tennis, football, and basketball teams by regressing the
effectiveness of individual team members onto team effectiveness and success. Jones found success to be
positively associated with the effectiveness of individual members of baseball, tennis, and football teams,
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but not basketball teams, where success depends on more closely balanced communication, timing, and
coordination among members than the other three. The greater the need for these functions, the greater the
need to deal with the team as a learning unit — as a learner with its own team mental model — and a
consequent greater need to develop and assess shared mental models.

The scope and character of models that team members must share, therefore, differ with team objectives,
extent of teamwork required, and roles that team-members play. At some level, however, all team
members and their models must share a common understanding of team processes, interactions, and
objectives. The extent to which they do and whether or not it matters can be assessed by team success in
performing tasks, objectives, and missions.

Training for teams must adapt to or even prepare for the self-organization and self-assembly that occur in
all teams (Guimera, Uzzi, Spiro & Amaral, 2005). This preparation seems especially important for the
pick-up teams that are frequently and inevitably assembled to perform military operations. Such teams
initially lack the “transactive memory” developed by members of established teams. This memory
contains the knowledge and skills of specific team members and an awareness of who can perform team
tasks under what conditions of motivation and support (Wegner, 1986). It allows for a division of
cognitive labor within a team, permitting the team’s collective knowledge to exceed that of any individual
team member.

Studies reviewed by Lewis and Herndon (2011) found a strong positive relationship between transactive
memory and team performance. One reason for this finding may be the long noted inverse relationship
between frequency of communication and the quality of team performance in reviews of collective
behavior (Briggs & Johnston, 1967; Olmstead, 1992). Communications can be minimized only if the
members of teams share a common understanding of the situation and what can be done by whom.

Intelligent Tutoring Systems

The definition of an ITS varies across researchers, designers, and developers and is discussed elsewhere
in this volume. In accord with GIFT, an ITS may be viewed as an effort to capture in computer
technology the capabilities and practices of a human instructor who is expert in both the subject matter
and one-on-one tutoring.

ITS development is motivated by the empirically evident benefits of human tutoring (e.g., Bloom, 1984;
Graesser, D’Mello & Cade, 2011; VanLehn, 2011) and a long-standing desire to make these benefits
more widely accessible and affordable than those delivered by human tutors (Fletcher, 1992, 2009;
Corbett, 2001). Another motivation for the development of ITSs grew from the recognition that although
computers could be used to teach effectively, it took time and considerable expense to anticipate all
possible states of the learner and program all possible instructional responses to these states. Response to
both of these motivations requires a generative capability, which is a defining characteristic of ITS.
Dynamic information structures and mixed-initiative in computer-based tutorial dialogue were intended to
generate instructional interactions in real time, thereby relieving much of the burden and cost of authoring
adaptive, individualizing instruction (Carbonell, 1970; Fletcher, 2009; Fletcher & Rockway, 1986). To an
appreciable extent, an ITS should eventually become a self-authoring system. With the capability to
access almost all human knowledge through the global information infrastructure, ITS capabilities may
make learning affordable and universally accessible, generated on demand — anytime and anywhere
(Fletcher, 2006, 2009).

As in most technologies, ITS development begins with a metaphor, i.e., producing computer systems that
clone human tutors. Just as wireless telegraph led to radios, horseless carriages led to automobiles, and so
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on, tutor-less tutoring may evolve into something as yet unforeseen. Sooner or later the “Columbus
Effect” will exert its influence, but, for current ITS development and this chapter, this metaphor may
suffice.

ITS capabilities were early envisioned by Uttal (1962), Feurzeig (1969), and Carbonell (1970). They have
been pursued into the present. Today ITS development suggests a future in which education, training, and
performance aiding do not take place solely through prefabricated lessons and other material but are
accomplished in the form of one-on-one, guided dialogues, that are generated on demand, tailored to the
needs, abilities, interests, and values of individual learners, and are based on mixed-initiative
conversations in which either the computer/tutor or the learner may take the initiative. Although not
widely found, dialogues of this sort have been available since the 1970s (e.g., Brown, Burton, and
DeKleer, 1982). Eventually, they may provide a Plato for every Aristotle, an Aristotle for every
Alexander, and a Mark Hopkins for the rest of us.

ITSs can be contrasted with drill and practice programs. The latter methods were found to be very
effective in achieving lower level instructional objectives such as learning arithmetic facts (Suppes &
Morningstar, 1972), grapheme-phoneme correspondences in beginning reading (Fletcher & Atkinson,
1972), and foreign language vocabulary and phonetics (Van Campen, 1981).

Such rudimentary objectives are found in initial learning of practically all subject domains. They consist
of discrete items, simple concepts, or straightforward procedures to be memorized and/or applied and are
limited to objectives in the lower reaches of Bloom’s (1956) hierarchy or the lower left-hand corner of
Anderson and Krathwohl’s (2001) learning space. Drill and practice programs have a strong role to play
at this level. They are effective and inexpensive to design, develop, and deliver (Fletcher, 2006). They
require models of the learner, but all relevant states of the learner must be anticipated at design time and
pre-programmed into the system. Learner modeling in these systems is predominately pre-assigned,
implicit, and static. As effective as drill and practice programs are for helping learners master domain
rudiments, they are limited in getting beyond these.

ITSs are not unique in their use of learner models, but their approach to learner modeling is
fundamentally different from drill and practice. ITS learner models are dynamic and generated on demand
as needed by the instructional program. They are explicit, often with reference to comprehensive models
of both the procedures and knowledge required to successfully attain instructional objectives. Because of
their dynamic qualities, they are particularly suited to tutorial dialogue systems that must generate
instructional and problem solving guidance on demand, in real time.

Development of ITSs can aim for more conceptual, abstract, and analytical objectives, where their
capabilities are better used, the expense to develop them is better justified, and they are evidently more
effective (cf. Feurzeig, 1969). Effect sizes from ITS studies by Grasser, et al. (2003), Person, et al. (2001),
and VanLehn et al. (2005) average about 0.62 for deep learning compared to —0.02 for shallow learning
(Kulik & Fletcher, 2012).

As suggested above, the subject domain rudiments needed for teamwork can be provided efficiently and
effectively through individual drill and practice. Notably, much collective training of teams is provided
through practice and feedback — very much in a drill and practice manner. As in individual training, team
training objectives need to transcend subject domain rudiments as, for instance, Salas and Cannon-
Bowers (2000) discuss in detail. To do so, requires the ability, found in ITSs, to deal with higher order
team capabilities.

A specific strength of ITS is based on their generative capabilities to identify and then provide instruction
that deals with unanticipated learner states of individuals as seen in the knowledge and model tracing
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discussed by Anderson, Boyle, Corbett, and Lewis (1990) and Anderson, Corbett, Koedinger, and
Pelletier (1995). Anticipating possible learner states for teams with their varying membership, the
evolving roles and responsibilities of team members, and transactive understanding of team
communication and coordination, is likely to be exorbitant in both cost and time — if not impossible. This
problem is partially finessed by after action reviews (e.g., Morrison & Meliza, 1999), but these occur after
the fact and, despite instrumentation, are dependent on subjective impressions and recollections. ITS
techniques may have much to contribute in modeling team states and applying their capabilities to
develop, and adjust team training, possibly in real time. The GIFT framework may well be used to
examine this possibility (Sottilare et al., 2012).

GIFT’s service-oriented ITS architecture and methodology may be summarized as containing four major
components:

e An interactive interface (for mixed-initiative dialogue, allowing either the learner or the
computer-based tutor to initiate queries and discussion);

¢ An explicit model representing the knowledge and skills that form the objectives of the
instruction (where we want to go);

o An explicit dynamic model of the individual learner’s evolving knowledge, skills, and progress
toward achieving the objectives of the instruction (where we are now); and

e Tutoring strategies that use these models to bridge the gap between the learner’s current
knowledge and skills and the targeted instructional objectives (getting from here to there).

These components will be familiar to most developers of ITS. GIFT’s contribution is in the details of

their development, its modular and service-oriented architecture, and the particular attention it pays to
sensors by separating out a sensor module as a major component of its framework.

Team Training, Shared Mental Models, and Intelligent Tutoring Systems

An issue at hand is whether team training can be informed by what we have learned about developing
computer tutors for individuals. This consideration suggests two obvious levels of learning. The first level
concerns the knowledge and skills of individual team members. At this level and as briefly described
above, a highly effective learning environment is created by one tutor working with one learner. Meta-
analytic reviews by VanLehn (2011) and Kulik and Fletcher (2012) found this approach to be
substantially more effective than classroom instruction where opportunities for individualized, tutorial
instruction are limited. Instructional technology has made tutoring not only accessible but also affordable
by imbuing computers with the capabilities of human tutors.

To an appreciable extent, team performance is a product of personnel selection. Individuals chosen for a
team need to possess the levels of knowledge and skills required by their team roles and responsibilities
and to complement the strengths and weaknesses of other team members. Much training for team
membership may be accomplished by individual training to meet the standards and conditions of
performance required by an occupational specialty and the level of skill sought within it. The capability
and likely performance of a team could even be viewed as nothing more than the sum of the competencies
provided by the individual training received by its members. This might be true if teams were not
composed of people.
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People bring a notoriously wide range of individual differences to teams. These differences are found
even when people who possess formally identified competencies can be identified, located, and assigned,
which, itself, is not always the case. Beyond cognitive differences, people also bring to teams different
attitudes, motivations, interests, and values. These differences strongly affect a team’s abilities to perform
its missions. Researchers have repeatedly and empirically found that team training and team cognition
transcend the sum of individual training received by team members (e.g., Stout, Salas & Carson, 1994;
Liang, Moreland & Argote, 1995; Salas & Fiore, 2004; DeChurch & Mesmer-Magnus, 2010).

A second level is needed, then, to train the team as a coherent collective. Although it relies on the prior
individual training of team members, collective team training remains critical to the success of nearly all
teams — and particularly teams formed to carry out military operations. Thompson’s (1967) hierarchy of
pooled, sequential, and reciprocal interaction and Van de Ven, Delbecq, and Koenig’s (1976) methods of
exchange within teams suggest increasing levels of interdependence of individual team members and
increasing need for coordination among those members, and thus providing insight into what the ITS
must know about the type of tasks being trained.

In pooled team models (e.g., a team of painters painting rooms in a house) where there is low task
interdependence, the workload of a tutor is lower. The tutor can simply track each team member’s
performance and sum them all to determine the team’s performance (e.g., total number of rooms painted)
at any given time during training. Pooled team members generally have the same skills and roles.

For sequential team models (e.g., running a relay race) where task interdependence is higher since one
member must complete an action before the next one begins, the tutor can track the output/performance of
the last team member in the sequence to determine the team’s overall performance, and track individual
performances earlier in the sequence to project overall performance. Individual team members in
sequential tasks may (e.g., relay race runners) or may not (e.g., assembly line workers) have similar roles.

The ITS workload quickly ramps up as the directionality of the workflow increases. Reciprocal, or two-
way workflow, means that each team member can be both a source and a recipient in the workflow. Since
reciprocal team members tend to have specialized roles, workflow and thereby performance can be
compromised by subtasks with longer duration than other subtasks. For example, subtask A takes team
member A an average of five minutes to complete while subtasks, B and C take two and three minutes for
team members B and C to complete. Assuming that the subtasks could be done in any order, team
members B and C are more likely to have downtime waiting for team member A to complete a subtask.
The ITS must be aware of the characteristics of the reciprocal workflow and subtasks to avoid providing
feedback unnecessarily and negatively influencing the quality of the work.

The complexity increases again as directionality increases from two (reciprocal) to a multi-directional
(team model). To overcome this complexity and increase the probability of success, it would be useful to
have teams with members who have multiple specialties and can switch tasks during downtimes. This is
not always possible. The object of training is to build new knowledge and skills. The ITS’
“understanding” of the problem space and complexity is essential in developing the individuals on the
team and enhancing the performance of the team. Similar to individual tutoring, team tutoring relies on a
recognition of when the team is at expectation, below expectation, or above expectation.

Might ITS capabilities developed for a single tutor working with a single learner apply to multi-learner
teams? Might they be applied to develop team competencies, knowledge, cognition, and performance?
For teams, and in accord with Sottilare et al. (2012), these questions may be structured around GIFT
modules for sensors, learners, pedagogy, and domains. In today’s GIFT, modules include models and
software processes to manage data, turn into information (e.g., states), and then use that information to
make decisions about instruction for individuals. To extend GIFT for use with teams, we examine the
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existing modules (sensor, learner, pedagogical, domain) and recommend enhancements to these and
rationalize the development of specific team models.

Challenges and Gaps in Developing Shared Mental Models

While there are many challenges in moving forward with team training and the development and use of
shared mental models in the process, some appear especially significant. A key to establishing effective
collaborative learning is the ability of the tutor to manage uncertainty and dynamic nature of team
interaction and communication.

Team members come and go. Few teams work as an established unit with the same members over
extended periods of time. The social interaction among team members that is necessary for trust-building
will not always foster learning (Brown and Palincsar, 1989). Traditionally, trainees view learning as an
independent and mildly competitive activity. Many trainees hesitate to ask for help from their peers for
fear of appearing incompetent or dependent. Furthermore, peers tend to work together with the aim of
simply accomplishing tasks (e.g., finding the right answers) instead of facilitating each other’s learning.
The probability that all trainees understand the learning material and progress as a team increases when
each member understands the roles and responsibilities, and actively participates in the training process
(Soller, 2001). Shared mental models of team confidence and commitment may be essential tools for ITSs
to promote active participation; encourage the exchange ideas, information, and perspectives for
interaction; provide real-time monitoring of individual and team participation level (e.g., interaction
analysis); and manage low participation levels.

Another significant challenge is for the ITS to understand the relationship between team and individual
performance and actions. Roles and responsibilities must be defined so the computer-based tutor can
aggregate individual actions in a logical, weighted fashion and adapt to the team performance state. The
tutor must also understand when to provide feedback to the individual team members based on positive
actions (e.g., goals met) or negative actions (e.g., distracting off-task behavior).

Peer interactions (and thereby their associated mental models) may change as the training domain
changes. Interactions have been found to vary enormously even within the same domain (Brown and
Palincsar, 1989). One aspect that contributes to this uncertainty in trainee communication is ill-defined
roles and goals, and the adeptness of the team members at switching roles and between tasks (Burton,
1998). Role identification and switching is good for social grounding and can create an environment for
collaborative learning and more effective communication (Soller, Linton, Goodman and Gaimari, 1998).
This indicates that the ITS might be more effective if it could develop and maintain a model of team
adaptability. As the tasks and objectives become more complex, effective communication within the team
becomes more important, and the ability of the team and its members to adapt may lead to a richer
learning experience. An ITS should be able diagnose and redirect incorrect solution paths, divide complex
tasks into sub-tasks associated with assigned individual team members, clusters of team members, and the
entire team. The idea of a team tutoring system as observer, manager (decision maker), and director is
evolving.

While individual behaviors are observable, a primary challenge in developing shared mental models for
ITSs arises from other, unobservable cues to individual states. Stress and anxiety, which limit cognition,
may manifest themselves in outwardly observable behavior by novices, but may be more veiled by
experts who have learned to set aside external stressors to focus on the task at hand. This is where
physiological sensors have the potential to play a significant role in cognitive state detection. For
instance, electro-dermal activity (EDA) has been shown to indicate stress and anxiety (Scheirer, Klein,
Fernandez, and Picard, 2002). What is needed is a mechanism to indicate the source of the stress in order
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for the ITS to help manage the training experience through guidance (e.g., scaffolding) and optimize the
difficulty level of the training experience — in accord with Yerkes-Dodson’s (1908) inverted U,
Vygotsky’s (1978) zone of proximal development, or similar notions for adapting difficulty to the learner.

Finally, there is the challenge of training geographically distributed teams and developing their associated
mental models. Local teams have been found to learn more than geographically distributed teams
(Andres, 2002; Warkentin, Sayeed & Hightower, 1997), and distributed teams exchange information less
effectively than local teams (Warkentin, Sayeed & Hightower, 1997). However, with sufficient time to
develop strong group relationships and become comfortable with the communication environment,
dispersed teams can communicate as effectively as co-located teams (Chidambaram, 1996). The military
has developed distributed simulation for training as a way to make all team training affordable and
accesible. Mechanisms to develop shared mental models based on the traits and experience of individual
team members would be desirable in organizations where teams are short-lived.

Enhancing GIFT Shared Mental Models for Team Training

The GIFT sensor module provides interfaces for behavioral and physiological sensors. It accepts raw
sensor data, in some cases processes this data, and then uses this information to determine individual
states (e.g., workload, engagement) for transfer to the learner module.

Sensor modules may be at an advantage in team training because many aspects of decision making and
problem solving in teams must be carried out explicitly and can be assessed directly, whereas they are
implicit and must be inferred for individual training. Collective team cognition and declarative team
knowledge remain to be dealt with, but these assessments may also be facilitated by the observable and
measurable actions and procedures that are generally the object of team training and the frequently
observable and measureable coordination and cooperation required to perform them. Affective team states
may be similarly amenable to assessment by sensors, but they and physiological states are set aside for
this chapter.

The learner module uses data received from the sensor module, performance and knowledge assessments,
and demographic data to determine the learner’s present cognitive, affective, and competency states. This
state information is sent to the pedagogical module, where states are compared to expected learner states
and matched with successful practices of human tutors to determine which instructional strategy should
be used next.

Representation of team states and traits in the learner module should, in turn, benefit from sensor data
provided by observation of the explicit processes and explicit actions taken in team training. Using sensor
module data, a computer-based tutor will be able to deal more accurately and comprehensively in creating
a dynamic representation of team cognition in general, the mental models shared by all team members,
and the mental models of team communication and coordination being acquired by individual team
members. Moreover, the massive amounts of team member historical, demographic, trait data, along with
highly granular performance data can be rapidly recorded, accessed, mined, and updated as needed, using
machine learning techniques.

The pedagogical module is domain-independent. It uses learner state, performance data, and knowledge
models to determine the content, order, and flow of instruction. It recommends general instructional
strategies to guide the domain module’s choice of domain-dependent tactics. In team training, for
instance, the pedagogical module might use ITS techniques for knowledge and performance model
tracing to recommend a simulation with the type of scenarios intended to develop a number of strategic,
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general team capabilities such as adaptability, grit, situation awareness, problem solving, communication,
or coordination.

The pedagogical module, in turn, benefits from team member trait and state data compiled by the learner
module. These data not only inform decisions about what, pedagogically, to do next with a team, but also
how to test the performance predictions on which its prior recommendations were based. Using learner
module data, a computer-based tutor will be able to create more accurate, comprehensive, and dynamic
representations of team cognition in general, the mental models shared by all team members, and the
mental models of all sorts that are being devised by team members and that impact team performance.
Additionally, the massive amounts of team member historical and demographic trait data can be
combined with highly granular performance data to be rapidly recorded, accessed, mined, and updated as
needed to enhance and apply the tutorial capabilities of an ITS.

The domain module is domain-dependent. It defines and structures the instructional domain’s declarative
and procedural knowledge requirements. It translates the pedagogical module’s strategic
recommendations into domain-specific instructional tactics, which determine the content, order, pace, and
feedback alternatives for presentation to the learner. For instance, it will assess and predict the learner’s
progress toward achieving instructional objectives.

The domain module will similarly apply ITS capabilities to learn and improve domain-specific
instructional tactics as it responds to the strategic recommendations received from the pedagogical
module. It will return accurate, real-time feedback to the learner module to help it model the team state,
refine its representation of team traits, diagnostically assess the team’s progress toward achieving its
overall instructional objectives, including those recommended for emphasis by the pedagogical module,
and diagnostically model the development of individual team members in fulfilling their team roles and
responsibilities.

In short, the GIFT modules and their functions may in many respects perform in team training just as they
do in individual training. However, there remain issues that are peculiar to team training and team
cognition that require attention in using shared mental models in intelligent training for teams. GIFT’s
modular, distributed architecture allows for asynchronous interaction and simultaneous tutoring of
individuals. This architecture allows for individual feedback in a team context where each learner’s tutor
communicates changes of individual state to the other tutoring agents within GIFT, thereby supporting
both team level models and individual learner models. In other words, the tutor for learner A maintains
information about learner A and shares it with the tutor for learners B, C, etc. and the team states (e.qg.,
performance) so each learner has a fully informed tutor.

Sottilare, Holden, Brawner, and Goldberg (2011) considered specific and separate team state models that
may be informed by individual learner models and historical team performance data that might be
gathered from relevant operational and training environments. In addition to the shared mental models
discussed in the previous challenge section, models of performance, competency, cognitive, affective,
trust, and communications were also considered. While this chapter has focused on team cognitive
factors, it is worth noting that non-cognitive factors, such as affect, morale, confidence, and physical
state, which are not discussed here, moderate cognition and their effects should eventually be considered.

Team performance models, as noted above, may consist of observations of team behavior as it progresses
toward one or more objectives, including their conditions and standards of performance. Team assessment
techniques are crucial in developing a clear understanding of team performance. Salas, Rosen, Held, and
Weissmuller (2009) argued that performance measurement works best when it captures and considers
performance from multiple sources, it is tightly coupled to the action needed, it uses validated expert
models to assess the performance, it directly supports learning, and it provides real-time corrective
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feedback. Individual and team assessments analyze factors including (1) when each learner is ready to
take an action, (2) delay in actually taking that action, and (3) value of the actions taken.

Team competency models may be used to predict performance within a domain. They are based on
previous related experiences and associated levels of success. Cumulative team competency models are
needed for the ITS to choose initial training scenarios and set expectations for performance. Team
learning objectives, individual state information, the interactivity of the training task, and the
interdependence of workflow can be used to inform a team cognitive state model that assesses mental
workload, engagement and compares progress with expectations to determine team and individual
strategies and tactics.

While not specifically targeted in this chapter, modeling of team affect is necessary for optimizing
cognitive performance. Behavioral observations may be a pathway to understanding individual and team
affect, but more evidence is needed. What is clear is that affect is a moderator of cognition. Problem
solving and decision making become more difficult as affect becomes more extreme. A shared mental
model of affect can inform the ITS to take action to guide, mediate, or challenge team members to get
them back on track.

In accord with Olmstead (1992), among others, the amount and type of communication is considered a
significant behavioral indicator of team trust and cooperation for our notional shared mental model. Roles
(e.g., leader, follower, domain expert) should also be considered a factor in that roles moderate/indicate
communications and expected communications. For example, a team leader would be expected to
communicate mission intent (goals), clarify roles, and direct activities as needed. The ITS managing the
shared mental model of cognition would be expected to monitor communication to determine how it met
or did not meet expectations.

Next Steps

Salas and Cannon-Bowers (2000) chose to emphasize 10 critical questions in their comprehensive chapter
on team training. They assert that ITS have great promise for team training and performance
measurement, which leads to question 5 in their list, “Can intelligent systems be developed to assess,
diagnose, and remediate teamwork?” (p. 331). They go on to focus on dynamic assessment, a real-time
assessment capability that provides immediate feedback and automated diagnoses of performances. This
thought leads to question 6 in their list, “Can mechanisms of dynamic assessment be developed for
teams?” (p. 331).

In applying what we have learned from ITSs to the development of team competencies, an obvious first
issue to address is how to extend ITS techniques for modeling an individual learner to modeling teams
and team cognition to determine what a team “knows.” Such an extension may do much to inform GIFT
learner modules and decisions made by its pedagogical modules, as they are applied to team training,

Much discussion along these lines concerns declarative and procedural knowledge (e.g., Banks &
Millward, 2007). Research in the service of ITSs and elsewhere has given us tools for assessing both. For
example, ITS designers often use concept models to assess what a learner and teams must know in order
to achieve learning objectives (Cooke, Salas, Cannon-Bowers & Stout, 2000). These concept models have
tended to bundle declarative and strategic knowledge together -- there may be reasons to separate the two
into separate concept models, but that seems best set aside for the moment.

Further, much ITS activity consists of problem-solving exercises in which the progress of learners toward
problem solutions can be explicitly and objectively observed (Kulik & Fletcher, 2012). ITS designers
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employ procedural models that lay out the actions an expert might use to solve a problem in the subject
domain. Based on a learner’s actions in solving a problem, an ITS can thereby infer what the learner
knows. Bayesian techniques, for example, are currently prominent in such inferences. They turn cause
and effect on its head, allowing us to estimate the probability of a given cause (e.g., a component of the
knowledge model) that brought about the observed effect. These estimates improve as experience with
additional learners build up, allowing the learning system itself to learn.

ITS tracing activities (mapping actions taken unto procedure models and inferred knowledge onto
knowledge models) lend themselves well to team training, much of which involves exercises and problem
solving — practice with feedback. We might apply ITS modeling and model tracing processes to teams in
two ways — to identify and assess the declarative (including strategic) knowledge of individual team
members and to do the same for the team itself as a collective. Empirical study on both as they apply to
the training of teams and accessing their progress toward targeted instructional objectives may do much to
develop ITS capabilities for team training. It would answer some long-standing questions.

For instance, in team exercises we have objective data on the performance of individual team members
and of the team as a collective. ITS capabilities for inferring the knowledge element could then be used to
determine the knowledge models of individuals, the collective knowledge of the team, and how the two
compare. They could help determine if there is team knowledge or cognition that is separate from the sum
of the mental models of its members, but the nature of this separate, collective model, how it contributes
to successful performance of team tasks and missions, and what, if anything, can be done to develop it
through training.

A second issue that might be addressed concerns what must be shared among the mental models of team
members. Given the research on transactive memory, which is discussed earlier in this chapter, and its
evident contributions to successful team performance, it appears that not all team members must possess
all team knowledge. This is not a surprising conclusion, but research on team and team member cognition
(or mental models) may identify what must be shared, the priorities for sharing whatever separate
elements are identified, and, again, what can and should be done about them in team training, which is
typically given limited time and resources.

A third issue concerns generic teamwork knowledge and skills that are separate from subject domains and
must be acquired by individuals if they are to perform as successful members of a team. Most of this
knowledge and skill is acquired in team training environments, which tend to be more expensive and
logistically difficult to implement than individual training environments. Significant efficiencies and
economies may be realized if at least some knowledge and skill in teamwork can be developed through
individual training. That these competencies can be improved through individual training seems likely,
but the nature and characteristics of these competencies must be more precisely identified and understood.

A fourth matter concerns the tutorial dialogues that are the eventual target for ITS development. These
dialogues seem likely to remain at the individual level, but computer-based tutors could have full access
to team exercise instrumentation data, provided by the GIFT sensor module, individual history and other
team-relevant information provided by the GIFT learner model, training objectives held in the
pedagogical model, and domain-specific data obtainable from the domain module. These dialogues could
initially provide private, individualized feedback to team participants. Capabilities to do this are well
within the state of the art. Eventually these dialogues might become genuine facilitated discussions with
an individual. A research task with fairly rapid return may be to link up ITS dialogue capabilities with
team exercise data and provide these as individual feedback. Doing so will extract much more value from
training exercises than is now possible because of their accurate and comprehensive access to data and
their ability to interact privately with each participant as an individual team member.

248



Design Recommendations for Intelligent Tutoring Systems - Volume 1: Learner Modeling

Final Thoughts

Other questions, as well as other lines of research, may well occur to readers. As Salas and Cannon-
Bowers (2000) suggest, there may be much in the ITS world of value if it is applied to team training. This
chapter has focused on mental models and their sharing in team cognition, but many other paths also seem
likely to return significant value. Cannon-Bowers and Salas (2001) point out a number of fundamental
guestions to be addressed by empirical study of shared mental models including determinations of what
must be shared, what we mean by sharing, how we should measure it, and what outcomes and value can
be expected if we are successful. Our suggestions only begin to fill out the GIFT framework with the
specifics needed. Other pathways are available and might well be pursued.
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Arthur C. Graesser

Dr. Graesser is a professor in the Department of Psychology and the Institute of Intelligent Systems at the
University of Memphis and is an Honorary Research Fellow at the University of Oxford. His primary
research interests are in cognitive science, discourse processing, and the learning sciences. More specific
interests include knowledge representation, question asking and answering, tutoring, text comprehension,
inference generation, conversation, reading, memory, emotions, computational linguistics, artificial
intelligence, human-computer interaction, learning technologies with animated conversational agents
(such as AutoTutor and Operation ARA), and automated analyses of texts at multiple levels (such as Coh-
Metrix, and Question Understanding AID [QUAID]). He served as editor of the journal Discourse
Processes (1996-2005) and Journal of Educational Psychology (2009-2014). His service in professional
societies includes president of the Empirical Studies of Literature, Art, and Media (1989-1992), the
Society for Text and Discourse (2007-2010), the International Society for Artificial Intelligence in
Education (2007-2009), and the Federation of Associations for Behavioral and Brain Sciences
Foundation (2012-2013). In addition to receiving major lifetime research achievements awards from the
Society for Text and Discourse and University of Memphis, he received an award in 2011 from American
Psychological Association on Distinguished Contributions of Applications of Psychology to Education
and Training.

Heather Holden

Dr. Holden is currently a researcher in the Learning in Intelligent Tutoring Environments (LITE) Lab
within Human Research and Engineering Directorate (HRED) at the U.S. Army Research Laboratory
(ARL) in the Simulation and Training Technology Center (STTC) in Orlando, Florida. The focus of her
research is in learner modeling, artificial intelligence, and computer-based tutoring system application to
education and training. Her research interests also include technology acceptance and human-computer
interaction. Dr. Holden previously served as an Information Technology Specialist for the Social Security
Administration (SSA) National Computing Center in Woodlawn, Maryland. Dr. Holden earned her
Doctorate and Masters in Information Systems from the University of Maryland, Baltimore County. She
also has a graduate certificate in Instructional Technology from the same university. Her doctoral research
evaluated the relationship between teachers’ technology acceptance and usage behaviors to better
understand the perceived usability and use of job-related technologies. Her work has been published in
the Journal of Research on Technology in Education, the International Journal of Mobile Learning and
Organization, the Interactive Technology and Smart Education Journal, and several relevant conference
proceedings. Her doctoral work has been continued by other researchers in academia. Dr. Holden also
possesses a BS in computer science from the University of Maryland, Eastern Shore.
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Xiangen Hu

Dr. Xiangen Hu is a professor in the Department of Psychology at The University of Memphis (UoM)
and senior researcher at the Institute for Intelligent Systems (11S) at the UofM and visiting professor at
Central China Normal University (CCNU). Dr. Hu received his MS in applied mathematics (1985) from
Huazhong University of Science and Technology, MA in social sciences (1991) and Ph.D. in cognitive
sciences (1993) from the University of California, Irvine. Currently, Dr. Hu is the director of the cognitive
psychology at the UofM, the Director of Advanced Distributed Learning (ADL) Center for Intelligent
Tutoring Systems (ITS) Research & Development, and senior researcher in the Chinese Ministry of
Education’s Key Laboratory of Adolescent Cyberpsychology and Behavior. Dr. Hu’s primary research
areas include mathematical psychology, research design and statistics, and cognitive psychology. More
specific research interests include general processing tree (GPT) models, categorical data analysis,
knowledge representation, computerized tutoring, and advanced distributed learning. Dr. Hu receives
funding for the above research from the U.S. National Science Foundation (NSF), U.S. Institute for
Education Sciences (IES), ADL of the U.S. Department of Defense (DoD), U.S. Army Medical Research
Acquisition Activity (USAMRAA), U.S. Army Research Laboratories (ARL), U.S. Office of Naval
Research (ONR), UofM, and CCNU.

Robert Sottilare

Dr. Robert Sottilare serves as the Chief Technology Officer (CTO) of the Simulation & Training
Technology Center (STTC) within the Human Research and Engineering Directorate (HRED) at the U.S.
Army Research Laboratory (ARL). He also leads adaptive tutoring research within ARL’s Learning in
Intelligent Tutoring Environments (LITE) Laboratory where the focus of his research is in automated
authoring, instructional management, and analysis tools and methods for intelligent tutoring systems. His
work is widely published and includes recent articles in the Cognitive Technology and the Educational
Technology Journals. Dr. Sottilare is a co-creator of GIFT (www.GIFTtutoring.org). He received his
doctorate in modeling and simulation from the University of Central Florida with a focus in intelligent
systems. In January 2012, he was honored as the inaugural recipient of the U.S. Army Research
Development & Engineering Command’s Modeling & Simulation Lifetime Achievement Award.

Authors

Vincent Aleven

Dr. Vincent Aleven is an Associate Professor in Carnegie Mellon’s Human-Computer Interaction
Institute, and has 20 years of experience in research and development of advanced learning technologies
based on cognitive science theory. His research focuses on metacognition, authoring tools, and the use of
tutoring technology in ill-defined domains. Dr. Aleven and colleagues created CTAT, a suite of efficient,
easy-to-learn, and easy-to-use authoring tools for intelligent tutoring systems, including a new paradigm
called “example-tracing tutors.” CTAT is living proof that end-user programming techniques can
dramatically increase the cost- effectiveness of tutor authoring even for non-programmers. Dr. Aleven is a
member of the Executive Committee of the Pittsburgh Science of Learning Center (PSLC), an national
Science Foundation (NSF)-sponsored research center spanning Carnegie Mellon and the University of
Pittsburgh. He is a co-founder of Carnegie Learning, Inc., a Pittsburgh-based company that markets
Cognitive Tutor™ math courses. He was the Program Committee Co-Chair of the 2010 International
Conference on Intelligent Tutoring Systems. He is co-editor in chief of the International Journal of
Artificial Intelligence in Education. He has been or is principal investigator (PI) on seven major research
grants and co-PI on eight others. He has authored over 140 peer-reviewed publications.
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William Baggett

Dr. Baggett earned a Ph.D. in cognitive psychology from The University of Memphis in 1998. He also
holds an MS in computer science and an MBA in management information systems. William is currently
a Project Coordinator in the Computer Science Department at The University of Memphis, where he
works on DeepTutor. DeepTutor is an intelligent tutoring system, implemented as a web application,
which uses natural language dialog to teach conceptual physics to high school and college students.
DeepTutor is funded by the Institute of Education Sciences. Previously, William was a professor and part-
time department chair of computer information systems at Strayer University and an adjunct professor of
computer science at The University of Memphis. In both positions, William taught graduate and
undergraduate computer science courses, mentored, tutored, and advised students, and developed new
curricula. He was also a business analyst at FedEx Express, where he wrote software specifications for
PowerPad, a mission-critical handheld computer carried by FedEx Express couriers. PowerPad software
is designed to promote optimal courier behavior including the efficient pickup and delivery of FedEx
shipments, package tracking, and conformance to policies and procedures for a wide variety of domestic
and international services.

Ryan Shaun Joazeiro de Baker

Dr. Baker is the Julius and Rosa Sachs Distinguished Lecturer at Teachers College, Columbia University.
He earned his Ph.D. in human-computer interaction from Carnegie Mellon University. Baker was
previously Assistant Professor of Psychology and the Learning Sciences at Worcester Polytechnic
Institute, and he served as the first technical director of the Pittsburgh Science of Learning Center
DataShop, the largest public repository for data on the interaction between learners and educational
software. He is currently serving as the founding president of the International Educational Data Mining
Society, and as associate editor of the Journal of Educational Data Mining. His research combines
educational data mining and quantitative field observation methods in order to better understand how
students respond to educational software, and how these responses impact their learning. He studies these
issues within intelligent tutors, simulations, multi-user virtual environments, and educational games,
within populations from pre-schoolers, to middle school students, to military trainees.

Avron Barr

Mr. Barr is the director of The LETSI Foundation. He’s done research on intelligent tutoring systems at
Stanford University, written a four-volume reference book about Artificial Intelligence, and co-founded a
Silicon Valley software startup that went public in 1986. Since then, he has advised dozens of companies,
startups, government agencies, and Non-Government Organizations (NGOs) about bringing innovative
software products to market. During the 1990s, he co-directed a study of the global software industry on a
Sloan Foundation grant at Stanford’s Graduate School of Business. In recent years, he’s advised the
Defense Advanced Research Projects Agency (DARPA) DARWARS project on serious games; served as
Strategic Director for SCORM at the Department of Defense’s (DoD) Advanced Distributed Learning
Initiative; and helped start LETSI’s work on open software standards to support an era of rapid evolution
in educational technology. He teaches a freshman seminar on The Business of the Internet at Stanford, and
spends his spare time hiking in the redwood forests around Santa Cruz, California.

Keith Brawner
Dr. Brawner is a researcher for the Learning in Intelligent Tutoring Environments (LITE) Lab within the
Human Research & Engineering Directorate (HRED) at the U. S. Army Research Laboratory (ARL). He

has 7 years of experience within U.S. Army and Navy acquisition, development, and research agencies.
He holds a doctoral degree in computer engineering with a focus on intelligent systems and machine
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learning from the University of Central Florida. The focus of his current research is in machine learning,
active learning, real-time processing, datastream mining, adaptive training, affective computing, and
semi/fully automated user tools for adaptive training content.

Winslow Burleson

Dr. Burleson is an assistant professor of human computer interaction in the School of Computing,
Informatics, and Decision Systems Engineering at Arizona State University (ASU) and a Visiting Honors
Faculty Fellow in ASU’s Barrett Honors College. He is the Founding Director of the Motivational
Environments research group and author of over 100 scientific publications (including the “best paper” at
Al in Ed 2009 and the 2011 UMUAI James Chen Award) and has been awarded 10 patents. In 2009, he
was recognized by the National Academy of Engineering as, “One of the nation’s brightest young
engineering researchers and educators.” He received his Ph.D. from the Massachusetts Institute of
Technology (MIT) Media Lab, is a Kavli Fellow, and serves on National Academy of Engineering,
National Academies of Sciences, and National Science Foundation committees. Burleson has a B.A. in
biophysics from Rice University and an MSE in mechanical engineering from Stanford University.

Whitney Cade

Ms. Cade is an experimental psychology doctoral student at the University of Memphis with a
concentration in cognitive psychology. She graduated from Rhodes College with a B.A. in psychology.
Working primarily in the Institute for Intelligent Systems, her primary interests include cognitive science
and learning. Her research specifically focuses on expert human tutoring, large-grain pedagogical
strategies, intelligent tutoring systems, pedagogical agents, image display techniques that support
learning, and the application of machine learning in educational software.

Zhigiang Cai

Mr. Cai is a research assistant professor with the Institute for Intelligent Systems at the University of
Memphis. He has a masters of science degree in computational mathematics received in 1985 from
Huazhong University of Science and Technology, P. R. China. His current research interests are in
algorithm design and software development for tutoring systems and natural language processing.

Cristina Conati

Dr. Conati is an associate professor of computer science at the University of British Columbia,
Vancouver, Canada. She received a “Laurea” degree (M.Sc. equivalent) in computer science at the
University of Milan, Italy (1988), as well as a M.Sc. (1996) and Ph.D. (1999) in intelligent systems at the
University of Pittsburgh. Dr. Conati’s research goal is to integrate research in artificial intelligence,
cognitive science, and human-computer interaction to make complex interactive systems increasingly
more effective and adaptive to the users’ needs. Her areas of interest include intelligent user interfaces,
user modeling, user-adaptive systems, and affective computing. Her research has received awards from
the International Conference on User Modeling, the International Conference of Al in Education, the
International Conference on Intelligent User Interfaces (2007), and the Journal of User Modeling and
User Adapted Interaction (2002). Dr. Conati is an associate editor for the Journal of Al in Education, for
the IEEE Transactions on Affective Computing, and the ACM Transactions on Intelligent Interactive
Systems.
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Mark Conley

Dr. Conley is a professor of literacy at the University of Memphis. He specializes in human and
technology-based tutoring and assessment in literacy, mathematics, and science. He designed the
Memphis Literacy Corps, the largest literacy tutoring effort implemented in the United States. Currently,
he is designing tutoring programs for adult learners in community-based tutoring programs, including a
program for potentially incarcerated youth. He has published numerous articles about literacy,
disciplinary literacy, teacher education, and assessment in journals like the Harvard Educational Review,
Theory Into Practice, and the Journal of Adolescent and Adult Literacy. He has published several books
about disciplinary literacy, curriculum standards, and assessment. He has also advised officials at state,
national, and international levels on curriculum standards and assessment. He holds a Certified Flight
Instructor certificate with an instrument rating and teaches and practices guitar building as part of his
passion for teaching and learning.

Scott Douglass

Dr. Douglass is a senior research psychologist with the 711/HPW Cognitive Models and Agents Branch
(RHAC), U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio. He holds a Ph.D.
(2007) in cognitive psychology from Carnegie Mellon University. Working with John R. Anderson at
CMU, he acquired expertise in cognitive architectures, eye-tracking systems, and the modeling and
simulation of complex situated cognitive processes. His research interests include large-scale cognitive
modeling in event-driven computer-based systems, complex event processing, artificial intelligence,
knowledge representation, multi-formalism modeling, and automated training aids. He is a member of the
Society for Modeling and Simulation International (SCS). He can be reached at
scott.douglass@wpafb.af.mil.

Paula Durlach

Dr. Durlach received her Ph.D. in experimental psychology from Yale University in 1982, and
subsequently held fellowship positions at the University of Pennsylvania and the University of
Cambridge. From 1987 to 1994, she was an assistant professor of psychology at McMaster University and
then went on to lead the exploratory consumer science team at Unilever Research Colworth Laboratory in
the U. K. She returned to the U. S. in 2001 to join the U. S. Army Research Institute for the Behavioral
and Social Sciences. Since April 2012, she has been the Deputy Director of the Advanced Distributed
Learning Initiative. Dr. Durlach has received recognition for her work in experimental psychology and
cognitive science at the Army Science Conference and from the Department of Army Research and
Development. She is a Fellow of the Association for Psychological Science, and member of the
Experimental Psychology Society, the Psychonomic Society, and the Society for Artificial Intelligence in
Education. With Dr. Alan Lesgold, she co-edited the book, Adaptive Technologies for Training and
Education, published in 2012, and has also published research in journals such as International Journal of
Artificial Intelligence in Education, Military Psychology, Computers in Human Behavior, and Human-
Computer Interaction.

Dexter Fletcher

Dr. Fletcher is a member of the senior research staff at the Institute for Defense Analyses where he
specializes in personnel and human performance issues. His graduate degrees are in computer science and
educational psychology from Stanford University, where, as a research associate, he directed projects for
the Institute for Mathematical Studies in the Social Sciences. He has held university positions in
psychology, computer science, and systems engineering and government positions in Navy and Army
Service Laboratories, the Defense Advanced Research Projects Agency, and the White House Office of
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Science and Technology Policy. He has served on science and technology advisory panels for the Defense
Science Board, Army Science Board, Naval Studies Board, Air Force Scientific Advisory Board, National
Science Foundation, National Academy of Sciences, and the National Academy of Engineering. He has
designed computer-based instruction programs used in public schools and training devices used in
military training. He is a Fellow of the American Educational Research Association and three divisions of
the American Psychological Association. His research interests include intelligent tutoring systems,
synthetic environments in education and training, mobile performance aids, analyses of skilled behavior,
and cost-effectiveness analyses of education and training.

Donald Franceschetti

Dr. Franceschetti received his B.S. degree in 1969 in chemistry from Brooklyn College and the Ph.D.
degree in physical chemistry from Princeton University in 1972. Following two postdoctoral
appointments in physics departments (Urbana, IL and Chapel Hill, NC), he joined the department of
physics at the then Memphis State University in 1979. Currently he is Dunavant University Professor of
Physics and Chemistry at the University of Memphis. His research interests have ranged from the
properties of liquid mixtures to spin-lattice relaxation in solids, ionic mobility in solids and x-ray states in
metals and atoms. He has also worked on molecular electronic structure of biological molecules. Dr.
Franceschetti has published about 70 research papers and has done several dozen presentations at
scientific meeting. He has authored more than 100 articles on science and mathematics appearing in
reference works for young people. He has been involved in developing intelligent tutoring systems for
conceptual physics since the early 1990s. He has also been PI or co-Pl of grants totaling about $10
million.

Elizabeth Gire

Dr. Gire is an assistant professor of physics at the University of Memphis and conducts research in the
area of physics education. Her research interests are in the areas of sense-making and problem-solving
skills and representational fluency. As a graduate student working with Professor Barbara Jones at the
University of California, San Diego, she investigated the epistemological development and the
development of problem solving strategies of undergraduate physics majors. This work looked at students
across the undergraduate curriculum, from freshman to senior level students. While working with
Professor Corinne Manogue at Oregon State University, Dr. Gire studied students’ understandings of
guantum operators and student reasoning about electrostatic phenomena. She has had intensive training in
teaching and developing curricular materials in the Paradigms curriculum, which uses interactive teaching
strategies and a unigue content ordering and structure to help students think about physics content the way
that professional physicists do. At Kansas State University, she worked with Dr. Sanjay Rebello to study
introductory physics students’ representational fluency, and tracked the development of this fluency over
the course of a two semester introductory sequence. Additionally, she worked on several other projects,
including research on student reasoning about simple machines when interacting with real or virtual
experimental apparatus, the correlation between visual attention and conceptual reasoning in physics, and
students’ strategies for solving ill-structured problems in an advanced undergraduate electronics course.
She has published several articles in peer-reviewed journals and many peer-reviewed conference
proceedings.

Benjamin Goldberg
Dr. Goldberg is a member of the Learning in Intelligent Tutoring Environments (LITE) Lab at Human
Research & Engineering Directorate (HRED) at the U.S. Army Research Laboratory’s (ARL) Simulation

and Training Technology Center (STTC) in Orlando, Florida. He has been conducting research in the
modeling and simulation community for the past five years with a focus on adaptive learning and how to
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leverage artificial intelligence tools and methods for adaptive computer-based instruction. Currently, he is
the LITE Lab’s lead scientist on instructional strategy research within adaptive training environments. He
explores the development and integration of tools and methods for delivering tailored training
experiences, and identifies strategies of interest for empirical evaluation to assess their effectiveness
across multiple domains. Dr. Goldberg holds doctoral and masters degrees in modeling & simulation
from the University of Central Florida. Prior to employment with ARL, he held a graduate research
assistant position for two years in the Applied Cognition and Training in Immersive Virtual Environments
(ACTIVE) Lab at the Institute for Simulation and Training. Dr. Goldberg’s work has been published
across several well-known conferences, with recent contributions to both the Human Factors and
Ergonomics Society (HFES) and Intelligent Tutoring Systems (ITS) proceedings.

Ken Koedinger

Dr. Koedinger is professor of human-computer interaction and psychology at Carnegie Mellon University
(CMU). His research has contributed new principles and techniques for the design of educational software
and has produced basic cognitive science research results on the nature of mathematical thinking and
learning. Dr. Koedinger is a co-founder of Carnegie Learning (carnegielearning.com) and the CMU
Director of LearnLab (learnlab.org). LearnLab is supporting Big Data investigations in education and,
more generally, leverages cognitive and computational approaches to support researchers in investigating
the instructional conditions that cause robust student learning.

Alan Lesgold

Dr. Lesgold is professor and, since July 2000, dean of the School of Education at the University of
Pittsburgh and also professor of psychology and intelligent systems. He received his Ph.D. in psychology
from Stanford University in 1971 and also holds an honorary doctorate from the Open University of the
Netherlands. He is a fellow of the American Psychological Association (APA), in experimental, applied,
and educational psychology, and also of the Association for Psychological Science and the American
Educational Research Association. In 2001, he received the APA award for distinguished contributions of
applications of psychology to education and training. In 1995, he was awarded the Educom Medal. He
was president of the Applied Cognitive Psychology division of the International Association for Applied
Psychology 2002-2006. Lesgold is a Lifetime National Associate of the National Research Council
(National Academies). He also was appointed by Governor Rendell as a member of the Governor’s
Commission on Preparing America’s Teachers in 2005 and served later on the State’s commission on
cyber high schools as well. He served as chair of the National Research Council committee on adolescent
and adult literacy. In that role, he led an extensive study of the systems, both in the K-12 world and in
community colleges, for remediating literacy problems. From 1986 to 2000, he was executive associate
director of the Learning Research and Development Center at the University of Pittsburgh. He is on the
board of Teaching Matters. Lesgold has served the Pittsburgh community mostly in education-related
activities, including board service for A+ Schools, Youthworks (completed), and the Pittsburgh Regional
Center for Science Teaching. He serves as chair of the advisory board for the Center for Learning at
Community College of Allegheny County. He was president of Rodef Shalom Congregation in
2002-2004. He is married to Sharon Lesgold, a retired mathematics educator, and they have two grown
sons, Jacob and Noah.

James Lester
Dr. Lester is Distinguished Professor of Computer Science at North Carolina State University. His
research focuses on transforming education with technology-rich learning environments. Using artificial

intelligence, game technologies, and computational linguistics, he designs, develops, fields, and evaluates
next-generation learning technologies for K-12 science, literacy, and computer science education. His
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work on personalized learning ranges from game-based learning environments and intelligent tutoring
systems to affective computing, computational models of narrative, and natural language tutorial
dialogue. He received his B.A. (Highest Honors, Phi Beta Kappa), M.S.C.S., and Ph.D. in computer
science from the University of Texas at Austin. He received his B.A. in history from Baylor University.
He has served as Program Chair for the International Conference on Intelligent Tutoring Systems, the
International Conference on Intelligent User Interfaces, and the International Conference on Foundations
of Digital Games, on the editorial board of Metacognition and Learning, and as editor-in-chief of the
International Journal of Artificial Intelligence in Education. He has been recognized with a National
Science Foundation CAREER Award and several Best Paper Awards.

Antonija (Tanja) Mitrovic

Dr. Mitrovic is a full professor and the Head of the Department of Computer Science and Software
Engineering at the University of Canterbury, Christchurch, New Zealand. She is the leader of the
Intelligent Computer Tutoring Group (ICTG). Dr Mitrovic received her Ph.D. in computer science from
the University of Nis, Yugoslavia, in 1994. Prof Mitrovic is president-elect of the International Society of
Acrtificial Intelligence in Education. She is an associate editor of the following journals: International
Journal on Artificial Intelligence in Education, IEEE Transactions on Teaching and Learning
Technologies, and Research and Practice in Technology Enhanced Learning (RPTEL). Dr. Mitrovic’s
primary research interests are in student modeling. ICTG has developed a number of constraint-based
intelligent tutoring systems in a variety of domains, which have been thoroughly evaluated in real
classrooms, and proven to be highly effective. These systems provide adaptive support for acquiring both
problem-solving skills and meta-cognitive skills (such as self-explanation and self-assessment). Although
most of the ITSs developed by ICTG support students learning individually in areas such as database
guerying (SQL-Tutor), database design (EER-Tutor and ERM-Tutor), data normalization (NORMIT),
there are also constraint-based tutors for object-oriented software design and collaborative skills, various
engineering topics (thermodynamics, mechanics), training to interpret medical images and language-
learning. ICTG has also developed ASPIRE, a full authoring and deployment environment for constraint-
based tutors. Recent research includes affect-aware tutors and motivational tutors.

Donald “Chip” Morrison

Dr. Morrison is a faculty affiliate at 11S. A graduate of Dartmouth, Dr. Morrison holds an M.A. from the
University of Hong Kong and an Ed.D. from Harvard. Dr. Morrison has more than 40 years experience in
education, including stints teaching English as a Second Language, as an educational software developer,
and museum exhibit developer. As a senior scientist at Bolt, Beranek and Newman, Dr. Morrison helped
found Co-nect, a comprehensive school reform model. Among other contributions, he established and
directed the Co-nect Critical Friends Program, a review process used by hundreds of schools nationwide.
After leaving Co-nect, he joined the Tripod Project, part of the Achievement Gap Initiative at Harvard’s
Kennedy School of Government, and spent a year as lead School Quality Reviewer in New York City.
Since coming to the University of Memphis in 2008, he has helped bring in grants and contracts worth
more than $500K annually, including a five-year, $3.5M grant from the U.S. Department of Education to
evaluate a large-scale science education initiative run by the Smithsonian Institution. His current research
interests include models of human cognition and learning, and the application of these models in the
design of conversation-based intelligent learning systems.

Bradford Mott
Dr. Mott is a senior research scientist in the Department of Computer Science at North Carolina State

University. Prior to joining North Carolina State University, he served as Technical Director at Emergent
Game Technologies where he created cross-platform middleware solutions for video game development,
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including solutions for the PlayStation 3, Wii, and Xbox 360. Dr. Mott received his Ph.D. in computer
science from North Carolina State University in 2006, where his research focused on intelligent game-
based learning environments. His current research interests include computer games, computational
models of interactive narrative, and intelligent game-based learning environments.

Kasia Muldner

Dr. Muldner received her Ph.D. from the Department of Computer Science at the University of British
Columbia, where she designed and evaluated a computational tutor that supported students during
analogical problem solving. She is currently a post-doctoral researcher in the Department of Computing,
Informatics, and Decision Systems Engineering at Arizona State University. Her work falls into the
intersection of human-computer-interaction and artificial intelligence, dealing with the design and
evaluation of interactive educational technologies that aim to help students learn effectively though
personalized support. She is particularly interested in technologies that support high level student states
related to meta-cognition, affect, and creativity.

Rodney Nielsen

Dr. Nielsen received a dual Ph.D. in computer science and cognitive science from the University of
Colorado, Boulder in 2008. He is currently an associate professor of computer science and engineering at
UNT, where he co-directs the Language and Information Technologies (LIT) lab. Prior to UNT, he was
an assistant professor adjunct of computer science at CU Boulder, a research scientist in CU’s Center for
Computational Language and Education Research, and a research scientist with Boulder Language
Technologies. Dr. Nielsen’s research includes the areas of natural language processing, machine learning,
and cognitive science, with an emphasis on educational technology (classroom engagement technology
and intelligent tutoring systems), spoken-dialogue educational health and wellbeing companion robots
(companionbots), health and clinical informatics, and end-user software engineering. One common theme
across all of these areas is the need for a robust, informative model of the humans interacting with the
system. Further information regarding Dr. Nielsen’s research and contact information can be found at
http://www.cse.unt.edu/~nielsen/.

Andrew Olney

Dr. Olney is presently an assistant professor in the Institute for Intelligent Systems/Department of
Psychology at the University of Memphis and Associate Director of the Institute for Intelligent Systems.
Dr. Olney received a B.A. in linguistics with cognitive science from University College London in 1998,
an M.S. in evolutionary and adaptive systems from the University of Sussex in 2001, and a Ph.D. in
computer science from the University of Memphis in 2006. Dr. Olney’s primary research interests are in
natural language interfaces. Specific interests include vector space models, dialogue systems,
unsupervised grammar induction, robotics, and intelligent tutoring systems. Dr. Olney is co-chair of the
International Educational Data Mining Society Annual Conference (EDM2013) and frequently serves as
program committee member and journal reviewer in the fields of cognitive science, artificial intelligence,
and education. Together with his collaborators, Dr. Olney has been awarded $8.6 million from federal
funding agencies including the National Science Foundation, the Institute for Education Sciences, and the
Department of Defense. His research has been featured in WIRED Magazine, the New York Times, the
Wall Street Journal, the Discovery Science Channel, and BBC Radio 4. Dr. Olney was awarded first
place in an international robotics competition for the PKD Android (AAAI, 2006) and received the Early
Career Research Award from the University of Memphis.
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Philip I. Pavlik Jr.

Dr. Pavlik is currently an assistant professor of psychology at the University of Memphis Institute for
Intelligent Systems. Dr. Pavlik received a B.A. from the University of Michigan in economics and a
Ph.D. from Carnegie Mellon University where he studied cognitive psychology with John Anderson
(developer of the ACT-R cognitive modeling system) and received a neuroscience certificate from the
Center for the Neural Basis of Cognition. With Anderson, Dr. Pavlik has pioneered changes in the ACT-R
theory that have allow his research to use this theory to quantitatively optimize the learning of
information for tasks such as flashcard learning. From this foundation, his work with Dr. Koedinger has
developed to focus on problem solving, schema learning, optimal transfer, effects of motivational
constructs, and student strategy use. His methodologies include theory development, experimentation,
mathematical modeling, and educational applications. Dr. Pavlik has received more than 1.5 million
dollars in grant awards from the Institute for Educational Sciences, the National Science Foundation, and
other sources.

Elaine Raybourn

Dr. Raybourn has a Ph.D. in intercultural communication with an emphasis in human-computer
interaction. She is a principal member of the technical staff in cognitive systems at Sandia National
Laboratories.* Elaine led the development of an award-winning Government game identified by a 2006
Defense Science Board Study on 21st Century Strategic Technology Vectors as “critical capabilities and
enabling technologies for the 21st century that show promise.” She was an European Consortium for
Research in Informatics and Mathematics (ERCIM) Fellow and a recipient of the Department of the
Army Award for Patriotic Civilian Service, awarded to her by the U.S. Army Special Forces. Dr.
Raybourn serves on advisory and editorial boards of the international journals Interactive Technology and
Smart Education, Journal of Game-based Learning, and Simulation & Gaming. She is on assignment to
Advanced Distributed Learning Initiative, Office of the Deputy Secretary of Defense (Readiness), where
she leads research on transmedia learning, distributed cognition, learner adaptability, and next generation
learners’ interactions with personalized assistants for learning (PAL).

*Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Damon Regan

Dr. Regan is a contractor with The Tolliver Group, Inc. and supports the Advanced Distributed Learning
(ADL) Initiative as a technical team co-lead. He has contributed to efforts of the ADL Initiative since
2004 including most recently the Personal Assistant for Learning (PAL) and the Training and Learning
Architecture (TLA). Damon completed his Ph.D. in instructional technology from the University of
Central Florida. He also has an MBA from Rollins College and a B.S. in computer science from the
University of Central Florida.

Robby Robson

Dr. Robson is a learning technology researcher, innovator, and entrepreneur. His first career was in
mathematics in the areas of real algebraic geometry and computational number theory. In 1995, he began
developing web-based learning environments and technologies, including one of the first online calculus
courses. Soon thereafter he became involved in developing industry standards for elLearning
interoperability, contributing to several of the early IMS and IEEE standards and chairing the IEEE
Learning Technology Standards Committee from 2000-2008. Dr. Robson co-founded Eduworks in 2001
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where he is CEO and chief scientist. Over the past dozen years he guided Eduworks while helping
numerous commercial, academic, and non-profit organizations design and develop educational and
training technology and formulate market strategies while serving as the principle investigator or lead
scientist on multiple National Science Foundation and Department of Defense projects related to
repositories, open content formats, competency management, and intelligent tutoring systems. His most
recent work is in applications of semantic technology and natural language processing. He holds a
doctorate from Stanford University in mathematics and has held posts in both academia and industry.

Lisa Rossi

Ms. Rossi works as a consultant through the Department of Social Science and Policy Studies at
Worcester Polytechnic Institute (WPI). She currently studies at Georgia Institute of Technology working
toward a master’s degree in human-computer interaction. Previously, she received her bachelor’s degree
in psychological science and humanities & arts (music concentration) from WPI, after which she worked
at WPI as a research analyst in the Educational Psychology and Learning Sciences Laboratories assisting
with research projects focused primarily around intelligent tutoring systems for scientific inquiry skills
used by middle school students.

Jonathan Rowe

Dr. Rowe is a senior research associate in the Department of Computer Science at North Carolina State
University. He received his Ph.D. and M.S. degrees in computer science from North Carolina State
University. He received his B.S. degree in computer science from Lafayette College. His research is in the
areas of artificial intelligence and human-computer interaction for advanced learning technologies, with
an emphasis on game-based learning environments. He is particularly interested in intelligent tutoring
systems, user modeling, educational data mining, and computational models of interactive narrative. Mr.
Rowe has led development efforts on several game-based learning projects, including Crystal Island: Lost
Investigation, which was nominated for Best Serious Game at the 2012 Unity Awards and the 2012
I/ITSEC Serious Games Showcase and Challenge. His research has also been recognized with several
best paper awards, including best paper at the Seventh International Artificial Intelligence and Interactive
Digital Entertainment Conference and best paper at the Second International Conference on Intelligent
Technologies for Interactive Entertainment.

Vasile Rus

Dr. Rus is an associate professor of computer science with a joint appointment in the Institute for
Intelligent Systems (ITS) whose areas of expertise are computational linguistics, artificial intelligence,
software engineering, and computer science in general. His research areas of interest include question
answering and asking, dialogue-based intelligent tutoring systems (ITSs), knowledge representation and
reasoning, information retrieval, and machine learning. For the past 10 years, Dr. Rus has been heavily
involved in various dialogue-based ITS projects including systems that tutor students on science topics
(DeepTutor), reading strategies (iISTART), writing strategies (W-Pal), and metacognitive skills
(MetaTutor). Currently, Dr. Rus leads the development of the first intelligent tutoring system based on
learning progressions, DeepTutor (www.deeptutor.org). He has coedited two books, received several Best
Paper Awards, and authored more than 90 publications in top, peer-reviewed international conferences
and journals. He is currently Associate Editor of the International Journal on Artificial Intelligence Tools.

Jennifer Sabourin

Ms. Sabourin is currently a Ph.D. student at North Carolina State University in the Department of
Computer Science. She received her B.S. (2008) and M.S. (2012) in computer science from North
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Carolina State University where she graduated as Valedictorian. She is a recipient of the National Science
Foudation Graduate Research Fellowship award. Her research interests include artificial intelligence and
its application in education. In particular, her research focuses on modeling student affect, engagement,
self-regulation, and problem solving in game-based learning environments. Her work has been recognized
with a best student paper award at the third International Conference on Affective Computing and
Intelligent Interaction.

Valerie Shute

Dr. Shute is the Mack & Effie Campbell Tyner Endowed Professor in Education in the Department of
Educational Psychology and Learning Systems at Florida State University. Before coming to FSU in
2007, she was a principal research scientist at Educational Testing Service where she was involved with
basic and applied research projects related to assessment, cognitive diagnosis, and learning from
advanced instructional systems. Her general research interests hover around the design, development, and
evaluation of advanced systems to support learning — particularly related to 21st century competencies.
An example of current research involves using immersive games with stealth assessment to support
learning — of cognitive and non-cognitive knowledge, skills, and dispositions. Her research has resulted in
numerous grants, journal articles, books, chapters in edited books, a patent, and a 2010 book co-edited
with Betsy Becker entitled, Innovative assessment for the 21st century: Supporting educational needs.

Anne Sinatra

Dr. Sinatra is an Oak Ridge Associated Universities Post Doctoral Fellow in the Learning in Intelligent
Tutoring Environments (LITE) Lab at the U.S. Army Research Laboratory’s (ARL) Simulation and
Training Technology Center (STTC) in Orlando, FL. The focus of her research is in cognitive and human
factors psychology. She has specific interest in how information relating to the self and about those that
one is familiar with can aid in memory, recall, and tutoring. Her dissertation research evaluated the
impact of using degraded speech and a familiar story on attention/recall in a dichotic listening task. Her
work has been published in the journal Interaction Studies, and in the conference proceedings of the
Human Factors and Ergonomics Society. Prior to becoming a post doc, Dr. Sinatra was a graduate
research associate with UCF’s Applied Cognition and Technology (ACAT) Lab, and taught a variety of
undergraduate psychology courses. Dr. Sinatra received her Ph.D. and M.A. in applied experimental and
human factors psychology, as well as her B.S. in psychology from the University of Central Florida.

Matthew Small

Dr. Matthew Small is a research consultant and educational game developer working with various
educational research entities including the College of Education at The Florida State University. His
research interests center on re-designing the template for modern educational game development through
embedding mechanisms for learning and assessment into engaging video games that rely on nonlinear
gameplay mechanics. His work focuses on STEM areas of content knowledge that are traditionally
considered difficult to teach and measure in “fun” digital environments. Dr. Small has collaboratively
developed educational software including Newton’s Playground and Codecraft, games that teach
guantitative physics and computational thinking, respectively, and are the focus of numerous publications
as well as ongoing research.

Abhiraj Tomar
Mr. Tomar received his B.S. in computer science from BITS Pilani University, India and is currently

working as a research intern at the University of North Texas. He completed a B.S. thesis on user
modeling for companionbots. His work aims at developing dialog based healthcare agents to provide real-
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time care to elderly and depressed. For an undergraduate project, he worked on search engine
optimization and developed a clustering algorithm using latent semantic analysis and graph theory. He
has also worked on optimization of downstream processing and online question bank organizer. His
research interests include artificial intelligence, algorithms, graph theory, natural language processing and
multidisciplinary applications of computer science. He headed the marketing team of his undergraduate
institution for a year and was also a manager for the public relations team.

Matthew Ventura

Mr. Ventura is a senior research scientist in the College of Education at Florida State University. His
current research spans both cross-sectional and experimental research around how video games can affect
cognitive and noncognitive skills. Specific skills of interest include large-scale spatial ability, problem
solving, persistence, conceptual physics, and computational thinking. Mr. Ventura also designs
educational video games and simulations that use embedded assessments to enhance learning. His work
has resulted in numerous publications spanning the areas of assessment, cognitive science, and education.

Learner Modeling Advisory Board Members

The editors of Design Recommendations for Intelligent Tutoring Systems - Learner Modeling (Volume 1)
would like to recognize the contributions of learner modeling advisory board members whose
contributions to this effort were not in the authoring of book chapters, but provided motivations and focus
to the development of this volume.

Trey Martindale

Dr. Martindale is associate professor for the Instructional Design and Technology graduate program with
the University of Memphis, and is a research scientist with the Institute for Intelligent Systems. His
research expertise is in the design and analysis of online learning environments. His research and
development work has been funded by NSF, the Centers for Disease Control, the U.S. Department of
Education, the Institute of Education Sciences, IBM, Microsoft, and others. Dr. Martindale has
contributed to the creation of four fully online degree programs at three universities, and has developed
numerous online courses. He has pioneered the effective pedagogical use of social software tools for
enabling collaborative learning environments. He is an active consultant to companies and organizations
seeking to improve their employee training and performance. He also leads consulting efforts within the
university IDT program, directing IDT graduate students on instructional design and e-learning projects
with external clients. He serves on the Board of Directors for the Association for Educational
Communications and Technology, and is on the review board for Educational Technology Research and
Development, and the Quarterly Review of Distance Education.

Kurt VanlLehn

Dr. VanLehn is the Diane and Gary Tooker Chair for Effective Education in Science, Technology,
Engineering and Math in the Ira A. Fulton Schools of Engineering at Arizona State University. He
received a Ph.D. from MIT in 1983 in computer science, was a post-doc at BBN and Xerox PARC, joined
the faculty of CMU in 1985, moved to the University of Pittsburgh in 1990 and joined ASU in 2008. He
founded and co-directed two large NSF research centers (Circle; the Pittsburgh Science of Learning
Center). He has published over 125 peer-reviewed publications, is a fellow in the Cognitive Science
Society, and is on the editorial boards of Cognition and Instruction and the International Journal of
Artificial Intelligence in Education. Dr. VanLehn’s research focuses on intelligent tutoring systems and
other intelligent interactive instructional technology.
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Ray S. Perez

Dr. Perez is a senior scientist and program officer at the Office of Naval Research (ONR) in Arlington,
Virginia. In this capacity, he is responsible for and actively manages ONR’s Cognitive Science of
Learning Program. This Program has three major multidisciplinary and highly intertwined thrusts.
Specifically, he is responsible for (1) training/education research and their core technologies, (2)
individual differences research and (3) neuro-biology of learning research. Dr. Perez also conducts
research in the development of new theories and methods for the assessment of human abilities. He is
recognized as a DoD leader in learning, he was asked by the Chief of Naval research to be the program
manager for ONR’s STEM Grand Challenge. Dr. Perez has conducted research in the areas of
technology-based education / training spans over 20 years. Throughout his career, he has received
numerous awards for his work in advanced learning technologies for training and education. He has
authored four books on the use of technology in education and training. Most recently, he co-edited
Computer Games and Team and Individual Learning Technology with Dr. Harry O’Neil that is published
(2011) by Elsevier. His next book also co-edited with Drs. Harry O’Neil and Eva Baker entitled Teaching
and Measuring Cognitive Readiness (in preparation) will be published by Springer Publishing Company.

Prior to coming to ONR he served as program manager for the Presidential Technology Initiative
Program at the Department of Defense Education Activity (DoDEA). While at DoDEA he was the
Director of the K-12 program within the Advanced Distribute Learning Initiative, sponsored by the
Office of the Secretary of Defense, Readiness and Training. Earlier, he was principal scientist in
Simulation and Advanced Instructional Systems, at the U.S. Army Research Institute for the Social and
Behavioral Sciences (ARI) and was an assistant professor, in the Department of Psychology, at California
State University Dominguez Hills, California.

Dr. Perez continues to serve as an educational technology expert on various review panels including the
National Science Foundation (NSF), National Academy Sciences (NAS), and the Defense Advanced
Research Agency (DARPA). Dr. Perez received a Doctorate and Master’s degrees in Educational
Psychology with emphasis on Cognitive Psychology from the University of California, Los Angeles
California.

Beverly Park Woolf

Dr. Woolf is a research professor at the University of Massachusetts who develops intelligent tutors that
model student affective and cognitive characteristics and combine cognitive analysis of learning with
artificial intelligence, network technology, and multimedia. These systems represent the knowledge
taught, recognize learners’ skills and behavior, use sensors, and machine learning to model student affect,
and adjust problems to help individual students. Dr. Woolf has developed tutors in education and industry
and in a variety of disciplines (e.g., chemistry, psychology, physics, geology, art history, mathematics,
and economics). Some of these tutors enable students to pass standard exams at a 20% higher rate and one
system is used by more than 150,000 students per semester across hundreds of colleges. Dr. Woolf
published the book Building Intelligent Interactive Tutors along with over 200 articles. She is lead author
on the NSF report Roadmap to Education Technology in which 40 experts and visionaries identified the
next big computing ideas that will define education technology and developed a vision of how technology
can incorporate deeper knowledge about human cognition and develop dramatically more effective
instructional strategies. Dr. Woolf has delivered keynote addresses, panels, and tutorials in more than 20
foreign countries and is a fellow of the American Association of Artificial Intelligence.
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ACRONYM LIST

2-D

AAWC

ABC

ACE

ACL

ACAT

ACTIVE

ADL

AFRL

AICA

ALEKS

API

ARL

ASN

ASU

BKT

CBM

CCNU

CBTS

CDOs

CECEP

CMU

two-dimensional

anti-air warfare coordinator
Affective-Behavioral-Cognitve

Adaptive Coach for Exploration

agent communication language

Applied Cognition and Technology

Applied Cognition and Training in Immersive Virtual Environments
Advanced Distributed Learning Initiative

Air Force Research Laboratory

kaike information criterion

Assessment and Learning in Knowledge Spaces
application programming interface

U.S. Army Research Laboratory

Achievement Standards Network’s

Arizona State University

Bayesian knowledge tracing

constraint-based modeling

Central China Normal University
computer-based training systems

Cognitive doman ontologies

complex event processing

Carnegie Mellon University
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CRC

CSP

CTAT

CTO

DAG

DARPA

DKF

DLs

DOD

ECD

ECS

EDA

EDM

EER

EMDAT-RT

EMT

EP

ERIC

EWS

FIPA

FYI

GIFT

GME

GPT

HAI

HAL

Current Relevant Contribution

constraint satisfaction problem

Cognitive Tutor Authoring Tool

Chief Technology Officer

Directed acyclic graph

Defense Advanced Research Projects Agency
Domain Knowledge File

Domain-specific languages

U.S. Department of Defense
Evidence-Centered Design

Engineering and Computer Simulations’
electro-dermal activity

educational data mining

enhanced entity-relationship

Eye Movement Data Analysis Toolkit in Real Time
Expectation and Misconception Tailored
empirical progression

Educational Resource Information Center
electronic warfare signal

Foundation for Intelligent Physical Agents
for your information

Generalized Intelligent Framework for Tutoring
Generic Modeling Environment

general processing tree

human-computer interaction

Hyperspace Analogue to Language
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HFES
HRED
ICS

IES

ISI

ITA

ITS
JADE
KCs
KERMIT
KST
LCC
LDA

LIT
LITE

LM KQML
LMSs
LPs

LRM
LSA
LSCM
MDPs

MICE

Human Factors and Ergonomics Society
Human Research and Engineering Directorate
Intelligent Creativity Support

U.S. Institute for Education Sciences
input/output

Item Response Theory

interactive simulation

Instructional Strategies Indicator

International Technology Alliance

intelligent tutoring system

Java Agent Development Framework
knowledge components

Knowledge-based Entity Relationship Modeling Intelligent Tutor
knowledge space theory

Learner Characteristic Curve

Latent Dirichlet Allocation

Language and Information Technologies
Learning in Intelligent Tutoring Environments
Knowledge Query and Manipulation Language
Learning management systems

Learning Progressions

Latent Response Models

Latent Semantic Analysis

Large-Scale Cognitive Modeling

Markov decision processes

Michigan Intelligent Coordination Experiment
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MOOCS massive open online courses

MSF National Science Foundation

MIT Massachusetts Institute of Technology
NAS National Academy Science

NLS Non-Latent Similarity

NP Newton’s Playground

NPCs non-player characters

NRC The National Research Council

NSF U.S. National Science Foundation
OLMs open learner models

ONR U.S. Office of Naval Research

PAL Personal Assistant for Learning
PART Projective Adaptive Resonance Theory Model
PMI Pointwise Mutual Information

PO primary object

POKS Partial Order Knowledge Structures
PSLC Pittsburgh Science of Learning Center
PUDs Protocol Data Units

QUAID Question Understanding AID

PAPI Personal and Private Information”
PSLC Pittsburgh Science of Learning Center
PFA performance factors analysis

R relevance condition

RDF resource description format

RML research modeling language

RMML research modeling language
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R-N
RPTEL
RSS

S

SB
SCORM
SCM
SEMILAR
SIMILE
SMART
SOAs
SQL
SRL
STEM
STTC
SSA
TLA
UoM
URL
USAMRAA
VBS2
WAS
WBE
WPI
WTF

XML

relevance and novelty

Research and Practice in Technology Enhanced Learning
rich site summary

satisfaction condition

springboard

Sharable Content Object Reference Model

Structured Construct Model

Semantic Similarity

Student Information Models for Intelligent Learning Environments
Student Modeling Approach for Responsive Tutoring
service-oriented architectures

Structured Query Language

self-regulated learning

Science, Technology, Engineering and Mathematics
Simulation and Training Technology Center

Social Security Administration

Training and Learning Architecture

University of Memphis

uniform resource locator

U.S. Army Medical Research Acquisition Activity
Virtual Battle Space 2

Word Association Space

web-based education

Worcester Polytechnic Institute

Without Thinking Fastidiously

Extensible markup language
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Design Recommendations for Intelligent
Tutoring Systems explores the impact of
intelligent tutoring system design on education
and fraining. Specifically, this volume, “Learner
Modeling” examines the fundamentals of learner
modeling and identifies best practices, emerging
concepts and future needs to promote efficient
and effective adaptive tutoring solutions.
Design recommendations include current,
projected, and emerging capabilities within the
Generalized Intelligent Framework for Tutoring
(GIFT), a modular, service-oriented architecture
developed to promote simplified authoring,
reuse, standardization, automated instructional
management and analysis of tutoring
technologies.
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