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This book is the first in a planned series of books that examine key topics (e.g., learner modeling, 

instructional strategies, authoring, domain modeling, learning effect, and team tutoring) in intelligent 

tutoring system (ITS) design through the lens of the Generalized Intelligent Framework for Tutoring 

(GIFT; Sottilare, Brawner, Goldberg, and Holden, 2012), a modular, service-oriented architecture created 

to develop standards for authoring, managing instruction, and analyzing the effect of ITS technologies.  

This preface introduces tutoring functions, provides learner modeling examples, and examines the 

motivation for standards for the design, authoring, instruction, and analysis functions within ITSs. Next, 

we introduce GIFT design principles, and finally, we discuss how readers might use this book as a design 

tool. We begin by examining the concept of learner modeling. 

Learner modeling (also known as student modeling or user modeling) is one of the major components of 

ITS. Learner modeling is a key to the computer-based tutor’s understanding of the learner. 

Comprehensive, real-time modeling of the learner is a critical element in the design and development of 

truly adaptive tutoring systems that can tailor tutoring experiences to the needs of the individual learner 

and teams of learners.  

It is generally accepted that an ITS has four major components (Elson-Cook, 1993; Nkambou, Mizoguchi 

& Bourdeau, 2010; Graesser, Conley & Olney, 2012; Psotka & Mutter, 2008; Sleeman & Brown, 1982; 

VanLehn, 2006; Woolf, 2009): The domain model, the student model, the tutoring model, and the user-

interface model. GIFT similarly adopts this four-part distinction, but with slightly different corresponding 

labels (domain module, learner module, pedagogical module, and tutor-user interface) and the addition of 

the sensor module, which can be viewed as an expansion of the user interface. 

(1) The domain model contains the set of skills, knowledge, and strategies of the topic being tutored. 

It normally contains the ideal expert knowledge and also the bugs, mal-rules, and misconceptions 

that students periodically exhibit.  

(2) The learner model consists of the cognitive, affective, motivational, and other psychological 

states that evolve during the course of learning. It is often viewed as an overlay (subset) of the 

domain model, which changes over the course of tutoring. For example, “knowledge tracing” 

tracks the learner’s progress from problem to problem and builds a profile of strengths and 

weaknesses relative to the domain model (Anderson, Corbett, Koedinger & Pelletier, 1995). An 

ITS may also consider psychological states outside of the domain model that need to be 

considered as parameters to guide tutoring.  

(3) The tutor model (also known as the pedagogical model or the instructional model) takes the 

domain and learner models as input and selects tutoring strategies, steps, and actions on what the 

tutor should do next in the exchange. In mixed-initiative systems, the learners may also take 

actions, ask questions, or request help (Aleven, McClaren, Roll & Koedinger, 2006; Rus & 

Graesser, 2009), but the ITS always needs to be ready to decide “what to do next” at any point 

and this is determined by a tutoring model that captures the researchers’ pedagogical theories.  

(4) The user interface interprets the learner’s contributions through various input media (speech, 

typing, clicking) and produces output in different media (text, diagrams, animations, agents). In 

addition to the conventional human-computer interface features, some recent systems have 

incorporated natural language interaction (Graesser et al., 2012; Johnson & Valente, 2008), 

speech recognition (D’Mello, Graesser & King, 2010; Litman, 2013), and the sensing of learner 

emotions (Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 2010; Goldberg, 

Sottilare, Brawner, Holden, 2011).  
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The designers of the learner model need to decide what content, fields, variables, and parameters need to 

be included in the representation. The representation needs to be complete with respect to handling the 

distinctions made in the domain model, tutoring model, and user interface. Such representations vary in 

grain size, reflecting the complexity of the ITS. There is a comparatively small number of distinctions 

made in conventional computer-based training (O’Neil & Perez, 2003). For example, a simple system 

would just keep track of whether the learner has mastered (yes versus no) a set of N learning objects in 

the curriculum and the objects in a curriculum would be ordered theoretically, perhaps from simple to 

complex or along a prerequisite ladder (Gagne, 1985). The tutoring module would select the next learning 

object that the learner has not mastered and places that as lowest/earliest in the ordering. This kind of 

simple system may go a long way. However, ITSs presume to go a large step further in grain size and 

adaptability. Some of these ITSs are listed below, but there are many others that can be discussed at the 

workshop. One foundational question is whether the increased grain size and adaptability has an 

incremental return on investment with respect to learning gains. 

Learner Modeling Examples 

The following sections briefly describe four examples of learner modeling that have been developed and 

tested in contemporary ITSs.  

Knowledge Tracing in the Cognitive Tutor 

This approach to learner modeling tracks the learner’s progress from problem to problem and builds a 

profile of strengths and weaknesses relative to the production rules (Anderson et al., 1995). A production 

rule is an “IF<state>THEN<action>” expression that specifies that a particular action, step, or cognitive 

event occurs in a particular state of the task or cognition. Information from knowledge tracing can be 

presented as a skillometer, a visual graph of the learner’s success in each of the monitored skills related to 

solving problems in a step by step fashion. The skillometer is updated as the learner performs correct 

actions, commits errors, and requests a hint. Step-by-step knowledge tracing is incorporated in a number 

of tutors in the Pittsburgh Science of Learning Center (Aleven et al., 2006; Anderson et al., 1995; 

Heffernan, Koedinger & Razzaq, 2008; Ritter, Anderson, Koedinger & Corbett, 2007; VanLehn, 2006).  

Constraint-based Modeling 

In constraint-based tutors, a good solution is represented as a declarative structure and the learner’s 

actions are compared with these constraints (Mitrovic, Martin & Suraweera, 2007; Ohlson, 1992). Each 

constraint is a declarative statement composed of a relevance condition (R) and a satisfaction condition 

(S). The relevance condition specifies when the constraint is relevant and only in these conditions is the 

state constraint meaningful. The satisfaction condition specifies whether the state constraint has been 

violated. A relevant, satisfied state constraint corresponds to an aspect of the correct solution. A relevant, 

unsatisfied state constraint indicates a flaw in the solution. Learner modeling is tracked by considering 

what constraints are followed as learners solve problems. Successful constraint-based tutors include 

Structured Query Language (SQL) tutor, Knowledge-based Entity Relationship Modeling Intelligent 

Tutor (KERMIT), and Addison-Wesley’s Database Place (Mitrovic, Martin & Suraweera, 2007).  

Knowledge Space Models 

Knowledge space modeling underlies the Assessment and Learning in Knowledge Spaces (ALEKS) 

mathematics tutor (Doignon & Falmagne, 1999; Hu et al., 2012). The domain model of knowledge space 
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theory is a large number of possible knowledge states on a topic, whereas the learner model is a record of 

which of the knowledge states are mastered, essentially a fine-grained overlay model. A learner’s 

competence is reflected in the types of problems that the learner is capable of solving (among 250‒350 

problems), given the profile of knowledge states mastered among millions of possible states. Bayesian 

statistics are used to select the next problem to work on that is sensitive to the learner’s competence by 

filling in deficits and correcting misconceptions. If a learner solves the next problem correctly, then each 

knowledge state containing that problem incrementally increases in probability; if the learner answers 

incorrectly, then the knowledge states are decreased in probability. Categories of skills are represented in 

a pie chart that reflects the competence of the learner. 

Expectation and Misconception Tailored Dialogue  

This type of learner modeling is typical for ITSs that help learners learn by holding a conversation in 

natural language, such as AutoTutor or Why-Atlas (Graesser et al., 2012; VanLehn et al., 2007). An 

answer to a question is a set sentence-like expectation (good answer), but the tutor also anticipates the 

learner articulating misconceptions (errors). An expectation or misconception is scored as being 

expressed by a learner if the learner articulates it in natural language with a high enough semantic match. 

Semantic matches can be assessed by a number of methods in computational linguistics, such as content 

word overlap, latent semantic analysis, regular expressions, semantic entailment, or Bayesian statistics 

(Cai et al., 2011; Graesser et al., 2007; Rus et al., 2009; VanLehn et al., 2007). When the total set of 

problems is considered, there is a universal set of expectations (called principles or facets) and 

misconceptions that are relevant to the various problems. These principles can be tracked over problems 

and guide the selection of the next problem to work on.  

Motivations for Intelligent Tutoring System Standards 

An emphasis on self-regulated learning has highlighted a requirement for point-of-need training in 

environments where human tutors are either unavailable or impractical. ITSs have been shown to be as 

effective as expert human tutors (VanLehn, 2011) in one-to-one tutoring in well-defined domains  

(e.g., mathematics or physics) and significantly better than traditional classroom training environments. 

ITSs have demonstrated significant promise, but fifty years of research have been unsuccessful in making 

ITSs ubiquitous in military training or the tool of choice in our educational system. Why? 

The availability and use of ITSs have been constrained by their high development costs, their limited 

reuse, a lack of standards, and their inadequate adaptability to the needs of learners (Picard, 2006). Their 

application to military domains is further hampered by the complex and often ill-defined environments in 

which our military operates today. ITSs are often built as domain-specific, unique, one-of-a-kind, largely 

domain-dependent solutions focused on a single pedagogical strategy (e.g., model tracing or constraint-

based approaches) when complex learning domains may require novel or hybrid approaches. Therefore, a 

modular ITS framework and standards are needed to enhance reuse, support authoring, optimize 

instructional strategies, and lower the cost and skillset needed for users to adopt ITS solutions for training 

and education. It was out of this need that the idea for GIFT arose.  

GIFT has three primary functions: authoring, instructional management, and analysis. First, it is a 

framework for authoring new ITS components, methods, strategies, and whole tutoring systems. Second, 

GIFT is an instructional manager that integrates selected tutoring principals and strategies for use in ITSs. 

Finally, GIFT is an experimental testbed to analyze the effectiveness and impact of ITS components, 

tools, and methods. GIFT is based on a learner-centric approach with the goal of improving linkages in 

the adaptive tutoring learning effect chain (Figure P-1).  
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Figure P-1. Adaptive Tutoring Learning Effect Chain (Sottilare, 2012) 

A deeper understanding of the learner’s behaviors, traits, and preferences (learner data) collected through 

performance, physiological and behavioral sensors, and surveys will allow for more accurate evaluation 

of the learner’s states (e.g., engagement level, confusion, frustration), which will result in a better and 

more persistent model of the learner. To enhance the adaptability of the ITS, methods are needed to 

accurately classify learner states (e.g., cognitive, affective, psychomotor, social) and select optimal 

instructional strategies given the learner’s existing states. A more comprehensive learner model will allow 

the ITS to adapt more appropriately to address the learner’s needs by changing the instructional strategy 

(e.g., content, flow, or feedback). An instructional strategy that is better aligned to the learner’s needs is 

more likely to positively influence their learning gains. It is with the goal of optimized learning gains in 

mind that the design principles for GIFT were formulated. 

GIFT Design Principles 

The methodology for developing a modular, computer-based tutoring framework for training and 

education considered major design goals, anticipated uses, and applications. The design process also 

looked at enhancing one-to-one (individual) and one-to-many (collective or team) tutoring experiences 

beyond the state of practice for ITSs today. A significant focus of the GIFT design was on domain-

dependent elements in the domain module. This was done to allow large-scale reuse of the remaining 

GIFT modules across different training domains and thereby reduce the development costs for ITSs. 

One design principle adopted in GIFT is that each module should be capable of gathering information 

from other modules according to the design specification. Designing to this principle resulted in standard 

message sets and message transmission rules (i.e., request-driven, event-driven, or periodic 

transmissions). For instance, the pedagogical module is capable of receiving information from the learner 

module to develop courses of action for future instructional content to be displayed, manage flow and 

challenge level, and select appropriate feedback. Changes to the learner’s state (e.g., engagement, 

motivation, or affect) trigger messages to the pedagogical module, which then recommends general 

courses of action (e.g., ask a question or prompt the learner for more information) to the domain module, 

which provides a domain-specific intervention (e.g., what is the next step?).  

Another design principle adopted within GIFT is the separation of content from the executable code (Patil 

& Abraham, 2010). Data and data structures are placed within models and libraries, while software 

processes are programmed into interoperable modules. Efficiency and effectiveness goals (e.g., 

accelerated learning and enhanced retention) were considered to address the time available for military 

training and the renewed emphasis on self-regulated learning. An outgrowth of this emphasis on 

efficiency and effectiveness led Dr. Sottilare to seek external collaboration and guidance. In 2012, U.S. 

Army Research Laboratory (ARL) with the University of Memphis developed advisory boards of senior 

tutoring system scientists from academia and government to influence the GIFT design goals moving 

forward. An advisory board for learner modeling was completed in September 2012, and future boards 

are planned for instructional strategy design, authoring and expert modeling, learning effect evaluations, 

and domain modeling. 

file:///C:/Users/rsottila/Documents/Events/2013_02_Learner%20Modeling%20Book/Preface/GIFT%20description_Sottilare%20Holden%20Goldberg%20and%20Brawner_October%202012%20update.docx%23Sottilare2012
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Design Goals and Anticipated Uses 

GIFT may be used as any of the following: 

1. An architectural framework with modular, interchangeable elements and defined relationships  

2. A set of specifications to guide ITS development 

3. A set of exemplars instantiating GIFT to support authoring and ease-of-use 

4. A technical platform or testbed for guiding the development of concrete systems 

These use cases have been distilled down into the three primary functional areas, or constructs:  

authoring, instructional management, and analysis. Discussed below are the purposes, associated design 

goals, and anticipated uses for each of the GIFT constructs. 

GIFT Authoring Construct 

The purpose of the GIFT authoring construct is to provide technology (tools and methods) to make it 

affordable and easier to build ITSs and ITS components. Toward this end, a set of extensible markup 

language (XML) configuration tools continues to be developed to allow for data-driven changes to the 

design and implementation of GIFT-generated ITSs. The design goals for the GIFT authoring construct 

have been adapted from Murray (1999, 2003) and Sottilare & Gilbert (2011). The GIFT authoring design 

goals are as follow:  

 Decrease the effort (time, cost, and/or other resources) for authoring and analyzing ITSs by 

automating authoring processes, developing authoring tools and methods, and developing 

standards to promote reuse. 

 Decrease the skill threshold by tailoring tools for specific disciplines (e.g., instructional designers, 

training developers, and trainers) to author, analyze, and employ ITS technologies. 

 Provide tools to aid designers/authors/trainers/researchers in organizing their knowledge. 

 Support (structure, recommend, or enforce) good design principles in pedagogy through user 

interfaces, and other interactions. 

 Enable rapid prototyping of ITSs to allow for rapid design/evaluation cycles of prototype 

capabilities. 

 Employ standards to support rapid integration of external training/tutoring environments (e.g., 

simulators, serious games, slide presentations, transmedia narratives, and other interactive 

multimedia). 

 Develop/exploit common tools and user interfaces to adapt ITS design through data-driven 

means. 

 Promote reuse through domain-independent modules and data structures. 

 Leverage open-source solutions to reduce ITS development and sustainment costs. 
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 Develop interfaces/gateways to widely used commercial and academics tools (e.g., games, 

sensors, toolkits, virtual humans). 

As a user-centric architecture, anticipated uses for GIFT authoring tools are driven largely by the 

anticipated users, which include learners, domain experts, instructional system designers, training and 

tutoring system developers, trainers and teachers, and researchers. In addition to user models and 

graphical user interfaces, GIFT authoring tools include domain-specific knowledge configuration tools, 

instructional strategy development tools, and a compiler to generate executable ITSs from GIFT 

components in a variety of formats (e.g., PC, Android, and IPad).  

Within GIFT, domain-specific knowledge configuration tools permit authoring of new knowledge 

elements or reusing existing (stored) knowledge elements. Domain knowledge elements include learning 

objectives, media, task descriptions, task conditions, standards and measures of success, common 

misconceptions, feedback library, and a question library, which are informed by instructional system 

design principles that, in turn inform concept maps for lessons and whole courses. The task descriptions, 

task conditions, standards and measures of success, and common misconceptions may be informed by an 

expert or ideal learner model derived through a task analysis of the behaviors of a highly skilled user. 

ARL is investigating techniques to automate this expert model development process to reduce the time 

and cost of developing ITSs. In addition to feedback and questions, supplementary tools are anticipated to 

author explanations, summaries, examples, analogies, hints, and prompts in support of GIFT’s 

instructional management construct. 

GIFT Instructional Management Construct 

The purpose of the GIFT instructional management construct is to integrate pedagogical best practices in 

GIFT-generated ITSs. The modularity of GIFT will also allow GIFT users to extract pedagogical models 

for use in tutoring/training systems that are not GIFT-generated. GIFT users may also integrate 

pedagogical models, instructional strategies, or instructional tactics from other tutoring systems into 

GIFT. The design goals for the GIFT instructional management construct are the following: 

 Support ITS instruction for individuals and small teams in local and geographically distributed 

training environments (e.g., mobile training), and in both well-defined and ill-defined learning 

domains. 

 Provide for comprehensive learner models that incorporate learner states, traits, demographics, 

and historical data (e.g., performance) to inform ITS decisions to adapt training/tutoring.  

 Support low-cost, unobtrusive (passive) methods to sense learner behaviors and physiological 

measures and use these data along with instructional context to inform models to classify (in near 

real time) the learner’s states (e.g., cognitive and affective). 

 Support both macro-adaptive strategies (adaptation based on pre-training learner traits) and 

micro-adaptive instructional strategies and tactics (adaptation based learner states and state 

changes during training). 

 Support the consideration of individual differences where they have empirically been documented 

to be significant influencers of learning outcomes (e.g., knowledge or skill acquisition, retention, 

and performance). 
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 Support adaptation (e.g., pace, flow, and challenge level) of the instruction based the domain and 

learning class (e.g., cognitive learning, affective learning, psychomotor learning, social learning). 

 Model appropriate instructional strategies and tactics of expert human tutors to develop a 

comprehensive pedagogical model. 

To support the development of optimized instructional strategies and tactics, GIFT is heavily grounded in 

learning theory, tutoring theory, and motivational theory. Learning theory applied in GIFT includes 

cognitive learning (Anderson & Krathwohl, 2001), affective learning (Krathwohl, Bloom, and Masia, 

1964; Goleman, 1995), psychomotor learning (Simpson, 1972), and social learning (Sottilare, Holden, 

Brawner, and Goldberg, 2011; Soller, 2001). Aligning with our goal to model expert human tutors, GIFT 

considers the INSPIRE model of tutoring success (Lepper, Drake, and O’Donnell-Johnson, 1997) and the 

tutoring process defined by Person, Kreuz, Zwaan, and Graesser (1995) in the development of GIFT 

instructional strategies and tactics.  

INSPIRE is an acronym that highlights the seven critical characteristics of successful tutors: Intelligent, 

Nurturant, Socratic, Progressive, Indirect, Reflective, and Encouraging. Graesser & Person’s (1994) 

tutoring process includes a tutor-learner interchange where the tutor asks a question, the learner answers 

the question, the tutor gives feedback on the answer, then the tutor and learner collaboratively improve 

the quality of (or embellish) the answer. Finally, the tutor evaluates learner’s understanding of the answer.  

As a learner-centric architecture, anticipated uses for GIFT instructional management capabilities include 

both automated instruction and blended instruction, where human tutors/teachers/trainers use GIFT to 

support their curriculum objectives. If its design goals are realized, it is anticipated that GIFT will be 

widely used beyond military training contexts as GIFT users expand the number and type of learning 

domains and resulting ITS generated using GIFT.  

GIFT Analysis Construct 

The purpose of the GIFT analysis construct is to allow ITS researchers to experimentally assess and 

evaluate ITS technologies (ITS components, tools, and methods). The design goals for the GIFT analysis 

construct are the following: 

 Support the conduct of formative assessments to improve learning  

 Support summative evaluations to gauge the effect of technologies on learning 

 Support assessment of ITS processes to understand how learning is progressing throughout the 

tutoring process  

 Support evaluation of resulting learning versus stated learning objectives 

 Provide diagnostics to identify areas for improvement within ITS processes 

 Support the ability to comparatively evaluate ITS technologies against traditional tutoring or 

classroom teaching methods 

 Develop a testbed methodology to support assessments and evaluations (Figure P-2) 
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Figure P-2. GIFT Analysis Testbed Methodology 

Figure P-2 illustrates an analysis testbed methodology being implemented in GIFT. This methodology 

was derived from Hanks, Pollack, and Cohen (1993) to allow manipulation of the learner model, 

instructional strategies, and domain-specific knowledge within GIFT, and support analysis of artificially- 

intelligent agents that influence the adaptive tutoring learning effect chain. In developing their testbed 

methodology, Hanks et al. reviewed four testbed implementations (Tileworld, the Michigan Intelligent 

Coordination Experiment [MICE], the Phoenix testbed, and Truckworld) for evaluating the performance 

of artificially intelligent agents. Although agents have changed substantially in complexity during the past 

20‒25 years, the methods to evaluate their performance have remained markedly similar. 

The authors designed the GIFT analysis testbed based upon Cohen’s assertion (Hanks et al., 1993) that 

testbeds have three critical roles related to the three phases of research. During the exploratory phase, 

agent behaviors need to be observed and classified in broad categories. This can be performed in an 

experimental environment. During the confirmatory phase, the testbed is needed to allow more strict 

characterizations of agent behavior to test specific hypotheses and compare methodologies. Finally, in 

order to generalize results, measurement and replication of conditions must be possible. Similarly, the 

GIFT analysis methodology (Figure P-2) enables the comparison/contrast of ITS elements and assessment 

of their effect on learning outcomes (e.g., knowledge acquisition, skill acquisition, and retention).  

How to Use This Book  

This book is organized into four sections:  

I. Fundamentals of Learner Modeling 

II. Current Learner Modeling Tools and Methods 

III. Emerging Learner Modeling Concepts 

IV. Future Learner Modeling Concepts 

The Fundamentals of Learner Modeling section provides an overview of learner modeling terms and 

concepts along with discussion topics, and a review of the learner modeling literature. The Current 

Learner Modeling Tools and Methods section reviews current learner modeling tools and methods and 
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provides design recommendations for GIFT and adaptive ITSs. The Emerging Learner Modeling 

Concepts section analyzes emerging learner modeling concepts and discusses their potential impact on 

design recommendations for GIFT and adaptive ITS. Finally, the Future Learner Modeling Concepts 

section projects how ITSs might be applied in the future and provides design recommendations to realize 

innovative capabilities in GIFT and adaptive ITSs. 

Chapter authors in each section were carefully selected for participation in this project based on their 

expertise in the field as ITS scientists, developers, and practitioners. Design Recommendations for 

Intelligent Tutoring Systems: Learner Modeling (Volume I) is intended to be a design resource as well as 

community research resource that can be of significant benefit as the following: 

 An educational resource for developing ITS scientists: Section I provides a wealth of 

information about ITS concepts and design, and presents an in-depth review of the learner 

modeling literature.  

 A roadmap for ITS research opportunities: Sections II, III, and IV present current, emerging, 

and future concepts about learner modeling. This sampling of authors’ perspectives is based on 

hundreds of cumulative years of experience in the ITS research domain and identifies significant 

gaps in current and emerging ITS technology (tools and methods). Each of these gaps points to 

yet unanswered research questions. 

 A roadmap to the development and application of GIFT: As noted previously, GIFT is an open-

source, publically available ITS architecture that is intended to make it easy to author ITSs; 

reduce the cost of ITS development by promoting reuse; automatically manage instruction based 

on best pedagogical practices; and allow scientists to compare and contrast evolving ITS 

capabilities to determine future best practices. As this book outlines issues and challenges 

associated with learner modeling, it also provides guidelines on how GIFT might be designed to 

address identified capability gaps. Future volumes of the “Design Recommendations for 

Intelligent Tutoring Systems” book series will provide insight to other ITS design domains 

including instructional strategy and tactics design, authoring and expert modeling, domain 

modeling, learning effect assessment, and team tutoring design. We encourage readers to become 

members of the GIFT community to build on its existing capabilities and support its future 

capabilities with us. More information on GIFT can be found by registering at 

www.GIFTtutoring.org. Registration provides access to GIFT source code, documentation, and 

related publications. 
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CHAPTER 1 ‒ A Guide to Understanding Learner Models 
Arthur Graesser 

University of Memphis 

Introduction 

The core notion of a learner model is not complex intuitively.  We simply need to record, represent, and 

track characteristics of the learner before, during, and after learning. The mission is accomplished when 

the learner model accommodates all of the variables that are ever considered in the history and future of 

intelligent tutoring systems, with all variables being adequately represented for all systems.  The 

theoretical problem is that the set of variables and their representation is not a closed system, but rather 

grows over time as a moving target.  The practical problem is that it is expensive to identify, track, store, 

update, and later retrieve the ever-growing universal set of variables. The mapping problem is that the 

alignment between the theoretical variables and computer code is often vague, incomplete, or 

incompatible.  The computational problem is that complex interactions among learner variables create a 

combinatorial explosion that is temporally insurmountable.  In light of these multiple problems, there is 

no alternative than to pursue sensible compromises. 

The chapters in this section have identified the major challenges in developing a learner model for GIFT.  

Simply put, there is no consensus in how the community of researchers is to handle the theoretical, 

practical, mapping, and computational problems. They all offer hints toward a solution, which was their 

charge.  It is difficult to decide whether any of them have answered the challenge. Perhaps yes.  Perhaps 

no.   

The chapter by Robson and Barr expresses the need to establish standards.  They argue that the standards 

should be pitched at the macro level rather than the micro level.  That is, the community of researchers 

should agree on the ingredients of major content objects (i.e., knowledge, skills, procedures) but leave it 

to the individual learning environments to realize the dynamics of mastering these learning objects. This 

would require an agreement among curriculum experts and system developers in converging on an ideal 

grain size that differentiates macro and micro.   

The chapter by Olney and Cade recommends that researchers take stock of the pedagogical strategies 

offered by researchers and to identify the learning model variables that support such strategies.  The 

Army Research Lab conducted a systematic study to identify the strategies from hundreds of studies. 

Olney and Cade identified the classes of learner model variables that would support these strategies.  This 

is a sensible approach to identifying a complete set of learner variables, including cognitive, social, 

emotion, and motivation dimensions.   

The chapter by Lesgold and Graesser raised the persistent problem of transfer.  It is comparatively easy to 

develop a system that efficiently trains learners on the knowledge and skills of a specific learning object, 

but it is difficult to do so in a way that transfers to a new learning object with related knowledge and 

skills. Specific is easy, but general is difficult.  The authors emphasize that it is absolutely critical to 

acquire the materials in a general way during training that transfers to a broad range of situations later on.  

If not, the learning episode is destined to reside in a very narrow corner of the space to be mastered. 

The chapter by Pavlik, Brawner, Olney, and Mitrovic provides a serious comprehensive review of the 

learning models in ITS applications over the decades. They take stock of the learner models in a variety 

of ITS frameworks, including step-based cognitive tutors, constraint based tutors, knowledge space 

models, dialogue systems, and trait-based assessments. They point out the value of systems with 

branching architectures and identify the alternative grain sizes of the branching, as well as the 
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consequences.  They also urge the GIFT to build on the major progress that has been made on previous 

ITS with general architectures and empirical validation.   

The four chapters in this section together have suggested a number of factors that need to be considered as 

GIFT takes on the challenge of learner modeling.  The goal of this section introduction is to provide a 

landscape of relevant dimensions rather than to offer concrete solutions. 

Landscape of Variables for Learner Models 

The number of learner variables is potentially large and unlimited but a small number of variables is 

typically tracked in systems that scale up.  For example, the variables tracked in educational systems 

throughout the country rarely go beyond attendance and 1-3 high stakes tests per year.  The collection of 

fine grained measures and learning portfolios are boutique enterprises that interest researchers and 

teachers of the future.  Consequently, any convergence on an intermediate, manageable set of learner 

variables will need to satisfy numerous political and practical constraints.     

The number of learner variables being considered in ITS research has substantially increased over the 

decades.  There are many measures of learning gains that assess changes between pretests and posttests.  

The efficiency of learning is measured in economic models that consider how much learning occurs per 

unit time.  The mastery of specific knowledge, skills, and strategies is assessed at ever increasing grain 

sizes. The learners’ engagement and persistence can be tracked by recording time on task, reactions to 

computer requests, non-invasive measures (e.g., eye movements, body posture), and physiological 

measures.  The emotions and motivation of the learner are tracked by algorithms that mine the log files of 

the person-system interactions. These behavioral measures are arguably more valid than self-report data, 

such as rating scales that are contaminated by the learners’ metacognitive folklore.  Measures of 

personality, leadership, and social responsiveness are also tracked by algorithms that have evolved from 

the educational data mining community.  Contemporary ITS applications routinely collect thousands of 

measures during a time span of 2 to 20 hours.  The grain size of ITS measurement is currently 3 orders of 

magnitude beyond the data collected in school systems throughout the country. 

Farming and Mining the Landscape of Variables 

Researchers need to be selective when analyzing the rich log file data that tracks the learner models.  The 

most straightforward approach is to focus on those raw or composite measures that are anticipated 

theoretically.  This top-down approach is the perfect place to start and impresses most reviewers of 

academic journals and funding agencies.  Large data sets can be “farmed” by researchers in a manner that 

systematically tests and revises theories in the face of empirical data.  Data are selected and organized to 

test major learning theories of the day, well established ITS applications (see Pavlik et al. chapter), 

educational standards (such as the Common Core or certification on specialty topics), the learning 

strategies documented by the ARL (see Olney and Cade chapter), an existing repository of learning 

objects that are shared by the community (see Robson and Barr chapter), and transfer between learning 

objects, tasks, and subject matters (see Lesgold and Graesser chapter).  

Theories are unfortunately limited and frequently not confirmed. Consequently, there is a need for 

bottom-up methods to discover new learner measures and patterns from the log files.  During the last 

decade, the field has experienced the evolution of the data mining revolution.  New categories of learners 

are revealed by clustering analyses on learners and on tasks, as well as the tracking of individual learner 

data over time.  Longitudinal research designs (which track individuals over a long period of time) are 

preferred over cross sectional research designs. Sequences of events in the log files are diagnostic of 

specific psychological attributes.  Once these patterns are discovered, they can be tracked automatically 
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and tested further.  This approach is expected to lead to the development of more sophisticated learning 

theories that have a better chance of scaling up. 

Representing Learner Models 

ITS developers are known to disagree over the representation of knowledge, skills, and strategies in the 

learner model.  This is because the computational models are very different in the cognitive tutors, 

constraint-based tutors, knowledge space tutors, dialogue-based tutors, scenario-based tutors, and other 

classes of ITS architectures.  The representation of production rules also may differ in ITS applications 

that adopt production rules.  The primitive elements, symbolic expressions, and quantitative parameters 

differ among production rules systems because the subject matter applications have very different 

constraints.  

It is too early in the history of ITS development to force researchers to adopt a particular representation of 

knowledge, skills, and strategies. The SCORM initiative never was able to achieve such a lofty objective, 

even though there were some discussions to try.  Researchers are deeply wedded to their pet 

computational architectures and algorithms as they pursue cycle after cycle of model testing.  With this 

context in mind, GIFT developers may consider focusing on specific exemplar ITS applications that have 

proven the test of time and empirical validation (see Pavlik et al. chapter). There are a limited set of 

successful ITS applications so this approach would be a practical first step that is within reach.  New ITS 

applications can build upon these prototypical exemplar ITS applications. The learner models of these 

exemplars could be expressed in a general formal notation in addition to the actual software residing in a 

repository of concrete applications.  The specific ITS developers would of course need to agree to 

annotate and release the software. Once the collection of ITS exemplars is available, the time would be 

ripe to identify a first-cut landscape of variables for learner modeling.                

The complexity and variations in representations have left us with some significant barriers in scaling up 

ITS.  There are not enough trained personnel to build new applications on new subject matters because of 

the idiosyncratic features of the ITS representations.  An ideal author would have expertise in the subject 

matter, cognitive science, information sciences, education, ITS pedagogy, human computer interaction, 

and sometimes computational linguistics.  Authoring tools are often created to minimize this barrier, but 

there have never been sufficient efforts to build high quality authoring tools.  There needs to be 

systematic R&D on authoring tool development that is tested on personnel outside of the camp of the 

original ITS developers. We need an applied empirical science of authoring tool development that has 

analogues to research on writing or to design. To what extent are the learner model representations 

developed with sufficient fidelity, scope, grain-size, and level of abstraction? How much training is 

needed for new personnel to develop learner models for new applications? What is the time course and 

costs of developing new learner models?   

GIFT in the Short-Term Horizon 

As mentioned earlier, the contributors to this section of the book offered different recommendations for 

developing the learner model component of GIFT.  The recommendations addressed challenges and 

pressure points that need attention in the roadmap ahead.  This final section enumerates some actions that 

might be considered in the short-term horizon.   

(1) A prototype has been developed that implements characteristics of GIFT, including the learner model.  

A systematic analysis could be conducted on the learner model variables in order to assess the extent to 

which they cover the variables present in the learner models of different classes of mainstream ITS 

applications (e.g., cognitive tutors, constraint-based tutors, knowledge space tutors, dialogue-based tutors) 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

6 

 

and the pedagogical strategies identified by the ADL.  A repository of variables could be assembled with 

definitions and links to alternative ITS applications. 

(2) It is widely acknowledged that it is difficult to achieve successful transfer from one domain or subject 

matter to that of another. The field would benefit from an analysis of training strategies, representation 

specification, degree of abstraction, grain size, and other characteristics of learner models of ITS 

applications that have achieved good transfer.   

(3) Shareable learning objects (such as SCORM) have been a persistent dream of many communities that 

want to scale up advanced learning environments.  The field would benefit from a review of the successes 

and failures of these attempts.  This includes an analysis of the level of abstraction and types of 

representations that are likely to be shareable and serve as standards.    

(4) Authoring tools have nearly always been difficult to use for ITS as well as other learning 

architectures.  The field could benefit from a review of empirical research that has systematically 

analyzed how new personnel use such tools as well as the quantity and quality of their products from the 

standpoint of learner modeling in particular.  New empirical studies are needed that are more systematic 

than anecdotal.   

(5) The time and costs of developing an ITS on a new subject matter has frequently been a focus of 

questions with respect to scaling up the ITS enterprise.  The field would benefit from an economic 

analysis that helps answer these questions.  It is important to segregate the initial up-front costs in 

developing initial ITS applications, incremental costs in developing new ITS applications that piggyback 

on existing systems, and scale-up costs after an existing system is ready to be used by thousands or 

millions of students. 

(6) Classes of ITS are ideally tailored to different types of learning, such as strategically guided 

perception, memory for facts, execution of procedures, explanations of events within complex systems, 

principle-based prediction/forecasting, and removal of chronic misconceptions in mental models. The 

field would benefit from a typology and possibly a consensus on what learning environments are 

appropriate for each type of learning.  
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CHAPTER 2 ‒ Lowering the Barrier to Adoption of Intelligent 

Tutoring Systems through Standardization 
Robby Robson

1 
and Avron Barr

2
 

1
Eduworks Corporation; 

2
Aldo Ventures 

Introduction 

To have an impact, a learning system must be effective and must be used. In the case of ITSs, studies 

have repeatedly and consistently shown significant learning gains (Dodds & Fletcher, 2004; Durlach & 

Ray, 2011; Kulik & Kulik, 1991; VanLehn, 2011). Despite their demonstrated value and over thirty-year 

history (Barr, Beard & Atkinson, 1975; Sleeman & Brown, 1982), the use of ITSs remains restricted to 

research projects and a few commercial applications. There are success stories, but in general, such 

systems are not being adopted at the rates that their effectiveness would justify. As stated by Blessing, 

Gilbert, Ourada & Ritter (2009) in a paper on authoring model-tracing cognitive tutors, “ITSs, including 

model-tracing tutors, have not been widely adopted in educational or other settings, such as corporate 

training. Perhaps the most successful deployment of model-tracing tutors is Carnegie Learning’s 

Cognitive Tutors for math, which are in use by over 1300 school districts and by hundreds of thousands 

of students each year. After this notable success, however, most educational and training software is not 

of the ITS variety.”  

Multiple factors could be impeding adoption, but two factors in particular stand out. The first is that ITSs 

are designed to be standalone systems that do not communicate or interoperate with other systems used to 

support learning, education, and training. The second is the sheer complexity of ITSs and the concomitant 

effort it takes to develop them (Murray, 2003).  

With this as motivation, this chapter explores how standardization might help ITSs fit into learning 

ecosystems and simplify their design. Here we suggest focusing on standards for exchanging learner 

information among systems, not on standards for internal components. We also point out that the 

requirement to exchange learner information emphasizes the problem of determining which adaptations 

are responsible for the positive learning effect sizes observed when using ITSs. We believe that the 

suggested approach will enrich learner models, encourage developers to separate their innovative and 

proprietary adaptation engines from the portions of ITSs that interoperate with other learning systems, 

and ultimately, transform ITS architecture in ways that will make them easier to implement and adopt.  

Standards  

As Christensen & Raynor (2003) point out, interoperability and standardization enable competition and 

the growth of supply chains. In learning technology, for example, the emergence of learning management 

systems (LMSs) in the 1990s disrupted the print-based supply chain from authors to publishers to schools 

to learners. Standards such as IMS Content Packaging (IMS Global Learning Consortium, 2004), AICC 

Computer Managed Instruction (AICC, 2004), Sharable Content Object Reference Model (SCORM) 1.2 

(Dodds, 2001), SCORM 2004 (ADL, 2006), and IMS Common Cartridge (IMS Global Learning 

Consortium, 2011) reestablished much of the same chain by allowing courseware to be produced 

independently and used by any compliant LMS. Arguably, the eLearning industry, which is a multi-

billion dollar industry today (Adkins, 2011; Bersin, 2012; Global Industry Analysts, 2013), would not 

exist without these standards, and it is reasonable to assume that some standardization is needed to spur 

the adoption of ITSs.  
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At the same time, many proposed learning technology standards have failed to be completed or failed to 

achieve significant adoption. These proposals include standards for learner information and learner 

models, architectures, repository interoperability, intelligent agent communication, competency 

definitions, student identifiers, and many others. For example, the IEEE Learning Technology Standards 

Committee web site from December 2000 (IEEE, 2000a) shows 17 standards projects, almost all of which 

are still relevant today (including a standard for learner models). Less than half of these were completed 

in any form, and almost none have achieved any significant adoption. In most cases, failed efforts were 

driven more by an example and a vision rather than by a market/adopter pain point and real products. 

These failed standards, as described in Robson (2006), were “innovation and research-driven standards” 

rather than “market-driven standards.” If standards are to be developed to spur the adoption of intelligent 

tutoring systems, they must be defined by market needs, or else they will have little effect.  

Market Needs 

What are those market needs? If we accept that ITSs are effective, the immediate market needs of 

potential customers are to (1) implement them with as little integration effort and work disruption as 

possible; and (2) obtain the data that are required for learning management and talent management and 

that can be used to demonstrate pedagogical impact and monitor costs. Customers may tolerate some 

inconvenience to get a more effective learning solution, but they are probably not willing to reconfigure 

their entire learning infrastructure, retrain all of their users, radically alter their established workflows, or 

give up on tracking grades and course completion status. 

Unfortunately, ITSs make little or no attempt to exchange even basic results data with other systems. This 

isolationism is typical of new learning technologies. Early LMS and assessment engine products were the 

same, and so are massive open online courses (MOOCS) and the Khan Academy. The following 

exchange from the Google Khan Academy Developers Group (Azevedo & Ojeda, 11/19/12) typifies the 

reluctance of new product developers to address interoperability and the frustration of early adopters who 

typically run their daily operations via institutional learning management systems. (Typos and spelling 

corrected).  

DA: Hello developers. Is Khan Academy / Khan Exercises SCORM Compliant? 

MO: hi D. Sorry to say, we do not. Is there some definite advantage to supporting it other than 

this graphic from scorm.com?” (Graphic shows reduced costs from using SCORM) 

DA: Hello and thanks for the quick response. I find one big use for SCORM. If a student uses 

multiple learning platforms it would be nice for grades and progress to be shared across the 

platforms. One example would be: I’m attending a class in Khan Academy, like Algebra II, but I 

find another site/course and I want to make Algebra III in that new site/course. If I could 

export/import my certified data across platforms that would be very flexible for students. In the 

long run people will like that the time spent on Khan or another site/course is certified and 

flexible, like in real universities there is equivalence in subjects and grades/progress.
1
 

The immediate market needs of potential customers are to track results and hold down implementation 

costs. These are conditions for diffusion of the technology, but once diffusion starts, other requirements 

will appear. For example, since ITSs provide individualized learning, it is likely that students will 

frequently switch among different systems. If the one system has gathered data about a learner’s cognitive 

or affective characteristics, other systems can make use of it. Existing standards such as IMS GLC 

                                                           
1
 We note that one of the motivations for moving from SCORM to the Experience API is that SCORM does not address learners 

working on multiple platforms. 
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Learner Information Package (IMS Global Learning Consortium, 2005) and the Europass (Cedefop, 

2012) can be used for transcript data, curriculum vitae (CV) data, and high level competencies (e.g., 

language skills), but new standards will be needed for expressing and comparing learner information.  

In addition, adoption will bring renewed demands for 

avoiding lock-in. Even if the same content cannot be 

plugged and played in multiple intelligent tutoring 

systems, customers will want to leverage content 

they have already acquired and will want to 

outsource ITS development to multiple sources. To 

achieve this requirement, there must be some 

reasonable separation between the “system” 

software, “content” such as text and multimedia 

presented to the learner, and “interfaces,” including 

the user interface and those that exchange data with 

other learning systems. This is diagrammatically 

shown in Figure 2-1.  

Standards for Learner Information 

The first requirement for adoption is for ITSs to “play well” in current learning environments. This can be 

done by requiring conformance to SCORM and the Experience API or Tin Can API (Advanced 

Distributed Learning, 2013) or by adopting the IMS approach based on Learning Tools Interoperability 

(IMS Global Learning Consortium, 2012). The important point is that ITS developers should not ignore 

these standards if they want their systems to be adopted.  

Requirements to exchange even very coarse data such as completion status and quiz results will naturally 

lead developers to reexamine their system architectures and, hopefully, lead to a separation of 

components such as that illustrated in Figure 2-1. For example, the Experience API, planned for the next 

generation of SCORM, uses an “actor – verb – activity” paradigm and is designed for compatibility with 

semantic inference engines (Poltrack, Hruska, Johnson & Haag, 2012). Using this application 

programming interface (API), a score on a quiz can be reported as a series of statements such as “Student 

completed quiz” and “Student scored 95.” An inference engine embedded in an LMS or other learning 

system might additionally know that “Quiz assesses Quadratic Formula” and conclude that “Student 

demonstrates competency in Quadratic Formula.” The requirement to generate such triples and support 

the API will suggest using a similar structure to store and exchange other data, including learner 

information. This may or may not be the optimal design choice for a particular ITS, but experience shows 

that developers of new systems often use standards as guidelines for functionality and design (Devedzic, 

Jovanovic & Gasevic, 2007). 

Independent of how it is represented, the key question for standardization is what information should be 

exchanged. In other words, what should an ITS be telling other systems, including other ITSs, other 

enterprise learning systems, and other applications used by instructors, students, managers, and 

researchers? Since ITSs are valuable because of their positive effects on learning, this information should 

consist of the data responsible for attaining this effect. In other words, the question of what information 

should be exchanged is the question of what student data are required to achieve near optimal adaptation. 

This is a special case of the more general question, posed by Durlach (2012) and Ray Perez (personal 

communication), of what functionality in ITSs has the most effect on learning outcomes and how much of 

this functionality is needed in practice. We do not know the answer, but we can nonetheless make some 

reasonable conjectures concerning the types of learner information might be included:  

Figure 2-1. System, Content and Interfaces 
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 Educational records and high level competencies such as language skills and flight certifications. 

Standards exist for these data. It is not clear what inferences an intelligent tutor can make directly 

from them, but since human tutors find them valuable, there is an argument for including them. 

 Competencies (including Skills, Knowledge, Abilities, Outcomes, Objectives) and level of 

competence. These have also been standardized and represent data that are crucial for talent 

management, job placement, and many other applications. They are also used for AICC/SCORM-

type sequencing, and at a fine level of granularity, can be equated with domain topics.  

 Data in affective, motivational, and social dimensions. Cognitive models are more common and 

better understood, but many adaptations rely on data in these dimensions (Dimitrova, 2009). For 

example, tutors may observe how students react to different types of stimuli and discover beliefs 

and attitudes that other systems could use to select instructional content and strategies.  

 Goals, including learning goals and mission/task goals. These goals are also data that a human 

tutor would want to know and that might be important for adaptation. 

 Physical adaptations, such as location, device capabilities, ambient light, and accessibility data. 

Accessibility data have been standardized, and these other data can clearly be used in many ways. 

As an historical note, we believe that the task of standardizing learner data was first taken up by the IEEE 

Learning Technology Standards Committee. In 2000, the scope statement for the Learner Model working 

group (IEEE, 2000b) read: “This standard will specify the syntax and semantics of a ‘Learner Model,’ 

which will characterize a learner (student or knowledge worker) and his or her knowledge/abilities. This 

will include elements such as knowledge (from coarse- to fine-grained), skills, abilities, learning styles, 

records, and personal information. This standard will allow these elements to be represented in multiple 

levels of granularity, from a coarse overview, down to the smallest conceivable sub-element. The 

standard will allow different views of the Learner Model (learner, teacher, parent, school, employer, etc.) 

and will substantially address issues of privacy and security”  

Its purpose consisted of five items: 

1. To enable learners (students or knowledge workers) of any age, background, location, means, or 

school/work situation to create and build a personal Learner Model, based on a national 

standard, which they can utilize throughout their education and work life. 

2. To enable courseware developers to develop materials that will provide more personalized and 

effective instruction. 

3. To provide educational researchers with a standardized and growing source of data. 

4. To provide a foundation for the development of additional educational standards, and to do so 

from a student-centered learning focus. 

5. To provide architectural guidance to education system designers. 

This project was known as “Personal and Private Information” (PAPI) and never turned into a standard 

for reasons beyond the scope of this chapter. It did, however, have some important attributes. It 

considered highly granular information, a consideration abandoned by the IMS Learner Information 

Package and Europass standards. It had personalized learning and architectural guidance as important use 

cases. Architectural guidance is important because the complexity of ITSs is a barrier to adoption. 

Interchange standards do not dictate how data are stored or processed internally, but they tend to 
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influence how systems are designed. Devedzic et al. (2007), for example, give an extensive overview of 

eLearning standards aimed at developers of web-based eLearning systems because “they establish high-

level principles for organizing learning resources and developing web-based education (WBE) 

applications.” As things stand, an ITS constructs its internal model of a specific learner solely from its 

interactions with that learner. The modeling framework is constructed from cognitive and learning 

science, but the only data used to instantiate the models come from interactions with the ITS. The ability 

to retrieve learner information from other systems will change that and encourage developers to separate 

their innovative and proprietary adaptation engines from the portions of their systems that interoperate 

with other learning technologies. 

Models Should Not Be Standardized 

We have suggested that learner information should be standardized but have avoided suggesting the same 

for learner models. In fact, we do not believe that standardization is appropriate for any of the models 

associated with the inner workings of ITSs.  

In the abstract, ITSs adjust their instructional strategy based on a learner model, expert model domain 

model, and pedagogical model (Durlach & Ray, 2011), but very few real-world ITSs use all these 

components and the nature of each of these components can vary wildly. For example, the model-tracing 

cognitive tutors built by Carnegie Learning (Anderson, Corbett, Koedinger & Pelletier, 1995) encode 

expert knowledge in logical production rules and give hints to students when their input violates one of 

the rules, whereas ALEKS (2011) tracks which topics a student has mastered and, using data gathered 

from a large population of previous learners, infers which new topics the student is likely to be able to 

master next. In contrast to cognitive and model-tracing tutors, the AutoTutor family (Graesser et al., 

2004; Hu et al., 2009) has less explicit encoding of domain knowledge. These tutors use semantic analysis 

to determine how relevant student input is to content that has been presented, and in some cases, adjust 

their strategies based on affective states determined by sensor data (D’Mello & Graesser, 2010; D’Mello 

& Graesser, 2012). An examination of examples cited in sources (Graesser, Jeon & Dufty, 2008; Murray, 

2003; Ohlsson & Mitrović, 2006; Woolf, 2009) reveals even further diversity in the way that ITSs 

operate. 

This diversity exists for a good reason. Motivated by the two-sigma effect size observed with one-on-one 

human tutoring, ITSs attempt to replicate this experience with technology (Kulik & Kulik, 1991; 

VanLehn, 2011). Each system’s technical approach to building and using models to achieve this goal is 

its principal locus of innovation and a chief source of differentiation in the marketplace. There is a 

significant difference between macro-adaptations, which persist over time and can be used by multiple 

systems, and micro-adaptations, which are ephemeral and lie fully in the domain of a single system. The 

candidate standardization categories in the previous section are all macro-adaptations. Since ITSs derive 

their competitive advantage from micro-adaptations and the models that enable them, standardization of 

these models would not be accepted and, if accepted, may hinder innovation.  

Recommendations for GIFT and Future Research 

GIFT (Sottilare, 2012) provides a testbed in which multiple ITSs can function. Its architecture 

contemplates that ITSs will exchange data with an LMS. Adoption of GIFT would encourage ITS 

developers to include LMS-compatible reporting mechanisms, which we argue is a necessary step for 

market diffusion of ITS technology.  
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GIFT also includes a learner module, which we would view as learner information exchange service. 

There are existing standards that can serve as the basis for constructing such a service, and any reasonable 

candidate standard for learner information exchange will be extensible enough to evolve over time.  

The key question, however, is what data ITSs actually need to exchange to enhance learning gains and 

support the other intelligent systems and apps used by teachers and students. This is a difficult research 

question, and the history of learning technology standardization teaches that abstract and theoretical 

answers to questions of this nature do not lead to practical and adoptable standards. The best approach is 

likely repeated cycles of experimentation and observation. That approach may require creating tutors that 

implement well-controlled and limited functionality, measuring their effect on learning, and iteratively 

refining standards for learner information exchange based on the results. A framework such as GIFT is 

ideally suited as the “breadboard” for such experimentation.  
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Introduction 

In the age of the intelligent machine, training of humans inevitably requires training for transfer. If we 

knew exactly what a person should do in a situation, we could program a computer or robot to do it 

instead. However, no two situations are exactly the same so uncertainty and differences arise in matches 

between the current situation and episodes of the past. Modeling transfer has traditionally meant getting 

as close as possible to modeling the total expertise trainees were expected to have in handling episodes of 

the past and future. We suggest that there may be more effective approaches today. One possibility is to 

model knowledge (general or specific) that would permit a person to represent a situation in a form that 

can be handled by diverse training and transfer trajectories. A second possibility would be to establish a 

principled way to prioritize which knowledge should be overlearned so that it can be “stretched” to novel 

situations not covered in training. A related approach would be to do both. For example, one could 

perform situation modeling within the domain of interest along with cognitive load analyses of the 

situation modeling examples drawn from the target domain. This chapter explores these options and 

considers what task analysis and expert modeling is needed to capture them. 

If we want people to carry out performance of a task in a precise way, we can conduct a task analysis and 

then teach each of the elements of the performance and directly measure how well each element is 

acquired. This approach to training worked remarkably well for the training of line workers in the 

industrial age and of enlisted personnel in the military prior to the knowledge revolution (Collins & 

Halverson, 2009). It assumed availability of supervisors or officers who would creatively handle 

unexpected challenges and provide direction that allowed teams to adapt to emergent situations. It was 

generally assumed that these leaders did not need carefully monitored complete training for their roles but 

rather that they would be selected as being intelligent enough to prove a useful bridge from the formal 

training of their subordinates to the actual situations their unit might encounter. 

Now that we are entrenched in the knowledge revolution, however, routine performance can be specified 

so precisely that we can teach a person or program an intelligent machine to perform these procedures 

competently. Moreover, once empowered by intelligent tools, every worker or soldier has a role akin to 

the leaders or officers of times past. Nevertheless, experience has shown that most workers in intelligent 

work environments need substantial training, even if we cannot fully drill them on every aspect of the 

performances we hope they will exhibit. This creates a need to consider transfer in the design of training. 

That is, we are no longer merely preparing people by teaching them all the elements, rules, or procedures 

that define perfect performance in every likely circumstance. Rather, they need to be prepared for 

emergent situations that deviate from original training. Our hope is that our trainees will show transfer 

from the specific prescribed training to ideal performance on emergent tasks. 

Related Research 

The profound challenge is that there typically is unspectacular transfer from training to new situations 

(Banich & Caccamise, 2010). A classical study by Hayes and Simon (1977) had college students 

attempting to solve a series of problems that had structurally identical solutions but varied in surface 

characteristics, such as substituting names of characters and objects (Hobbits and Orcs vs. Monsters and 
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Globes). Transfer between four successive problems was near zero unless students were explicitly 

instructed to make similarity connections between the problems. Gick and Holyoak (1980) investigated 

whether the structure of a story about troops converging on a location would help college students solve a 

radiation problem that had a direct structural isomorph to the story. The transfer was modest without 

cognitive activities that intentionally tried to establish correspondences between the two representations. 

At a more global practical level, the order of courses in a curriculum is rarely backed by substantiating 

transfer data (Vuong, Nixon & Towle, 2011). For example, there is not an abundant body of empirical 

evidence that calculus helps engineering or that physics helps students understand chemistry. Knowledge 

and skills are highly constrained by specific characteristics of the subject matter. 

The above examples present a dismal picture of transfer, but it can be countered by exemplars of 

successful transfer. The literature is replete with evidence that training on particular tasks can facilitate 

performance on similar tasks in the future. The devil is in the details of the similarity of the stimuli, tasks, 

and associated cognitive representations (Gentner & Markman, 1997).  

The transfer problem has enormous implications for the GIFT architecture (Sottilare, Brawner, Goldberg 

& Holden, 2012), particularly with respect to the distinction between domain-independent and domain-

dependent modules. The current GIFT architecture specifies that the sensor and pedagogical modules are 

domain-independent whereas the subject-matter knowledge is domain dependent. The implication of the 

domain-independent modules needs to be clarified. Does that mean that there should be significant 

transfer between tasks that have similar subject matters but different sensor and pedagogical modules? 

Does that mean that the same pedagogical methods can be applied to a broad set of subject matters, as 

opposed to the pedagogical modules being distinctively tailored for particular subject matters? Does 

subject matter (domain knowledge) reign supreme over sensor and pedagogical modules? What are the 

priorities among these GIFT modules on the matter of transfer?  

We propose that a model of student
2
 learning has two categories of knowledge in an intelligent training 

system. First, it knows how well the student has mastered the elements specifically being trained. Second, 

it knows how prepared the student is to confront categories of situations that cannot be predicted and 

cannot be rehearsed adequately. This latter requirement means that such systems must embody a theory of 

transfer that can allow us to know how far a student’s knowledge might stretch. 

Consider, for example, a football coach. The coach might train the team to execute a particular kind of 

play, such as an option running play. The team can practice each of the two or three ball carrier options, 

so that every team member knows who to pass the ball to, who to get the ball from, or where the players 

position themselves to block the defense. However, the practice sessions only rehearse some of the 

possibilities because the defensive players are intelligent entities and do not necessarily behave exactly as 

the sham defense set up during the practice sessions. Yet the coach is hopeful that the team will perform 

well in every case. 

Some of the performance environments are predictable. By having the defense behave intelligently and 

conform to known football best practices, the coach can create a variety of practice situations that 

anticipate what will happen in an upcoming game. However, the game will have situations that deviate 

from the ones on which practice occurred. A theory of practice is useful to the extent that it allows the 

coach to predict game performance from practice performance, select the right practice situations, and 

decide when there has been enough practice. 

                                                           
2
 For simplicity of exposition, we use terms like “student model” and “students” even though the primary audience 

for this volume are training developers and training system designers, not schoolteachers or professors. 
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Unpredictable situations will nevertheless occur. It might be icy or rainy. The field might be muddy or not 

the same surface as that on which practice occurred. The players may change as wounds heal, injuries 

occur, and so on. Consequently, there need to be global indicators of whether team members are ready for 

a wider range of unpredictable occurrences. A decision is needed as to whether the current situation is 

under the realm of status quo or an unusual case. An adequate model would identify specific 

performances that a player can do well in prototypical situations as well as some estimates of which 

categories of unpredictable cases can be expected to be adequately handled. The latter models the transfer 

potential of what was explicitly learned. One way to address the problem of transfer is to consider the two 

skill sets separately. That is, there are the specific performance skills that encompass expertise in the 

target domain. There are also situation representation capabilities that allow a student to classify a novel 

situation as one in which particular learned performances can be successful. These situation 

representational skills mediate the availability of learned rules to be applied in emergent situations. Our 

experiences in building intelligent training systems have convinced us that these two skill sets should be 

handled in different ways. 

The first author has developed and tested intelligent training systems for maintaining equipment in the 

military and business sectors, including troubleshooting equipment failures (Gott & Lesgold, 2000; Gott, 

Lesgold & Kane, 1997; Lesgold & Nahemow, 2001). For the specific performance skills, there was the 

standard approach of building an expert model that was capable of solving the range of tasks that was 

targeted for training. The initial assumption was that once each rule in the expert model was demonstrated 

by the student, training was considered completed. However, our experience quickly revealed that this 

was not entirely the case because the target domains we addressed were extremely complex. All of the 

information needed to trigger each of the rules relevant for a given task was present in the task domain, 

but there was so much information that a serious challenge remained in representing the situation at hand 

sufficiently to trigger appropriate rules. 

The challenge of system complexity required us to train the situation representation skills needed to 

perceive the problem domain adequately to trigger expert rules. Our expert informants initially believed 

that this required training on recognizing the various components of the complex target domain. For 

example, in the case of avionics test stations, this would include the system modules and the components 

of the modules. However, it was apparent that all of the students could recognize all of the modules and 

their components, even at the beginning of training. The needed situation representation skills were more 

subtle than our expert informants realized. 

A reasonable training method would be to directly teach how to recognize which aspects of a situation are 

important. This is done in football when players are taught the names and overall strategies behind 

various types of plays. It also is done in medicine when physicians in training directly learn to recognize 

various syndromes for which diagnostic rule sets are known. This approach to teaching for transfer can 

work when there are recurrent examples of these various plays or syndromes. In football, that happens 

because the coach has studied game films and knows the patterns that the opposing team is likely to use. 

In medicine, it happens because various genetic and environmental factors predispose human bodies to 

exhibit various syndromes or patterns of malfunction (e.g., lots of us overeat and under-exercise, with the 

bodily response being pretty stereotypic). 

Engineered systems generally are built and modified to adapt to the range of circumstances in which they 

are deployed, but unfortunately they often do not have predictable patterns of breakdown. If those existed, 

they would be engineered away. This makes it harder to teach situation representation by teaching how to 

recognize syndromes; there are few if any recurrent syndromes to teach. This required us to take a 

different approach that did not explicitly teach students to watch for specific patterns, at least for the most 

part. Instead, students were provided a useful range of experiences that prompted them to construct rule-
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based knowledge on top of their prior experiences with the task domain. This more flexible emphasis on 

the range of the situations was expected to extend the students’ knowledge to new situations.  

The scheme that was developed was called intelligent coached apprenticeship. Basically, we pushed 

students to go beyond their overlearned knowledge to solve novel problems (Gott & Lesgold, 2000). We 

expected that none of the problem tasks our training system provided would be solvable by the students 

without help. Five levels of help were available. The lowest level listed the sequence of actions the 

student already had taken to address the problem. More than half of the time, that level of hint was 

sufficient to keep the student moving toward a solution to the problem. If the student was still stuck, there 

would be more explicit levels of hint (e.g., where to look for information) until a final hint level that told 

the student exactly what to do on the next step. For the population our training addressed, the desire to 

learn was strong, and students seldom asked for more help than they needed. After completing the 

solution for the problem, they also were able to study a comparison of their solution path to that of an 

expert. 

The central hypothesis in this research (Gott & Lesgold, 2000; Gott, Lesgold & Kane, 1997) is that 

scaffolding for students to shape their own construction of situation representation skills would produce 

the needed development of those skills, even if we could not explicitly list them all and even if it was not 

feasible to build a complete set of situation representation rules and train on each. It was reassuring that 

our efforts were highly successful. We had expert technicians develop a collection of far transfer tasks 

that involved applying the expert rules we taught to new hardware. The transfer hardware was a fictitious 

piece of hardware that could still be diagnosed using the expert rule set that our training system 

embodied. The students we trained performed in about the same range as experts on those problems (Gott 

& Lesgold, 2000; Gott, Lesgold & Kane, 1997). 

It may eventually be possible to teach the needed situation representation skills directly rather than to 

assume them and indirectly stimulate their construction by the students. For example, Forbus et al. (2007) 

have made progress in specifying what a computer needs in order to learn similar kinds of 

representational skills. Nevertheless, the scheme we developed is worthy of further exploitation. On the 

one hand, it focuses on the expert rules needed to do the necessary problem solving, and on the other 

hand, it does not ignore the reality that some level of further knowledge construction is needed if those 

rules are to be available when needed in addressing novel tasks.  

There will always be uncertainty that an individual student’s understanding of the task domain embodies 

entirely the same constructs that the training designer might have had. This is especially the case in 

complex technical domains, where the training designers often know much more basic science than the 

technicians being trained. As an example, consider the terms used in expert rules for diagnosing failures 

of an ion beam system for writing circuits on computer chips (Lesgold & Nahemow, 2001). A complete 

account requires knowledge of quantum physics, silicon chemistry, and optics. Technicians two years out 

of high school could learn the diagnosis rules well enough to apply them in transfer situations using the 

training technique of providing difficult problems with scaffolding and post-problem reflection (Lesgold 

& Nahemow, 2001). 

Discussion 

The intelligent coached apprenticeship was impressively effective, producing learning effect sizes 

exceeding one standard deviation. These results are on par with or exceed intelligent tutoring systems that 

have been developed and tested during the last decade (Graesser, Conley & Olney, 2012; VanLehn, 

2011). However, questions remain about the information that is needed in the students’ situation 
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representation to assure adequate learning. There are also questions directly relevant to GIFT (Sottilare et 

al., 2012).  

The systems described in the previous section did not log information about the students’ situation 

representation, and it did not retain its short-term estimations of student reasoning strategies. Instead, the 

systems were validated by conducting far transfer studies. This is an expensive way to proceed. It is worth 

considering simpler ways to assure adequate learning of rules that provide substantial transfer. Some of 

these possibilities are presented in this section.  

One important step would be to record information about the level of coaching/scaffolding that a student 

requires. The systems described above did that, but the data were not retained beyond their presence in a 

post-problem recapitulation of the student’s activity and a comparison of that to an expert solution. GIFT, 

in contrast, routinely records in the log files the raw sensor data, computer-student interactions, 

pedagogical strategies being implemented, expected student responses (both correct and misconceptions), 

actual student responses, and other data that can be mined for system improvement. At any given moment 

in solving a problem in the intelligent coached apprenticeship systems, the system kept track of what the 

best next step for a student. Therefore, it would be straightforward to record data that indicates that the 

student has a misconception or does not know what to do next (see, for example, the inference of 

“malrules” by systems VanLehn [1981] has built). Informative episodes occur when the student asks for 

coaching or performs a non-optimal next step. As the student starts taking appropriate actions, the past 

records of incomplete learning could be retired and eventually there would be confidence that a rule has 

been learned broadly. GIFT supports such data mining and machine learning activities.  

Note that the approach is substantially different from direct training of a rule. In direct training, the 

student is placed in circumstances where the rule should be triggered and then taught explicitly to apply it. 

The problem with the direct training approach is that the rules flagged as learned may not be triggered in 

circumstances where complex tasks are being performed without attention focused directly on possible 

circumstances where the rule applies. We have known for almost a century (Whitehead, 1929) that 

specifically learned bits of knowledge often are not used in broader circumstances where they should 

apply. By focusing more of learning on explicitly stretching one’s knowledge, this problem has been 

avoided. The question arises whether training of humans is needed at all, given that the intelligent 

coached apprenticeship systems relied upon expert models to provide coaching. Expert models would 

perhaps not be able to transfer to novel situations any more than novice technicians. We were able to 

formally represent each problem in a way that permitted the expert system to solve it, but those 

representations were only possible because of the additional knowledge of the experts who developed 

them. That more implicit knowledge is exactly what intelligent coached apprenticeship endeavors to train. 

Decisions will need to be made on how the above mechanisms in the intelligent coached apprenticeship 

would be implemented in GIFT. The student-constructed situation representation is not merely stored in 

the GIFT Domain Module, but rather is apparently derived in the Learner Module from a combination of 

activities involving the Sensor Module, Pedagogical Module, the Domain Module, and history of the 

logged data. Does this complex interactivity clash with the modular assumption that differentiates the 

domain-dependent Domain Module from the remaining domain-independent components?  

Another important step for implementing effective intelligent coached apprenticeship systems resides in 

tracking mastery of rules in broad contexts. The problem sets presented to students need to be sufficiently 

challenging and span a wide enough range of situations. They can never span all the situations a student 

will encounter when applying what is being taught. However, they need to span a sufficiently wide range 

that they force students to reflect on why each rule is applicable and the range of possible situations of 

applicability. For the two rather different domains developed by Lesgold and his colleagues, the expert 

technicians helped build problems that are sufficiently diverse that there was transfer to novel situations. 
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One situation involved diagnosis of failures in complex switching systems designed to test electronic 

components from military aircraft. The range of problems experts helped us develop was sufficient to 

produce far transfer performance that was about as good as that of domain experts (Gott, Kane & 

Lesgold, 1995; Gott, Lesgold & Kane, 1997). The second domain in which we did similar training and 

testing with similar results was the diagnosis of failures in machines used to make computer chips, 

notably ion deposition systems that put layers on chips and ion beam implant systems that write circuits 

on those layers (Lesgold & Nahemow, 2001). The switching systems had underlying knowledge 

associated with simple electrical properties of circuit continuity and magnetics (relays were involved). 

The chip-making systems involved underlying knowledge of electrical systems, heat distribution, silicon 

gas compounds, movements by robots, and to some extent, even more complex basic science.  

The same basic approach worked for both domains so it is at least a reasonable conjecture that it can work 

much more widely. It would be worthwhile, however, to study the utility of logging indications of 

uncertainty, lack of knowledge, or misconceptions at points where the rules in an expert system are not 

applied routinely or accurately. Such information might allow better decisions on how much training is 

needed to produce mastery. Once again, the logged data, data mining, and machine learning facilities of 

GIFT are, in principle, equipped to implement this approach. Decisions will need to be made on the 

division of labor among GIFT modules when accommodating changes to the system.  

Recommendations and Future Research 

The intelligent coached apprenticeship system described in this chapter underscores the importance of 

capturing situation representations that are constructed by the students in order to handle a diverse range 

of cases applicable to transfer situations. Domain experts will be needed to select the problems that 

deviate from routine cases that can be trained explicitly. Research will therefore be needed to understand 

how these cases/problems are selected, the mapping between training and transfer cases, the situation 

representations that students construct, and their ability to identify unusual cases. A detailed analysis of 

the log data should be helpful in these research efforts and also in modification of the systems in iterative 

development. 

There are two major recommendations directly relevant to GIFT. First, decisions will need to be made on 

how the specific modules will participate in the intelligent coached apprenticeship system. It is not a 

simple matter of storing content in the Domain Module. Second, decisions will need to be made on how 

to represent the information stored in the log files and the various modules. It is not a simple matter of 

storing everything. The features, content, and structures will need to be able to support new cases and 

situation representations in addition to domain-dependent and domain-independent information.  
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CHAPTER 4 ‒Matching Learner Models to Instructional 

Strategies 
Andrew M. Olney and Whitney L. Cade 

University of Memphis 

Introduction  

Learner models represent key variables that guide instructional strategies during e-Learning. By 

representing key variables about a particular student, learner models make adaptive instruction possible. 

Without learner models, instruction cannot be individualized and instead is often calibrated to the average 

ability learner or the lowest ability learner. Learner models enable instruction to focus on what the student 

doesn’t know and adjust to the student’s abilities, motivation, and preferences. In other words, learner 

models enable adaptive instructional strategies. 

Given the tight correspondence between learner models and instructional strategies, they must be 

considered in parallel when designing e-Learning systems. In fact, a strong argument could be made that 

the choice of instructional strategy drives all other modeling decisions in e-Learning by placing 

requirements on the learner model and other related models (see Pavlik et al., Chapter 5 in this volume, 

for a review). Thus, one approach to studying learner models would be to conduct an analysis of all 

possible instructional strategies and then examine what requirements they place on learner models. 

However, the vast number of instructional strategies that have been proposed in the literature make this 

approach somewhat impractical.  

In this chapter, we explore an alternative approach to strategy-based analysis of learner models. The 

Institute for Simulation and Training at the University of Central Florida has recently published an online 

database known as the Instructional Strategies Indicator (ISI) (Tarr, 2012). The ISI contains 150 

instructional strategies, indexed by when and where instruction occurs, the evidence for instructional 

efficacy, the size of the group being instructed, the expertise of the learner, and the type of knowledge 

being taught. The ISI represents an effort to organize the known instructional strategies into a 

comprehensive framework, allowing for the optimal selection of an instructional strategy in a given 

instructional setting.  

The methodology used to create the ISI was qualitative and data-driven, using aspects of grounded theory 

methodology to select relevant literature and create an analytic framework to describe the literature. 

Vogel-Walcutt, Fiorella, and Malone (2012) conducted searches of PsychInfo, the Educational Resource 

Information Center (ERIC), and Google Scholar using a predefined set of search terms and restricting the 

dates of studies to between 2000 and 2010. Of the 4,515 articles returned, only 771 were retained as 

relevant to the ISI criteria, which included relevance to military training. In addition to being coded 

according to the dimensions mentioned above (e.g., when and where instruction occurs), instructional 

strategies in the retained articles were rated by judges on their associated evidence for efficacy. Strategies 

were ranked on a 0–9 scale based on multiple criteria of evidence, including empirical results and quality 

of study, with judges’ ratings being checked for inter-rater reliability (Vogel-Walcutt, Malone & Fiorella, 

2012). This process yielded 150 different instructional strategies that were included in the ISI. However, 

only 13 of these strategies were given the highest rating of 7–9, which was reserved for strategies backed 

by multiple randomized experiments with moderate to large effect sizes (d ≥ 0.5; Cohen, 1992).  

Table 1 presents these 13 strategies with a subset of the ISI dimensions. Missing dimensions include 

hierarchical categorizations of the strategy type and the knowledge, skills, and abilities to be learned. 

Included dimensions are (1) timing of instruction relative to the instructional event (pre/during/post), (2) 
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setting of instruction (e.g., computer-based, classroom, or live-training), (3) group size (e.g., individual, 

small group, or large group), (4) learner’s level of expertise (novice/journeyman/expert), (5) knowledge 

type targeted (declarative/procedural/conceptual/integrated), and (6) rating of evidence for efficacy. Each 

of these dimensions has previously been described in detail (Vogel-Walcutt, Fiorella & Malone, 2012), 

but it is outside the scope of this chapter to evaluate the ISI framework or methodology. For the present 

purposes, it is important to note that the ISI represents a serious attempt to frame the landscape of 

instructional strategies, and as such it has implications for the study of learner models. The purpose of this 

chapter is to consider the alignment of learner models to the instructional strategies in Table 4-1.  

Table 4-1.  Top 13 instructional strategies from the ISI 

Name Time Setting Group Size Level Knowledge Rating 

Goal Setting Pre Any Individual Novice Declarative 7 

Scaffolding During Any Individual Novice Declarative 8 

Distributed Practice During Any Individual Novice Declarative 8 

Massed Practice During Any Individual Novice Procedural 8 

Adaptive Instruction During Classroom Individual Novice Conceptual 8 

Multimedia Instruction During Computer-based Individual Novice Conceptual 8 

Intelligent Tutoring Systems (ITS) During Computer-based Individual Novice Integrated 8 

Affective ITS During Computer-based Individual Journeyman Conceptual 7 

Bayesian Approach During Computer-based Individual Novice Conceptual 7 

Peer Learning During Classroom  Large group Novice Conceptual 7 

Pedagogical Agent During Computer-based  Individual Novice Integrative 7 

Self Reflection Post Classroom Individual Novice Conceptual 7 

Self Assessment Post Classroom Individual Journeyman Integrative 7 

 

However, even a quick inspection of Table 4-1 reveals that these “strategies” are not equally comparable. 

Adaptive Instruction is properly viewed as a category that includes ITS, affective ITS, Scaffolding, and 

the Bayesian Approach, so it arguably could be excluded from further discussion. Likewise, ITSs are a 

vehicle for delivering strategies; there is no a priori strategy associated with ITSs, except that they are 

somehow individually adaptive. Finally, the Bayesian Approach is a specific modeling formalism, not a 

strategy. Although some of the others are not well-defined “strategies” in a strong sense, they are 

identifiable with strategies, such as Multimedia Instruction (optimal mode of presentation), Pedagogical 

Agent (social enhancement of learning), and Affective ITS (learning enhancing affect). Therefore, only 

the following ten strategies will be considered with respect to learner models in the remainder of this 

chapter. These ten strategies form three natural groupings of self-regulated learning strategies (Goal 
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Setting, Self-Assessment, and Self-Reflection), social constructivist strategies (Scaffolding, Affective 

ITS, Peer Learning, and Pedagogical Agent), and memory-enhancing presentation strategies (Distributed 

Practice, Massed Practice, and Multimedia Instruction). We discuss each of these in turn.  

Self-Regulated Learning Strategies  

Three of the above ISI strategies are aligned with the four phases of self-regulation: planning/goal setting, 

monitoring, control, and reflection (Pintrich, 2000). As we proceed, it is important to note that, in a tutor-

student or teacher-classroom context, these four phases may be enacted in a distributed way. For example, 

while the student may have set the initial learning goals, the tutor may be monitoring the student’s 

progress and controlling strategies to facilitate the student’s progress. E-learning environments likewise 

have the same potential to distribute and scaffold self-regulation strategies. 

The four phases of self-regulation may manifest in several ways. At any point during the learning session, 

learners may set goals for learning or goals for performance. During the learning session, learners may 

monitor their progress toward goals (e.g., judgments of learning or number of pages read). Depending on 

perceived progress towards goals, learners may invoke a number of control strategies (e.g., paraphrasing, 

summarizing, note-taking). Finally, learners may reflect on their performance in a more holistic sense and 

make corresponding attributions (e.g., the material is difficult so this took a long time). Although the four 

phases above were described from a cognitive viewpoint, the same phases can be applied to self-

regulation of motivation/affect, behavior, and learning context (Pintrich, 2000). The following sections 

describe these four phases in more detail along with the learner model variables needed to support them. 

Goal Setting  

Reviews of goal setting have found that the specificity, proximity, and difficulty level of goals influence 

the effects of goal setting (Schunk, 1990; Locke & Latham, 2002). Expended effort increases linearly 

with task difficulty until the limits of ability are reached. Moreover, specific and difficult goals lead to 

higher performance than general goals like “Do your best.” While general goals reference no objective 

criterion and so may be ambiguous, specific goals allow a better determination of the required effort and 

whether success has been achieved. Proximal goals likewise lead to better performance, because progress 

towards proximal goals is easier to determine than it is for distal goals.  

Four mechanisms have been identified that explain the effect of goals on performance (Locke & Latham, 

2002). First, goals focus attention of goal-relevant activities. This can help learners ignore information 

that is irrelevant to the goal. Second, goals activate relevant schemas and procedures for attaining the 

goal. In cases where the task is familiar, planning and execution will be largely automatic. Third, as 

mentioned above, level of effort is directly proportional to perceived difficulty. Therefore, more difficult 

goals can lead to greater effort expended. Fourth, in tandem with increased effort, difficult goals tend to 

increase the amount of time spent on a task. Given these basic mechanisms involved with goal setting, it 

makes sense to design instruction so that the performance of the learner is maximized. A fuller 

description of variables that interact with these mechanisms is reviewed by Locke and Latham (2002).  

With these basic principles in mind, it is straightforward to outline some capabilities for a learner model 

that supports goal setting. First, the learner model should support setting goals before the session that are 

specific, difficult, and proximal. Thus, ideally, the learner model should not just be used to store arbitrary 

goals in memory, but should also be used to assess these goals with respect to the student’s ability level 

and the nature of the domain. To prevent goals that are vague, too easy/too difficult for the student, or too 

distant for the learning session, the learner model should support both evaluation of goals and adaptive 

guidance to give students feedback on goals. For example, if the goal is too vague, the system might say, 
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“That seems a little vague. How about a more specific goal?” or if the goal is too difficult, the system 

might say, “That’s a good long-term goal, but why don’t you simplify it to make it achievable in the 

amount of time you have?” Of course, assessment of the dimensions of specificity, difficulty, and 

proximity require complementary modeling of the domain, and the specific feedback offered requires 

complementary pedagogical modeling (though of a relatively limited sort). Furthermore, if the learner 

model contains longitudinal information about the student and their previous goals, this information could 

also be applied to the current situation. For example, if the current situation were similar to a previous 

situation, the system could remind the user of the associated goal from that previous situation.  

Self-Assessment  

Self-assessment, by which some criterion (e.g., a goal) is used as a reference to determine progress, is 

central to monitoring in self-regulated learning. Criteria range from task-specific, as discussed above, to 

general goal orientations (e.g., mastery and performance goals) (Pintrich, 2000). Externally supplied 

feedback that link progress towards goals to student strategy use has been found in multiple studies to 

promote skill and self-efficacy, both when the product of learning and the process of learning are 

emphasized (Schunk, 1990). Self-assessments may also supply feedback by evaluating level of 

understanding, personal interests, effort, strategies, history of improvement, and perceived strengths and 

weaknesses, while fostering students’ sense of control over their learning (Paris & Paris, 2001). In a 

review of the principles of self-assessment, Paris and Winograd (1999) identify three ways in which self-

assessment can improve learning. First, awareness of different ways of learning increases when the 

learning styles and strategies of others are compared to those of the self. Second, efficient allocation of 

attention and effort requires identifying weaknesses and gaps in knowledge. Finally, self-assessment 

promotes a sense of self-efficacy and control by promoting effective monitoring and use of repair 

strategies.  

A learner model for self-assessment should incorporate both task-specific and general goal orientations. 

Task-specific self-assessment is clearly yoked to task goals, as discussed above for goal setting. Thus, 

task-specific self-assessment involves periodic judgments of progress, effort, effectiveness of employed 

strategies, and perceived strengths and weakness with regards to specific, proximal, and appropriately 

difficult goals. How best to represent these quantities is an open question. While some are easily 

considered as quantities on an ordinal scale (e.g., progress, effort, and effectiveness), in order for a learner 

model to be highly useful, it should support specific guidance and scaffolding of self-assessment. For 

example, if the learner notes that some strategies being employed are not effective, the system should be 

able to comment on the applicability of that strategy in the current context and suggest alternative 

strategies if appropriate. Such specific remediation is necessary to handle situations where the learner is 

using the correct strategy in name but is applying the strategy incorrectly. Thus, the learner model should 

be able to infer strategy use from learner behavior or be able to use self-report (e.g., natural language 

input) to identify what strategies have been used by the learner.  

Self-Reflection  

Self-reflection may be considered in terms of the more general goal orientations described above, such as 

personal interests, history of improvement, and strengths and weaknesses in a less specific and distal 

context. According to Zimmerman (2002), self-reflection occurs after the learning task but may involve 

comparisons between self-performance and performance of others or some other standard. These 

comparisons imply both a backward-looking judgment (at overall performance) and a forward-looking 

judgment (what performance remains to be achieved). Although arguably these judgments could take 

place during the learning task, self-reflection also includes attributions that explain overall performance 

and thus may be considered distinct from self-assessment (Pintrich, 2000; Zimmerman, 2002).  
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Attributions are causal beliefs about performance that explain performance based on factors that are either 

outside or within the learner’s control. For example, the attribution, “I failed because I’m a stupid person” 

is a maladaptive attribution because it implies that change is not within the learner’s control. 

Alternatively, adaptive attributions cast failure in terms of specific decisions, like improper strategy use. 

As reviewed by (Pintrich, 2000), adaptive attributions have been found to increase deeper cognitive 

processing and improve motivation, affect, and effort.  

The general goal orientations involved in self-reflection require tracking learners over longer periods of 

time. Relevant variables include personal interests, history of improvement, and strengths and weaknesses 

in a less specific and distal context. The temporal scale of self-reflection suggests that the variables in 

question will change very slowly. Arguably, self-reflections at this temporal scale are more motivational 

and affective than cognitive. This implies that a given learner model for general self-reflection can make 

use of self-report and attempt to update these variables less frequently.  

It is important to consider how the learner model of these variables may be used to support motivational 

or affective functioning. Ideally a system would be able to enhance motivation by presenting the learning 

task in a way that capitalizes on the learner’s interests. When appropriate, the system can use the learner’s 

own sense of personal improvement as a motivational/affective intervention, e.g., “Don’t give up now – 

you were just saying how far you’ve come.” In addition, learner models that track attribution may be 

important for preventing maladaptive attributions. For example, if the learner articulates a maladaptive 

attribution during self-reflection, the system would ideally challenge the maladaptive attribution and 

suggest an alternative explanation.  

Table 4-2 summarizes the important variables for learner models. 

Table 4-2. Learner model variables for self-regulated strategies 

Strategy Variables 

Goal setting 

Specificity 

Difficulty (relative to ability and domain) 

Proximity 

Self-Assessment 

Progress 

Effort 

Strategy Effectiveness 

Perceived Strengths and Weakness 

Self-Reflection 

Personal interests 

History of improvement 

Strengths and Weaknesses (Traits) 

Social Constructivism  

Six of the ISI strategies displayed in Table 4-1 are deeply aligned with learning in a social context. 

Vygotsky (1978, p. 88) championed the importance of social contexts in the development of learning, 

writing that “human learning presupposes a specific social nature and a process by which children grow 

into the intellectual life of those around them.” Although just one of the many forms of social 

constructivism (Palincsar, 1998), Vygotsky’s framework is philosophically aligned with many 

instructional strategies. Perhaps the single most influential idea in Vygotsky’s framework is the zone of 

proximal development, which distinguishes between two levels of ability. The first level describes what 
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children can do on their own. The second level, the zone of proximal development, describes what 

children can do with the assistance of others. Vygotsky’s central claim is that abilities in the zone of 

proximal development will mature and move into the first level, or in his own words, “What is in the zone 

of proximal development today will be the actual developmental level tomorrow – that is, what a child 

can do with assistance today she will be able to do by herself tomorrow” (Vygotsky, 1978, p. 87). The 

zone of proximal development is consistent with accounts in linguistics and cognitive psychology, which 

emphasize that “comprehension ... must precede production” (Wood, Bruner & Ross, 1976, p. 90). It is 

well known that children’s comprehension, or receptive capability to comprehend language, precedes 

their productive capability. Indeed, this is just another way of stating the zone of proximal development – 

children can comprehend the necessary information with the assistance of others before they can produce 

it on their own. Instructional strategies inspired by social constructivism and their requisite student 

models place great emphasis on the adaptive, collaborative, and social nature of learning. 

Scaffolding and Affective ITS  

The instructional strategy that is perhaps the most aligned with social constructivism is scaffolding. In 

scaffolding, a student’s progress in a learning task is supported by a more experienced other (i.e., person, 

agent, system) such that scaffolding occurs in the student’s zone of proximal development. Scaffolding 

can be seen clearly in a number of educational interventions in close concert with the instructional 

strategies of modeling and fading (Collins, Brown & Holum, 1991). In modeling, the instructor 

demonstrates the learning task, while in scaffolding, the student attempts the task with instructor support. 

By the time the student has reached fading, the student can engage the task with no (or extremely little) 

instructor support. This paradigm is also sometimes called “I do, we do, you do.” If scaffolding is viewed 

as a blend of student actions and instructor interventions, then it is clear that it is a continuum with 

modeling and fading at opposite ends. Therefore, modeling and fading can be considered to be subsumed 

under scaffolding, representing the two extremes of scaffolded support. An early and profoundly 

influential study of naturalistic human tutoring describes the scaffolding process in great detail (Wood et 

al., 1976). According to Wood and colleagues, scaffolding is meant to draw the student into participating 

in the learning task to the point where the tutor can provide feedback. Over time, the tutor-provided 

feedback diminishes as the student achieves mastery. A high-level description of the mechanisms required 

to achieve scaffolding are described as follows:  

The effective tutor must have at least two theoretical models to which he must attend. One is a 

theory of the task or problem and how it may be completed. The other is a theory of the 

performance characteristics of his tutee. Without both of these, he can neither generate feedback 

nor devise situations in which his feedback will be more appropriate for this tutee in this task at 

this point in task mastery. The actual pattern of effective instruction, then, will be both task and 

tutee dependent, the requirements of the tutorial being generated by the interaction of the tutor’s 

two theories. (Wood et al., 1976, p. 97)  

Virtually all known ITSs recognize and embody these two models, generally known as the domain and 

learner models, which underscores the importance of scaffolding as an instructional strategy. With respect 

to specific variables in learner models, Wood et al. further specify the processes and mechanisms of 

scaffolding as consisting of six components: 

1. Recruitment. The tutor draws the student into the task by gaining their attention, stimulating their 

interest, and fostering a level of commitment to the learning task.  

2. Reducing degrees of freedom. The tutor reduces task difficulty to the appropriate level for the 

student’s ability level.  
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3. Direction maintenance. The tutor keeps the student on task by providing affective and 

motivational support when needed.  

4. Marking critical features. The tutor provides feedback, hints, and other kinds of guidance that 

help the student progress in the learning task.  

5. Frustration control. The tutor prevents negative affect that would impede successful learning.  

6. Demonstration. The tutor models the learning task based on the student’s current attempt, 

emphasizing the task components where the student is having trouble. 

The emphasis on and seamless interweaving of affective and motivational considerations into the above 

account of a scaffolding is noteworthy. It suggests that scaffolding divorced from these considerations has 

drifted away from the evidence provided by natural observations of tutoring. We therefore consider what 

capabilities a learner model should provide to support this entire account of scaffolding, component by 

component.  

Recruitment requires a model of attention such that the presence or absence of a student’s attention can be 

determined. It further requires a notion of student interest in a general sense (i.e., what do 

students/humans generally find interesting) and/or a notion of a particular student’s interests (see Self-

Reflection above). In either case, a model of interest informs tutor actions that make the connection 

between student interests and the learning task manifest to the student. Finally, recruitment involves 

fostering a sense of commitment to the learning task. Commitment may be relative to the student’s goals, 

and so drawing a connection between the learning task and the student’s goals provides one approach to 

fostering commitment (see Goal Setting above). However, commitment may also derive from social 

norms and impulses, such as a desire to please the tutor or otherwise appear competent and 

knowledgeable. We defer discussion of such matters to the Pedagogical Agent section below.  

Reducing the degrees of freedom is commonly supported in learner models that assess the ability level of 

the student and in domain models that represent the difficulty of the material. Ideally, the learner model 

supports the selection of learning tasks at the appropriate level of difficulty for the student given the 

student’s prior knowledge and progress. Direction maintenance, the third component of scaffolding, 

entails a model of on- and off-task behavior. Furthermore, the tutor should be able to determine if off-task 

behavior has resulted from a misunderstanding of the task or if off-task behavior has resulted from 

negative affective/motivational states leading to an overt abandonment of the learning task or a covert 

abandonment of the learning task, i.e., “gaming the system” (Baker, Corbett, Koedinger & Wagner, 

2004). This distinction should inform whether the tutor uses a cognitive or an affective-oriented strategy 

to redirect the student to on-task behaviors.  

The fourth component, marking critical features, is commonly implemented in learner models that have 

an overlay model structure (see Pavlik et al., chapter 5 in this volume). Overlay models typically associate 

mastery scores with elements of the domain model and update these scores based on student progress. 

Thus, overlay models allow the system to provide feedback to answers as well as hints that suggest what 

the student should consider next.  

Frustration control, the fifth component, again requires a model of learner affect, both in a general sense 

and in an individualized sense. A general model of frustration includes such variables as affective traits, 

affective states, and local/global models of task difficulty. Individualized models of frustration may track 

whether a student has a greater or lesser tendency to become frustrated than the norm (a trait) and with the 

appropriate sensors even predict frustration in real time at a point in the learning session (a state). Task 

difficulty models of frustration may include the correlation amongst task difficulty, time on task, and 
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frustration, taking into account that frustration may accumulate over extended periods of task difficulty. 

Although some analyses of intelligent tutoring systems have found that frustration plays a minor role 

(Baker, D’Mello, Rodrigo & Graesser, 2010), this could be attributable more to the ability of such 

systems to maintain appropriate task difficulty rather than to the irrelevance of frustration in learning 

contexts.  

Finally, demonstration (modeling the learning task) requires knowing both when to demonstrate as well 

as how to demonstrate. Knowing how to demonstrate is a matter decided by the domain model of the 

learning environment. Knowing when to demonstrate, on the other hand, is an important component of 

the learner model that relies on tracking the student’s ability as well as affective and motivational factors. 

If the current learning task is judged by the system to be outside the abilities of the student even when 

hints and feedback are given, then demonstration is warranted both to alleviate this impasse and prevent 

demotivation and negative affect. An overlay model that accurately assesses the difficulty of the current 

task, either by comparing it to tasks the student has already mastered or by considering the student’s 

mastery of the component abilities underlying the task compared to other students, may be helpful in 

determining when demonstration is necessary.  

Pedagogical Agent  

Pedagogical agents are computer characters who play a social role in a given learning environment. As 

such, pedagogical agents fit well into the social constructivist perspective. Typically, pedagogical agents 

are tutor agents, but they may also be peer agents (see Peer Learning below). Given the prominence of 

scaffolding as an instructional strategy, tutor agents are perhaps best considered with regard to the six 

components of scaffolding considered above. Since humans typically treat computers as social agents and 

comparably to other humans (Nass, Steuer & Tauber, 1994; Reeves & Nass, 1996; Nass & Moon, 2000), 

tutor agents have the potential to transparently replace human tutors in computer-based learning 

environments like intelligent tutoring systems. But if this is the case, one might inquire whether a learning 

environment, by virtue of running on a computer, is by default imbued with some sort of agency in the 

mind of the user. If that is the case, then one may ask what pedagogical agents add over and above this 

default social agency.  

A number of additional contributions by pedagogical agents have been described (Johnson, Rickel & 

Lester, 2000). Central to these contributions is the presentation of the agent as an animated agent, and 

sometimes as an animated agent in a virtual environment. The first contribution is the ability to present 

interactive demonstrations, whereby the student can watch the tutor agent demonstrate a motor skill or 

complex manipulation of an object. Unlike a pre-recorded movie, such a demonstration is potentially 

parameterizable and could be idealized according to the sixth component of scaffolding mentioned above. 

The second contribution of animated pedagogical agents (APAs) is the ability to use gaze and gestures to 

guide student attention (Lester et al., 1999). The ability to direct attention is important in the scaffolding 

components of recruitment, direction maintenance, and marking critical features. The third contribution, 

nonverbal feedback, may help with marking critical features. Finally, APAs may convey and elicit 

emotions, which support the scaffolding components of recruitment, direction maintenance, and 

frustration control. Given these considerations, it is debatable whether the addition of a pedagogical agent 

requires changes in the learner model that are not already accounted for by the requirements for 

scaffolding. If anything, the addition of pedagogical agents may have more implications for the 

pedagogical model because of the additional capabilities they provide for delivering instructional and 

affective cues.  

It is important to note that APAs have the potential to support scaffolding, but only if they are designed to 

take advantage of these capabilities. For example, one study that did not take advantage of these 
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capabilities as described above found essentially no differences between three versions of an intelligent 

tutoring system, namely, animated agent text only, versus synthesized speech only (Graesser et al., 2003). 

However, a similar study that used a pre-recorded human voice and gestures as the tutor worked through 

examples found significant learning gains compared to a text-only condition (Atkinson, 2002). Another 

study manipulated persona to create an emotionless “expert” agent and an emotion-displaying “mentor” 

agent for two versions of the same learning environment (Baylor & Kim, 2005). That study found that 

while the expert agent promoted learning gains and was perceived as credible, the mentor agent not only 

promoted learning gains but also increased self-efficacy. These various studies highlight the potential for 

APAs to support scaffolding.  

Peer Learning  

Although peer learning can take many forms, a well-known approach is “reciprocal teaching” (Palincsar 

& Brown, 1984; Palincsar, 1986). In this program, as instructors read the text, they think aloud to model 

their comprehension process to the student including their reasoning for when to use each strategy. In a 

classic modeling-scaffolding-fading paradigm, the instructor and student take turns as the student 

gradually learns the strategies and practices them while the instructor provides feedback. More 

specifically, students read paragraph by paragraph and generate questions, summarize, clarify terms and 

concepts, and make predictions about what is coming up in the text. These practices becomes a dialogue 

as the instructor comments on and contributes to the student’s questions, summaries, and other activities, 

or as other students make similar contributions in small group sessions. In other words, these activities are 

situated in an interactive dialogue among instructor and students. In this way, reciprocal teaching creates 

multiple opportunities for learning: one in the role of the answering student, one in the role of an 

observing student, and one in the role of the teacher. Each of these roles has a slightly different 

implication for learner models.  

Like tutor agents, peer pedagogical agents may assume social roles in a given learning environment (Kim 

& Baylor, 2006b), including teachable agent and peer agent. Teachable agents typically have a knowledge 

representation that human students can directly manipulate (Reif & Scott, 1999; Biswas, Schwartz, 

Leelawong & Vye, 2005). A well-known teachable agent system is Betty’s Brain (Biswas et al., 2005; 

Leelawong & Biswas, 2008), in which students directly manipulate a concept map (the brain) in order to 

teach Betty. In Betty’s Brain, the domain modeled is typically a causal system in nature, such as 

ecosystems, the circulatory system, or climate change. Human students use an e-textbook to learn the 

information to teach Betty. Once a student teaches Betty by building a concept map, Betty can employ 

qualitative reasoning to reason through a chain of links. This allows Betty to answer questions, take a 

quiz, or explain her reasoning. Recent experiments indicate that students who teach Betty spend more 

time on learning tasks compared to students working with the same system but without Betty (Chase, 

2011), suggesting that a teachable agent can increase student motivation to learn. The learner model for 

Betty’s Brain mostly centers around the concept map, which is a kind of overlay model on an unseen 

“expert map,” and so learner modeling in this scenario is largely congruent with the typical case in 

intelligent tutoring systems. However, the special role of human student as teacher can create new 

opportunities for learner modeling, including teaching-based activities like using the e-book, building the 

concept map, and taking quizzes. Kinnebrew et al. (2013) explore patterns of student interaction and their 

implications for student learning. Since the human student can decide what task to perform at any time, 

they may exhibit learning-promoting behaviors, like careful reading, concept map building, and quiz-

taking, or they may exhibit maladaptive behaviors like rapidly alternating between skimming the text, 

incremental concept map building, and many cycles of quiz failing and re-taking. In systems like Betty’s 

Brain, it becomes even more important to track user interactions to infer what self-regulation strategies (if 

any) the student is using. These variables are complementary to the self-regulation variables described in 

Table 4-2. 
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Peer agents, unlike teachable agents, do not actually learn but instead model behavior to the human 

student. Peer agents can give answers, express misconceptions, or display affect (Millis et al., 2011). 

Although multiple dimensions describing peer agents have been proposed (Kim & Baylor, 2006b), 

perhaps the two most important dimensions are competence and responsiveness. Competency refers to the 

correctness or quality of the information provided by the peer agent. Responsiveness refers to the 

initiative the peer agent demonstrates, typically whether it proactively gives advice or not. Note that these 

dimensions may be applied symmetrically to the human student who is a peer of the agent. A study 

examining competency and responsiveness found differential effects according to learning outcomes and 

self-efficacy (Kim & Baylor, 2006a). Students with competent peer agents learned more, but students 

with less competent peer agents expressed greater self-efficacy. Students with proactive peer agents 

scored higher on tests of recall than students with low responsive peer agents. While overall these results 

may suggest that peer agents should be competent and proactive, the study’s authors argue that the human 

student’s ability level should be considered when setting the competency or responsiveness of a peer 

agent. One system combines this suggestion with teachable agents to create a system that enters one of 

three modes (regular ITS, teachable agent, and vicarious learning) depending on the current ability level 

of the student (Millis et al., 2011). Significant differences in learning gains in delayed post-test have been 

found between vicarious and non-vicarious conditions, and it is hypothesized that high ability students 

should benefit most from teaching agents, and low ability students should benefit most from vicariously 

observing peer agents model correct behavior.  

Table 4-3 summaries important learner variables for the instructional strategies described in this section. 

Parentheses indicate variables that overlap with previously stated variables in Table 4-2 or that are 

typically considered part of the domain model. 

Table 4-3. Learner model variables for social constructivist strategies 

Strategy Variables 

Recruitment 

Attention 

General interest 

Specific student interest (self-reflection) 

Commitment (goal setting) 

Reducing Degrees of Freedom 
Student ability 

Task difficulty (domain model) 

Direction Maintenance On/off task behavior 

Marking Critical Features Domain model 

Frustration Control 

Affective traits 

Affective states 

Session difficulty (domain model) 

Task difficulty (domain model) 

Demonstration 
Task difficulty (domain model) 

Student ability 

Teachable agents Patterns of interaction to infer strategies 

Peer agents Student ability 
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Improving Memory  

Memory is one of the longest studied topics in the history of psychology (Ebbinghaus, 1913). The range 

of topics in memory research is immense, ranging from language-based effects to multimedia effects 

(Byrne, 2008). For the purposes of the present discussion, two topics are particularly relevant, namely, 

how the temporal structure of practice affects recall and how multimedia presentation affects recall.  

Distributed Practice and Massed Practice  

The temporal structure of practice is primarily concerned with (1) the duration of study for an item, (2) 

the temporal interval, or spacing, between repeated presentations of an item, and (3) the retention interval, 

or time between the last study episode and a retention test (Cepeda, Pashler, Vul, Wixted & Rohrer, 

2006). Given these distinctions, massed practice describes practice that emphasizes duration of study of a 

single item, whereas distributed practice describes practice that emphasizes the spacing between repeated 

presentations of an item. A recent meta-analysis reports two main finds with respect to distributed and 

massed practice (Cepeda et al., 2006). First, distributed practice resulted in more correct responses than 

massed practice for retention intervals ranging from less than 1 min to over a month when study time was 

held constant. It should be noted that this comparison to “pure” massed practice is unlikely to be 

consistent with realistic cramming before an exam, which would involve a single session of distributed 

practice for particular items. Second, for distributed practice, increasing the temporal interval between 

practices increases accuracy at retention up to a point, but then decreases accuracy after that point, and 

this optimum spacing increases as the retention interval increases. In other words, for a given retention 

interval, there is an optimum spacing of practice that maximizes recall. For longer retention intervals, the 

optimum spacing is longer, and the optimum spacing is shorter for shorter retention intervals. These 

temporal effects suggest that it is important for learner models to track the presentation history of 

individual items in order to maximize recall. 

Moreover, available research also suggests that individual items can be optimally spaced to maximize the 

efficiency of learning per unit time (Pavlik & Anderson, 2005, 2008). The basic version of this model, 

which exhibits good fits to five different human experiments, is based on the declarative memory model 

of Adaptive Control of Thought-Rational (ACT-R) (Anderson & Lebiere, 1998). Unlike the ACT-R 

model, which assumes that forgetting is constant, Pavlik and Anderson’s basic model assumes that the 

forgetting rate is a function of the activation of an item. An elaborated version of this basic model 

considers how to best balance spacing with studying, such that recall is optimized for a given period of 

study (Pavlik & Anderson, 2008), which we summarize below. This optimization is important because 

spacing and studying are somewhat at odds. Longer spacing improves long-term recall on retention tests, 

but short-term is likely to increase forgetting and, by implication, restudying. However, restudying takes 

time, so a successful recall trial takes less time than an unsuccessful trial that necessitates restudying.  

Using the extended ACT-R model, Pavlik and Anderson define a learning rate measure by which they can 

select the optimal item for practice on any given trial. The learning rate is based on the predicted 

activation gain for an item at the retention interval, but normalized for the time cost to practice that item. 

At any given moment, items will have different learning rate values, but one will be closest to its 

maximum learning rate. Although the items are not explicitly compared with each other to select the 

optimal item, because the basic model limits the gains of activation for items that are already highly 

activated, the model has a preference for items with relatively low activation. In experimental 

comparisons, the optimized schedule of practice was significantly better in terms of recall and latency, 

with large effect sizes, than a flashcard-based system and another optimized schedule that predicted recall 

as a function of practice. These findings suggest that both the presentation history of items (correct trials 

and incorrect+restudy trials for each item) and the time cost to practice any item should be considered to 
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optimize recall. Specific learner model variables include item probability of correctness, response latency, 

and failure latency. 

Multimedia Instruction  

Multimedia consists of auditory and visual representations of words and images. Examples of multimedia 

include illustrated books, television, and computer-based learning environments. According to Mayer 

(2008), the fundamentals of multimedia learning are that (1) we have dual channels for processing 

auditory and visual stimuli, (2) we have limited capacity to process information at a given point in time, 

and (3) we learn deeply by organizing and integrating information during learning. Mayer elaborates 

these fundamentals in ten principles that together optimize the active processing of information by 

respecting the limitations of cognitive processing.  

We briefly summarize these ten principles, each of which specifies how information should be presented 

to the learner: 

1. Extraneous material should be reduced to the extent possible 

2. Essential material should be highlighted by overviewing the main ideas  

3. Redundancy in separate channels helps learning, but redundancy in the same channel hurts 

learning.  

4. Spatial contiguity should be preserved, e.g., by placing words next to their respective images. 

5. Temporal contiguity should be preserved by synchronizing presentation of related information 

that is in different channels.  

6. Material should be presented in small chunks.  

7. Pretraining should be used to basic vocabulary and concepts before attempting to teach a complex 

system.  

8. Spoken text and images should be used instead of printed text and images. 

9. Spoken text and pictures should be used instead of either alone. 

10. Material should be presented in a personalized conversational style.  

The extent to which the principles of multimedia instruction align with learner models is somewhat 

suspect. These principles state general constraints with regard to human cognition, and so do not represent 

variables that would be tracked for an individual in order to optimize instruction for that individual. The 

theory of learning styles has been proposed, by which individuals may vary in how they best learn from 

different modes of information presentation, but little evidence has been found to support these claims 

(Pashler et al., 2008). Therefore, multimedia principles may be best applied to the domain or pedagogical 

models – in the design of the instruction itself.  

Table 4-4 summarizes the important learner model variables discussed in this section.
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Table 4-4. Learner model variables for improving memory 

Strategy Variables 

Practice 
Number of trials 

Delay between trials 

Optimal practice 

Probability of correctness 

Response latency 

Failure latency 

Conclusion  

In this chapter, we examined the top ten strategies of the ISI from the perspective of learner models. Most 

of the ten strategies could be associated with concrete variables that a learner model must include in order 

to support that strategy. This was true for the self-regulated strategies that included variables for proximal 

and distal goals, personal interests, history of improvement, attributions, and strategy use either through 

self-report or inference from student behavior. The social-constructivist strategies include the classic 

learner model variables associated with scaffolding such as overlay models on the domain that specify the 

difficulty level of material and the student’s ability, student interests, affect, goals, and on-off task 

behavior. Pedagogical agents, while providing potential affective and gestural support for scaffolding, 

have little correspondence to the learner model except perhaps by virtue of learner preferences. Peer 

learning has different implications for learner models depending on whether the peer is a teachable agent 

(with the human student as the teacher) or a collaborative peer. Teachable agents create a context for a 

host of new variables tracking the strategies and behaviors used by the human student (e.g., quizzing the 

teachable agent or studying an e-book in preparation of teaching the agent). Use of collaborative peer 

agents may benefit from learner models that track the ability level and self-efficacy of the human student, 

but this question awaits future research. Memory-enhancing presentation strategies likewise differ on 

their learner modeling needs. Distributed practice (which subsumes massed practice in real-world 

contexts) at the extreme can require extensive item level variables that track the accumulation of practice 

and the rate of forgetting. Multimedia instruction, in contrast, is guided by a set of principles that are not 

learner-specific. As a result they are perhaps best situated outside the learner model.  
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Introduction 

Generally, an ITS is considered to have four major components (Elsom-Cook, 1993; Graesser, Conley & 

Olney, 2012; Nkambou, Mizoguchi & Bourdeau, 2010; Psotka, Massey & Mutter, 1988; Sleeman & 

Brown, 1982; VanLehn, 2006; Woolf, 2008): the domain model, the student model, the tutoring model, 

and the tutor-student interface model.  

 The domain model contains the set of skills, knowledge, and strategies of the topic being tutored. 

It normally contains the ideal expert knowledge and may also contain the bugs, mal-rules, and 

misconceptions that students periodically exhibit. It is a representation of all the possible student 

states in the domain. While these states are typically tied to content, general psychological states 

(e.g., boredom, persistence) may also be included, since such states are relevant for a full 

understanding of possible pedagogy within the domain. 

 The student model consists of the cognitive, affective, motivational, and other psychological 

states that are inferred from performance data during the course of learning. Typically, these 

states are summary information about the student that will subsequently be used for pedagogical 

decision making. The student model is often viewed as a subset of the domain model, which 

changes over the course of tutoring. For example, “knowledge tracing” tracks the student’s 

progress from problem to problem and builds a profile of strengths and weaknesses relative to the 

domain model (Anderson, Corbett, Koedinger & Pelletier, 1995). Since ITS domain models may 

track general psychological states, student models may also represent these general states of the 

student. 

 The pedagogical model takes the domain and student models as input and selects tutoring 

strategies, steps, and actions on what the tutor should do next in the exchange with the student to 

move the student state to more optimal states in the domain. In mixed-initiative systems, the 

students may also initiate actions, ask questions, or request help (Aleven, McLaren, Roll & 

Koedinger, 2006; Rus & Graesser, 2009), but the ITS always needs to be ready to decide “what to 

do next” at any point and this is determined by a tutoring model that captures the researchers’ 

pedagogical theories. Sometimes what to do next implies waiting for the student to respond. 

 The tutor-student interface model interprets the student’s contributions through various input 

media (speech, typing, clicking) and produces output in different media (text, diagrams, 

animations, agents). In addition to the conventional human-computer interface features, some 

recent systems have had natural language interaction (Graesser, D’Mello, et al., 2012; Johnson & 

Valente, 2008), speech recognition (D’Mello, Graesser & King, 2010; Litman, 2013), and the 

sensing of student emotions (Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 

2010; Goldberg, Sottilare, Brawner & Holden, 2011). 

This review focuses on the approaches to student modeling, with particular attention to the implications of 

these models for design of GIFT. GIFT similarly adopts this four-part distinction, but refers to the models 

as modules, since GIFT is an actual software framework that reifies each of these models with modules in 
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the software. GIFT also includes an optional sensor module, as a way to measure user states during 

interactions with the tutoring system. 

This chapter specifically focuses on the student model aspect of the ITS. In order to give a clear 

perspective on the student model, it is essential to also address the domain, pedagogical, and interface 

models because the models do not function in isolation. The connections between domain and student 

models are tightly coupled. Less tightly coupled, but still substantial, is the dependence of the pedagogical 

model on the student model. In contrast, the tutor-student interface model, while it clearly relates to the 

domain and pedagogical models, is beyond the scope of this article. The structure of the domain model 

may be necessary to consider in the context of student modeling, and to some small degree, the 

pedagogical model. However, this chapter does not describe the complications of mapping domains to 

interfaces or describing how different interfaces reify similar pedagogy. We leave interface issues to 

subsequent volumes of this book series. 

Assessing a Student Model - Criteria 

When assessing models, it is appropriate to emphasize the limitations of complexity and fidelity of 

representation. Consequently, all models of learning are wrong in certain ways because they cannot hope 

to capture the full complexity of the real student’s mind. In the GIFT system, we want the designer to 

implement the most useful student models, not necessarily the most correct student models. For example, 

we might suppose that a multilevel neural network, such as the Leabra architecture (O’Reilly, 1998), 

would be a more correct representation of a student. However, it would not be very useful because it 

would be monumentally complex and impractical to use it for clear pedagogical inference and tracking of 

the domain model. We therefore evaluate the student model options in regard to several criteria of 

usefulness. These criteria include the following: 

 Student model fit to data. This is a simple validity criterion that refers to how well the student 

model can be used to simulate the quantitative and/or qualitative patterns of learning in real 

students. Issues of model fit have been reviewed by Desmarais and Baker (2012) and more 

generally by Schunn and Wallach (2005). 

 Ease of understanding. The reality behind educational system design is that student modeling 

methods need to be comprehensible to system designers and builders. Therefore, student 

modeling techniques that require optimizing a Bayesian network using simulated annealing may 

have limited applicability unless such complexity is easily approached by system designers. This 

limitation of complex models parallels the tendency for complexity of student models in running 

systems to lag behind the complexity of student modeling techniques presented in research. This 

explains why existing systems are often less complex from systems invented 60 years ago 

(Smallwood, 1962). 

 Generality/flexibility. Many of the student models we review have only one or two primary 

successful contexts, so some student models have limited generality. Generality may have a 

downside in that more general models tend to be simpler, and therefore, lose power in specific 

domains as they gain generality. To what extent can student models be reused in new contexts to 

improve the adaptation to students? To what extent is a student model essentially chained to 

specific domain content, so that after this domain content is learned, the student model is no 

longer relevant?  

 Cost of creation. Research often cites the high costs of creating content (Aleven, McLaren, 

Sewall & Koedinger, 2006), and such costs also apply to student models. If a student model 
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requires 2 years of data collection to determine the parameters, the cost may be prohibitive. The 

issue of cost refers to person hours of production, while the issue of ease of construction involves 

how skilled (professional degree) those workers need to be. 

 Granularity. Grain-size may refer to steps, single problems, single curriculum units, multiple 

curriculum units, whole domains, or multiple domains. Student models are typically applied to 

pedagogical decisions at one or more levels of granularity. For example, a student model might 

trace the state of the student within the steps of a problem, or how that state changes across 

problems, units, or even different domains. One hypothesis we make in this chapter is that 

different models may be more or less useful depending on the granularity of the pedagogical 

decisions. 

 Time scale. Time scale refers to the overall longevity of the student model.. A model of student 

state at the step level might be created from only the current problem interaction, or it may take 

into account prior actions in prior problems or earlier units. The time scale helps determine 

whether an ITS system is actually a collection of independent units, or whether the student model 

is cumulative across the domain as the student progresses. 

 Learning gains in practice. Evidence of learning gains that are directly caused by pedagogical 

inferences from the student model states is obviously an excellent feature for a student model. 

However, it is very easy to argue that learning gains depend on far more than the student model, 

since the pedagogical model and tutor-student interface feedback need to be appropriate for 

learning gains. Furthermore, comparing learning gains carefully across different control 

conditions, domains, research groups, and populations is difficult if not impossible to do in a 

valid way. 

To make the assessment according to these criteria requires us to group the student models into a 

manageable number of categories whose members share deep similarities. One can make finer 

distinctions in the categories we review, but these finer distinctions may not move us toward our goal of 

making recommendations for GIFT. Finer distinctions do not highlight the overarching software 

architectural issues involved in providing support for broad range of very different student models. 

Programmed Student Models 

Our first category has a long history that traces back first to Pressey in 1926, who is credited with the first 

“teaching machine,” which was little more than a question and answer device with multiple choice 

scoring and immediate feedback (Lumsdaine & Glaser, 1960). This initial start in the ‘‘teaching machine” 

movement gained little attention until the 1950 when an explosion of automated teaching theories began 

to emerge from various sources. Most notable was work by Skinner looking at linear programming of 

instruction (not to be confused with the unrelated mathematical optimization procedure) and Crowder’s 

work with branching programs (Thomas, Davies, Openshaw & Bird, 1963). 

Skinner’s contribution came from his theory of behaviorism and the concept of error-free learning. While 

a teaching machine with a linear program does provide feedback, the key to linear programming was to 

provide a sequence of tasks where the sequence faultlessly provides the prerequisites in a serial order such 

that a prepared student might be expected to proceed through the content without errors. To accomplish 

this goal, detailed sequences of rule and exemplar practices are composed by the linear program designer. 

These sequences can be derived from a task analysis that uses a rule by rule matrix to determine 

associated rules as well as rules that need to be discriminated. From this rule matrix, the linear 

programmer then lays out the faultless sequence, which is composed of several types of cloze (fill in the 
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blank items) including examples, rules, generalizations, and discriminations in the domain (Lumsdaine & 

Glaser, 1960; Thomas et al., 1963). Frequent reinforcement of prior learning was built into such 

sequences. 

One clear issue with linear programming is that it mandates that a single sequence is optimal for all 

students. Crowder challenged this assumption with similar systems that branched extensively based on 

the student responses, thus providing a basic means of individualizing instruction. Based upon student 

actions, a student may be “branched” to a review, remediation, or additional content (Crowder, 1959; 

Lumsdaine & Glaser, 1960; Thomas et al., 1963). 

This category of student models as part of the discussion of ITSs raises the question of what we should be 

counting as a student model. In other words, how smart does an “intelligent” tutoring system need to be to 

qualify as a true ITS. While this question may have philosophical interest in that it deals with the general 

question of what is intelligence, it does not seem to be a pragmatically helpful criterion. More sensibly, 

we might ask how adaptive a system is by characterizing how much freedom the domain model allows in 

measuring student states to infer one of many pedagogical choices. Typically, branched programming 

student models offer less adaptivity because student states are hardcoded as triggers for specific 

pedagogies since the development process for branched models handcrafts each state branch in the 

student model space. Perhaps these systems do not qualify as ITSs, considering the student state space is 

small and that pedagogical options are few. 

Prior efforts such as this are particularly relevant since they help us see that new methods, such as 

knowledge space theory (discussed further in the chapter), can be traced to antecedent methods of much 

older pedigree. Indeed, sometimes these methods come back in similar form to their prior versions. For 

example, work with “example tracing tutors” at the Pittsburgh Science of Learning Center (PSLC) seems 

to involve a very advanced method for creating branching tutors by mapping out the possible “example” 

paths a student may take in solving a problem. They argue that this work should be considered an ITS 

because “example-tracing tutors are capable of sophisticated tutoring behaviors; they provide step-by-step 

guidance on complex problems while recognizing multiple student strategies and (where needed) 

maintaining multiple interpretations of student behavior.” (Aleven, McLaren, Sewall & Koedinger, 2009) 

The main strength of programming methods is their simplicity of execution. Linear programming is the 

perhaps the most simple, but arguably so simple that it misses the benefit of the many important 

pedagogical moves that depend on attending to individual differences. Branched programming address 

this shortcoming and is made easier when supported by technologies that allow branched program 

authoring (Aleven et al., 2009). Where branched programming begins to break down is when branching 

rules for addressing different student model states with different pedagogies become very sophisticated. 

In this case, the fit of the branched programming model to student states becomes difficult to measure, 

since it is idiosyncratic. Subsequent generality will then usually be very low. So, if a general system is 

desired it makes sense to implement adaptation (pedagogy) using methods other than hard coding the 

student states and their resulting pedagogy as branches in the domain model. We discuss many of these 

alternative means for adaptation in the next sections.  

Student models that consist of branching states now have a more than 50-year history. Despite their 

shortcomings, they should be included in GIFT. Branched programming provides considerable power and 

efficiency to a developer with a simple project, perhaps explaining why SCORM includes some simple 

criterion based branching capability, with new proposals in the SCORM domain advocating deeper 

personalization through more complex rule based branching (Rey-López, Fernández-Vilas, Díaz-

Redondo, Pazos-Arias & Bermejo-Muõz, 2006). However, the main advantage for robust support of 

branching in GIFT may be in the potential ease of construction aspect. If GIFT provides a powerful and 

easy mechanism to create adaptive branching tutors (perhaps by allowing the designer to graphically 
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author possible student moves in the state space), there is the potential to attract a wider user base, with 

consequent wider impact on the needs of the education and training community. 

Overlay Student Models 

The origin of overlay models is shrouded in history that reaches back to the heyday of behavioristic 

thought in the late 50s and earlier. During these early years of educational software, designers were still 

heavily influenced by the idea that speculating on “skills” and other unseen constructs was bad science, as 

had been taught by Skinner. Fortunately however, some were beginning to speculate on deeper adaptivity 

in “teaching machines.” In particular, Smallwood (1962) should probably receive credit for his work in 

setting the stage for concept overlay models, Bayesian knowledge tracing (BKT), and economic 

optimization of practice. To illustrate the groundbreaking nature of Smallwood (1962), it is useful to 

quote a few points from the monograph where he proposes this structure (parenthetical comments added): 

1. The decomposition of the subject matter into a set of concepts that the educator would like to 

teach to the student. (Part of the domain model.) 

2. A set of test questions, for each concept, that adequately tests the student’s understanding of the 

concept. (Part of the domain model.) 

3. An array of information blocks, for each concept that can be presented to the student in some 

order (to be decided by the teaching machine)- and thus provide a course of instruction to the 

student on the concept. (Part of the domain model.) 

4. A model that can be used to estimate the probability that a given student with a particular past 

history will respond to a given block or test question with a particular answer. (The student 

model.)  

5. A decision criterion upon which to base the decisions mentioned in 3. (The pedagogical model.) 

While Smallwood continued his explorations of optimal instructional policies (1971), Richard Atkinson, a 

Stanford professor of psychology, who would later be nominated to head the NSF from 1975‒1980 and 

later head the University of California System, was busy over the 1960s testing a variety of Markov 

models that captured learning in probabilistic state transition networks (Atkinson & Crothers, 1964; 

Calfee & Atkinson, 1965; Groen & Atkinson, 1966). Atkinson endorsed many of Smallwood’s ideas, but 

perhaps described them in a more accessible form in his “theory of instruction,” which he hoped to 

formalize in computerized instructional systems (Atkinson, 1972a). Furthering these goals, he produced 

an excellent demonstration of the utility of a single skill per item Bayesian overlay model, which he used 

to optimize the learning of German vocabulary items. The strong results supported a student model, 

which individualized instruction by using different parameters for each vocabulary item to control 

practice sequencing, obtaining 79% performance at a 1-week test, compared to 38% performance for a 

random sequence of practice (Atkinson, 1972b). 

Work such as Atkinson’s, where there is a relatively complex mathematical model that tracks a collection 

of independent item’s correctness (the simplest overlay), has been further exemplified by work with the 

optimization of Japanese-English language pairs (Pavlik Jr. & Anderson, 2008) by taking account of time 

costs in the model so as to make pedagogical decisions not just in reference to learning, but also in 

reference to the time costs of this learning. Pavlik’s technology has been implemented in the X-Germs 

series of arithmetic games from K-12, Inc. This work is arguably unique because of the complexity of the 

mathematical model that captures several principles of memory and treats all the learned units as 
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independent declarative chunks. The mathematical formalism is based on ACT-R’s declarative memory 

system and involves using the full history of practice to compute when each item is at the temporal sweet 

spot of optimal learning. Optimality is achieved by maximizing the expected long-term learning gains 

against the current cost of additional practice. 

Even the early work on overlay models makes clear that an overlay student model tracks some 

pedagogically relevant quantity as a function of the overlay type (in this case, skills, facts, or concepts). 

Modern work continues to follow this pattern despite at least three different kinds of overlay models that 

went beyond this early work with learning sets of independent items. These methods include rule space 

methods, model tracing, and constraint-based models. To add further complexity, however, each of these 

methods has a variety of ways in which knowledge strength or probability is traced. To simplify the issue, 

we associate each of the three methods with its most common long-term model tracing formalisms (e.g., 

BKT), but keep in mind that the overlay model is loosely coupled to the equation that tracks the strength 

of overlaid model states. In other words, BKT could be used in a rule space context, just as logistic 

regression could be used to trace the strength of model traced productions. 

Rule Space Student Models 

An important early student model was the rule space method, which was introduced as a modification of 

Item Response Theory (IRT) to provide a way to categorize misconceptions in signed number arithmetic 

problem solving data (Tatsuoka, 1983). This original approach has stimulated successively more 

advanced efforts to develop the IRT approach as a student modeling method. Perhaps most important of 

these efforts was the development of the idea that the count of prior learning attempts can be used to 

predict later performance. This model has been developed by various authors and is often referred to as 

the additive factors model (AFM; Draney, Pirolli & Wilson, 1995; Spada & McGraw, 1985).  

More recently, researchers have come to refer to the rule space mapping as a Q-matrix, which stands for 

“question matrix” to capture how it maps each of the questions to a number of proficiencies or 

misconceptions (Barnes, 2005; Barnes, Stamper & Madhyastha, 2006; Pavlik Jr., Yudelson & Koedinger, 

2011). Typically, a Q-matrix is a binary matrix that maps specific skills/ rules to particular questions or 

types of questions. A main point of this section on overlay models is that the Q-matrix representation 

could be considered a standard way to represent the domain model semantics. Once a Q-matrix has been 

determined for some content domain, the main question becomes what mathematical formalism 

(typically, Bayesian-Markov process models or logistic regression) should be used to represent the 

student states relative to the possibilities the Q-matrix admits. The point of determining the Q-matrix with 

parameterized equations is that this allows the ITS to mathematically infer an order of problems that 

allows learning to be meticulously adapted based on prior knowledge with the goal of diagnosing and 

providing instruction on the “rules” of the domain, as represented in the matrix. 

Q-matrix models with logistic regression quantitative tracking have become part of the modeling 

apparatus the PSLC (DataShop) though they have not been employed  in any running systems we are 

aware of because the model is not adaptive (AFM, Draney et al., 1995; Spada & McGraw, 1985). 

However, recent work to improve the fit of the additive logistic regression models has shown the 

importance of capturing success and failure in this type of model, demonstrating that logistic regression 

can be at least as accurate as the standard BKT (Corbett & Anderson, 1992; Gong, Beck & Heffernan, 

2010; Pavlik Jr., Cen & Koedinger, 2009). In this performance factors analysis (PFA) model (an AFM 

logistic regression variant), there are two fundamental categories of prior practice, namely, success and 

failure (Pavlik Jr. et al., 2009), which contribute differently to future performance, unlike in the AFM 

model where merely the count of prior experience is tracked. The better fit of the PFA model is sensible, 

since the psychological literature shows successes (in contrast to review after failing) may lead to more 
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production-based learning and/or less forgetting (Carrier & Pashler, 1992; Karpicke & Roediger, 2008; 

Pavlik Jr., 2007; Thompson, Wenger & Bartling, 1978) and may lead to automaticity for shallow learning 

tasks (Peterson, 1965; Rickard, 1997, 1999; Segalowitz & Segalowitz, 1993). Moreover, the logic of 

representing additional factors of learning easily in the logistic regression model is resulting in further 

model variants that capture a variety of instructional differences between different student interactions 

(M. Chi, Koedinger, Gordon, Jordan & VanLehn, 2011) and transfer between related items (Pavlik Jr. et 

al., 2011). These models may have the advantage of incorporating multi-factor complexity more easily 

than BKT models. In general, this analytic approach attempts to decompose practice contexts to 

understand what specific features of the practice can be useful for predicting future performance (Beck & 

Mostow, 2008). Typically, such work is theory driven. 

Model Tracing Student Models 

Model tracing comes from Anderson’s work on the LISP programming tutor at Carnegie Mellon 

University (CMU), which used what he called a variant of Atkinson’s (1972b) work (Anderson, Conrad 

& Corbett, 1989). This approach created a student model that both quantitatively traced the learning of 

production rules in a LISP programming language tutoring system at the same time as it traced the 

students’ responses. Production rules are low-level cognitive steps in a problem solution encoded as IF-

THEN rules. For example: 

IF the goal is to prove ∆ABC I congruent to ∆DBE and AE and CD are collinear 

THEN infer ∠ABC is congruent to ∠DBE because they are vertical angles 

Reactivity to user responses was engineered by a mechanism called model tracing. Model tracing has 

developed from several implications of the ACT theory. These principles include (1) encoding the student 

model as a set of production rules, (2) communicating these rules through problem-solving exercises,  

(3) maximizing the learning rate by responding to the quantitative measurement of learning, and  

(4) providing help for failure on the good answer rather than explaining bad answers (Anderson et al., 

1995). When a tutor is in model tracing mode, there are three possible outcomes as the tutor tries to 

interpret each student action or sequence of actions: 

1. The student’s action matches one of the production rules from the domain model. (This will later 

result in an increment to strength in the quantitative model.) 

2. Multiple sequences of production match, triggering a disambiguation question. (The 

disambiguation question would then control what productions are learned.) 

3. There is no interpretation of the error. This may result in matching of a buggy production that 

leads to context specific messages for the student. If no buggy rule is matched, the student must 

continue to respond until a production is matched. Since this can cause an impasse, the system 

typically involves backup hints of greater and greater complexity to scaffold the student who is 

producing unmatchable responses. 

There is a distinction between this model tracing process of interpreting behavior and the knowledge 

tracing process of inferring the growth of knowledge across the sequence of practice. Corbett later 

presented a canonical paper on what has become known as BKT, which included detailed modeling of 

individual student differences as well as the core Markov model knowledge tracing formalism (Corbett & 

Anderson, 1995). This augmented overlay model was used to track the student’s progress from problem 

to problem by building a profile of strengths and weaknesses relative to the production rules (Anderson et 

al., 1995), rather than in relation to concepts or facts which had been tracked in previous domain overlay 
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student tracing models. Step-by-step BKT is incorporated in a number of tutors in the PSLC (Aleven, 

McLaren, Roll, et al., 2006; Anderson et al., 1995; Heffernan, Koedinger & Razzaq, 2008; Ritter, 

Anderson, Koedinger & Corbett, 2007; VanLehn, 2006) and is a method used heavily by Carnegie 

Learning, Inc., to track skill progression in their various systems. Interestingly, however, many of the 

running systems do not realize the full complexity of Corbett’s original models of individual differences 

(Corbett & Anderson, 1995). 

A primary weakness of this type of approach for domains with many skills or misconceptions is that the 

skills and misconceptions must be reasonably enumerated in order to provide feedback (Brown & 

VanLehn, 1980). The creation of this domain model can be time consuming. Although development time 

is not widely reported, general ITS system design is estimated at 200‒300 hours of development time per 

1 hour of instructional content (Aleven, McLaren, Sewall, et al., 2006). Additionally, there is evidence 

that the remediation of specific bugs may not have added instructional benefit over the alternative of 

simply re-teaching the material that contained misconceptions (Sleeman, Ward, Kelly, Martinak & 

Moore, 1991). There is potential to mitigate this weakness with recent efforts to focus misconception 

database minimization, keeping the conceptual misconceptions to fewer than five in order to save 

development time (VanLehn et al., 2007). Sometimes, for well-defined domains with substantial prior 

data, the misconception or skill database may be automatically generated, saving a significant amount of 

development time (Burton, 1982; Cen, Koedinger & Junker, 2006). The GIFT domain module currently 

supports the communication of this information, but not the construction. Possibly, this type of 

knowledge component overlay could be accomplished automatically from the relationship and 

interactions inherent in textual information (Ahmed, Toumouh & Malki, 2012; Lahti, 2010). Practically, 

this type of knowledge overlay should either be supported via automatic generation, the merging of 

existing model structure, or a tool for authoring.  

Perhaps more technically problematic than creating some list of skills is to describe in a meaningful way 

how the skills interact in a way that is computationally tractable and not overly simplistic. In a highly 

interactive system, the pedagogical model would be able to select items for practice that accounted for 

prerequisite relations automatically. We might want a model where we can make inferences about the 

item that is not yet mastered, but yet still the easiest item-type that the student might practice. For 

example, in a unit on fraction skills, we might want the system to detect (based on a history of success 

and failure) what basic skills a student has mastered (e.g., least common multiples) and avoid these, 

identify the skills students are ready for (e.g., equivalent fractions), and similarly hold in reserve those 

items that still have unmastered prerequisites. A related issue is when there are multiple skills needed to 

produce a single response. In such cases, whether we model the relationship of the skills as additive (one 

skill can compensate for others) or conjunctive (all skills must succeed to succeed in the response) has 

implications for parameter estimation and what skills to credit in the case of success or failure. However, 

in practice, it has been complicated to work out how skills should be combined (Ayers & Junker, 2006; 

Cen, Koedinger & Junker, 2008; Koedinger, Pavlik Jr., Stamper, Nixon & Ritter, 2011). 

Constraint-Based Student Models 

In constraint-based tutors, the domain model consists of a set of constraints representing the basic domain 

principles (Ohlsson, 1992). Each constraint is a declarative statement composed of a relevance condition 

(R) and a satisfaction condition (S). The relevance condition specifies when the constraint is relevant and 

only in these conditions is the constraint meaningful. The satisfaction condition specifies additional 

conditions that must be satisfied by the student’s solution for which the constraint is relevant in order for 

the solution to be correct. A satisfied constraint corresponds to an aspect of the solution that is correct. A 

violated constraint indicates a mistake in the solution without explicitly representing the actual 

misconception the student might have; it simply means that the student’s solution violates a domain 
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principle. Therefore a constraint set explicitly defines the space of correct knowledge, without requiring 

misconceptions to be identified and collected; the space of incorrect knowledge is represented implicitly 

by violated constraints (Ohlsson & Mitrovic, 2007). 

An example constraint from the cooking domain might be “when making French fries, the oil must be hot 

before potatoes are added.” The relevance condition of this constraint specifies the task (making French 

fries) and the current state of the solution (the student has put potatoes into the pan). The satisfaction 

condition then specifies that the temperature of the oil must be within the appropriate range. This 

constraint will be violated by various incorrect actions (like there is no oil in the pan, the oil is too hot or 

too cold, etc). However, the tutor only needs to teach the domain principle (the required temperature of 

the oil) to the student, rather than having to identify the exact misconception that caused the mistake. 

One example constraint for the task of fraction addition might be relevant in situations when the student 

has added two fractions, a/b + c/d, and the student’s solution is of the form (a+c)/n (Ohlsson, 1992). The 

satisfaction condition of the constraint states that b=d=n; only in that case is the student’s solution correct. 

This constraint can be violated because of many misconceptions; however, the tutor can simply reinstate 

the violated domain principle (the numerators of the two given fractions can be added if their 

denominators are equal). 

Constraints can be syntactic or semantic in nature (Mitrovic & Ohlsson, 1999). Syntax constraints are 

simpler than semantic ones, which need to ensure that the student solution is an appropriate solution for 

the given problem. In domains where there are multiple correct solutions, the required properties of the 

solution are captured in terms of a pre-specified (ideal) solution; the semantic constraints compare the 

student’s solution to the ideal solution taking into account alternative ways of solving the same problem, 

in terms of equivalent domain operators (Mitrovic, 2012).  

Constraints specify what ought to be so, so they are evaluative in nature. They are not prescriptive in the 

sense of generating behavior like production rules do. Therefore, a student’s solution is diagnosed by 

matching it to the constraint set, identifying the relevant constraints, followed by checking the satisfaction 

conditions of the relevant constraints. This process corresponds to what VanLehn (2006) calls the inner 

loop. Information about satisfied and violated constraints is then used by the tutor to generate positive and 

negative feedback for the student (Mitrovic, Ohlsson & Barrow, 2013; Zakharov, Mitrovic & Ohlsson, 

2005). 

The previous two example constraints demonstrate that constraint-based modeling (CBM) does not 

presume any particular stepwise pedagogical approach. Instead, it is used to react to every action the 

student makes (to provide immediate feedback) or wait until the solution is complete and thereby provide 

delayed feedback. Usually feedback is provided on demand, when the student requires it, but can also be 

provided at times when the pedagogical model identifies that the student would benefit from the feedback. 

The granularity of constraints can also vary, and should be determined from the pedagogical point of 

view, by designing feedback that is effective for learning a particular task. 

Student models in constraint-based tutors are also overlays. That is, the student’s knowledge is 

represented in terms of constraints that the student does or does not know, as demonstrated by the 

submitted solutions. Each time the student’s solution is matched to the constraints, information about 

violated and satisfied constraints is used to update the student model. The simplest way to represent the 

student’s knowledge of a particular constraint is a simple frequency of correct use within a specified 

window of opportunities to use the constraint. Some constraint-based tutors have probabilistic student 

models, where information about the violated and satisfied constraints is used to update the probability of 

the student knowing each constraint (Mayo, Mitrovic & McKenzie, 2000). 
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This overlay student model is used by the pedagogical module to select problems of appropriate 

complexity for the student. Problem selection could be based on simple heuristics, such as the one which 

identifies the constraint(s) with which the student had the most difficulty (Mitrovic, 2003). Alternatively, 

in one version of SQL-Tutor, there is a simple Bayesian network for each problem, which makes 

predictions about the performance of a particular student on the problem. These multiple predictions are 

then combined to give an overall measure of the value of the problem for a particular student (Mayo et al., 

2000). CAPIT, an ITS that teaches children about punctuation and capitalization rules in English, uses a 

data-centric methodology, in which the structure of the Bayesian network is induced from the student data 

(Mayo & Mitrovic, 2001). The Bayesian model predicts the student’s performance on each problem, and 

utility functions are used to select the best problem for the student and also the best feedback to be given 

to the student if there are errors. The classroom evaluation shows that such a decision-theoretic 

pedagogical strategy results in reduced learning times and improved performance. 

Early research on constraint-based tutors focused on a range of domains to which CBM is applicable. 

Successful constraint-based tutors cover a wide variety of instructional domains, ranging from well-

defined to ill-defined design tasks (Mitrovic & Weerasinghe, 2009). Well-defined tasks have crisp rules 

that govern them and often have incremental performance steps, while ill-defined tasks frequently have 

performance described in terms of outcomes. Some examples from the latter category are the SQL-Tutor 

(Mitrovic, 1998) that teaches database querying using Structured Query Language (SQL) and EER-Tutor 

that teaches database design using the enhanced entity-relationship (EER) model (Mitrovic, Martin & 

Suraweera, 2007). Learning gains have been between 0.6 and 1.6 sigma (Amalathas, Mitrovic & Ravan, 

2012; Mitrovic, 2012; Suraweera & Mitrovic, 2004) after short learning sessions (less than 2 hours). Later 

work includes using constraints to represent not only domain knowledge, but also collaborative skills 

(Baghaei, Mitrovic & Irwin, 2007), to support tutorial dialogues (Weerasinghe, Mitrovic & Martin, 2009), 

self-assessment and open student models (Mitrovic & Martin, 2007). 

The CBM paradigm, like the other types of student models in this work, can be used to represent domain 

knowledge. It has shown strength in its ability to instruct, but the largest limitation remains that that the 

models must still be authored. However, there is evidence that the authoring of constraint-based tutors is 

more rapid than their traditional counterparts (Mitrovic, Koedinger & Martin, 2003). These development 

times have come down rapidly through the introduction of authoring tools: from 220:1 (Mitrovic & 

Ohlsson, 1999) down to 30:1 (Heffernan, Turner, Lourenco, Macasek & Nuzzo-Jones). In addition, 

ASPIRE is an authoring system for constraint-based tutors that is freely available (Mitrovic et al., 2009).  

CBM is an attractive solution to the student knowledge modeling problem for several reasons. Firstly, 

CBM does not require the large amounts of development time traditionally associated with production 

rules. It does not require probabilistic estimates of student knowledge built upon a large database of 

previous interactions, so it is a practical approach for instruction. Secondly, CBM supports both 

procedural and open-ended task modeling because it does not have to exhaustively model task dynamics 

(Mitrovic et al., 2003). Finally, CBM systems have been shown to be effective on a wide variety of 

instructional tasks (Mitrovic, 2012).  

Yet another advantage of CBM is that the created models of domain knowledge have the potential to be 

transitioned to another system that embodies the same concepts. This is neatly aligned with the principles 

of architecture creation. The method of model creation thereby has the capability to transfer. The lifespan 

of the model is tied to the lifespan of the ITS, although fractional components of the model may be used 

in the construction of a model for another system. The ability to cannibalize model components and 

model construction components into a new ITS is a highly desirable architectural enhancement. 

At the time of writing, GIFT supports the communication of student state information through a hierarchy 

of “concepts” and “sub-concepts,” which have varying levels of grading. This fits well with the student 
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modeling nature of evaluating the student model through mastered versus violated constraints. GIFT 

currently makes an effort to describe a student model using a concept breakdown, where each concept is 

not tied to a given domain of instruction, and is assessed simply (e.g., above standard, at standard, below 

standard, or unknown); however, it does not currently support the seamless authoring of module 

components which send these messages. The transfer of these tools and knowledge is the prime advantage 

of the CBM approach, but future development should support the plugin of the existing authoring tools to 

create CBMs for tracking student performance models. 

Overall Considerations Underlying Overlay Models 

Overlay models have two architectural components: the overlay objects and the mathematical tracking 

formalism. The overlay objects are typically linked to inner loop immediate pedagogy provided through 

the tutor’s interface, e.g., immediate feedback when a constraint is violated, while mathematical 

formalisms are used by the outer loop to select which problem items are presented to students. Therefore, 

general systems like GIFT will benefit from providing explicit support for defining overlay objects that 

are linked both to tutor interface pedagogy and data recording that will enable the outer loop 

mathematical model to compute the next best problem to present at any time. While overlay models can 

function at one level or the other (e.g., with no immediate pedagogy or with no mathematical tracking), 

most modern overlay systems include both immediate pedagogy in response to violations of the 

assumption of the overlay objects and mathematical tracking of the overlay objects. 

The strengths of the quantitative models underlying the overlays are not frequently realized in running 

systems because they typically do not live up to the goals of economic optimization and student-level 

individual difference tracking inherent in their configuration. Economic optimization takes account of the 

costs of each possible pedagogical action in addition to the gains (Atkinson, 1972a; Smallwood, 1962, 

1971). While efficiency tends to be ignored, there has been renewed attention recently, with some 

researchers exploring how knowledge tracing models can be used to detect when skills are being over 

practiced, and instead spend that practice time on items that need practice. Reducing such over practice in 

existing systems has led to reduction in learning time, with no difference in gains (Cen, Koedinger & 

Junker, 2007). This failure to address costs in learner models is similar to the general failure to address 

student-level parameters in student modeling. Student-level parameters can be used for modeling 

individual differences, rather than making the assumption that there is a global, generalized model that 

fits all students. For example, despite work by Corbett showing that student-level parameters are 

important to produce tight fits to students’ data (Corbett & Anderson, 1995), systems using BKT tend not 

to use subject level parameters, e.g., Carnegie Learning, Inc., tutors do not use general parameters for 

each student (Ritter & Anderson, 2006).  

Because of the wide usage of component overlay models combined with mathematical tracing of 

components, GIFT will likely need to provide some support of this sort of student model. To start with, 

this implies support for a domain representation such as a Q-matrix, which assigns skills to each exercise 

in the domain. These Q-matrices may be universally needed for almost all overlay model variants. 

Secondly, GIFT needs to provide data structures to fully reload the students’ prior history within a system 

to enable reconstruction of the user model. Third, GIFT should provide an API for mathematical 

functions that compute pedagogically relevant quantities using the history for the student. For example, in 

the Fact and Concept Training system, the mathematical model includes a function “choose-trial,” which 

analyses the full history for all the items for the student to determine the item that is closest to being at the 

optimal point for rehearsal. In turn, this choose-trial function (called from the interface) depends on lower 

level model computations of the probability of successful performance and time costs for each item. 

Similarly, after practice, a model API function saves the result of prior practice as the history accumulates 

(Pavlik Jr. et al., 2007).  



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 
 

50 

 

We advocate a three-pronged recommendation that the domain structure should be compatible with a Q-

matrix structure (Domain Module), able to reload the history of practice so as to compute the current 

student model state (Student Module), and an interface for interpreting mathematical states of the student 

model to make pedagogical inference in a tractable way (Pedagogical Module). If a basic model API that 

includes some default models, GIFT users will be able to test and modify the mathematical component of 

the overlay models quickly and easily. Additionally, by providing a standard Q-matrix support in GIFT 

for the overlay of skills as a separate component of the architecture (a different API), it should be possible 

for users to test different mathematical formalisms to capture in the context of the same Q-matrix. This 

flexibility should speed development by modularizing the Q-matrix and mathematical tracing 

individually, thus allowing easier reuse/generalization of Q-matrices or mathematical models. By 

association, adherence to this recommendation will yield increased learning gains with decreased 

development times. 

Knowledge Space Models 

The domain model of knowledge space theory is a large number of possible knowledge states in a domain 

(or knowledge structure), whereas the student model is a record of which of the knowledge states are 

mastered. It is essentially a fine-grained overlay model that is not based on cognitive structures (e.g., 

skills), but is rather based on problem types that are or are not mastered. A student’s competence is 

reflected in the student model as a probabilistic estimate of the types of problems that the student is 

capable of solving in the domain (Falmagne, Doignon, Cosyn & Thiery, 2003). 

The knowledge structure in knowledge space theory is based on the precedence relation, in which ability 

to solve one type of problem tends to precede solution of another type. Such precedence relations may be 

due to the prerequisite structure of the domain, but also may be due to the order in which problem types 

are currently taught (Falmagne et al., 2003). These precedence domain models are then used in a tutoring 

context to select the next problem to work on that is sensitive to the student’s competence as tracked by 

the overlay student model of the preceding problems currently known. Thus, depending on all the 

problem types previously mastered in the student model, there is “just prior” (inner fringe) and a “next 

subsequent” (outer fringe) of items in the problem. The outer fringe constitutes the pedagogical decision 

of the knowledge space student model given current the probabilities of being in the various knowledge 

states as inferred by the prior success on individual problem types (Falmagne et al., 2003). 

A knowledge structure in knowledge space theory can be described as a Bayesian network without hidden 

nodes, since each of the nodes maps to a concrete class of problems (Desmarais & Pu, 2005). Knowledge 

spaces are often hand engineered because of the massive amounts of data needed to infer the complete 

graph of the domain knowledge precedence relations but such structures also need to be refined with data 

to enhance accuracy (Falmagne et al., 2003). Part of the reason for the large amounts of data that are 

needed is because of the extraordinary flexibility of the knowledge space formalism to represent 

AND/OR precedence relations in which the outer fringe can be arrived at through one or more pathways 

(Desmarais, Maluf & Liu, 1996). In other words, C can be known if either A and/or B are known. 

Partial Order Knowledge Structures (POKS) have been developed as an alternative to account for the 

difficulties of inferring the AND/OR structure from data alone, as reviewed elsewhere (Desmarais et al., 

1996). As an alternative to the AND/OR graphs of the knowledge structure, POKS use a simpler 

precedence relation that is less powerful but easier to estimate since it requires that all of the prior states 

be present. Therefore, it captures an AND graph that can be laid out as a directed acyclic graph (DAG) in 

which each problem type requires all prior problem types to be mastered with some threshold of certainty. 

Arguments have been made that such a formalism is adequate in part because situations in which there are 

alternative prerequisites can be quite rare (Desmarais et al., 1996). Conveniently, explicit mathematical 
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examples and explanation on how to construct knowledge spaces using POKS are detailed in the literature 

(Desmarais et al., 1996; Desmarais & Pu, 2005). 

The best example of a fully deployed knowledge space based system is the ALEKS mathematics tutor 

(Doignon & Falmagne, 1999; Hu et al., 2012). In this system, there is a very large knowledge space 

model for mathematics. The system begins with a student model building phase in which it asks questions 

without pedagogical intent, but rather to determine the student state. This assessment process is also 

typically set to run after 5 hours or 20 item types are passed so as to recalibrate the state of the student 

model. After the student model is determined (the state of the student relative to the domain 

representation, i.e., the inner fringe), the outer fringe can be inferred from the domain structure. This 

inference of the outer fringe appears to be the primary pedagogical move in the ALEKS system. The 

pedagogical model is simply to give the student the choice of any problem type in their outer fringe. Once 

working on a problem type the student model is straightforward, because it simply involves allowing the 

student to branch to a new outer fringe problem type if they get the current problem type correct four 

times in a row, though they have the option of more practice if they wish (personal communication, 

ALEKS Inc.; http://www.aleks.com/about_aleks/research_behind). 

While some ITSs focus on context sensitive adaption either through constraints or skill models, 

knowledge space theory systems (as exemplified by ALEKS) rely on a far more complex domain model. 

This domain model essentially presolves the appropriate possible branches from one state to another. This 

presolved domain-space solution maps to pedagogy through the detailed precedence relationships, leaving 

the system very little “intelligence” in deciding content order. This methodology harkens back to the 

branching systems discussed earlier. Essentially, ALEKS is a controlled branching network system with 

limited student choice of options from the outer fringe of the network. Importantly, knowledge space 

systems have not made a great effort to consider the different possible branching rules that might 

determine which outer fringe item is given to a student (this is left in the student’s hands) or how many 

repetitions may actually be needed to transition from one type to another. So, while knowledge space 

student models provide a nice example of branching, this student modeling method, while parsimonious, 

could be made more flexible if the permitted pedagogical inferences were allowed to be more complex as 

a function of the student’s history of performance. 

Systems other than ALEKS have also been developed, most notably the work on the Catalyst system for 

chemistry (Arasasingham, Martorell & McIntire, 2011; Arasasingham, Taagepera, Potter, Martorell & 

Lonjers, 2005). This system seems to be quite effective, but relies on a strategy of breaking the 

knowledge space up into different representational foci, including numeric, symbolic, and visual problem 

types so as to be able to plan learning precedence relations that include attention to integrated 

representations of the content for the students. We might speculate that this improves effectiveness based 

on research on multiple representations, making it difficult to assess the pure contribution of the model. 

Student modeling with knowledge spaces appears to be a fertile area to the point where other independent 

groups are contributing significantly to development of the techniques (Albert & Lukas, 1999). 

Intelligent tutoring frameworks like GIFT should certainly include support for knowledge space student 

modeling. Knowledge space student modeling uses the structure of the domain (perhaps represented by a 

matrix of problem to problem relationships) to assess where the students are in that domain (the student 

model). In GIFT the Q-matrix formalism might be expanded to include matrices that encode precedence 

relations, perhaps by referring to the matrix as the “domain map.” The student model using knowledge 

space computes a likelihood across the possible states of the domain map based on some prior 

assessment. While the procedure of updating the likelihood seems like it will be conceptually complex, it 

also appears analogous to the process of inference in the overlay models that results in an update to their 

long-term model quantities. In both cases (knowledge spaces and overlay models), the system makes 

pedagogical inferences based on some numeric representation of the long-term student model state.  
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Dialogue Student Models  

This type of student modeling is typical for ITSs that help students learn by holding a conversation in 

natural language, such as AutoTutor or Why-Atlas (Graesser, D’Mello, et al., 2012; VanLehn et al., 

2007). Although these conversational ITSs based in natural language vary in terms of the pedagogical 

activities they support, they all share two defining attributes. First, these conversational ITSs are based on 

naturalistic observations and computational modeling of human tutoring strategies embedded in tutorial 

dialogue (D’Mello, Olney & Person, 2010; Graesser & Person, 1994; Graesser, Person & Magliano, 

1995; Person, Graesser, Magliano & Kreuz, 1994). A common strategy is the so-called five-step dialogue 

frame (Graesser & Person, 1994; Graesser et al., 1995; Person et al., 1994): (1) Tutor asks a deep 

reasoning question, (2) Student gives an answer, (3) Tutor gives immediate feedback or pumps the 

student, (4) Tutor and student collaboratively elaborate an answer, and (5) Tutor assesses the student’s 

understanding. This strategy reflects the other defining attribute of conversational ITSs, namely, the 

emphasis on collaborative, constructive activities based in theories of learning and tutoring (Aleven & 

Koedinger, 2002; M. T. H. Chi, 2009; M. T. H. Chi, Siler, Jeong, Yamauchi & Hausmann, 2001; Fox, 

1993; Graesser et al., 1995; Moore, 1994; Shah, Evens, Michael & Rovick, 2002; VanLehn, Jones & Chi, 

1992). 

Because conversational ITSs are fundamentally rooted in dialogue, their corresponding student models 

are usually structured in dialogue-centric terms. A useful (though distinctly non-ITS) oriented framework 

for modeling dialogues has previously be established by McTear (2002). This framework identifies three 

major kinds of dialogue models: graph-, frame-, and agent-based. In a graph-based system, at any given 

moment there are a fixed set of alternative user actions; analogously, each user possible input is 

associated with an arc from a given node/state of a graph to a new node/state. A common example is a 

phone-menu dialogue system, e.g., “Press 1 for directory, 2 for billing, or 0 to speak with an operator.” 

Graph-based systems are relatively rigid because they restrict the user’s input. Analogously, one would 

have to slowly progress through a phone-menu dialogue to get to the desired state, rather than being able 

to say, “I need to speak to billing” at the first opportunity. Graph-based systems are largely comparable to 

branching student models in terms of the tutor behavior they support. Frame-based systems are slightly 

more flexible than graph-based systems. In a frame-based system, there is a single overall goal 

represented by a frame, a fixed attribute-value data structure. The goal of the system is to fill each of the 

value slots in the frame, in any order. For example, an online reservation system might have the slots 

[departure date, departure time, destination city, departure city, arrival time, arrival date]. An initial 

dialogue move from a frame-based system might be, “What reservation would you like to make today?” 

If a user says, “I’d like to go to Vegas tomorrow,” the system would recognize and fill two of the needed 

slots in the frame, and follow up with a question like, “What time would you like to leave tomorrow?” 

Thus, if the user gives a full frame’s worth of information on the first turn, the system would not need to 

ask any more questions. If the user gives some but not all of the information, the system would flexibly 

request the missing information. Frame-based systems are loosely comparable to constraint-based models 

in terms of the tutor behavior they support. Each slot in a frame specifies a constraint that must be met in 

order for the frame to be complete. Agent-based systems are the most complex of the three types of 

dialogue system identified by McTear. The hallmark of agent-based systems is that they are fully mixed-

initiative: the user can introduce new topics and goals for the system. This often (but not always) requires 

that the system be able to recognize the intentions of the user. For example, if the user is trying to find the 

area under a curve and says, “I don’t know how to do integration,” the system would (1) recognize that 

the current goal requires integration, (2) recognize that the user is unable to perform integration (a 

subgoal of the current goal), and (3) attempt to help by, for example, explaining integration to the user. 

This is a stereotypical example of an agent-based system; however, there is substantial variation in how 

much artificial intelligence (AI) and symbolic modeling is actually implemented in such a system. 
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While the three kinds of dialogue modeling defined by McTear could theoretically be applied in a pure 

fashion, in practice dialogue systems and ITSs blend elements of these three models, to varying degrees, 

depending on the functionality of the system. Each of the three provides different functional properties. 

Graph-based systems provide highly specific and state-dependent actions, are rigid in structure, and are 

robust computationally because user input is unambiguous. Frame-based systems provide less specific, 

context-free actions and are a flexible means of pursuing a single goal, though they are less 

computationally robust than graph-based systems because user input is less constrained. Agent-based 

systems are theoretically the most flexible because they allow unconstrained user input and interaction 

patterns, but in practice they are computationally fragile because the AI behind agent-based systems is at 

or beyond the current state of the art.  

To better explain how these dialogue models interleave with student models in a conversational ITS, we 

give a detailed example based on AutoTutor. However, similar examples may be given for a variety of 

conversational ITSs including Guru, GnuTutor, and Operation ARIES (Millis et al., 2011; Olney, 2009; 

Olney, Person & Graesser, 2012). The overall structure of an AutoTutor session is as follows: 

Problem statement→ Pump → Expectation coverage* →Summary 

In other words, each session begins with an introduction ending with a problem statement. When the 

student responds, the tutor typically follows with a pump, e.g., “What else can you say?” Then the tutor 

launches zero or more cycles of expectation coverage, and follows these with a summary of the answer to 

the problem. From the above description, the overall structure of the dialogue is graph-based, with no 

alternatives. Correspondingly, at this level, there is no real need for student modeling. However, 

expectation coverage is not an automatic action, but rather a composite action or mode of the tutor; this is 

where nearly all of the tutor-student interaction takes place. 

AutoTutor’s expectation coverage is modeled after Expectation and Misconception Tailored (EMT) 

dialogue found in authentic tutoring sessions (Graesser, D’Mello, et al., 2012). Human tutors typically 

have a list of expectations (anticipated good answers, steps in a procedure) and a list of anticipated 

misconceptions associated with each problem statement. For example, expectations E1 and E2 and 

misconceptions M1 and M2 are relevant to the following example physics problem: 

PHYSICS QUESTION: If a lightweight car and a massive truck have a head-on collision, upon 

which vehicle is the impact force greater? Which vehicle undergoes the greater change in its 

motion, and why? 

E1. The magnitudes of the forces exerted by A and B on each other are equal. 

E2. If A exerts a force on B, then B exerts a force on A in the opposite direction. 

M1: A lighter/smaller object exerts no force on a heavier/larger object. 

M2: Heavier objects accelerate faster for the same force than lighter objects 

During expectation coverage, the goal of a conversational ITS is to elicit an explanation from the student 

with regard to the problem statement or seed question. Since student explanations often contain multiple 

propositions or sentences, this goal reduces to eliciting each sentence in the expected explanation. We 

label these subgoals expectations, because they are expected parts of the overall explanation. The 

similarity with frame-based systems should be evident: during expectation coverage, the goal of the ITS is 

to fill out a frame corresponding to the complete explanation to the initial problem statement. Each 

sentence of the explanation corresponds to a slot in the frame. The task for the ITS is to elicit each 
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expectation in the frame, which involves two subtasks. First, the ITS must choose a strategy that results in 

a student response matching an unsatisfied slot/expectation. Second, the ITS must evaluate the student 

response to determine which (if any) of the unsatisfied slots/expectations it satisfies. Thus, the student 

model during expectation coverage is largely a frame type structure representing what (if any) of the 

expectations the student “knows.” The ITS uses this information to focus on slots the student does not 

know, creating a more adaptive and efficient learning experience. Slots may be selected using criteria 

such as semantic proximity to the current slot (i.e., zone of proximal development). 

However, for each slot/expectation, the student model may be augmented with a measure of the student’s 

ability, based on the strategy the tutor used that resulted in a satisfied slot/expectation. The connection 

between tutor strategy and student ability is based on the observation that some strategies require more 

effort from the student in terms of recall and cognitive processing (e.g., prediction, inference, causal 

reasoning). A major strategy is asking questions ranging from vague to highly specific (Graesser et al., 

1995; Person & Graesser, 2003). For example, a pump is a vague question consisting of neutral back 

channel feedback (uh-huh, okay, subtle head nod) or explicit requests for more information (what else, 

tell me more). Pumping serves the functions of exposing student knowledge and encouraging students to 

construct content by themselves. Hints give context to the question, but do not lead the student to a 

specific answer, for example, “What about blood pressure in this situation?” In contrast, prompts are 

highly specific questions in which tutors supply a discourse context and prompt the student to fill in a 

missing word or phrase, for example, “As the heart beats faster, the blood pressure does what?” In 

addition to pumps and prompts, many other question types exist that vary in specificity and depth of 

processing required by the student, such as disjunctive questions or causal questions (Graesser & Person, 

1994). For a given expectation, if a student generated an answer satisfying it when the tutor strategy was 

more difficult, then the student may have greater ability/mastery of that expectation than if the strategy 

was easy, for example a prompt. Thus, within an expectation coverage cycle, the point at which a student 

satisfies the expectation is another aspect of the student model. In AutoTutor, the expectation coverage 

cycle is as follows: 

Hint → Prompt → Assertion 

This provides two levels of mastery assessment, since a tutor assertion is a paraphrase of the expectation 

given to the student. This cycle is graph-based, but the cycle terminates when the expectation is satisfied. 

As mentioned previously, a conversational ITS not only uses strategies to elicit a student response but 

also evaluates the student response to determine if it satisfies any expectation. In addition, a 

conversational ITS typically anticipates student misconceptions. An expectation or misconception is 

scored as being expressed by a student if the student articulates it in natural language with a high enough 

semantic match. Semantic matches can be assessed by a number of methods in computational linguistics, 

such as content word overlap, latent semantic analysis, regular expressions, semantic entailment, or 

Bayesian statistics (Cai et al., 2011; Graesser, Penumatsa, Ventura, Cai & Hu, 2007; Rus, McCarthy, 

Graesser & McNamara, 2009; VanLehn et al., 2007). Depending on the method used, the match between 

an expectation/misconception and the student response can range from a single number between 0 (no 

match) and 1 (identical), or can consider the response compositionally in order to debug the answer. In 

either case, the evaluation becomes part of the student model.  

If the evaluation is a single number, then the frame becomes a “soft frame,” where expectations are 

satisfied if the evaluation is above a numeric threshold. Even when the expectation is satisfied, the 

evaluation score can be used to indicate relative mastery. For example, if the evaluation score is above the 

threshold of 0.5, then the ITS may decide that the corresponding expectation is sufficiently “known” that 

the tutor can move on to other expectations. However, while evaluation scores of 0.6 and 0.9 would both 

satisfy the threshold and result in the same tutor behavior, the latter student may have mastered the 
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expectation to a higher degree than the former. Thus, the student model in this case is a soft frame where 

each slot is weighted by the final evaluation score that led to the satisfaction of the expectation. 

Complementary extensions to the student model include the entire history of evaluation scores for each 

expectation. Even though these single number evaluations may appear one-dimensional, as part of the 

student model they may be used to generate complex adaptive behavior by the ITS. For example, a 

conversational ITS will usually select a specific question in order to maximize the chance that a student 

will satisfy an expectation (assuming the student generates the correct response). Likewise, a 

conversational ITS will usually select the next expectation to cover based on its similarity to the current 

expectation.  

The advantage to a numeric semantic match that it is very robust to noise. The standard approach is to use 

latent semantic analysis (LSA), an unsupervised technique that creates numeric vector representations for 

words in a large unstructured collection of texts (Landauer, McNamara, Dennis & Kintsch, 2007). The so-

called LSA vector space, together with the expectations and misconceptions described above, represents 

the domain model for an AutoTutor session. The corresponding semantic match in LSA is the vector 

cosine. This approach is very robust to ungrammatical and fragmentary user inputs and requires no 

knowledge engineering expertise. LSA type approaches are generally applicable to natural language 

inputs in domains where the order of words in the student’s answer have little impact on the meaning of 

the answer. Counterintuitively, this order-free property applies in most cases (Landauer et al., 2007), 

though would not apply in cases where the answer contained mathematical formulae or similar 

representations. 

As mentioned above, agent-based systems support the most sophisticated dialogue behavior but come 

with the cost of added complexity and loss of robustness. While generally true, it is possible to satisfice 

the problem of mixed-initiative in such a way that avoids the larger issues addressed by agent-based 

systems. In some versions of AutoTutor, mixed-initiative dialogues are created by recognizing and 

responding to student questions. Every student input is first analyzed to determine if it is an answer to a 

current tutor question or is a new student question, using a speech act classifier (Olney et al., 2003). When 

AutoTutor answers a question, it enters a sub-dialogue that is nested in the larger dialogue of the tutoring 

session. In essence, AutoTutor temporarily suspends its tutoring agenda in favor of answering the 

question posed by the student. Different student question types indicate shallow (e.g., verification or 

definition) or deep level reasoning (e.g., causal consequence or inferential) and so can be used to inform 

the student model (Graesser & Person, 1994). However, while question asking is an important part of 

active learning, students tend to ask very few questions, even when specifically asked by AutoTutor, “Do 

you have any questions?” Thus, the utility of question classification and corresponding mixed-initiative 

dialogue may be low relative to the practical complexity of creating such a system. In addition, the 

potential of misclassifying a student input increases with the number of speech act categories, meaning 

that part of the cost of having a question-answering component is incorrectly classifying student answers 

as questions.  

Dialogue-based student models have several advantages that make them attractive for a domain-

independent, general purpose framework like GIFT. Numeric semantic matches (e.g., LSA) are highly 

robust when used to evaluate student input. Students can use fragmentary language or synonyms and still 

have their answers accepted by the tutor. However, numeric semantic matches are also prone to biases 

implicit in the corpus of texts used to create them. These biases can be invisible to authors who are 

creating dialogues for the tutor. For example in biology, the terms “prokaryotic” and “eukaryotic” are 

often mentioned in the same paragraph but compared and contrasted with each other. Because of this, a 

biology LSA space will give a high numeric semantic match between the two, even though they are quite 

different (eukaryotes have a nucleus and membrane-bound organelles, e.g., animals and plants, and 

prokaryotes do not, e.g., bacteria).  
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Because of this problem (and biases in semantic spaces more generally), we propose the following for 

GIFT as well as future work that uses numeric semantic matches in dialogue student models. First, the 

semantic space should be developed before the dialogues are created and incorporated into the dialogue 

authoring tool. Second, when the expectation and misconception dialogues are created, the authoring tool 

should use the semantic space to evaluate the dialogue as it is authored and offer real-time feedback. For 

example, suppose that the author has just created a prompt, “What do we call cells that have a nucleus?” 

with the correct answer “eukaryotic cells.” If the authoring tool lists the near neighbors of “eukaryotic 

cells” in the semantic space, then the author will become aware that an incorrect answer, “prokaryotic 

cells,” would be accepted as a correct answer for this prompt. This gives the author the opportunity to 

apply additional constraints, like regular expressions, to ensure that only correct answers will be accepted 

(Graesser, D’Mello, et al., 2012). This kind of feedback will help keep the student model from being too 

forgiving of student input.  

A second kind of real-time feedback that we propose involves checking the correspondence between the 

expectation and the ideal student responses to questions involving that expectation. For example, if the 

expectation is, “Eukaryotic cells have a nucleus,” with only the associated prompt “What do eukaryotic 

cells have that contains DNA?” then it’s possible that the student could type “nucleus” but not actually 

cover the expectation. In other words, it’s possible to write dialogue that would never guide the student to 

cover the expectation, leading to a malformed student model. A solution to this is to provide real-time 

feedback that computes the semantic match between all of the ideal student answers to the hints and 

prompts associated with an expectation and the expectation itself. If the match is very low, this could 

indicate a problem. Moreover, the threshold for the expectation itself is probably best determined by some 

percentage of this score rather than being held constant for all expectations in a problem. Following this 

recommendation should prevent the student model from being too harsh with student input. 

State and Trait Identification Models 

This category includes student models that capture affective/motivational constructs that are either 

transient or trait like. This category is distinct from overlay models that capture some sort of learnable 

skill (e.g., self-regulation). Since traits tend not to change (unlike skills) and states tend to fluctuate in 

reaction to stimuli (unlike skills), this category logically excludes any learned proficiency based models. 

Despite this, it seems likely that state and trait models would be used in conjunction with learned 

proficiency models as an additional input to infer student states and make pedagogical decisions. 

Because of the role of affect and cognition in the learning process, a significant amount of ITS research is 

focused on measurement and detection (Cerri, Clancey, Papadourakis & Panourgia, 2012). This occurs 

through the incorporation of hardware sensors of software detectors into the standard learning system. 

Examples of these include an electroencephalography (EEG) head-cap (Goldberg et al., 2011), AI-based 

software models (Wixon, Baker, Gobert, Ocumpaugh & Bachmann, 2012), or a combination of both 

(Kapoor & Picard, 2005). 

Human tutors are known to be as devoted to the motivation of the student as much as their cognitive and 

informational goals (Lepper & Hodell, 1989; Woolf, 2008) Affective characteristics have also been 

highlighted in the literature as an important area to learning (Woolf, 2010). While there has been 

significant research in their development, there has been limited transition to usable systems. One nice 

example of a strong success comes from feature detection in spelling learning (Baschera, Busetto, 

Klingler, Buhmann & Gross, 2011). 

While this category has few example contexts where there are significant benefits to learning in a running 

ITS, the category has distinct potential, particularly as machined learning and sensor technologies develop 
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to the point of practical application. The state and trait distinction has particular relevance to the 

architecture of general systems such as GIFT. In particular, GIFT should be able to handle stable student 

parameters that feed into the student model as individual differences. For instance, a prior assessment of 

each student’s self-efficacy could be passed to the dialog based student model which would lead to the 

pedagogical inference to adjust the scripts to be more encouraging with low efficacy students. Similarly, 

sensor modules data would feed into student models in a continuous fashion so that it could be 

incorporated into any long-term student model (e.g., BKT) and thus affect pedagogical decision making 

(e.g., D’Mello & Graesser, in press).  

Discussion 

An ITS functions by having a domain model which defines the space of possible student states. The 

student model keeps tracks of each individual student within this possible state space. The pedagogical 

model is a set of rules that define when interventions are triggered as a function of the student state and 

the tutor interface. The student model represents the student state as a function of prior actions, either 

tracking these prior actions dynamically so that prior states are not necessarily stored or by keeping track 

the history of prior practice in order to compute student prior knowledge as the context demands. 

Pedagogical rules aim to maximize a measure of learning amount or efficiency.  

We began our discussion of student models in the late 1950s with the invention of branched 

programming. Branched programming addresses student state differences by applying different 

pedagogical moves at fixed branch points afforded by the domain model. Branching models are also 

discussed because fundamentally all student models “branch” in the sense that any pedagogical move we 

might take is in essence a branch in response to the student state as encoded in the possibilities expressed 

by the domain model. These branches or adaptive choices must depend on something, and the student 

model state is the independent input (derived from student actions) that leads to the inferences about 

adaptive pedagogy. However, a universal branching system in the context of GIFT, or more generally, as 

how to use them as an effective generic design pattern for tracking student states to make rich and 

powerful pedagogical moves, is currently unclear.  

VanLehn helps provides a design pattern for us to consider in his proposal about the behavior of tutoring 

systems where he proposed inner and outer loops to characterize common ways that ITSs have been 

configured (VanLehn, 2006). In this taxonomy, the inner loop was construed as the individual problem, 

which would be intelligently tutored in small cycles of interaction between the student and ITS as the 

student works on the problem. This is also known as microadaption. In contrast, the outer loop was 

described as a problem selection loop, from which a problem selection algorithm might choose the next 

item based on higher criteria than behavior at the single problem level. This is known as macroadaption. 

Essentially, this is a hierarchy of kinds of branching, with the inner loop often representing stereotyped 

branching schema within problems for individual steps, and the outer loop specifying sequencing/ 

branching between exercises. Of course, within this hierarchy we might describe more levels. For 

example, Pavlik Jr. & Toth (2010) proposed an additional level of branching complexity, the curriculum 

loop, which assumes that a student model would track states for broad categories of problems (units of 

content) and would allow pedagogical models to execute actions at an additional level, as in the case of 

sending a student into a basic skills review unit if repeated arithmetic errors are made in an algebra unit. 

In mature ITS, there is a blend of student models. For example, in cognitive tutors, problem selection 

occurs with some version of BKT (Corbett & Anderson, 1995) used as a student model for the outer loop, 

but within problems the student model tends to be more like a constraint-based model (even though often 

represented as production rules) with inner loop pedagogical responses to student actions disconnected 

from the outer loop BKT student model. For instance, error flagging or on-demand hints to the student 
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represent the within problem student model as a collection of response constraints. These “should” 

statements define what features of the interface need to be modified in what way to solve the problem, 

while the pedagogical model specifies what inference to make based on the current state of the interface. 

The cognitive tutor example illustrates how a learning system could potentially have a student model that 

allows state branches at multiple levels of the domain (problem step, overall problem, curriculum unit), 

where the means of modeling the branching at each level of the student model may be different due to the 

pedagogical needs of that level of the domain. Similarly, we could imagine a ITS with a constraint-based 

student model for tutoring algebra problem solving as the inner loop, a knowledge space domain model 

used for the outer loop problem selection, and a curriculum branching loop that that branches students 

into a basic skills unit if arithmetic constraints are not met. The second arithmetic outer loop might use an 

overlay model for all the facts in the times tables, with no inner loop for these simple facts. This 

discussion places further constraints on GIFT by illustrating the advantage of having a hierarchical 

organization of student models for the multiple levels of domain structure so as to facilitate maximum 

flexibility for pedagogical strategies at these multiple levels.  

Figure 5-1 shows the three levels at which pedagogy occurs that seem important to allow in GIFT. The 

figure attempts to convey the relationship between the three levels, in that the inner loop, which itself 

represents a collection of states and consequent pedagogical moves) is entered from the outer loop 

problem. Similarly, an outer loop sequence of problems is selected as the pedagogical decision from the 

curriculum student model. A simulation scenario example should help clarify. If the curriculum involves 

practicing team search and reconnaissance missions, we might suppose the curriculum loop would be a 

number of different contexts for reconnaissance, such as night missions, search and recovery missions, 

rough terrain missions, etc., each of which of needs to be completed with a certain criterion (according to 

the student model) before the next context is selected (according to the pedagogical model). Each outer 

loop problem might be viewed as a specific scenario within a context (e.g., rescue mission in Mogadishu) 

that itself has to be mastered or repeated, according to the decisions of the outer loop. Finally, within each 

scenario (the inner loop in this context) we might expect that there would be specific tasks, each with 

their own states for the student that warrant specific pedagogies. 

 

Figure 5-1. Pedagogical levels at which a student model may be used to make decisions 

This discussion is useful because it helps set the stage for considering the specific usefulness of particular 

student models. Student models may generalize to content, but may not as easily generalize to different 

pedagogical levels. So, for instance, dialogue-based tutoring seems ill suited to handling the problems of 

curriculum sequencing or outer loop management (e.g., problem selection). Similarly, selection of steps 

based on some mathematical model makes little sense since the steps of a problem are more or less fixed 

once that problem is selected. Table 5-1 attempts to summarize our assessment of the student models we 

have reviewed. 
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Table 5-1. Summary evaluation comments 

 Quantitative 
Fit 

Ease of 
Understanding 

Generality and 
Flexibility 

Cost of 
Creation 

Granularity Time Scale Learning gains 
in practice 

Programmed 
Branching 

N/A High Low Low Any Short-term Depends on 
adequacy of 
specific domain 
model 

Rule Space High High High Low Any Short or Long-
term 

Little direct 
evidence 

Model 
Tracing 

High Low Moderate High Production 
rules 

Potential long-
term but not 
always realized 

Yes, strong 
gains for 
particular 
domains 

Constraint-
Based Tutors 

High Moderate High Moderate Any Potential long-
term but not 
always realized 

Yes, strong 
gains for 
particular 
domains 

Knowledge 
Spaces 

Good at item-
category level 

Low Low High Item-categories Long-term Yes, strong 
gains for 
particular 
domains 

Dialogue N/A Moderate Moderate Moderate Inner loop Short-term Yes, strong 
gains for 
particular 
domains 
 

State and 
Trait 

Generally low Moderate Unclear Moderate Any Short- and/or 
long-term 

Unclear 
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Conclusions 

There is significant challenge in developing a standard, or framework, to support an existing field. The 

goal behind developing standards is that they will be adopted, which can only happen if the individual 

adopters find the new standard useful to their practice. As such, it is important to discuss the benefits of 

adopting such standards. 

GIFT will enable new ITS creators to experimentally test their methods of student model creation with 

differing domains of instruction, pedagogical strategies, and ways of assessing user states through 

sensors. GIFT will enable the experimental comparison of one type of model against another, while 

keeping the other portions of the ITS exactly the same, thus enabling good unconfounded comparisons in 

the ITS. GIFT will enable quicker construction of ITS application through the ability to standardize user 

tools for student model construction. 

However, these advantages come at a price. This is the price that all standards impose on the community 

of adoption. At the simplest level, conforming to a “Phillips” screw-head standard destroys the potential 

for the creation of alternate screw-head designs. No one framework, standard, architecture, or toolset can 

accommodate for all possible solutions. Despite this, to promote adoption, the created solution should 

support as many of the current practices as is possible. With these tradeoffs in mind, we conclude with a 

few points about the process of developing GIFT.  

The first point is that the standard approach to instruction remains simple branching programs with 

multimedia content. Therefore, most student models are merely a record of the place in such a branching 

program structure. Such systems are still important because intelligent tutoring is not required for many 

kinds of instruction, such as first-time information presentation. This first assumption leads to the first 

recommendation: GIFT should support authoring of simple branching programs. 

The second point is that the most mature and applicable forms of student modeling are those which have 

had the most research and software development effort. These are the methods for adaptive instruction 

that have been empirically proven to work, have multiple research teams working on them, have deployed 

ITSs to classrooms, and have developed authoring tools to speed developments and research. GIFT, in 

order to support successful adoption, needs to be inclusive of these models. Becoming inclusive of these 

models implies that GIFT becomes inclusive of the tools that are used to create them. This second 

implication is that GIFT should support the importation, with very minimal change, of student models and 

authoring tools created within CBM, model tracing, and dialog-based paradigms for inner loop mediation. 

They have proven to be successful and widely adopted. 

A third point is that several of the methods, most notably overlay and knowledge spaces, employ “domain 

maps” that characterize the tasks and the relationships between these tasks. Because of this commonality, 

it seems likely that GIFT would benefit from providing such a domain map data structure that could be 

referenced when making pedagogical decisions in reference to the student model. Further, such domain 

maps are typically connected to a long-term computational student model that mathematically traces the 

probability of the tasks relative to the prior progress of the student. This implies GIFT will be well served 

by providing the capacity to mathematically compute pedagogically relevant student model quantities at 

any time by processing the student’s prior data (which is encoded relative to the domain map). 

References 

Ahmed, K. B. S., Toumouh, A. & Malki, M. (2012). Effective Ontology Learning: Concepts’ Hierarchy Building 

using Plain Text Wikipedia. In Proceedings ICWIT (pp. 171). 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

61 

Albert, D. & Lukas, J. (1999). Knowledge Spaces: Theories, Empirical Research, and Applications: L. Erlbaum. 

Aleven, V. & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explaining with 

a computer-based Cognitive Tutor. Cognitive Science, 26, 147–179. 

Aleven, V., McLaren, B., Roll, I. & Koedinger, K. R. (2006). Toward meta-cognitive tutoring: A model of help 

seeking with a cognitive tutor. International Journal of Artificial Intelligence in Education, 16, 101-128. 

Aleven, V., McLaren, B., Sewall, J. & Koedinger, K. (2006). The Cognitive Tutor Authoring Tools (CTAT): 

Preliminary Evaluation of Efficiency Gains. In M. Ikeda, K. Ashley & T.-W. Chan (Eds.), Intelligent 

Tutoring Systems (Vol. 4053, pp. 61-70): Springer Berlin / Heidelberg. 

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2009). A New Paradigm for Intelligent Tutoring 

Systems: Example-Tracing Tutors. International Journal of Artificial Intelligence in Education, 19, 105-

154. 

Amalathas, S., Mitrovic, A. & Ravan, S. (2012). Decision-Making Tutor: Providing on-the-job training for oil palm 

plantation managers. Research and Practice in Technology-Enhanced Learning, 7, 131-152. 

Anderson, J. R., Conrad, F. G. & Corbett, A. T. (1989). Skill acquisition and the LISP tutor. Cognitive Science, 13, 

467-505. 

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal 

of the Learning Sciences, 4, 167–207. 

Arasasingham, R. D., Martorell, I. & McIntire, T. M. (2011). Online Homework and Student Achievement in a 

Large Enrollment Introductory Science Course. Journal of College Science Teaching, 40, 70-79. 

Arasasingham, R. D., Taagepera, M., Potter, F., Martorell, I. & Lonjers, S. (2005). Assessing the Effect of Web-

Based Learning Tools on Student Understanding of Stoichiometry Using Knowledge Space Theory. 

Journal of Chemical Education, 82, 1251. 

Atkinson, R. C. (1972a). Ingredients for a theory of instruction. American Psychologist, 27, 921-931. 

Atkinson, R. C. (1972b). Optimizing the learning of a second-language vocabulary. Journal of Experimental 

Psychology, 96, 124-129. 

Atkinson, R. C. & Crothers, E. J. (1964). A comparison of paired-associate learning models having different 

acquisition and retention axioms. Journal of Mathematical Psychology, 1, 285-315. 

Ayers, E. & Junker, B. (2006). Do skills combine additively to predict task difficulty in eighth grade mathematics? 

In J. Beck, E. Aimeur & T. Barnes (Eds.), Educational Data Mining: Papers from the AAAI Workshop (pp. 

14-20). Menlo Park, CA: AAAI Press. 

Baghaei, N., Mitrovic, A. & Irwin, W. (2007). Supporting collaborative learning and problem-solving in a 

constraint-based CSCL environment for UML class diagrams. International Journal of Computer-

Supported Collaborative Learning, 2, 159-190. 

Baker, R. S. J. d., D’Mello, S. K., Rodrigo, M. M. T. & Graesser, A. C. (2010). Better to be frustrated than bored: 

The incidence, persistence, and impact of learners’ cognitive–affective states during interactions with three 

different computer-based learning environments. International Journal of Human-Computer Studies, 68, 

223–241. 

Barnes, T. (2005). The Q-matrix Method: Mining Student Response Data for Knowledge. Paper presented at the 

American Association for Artificial Intelligence 2005 Educational Data Mining Workshop. 

Barnes, T., Stamper, J. & Madhyastha, T. (2006). Comparative Analysis of Concept Derivation Using the Q-matrix 

Method and Facets. 

Baschera, G.-M., Busetto, A., Klingler, S., Buhmann, J. & Gross, M. (2011). Modeling Engagement Dynamics in 

Spelling Learning. In G. Biswas, S. Bull, J. Kay & A. Mitrovic (Eds.), Artificial Intelligence in Education 

(Vol. 6738, pp. 31-38): Springer Berlin Heidelberg. 

Beck, J. & Mostow, J. (2008). How Who Should Practice: Using Learning Decomposition to Evaluate the Efficacy 

of Different Types of Practice for Different Types of Students. In (pp. 353-362). 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

62 

Brown, J. S. & VanLehn, K. (1980). Repair theory: A generative theory of bugs in procedural skills. Cognitive 

Science, 4, 379-426. 

Burton, R. (1982). Diagnosing bugs in a simple procedural skill. In D. Sleeman & J. Brown (Eds.), Intelligent 

Tutoring Systems (pp. 157-184): Academic Press. 

Cai, Z., Graesser, A. C., Forsyth, C. M., Burkett, C., Millis, K., Wallace, P., et al. (2011). Trialog in ARIES: User 

input assessment in an intelligent tutoring system. In W. C. S. Li (Ed.), Proceedings of the 3rd IEEE 

International Conference on Intelligent Computing and Intelligent Systems (pp. 429–433). Guangzhou, 

P.R. China: IEEE Press. 

Calfee, R. C. & Atkinson, R. C. (1965). Paired-associate models and the effects of list length. Journal of 

Mathematical Psychology, 2, 254-265. 

Carrier, M. & Pashler, H. (1992). The influence of retrieval on retention. Memory & Cognition, 20, 633-642. 

Cen, H., Koedinger, K. R. & Junker, B. (2006). Learning Factors Analysis - A general method for cognitive model 

evaluation and improvement. In Proceedings of the 8th International Conference on Intelligent Tutoring 

Systems (pp. 164-175): Springer Berlin / Heidelberg. 

Cen, H., Koedinger, K. R. & Junker, B. (2007). Is Over Practice Necessary? – Improving Learning Efficiency with 

the Cognitive Tutor through Educational Data Mining. Paper presented at the 13th International 

Conference on Artificial Intelligence in Education, Los Angeles, CA. 

Cen, H., Koedinger, K. R. & Junker, B. (2008). Comparing two IRT models for conjunctive skills. Paper presented at 

the Proceedings of the 9th International Conference on Intelligent Tutoring Systems, Montreal, Canada. 

Cerri, S. A., Clancey, W. J., Papadourakis, G. & Panourgia, K. (2012). Intelligent Tutoring Systems - 11th 

International Conference, ITS 2012, Chania, Crete, Greece, June 14-18, 2012. Proceedings (Vol. 7315): 

Springer. 

Chi, M., Koedinger, K. R., Gordon, G., Jordan, P. & VanLehn, K. (2011). Instructional Factors Analysis: A 

Cognitive Model For Multiple Instructional Interventions. Poster presented at the 4th International 

Conference on Educational Data Mining, Eindhoven, The Netherlands. 

Chi, M. T. H. (2009). Active-Constructive-Interactive: A Conceptual Framework for Differentiating Learning 

Activities. Topics in Cognitive Science, 1, 73-105. 

Chi, M. T. H., Siler, S. A., Jeong, H., Yamauchi, T. & Hausmann, R. G. (2001). Learning from human tutoring. 

Cognitive Science, 25, 471-533. 

Corbett, A. T. & Anderson, J. R. (1992). Student modeling and mastery learning in a computer-based programming 

tutor. In C. Frasson, G. Gauthier & G. McCalla (Eds.), Intelligent Tutoring Systems: Second International 

Conference on Intelligent Tutoring Systems (pp. 413-420). New York: Springer-Verlag. 

Corbett, A. T. & Anderson, J. R. (1995). Knowledge tracing: Modeling the acquisition of procedural knowledge. 

User Modeling and User-Adapted Interaction, 4, 253–278. 

Crowder, N. A. (1959). Automatic tutoring by means of intrinsic programming. In E. Galanter (Ed.), Automatic 

teaching: The state of the art (pp. 109-116). New York: Wiley & Sons. 

D’Mello, S. K. & Graesser, A. (2010). Multimodal semi-automated affect detection from conversational cues, gross 

body language, and facial features. User Modeling and User-Adapted Interaction, 20, 147-187. 

D’Mello, S. K., Graesser, A. & King, B. (2010). Toward Spoken Human-Computer Tutorial Dialogues. Human 

Computer Interaction, 25, 289-323. 

D’Mello, S. K., Olney, A. M. & Person, N. (2010). Mining Collaborative Patterns in Tutorial Dialogues. Journal of 

Educational Data Mining, 2, 1-37. 

D’Mello, S. K. & Graesser, A. C. (in press). AutoTutor and affective AutoTutor: Learning by talking with 

cognitively and emotionally intelligent computers that talk back. ACM Transactions on Interactive 

Intelligent Systems. 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

63 

Desmarais, M. C. & Baker, R. S. J. d. (2012). A review of recent advances in learner and skill modeling in 

intelligent learning environments. User Modeling and User-Adapted Interaction, 22, 9-38. 

Desmarais, M. C., Maluf, A. & Liu, J. (1996). User-expertise modeling with empirically derived probabilistic 

implication networks. User Modeling and User-Adapted Interaction, 5, 283-315. 

Desmarais, M. C. & Pu, X. (2005). A Bayesian Student Model without Hidden Nodes and its Comparison with Item 

Response Theory. Int. J. Artif. Intell. Ed., 15, 291-323. 

Doignon, J.-P. & Falmagne, J.-C. (1999). Knowledge spaces: Springer. 

Draney, K. L., Pirolli, P. & Wilson, M. (1995). A measurement model for a complex cognitive skill. In P. D. 

Nichols, S. F. Chipman & R. L. Brennan (Eds.), Cognitively diagnostic assessment (pp. 103–125). 

Elsom-Cook, M. (1993). Student modelling in intelligent tutoring systems. Artificial Intelligence Review, 7, 227-

240. 

Falmagne, J.-C., Doignon, J.-P., Cosyn, E. & Thiery, N. (2003). The assessment of knowledge in theory and in 

practice. Institute for Mathematical Behavioral Sciences, Paper 26. 

Fox, B. A. (1993). The human tutoring dialogue project. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc. 

Goldberg, B., Sottilare, R., Brawner, K. & Holden, H. (2011). Predicting Learner Engagement during Well-Defined 

and Ill-Defined Computer-Based Intercultural Interactions. In S. D’Mello, A. Graesser, B. Schuller & J.-C. 

Martin (Eds.), Affective Computing and Intelligent Interaction (Vol. 6974, pp. 538-547): Springer Berlin 

Heidelberg. 

Gong, Y., Beck, J. & Heffernan, N. T. (2010). Comparing Knowledge Tracing and Performance Factor Analysis by 

Using Multiple Model Fitting Procedures. In V. Aleven, J. Kay & J. Mostow (Eds.), Intelligent Tutoring 

Systems (Vol. 6094, pp. 35-44): Springer Berlin / Heidelberg. 

Graesser, A. C., Conley, M. W. & Olney, A. (2012). Intelligent tutoring systems. In K. R. H. telligent tutoring 

systems, S. Graham, T. Urdan, A. G. Bus, S. Major & H. L. Swanson (Eds.), APA educational psychology 

handbook, Vol 3: Application to learning and teaching (pp. 451-473). Washington, DC, US: American 

Psychological Association. 

Graesser, A. C., D’Mello, S. K., Xiangen, H., Cai, Z., Olney, A. & Morgan, B. (2012). AutoTutor. Applied Natural 

Language Processing: Identification, Investigation, and Resolution., pp. 169-187. 

Graesser, A. C., Penumatsa, P., Ventura, M., Cai, Z. & Hu, X. (2007). Using LSA in AutoTutor: Learning through 

mixed initiative dialogue in natural language. In D. M. T. Landauer, S. Dennis & W. Kintsch (Ed.), 

Handbook of latent semantic analysis (pp. 234-262). Mahwah, NJ: Erlbaum. 

Graesser, A. C. & Person, N. K. (1994). Question Asking during Tutoring. American Educational Research Journal, 

31, 104-137. 

Graesser, A. C., Person, N. K. & Magliano, J. P. (1995). Collaborative dialogue patterns in naturalistic one-to-one 

tutoring. Applied Cognitive Psychology, 9, 1-28. 

Groen, G. J. & Atkinson, R. C. (1966). Models for optimizing the learning process. Psychological Bulletin, 66, 309-

320. 

Heffernan, N. T., Koedinger, K. R. & Razzaq, L. (2008). Expanding the Model-Tracing Architecture: A 3rd 

Generation Intelligent Tutor for Algebra Symbolization. International Journal of Artificial Intelligence in 

Education, 18, 153-178. 

Heffernan, N. T., Turner, T. E., Lourenco, A. L. N., Macasek, M. A. & Nuzzo-Jones, G. The ASSISTment builder: 

Towards an analysis of cost effectiveness of ITS creation. 

Hu, X., Craig, S. D., Bargagliotti, A. E., Graesser, A. C., Okwumabua, T., Anderson, C., et al. (2012). The Effects of 

a Traditional and Technology-based After-school Setting on 6th Grade Student’s Mathematics Skills. 

Journal of Computers in Mathematics and Science Teaching, 31, 17-38. 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

64 

Johnson, W. L. & Valente, A. (2008). Tactical language and culture training systems: using artificial intelligence to 

teach foreign languages and cultures, Proceedings of the 20th national conference on Innovative 

applications of artificial intelligence - Volume 3 (pp. 1632-1639). Chicago, Illinois: AAAI Press. 

Kapoor, A. & Picard, R. W. (2005). Multimodal affect recognition in learning environments. Paper presented at the 

Proceedings of the 13th annual ACM international conference on Multimedia, Hilton, Singapore. 

Karpicke, J. D. & Roediger, H. L., III. (2008). The critical importance of retrieval for learning. Science, 319, 966–

968. 

Koedinger, K. R., Pavlik Jr., P. I., Stamper, J., Nixon, T. & Ritter, S. (2011). Fair blame assignment in student 

modeling. In M. Pechenizkiy, T. Calders, C. Conati, S. Ventura, C. Romero & J. Stamper (Eds.), 

Proceedings of the 4th International Conference on Educational Data Mining (pp. 91–100). Eindhoven, the 

Netherlands. 

Lahti, L. (2010). Personalized learning paths based on Wikipedia article statistics. Paper presented at the CSEDU 

2010. 

Landauer, T. K., McNamara, D. S., Dennis, S. E. & Kintsch, W. E. (2007). Handbook of latent semantic analysis: 

Lawrence Erlbaum Associates Publishers. 

Lepper, M. R. & Hodell, M. (1989). Intrinsic Motivation in the Classroom. Research on Motivation in Education: 

Goals and cognitions, 3, 73. 

Litman, D. (2013). Speech and language processing for adaptive training. In P. Durlach & A. Lesgold (Eds.), 

Adaptive technologies for training and education.: Cambridge University Press. 

Lumsdaine, A. A. & Glaser, R. E. (1960). Teaching Machines and Programmed Learning, a Source Book. 

Washington DC. : National Education Association, Dept. of Audiovisual Instruction. 

Mayo, M. & Mitrovic, A. (2001). Optimising ITS Behaviour with Bayesian Networks and Decision Theory. 

International Journal on Artificial Intelligence in Education, 12, 124-153. 

Mayo, M., Mitrovic, A. & McKenzie, J. (2000). CAPIT: An Intelligent Tutoring System for Capitalisation and 

Punctuation, International Workshop on Advanced Learning Technologies (Vol. 0, pp. 151-154). 

Palmerston North, New Zealand: IEEE Computer Society. 

McTear, M. F. (2002). Spoken dialogue technology: enabling the conversational user interface. ACM Computing 

Surveys (CSUR), 34, 90-169. 

Millis, K., Forsyth, C., Butler, H., Wallace, P., Graesser, A. & Halpern, D. (2011). Operation ARIES!: A Serious 

Game for Teaching Scientific Inquiry. Serious Games and Edutainment Applications, pp. 169-195. 

Mitrovic, A. (1998). Experiences in Implementing Constraint-Based Modeling in SQL-Tutor. In B. Goettl, H. Halff, 

C. Redfield & V. Shute (Eds.), Intelligent Tutoring Systems (Vol. 1452, pp. 414-423): Springer Berlin 

Heidelberg. 

Mitrovic, A. (2003). An Intelligent SQL Tutor on the Web. International Journal of Artificial Intelligence in 

Education, 13, 173-197. 

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: what we have achieved and where we are going. User 

Modeling and User-Adapted Interaction, 22, 39-72. 

Mitrovic, A., Koedinger, K. R. & Martin, B. (2003). A Comparative Analysis of Cognitive Tutoring and Constraint-

Based Modeling. In User Modeling 2003 (Vol. 2702/2003): Springer Berlin / Heidelberg. 

Mitrovic, A. & Martin, B. (2007). Evaluating the Effect of Open Student Models on Self-Assessment. International 

Journal of Artificial Intelligence in Education, 17, 121-144. 

Mitrovic, A., Martin, B. & Suraweera, P. (2007). Intelligent Tutors for All: The Constraint-Based Approach. IEEE 

Intelligent Systems, 22, 38-45. 

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J., et al. (2009). ASPIRE: An Authoring 

System and Deployment Environment for Constraint-Based Tutors. Int. J. Artif. Intell. Ed., 19, 155-188. 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

65 

Mitrovic, A. & Ohlsson, S. (1999). Evaluation of a Constraint-Based Tutor for a Database. International Journal of 

Artificial Intelligence in Education, 10, 238-256. 

Mitrovic, A., Ohlsson, S. & Barrow, D. K. (2013). The effect of positive feedback in a constraint-based intelligent 

tutoring system. Computers & Education, 60, 264-272. 

Mitrovic, A. & Weerasinghe, A. (2009). Revisiting the Ill-Definedness and Consequences for ITSs. In V. Dimitrova, 

R. Mizoguchi, B. du Boulay & A. Graesser (Eds.), Proc 14th Int Conf AIED (pp. 375-382). 

Moore, J. D. (1994). Participating in explanatory dialogues: interpreting and responding to questions in context. 

Cambridge, MA, USA: MIT Press. 

Nkambou, R., Mizoguchi, R. & Bourdeau, J. (2010). Advances in Intelligent Tutoring Systems (Vol. 308): Springer. 

O’Reilly, R. C. (1998). Six principles for biologically based computational models of cortical cognition. Trends in 

Cognitive Sciences, 2, 455-462. 

Ohlsson, S. (1992). Constraint-based student modelling. International Journal of Artificial Intelligence in 

Education, 3, 429-447. 

Ohlsson, S. & Mitrovic, A. (2007). Fidelity and Efficiency of Knowledge Representations for Intelligent Tutoring 

Systems. Technology, Instruction, Cognition and Learning (TICL), 5, 101-132. 

Olney, A. M. (2009). GnuTutor: An open source intelligent tutoring system, Proceedings of the 14th International 

Conference on Artificial Intelligence in Education (pp. 803). Brighton UK: Amsterdam: IOS Press. 

Olney, A. M., Louwerse, M., Mathews, E., Marineau, J., Hite-Mitchell, H. & Graesser, A. C. (2003). Utterance 

Classification in AutoTutor, Proceedings of the HLT-NAACL 03 Workshop on Building Educational 

Applications Using Natural Language Processing (pp. 1-8). Philadelphia: Association for Computational 

Linguistics. 

Olney, A. M., Person, N. K. & Graesser, A. C. (2012). Guru: Designing a Conversational Expert Intelligent Tutoring 

System. Cross-Disciplinary Advances in Applied Natural Language Processing: Issues and Approaches, 

pp. 156-171. 

Pavlik Jr., P. I. (2007). Understanding and applying the dynamics of test practice and study practice. Instructional 

Science, 35, 407–441. 

Pavlik Jr., P. I. & Anderson, J. R. (2008). Using a model to compute the optimal schedule of practice. Journal of 

Experimental Psychology: Applied, 14, 101–117. 

Pavlik Jr., P. I., Cen, H. & Koedinger, K. R. (2009). Performance factors analysis -- A new alternative to knowledge 

tracing. In V. Dimitrova, R. Mizoguchi, B. d. Boulay & A. Graesser (Eds.), Proceedings of the 14th 

International Conference on Artificial Intelligence in Education (pp. 531–538). Brighton, England. 

Pavlik Jr., P. I., Presson, N., Dozzi, G., Wu, S.-m., MacWhinney, B. & Koedinger, K. R. (2007). The FaCT (Fact 

and Concept Training) System: A new tool linking cognitive science with educators. In D. McNamara & G. 

Trafton (Eds.), Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society (pp. 

1379–1384). Mahwah, NJ: Lawrence Erlbaum. 

Pavlik Jr., P. I. & Toth, J. (2010). How to build bridges between intelligent tutoring system subfields of research. In 

J. Kay, V. Aleven & J. Mostow (Eds.), Proceedings of the 10th International Conference on Intelligent 

Tutoring Systems, Part II (pp. 103–112). Pittsburgh, PA: Springer. 

Pavlik Jr., P. I., Yudelson, M. & Koedinger, K. R. (2011). Using contextual factors analysis to explain transfer of 

least common multiple skills. In G. Biswas, S. Bull, J. Kay & A. Mitrovic (Eds.), Artificial Intelligence in 

Education (Vol. 6738, pp. 256–263). Berlin, Germany: Springer. 

Person, N. K. & Graesser, A. C. (2003). Fourteen facts about human tutoring: Food for thought for ITS developers, 

AI-ED 2003 Workshop Proceedings on Tutorial Dialogue Systems: With a View Toward the Classroom 

(pp. 335-344). 

Person, N. K., Graesser, A. C., Magliano, J. P. & Kreuz, R. J. (1994). Inferring what the student knows in one-to-

one tutoring: The role of student questions and answers. Learning and Individual Differences, 6, 205–229. 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

66 

Peterson, L. R. (1965). Paired-associate latencies after the last error. Psychonomic Science, 2, 167-168. 

Psotka, J., Massey, L. D. & Mutter, S. A. (1988). Intelligent tutoring systems: Lessons learned: Lawrence Erlbaum. 

Rey-López, M., Fernández-Vilas, A., Díaz-Redondo, R., Pazos-Arias, J. & Bermejo-Muõz, J. (2006). Extending 

SCORM to Create Adaptive Courses. In W. Nejdl & K. Tochtermann (Eds.), Innovative Approaches for 

Learning and Knowledge Sharing (Vol. 4227, pp. 679-684): Springer Berlin Heidelberg. 

Rickard, T. C. (1997). Bending the power law: A CMPL theory of strategy shifts and the automatization of cognitive 

skills. Journal of Experimental Psychology: General, 126, 288-311. 

Rickard, T. C. (1999). A CMPL alternative account of practice effects in numerosity judgment tasks. Journal of 

Experimental Psychology: Learning, Memory & Cognition, 25, 532-542. 

Ritter, S. & Anderson, J. (2006). Cognitive Tutor: Tracking learning in real time. Testimony to the National 

Mathematics Panel. 

Ritter, S., Anderson, J. R., Koedinger, K. R. & Corbett, A. (2007). Cognitive Tutor: Applied research in 

mathematics education. Psychonomic Bulletin & Review, 14, 249-255. 

Rus, V. & Graesser, A. C. (2009). The Question Generation Shared Task and Evaluation Challenge: University of 

Memphis. 

Rus, V., McCarthy, P., Graesser, A. & McNamara, D. (2009). Identification of Sentence-to-Sentence Relations 

Using a Textual Entailer. Research on Language and Computation, 7, 209-229. 

Schunn, C. D. (2005). Evaluating goodness-of-fit in comparison of models to data. In W. Tack (Ed.), Psychologie 

der Kognition: Reden and Vorträge anlässlich der Emeritierung von Werner Tack (pp. 115-154). 

Saarbrueken, Germany: University of Saarland Press. 

Segalowitz, N. S. & Segalowitz, S. J. (1993). Skilled performance, practice, and the differentiation of speed-up from 

automatization effects - evidence from 2nd-language word recognition. Applied Psycholinguistics, 14, 369-

385. 

Shah, F., Evens, M., Michael, J. & Rovick, A. (2002). Classifying Student Initiatives and Tutor Responses in 

Human Keyboard-to-Keyboard Tutoring Sessions. Discourse Processes, 33, 23-52. 

Sleeman, D. & Brown, J. S. (1982). Intelligent tutoring systems. New York: Academic Press. 

Sleeman, D., Ward, R. D., Kelly, E., Martinak, R. & Moore, J. (1991). An overview of recent studies with PIXIE. In 

P. Goodyear (Ed.), Teaching Knowledge and Intellgient Tutoring (pp. 173-185). 

Smallwood, R. D. (1962). A decision structure for teaching machines. Cambridge: MIT Press. 

Smallwood, R. D. (1971). The analysis of economic teaching strategies for a simple learning model. Journal of 

Mathematical Psychology, 8, 285-301. 

Spada, H. & McGraw, B. (1985). The assessment of learning effects with linear logistic test models. In S. 

Embretson (Ed.), Test design: Developments in psycholgoy and psychometrics. Orlando, FL: Academic 

Press. 

Suraweera, P. & Mitrovic, A. (2004). An Intelligent Tutoring System for Entity Relationship Modelling. 

International Journal of Artificial Intelligence in Education, 14, 375-417. 

Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconceptions based on item response theory. 

Journal of Educational Measurement, 20, 345-354. 

Thomas, C., Davies, I., Openshaw, D. & Bird, J. (1963). Programmed Learning in Perspective: A Guide to Program 

Writing: Aldine De Gruyter. 

Thompson, C. P., Wenger, S. K. & Bartling, C. A. (1978). How recall facilitates subsequent recall: A reappraisal. 

Journal of Experimental Psychology: Human Learning & Memory, 4, 210-221. 

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 

16, 227-265. 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

67 

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A. M. & Rosé, C. P. (2007). When are tutorial 

dialogues more effective than reading? Cognitive Science, 31, 3–62. 

VanLehn, K., Jones, R. M. & Chi, M. T. H. (1992). A Model of the Self-Explanation Effect. Journal of the Learning 

Sciences, 2, 1 - 59. 

Weerasinghe, A., Mitrovic, A. & Martin, B. (2009). Towards Individualized Dialogue Support for Ill-Defined 

Domains. International Journal of Artificial Intelligence in Education, 19, 357-379. 

Wixon, M., Baker, R. S. J. d., Gobert, J. D., Ocumpaugh, J. & Bachmann, M. (2012). WTF? detecting students who 

are conducting inquiry without thinking fastidiously. Paper presented at the Proceedings of the 20th 

international conference on User Modeling, Adaptation, and Personalization, Montreal, Canada. 

Woolf, B. P. (2008). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-

learning. San Francisco, CA: Morgan Kaufmann. 

Woolf, B. P. (2010). A roadmap for education technology: National Science Foundation. 

Zakharov, K., Mitrovic, A. & Ohlsson, S. (2005). Feedback Micro-engineering in EER-Tutor. Paper presented at the 

Proceeding of the 2005 conference on Artificial Intelligence in Education: Supporting Learning through 

Intelligent and Socially Informed Technology. 

  



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

68 

 

 

  



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

69 

SECTION II 

CURRENT LEARNER 

MODELING TOOLS 

AND METHODS 

H. Holden, Ed.



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

70 

 

  



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

71 

CHAPTER 6 ‒Understanding Current Learner Modeling 

Approaches 
Heather K. Holden 

U.S. Army Research Laboratory (ARL) - Human Research and Engineering Directorate (HRED) 

Introduction 

We’ve learned in the previous section some of the fundamental limitations and challenges that surround 

learner modeling development. However, this section continues to provide insight on these challenges and 

design recommendations for GIFT based on a current perspective of learner modeling tools and methods. 

As the core module of an ITS, the learner model is a representation of the learner’s state of knowledge at 

any given time. Ideally, this model would be comprehensive enough to include and analyze information 

on the learner’s individual difference characteristics as well as past, current, and predicted competencies, 

performance, cognition, affect, behaviors, etc. This model would also be flexible enough to support a 

variety of learning/instructional activities and types of learners. Realistically, such a model does not exist 

among current learner modeling research.  

Current State of Learner Modeling Research 

Based on the previous section of this book, we observe that learner models are built for different 

purposes, such as recognizing solutions paths, evaluating problem-solving abilities, or describing 

constraints for violations made by the learner. Current techniques of generating learner models include 

Bayesian networks, belief networks, case-based reasoning, and expectation maximization. Methods such 

as model-tracing are more cost-effective, but do not have the ability to record or monitor learner’s 

behavior. Learner models are commonly classified according to their relationship to an expert model, but 

can be classified by their performing function (i.e., corrective, elaborative, strategic, diagnostic, 

predictive, or evaluative). 

The content within learner models is usually categorized in two components: domain-specific or domain-

independent information (learner-specific characteristics/individual differences). Domain-specific 

information represents a reflection of the learner’s state and level of knowledge or ability within a 

particular domain. This type of information primarily includes historical competency (domain knowledge 

and skills measured over time), misconceptions, problem solving strategies, etc. Domain-independent 

information consists of all relevant characteristics of an individual learner and can include, but is not 

limited to, the following elements: learning goals; cognitive aptitudes; measures of motivational state; 

learning preferences (including styles and personality); interest; demographics; past performance and 

competency (non-domain-specific); behavioral/psychological measures; cognitive and affective 

dimensions; and personal control beliefs (including general self-efficacy; locus of control).  

First-generation ITS implementations primarily adapted instruction based on learner performance and 

current state of knowledge domain-specific information. These systems used learner models with 

corrective or elaborative functionality, but lacked any strategic, diagnostic, or predictive capabilities. The 

advantage of modeling this type of information is that it allows the model to be more generalized across 

multiple populations. Although useful, such information alone is not sufficient enough for providing the 

highly adaptive individualized training needed for ITSs of the next generation. Learner characteristics can 

be significantly different between learners and, collectively, is not the same for any two learners.  
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Primary sub-research areas of current learner modeling include, but are not limited to, learner state 

classifications, cognitive modeling, affect modeling, the impact of individual differences, behavioral and 

physiological sensing, and performance assessments. As the demand for higher adaptation and flexibility 

of learner models increases, so does the necessity to understand the interrelationship between all aspects 

of learner modeling content and assessment accuracy. Within the past 10 years, learner model research 

has extended to consider a broader range of learner characteristics as difficulty in addressing learner’s 

knowledge gaps has become more apparent. Since the beginning, the learner modeling research 

community continues to help address this two-part question: what aspects of the learner should be 

modeled and how can we achieve the best possible levels of state and performance classification and 

predictive accuracy? Therefore, we can observe an increase in studies blending the sub-areas of learner 

modeling research as well as the emergence of other key areas of student modeling research, i.e., 

motivation, disengagement, metacognition, self-regulated learning, open learner modeling, group and 

collaborative learner modeling, and long-term learner modeling.  

These newer areas of research present their own challenges in addition to the ones already surrounding 

the general research area. Some of these areas are covered in a later section of this book; however, the 

purpose of this section is to present the “bridge” to a new era of learner modeling research. The five 

chapters of this section discuss current areas and challenges surrounding learner modeling. Each chapter 

presents its own voice to a particular area of interest and gives recommendations on how GIFT can use 

the information within the chapter to enhance future GIFT versions.  

The chapter by Tomar and Nielsen, entitled Affective-Behavioral-Cognitve (ABC) Learner Modeling, 

presents a framework for modeling interlocutors (i.e., users of e-learning systems) that integrates 

inductive and abductive reasoning over observations including the interlocutors’ past and current behavior 

to develop a joint model for predicting their emotions, behaviors, and cognitive states. Their Affective-

Behavioral-Cognitive (ABC) Learner Model follows an approach that users’ behavioral responses can be 

a path to predict, recognize, and interpret their affective state. These behavioral responses are analyzed 

using a cognitive theory of emotions, which gives us inferences about the possible affective states of the 

learner. An appraisal component of the model relies on the desirability of events based on the learners’ 

objectives, the affective and cognitive states predicted to result from the events, and the consequent 

expected behaviors. They discuss the specific aspects of their model and the interrelationship between 

these elements; provide an example of how the model can perform within an e-learning scenario; and 

highlight recommendations for how GIFT can use such a model for its learner modeling approaches. 

The chapter by Holden and Sinatra, entitled The Need for Empirical Evaluation of Learner Model 

Elements, highlight issues with the lack of standardization on the structure of learner models and 

modeling techniques as it inhibits the validation and reusability of learner model elements. They argue 

that there are several aspects of user modeling, of which learner modeling is a subset, which have yet to 

be explored by the ITS learner modeling community. Such factors include learner’s expertise, skills, 

attitudes, perceptions, and self-efficacy toward both computers/technology in general and the specific 

ITS. As we progress toward extending ITSs to be inclusive of job-related training and education, these 

factors may prove important in classificating learners’ states, performance, and system behaviors. They 

also argue that more empirical evaluations are essential to better understanding the impact and interaction 

effects of current and potential learner model elements. Practical implications for researchers as well as 

design recommendations for such evaluations in GIFT are provided within this chapter. 

The chapter by Hu, Morrison, and Cai, entitled On the Use of Learner Micromodels as Partial Solutions 

to Complex Problems in a Multi-agent, Conversation-based Intelligent Tutoring System, argues that at 

some point a general-purpose system, like GIFT, would employ an open, multi-agent architecture in 

which some agents will perform simple tasks, while others will take on more complex ones, such as 

generating appropriate responses to user questions. They describe an autonomous software agent that 
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produces turn-by-turn analysis of a user’s discourse moves on two dimensions: novelty and relevance. 

This process includes building a “micromodel” of the learner’s current state, including a relevance-

novelty measure for single turns and a series of turns. They provide an example of a highly specialized 

agent within a currently existing multi-agent, conversation-based ITS architecture that is capable of 

making assertions about the learner micromodel information that is of value to other agents and/or for 

their own purposes.  

The chapter by Douglass, entitled Learner Models in the Large-Scale Cognitive Modeling Initiative, 

presents an Air Force Research Laboratory (AFRL) research effort to develop training capabilities for 

live, virtual, and constructive systems, as such system face challenges of (1) increasing the scale of 

cognitive models and (2) integrating them into software-intensive training environments. The AFRL 

Large-Scale Cognitive Modeling (LSCM) initiative is developing solutions to these scale and 

interoperability challenges based on high-level languages for describing cognitive models and net-centric 

simulation frameworks supporting them. This chapter introduces the LSCM initiative and explains how 

learner models are represented and used in the systems developing in its scope. The author illustrates how 

formal models of behavior models are specified and used to track events and build/refine representations 

of the knowledge, conceptual weaknesses, and procedural skills of monitored learners. He also explains 

how performance prediction and optimization capabilities based on mathematical extensions of the 

General Performance Equation (Anderson & Schunn, 2000) monitor learner actions, trace models of 

behavior, and use knowledge about learners to track and predict performance.  

After reading these chapters, we can see that the lack of consensus and standardization for developing 

learner models is still apparent just as in the previous book section. We are now at the point of which such 

research can no longer ignore the necessity of building and enhancing standards for creating learner 

models with higher-level functionality to fulfill the ideal vision previously mentioned. Each of the 

chapters within this section provides a suggested method for aiding GIFT’s future learner model design 

and functionality. Tomar and Nielsen, emphasize the importance of assessing the interplay between 

learner’s cognition, affect, and behavior. Holden and Sinatra, emphasize the possibility of GIFT’s ability 

to do comparison between learner model elements to support the validation of impact and interactions 

between learner characteristics. The last two chapters provide explicit examples and implementations of 

work-in-progress. Hu, Morrison, and Cai propose the use of multi-agents and micromodels as 

advantageous for reusability, a key element and motivation of GIFT. Moreover, Douglass highlights 

similarities between AFRL’s LSCM and ARL’s GIFT and views the use of research modeling language 

(RML) intelligent agents to effectively use behavior models to trace trainee’s actions as beneficial to 

include within GIFT’s design.  

Recommendations for GIFT’s Immediate Direction 

Each of the chapters within this section provided recommendations for GIFT in regards to its learner 

modeling approaches. In sum, they are as follows: 

1. GIFT should consider incorporating the ABC model to observe learner performance over a period 

of time and to create affective and cognitive profiles which have threshold values and decay rates 

associated with the states in consideration. This process will allow GIFT’s learner model to 

determine states more effectively. 

2. Future learner modeling researchers should consider using GIFT for their research since the 

system provides plans to have the ability to interchange and learner models and its elements. 

Therefore, researchers will be able to understand how learner-specific characteristics, 
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perceptions, and preferences interplay and influence the learning process as well as how they 

dynamically change throughout instruction.  

3. GIFT should consider adopting a common agent communication language (ACL) as the bases for 

a new generation of agent-based intelligent learning systems that are capable of autonomous 

cooperation. The instantiation of a common ACL and the development of a shared ontology can 

bring great benefits to GIFT’s ultimate vision. 

4. Integration of AFRL’s LSCM/RML and ARL’s GIFT would be an advantageous system that 

could serve as a technical solution to the problem of monitoring trainee actions and delivering 

contextually relevant instruction. 
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CHAPTER 7 ‒Affective-Behavioral-Cognitive (ABC)  

Learner Modeling 
Abhiraj Tomar and Rodney D. Nielsen 

University of North Texas 

Introduction 

This chapter presents a framework for modeling users of e-learning systems that integrates inductive and 

abductive reasoning over observations including the learner’s past and current behavior to develop a joint 

model for predicting emotions, behaviors, and cognitive states. This ABC Learner Model follows an 

approach that learners’ behavioral responses can be a path to predict, recognize, and interpret their 

affective state. These behavioral responses are analyzed using a cognitive theory of emotions, which gives 

us inferences about the possible affective states of the learner. An appraisal component of the model relies 

on the desirability of events given the learner’s objectives, the resulting affective and cognitive states 

predicted to result from the events, and the consequent behaviors expected.  

Most current techniques for modeling learners make relatively strong assumptions about what affective, 

behavioral, and cognitive states are best for learning, and about what to do in a single interaction turn to 

maximize immediate learning based on the current states. Most ITSs typically do not learn which user 

states optimize short- or long-term learning goals, learn what sequence of events will likely elicit 

particular user states, appraise system attempts toward these goals, or learn appropriate corrective actions 

based on this appraisal. The ABC Model attempts to fill these gaps by learning to make predictions that 

take these more complex relations between events, learner states, and time-dependent scenarios into 

account. 

We begin by describing user models in general and the various user states incorporated by the ABC 

Model. We explain a cognitive theory of affect and behavior and its use in creating user profiles. In the 

following section, we give an overview of the various categories of knowledge and information about the 

learner, which are required for creating a learner-specific profile and the methods for obtaining them. 

After this, we discuss the categorization of events that can occur in an e-learning scenario and the 

relationship these events have with the learner models. Then, we move on to describe the ABC Model’s 

appraisal mechanism, which relates learner states to their goals. Based on this, the system provides 

suggestions for the learner in support of the e-learning process. Finally, the system updates the learner 

model based on observations of the effects resulting from its decisions. In the last section, we provide 

recommendations for GIFT and how the various aspects of the ABC Model can support the modules 

present in GIFT to enhance their performance for e-learning environments.  

The ABC User Model 

The ABC User Model (Figure 7-1) tracks the affective, behavioral, and cognitive states and patterns of 

the user and applies a cognitive theory of emotions to infer and analyze these states and patterns. This 

analysis is then used to provide an adaptive and interactive e-learning environment to learners intended to 

optimize learning based on their individual characteristics, requirements, and preferences. The affective 

states store the information relevant to the learner’s emotions. The behavioral patterns store the 

information associated with the way the learner interacts with and reacts to events within the system and 

their apparent objectives. The cognitive states store information associated with the learner’s mental 

processes. This section gives a description of these states and the aspects covered by each. 
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Figure 7-1. The ABC Model 

Affective States 

The learner model needs to represent and acquire the learner’s emotional states. It needs to develop 

techniques to make predictions and inferences about and based on these emotions. In the ABC Model, 

emotions are ascribed to the learner based on not only the sensory inputs, but also the learner’s behavior 

and on the events of the world (Martinho et al., 2000). Hence, it needs a cognitive theory of emotions that 

considers and works with such stimuli. Ortony, Clore, and Collins’ Theory of Emotions, OCC Theory  

(Ortony et al., 1988), is one such cognitive appraisal theory and forms the basis for the affective aspect of 

the ABC Model.  

OCC Theory: Ortony, Clore, and Collins proposed a cognitive appraisal theory that is structured as a 

three-branch typology, corresponding to three kinds of stimuli: consequences of events, actions of agents, 

and aspects of objects. Each kind of stimulus is appraised with respect to one central criterion, called the 

central appraisal variable (Adam et al., 2009). An individual judges the following:  

1. The desirability of an event 

2. The approbation of an action 

3. The attraction of an object 

The OCC typology contains 22 emotions, grouped in 6 classes. These are depicted in Figure 7-2. The first 

branch contains only one class of emotions related to aspects of objects, triggered by the appraisal of the 

objects with respect to the individual’s likings. This class is seldom involved with e-learning 

environments, usually limited to the cases having virtual characters involved with the learning process. 

The second branch contains three classes of emotions triggered by the appraisal of the consequences of an 

event as to its desirability. Different emotions arise depending on the prospect and the focus of the 

desirability of consequences of events. Individuals can focus desirability either on themselves or on other 
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individuals. The third branch contains two classes of emotions triggered by the actions of agents, which 

are appraised according to their compliance and conformity to norms and standards. 

 

Figure 7-2. The OCC Theory of Emotions typology 

Based on the OCC theory, the learner’s affective states can be characterized by two types of data: the 

learner’s emotional profile and the emotional states (Martinho et al., 2000).  

Emotional Profile: The emotional profile represents the emotional pattern exhibited by the learner and is 

constituted by the following: 

 Emotional Class Thresholds: These represent the assumed emotional “resistance” to the different 

classes of emotions. 

o For instance, emotional thresholds can model how easily the learner can be disappointed 

upon not being able to solve a problem. The amount of effort produced by a learner in 

trying to solve a difficult problem can be used to state the learner’s level of resistance to 

disappointment. If learners have a tendency of not producing enough effort in solving 

problems related to topics in which they have been performing poorly, it indicates a low 

level of resistance to disappointment.  

 Emotional Class Decays: These represent the extent to which emotions represent self-sustaining 

processes or how long the emotions being experienced by the learner last.  

o It is very difficult to assign emotional decay values, but they can have a significant effect 

on how the learner behaves in a learning session. They can be inferred from past trends, 

for instance, some learners get excited upon solving a problem they perceive as difficult 

and, in such a state, they might make mistakes while working on subsequent relatively 

easy problems. A decay rate for such an emotion can be assigned by observing patterns 

and the average time required for saturation. 
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Emotional States: Two types of emotional states are stored in an ABC Model: 

 Potential Emotional States: These represent the particular classes of emotions the current 

situation is likely to provoke according to the learner’s inferred attitudes, goals and standard of 

behavior. Additionally, the model predicts how strong those potential emotions are likely to be. 

o For instance, learners might be expected to feel angry if they get confused by a hint 

suggested by the system and then fail to solve a particular problem, while they would feel 

gratitude for the system if the hint helps them solve the problem correctly. 

 Active Emotional States: The ABC Model classifies the ongoing active emotions of learners 

based on sensory inputs, system interactions and predictive models.  

o It stores these emotions, along with their intensity, that is, the distance between the 

learner’s estimated threshold and the actual current value measured for the respective 

emotion – the greater this distance, the greater the intensity of the experienced emotion. 

The active emotional states are one component in the appraisal process discussed later. 

Behavioral Patterns 

There are two key dimensions of an individual that are most responsible for the way they act: behaviors 

and personality traits. Personality traits are persistent characteristics that are demonstrated often under 

specific circumstances or environments. Because they define habitual patterns of thought and emotion, 

they provide a foundation for predicting behavior. Personality traits seldom change over time but these 

can trigger different behaviors under different circumstances and emotional states. The ABC Model 

incorporates representations of the personality traits and learner objectives, which combined with the 

affective states, predict the behavior of a learner under given circumstances.  

Personality Traits: The ABC Model follows the Five-Factor Model of personality (Conati et al., 2002), 

which structures personality traits as five domains: 

1. Openness: the degree of intellectual curiosity, creativity, and a preference for variety. 

2. Conscientiousness: a tendency to show self-discipline, act dutifully, aim for achievement, and 

plan behavior.  

3. Extraversion: sociability and the tendency to seek stimulation in the company of others. 

4. Agreeableness: a tendency to agree, be cooperative, and go along with others, as well as how 

important it is for a person to please others. 

5. Neuroticism: the tendency to experience unpleasant emotions easily, such as anger, anxiety, or 

depression, indicating the degree of emotional stability and impulse control.  

All these dimensions of personality are closely related to the expressional, logical, and emotional 

personification to varying degrees. Depending on the application being implemented, a different 

combination of these personality traits might be considered significant for the context of usage. However, 

it is advisable to use all the dimensions in the model, as some changes in the learner’s states might go 

unnoticed leading to inaccurate predictions under certain conditions. Since the model states that these five 

factors form the basis of the personality space, one should be able to represent any personality as a 

combination of these factors. 
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Goals: Goals are used in problem solving or task execution in learning environments. The learners using 

an e-learning system have goals and objectives to carry out an associated task or to perform and learn at a 

certain level. There can be different types of goals depending on the application that is using the ABC 

Model. A few examples follow: 

 Performance related goals with respect to a specific task in an application. 

 Goals related to achieving a certain level of understanding of concepts. 

 Goals to avoid making errors and mistakes 

 Goals to find the most efficient solution to problems 

 Goals to perform well with minimum assistance from the system 

 Goals to perform better than other students 

 Goals to have fun in the learning process 

Each of these goals has a different degree of relevance to a particular learner, which leads to events 

having varying effects on the affective states of the learner (Elliott et al., 1999). The relevance is 

represented using the following intensity variables: 

1. Importance to the learner 

2. Effort 

3. Anxiety 

4. Arousal 

These variables are assigned a value by using the user information and the personality traits, for instance, 

the domain knowledge and preference decide the importance and effort associated with a goal and anxiety 

and arousal depend on specific personality traits and past record. 

Cognitive States 

Cognitive states represent the state of a person’s cognitive processes or their state of mind. They represent 

the way a learner thinks, perceives, remembers, or solves problems under given circumstances. Hence, 

they have a large effect on the way a learner assimilates and retains information while using an e-learning 

system. Similar to the affective aspects of a learner, cognitive aspects are characterized by two types of 

data: the learner’s cognitive profile and the learner’s cognitive states. 

Cognitive Profile: The cognitive profile represents the habitual pattern of cognitive behavior exhibited 

by the learner and is constituted by the following: 

 Cognitive State Thresholds: These represent the assumed cognitive “resistance” to the different 

cognitive states. 

o For instance, cognitive thresholds can model how easily the learner can get confused. The 

rate at which the system provides information to the learners might be beyond their 
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ability to grasp it. Information about the learner states is monitored and recorded to 

assign threshold values to the parameters associated with the state and the signals sent by 

the sensors used for identifying the cognitive state.  

 Cognitive State Decays: These represent the extent to which cognitive states represent self-

sustaining processes or how long the learner persists in the states.  

o As with emotional class decays, it is very difficult to assign values to cognitive state 

decays. They can be inferred from past trends, for instance, some learners get bored while 

they are being taught a subject they are poor at and they pay less attention to a system 

that inhibits the learning process. A system typically responds to such a situation by 

attempting to refocus the learner’s attention. The time span over which the system needs 

to take such measures can be observed and a decay rate can be assigned accordingly. 

Cognitive States: Two types of cognitive states are stored in an ABC Model:  

 Potential cognitive states: These represent the particular cognitive states the current situation is 

likely to provoke according to the learner model. For instance, learners might be expected to feel 

drowsy if they are currently getting bored and confused by a topic being taught by the system. 

 Active cognitive states: The ABC Model classifies the ongoing active mental states of learners 

based on sensory inputs, system interactions, and predictive models. It stores these states, along 

with their intensity, that is, the distance between the learner’s estimated threshold and the actual 

current value measured for the respective mental state – the greater this distance, the greater the 

intensity of the experienced state.  

Based on the information representing the learner’s affective, behavioral, and cognitive states, the ABC 

Model predicts how a learner is going to behave on the occurrence of an event. The next section describes 

the various types of user information required to build the user model and the ways of collecting the 

information.  

User Information 

The information about the user forms the basis of a user model and is a primary means of characterizing 

it. User models are created by processing different types of user information such as beliefs, 

characteristics, preferences, objectives, etc. The raw information about the user is processed to create the 

ABC Model. The user information can be classified into five categories: characteristics, capabilities, 

preferences, domain knowledge, and goals. Each of these categories is briefly described in this section 

followed by some means of gathering the information about the user. 

Types of Information  

Characteristics: These are normally captured within a profile of the user, such as gender, age, interests, 

and personality traits. This information helps in predicting the user’s behavior under specific 

circumstances and aids the agent in making better decisions. This information can also be relevant to infer 

other more specific information such as preferences. 

Capabilities: Some systems need to model the capabilities of their learners (e.g., the ability of the learner 

to understand a recommendation or explanation provided by the system). Modeling capabilities include 
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modeling human learning, memory, and cognitive load limitations, which would allow a system to adjust 

the length and content of explanations as appropriate to ensure the learner is capable of assimilating it. 

Preferences: These are used in interactive systems to make suggestions for the learner or in interface 

agents to select the information that is most relevant to the learner. The preferences often help the system 

recognize any tendencies of a learner toward particular options or solutions, which, in turn, helps in 

estimating the mistakes and errors made by the learner. 

Domain Knowledge: These represent the learner’s beliefs about a specific domain of knowledge. The 

knowledge of the concepts and terms the learner understands, allows the system to produce responses 

incorporating those concepts and terms while avoiding the concepts that the learner might not understand. 

This type of content is relevant for intelligent learning environments, which aim at considering the 

learner’s state of knowledge to facilitate generation of explanations. 

Goals: Goals have already been described briefly in the previous section on behavioral states. The effort 

that a learner puts in depends on the goals, and hence, the need to store information on these is an 

immediate result of the need to support the learner to adequately achieve their tasks and performance 

level. We describe later in this chapter how these goals and objectives affect the desirability of the events 

in an e-learning environment which in turn helps in modeling the learner’s state. 

Methods of Gathering Information 

There is no absolute method for collecting the above-mentioned types of information; instead, a 

combination of methods should be used. This helps in gathering different segments of information, which 

can be combined together and then classified accordingly to generate a holistic model of the learner. The 

following are some of the methods that can be employed for this purpose: 

 Survey Forms: These are often seen as a quick and easy means of collecting valuable learner 

information. These allow information collection in an objective and standardized manner, which 

helps in direct storage, usually without any need of further processing. For example, the learners 

can be asked about their specific traits on a particular scale and they can be asked to choose their 

preferences from a list. This is not usually possible with open-ended questions having a 

subjective nature since they can generate huge amounts of data. This makes their handling and 

processing a complicated task as the relevant information needs to be extracted from the learner’s 

responses. This, survey forms should be used mostly for specific information about the learner, 

for instance, the characteristics, likes, dislikes, and basic objectives. 

 Learner’s Academic Records: These often reveal a huge amount of information about the 

academic background of the student learner. The knowledge of academic background helps in 

analyzing the familiarity the learner has over specific domains covered by the learning 

environment and, to some extent, describes the learner’s relative ability to grasp different content. 

Learner records also help in estimating a range in which the learner can perform, which can be 

used to deduce the learner’s objectives and expectations associated with the e-learning system. 

 Pretest and Questionnaires: These are used to evaluate comprehension and deduce high level 

goals while using the e-learning system. The pretest can have different sections aimed at 

assessing the learner’s skills related to various domains like mental ability, problem solving, and 

initial understanding of different subsections of a topic. Some questions can be specially designed 

in order to get information on the personality traits of the learner. Depending on the learner’s 

performance, a basis can be created for the goals, focus areas, and most frequent errors. 
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 Sensors: The ABC Model gathers information about the learner’s affective and cognitive states 

by the use of various sensors. These can be based on audio, video, infrared signals, thermal 

imaging, heart rate, respiration rate, etc. Passive sensors can be used to sense learner behavior 

unobtrusively, avoiding any negative impact on learning process (Sottilare et al., 2012). Sensors 

send signals to the learner model indicating the current state being experienced by the learner and 

this information is used to infer profiles related to emotional and cognitive states. 

Events 

In the context of the ABC Model, an event is an activity or a happening that can affect the realization of 

learner’s goals and has the potential to modify the learner’s affective and behavioral states, either directly 

or indirectly. Events can result from the actions of either the learner or the system, and hence, can be of 

two types based on the source of origin: learner-generated events and system-generated events. Based on 

their effect on the realization of the goals and objectives, events can be classified into the following two 

categories (Martinho et al., 2000): 

 Desirable Events: events that lead to or facilitate the realization of goals and objectives. 

 Undesirable Events: events that prevent or inhibit the achievement of goals and  objectives. 

In both cases, the degree of desirability is proportional to the importance of the goal and the degree to 

which the event contributes to or impedes the achievement of the goal. 

Relation Between Events and Learner Model 

The ABC Model recognizes the emotions based on the OCC cognitive psychological model of emotion, 

which considers 22 categories of emotions. Relevant categories of emotions are selected depending on the 

e-learning application for which the model is being used. Some of the emotional and mental states most 

relevant to e-learning environments are joy, distress, fear, disappointment, surprise, anger, boredom, 

confusion, attention distraction, and shame. 

The events are assigned a desirability value based on their predicted effect on achieving goals, which is 

directly related to the learner model states. The desirability helps the system decide how a learner is 

expected to react to a particular event, under a given state. For example, an event inhibiting the 

achievement of a goal will be much more undesirable for a learner who has been ascribed a high value for 

the neuroticism trait and is already in a distressed emotional state compared to a happy learner with a 

positive attitude. According to OCC, joy and distress are elicited when a person focuses on the 

desirability of an event in relation to the individual’s goals. Joy occurs when a person is pleased about a 

desirable event that takes place and distress when that person is displeased about an undesirable event. 

For instance, for learners who have the intention of pleasing the teacher and their parents, obtaining a 

good grade is a desirable event. Similarly, different cognitive states become active depending on the 

desirability of an event.  

It is necessary to determine the learner’s goals in order to verify the desirability of events. Students who 

have a learning goal are oriented toward developing new skills and abilities, and try to understand their 

work, improve their level of competence, and learn new things. When learners have performance goals, 

they want to demonstrate that they have the associated abilities. They feel successful when they please the 

teacher or do better than other learners, rather than when they understand something new. 
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Moreover, different classes of emotions are elicited depending on the source of an event. For example, an 

event that facilitates the learner’s goals can generate positive emotions such as joy for the event, gratitude 

toward the system for system-generated events, or pride in the case of a learner-generated event. 

Corresponding negative emotions for an event inhibiting one’s goals are anger and shame. 

Appraisal Mechanism 

A user modeling system needs to have a mechanism to appraise emotion-inducing stimuli, so that the 

affective and cognitive states are predicted with a high level of accuracy. People have a perception of the 

world and this leads to activation of emotions. The appraisal structure makes use of inductive and 

abductive reasoning over these perceptions. Induction allows inferring the conclusion from the premise 

with a high probability. For example, if learners have a tendency to behave in a particular way while 

experiencing some specific states, then the system predicts that behavior under similar circumstances in 

future. On the other hand, abduction allows inferring a premise as a plausible explanation of a 

consequence. For example, if undesirable events result in particular learner states, then these states arising 

after the occurrence of an uncategorized event can be used to classify it as undesirable. According to OCC 

theory, emotions are elicited from three different perspectives: consequences of events happening in the 

world, action of agents, and aspects of objects existing in the world. Based on the learner information, the 

ABC Model attempts to predict how the learner perceives different events. The predicted learner 

perception is used to infer the changes expected in the learner’s affective, behavioral, and cognitive states 

on the occurrence of an event. 

Desirability of events is estimated with respect to the learner’s goals and this may elicit consequence of 

events emotions like satisfaction and distress. Appraisal of actions, whether of the learner or the system is 

done with respect to the learner’s predicted standard of behavior and this may elicit action of 

agents emotions like admiration and remorse.  

The ABC Model keeps a record of the past changes in the learner’s affective and cognitive states, which 

is used to ascribe the potential states. Based on these and the information about the learner, the system 

makes predictions regarding the learner’s expected behavior. This predicted behavior is compared with 

the actual observed behavior of the learner and depending on the level of conformation between the two, 

appropriate modifications are made to the learner model and the prediction models. Now based on the 

observed events or actions and the learner’s current state, the system infers the changes activated by the 

event and the further actions expected to result from these changes. These inferences are then stored in the 

learner’s model to be used for appraisal of future events. The system appraises events by assigning them a 

relevance related to the learner’s goals and then estimates them using the OCC theory of emotions to 

evaluate each affective and cognitive parameter. This can be done using machine learning and pattern 

matching techniques. Predictions regarding the learner’s behavior are also made using machine learning 

techniques based on the affective state of the learner and the information in the learner model. 

Now based on the observed changes resulting from an event or an action and the knowledge of how the 

learner behaved under similar situations in the past, the system incorporates pedagogical strategies and 

provides suggestions to help the learner acquire states that enhance the learning process (D’Mello et al., 

2009). For problem solving environments, the ABC Model keeps track of the possible steps at each stage 

and if the learner solves a problem incorrectly, then the system appraises the point of error in the solution 

and highlights it to the learner (Balakrishnan, 2011). When the learner makes an error, the ABC Model 

records the learner’s states and associates them with the error. This helps in identifying the potential 

mistakes the learner might make in specific states, so when such a state arrives in the future, the system 

helps the learner to avoid making the mistake by producing hints. 
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Discussion and Recommendations for Learner Modeling 

The ABC Learner Model framework described here integrates inductive and abductive reasoning to 

develop a learner model for predicting the learner’s affective, behavioral, and cognitive states in an e-

learning environment. We have described a convenient approach for the implementation of learner 

models based on the affective, behavioral, and cognitive states of the learner. It allows the system to 

predict learners’ future ABC states based on their personal information and cognitive evaluation of events 

that elicited a specific emotion or behavior. The ABC model appraises events in terms of desirability and 

learns about the events that elicit specific emotions, and hence, decides the appropriate tactic to apply to 

enhance learning. Being independent of domain and not involving any predetermined assumptions, the 

proposed framework can be integrated into any e-learning environment. The affective and cognitive 

profiles can be used to focus on specific challenging states of a learner demanding special attention. 

Incorporating predicted future states allows the system to modulate learners’ critical behavior in advance 

by giving appropriate suggestions.  

GIFT, a service-oriented framework of tools, methods, and standards to aid computer-based tutoring 

systems described in previous chapters, can benefit by incorporating aspects of the ABC Model into its 

framework. The various types of information required to create the learner models can support GIFT’s 

Domain Module in assessing the learner’s performance and providing relevant content as feedback. 

GIFT’s Learner Module functions to determine the learner’s affective and cognitive states and this 

module can use the method in the ABC Model for predicting learner states. The ABC Model observes and 

analyzes learner performance over a period and creates affective and cognitive profiles that have 

threshold values and decay rates associated with the states in consideration. Incorporating these 

parameters can assist the learner module in determining learner states more effectively.  

The ABC Model’s appraisal mechanism predicts the changes resulting from an event and facilitates 

suitable interactions to enhance the learning process. GIFT’s Pedagogical Module decides when feedback 

needs to be provided to the learner, and hence, can benefit from the ABC Model’s appraisal mechanism. 

The appraisal mechanism can also support the trainee module for predicting the learner’s state. Moreover, 

the Assessment Construct of GIFT, which is used for post-hoc analysis, can utilize the learner’s affective, 

behavioral, and cognitive profiles created by the ABC model. 
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Introduction 

The data stored in a learner model are used by an ITS to adapt and customize instruction based on the 

learner’s state of cognitive and affective knowledge. Ideally, this model would include information about 

the learner’s individual characteristics, past and current competency, performance, cognition, affect, 

behaviors, etc. The higher the level of functionality and capability of a learner model to interpret and 

accurately classify the comprehensive knowledge of an individual learner, the better the ITS can adapt to 

the individualized needs of the learner. For expert human tutors, this process is easy since they have the 

natural ability to interpret and assess the learner’s current and predicted state of readiness for instruction. 

However, equipping learner models with such capabilities is a computationally complex problem ITS 

researchers have been trying solve over the last 15 years. The primary sub-research areas of learner 

modeling research include, but are not limited to, learner state, cognitive modeling, affective modeling, 

individual differences, behavioral and physiological sensing, and performance assessment.  

Most learner modeling research is conducted within academic populations (primarily K‒12) and well-

defined, domain-specific ITSs, such as mathematics and physics. The next-generation ITSs aim to be 

more inclusive of adult learners and job-related training; however, little is known about the transferability 

and validation of previous research findings as well as the investigation of other useful learner aspects 

that scale beyond academia. While great strides have been made among learner modeling research, there 

are several factors that limit the future progression/development of comprehensive learner models: (1) the 

lack of understanding of the impact and interaction effects of learner model elements; (2) the lack of 

reusability and transferability of learner models between ITSs, domains, and populations; (3) the 

nonexistence of the measures from user models/modeling of which learner models/modeling is a subset; 

and (4) the lack of standardization for learner model development and structure.  

These limiting factors can be addressed through the process of empirical evaluation in future learner 

modeling research and learner model development. For years, these issues have been ignored by the user 

modeling community at large (Adikari & McDonald, 2006; Glavinic & Granic, 2008; Granic & Adams, 

2011; Johnson, 1994; Kobsa, 1994) due to the constraints surrounding the needed experimentation. 

However, GIFT, an experimental testbed that can accommodate such evaluations and comparative 

analyses, is now available to conduct such experimentation realistically and affordably. 

The purpose of this chapter is to provide justification for the need of empirical evaluation by taking 

lessons learned from the human-computer interaction (HCI) perspective of user modeling research. 

Moreover, we present guidelines and suggestions on how to conduct such evaluations using GIFT. 

Specifically, this chapter is divided into three sections: (1) the current understanding of learner model 

elements; (2) the incorporation of the missing link of HCI user modeling research; and (3) suggestions on 

how to conduct experimentation using GIFT toward the development of standardizing and generating 

comprehensive learner models capable of accommodating user and domain diversity. 
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Current Understanding of Learner Model Elements  

The content within learner models is generally categorized in two parts: domain-specific or domain-

independent information (i.e., learner-specific characteristics [individual differences]) (Abdullah, 2003; 

Gonzalez, Burguillo & Llamas, 2006). Domain-specific information reflects the learner’s state and level 

of knowledge or ability within a particular domain. This type of information primarily includes historical 

competency (domain knowledge and skills measured over time), misconceptions, problem-solving 

strategies, etc. Most learner models, particularly those of first-generation ITSs, are concerned with 

modeling this type of information because this allows the model to be more generalized across multiple 

populations. While this information is useful, it alone is not sufficient for providing the highly adaptive 

individualized training. Domain-independent information consists of all relevant characteristics of an 

individual learner and can include, but is not limited to, the following elements: learning goals; cognitive 

aptitudes; measures of motivational state; learning preferences (including styles and personality); interest; 

demographics; past performance and competency (non-domain-specific); behavioral/psychological 

measures; cognitive and affective dimensions; and personal control beliefs (including general self-

efficacy; locus of control). These individual difference variables are significantly different between 

learners and, collectively, are not the same for any two learners.  

To accurately classify a learner’s state and performance at any given time, the learner models must have 

all-inclusive understanding of learner’s cognition and affective states, influential individual difference 

characteristics, and performance. One area of learner modeling research is dedicated to understanding the 

influence of and interrelationship between domain-independent information (e.g., learner-specific 

characteristics) and how it can be best used in conjunction with the domain-specific information to 

optimally classify a learner state and performance. Understanding impact and interaction effects of 

individual learner model elements takes “big data,” recurring empirical evaluation and experimentation, 

and the ability to dynamically incorporate multiple models and modeling techniques simultaneously. 

However, learner models have limited reusability since they are typically developed standalone and 

tightly coupled within the specific ITS within which it is integrated. Most of these systems typically can 

only accommodate one well-defined academic domain (i.e., mathematics, physics, computer science), 

resulting in the lack of standardization of learner model elements and ideal learner modeling techniques. 

The review of HCI user modeling research shows the same limitations are present in that area of research. 

While the approach to user modeling is different, lessons can be learned from the HCI user modeling 

research area. The next section discusses how ITS learner modeling research can be enhanced by 

leveraging some of the research of its parent research area, user modeling (from the HCI prospective). 

The Missing LINK: The Human-Computer Interaction (HCI) User Modeling 

Perspective 

There are several social and economic factors influencing the evolution of technology; however, 

technology progression is directly correlated to changes in user requirements. Consider the evolution 

chain of the personal computer (i.e., desktop to laptops to netbooks to tablets and smartphones) as an 

example. This progression was accomplished by user’s desire to have these devices more portable, faster, 

and useful to accommodate users with diverse computing purposes. User requirements for the successful 

and beneficial usage of ITSs are also changing as their need to account for learner and domain diversity 

increases. Long gone are the days in which user-initiated and user-selected adaptation techniques, such as 

completing preference menus and editing profile files, are sufficient for personalizing interactive 

computer systems (Kobsa, 1994). In most cases, especially ITSs, learners (users) do not have the 

necessary knowledge about the subject area, their own errors, or the system’s adaptive abilities to select 
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adaptation preferences. Moreover, adaptation methods in current and future ITSs dynamically occur and 

are too numerous for learners to customize each potential adaptation path. 

User and learner modeling research have the opportunity to significantly enhance the adaptive capabilities 

of intelligent, interactive interfaces and learning environments; however, there is a rather large disconnect 

between these two research areas limiting their forward progressions. Learner models and modeling is a 

subset of user models and modeling (Self, 1988). User models, like learner models, contain the system’s 

assumptions about all user characteristics that are relevant for tailoring system behavior to accommodate 

the individual user. Furthermore, both user and learner modeling share common tasks including (1) 

initializing the user or learner model; (2) drawing assumptions about the user or learner based on system 

interactions and updating the user or learner model accordingly; and (3) supplying other system 

components with assumptions about the user or learner, as needed. While user and learner modeling share 

common performing functions, there seems to be a rather large disconnect between these areas. They 

differ in the following ways: 

 Primary Area of Research 

o User modeling is a subdivision of HCI 

o System goal is to build useful and usable systems 

o Learner modeling is viewed as a subdivision of AI. This terminology is essentially used 

for the primary user (i.e., student, learner, trainee, pupil, etc.) of an ITS and other 

learning environments.  

o System goal is to build systems that portray intelligent behavior 

 Model Content 

o Both user and learner models can contain personal data associated with a specific 

user/learner including demographics, past experience, goals, interests and motivation, 

knowledge and skills, preferences, etc. 

o User models also include and emphasize users’ system preferences and dislikes, 

behaviors and interactions with the system, system acceptance (including perceptions, 

satisfaction, and usability), and general technology acceptance. 

o Learner models also include and emphasize learner’s cognitive and affective states, 

domain competency and self-efficacy, cognitive aptitudes, etc. 

o There is no current standardization on how to structure and employ these models; 

therefore, not all current models contain the above information.  

 Adaptation Techniques 

o User modeling focuses on modifying/adapting the system’s interface design based on the 

user model. Considers other elements of HCI such as usability and user-centered design.  

o Learner modeling focuses on modifying/adapting instruction based on the learner model 

(not including the change to the physical user interface, but may change the interface 

feedback via agent, text, audio, etc.). 
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 Presence in the Literature: 

o It is rare to find representation of ITSs and learner models in user modeling research, and 

it’s even more scarce to find reference to user modeling in ITS and learner modeling 

research. Basically, these two research areas and system development are conducted 

entirely independently (Johnson, 1994).  

Johnson (1994) suggested that regardless the past neglect of combining the research and 

development of HCI- and AI-based user models, the two communities will come together 

in the near future due to the increase of intelligent interface and agents; however, 20 

years later, gap and disparities still remain. If both communities understand the 

importance of optimizing the user’s system interactions and have had significant progress 

within their respected fields, why is the gap between these two areas still as widespread 

as it was 20 years ago? Why does this issue still matter?  

Returning to the notion of technology evolution being driven by user requirements, the need for 

understanding how an interactive system can dynamically capture/model users’ needs and adapt its 

interaction accordingly has become more vital due to the increase in range and complexity of user 

requirements for such systems (Granic & Nakic, 2007). In order for ITSs to optimize learning experiences 

and system intelligent behavior, a greater understanding of the interaction between the learner and system 

is needed. We can no longer ignore the needed synergy between the learner’s learning process (inclusive 

of individual differences) and the learner’s interaction with the learning application (i.e., ITS) (Granic & 

Adams, 2011; Squires & Preece, 1996). HCI user modeling research can provide the ITS learner 

modeling community with a potential solution to ascertaining such an understanding, which will directly 

attribute to better understanding the impact and interactions of currently researched learner model 

elements. 

User Modeling in Human Computer Interaction (HCI) Explained 

The general goal of HCI is to facilitate the development of systems that are enjoyable and easy to use. 

User modeling in HCI research was originally aimed at investigating the different types of user models 

and their role in supplying information for designers throughout various stages of the system development 

process (Johnson, 1994). Over the last 10 years, HCI research has realized that understanding users’ needs 

is at the core of successful interactive technology design and adoption. Therefore, this research area has 

expanded to investigating user-centered, user-sensitive, and learner-centered design approaches toward 

the development of transparent interfaces and flexible interactions that can account for user diversity 

(Glavinic & Granic, 2008). Thus, such research has extended its objective to gaining a thorough 

understanding of the cognitive, perceptual, and motor components of user interactions with interactive 

systems (Olson & Olson, 2003).  

User-sensitive design places equal focus on user requirements and the diversity of such requirements 

among all intended users (both typical and extraordinary) (Granic & Adams, 2011). Learner-sensitive 

design (Soloway et al., 1996) expands user-sensitive design by accounting for learner’s unique needs, 

objectives, knowledge, abilities, and other learner-specific characteristics. Since it is known that one 

single interface design will not satisfy every user, HCI user modeling research looks to intelligent user 

interfaces (IUIs) as a means of (1) providing more individualized and personalized interactions, (2) 

enabling adaptation of interface behavior to match user individual characteristics (adaptive systems), and 

(3) enhancing system acceptance, usability, flexibility, and attractiveness (Granic, 2008b; Hook, 2000).  
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Adaptive, IUIs rely on the use of user models, which contain a collection of information and assumptions 

about particular users that guide the adaptation process of the system for an individual (Kobsa, 1995), 

thus an intelligent system’s behavior strongly depends on the impact of user individual characteristics on 

interaction with the system (Granic & Nakic, 2007; Magoulas, Chen & Papanikolaou, 2003). This is 

similar to the use of learner models in ITSs. Like ITS research, HCI research has acquired inconsistent 

results on the impact of individual differences on user performance; however, the underlying cause in 

HCI research attributing to user performance with a particular system largely depends on the system alone 

(Granic & Nakic, 2007). In HCI user modeling research, elements of users’ acceptance, preferences, 

usage behavior, perceptions, perceived usability and usefulness, and attitudes toward the system and 

computers in general are considered as a part of modeling users’ system interactions.  

ITS learner modeling research can leverage some of these elements to ascertain a clearer distinction 

between factors influencing a learner’s cognitive and affective knowledge during the learning process and 

factors that are directly linked to system interaction and usage behavior. With this concept in mind, 

several HCI researchers have investigated the link between users’ individual differences and their usage 

of e-learning applications (as ITSs fall under the same umbrella of educational technology). Adams 

(2007) evaluated eight hypothetical criteria e-learning systems need to accommodate individualized 

student learning against five e-learning platforms. Accessibility and student modeling for user diversity 

were the weakest points among all cases. The Cognitive Tutor Authoring Tool (CTAT) was found to 

address the most criteria among the five platforms; however, the difficulty and time involved in 

developing a cognitive model limits its universal usability (Adams, 2007). An experiment conducted to 

investigate the existence and level of interaction among users’ individual differences and learning 

outcomes through the use of an e-learning application also garnered interesting results. The individual 

differences that were evaluated within the experiment include both personal user characteristics (i.e., 

intelligence, emotional stability, extraversion, mental stability, experience) and system-dependent user 

characteristics (experience using computers and Internet, motivation to learn programming, expectations 

from e-learning, and background knowledge material to be learned). The study found significant 

correlations between mental stability and motivation, and emotional stability and expectations from the 

system; however, only learner’s motivation to learn programming and their expectations of e-learning had 

a significant impact on the knowledge acquired through their system interaction (Granic & Nakic, 2007). 

A follow-on study also found motivation to learn and expectations about e-learning (both for e-learning in 

general and the specific application) to significantly influence learning achievement (Granic & Adams, 

2011). These findings support the need for researching the impact and interaction of individual 

characteristics (inclusive of system-dependent/specific characteristics) and how users’ expectations of the 

system can impact their successful system interactions. 

For learners, their interest and motivation to learn pertains to their willingness, direction, intensity, and 

persistence of learning-directed behavior. It influences their choices during learning activities as well as 

cognitive engagement during instruction and training (Schultz, Alderton & Bordwell-Hyneman, 2011). 

The level of a learner’s intrinsic motivation, goal orientation, and need for achievement are also directly 

related to an overall motivation to learn and has been shown to be directly related to learning performance 

and other learning outcomes (Schultz et al., 2011). Furthermore, learners’ self-efficacy beliefs are also 

related to their motivation to learn, learning, performance, and job performance (Glavinic & Granic, 

2008) and have been shown to influence learners’ decision making during instruction and training 

(Soloway et al., 1996). These aspects should be contained within the learner model structure; however, 

research assessing the influence of learners’ motivational characteristics on outcomes and their 

relationships to other individual difference variables is practically non-existent. Although ITS research 

has found interrelationships among learner-specific characteristics (for examples, personality and 

cognitive abilities [(Kobsa, 1994; Schultz et al., 2011)], and learning styles and cognitive traits (Graf, Liu, 

Kinshuk, Chen & Yang, 2009), current learner models have a limited capability to account for individual 

differences as explanations of learner’s cognitive and affective knowledge. Based on the studies 
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previously mentioned, user models also have limited capabilities for accounting for individual 

characteristics. 

Another important area of HCI user modeling research to consider is end-user technology acceptability 

and adoption. While technology has been deemed as the “salvation” to education by providing 

individualized learning, it rarely meets this “broad expectation” (Healey, 1999). Authoring tools and 

shells, such as CTAT, are designed to accommodate teachers by supporting them in the development of a 

series of ITSs; however, the ITS adoption and usage for tutoring in real classrooms has been a slow 

progression. HCI researchers attribute this slow adoption rate to the fact that ITS interaction mechanisms 

have not been accompanied by an adequate user interface design (Granic, 2008a).  

In addition to its focus on user expectations and requirements, technology acceptance also considers user 

perceptions of a specific technology’s usefulness and usability. Liu, Laio, and Peng (2005) found 

significant evidence that learners of e-learning applications have two identities, one as a system user and 

the other as a learner, and both identities are influenced by the “flow” (concentration) and perceived 

usefulness of the e-learning system (Liu, Liao & Peng, 2005). A recent meta-analysis of research found 

solid evidence that supports perceived usefulness is the strongest predictor of a learner’s adoption of an e-

learning technology (Sumak, Hericko & Pusnik, 2011). Usability evaluation is an important role in user 

interface design; however, the number of usability studies on e-learning is limited and the consolidated 

evaluation methodology for e-learning is non-existent (Ardio et al., 2006; Costabile, Marisco, Lanzilotti, 

Plantamura & Roselli, 2005; Granic, 2008a). These studies mention the need for further research and 

empirical evaluation of usability assessment of e-learning applications. Usability assessment and 

measurement are always among HCI’s approach to investigating the interactions between users and the 

system; determining its value in modeling interactions between learners and ITSs is a valuable factor to 

consider. Squires and Preece (1996) affirm that “there is a need to help evaluators consider the way in 

which usability and learning interact” (Squires & Preece, 1996); Costabile et al. (2005) also argue that the 

usability of an e-learning application can directly affect learning (Costabile et al., 2005).  

Usability evaluation can be measured by objective performance metrics of efficiency and effectiveness as 

well as the user’s subjective assessment of the system usage. These objectives quantify user performance, 

satisfaction, and terms by which they find the system acceptable. Adikari and McDonald (2006) 

constructed a science-oriented research design to test the value of incorporating conceptual user modeling 

and usability modeling into product requirement specifications for improving design (Adikari & 

McDonald, 2006). For authoring shells and ITSs, such evaluations can help identify the exact problems of 

a particular system (Granic, 2008a) and help separate problems/issues pertaining to the learning process.  

The ITS and learner modeling community can benefit from these aspects of HCI user modeling research. 

By combining the same evaluated user modeling elements of perceptions toward learning, learner models 

could potentially increase explanation of states, performance, and system behavior. Little ITS research 

has been done in this area; however, preliminary findings have shown that there is a significant 

relationship between learners’ acceptances of pedagogical agents, or virtual tutors, embedded within a 

learning environment and the learners’ acceptances of the learning environment itself (Adams, 2007). A 

prior study also identified links between students’ behaviors with a tutor and their attitudes and 

perceptions (Healey, 1999). Research blending these areas will also be beneficial to HCI user modeling as 

both HCI and ITS user modeling research areas have the same issues of no standardization, the inability 

to accommodate individual differences, and the need for empirical evaluations to validate modeling 

elements. HCI user modeling has expresses the need for empirical research over the last 20 years, but this 

is a concept that has become more apparent recently within the ITS community. 
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Recommendations and Future Research: Towards the Development of 

Reusable and Standardized Learner Models 

While much research is needed to investigate the transferability of previous findings, future ITS 

researchers and developers should consider the following: model development and evaluation of a few 

elements at a time to identify interrelationships between elements and their influences on learner state; 

controlled experimentation (including sensor validation and comparisons to self-reported data and user-

experience post-experiment interviews); and increased collaboration and data sharing. 

Practical Implications for Researchers 

The field of ITS learner modeling research has close ties with other adaptive computing in fields such as 

user modeling, HCI, and AI. A common problem among these fields is the limited amount of empirical 

evaluation associated with the adaptive systems that they produce (Chin, 2001; Mulwa, Lawless, Sharp & 

Wade, 2011; Weibelzahl & Weber, 2002). One of the main reasons for this is the inherent difficulty of 

separating out the pieces of an adaptive system. Many of the existing ITSs are tied to one specific domain 

(e.g., physics, mathematics) and the learner model used within it is closely tied to the system. The cost, 

time, and difficulty that goes into developing these systems results in inflexibility and an impracticality of 

many experimental evaluations. In many cases, a non-adaptive, or control, group may make very little 

sense or be difficult when trying to evaluate the impact of differing adaptations in an empirical manner 

(Mulwa et al., 2011).  

An additional challenge to ITS research is that it is difficult to separate out the user’s learning outcomes 

from their ability to understand and use the system. One approach that has been taken to studying 

adaptive systems and user models has been to layer evaluations. Rather than trying to examine the entire 

system, individual pieces are evaluated and empirical studies are run at each part to make sure that it is 

effective (Mulwa et al., 2011). This approach is a step in the right direction for making it more practical to 

effectively evaluate the impact of adaptations and information stored in user or learner models.  

It is of great importance to researchers, specifically in the field of ITSs, to ensure that information that is 

contained in the learner model and to which it is being adapted to actually provides a benefit. One way to 

do this is by examining the specific content of what is included in individual learner models and its 

impact on learning outcomes. Presently, each individual ITS uses its own combination of domain-

independent components in the learner model (e.g., motivation, personality scores, cognitive measures). 

Many learner models may not even include information pertaining to computer familiarity and system 

acceptance, which have previously been found to be heavily correlated to overall performance in HCI and 

user modeling research (Granic, 2008b). Therefore, one of the next necessary and useful steps in ITS 

research is to empirically evaluate the impact and interactions of specific learner model elements. 

Through this empirical research, a set of useful and standardized domain-independent learner model 

components can be developed.  

As it stands now, when researchers do examine the individual difference elements within their learner 

models, it is within specific domains with limited generalizability (Granic, 2008b). Studies such as those 

reported by Granic (2008b) have begun to examine which learner model elements have an impact on 

performance outcomes in a specific ITS system. The next step is to continue generating empirical studies 

that examine the learner model elements and their utility, and then build a body of knowledge, which can 

be examined as a whole looking for commonalities in the useful elements between domains. This 

examination can then lead to a generalizable learner model, which will contain useful information that can 

be applied in ITSs of varying domains.  
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While many of the components included in learner models have been shown to impact performance in 

traditional and classroom environments, they may behave differently when computer delivery is added to 

the equation. Therefore, it is important to conduct studies on these individual difference components 

within a computerized tutoring environment to see which one impact learning outcomes.  

Experimental Design Recommendations 

In general, there is a need for more empirical evaluations of learner model elements. There are a number 

of different steps that can be taken to increase our knowledge about the impact and interactions of learner 

modeling elements:  

Literature review and meta-analysis. A thorough and formal literature review of current empirical 

research into learner model elements is necessary. It can provide an overview of the different 

techniques that are used to assess ITSs and learner model elements. It may also lend insight into 

which elements are commonly included in learner models and which ones have been found to be 

effective. A meta-analysis could give researchers a better picture of the types of domains that 

have been examined (e.g., algebra, physics), the number of tutors that have been assessed in each 

area, and what elements were included in those user models. The meta-analysis would show 

which elements of learner models were consistently helpful between these domains and which 

ones are domain specific. This would then give researchers a direction to take when generating 

specific experiments to test what elements matter in what situations. It also would give 

researchers a better understanding of potential interactions that exist between learner model 

elements. The meta-analysis and literature review will also highlight specific gaps in the literature 

and areas that have not received much attention. 

More empirical evaluations. Granic (2008b) examined the different components of a learner 

model used in a computer programming tutor. Correlations were found between certain elements 

of the model (e.g., motivation to learn programming) and performance. However, personality 

factors did not have many correlations with performance (Granic, 2008b). More research of this 

type should be done with different domains, and different ITSs. Once a large body of empirical 

evaluation literature has been built up it, can be further examined to see what elements have 

utility throughout varying domains and which ones appear to be less generalizable. By expanding 

research in this manner, it will move our learner models to be more consistent with each other, 

and more easily comparable. GIFT is an ideal experimental testbed to use for such experiments. 

Advantages of Using GIFT as an Experimental Testbed and Design 

Recommendations  

A majority of learner modeling research has not focused on examining the same learner model in multiple 

domains. Since GIFT is a domain-independent framework, it allows teachers and researchers to design 

their content to work with it, rather than having to develop their own delivery system. One of the main 

benefits of designing content in this manner is that it will significantly reduce the amount of time and 

effort that would go into developing an ITS. This also allows for consistency between generated ITSs. 

One of the intentions behind GIFT is to be able to easily interchange the pieces of a system, and even, 

components of the learner model. Further, an additional capability would be to provide a consistent 

structure for the development of ITSs. Therefore, GIFT is an ideal system to use for the development of 

ITSs and the empirical evaluation of learner model elements. A researcher can design a tutor with GIFT, 

and then use the architecture to plug in and hold constant the elements of the learner model to be tested 

(for instance, testing one condition where motivation level is adjusted, another where personality type is 
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adjusted, and finally, one where both motivation level and personality type are adjusted, and measuring 

performance). This allows for the examination of the impact of individual learner model elements, and the 

possible interactions between them. In a custom system that is tied tightly to its content and learner 

model, these types of experiments would either be extremely difficult or impossible to complete. As 

GIFT’s features continue to develop in the future, it will provide even more flexibility and granularity in 

the types of manipulations that researchers can conduct in their experimental evaluations of the 

components of learner models.  

Conclusions 

The learner model is a vital part of an ITS. The learner model often contains domain-independent 

information (such as individual differences) about the specific learner, and then adjusts instruction based 

on these differences. However, there has been very little research on the individual difference components 

that have been included in learner models, and there is no standardization of the models between systems. 

It is important for research in the ITS field to (1) examine the impact and interaction effects of learner 

model elements; (2) increase the reusability and transferability of learner models into different domains; 

(3) look to fields such as HCI for guidance into elements that may be useful within the learner model; and 

(4) begin to move toward standardization of learner models. GIFT provides an ideal testbed to use for 

affordable and efficient experiments into the impact and interaction effects of different learner model 

elements. Through further empirical evaluations and the use of GIFT as a research tool, the ITS field can 

move toward generating more comprehensive and consistent learner models that are highly generalizable 

between domains 
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Solutions to Complex Problems in a Multiagent,  

Conversation-based Intelligent Tutoring System 
Xiangen Hu, Donald M. Morrison, Zhiqiang Cai 
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University of Memphis (UM) 

Introduction 

More than 40 years since their origins in the early days of computer-assisted instruction in the 1970s (e.g., 

Carbonell, 1970), considerable progress has been made in developing “intelligent” (computer-based) 

tutoring systems that successfully scaffold learning in specific domains and for specific purposes (for a 

recent review, see Graesser, Conley & Olney [2012]). Frequently cited examples include Cognitive Tutor, 

which supports learning in algebra, geometry, and programming languages (Ritter, Anderson, Koedinger 

& Corbett, 2007); AutoTutor (Graesser, Olney, Haynes & Chipman, 2005; Graesser, Jeon & Dufty, 2008; 

Graesser, Lu et al., 2004), which does the same thing for college-level computer literacy, physics, and 

critical thinking skills; and the so-called “constraint-based” systems developed by Mitrovic’s group in 

New Zealand (Mitrovic, Martin & Suraweera, 2007), which, among other topics, help students learn to 

program in SQL.  

In spite of these advances at local research and development sites, the field has yet to produce a truly 

general-purpose system that is capable of supporting rapid development of high-quality applications 

across a broad range of domains. GIFT, currently under development at the U.S. Army’s Learning in 

Intelligent Tutoring Environments (LITE) Laboratory, is intended to fill this gap. Citing Picard (2006), 

the developers claim that the availability and use of ITSs has been limited by the high cost of 

development, lack of reusability, lack of standards, and “inadequate adaptability to the needs of learners” 

(Sottilare, Brawner, Goldberg & Holden, 2012:1). These systems, they write, tend to be built as “domain-

specific, unique, one-of-a-kind, largely domain-dependent solutions focused on a single pedagogical 

strategy.” GIFT is presented as a solution to this problem. The modular framework and standards built 

into the system could “enhance reuse, support authoring and optimization of CBTS
3
 strategies for 

learning, and lower the cost and skill set needed for users to adopt CBTS solutions for military training 

and education” (Sottilare et al., 2012:1).  

The development of a general-purpose, domain-specific ITS framework is indeed an important goal, but 

numerous barriers block the way. These include (but are not restricted to) a lack of agreement in the ITS 

community about how the different components of an ITS ought to fit together; what the structure and 

content of the components ought to be; and how knowledge of the world is to be represented, both for 

experts and learners.  

The argument made in this chapter assumes that a general-purpose system will at some point employ an 

open, multiagent architecture, meaning that core functions are carried out by more or less autonomous 

software agents united by a common ACL. Some of these agents will perform simple tasks (such as 

analyzing a learner’s facial expressions), while others will take on more complex ones, such as generating 

appropriate responses to user questions. As an example, here we describe an autonomous software agent 

that produces a turn-by-turn analysis of a user’s discourse moves on two dimensions: relevance and 

novelty (R-N). In the process, it builds what we call a micromodel of the learner’s current state, including 

                                                           
3
 Here we use the term ITS to mean the same thing as a computer-based tutoring system (CBTS), a class of adaptive 

educational system (AES). 
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a relevance-novelty measure for single turns and for a series of turns.
4
 This micromodel allows the R-N 

agent to make assertions about the learner’s current and recent contributions to a conversation—assertions 

which may be broadcast generally or addressed directly to other agents, such as a conversation agent, a 

pedagogical agent, an agent responsible for constructing aggregate learner models from multiple 

micromodels, an agent that analyzes the effectiveness of instructional modules, or, where the ITS 

employs an “open” learner model (Bull, 2004; Bull & Pain, 1995; Kay, 2001; Mitrovic & Martin, 2002), 

an agent responsible for providing access to the learner model through the user interface. 

The Standard Four-Component ITS Model 

As noted elsewhere in this book, it is customary to identify an ITS as consisting of four major 

components, referred to as “models” – the learner model (sometimes called the “student model”); the 

expert domain model; the tutor model, and the user interface (Elson-Cook, 1993; Graesser et al., 2012; 

Nkambou, Mizoguchi & Bourdeau, 2010; Psotka, Massey & Mutter, 1988; Sleeman & Brown 1982; 

VanLehn, 2006; Woolf, 2008). In an ITS where the tutor is capable of mixed-initiative dialog with the 

user (Carbonell, 1970; Allen, Guinn & Horvtz, 1999; Graesser et. al, 2005), the tutor takes the form of an 

intelligent conversation agent, backed by a Dialog Advancer Network (Person, Bautista, Kreuz, Graesser 

& Tutoring Research Group, 2000). Figure 9-1 illustrates the relationship among these four components. 

 

Figure 9-1. Standard ITS components 

In general terms, the learner model represents what the tutor has established to be the learner’s current 

level of knowledge, skill, and affective state, while the expert domain model represents the knowledge 

and skills the learner is supposed to acquire – and has therefore been called the “ideal student model” 

(Corbett, Koedinger & Anderson, 1997). Through interactions with the learner via the user interface, the 

conversation agent, playing the role of the tutor, seeks in some way to bring the learner model in line with 

the expert model. In this sense, the learner model is said to be an “overlay” of the expert model Wenger, 

1987) 

Although the various ITS research and development communities seem to agree that these are the main 

components, the model is really more of a conceptual framework than a working blueprint. In practice, 

different systems employ quite different architectures, data structures, and strategies, reflecting different 

instructional philosophies and purposes (e.g., Nkambou et al., 2010, Schatz & Folsom-Kovarik, 2011). 

While this makes sense locally, the lack of a standard overall system architecture and way of constructing 

the different system components is problematic for a number of reasons. 

For one thing, it means that components that have proven to be effective in one system are not easily 

imported into another, thus limiting progress that might be made through the collective efforts of the 

rapidly expanding network of ITS research and development groups around the world. Also, the lack of a 

standard method of structuring the learner model means that when a learner moves from one system to the 

                                                           
4
 Although we refer here to “user” as a “learner,” in fact the agent we describe here is capable of evaluating the 

discourse moves of any interlocutor, including those of another agent. 
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next, the new system must start from scratch in establishing the learner’s history and current state of 

knowledge. To use an analogy from medicine, it is as if different doctors had different languages for 

describing a patient’s health, so, when dealing with a new patient, each doctor would have to reassemble a 

patient’s history from scratch.  

What then, in the absence of a standard architecture and data structure for representing learner and expert 

domain knowledge, is one do to? The 60s-era slogan “If you’re not part of the solution, you’re part of the 

problem” seems relevant here. Specific solutions to general problems of learner modeling ought to be 

crafted in such a way that they are generally useful no matter what environment they are asked to work in. 

To return to the medical records analogy, if we are developing a new procedure for say, measuring pupil 

dilation or “knee-jerk” reflex response, so long as we have a standard way of reporting our results, we 

don’t have to worry about how our “microrecord” fits into the overall structure of the patient’s medical 

record, which can be assembled by someone else. In other words, we can be part of a solution without 

knowing exactly what that solution is.  

The Argument for a Multiagent Architecture 

The notion of an ITS as a multiagent system is not new. Of course, any ITS is a multiagent system in the 

gross sense that there are two autonomous agents at work: the user and intelligent tutor. However, recent 

years have seen an increasing emphasis on development of ITSs with multiagent architectures in the more 

interesting sense that overall system functionality emerges from the collective work of individual 

software agents (Bittencourt et al., 2007; Chen & Mizoguchi, 2004; El Mokhtar En-Naimi, Amami, 

Boukachour, Person & Bertelle, 2012; Lavendelis & Grundspenkis, 2009; Zouhair et al., 2012). Through 

the use of a shared, speech-act-based agent communication framework such as Knowledge Query and 

Manipulation Language (KQML) (Finin, Fritzson, McKay & McEntire, 1994), Foundation for Intelligent 

Physical Agents (FIPA)-ACL (O’Brien & Nicol, 1998), or Java Agent Development Framework (JADE) 

(Bellifemine, Caire, Poggi & Rimassa, 2008), combined with a set of domain-specific ontologies 

(concepts and their relations specific to the system domain), the agents in the system assert beliefs, make 

requests of other agents, deny requests, and so forth, much as human workers in a large collective 

enterprise do (see Chaib‐draa & Dignum, 2002; Kone, Shimazu & Nakajima, 2000).  

For example, in a multiagent ITS, different agents can take on the different tasks of user registration and 

authentication, interfacing with learning management systems, building learner models dynamically, 

monitoring learner affect through the use of various sensing systems, and managing conversations among 

users and other agents. Further, agents with especially complex tasks, such as a conversation agent, may 

be supported by a network of specialized agents dedicated to specific subtasks. Each of these agents can 

have its own internal algorithms, data structures, and local methods of obtaining data. Importantly, as 

long as the agent “knows” the system’s ACL, i.e., can post, send, and read messages in a shared language, 

it doesn’t matter how it is organized internally, in the same way that different sort functions can take the 

same input and produce the same output using different internal algorithms. 

In the remainder of the chapter, we give an example: an agent that is capable of evaluating a learner’s 

discourse moves on two important dimensions: relevance and novelty. Instantiated as a highly specialized 

agent within a multiagent, conversation-based ITS architecture, the R-N agent is capable of making 

assertions about a small but important piece of the learner model (a learner micromodel), information that 

may be of some value to other agents, such as conversation agents and learning model agents, for their 

own purposes. 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

100 

The Problem of Conversational Relevance and Novelty 

Designing a computer program that can carry on a conversation with a human, one of the oldest and 

arguably the hardest challenge in AI, is exactly the sort of problem that lends itself to multiagent 

treatments. For example, different agents may be responsible for converting speech to text, parsing text 

into its grammatical elements, classifying utterances as different kinds of speech acts, and extracting (or 

estimating) meaning through some form of semantic analysis. Other agents, or clusters of agents, can be 

responsible for generating responses in the form of text strings, while still other agents convert the text 

strings into speech, and have them spoken by an animated avatar.  

The agent responsible for generating responses to a user’s utterances (discourse moves) arguably has the 

most complex task and is most likely to benefit from the assistance of simpler agents that can take on 

pieces of it. The task is hard because it is really a special form of mind-reading, requiring an ability to 

continuously create and test theories about an interlocutor’s present state of mind. Bakhtin’s distinction 

between monologic and dialogic discourse (Bakhtin, 1981; Wells, 2007) is a useful way of framing the 

problem. In a conversation that is primarily monologic, the speaker’s purpose is to convey information in 

such a way as to “duplicate one’s own idea in someone else’s mind” (Bakhtin, 1986:69), without the need 

to be concerned about what is already in the listener’s mind, what the listener may be thinking at the 

present moment or in expectation of a particular response. This is the discourse stance of a lecturer. 

Dialogic discourse, on the other hand, is inherently a “social form of thinking” (Wells, 2007:256), a much 

harder form of discourse, at least for machines, in which interlocutors must work to understand each 

other’s “present state,” and thereby arrive at a shared understanding.
5
 Consider, for example, the 

following exchange: 

A: So, what did you do today? 

B: Attended a physics lecture. 

A: What did you learn? 

B: It was really hot. 

Given such a response, if A is a human speaker, A will assume, on the Gricean principle, that B is a 

cooperative interlocutor; that B’s response must be in some way relevant (Grice, 1975); and that “it” 

refers either to the lecture or the lecture hall. In the former case, “hot” would be an attribute of the lecture, 

representing a positive reaction, implying that speaker B had liked the lecture and possibly learned a lot 

from it. In the latter case, “hot” would be an attribute of the lecture hall, implying an uncomfortable 

temperature. Because the word “hot” is more commonly associated with rooms than lectures, A would 

probably test the latter case first: 

… 

A: So, are you saying the lecture hall was uncomfortable? 

B: Yes. 

A: I’m sorry to hear that. It must have been hard to concentrate. What were you able to learn? 

B: We learned about physics. 

A: Okay, but what about physics? 

                                                           
5
 In a paper titled “Why is conversation so easy?” Garrod & Pickering (2004) argue that, for humans, dialog is easier 

than monologue because interlocutors automatically align linguistic representations at various levels (phonological, 

syntactic, semantic, and situational), thus building up a shared workspace. This joint construction of meaning and 

purpose has the effect of distributing the processing load, thus making conversation relatively easy. Humans, as they 

put it, are “designed for dialog.” 
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In order for an intelligent conversation agent to carry on such a conversation, it would need, among many 

other things, to have some knowledge of the world, of the following type: 

1. Lectures are a method of teaching. 

2. Lectures are about something. 

3. A person may learn something from a lecture. 

4. Lectures take place in rooms called lecture halls. 

5. Rooms may be comfortable or uncomfortable. 

6. Humans are sensitive to temperatures that are outside their comfort range. 

7. “Hot” refers to a temperature that is outside a human’s comfort range. 

8. Learning requires concentration.  

9. When a person is uncomfortable, it is hard to learn. 

10. “Hot” is a slang word for something that a human finds attractive… 

and so forth. In other words, A’s ability to judge the relevance of B’s utterance “It was very hot” depends 

very much on a complex set of concepts and relationships.  

However, relevance is not the only important measure of the degree to which a discourse move is felt to 

be cooperative. In addition to the principle of relevance is that of quality (Grice, 1975), which includes 

the assumption that an interlocutor’s move will add something new to the conversation. In the imagined 

conversation considered here… 

Learner (B): We learned about physics. 

Tutor (A): Okay, but what about physics? 

A’s “Okay, but what about physics?” is exactly the right thing to say because B has already reported that 

it was a physics lecture, so of course it was about physics. In other words, B has violated the Gricean 

maxim of quality by failing to make a truly novel contribution.  

So, if it is to possess anything remotely like the intelligence of a human speaker, it seems that an 

intelligent conversation agent must have a way of evaluating both the relevance and novelty of an 

interlocutor’s discourse moves. Admittedly, this is just one part of the problem of natural language 

understanding by a machine, perhaps even a minor part, and so a solution, which itself is likely to be only 

partial, will be worth little if not combined with many others. That said, within a multiagent environment, 

it might be useful to have an agent that is capable of sending messages like:  

json={“target”:”conversation manager”,”learner”:”5021”,”time”:”2013-02-01 

10:45:22 UTC”, “novelty”:” .3”,”relevance”:”.5”} 

or  
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json={“target”:”learner model manager”,”learner”:”1259”, 

“session”:”5”,”date”: “2013-02-01”,”average novelty”:”medium”, “average 

relevance”:”high”} 

where the language is an ACL, the decimals represent Bayesian estimates of likelihood, and the assertions 

are addressed to other agents with a “for your information” (FYI) intention, i.e., the originating agent is 

agnostic as to how other agents will use the information (beliefs) it asserts.
6
 

An Example from Physics 

As an example, assume that an intelligent tutor is provided with the following instructional script: 

ASK: Suppose a football player is running in a straight line at a constant speed, while carrying a football. Suddenly 

he throws the football straight up, over his head, and keeps running at the same speed. Explain where it will land. 

EXPECTED ANSWER: In accordance with Newton’s first law of motion, the ball will continue to travel in the 

same direction, unless there is an opposing force. In this case, the main opposing force is gravity, but gravity only 

affects the vertical component of the motion vector. It is true that the particles in the air, such as oxygen molecules, 

exert an opposing force, which pushes against the ball in the opposite direction, but this force is very small 

compared to the accelerating force of gravity.  

Now, compare the following two transcripts from an imaginary tutoring session: 

Transcript A 

Tutor: Suppose a football player is running in a straight line at a constant speed, while carrying a 

football. Suddenly he throws the football straight up, over his head, and keeps running at the same speed. 

Explain where it will land. 

Learner A: It will continue along in his direction and come back down where he can catch it. 

Tutor: I agree. But why? 

Learner A: Well, the ball and the runner both have the same forward speed. 

Tutor: Okay...and.... 

Learner A: So when gravity pulls the ball down, it just affects the vertical speed. 

Tutor: What about the horizontal speed? 

Learner A: It remains the same. It’s Newton’s second law of motion. 

Tutor: Do you mean Newton’s first law? 

Learner A: Oh right. First law. 

Tutor: Good. Let’s go on to the next problem. What if, instead of a ball, it’s a balloon? On the moon? 

Transcript B 

Tutor: Suppose a football player is running in a straight line at a constant speed, while carrying a 

football. Suddenly he throws the football straight up, over his head, and keeps running at the same speed. 

Explain where it will land. 

Learner B: i don’t know. somewhere behind him. 

Tutor: Why? 

Learner B: cause it will fall back behind him so he can’t catch it. 

                                                           
6
 The syntax used here is JavaScript Object Notation (json), a message format used for communication between 

agents in multiagent systems. See http://www.json.org/. 

http://www.json.org/
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Tutor: Why do you think that? 

Learner B: i just think it will fall behind him 

Tutor: Okay...but why? 

Learner B: cause 

Tutor: Okay, let’s look at that video again.... 

Clearly, there is quite a lot going on here; however, a key difference between the two transcripts is that 

whereas Learner A’s contributions are all relevant (consistent with the expected contribution) and novel 

(providing additional information); in the same sense, only Learner B’s first contribution is novel, and 

none are relevant.
7
 More generally, the relevance and novelty of given discourse move may be mapped 

onto a Venn diagram such as that shown in  

Figure 9-2. 

 

 

Figure 9-2. Mapping relevance and novelty 

This gives a matrix (Table 9-1) with four quadrants: 

Table 9-1. Novelty and Relevance Matrix 

 Old New 

Relevant O-R 

(Not new but relevant) 

N-R 

(New and relevant) 

Irrelevant O-IR 

(Not new and irrelevant) 

N-IR 

(New but irrelevant) 

Assuming that this kind of information would be useful to other agents (notably the agent handling the 

conversation with the learner), we can now ask how an agent might go about determining the relevance 

and novelty of a given utterance. 

                                                           
7
 Note that we are using the term “relevant” here in a special, non-intuitive sense. Whereas a contribution may be 

“relevant” in the sense that it relates in some way to the topic, it is considered irrelevant if it is inconsistent with a 

model answer.  
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Quantitative Measures for Novelty and Relevance 

A rough-and-ready relevance measure for a given learner contribution to a dialog with an intelligent tutor 

can be defined as the extent to which the learner’s answer to a tutor’s question is “semantically similar” to 

the answer the tutor expects. In the same way, a measure of the novelty of the learner’s most recent 

contribution can be defined as the extent to it resembles the learner’s previous contributions to the same 

conversation, i.e., attempts to answer the same question. In other words, if the R-N agent is passed two 

strings ‒ one representing the expected answer and the other the learner’s most recent contribution ‒ then 

it can it can come up with a relevance score using any one of several methods used to compute semantic 

similarity, including Latent Semantic Analysis (LSA; Landauer & Dumais, 1997), Hyperspace Analogue 

to Language (HAL; Burgess, Livesay & Lund, 1996), Latent Dirichlet Allocation (LDA; Blei, Ng & 

Jordan, 2003), Non-Latent Similarity (NLS; Cai et al., 2004); Word Association Space (WAS; Steyvers, 

Shiffrin & Nelson, 2002), and Pointwise Mutual Information (PMI; Recchia & Jones, 2009). For a 

discussion of the use of LSA in ITSs see Hu et al. (2007). 

Also, so long as it knows that the topic has not changed (e.g., the tutor is still prompting for an answer to 

the same question), then, using the same method, it can calculate the semantic similarity of the learner’s 

most recent contribution to her previous contributions. This produces values seens in Table 9-2. 

Table 9-2. Sample relevance and novelty measures 

 Old New 

Relevant 0.4 (O-R) 0.2 (N-R) 

Irrelevant 0.1 (O-IR) 0.3 (N-IR) 

In addition, two other measures are obtained by combining current and previous contributions. A Current 

Relevant Contribution (CRC) score is obtained by adding O-R and N-R (in this case, 0.6), while the CRC 

score combined with all previous CRC scores gives a Total Coverage (TC) score.  

Together, for any given dialog move, these six measures may be viewed as constituting a micromodel of 

the learner’s “current state.” An agent that is capable of evaluating a given dialog move on these measures 

can pass along the micromodel it has built for the use of other agents in the community. For example, in 

Transcript A, an agent’s analysis of Learner A’s contribution “Well, the ball and the runner both have the 

same forward speed” might be communicated as follows:  

json={“target”:”all”,”learner”:”1259”,”input string”:”Well, the ball and the 

runner both have the same forward speed”,”time”:”2013-02-05 11:25:27 

UTC”,”R/N”:”0.3”,”R/O”:”0.4”, “I/N”:”0.28”,”I/O”:”0.01”, 

“CRC”:”0.17”,”TC”:”0.24”} 

...whereas Learner B’s contribution “cause” could yield the following: 

json={“target”:”all”,”learner”:”1147”,”input string”:”cause”,”time”:”2013-02-

05 11:25:27 UTC”,”R/N”:”0.0”, 

“R/O”:”0.0”,”I/N”:”0.0”,”I/O”:”0.10”,”CRC”:”0.04”,”TC”:”0.033”} 

Over a series of moves, the cumulative scores constitute what Hu & Martindale (2008) refer to as a 

Learner Characteristic Curve (LCC), which may be displayed in the form of a set of graphs, as illustrated 

in Figure 9-3.   
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This information, the relevance and novelty of a given utterance, combined with the cumulative relevance 

measures, can be viewed as constituting a small, localized micromodel of the learner’s current cognitive 

state and as such has practical utility. In fact, it is on the same level as micromodels developed by other 

agents in a multiagent ITS community that provides both real-time and historical information about a 

user’s apparent affect. 

 

Figure 9-3. Sample LCC output 

For example, an agent that monitors a learner’s facial expressions might make an assertion in the form: 

json={“target”:”all”,”learner”:”1147”,”facial 

expression”:”puzzled”,”value”:”.3”,”time”:”2013-02-01 10:45:22 UTC”} 

which constitutes a component micromodel of the learner’s affective state. Combined with the preceding 

message from the R-N agent, the conversation manager (more specifically, a response generation agent) 

now has two pieces of evidence to consider, i.e., that the user appears confused and that the novelty and 

relevance measures for the user’s most recent utterance were both low. Given this information, the 

response agent could decide to send a message such as this to an avatar:  

json={“target”:”avatar”,”learner”:”1147”,”output string”:”You seem confused. 

Are you?”,”time”:”2013-02-01 10:45:24”} 

Assuming they have ways of understanding messages such as these, other agents in the system can use 

them for their own purposes. For example, a response generation agent might use the information in the 

first message to generate the turn: 

Learner A: Well, the ball and the runner both have the same forward speed. 

Tutor: Okay...and.... 

and the information in the second message to produce: 

Learner B: cause 

Tutor: Okay, let’s look at that video again.... 

As another example, a pedagogical agent might take an LCC representing repeated non-novel, 

“irrelevant” learner contributions as evidence of a possible misconception. 
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Opening the Model to the Learner 

In a system where the learner model is “open” to the learner (Bull, 2004; Bull & Pain, 1995; Dimitrova et 

al, 2001; Kay, 1997; Mitrovic & Martin, 2002), a user interface agent might use the micromodel to create 

a set of graphs, as in Figure 9-4.   

. 

 

Figure 9-4. Opening the micromodel to the learner  

Giving the learner feedback on the relevance and novelty of her discourse moves in this way could 

conceivably encourage her to focus her attention on maintaining higher levels of relevance and novelty 

than she might otherwise, thereby increasing the likelihood that the conversation will lead to real learning. 

Discussion 

In this chapter, we have explained how a specialized agent within a conversation-based ITS can monitor a 

learner’s discourse moves on two dimensions: novelty and relevance. In this way, over a series of moves, 

it builds up a “micromodel” of the learner’s cognitive state, called a Learner Characteristic Curve (LCC), 

which it can then pass along in the form of messages (assertions of belief) to other agents, assuming a 

common ACL. As a result, the agent can contribute to the solutions of larger problems without needing to 

know what the solution is. Importantly, such an agent is both reusable and replaceable. It is reusable in 

the sense that it can be used in any number of different ITSs where measures of novelty and relevance are 

considered useful in some way. It is replaceable in the sense that another agent that performs the same 

analysis, but more effectively, could be brought in to take over. This form of loose coupling (Orton & 

Weick, 1990; Weick, 1976) allows for the rise of mutations at both the local (agent) and system 
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(multiagent) levels, thus allowing gradual evolution toward increasingly sophisticated systems that may 

eventually approach the effectiveness of a highly skilled human teacher. 

What, then, are the implications of the preceding argument for a “generalized intelligent framework” like 

GIFT? More precisely, how can we, as a community of ITS researchers and developers, possibly move 

forward from our current world of “domain-specific, unique, one-of-a-kind, largely domain-dependent 

solutions focused on a single pedagogical strategy” (Sottilare, Brawner, Goldberg & Holden, 2012:1) 

toward a future of open, domain-independent systems with shareable, reusable tools and components, 

efficient authoring, transportable learner models, cross-platform functionality, and so forth. Given our 

rapidly evolving technological environment (e.g., the sudden ubiquity of smartphones and tablets, the 

explosion of massive, text-based knowledge representations in the Semantic Web, the magnetic attraction 

of social media such as Facebook and YouTube, etc.), it seems unlikely that a single, intelligent tutoring 

solution will ever be more than temporarily useful. Rather, it seems what we can look forward to, and 

should build toward as a community of practice, is some evolving collection of workable, partial, and 

loosely coupled solutions, which, while provisional, are built in such a way that they can evolve both with 

and apart from each other. Specifically, the recommendation is that we begin to think seriously about the 

adoption of a common ACL such as KQML (Finin, Fritzson, McKay & McEntire, 1994), FIPA-ACL 

(O’Brien & Nicol, 1998), or JADE (Bellifemine, Caire, Poggi & Rimassa, 2008) as the basis for a new 

generation of agent-based intelligent learning systems that are capable of autonomous cooperation 

(Hülsmann, Scholz-Reiter, Freitag, Wucisk & De Beer, 2006; Windt, Böse & Philipp, 2005). Importantly, 

because the contributing agents can have their own internal databases and algorithms, we can move in this 

direction without wholesale reengineering of our existing systems. Rather, once we agree on a common 

ACL and begin to build a shared ontology (which can occur incrementally), then we can “simply” 

encapsulate our existing (and evolving) systems in wrappers that allow these systems, whatever their 

function, to take part in whatever communities may arise, both adding and receiving value, in ways that 

are now only dimly imaginable. 
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CHAPTER 10 ‒Learner Models in the Large-Scale Cognitive 

Modeling (LSCM) Initiative 
Scott A. Douglass 

U.S. Air Force Research Laboratory (AFRL) - Cognitive Models and Agents Branch (RHAC) 

 

Introduction 

AFRL research efforts seeking to exploit cognitive modeling are growing in scale and complexity. These 

efforts are struggling to meet the challenges of increasing the scale of cognitive models and integrating 

them into software-intensive training environments. The struggle has two sources: (1) the need to specify 

detailed knowledge and process descriptions in currently available modeling frameworks; and (2) a 

dependence on specialized simulators in contemporary cognitive modeling frameworks that isolate 

models from standards, methods, and tools used by the larger systems engineering community. As long as 

the struggle remains, AFRL faces capability gaps preventing cognitive science and cognitive modeling 

from having maximal impact on training and human effectiveness. 

For the last three years, an AFRL LSCM research initiative has sought to close capability gaps retarding 

the development and fielding of intelligent training systems technologically based on cognitive models 

and agents. Generally, the LSCM initiative has endeavored to enhance and accelerate the practice of 

cognitive modeling. Specifically, the LSCM initiative has researched and developed the following: 

1. Domain-specific languages (DSLs) tailored to the needs of cognitive modelers. 

2. Authoring environments in which users employ these DSLs to specify models and agents that are 

“correct by construction.” 

3. Code-generation technologies that transform models and agents specified in these authoring 

environments into executable artifacts. 

4. A cognitively enhanced complex event processing (CECEP) architecture in which models and 

agents are executed. 

5. A massively concurrent net-centric associative memory application (Douglass & Myers, 2010) 

enabling models and agents executing in the CECEP architecture to store and remember vast 

quantities of declarative knowledge. 

6. A constraint-based knowledge representation and mining application (Douglass & Mittal, 2013) 

that allows models and agents executing in the CECEP architecture to produce and recognize 

actions using domain knowledge. 

7. Cognitive model behavior analysis and visualization capabilities (Bogart et al., 2011) that help 

users understand and analyze models functioning more like autonomous agents than programs. 

This chapter explains how learner models are represented and processed by instructional agents executing 

in the CECEP architecture. The chapter uses three sections to achieve this objective. The first section 

describes cognitive modeling and simulation in the LSCM initiative. This section introduces the reader to 

a LSCM DSL and the CECEP architecture in which models and agents specified in this DSL are 

executed. The second section extends the content of the first section to demonstrate how LSCM 
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instructional agents track and make sense of learner actions. This section explains how LSCM 

instructional agents use behavior models (representations of procedural knowledge) and cognitive domain 

ontologies (representations of domain knowledge) to trace learner actions. The third section of the chapter 

explains how behavior models and cognitive domain ontologies constitute a learner model. This section 

describes how LSCM instructional agents use event monitoring based on behavior models and hypotheses 

about learner behaviors based on domain knowledge to evaluate the adequacy of learner actions, track 

skill acquisition, and predict future performance. 

Cognitive Modeling and Simulation in the LSMC Initiative 

Modeling in the LSCM Initiative 

To decrease the time and cost of model and agent development in the AFRL, the LSCM research 

initiative is developing a domain-specific language DSL called the research modeling language (RML). 

The RML DSL is used by AFRL research scientists to specify cognitive models and agents that execute in 

a net-centric CECEP architecture. The RML DSL has been developed using the Generic Modeling 

Environment (GME), a meta-modeling tool for creating and refining domain-specific modeling languages 

and program synthesis environments (Ledeczi et al., 2001; Molnár et al., 2007). The abstract syntax of 

RML is influenced by the ACT-R cognitive architecture (Anderson, 2007). The graphical/textual concrete 

syntax of RML is designed so that modelers with experience in ACT-R, or domain experts with little 

modeling and programming experience, can specify models at a high level of abstraction. When the GME 

application is configured to “interpret” RML, it is transformed into the authoring environment shown in 

Figure 10-1. 

 

Figure 10-1. The RML agent authoring environment. 
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The authoring environment consists primarily of four interface panels: (1) an “Object Inspector” that can 

be used to inspect or edit textual attributes of RML specifications: (2) a “GME Browser” that can be used 

to organize and share repositories of RML specifications; (3) a “Part Browser” presenting contextually 

appropriate RML constructs to the user; and (4) tabbed work spaces in which users construct RML 

specifications. The RML authoring environment is based on a hybrid graphical/textual concrete syntax to 

support domain and subject matter experts rather than programmers. Constraints included in the formal 

abstract syntax of RML are used at runtime by GME to prohibit users from specifying invalid models and 

agents. If a models or agent can be specified in the authoring environment, they will produce “correct” 

executable code artifacts. 

The RML DSL is designed to facilitate the specification of models and agents. In order to maximize 

scalability and interoperability during execution/simulation, RML and the GME-based authoring 

environment require users to conceive of and specify their models and agents as complex event processing 

agents (Luckham, 2002). The graphical/textual DSL allows cognitive modelers to rapidly specify models 

and agents in this way using representations of the following: 

 Events: Events are objects that serve as records of activities in a system. Objects capture the 

details of events with attributes and data properties. In the context of an ITS, event objects 

represent trainee actions (user interface events, trainee eye movements, and trainee vocalizations, 

for example) tracked by instructional agents during performance monitoring. 

 Event Patterns: Event patterns are templates matching one or more events in an event cloud 

constituting a representation of context functionally equivalent to a working memory. In the 

context of an ITS, event patterns enable instructional agents to detect correlational, temporal, and 

causal relationships between events representing activities in the training environment. 

 Event Pattern Rules: Event pattern rules are associations specifying actions that are to occur after 

an event pattern is matched with a subset of events in the event cloud. In the context of an ITS, 

event pattern rules are used by instructional agents to produce abstract events that combine and 

aggregate attributes of event patterns. Abstract events are used to monitor trainee actions 

occurring at multiple levels during hierarchical tasks. 

 Behavior Models: Bahvior models are sets of event pattern rules arranged into automata that 

explicitly represent behavior-specific combinations of cognitive state, contextual factors, 

alternative courses of action, and failure. In the context of an ITS, behavior models are used by 

instructional agents to monitor simple, complex, concurrent, and hierarchically organized trainee 

activities. 

 Cognitive Domain Ontologies: Cognitive doman ontologies (CDOs) are representations of 

domain knowledge capturing: (1) entities, structures, and hierarchies in a domain; and (2) 

relations between these entities. In the context of an ITS, CDOs represent constraint knowledge 

that can be mined by and instructional agent to assess the intent and effectiveness of trainee 

actions. 

Modeling in RML is based on the specification of procedural knowledge (behavior models) and domain 

knowledge (CDOs). Modelers do not have to attend to the details of how models and agents technically 

execute in simulations. 
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Simulation in the LSCM Initiative 

To increase performance and maximize interoperability in training environments based on service-

oriented architectures (SOAs), the CECEP architecture has been developed to serve as the execution 

framework for RML models and agents. The CECEP architecture consists of the following central net-

centric components: 

 soaDM: an associative memory application that allows RML models and agents to store and 

retrieve declarative knowledge. Declarative knowledge is represented and processed in a 

semantic network (Douglass & Myers, 2010). 

 soaCDO: a knowledge representation and mining application that allows RML models and 

agents to store and exploit domain knowledge. Domain knowledge is represented in CDOs, 

which are processed by a constraint-satisfaction framework (Douglass & Mittal, 2013). 

 Esper: a complex event processing framework that allows RML models and agents to base 

actions on context assessment and procedural knowledge. Procedural knowledge is 

represented in RML behavior models and processed using pattern matching and event 

abstraction capabilities provided by Esper (http://esper.codehaus.org/). 

Through these components, the CECEP architecture incorporates model and agent capabilities based on 

declarative, procedural, and domain knowledge processing to the Esper framework. The resulting event-

driven architecture is an advanced cognitive modeling and simulation framework with which AFRL 

research scientists can develop and field performance assessment and instructional technologies based on 

cognitive models and agents. A functional representation of the CECEP architecture is shown in  

Figure 10-2. 

 

Figure 10-2. The CECEP architecture in which RML models and agents are executed 

The CECEP architecture includes a number of input/output (IO) “Adapters” or event IO streams. These 

adapters allow models and agents specified in RML to be integrated into software-based instructional 

systems. The architecture includes event sources based on soaDM, soaCDO, and Esper. RML behavior 

models interacting with Esper enable agent logic. CDOs processed in soaCDO enable domain knowledge. 

Event Output Streams
IO “Adapters”

http://esper.codehaus.org/
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Finally, semantic networks processed in soaDM enable declarative memory. Figure 10-2 illustrates with 

arrows how these event sources produce events through: (1) the execution of agent logic; (2) the querying 

of databases containing long-term knowledge; (3) the mining of domain knowledge; and (4) interactions 

with a large-scale associative or declarative memory capable of mimicking the ACT-R cognitive 

architecture’s activation-based declarative memory. It is these event sources based on agent logic, 

declarative memory, domain knowledge, and databases that “cognitively enhance” CEP in CECEP. The 

event cloud (a form of working memory) and pattern matcher (a form of rule engine) in the architecture 

are technologically realized through Esper. 

Models and agents specified in the RML authoring environment are not directly executed. RML 

specifications are instead translated into executable code artifacts in the following ways: 

 Declarative Knowledge is specified as events and relations and processed by code generators that 

produce files that configure the soaDM semantic network. 

 Procedural Knowledge is specified as behavior models and processed by code generators that 

produce NERML, a text-only DSL formally equivalent to RML that is then translated into Java 

(Hansen & Douglass, submitted). Code generation is divided into these steps to support modelers 

that prefer to specify models and agents directly in NERML. Java files generated from either 

RML or NERML interact with Esper and govern the behavior of models and agents. 

 Domain Knowledge is specified in CDOs and processed by code generators that produce 

constraint-networks for use in soaCDO. 

Esper is capable of monitoring in excess of 500,000 events per second and therefore allows the CECEP 

architecture to scale. The architecture’s IO Adapters interface greatly simplifies integration and 

interoperability with services in a broader SOA-based training and operational systems; new capabilities 

and training environments are integrated into CECEP through a new adapter and shared events. 

Tracking and Recognizing Learner Activity with RML 

In this section, learner models are discussed in the context of an anti-air warfare coordinator (AAWC) 

task described by Anderson et al. (2004). Fu et al. (2006) comprehensively describe the AAWC task 

requirements and a model-based AAWC training system used to instruct human trainees and ACT-R 

trainee models. The tutor discussed in Fu et al. (2006) instructed trainees learning how to relate 

information cues describing aircraft (altitude, speed, type of radar, etc.) in a monitored airspace to 

categories of intentions (hostile, friendly, etc.) and aircraft types (commercial, strike, etc.). Trainees were 

instructed to investigate and classify as many aircraft as possible during dynamic 6-min scenarios. 

To assess the usability of RML, its developers used it to build an instructional agent replicating all of the 

functionality of the AAWC tutor described in Fu et al. (2006). The RML AAWC instructional agent is 

based on events, event patterns, event pattern rules, and behavior models. The agent additionally exploits 

domain knowledge specified in CDOs. This section of the chapter describes examples of the events, event 

patterns, event pattern rules, and behavior models making up the AAWC instructional agent. This section 

then introduces CDOs and illustrates how they can capture knowledge about the AAWC task domain. 

This section discusses these aspects of an RML instructional agent in order to illustrate how learner 

actions are tracked and assessed across events, behavior models, and CDOs in the CECEP architecture. 
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Composing Activities with Event Abstraction Hierarchies 

The RML AAWC instructional agent functions in an event abstraction hierarchy. Figure 10-3 illustrates 

the portion of this hierarchy relevant to the discussion of a simplified instructional agent that helps 

trainees learn how to classify aircraft on the basis of the type of radar they employ. 

 

Figure 10-3. An event abstraction hierarchy displayed in a component of the RML authoring environment 

The event abstraction hierarchy in Figure 10-3 consists of four levels: 

L1: Events inserted into the event cloud by the adapter translating state changes in the AAWC task 

application into recognizable events. Events produced by the AAWC task application indicating 

aircraft selection events (Hook), key press events (KeyPress), control menu transition events 

(MenuTransition), and aircraft information display events (TRAReport) are translated by the 

AAWC task adapter and inserted into the event cloud. 

L2: Events inserted into the event cloud by behavior models monitoring simple trainee actions. 

Behavior models translate fleeting Hook and MenuTransition events into persistent HookedTrack 

and MenuID events to maintain information about currently selected aircraft and the current task 

menu state in the event cloud. 

L3: Events inserted into the event cloud by behavior models monitoring unit task-level trainee 

actions. Each event represents a sequence of L2 HookedTrack and MenuID events produced 

during fundamental information gathering and aircraft classification part-tasks required of the 

AAWC trainee. A behavior model monitoring HookedTrack and MenuID events traces trainee 

“electronic warfare signal” (EWS) activities and inserts EWSRequest and AbortedEWSRequest 

events into L3. A separate behavior model monitoring trainee classification activities inserts 

GenericID events into L3. 

L4: The SingleEWS_ID event is inserted into the event cloud by a behavior model monitoring 

strategically sequenced EWS and aircraft classification unit tasks. 

The event abstraction hierarchy allows the instructional agent to comprehend activities occurring in the 

AAWC task at four levels of abstraction. Events in each level of the abstraction hierarchy are derived 
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from behavior models that aggregate, correlate, or abstract events in the previous level of abstraction. For 

example, information about an aircraft’s radar informs trainee decisions about its intent and type. To 

obtain information about an aircraft’s radar, a trainee must select it and precipitate a series of menu 

transitions (through key presses). L1 events resulting from these actions will, in turn, lead to L2 

HookedTrack and MenuID events. These L2 HookedTrack and MenuID events can be correlated and 

aggregated in a behavior model capable of asserting L3 EWSRequest and AbortedEWSRequest events into 

the event cloud. To illustrate how the abstraction of events can be increased in the event cloud, a behavior 

model capable of increasing event abstraction from L2 to L3 are now discussed. 

Tracing Trainee Actions with Behavior Models 

RML behavior models are automata whose nodes are labeled states indicating the steps of the represented 

behavior and whose edges are event patterns or event pattern rules. Edges based on event pattern rules 

allow a behavior model to transition states and insert new events into the event cloud. Figure 10-4 shows 

a behavior model that enable the AAWC instructional agent to monitor trainee EWS request activities. 

The figure includes (1) a single start state; (2) a single Select EWS Request state; (3) a single stop state; 

(4) a single track variable used to hold information about the aircraft hooked prior to the initiation of the 

EWS request; and (5) four named edges, each embellished with a circular check mark. 

 

Figure 10-4. RML behavior model capable of monitoring trainee EWS request activities 

The formal attributes of event patterns and event pattern rules are specified graphically in the GME-based 

authoring environment. The event pattern constituting the start_ews_request edge of the behavior model 

in Figure 10-4 is shown in Figure 10-5. The event pattern consists of the following elements: (1) a single 

conjunction indicator; (2) three event templates labeled menu, hooked, and key; (3) a single integer literal 

0; (4) a single string literal “f10”; and a reference to the track variable. The conjunction indicator is 

connected to all three of the event templates indicating that they must all be co-present in the event cloud 

for the pattern to match. Events are represented as rectangular “containers.” Event attributes are visible as 

labeled “ports” in the containers. The 0 literal is connected to menu.id via a connector terminating with an 

open diamond. This type of connector is used to indicate correlations between event properties and 

variables, literals, or other event properties. Note that attribute correlation connections are based on 

comparison operators (=, !=, <, >, <=, >=, etc.). The “f10” literal is correlated to key.key. The hooked.tra 

event property is connected to the track variable reference via a connector terminating with a solid circle. 
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This type of connector indicates an assignment. In this instance, the connector indicates that the track 

variable is to be assigned the value of the hooked.tra event property. Essentially, the event pattern shown 

in Figure 10-5 specifies a template that will enable an instructional agent to notice when the trainee is in 

menu.id = 0 (the top menu), an aircraft is hooked, and the “f10” key is pressed. This event conjunction 

will enable the behavior model shown in Figure 10-4 to transition to the Select EWS Request state and 

bind the hooked aircraft to the locally scoped track variable. 

 

 

Figure 10-5. RML start_ews_request event pattern 

The complete_ews_request edge in Figure 10-4 is shown in Figure 10-6. The event pattern rule essentially 

requires that an “f1” key be pressed when an aircraft with an id equal to track is hooked. Notice how the 

value of track is correlated to hooked.tra and how hooked.tra is used to assign a value to the tra property 

of a new EWSRequest event. Note that since the pattern rule in Figure 10-6 inserts the new EWSRequest 

into the event cloud, it can be considered functionally equivalent to a production in a rule-based system. 

 

Figure 10-6. RML complete_ews_request event pattern rule 

RML behavior models can be based on event patterns and event pattern rules capable of matching events 

from any level of the event abstraction hierarchy. This capability allows a modeler to specify and exploit 

behavior models that monitor events and trainee activities at high levels of abstraction. The behavior 

model shown in Figure 10-7 allows the instructional agent to monitor sequences of high-level events 

indicating that a trainee is efficiently sequencing EWS and aircraft identification tasks. 
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Figure 10-7. RML behavior model capable of monitoring trainee EWS and subsequent identification actions 

The “ews” edge in Figure 10-7 allows the behavior model to transition from the start state to the EWS 

Completed state. The generic_id edge allows the high-level behavior model to recognize a completed 

identification action; insert and even more abstract event into the event cloud, and transition to the stop 

state. Note how the help_request edge can detect help request events and deliver precise instruction. 

More abstract events inserted into the event cloud indicate that a trainee has successfully performed a 

sequence of actions indicating they have acquired an AAWC task-critical composite skill. Sequences of 

events, event patterns, and event pattern rules producing abstract events operationally define the abstract 

events. When abstract events reflect the completion of task-critical actions, the operational definitions 

underlying the events describe observations or measurements of performance. For example, EWSRequest 

event instances added to the event cloud by the event pattern rule in Figure 10-6 can be considered 

reflections of an operational definition of EWS information request performance based on one aircraft 

selection action followed by “f10” and “f1” key press actions. These three events related through patterns 

and rules in a behavior model, operationally define successful trainee EWS request performances. Events 

higher in the event abstraction hierarchy provide even more useful information to an intelligent agent. For 

example, SingleEWS_ID events inserted into the event cloud by the behavior model shown in Figure 10-7 

indicate that the monitored trainee: (1) has mastered the EWS request process; (2) can remember 

information about reported radar systems; (3) can correctly classify aircraft on the basis of this 

remembered information; and (4) has mastered part of the AAWC aircraft identification process. 

Transition paths through behavior models leading to new events in the event cloud are formally specified 

operational definitions of performance. Since behavior models can match against and produce new events 

at all levels of an event abstraction hierarchy, operational definitions of trainee activity are available at all 

levels of task hierarchy. Instructional agents developed in RML capitalize on this by monitoring the 

frequency and recency of events using an extension of the General Performance Equation (GPE) 

(Anderson & Schunn, 2000; Jastrzembski, et al., 2006). Instructional agents can be configured to monitor 

task or trainee generated events and use extensions of the GPE to assess and predict performance. 

Using CDOs to Evaluate the Appropriateness of Trainee Actions 

RML intelligent agents can effectively use behavior models to trace trainee actions. Behavior models are 

particularly effective in task contexts where it is relatively easy to capture anticipated (correct or 
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incorrect) sequences of action. In training contexts where multiple actions are appropriate, it can be 

difficult to specify RML behavior models covering large spaces of alternative trainee actions. Intelligent 

agents executing in the CECEP architecture use CDOs to assess the appropriateness of trainee actions 

under these circumstances. This section demonstrates how a CDO can be used to capture structural and 

relational domain knowledge in such a way that constraint-satisfaction processes in soaCDO allow an 

RML instructional agent to (1) make sense of a trainee’s actions and intentions; and (2) determine the 

appropriateness of a trainee’s actions and intentions. Capturing and processing domain knowledge this 

way in the CECEP architecture greatly reduces the burden of behavior model specification. 

Figure 10-8 shows a CDO capturing structural domain knowledge related to the AAWC task described in 

the previous section. CDOs capture structural domain knowledge in tree-like structures consisting of the 

following: 

 Entities: Indicated by gray circles. Entities represent domain constructs. In Figure 10-8, entities 

describe the structural attributes of the set of track (or aircraft) entities that a trainee is tasked 

with classifying. Note that in CDOs, the root entity determines the entity set of interest. 

 Structural Decompositions: Indicated by rectangles labeled “and.” Decompositions represent 

fixed entity sub-structures. In Figure 10-8, a track_decomposition indicates that track entities are 

comprised of position, movement, ews, model, and assessment sub-entities. Additionally, 

assessment entities are comprised of threat and type sub-entities. 

 Choices: Indicated by rectangles labeled “xor.” Choices represent alternative entity sub-

structures. In Figure 10-8, ews_choices, model_choices, threat_choices, and type_choices capture 

alternative sub-entity choices the trainee will ultimately have to choose between. For example, to 

classify a track, the trainee will likely have to determine its ews choice and certainly have to 

determine/assume its threat and type choices. 

 Entity Properties: Indicated by attached “~” values. Attached values represent entity properties. 
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CDOs additionally capture relational domain knowledge in a constraint language. Domain-specific 

constraints specified in the constraint language express complex relationships between entities 

represented in the tree-like structure. Tables 10-1 lists example constraints that capture a sub-set of the 

classification “rules” AAWC task trainees were endeavoring to memorize and act upon. 

Table 10-1. Domain-specific constraints integrated into the track entities cognitive domain ontology 

Name Specification 

C1 iff ews_choices is arinc_564 then model_choices is b_747 

C2 iff ews_choices is apq_120 then model_choices is f_4 

C3 iff ews_choices is apg_63 then model_choices is f_15 

C4 iff ews_choices is foxfire then model_choices is mig_25 

C5 if model_choices is f_4 

then threat_choices is assumed_hostile hostile assumed_friendly or friendly 

 type_choices is strike 

C6 if model_choices is f_15 

then threat_choices is assumed_friendly or friendly 

 threat_choices is not (assumed_hostile or hostile) 

 type_choices is strike 

C7 if model_choices is b_747 

then threat_choices is friendly 

 threat_choices is not (assumed_hostile or hostile) 

 type_choices is commercial 

C8 if model_choices is mig_25 

then threat_choices is assumed_hostile or hostile 

 threat_choices is not (assumed_friendly or friendly) 

 type_choices is strike 

C9 if speed is between 350 and 550, 

 altitude is between 25000 and 36000 

then model_choices is b_747 

 threat_choices is friendly 

 type_choices is commercial 

 

CDOs are transformed into constraint networks by soaCDO. These constraint networks are then searched 

over by a non-deterministic constraint solver. Without additional domain-specific constraints, the search 

process yields multiple “solutions” consisting of various combinations of choices specified in the original 

CDO. CDO solutions are conveyed as sets of events into the CECEP event cloud through an adapter. 

Choices can be limited through “assertions” that essentially insist that a choice have a certain value. 

When additional domain-specific constraints are incorporated into a CDO, constraint propagation 

utilizing assertions can produce solutions that can be exploited by an RML model or agent. For example, 

when an RML instructional agent is executing in the CECEP architecture, it can use task events and 

trainee actions to assert the values of choices in a CDO. Table 10-2 shows the impact assertions can have. 

Table 10-2. Illustration of how speed and altitude assertions allow an instructional agent to determine the 

single correct action a trainee should take. Note: solution is an abstraction of events returned by soaCDO 

Assertions speed is 500 

altitude is 30000 

Solutions Track 

 position {~ altitude = 30000} 

 movement {~ speed = 500} 

 ews {ews_choices = arinc_564} 

 model {model_choices = b_747} 

 assessment {threat_choices = friendly}, {type_choices = commercial} 

 

Table 10-2 shows how constraint-based search in soaCDO can determine from observed speed and 

altitude track values that a trainee should assess the track as friendly and commercial. Notice how the 
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bidirectional implication (iff) underlying C1 in Table 10-1 allows the instructional agent to infer that the 

trainee will additionally expect the ews choice of the track to be arinc_564. Under these circumstances, 

the RML instructional agent can assess the adequacy of a trainee’s classification action without requiring 

a specific behavior model. Procedural knowledge that could be captured in a behavior model is instead 

captured in more flexible structural and relational knowledge in a CDO. 

In instructional contexts where ambiguity or equally effective actions impact trainees, it would be 

virtually impossible to develop an effective RML instructional agent using only behavior models. In such 

contexts, it is often the case that multiple trainee actions should be considered adequate. Specifying all 

possible event patterns and event pattern rules under these circumstances would be costly and error prone. 

Domain knowledge in CDOs significantly decreases the burden of specifying instructional agents under 

these circumstances. Table 10-3 shows how constraint-based search in soaCDO can determine from 

observed ambiguous speed and altitude and ews_choice track values that a trainee can appropriately 

classify a track 4 ways. Solution events returned by soaCDO can be exploited by “streamlined” behavior 

models. 

Table 10-3. Illustration of how speed, altitude, and ews_choices assertions allow a tutor agent to determine the 

courses of action a trainee can undertake when the threat_choices aspect of a track is ambiguous 

Assertions speed is 500 

altitude is 15000 

ews_choices is apq_120 

Solutions Track 

 position {~ altitude = 15000} 

 movement {~ speed = 500} 

 ews {ews_choices = apq_120} 

 model {model_choices = f_4} 

 assessment {threat_choices = hostile}, {type_choices = strike} 

Track 

 position {~ altitude = 15000} 

 movement {~ speed = 500} 

 ews {ews_choices = apq_120} 

 model {model_choices = f_4} 

 assessment {threat_choices = friendly}, {type_choices = strike} 

Track 

 position {~ altitude = 15000} 

 movement {~ speed = 500} 

 ews {ews_choices = apq_120} 

 model {model_choices = f_4} 

 assessment {threat_choices = assumed_friendly}, {type_choices = strike} 

Track 

 position {~ altitude = 15000} 

 movement {~ speed = 500} 

 ews {ews_choices = apq_120} 

 model {model_choices = f_4} 

 assessment {threat_choices = assumed_hostile}, {type_choices = strike} 

 

To further sharpen an agent’s understanding of task ambiguity, additional domain knowledge could be 

added to the track CDO. For example, additional structural and relational knowledge could be used to 

inform an instructional agent that in ambiguous situations similar to those underlying Table 10-3, a 

trainee should assign an “assumed” threat_choice and take additional actions as an AAWC to acquire 

additional information and resolve the ambiguity. 
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Learner Models in RML 

According to Bull (2004), “The learner model is a model of the knowledge, difficulties and 

misconceptions of the individual. As a student learns the target material, the data in the learner model 

about their understanding is updated to reflect their current beliefs.” In this section, three facets of learner 

models in RML are defined by relating knowledge representations and processes in the CECEP 

architecture to components of Bull’s definition. 

In the CECEP architecture, RML instructional agents represent the knowledge, difficulties, and 

misconceptions of trainees in behavior models and CDOs. RML instructional agents executing in the 

CECEP architecture trace trainee actions through event monitoring. Technologies underlying the 

execution of RML models and agents in the CECEP architecture allow behavior models to both generate 

and recognize behavior. When used to recognize trainee actions, behavior models support a type of model 

tracing. Therefore, the subset of behavior models an RML instructional agent currently/actively tracing 

actions constitutes the first facet of the learner model. 

Event monitoring by RML instructional agents can also drive a constraint-based domain knowledge 

mining process. This capability, based on structural and relational constraint knowledge, enables RML 

instructional agents to develop and refine hypotheses about trainee behaviors. These agents make sense of 

trainee actions and intentions by contrasting traced actions to hypotheses (explanatory or predictive) 

about actions and intentions obtained from the mining of domain knowledge. When used to ascertain 

trainee intentions and evaluate trainee actions, CDOs support a type of trainee understanding. Therefore, 

the subset of a solution space resulting from the constraint-based exploration of a CDO constitutes the 

second facet of the learner model. 

Events operationally defined at any level of an RML instructional agent’s event abstraction hierarchy can 

be treated as performance indicators and analyzed using an extension of the General Performance 

Equation (Anderson & Schunn, 2000; Jastrzembski, et al., 2006). Events in the CECEP architecture can 

be produced by behavior models tracing trainee actions or by constraint-based domain knowledge mining 

processes making sense of trainee actions. Regardless of their source or level of abstraction, all events in 

the event cloud of an executing RML instructional agent can be analyzed by extensions of the GPE in 

order to track and predict performance. Therefore, the set of events being treated as performance 

indicators and analyzed using extensions of the GPE constitute the third facet of the learner model. 

Summary and Conclusions 

The LSCM initiative has invested in the development of authoring environments and advanced cognitive 

modeling and simulation architectures. These authoring environments allow users to specify models and 

agents at high levels of abstraction, often using domain constructs directly. The LSCM initiative has 

developed a DSL called the RML. The RML is tailored to the needs of cognitive scientists developing 

models and agents that engage in complex event processing. Models and agents specified in RML are 

transformed by code generators into all code artifacts necessary for execution and simulation in a net-

centric, event-driven CECEP architecture. 

RML agents represent and process declarative, procedural, and domain knowledge. To allow agents to 

represent and process declarative knowledge, the CECEP architecture includes an associative memory 

system functionally equivalent to the declarative memory system in the ACT-R cognitive architecture. To 

allow agents to represent and process procedural knowledge, the CECEP architecture includes behavior 

models, a type of automata representing behavior above the level of conventional rule-based systems. 
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Finally, to allow agents to represent and process domain knowledge, the CECEP architecture includes a 

constraint-solver. 

This chapter described cognitive modeling and simulation in the LSCM initiative. The chapter 

demonstrated how LSCM instructional agents track and make sense of learner actions using behavior 

models and CDOs. The chapter finally described how behavior models, CDOs, and events tracked using a 

performance monitoring model based on the GPE (Anderson & Schunn, 2000; Jastrzembski, et al., 2006) 

make up the facets of learner model in RML. 

Two things conspicuously missing from the LSCM/RML cognitive modeling and simulation framework 

are (1) constraints reflecting rigorous instructional science and (2) the support of a general learning 

management and instructional delivery system. While RML instructional agents can use behavior models, 

CDOs, and derivatives of the GPE to build student models that monitor/predict trainee actions, intelligent 

agent authors are ultimately responsible for the instructional science underlying their agents. Simply put, 

this means that researchers developing instructional agents using RML must work with subject matter and 

educational experts to ensure that their agents instruct effectively. Lacking a comprehensive learning 

management system, the LSCM/RML cognitive modeling and simulation framework is fundamentally 

dependent on complementary capabilities such as the ARL GIFT. Researchers developing intelligent 

tutors in RML conceive of CECEP as a technical solution to the problem of monitoring trainee actions 

and delivering contextually relevant instruction. These same researchers conceive of GIFT as a broader 

ITS framework that will provide critical services missing in RML and CECEP. 
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CHAPTER 11 ‒Emerging Learner Modeling Concepts 
Xiangen Hu and Donald M. Morrison 

University of Memphis - Institute for Intelligent Systems 

Introduction 

While the authors of previous chapters have addressed fundamental issues of learner modeling such as 

common limitations and challenges (Section I) and state-of-the-art implementations (Section II), the 

authors of chapters in this section present arguments that raise, in various ways, an important issue that is 

central to the whole notion of a general-purpose ITS framework—the nature of the relationship between 

the learner model and domain model, and the possibility of defining these models in a way that allows for 

transportability across systems, or at least allows for different systems to communicate with each other 

intelligently about what different learners know and are able to do. 

The idea that shareable models might exist, or ought to, emerges from the following observations. First, 

systems based on the same architecture and underlying cognitive theory have been successfully 

implemented in different domains. For instance, the dialog-based AutoTutor architecture has been used to 

support learning in physics, computer science, and research design; the model-tracing approach used in 

Cognitive Tutor supports different domains within mathematics; and the constraint-based tutors 

developed at the University of Canterbury, New Zealand, have been used in domains as various as 

electronics, discrete mathematics, language learning, and Newtonian physics. Second, systems based on 

different theories and architectures have been developed to support learning in the same domain. For 

example, Cognitive Tutor and ALEKS are based on different architectures and underlying theories of 

learning, but both have demonstrated effectiveness in support of mathematics. Third, similar learner 

models, pedagogical strategies, and forms of knowledge representation are observed in different ITS 

implementations. For example, all ITSs find a way to measure the learner’s current state of knowledge 

against some ideal state, ask questions or help the user solve problems designed to help her move in the 

direction of the ideal state, and keep track of progress over some period of time.  

Given these observations, it is natural to consider whether there might be some universal principles of 

learner modeling that could be generally applicable. The practical advantages of a universal learner 

model, and the implications for a general-purpose framework such as GIFT, are obvious. For one thing, 

the ability to import a learner model from one ITS into another would help to solve the “new-user” 

problem, i.e., how to efficiently initialize the model when an ITS first encounters a learner. For example, 

an intelligent calculus tutor would obviously benefit from knowing an individual learner’s knowledge of 

algebra, assuming this knowledge came in a form it could understand. An ITS-independent learner model 

would allow the ITS to initialize its local model by importing relevant portions of a learner model from 

another ITS, or perhaps from a central learner model server or learning management system. Also, to the 

extent that the learner model is in some sense an “overlay” of the domain model, a transportable learner 

model might imply the existence of a universal structure for domain models. Given the two in 

combination, it would possible to test the relative efficacy of different pedagogical approaches across 

different ITSs, thereby advancing our scientific understanding and technical expertise in ways that are not 

currently possible. 

Chapter Summaries 

The chapters in this section approach the problem in different ways. Robson, Hu, Morrison, and Cai (The 

Need for a Mathematical Model of Intelligent Tutoring) take a highly theoretical approach, imagining the 

existence of a unified mathematical model in which the learner’s current cognitive and affective state is 
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represented mathematically as a finite set of state variables, named S. A model of this type makes it 

possible to measure the precise distance between a learner’s current state and some ideal state. Further, a 

unified mathematical model could be used to model not just the learner’s domain knowledge, but other 

factors that influence learner performance such as affect, motivation, and social environment. Within a 

framework such as GIFT, the learner model could be represented mathematically, with the other 

components of the systems providing mechanisms for reading, manipulating, and outputting values for 

the set of state variables. 

In their chapter, Rus et al. (Towards Learner Models based on Learning Progressions in DeepTutor) 

discuss the implications of learning progressions (LPs), an approach to domain modeling that has gained 

currency over the past decade, primarily in the science education community. Unlike curriculum 

standards devised by panels of domain experts that define what students ought to know and be able to do 

at certain grade levels, LPs are empirically based descriptions of the paths that learners tend to take from 

naive to more expert understanding of central concepts in a domain. As such, Rus et al. argue, LPs fit well 

with the central purposes of an ITS, which seeks to identify a learner’s current level of understanding, 

then help that person move along to the next level. As an example, the authors describe a LP in 

Newtonian physics, which forms the basis for DeepTutor, the first LP-based ITS. DeepTutor’s LP is two-

dimensional, where one dimension represents seven strands ( “big ideas” such as Kinematics, Force and 

Motion, Newton’s Third Law), and the other up to seven progressive levels of understanding within each 

strand, based on empirical studies of student learning. The result is a reasonably granular representation 

of domain knowledge that can be used to identify a student’s current state of understanding and select a 

topic for tutorial discourse that can serve as a bridge to the next level. Importantly, the learner and domain 

models are tightly linked, with learner model becoming a set of pointers to a LP, which constitutes the 

domain model. 

In their chapter (Modeling Student Competencies in Video Games Using Stealth Assessment) Shute, 

Ventura, Small, and Goldberg consider the use of “stealth assessments” embedded within the structure of 

a serious game. As an example, the authors describe the case of Newton’s Playground, a game that 

challenges players to guide a green ball to a red balloon using combinations of inclined plane/ramps, 

pendulums, levers, and springboards. Because all of the objects obey the basic rules of physics relating to 

gravity and Newton’s three laws of motion, success depends on an intuitive understanding of these 

principles. To the extent that a set of embedded assessments can infer a learner’s developing mastery of 

these principles from the learner’s gameplay, the game combines informal learning with assessment of a 

learner’s current state of conceptual understanding. The authors report the results of an experiment in 

which a sample of 165 middle-school students played the game over a period of six 45-min sessions, 

totaling approximately 5 hours. Learning gains from pretest to post-test were significant  

(t (154) = 2.12, p < 0.05). Importantly, the authors claim that their “stealth” assessment indicators (based 

on analysis of the log files generated from user’s gameplay) correlate with a player’s knowledge of 

physics concepts as measured by the tests. 

In Knowledge Component Approaches to Learner Modeling, Aleven & Koedinger describe the 

construction of learner models organized around collections of interrelated knowledge components (KCs), 

where a KC is defined as “an acquired unit of cognitive function or structure that can be inferred from 

performance on a set of related tasks.” An example is the ability to compute the area of a circle given the 

radius. Expertise in a given domain is performance-based, defined not so much as what a person knows, 

but what the person is able to do; thus, a given domain is defined as the set KCs that are required to solve 

a finite set of problems (or complete tasks) of particular types. Note that here again we see the close 

connection between the learner model and the domain model within the context of an ITS. The learner 

model is the system’s estimate of the subset of KCs within the domain the learner has mastered, and the 

“psychological reality” of the model is its ability to predict the student’s performance on given tasks 

within the domain of interest. Given this framework, the authors discuss what they identify as three major 
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challenges inherent in the KC approach: the challenge of building “psychologically-real” domain models 

from scratch, determining the learner’s level of mastery of the component KCs, and, given an accurate 

learner model, determining how best to tailor instruction in a way that helps the learner master those KCs 

that remain to be learned. The paper focuses primarily on the first challenge, the notoriously labor-

intensive process of authoring new domain models. The authors argue that so-called “manual” 

approaches, in which domain experts identify component KCs using a process of cognitive task analysis, 

provide useful first-order descriptions. However, automated approaches to creating and refining KC 

models can substantially improve on models initially developed using “manual” approaches.  

Broadly speaking an ITS’s learner model is a formal representation of a learner’s cognitive and affective 

state. In the final chapter in this section (Assessing the Disengaged Behaviors of Learners), Baker and 

Rossi focus on what is arguably the messier of these two components ‒ the learner’s affective state, 

particularly as evidenced by off-task behavior, gaming the system, carelessness, and what the authors 

term “Without Thinking Fastidiously (WTF) behavior. While such behaviors are probably easy enough 

for humans to observe in real time, the trick is to devise machine-based detectors that are capable of 

making reasonably accurate assessments of the degree to which learners are engaging in these behaviors 

at any given point in a tutorial session. The resulting data can be used to modify instructional strategies on 

the fly, and, perhaps more importantly, to provide useful feedback to system developers on the relative 

effectiveness of different strategies in maintaining student engagement, and help researchers better 

understand relationships among variables such as a student’s off-task behaviors, attitudes toward 

computers in general and automated tutors in particular, attitudes toward the domain, and academic drive. 

A number of algorithms and approaches that have been found to effective in detecting these forms of 

disengaged behavior are described. For example, one of the authors (Baker) built an automatic off-task-

behavior detector based on multiple inputs such as the difficulty of a given interaction, and how many 

standard deviations longer or slower it took the student to complete the action compared to other students.  

Recommendations for GIFT 

A theme running through a majority of the chapters has to do with various possible uses of log data, i.e., 

records of the tutor-learner interactions, what Robson et al. refer to as “the paths traced through the 

learner state data.” Many of the authors recommend that their own tools be integrated into GIFT for this 

purpose. For example, Baker and Rossi suggest that GIFT could provide support for the construction of 

learner engagement detectors by creating API-level links between GIFT and the educational data mining 

(EDM) Workbench. As a result, data could be pulled directly from GIFT, and detectors exported back to 

GIFT for use in the learner model. The authors also recommend that GIFT incorporate tools for labeling 

engagement data, especially through the use of “text replays,” i.e., re-runs of interaction logs that allow 

for the careful study of these interactions for the purpose of system improvement. This feature is also 

provided by the Workbench. Similarly, Aleven and Koedinger recommend that, as a first step, 

participating ITSs log student-tutor interactions in the format employed by DataShop, the data mining 

tool used with the Cognitive Tutor. For their part, Shute and her colleagues recommend the future 

developmental efforts of GIFT should aim at identifying authoring tools and methods that ease the 

process of embedding stealth assessment capabilities in whatever game-based learning environments are 

being employed, because different games link game performance with demonstration of targeted expertise 

in different ways. To solve this problem, Shute et al. recommend that GIFT incorporate a “Gateway 

Module,” which would be responsible for rapidly translating performance in a given game to a data 

structure that could be understood from within GIFT’s domain model. Rus and company take a somewhat 

different approach, focusing on modifications that would be necessary if their own ITS, DeepTutor, were 

to be in some way integrated into the GIFT framework. Although DeepTutor also employs a modular 

design, the architecture is fundamentally different; for example, whereas in GIFT the domain module 

performs assessments, this function is performed by a separate module in DeepTutor. Also, the 
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DeepTutor learner model does store information about levels of domain understanding separately, but 

instead maintains a set of pointers to the learning progressions in the domain model; in other words, the 

learner and domain models are more tightly coupled than is currently specified in GIFT. To get around 

this problem, the authors suggest that GIFT provide different specifications for different types of ITS. 

Read together, the chapters in this section highlight the importance of the effort to better understand the 

relationship between learner and domain models, and find ways of sharing models across systems. For 

example, given that both DeepTutor and Newton’s Playground share a common domain, the principles of 

Newtonian physics, it is natural to consider the possibility of using the two in combination. It would be 

interesting to see, for example, whether learners who receive tutoring from DeepTutor and then go on to 

play the game are more successful than those who have not been tutored, or, conversely whether 

DeepTutor finds that students who have played the game are farther along on a relevant learning 

progression than a similar group of students who have not played the game. However, it is even more 

interesting to consider how the relationship between the two might work in a world of shareable domain 

and learner models. For example, given a common learner model with pointers to a domain model 

organized as a set of learning progressions in Newtonian physics, Newton’s Playground might be able to 

give a learner problems consistent with her current level of knowledge, while DeepTutor could offer a 

tutorial dialogue designed to help a learner work through misconceptions that might have been revealed 

by the stealth assessments embedded in the game. In this scenario, a framework like GIFT might support 

the collaboration between the game and the tutor primarily by providing a framework for communication 

of learner data between the two systems. In other words, the domain model would not need to be 

incorporated into GIFT itself so long as DeepTutor and Newton’s Playground agree to maintain learner 

models that point to the same domain model, perhaps housed on a separate, web-based domain model 

server.  
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Introduction 

ITSs are a large family of technologies that attempt to replicate the experience and learning gains derived 

from one-on-one human tutoring (for recent reviews, see Durlach & Ray, 2011; Graesser, Conley & 

Olney, 2012). While these systems are notoriously diverse in their functionality and construction, several 

authors have created abstract models of ITSs that attempt to capture common components, generally 

accepted to be the learner model (sometimes called the “student model”), the domain model, the tutor 

model, and the user interface (Durlach & Ray, 2011, Elson-Cook, 1993; Graesser et al., 2012; Nkambou, 

Mizoguchi & Bourdeau, 2010; Psotka, Massey & Mutter, 1988; Sleeman & Brown 1982; VanLehn, 2006; 

Woolf, 2008). ITS have also been classified into categories such as model-tracing, example-tracing, 

constraint-based, and dialogue-based tutors. Finally, VanLehn has observed that in describing an ITS, it is 

useful to distinguish between an outer loop of a tutor, which focuses on task selection and macro-

adaptation, and the inner loop which handles in-task interactions and micro-adaptation (VanLehn, 2006).  

Gaps 

These descriptions, however, are largely qualitative descriptions that help researchers understand how a 

given tutor works, but do not help answer quantitative questions about how well they work and ultimately 

how they can be improved. In this chapter, we consider what type of model is needed for answering 

quantitative questions such as the following: 

 What is the gap between the behaviors exhibited by a student and by an expert? 

 At what rate is an ITS closing the gap?  

 How accurately does an ITS assess knowledge, skills, affective states, and other attributes of a 

learner? 

 Among all possible strategies that an ITS has available, which are likely to lead to the most 

learning gains in a given situation?  

 Given two strategies, which leads to desired learning outcomes in the least amount of time?  

 Among the algorithms used by the inner and outer loops of a tutor, where will improvements 

have the greatest impact? 

Most of these questions require measuring two basic quantities about an ITS: Its effectiveness in helping 

learners achieve learning goals and how efficiently it helps students achieve them. To date, effectiveness 

is usually measured in terms of the effect size (Cohen’s d) of learning gains. While aggregate, summative 

measures such as these are useful in determining how well a tutor is working, they do not tell us what 

caused the learning, what is happening as learners use the tutor, or how we can improve the tutor. 

Efficiency, if it is measured at all, is measured by comparing how long it takes to learn concepts or 

behaviors using an ITS to how long it takes to learn them using other instructional means. Once again, 
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this does not help us make improvements because we don’t know what in the tutor causes faster or slower 

learning, and it does not give us any information about an ideal efficiency against which we can measure 

how well a tutor is working. To answer these questions, we need models that enable us to measure learner 

progress and learner rate of progress towards a goal as the tutor operates. The word “measure” is key here 

and implies quantification.  

Exploration of the General Model 

Two Analogies 

Before discussing the quantification problem, we present two analogies that may help explain why a 

formal mathematical model is so important. The first is mechanical and views the problem of tutoring a 

student as analogous to using an autopilot to guide an airplane. As with an ITS, an autopilot is a machine 

substitute for a human. Its goal is to steer an aircraft to a destination, much as the goal of an ITS is to 

guide a learner to a learning objective. The autopilot operates using real-time data on position, 

atmospheric conditions, trim of the aircraft, and other factors and attempts to follow a flight path, which, 

in many cases, has been calculated to maximize efficiency given constraints such as atmospheric 

conditions, terrain, the flight paths of other aircraft, the cost of flying at different altitudes, and the 

ultimate destination. It controls the path by adjusting the ailerons, elevators, rudder, and thrust. 

We can think of the data that defines the current state of an aircraft as analogous to the learner model that 

defines the current state of the learner. But whereas an autopilot continually measures this state and 

follows a path, ITSs typically measure only the initial and end states, or possibly a small number of 

intermediate states. This is not sufficient to quantify the dynamics of an ITS or create the analog of a 

guidance system, which is what we want. 

Of course, a learner is not a machine, and an autopilot does not teach a plane to fly. A better analogy, in 

some ways, is that of a doctor treating a patient. Unlike the autopilot, the doctor, even with modern 

imaging technologies, cannot observe the precise state of a system as complex as the human body. At best 

the doctor can talk to the patient, take the patient’s history (or look it up), conduct a physical examination, 

if necessary order some lab tests, and then, using knowledge of the relationship between clusters of 

symptoms and disease processes, make some guess about what is likely going on. If the doctor finds that 

the patient is unhealthy, the goal is to find a course of treatment, which, if followed, will return the patient 

to a state of health, but since the doctor cannot know the actual state of the patient, in practice, the doctor 

can, at best, monitor the patient’s symptoms, with the expectation they will go away. If this is achieved, 

the patient is presumed to be healthy.  

Although an ITS operates more like an autopilot in the sense that it uses a guidance system to steer 

learners towards a goal, it operates more like a doctor in that it cannot measure the precise state of learner 

and must rely on models of generic learners to interpret the measurements made of any specific 

individual. The ITS must therefore rely on a set of measurements and models of how humans learn to 

infer the state of the learner and prescribe interventions that change the state to a desired one, usually the 

state of an “expert.” However, to discover which interventions should be prescribed, the ITS must have a 

means to observe how (and how much) the inferred learner state changes in response to specific 

interventions. This requires a well-defined mapping between what an ITS can measure and a model of the 

learner state. In today’s practice, it is often difficult to specify what measurements an ITS is taking and 

how those are being translated into a model whose distance from an ideal model can be measured.  
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A Conceptual Model for Tutoring 

Although ITS developers employ different approaches to the problem of guiding human learning, there is 

a great deal of similarity in how their systems function. Conceptually, each ITS uses interactions between 

the student and the system (verbal, written, haptic, biometric, etc.) to infer and alter what the learner 

knows or can do. The ITS observes these interactions and translates them into machine-readable data. 

These data, and possibly other data that are known to the ITS, are used to estimate the learner’s current 

state of knowledge and skill. Knowledge states are typically represented as mastery levels of concepts or 

skills, knowledge components (Koedinger, Corbett & Perfetti, 2012), or a similar set of parameters. In 

addition to using estimates derived from interaction data, some ITSs use the structure of the knowledge 

domain and history of learner’s interactions to make inferences about knowledge states, e.g., by inferring 

that if a learner has demonstrated mastery of concept C or successfully performed task T several times, 

then the learner has also mastered concept D and can perform task U. In some instances, affective states 

are estimated by the ITS in analogous ways. Once the state of the learner is estimated, the ITS uses this 

state to determine what interaction or interactions will next take place. 

It is useful to separate the foregoing description of an ITS into two parts: 

1. State modeling and estimation: Through the use of data collection devices and strategies such as 

emotion sensors, observation of game performance, responses to test questions, and direct 

questions (in the case of dialog-based systems), the system estimates where the learner currently 

lies in a multidimensional model of possible cognitive and affective states.  

2. Evaluation and decision making: Given the model of possible states and the estimate of the 

learner’s current state, the system decides that either (1) the learner’s state is optimal with respect 

to normative expectations, in which case it moves to the next step in the outer loop; or (2) the 

learner’s state is suboptimal, in which case it selects and enacts what it considers to be the best 

intervention in the inner loop. 

State modeling and estimation is the general form of learner modeling, and the second step is the 

functional view of how an ITS uses expert, domain, and pedagogical models to direct its operation based 

on a state model. The cycle of estimation, evaluation, and decision making is repeated until the outer loop 

is exited.  

Ultimately, we want to evaluate how well the tutor is working and how to improve it by improving its 

ability to estimate, evaluate, and change the learner’s state. For this purpose, a slightly more formal 

formulation is needed and can be given as follows:  

1. A learner model (the learner’s present state) can be represented by a (finite) set of state variables. 

Each ITS represents a learner’s state by the values of these variables as they vary over time. In 

more formal terms, there is a space S that represents all possible states of a learner. These states 

can ostensibly include motivational, affective, cognitive, and social factors ranging from mastery 

levels of domain concepts to frustration and motivation levels and certain individual or cultural 

beliefs, which might affect how a learner approaches a task (e.g., see Arroyo et al., 2009; 

D’Mello & Graesser, 2010). In the autopilot analogy, S is the position of the aircraft and in the 

patient analogy, S is the actual state of the patient (which can only be inferred and not directly 

measured).  

2. The state of a learner at any time t is estimated based on a set O of observable variables. These 

are obtained through interactions with the ITS or through data communicated to the ITS from 

other systems, e.g., from a LMS or a game operating in a multi-system framework such as GIFT 
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(Sottilare, 2012). The ITS contains an algorithm a that maps the history of observations about a 

learner to the learner’s current state. This is a function a:O x T → S, where T is the time interval 

during which observations are available. The variables in O can be thought of as the symptoms 

and measurements taken by the doctor, and a is the process the doctor uses to infer the state of the 

patient. (Note: The function a may, in practice, use past values of a in computing the present 

value of a. In other words, the history of estimates of the learner’s state may be used to estimate 

the current state.)  

3. Within S there are target states, and the goal of the ITS is to move the learner’s current state to a 

target state. In the analogies, these are the destination of the aircraft and the state of health of the 

patient, which is a range of states. In an ITS, these may be defined by an expert model or the 

expected behavior of a learner at a particular developmental stage. 

4. The ITS functions by doing the following: 

a. Interacting with the learner. 

b. Measuring the values of variables in O. 

c. Applying a to estimate the learner’s state in S.  

d. Selecting a strategy and associated actions that will move the learner to the target state.  

e. Implementing those actions through (and only through) a set of interactions with the 

learner.  

Observations about this Model and Questions Raised 

All Tutors Trace a Learner Model: Our first observation is that this model is an abstraction of model-

tracing tutors but applies to almost all ITSs. For example, the constraint-based tutors described by 

(Mitrovic, Mayo, Suraweera & Martin, 2001) analyze student answers against a set of constraints to 

determine the student state and take appropriate actions. The example-tracing tutors of (Aleven, Mclaren, 

Sewall & Koedinger, 2009) compare student input to correct and incorrect problem-solving behaviors. 

These constraints and reference examples define points in S that the tutor tries to steer toward or away 

from. Autotutor Lite (Hu et al., 2009) constructs a “learner’s characteristic curve” based on semantic 

comparisons of student input to text that represents expected answers (Robson & Ray, 2012) calculated 

over a series of turns in the inner cycle. Even if an ITS does not have an explicit expert model or domain 

model, it computes some set of state variables and takes actions to move the learner state to a desired 

state. Conceptually, every ITS is a”learner model tracing” tutor. Even if different tutors estimate the 

learner state in different ways and take different actions to change the state, the existence of a 

parameterized state space makes it feasible to quantify and compare tutors on the basis of how learners 

move through this space. 

Optimal Paths: Our second observation is that the ideal ITS moves a learner along a path in S that 

minimizes “cost” (e.g., time to mastery or actual cost of running a simulation) and maximizes “benefit” 

(e.g., how close the learner is to the target state and how long the learner will retain that position.) A good 

test of whether a particular S (i.e., a particular set of parameters used to model the learner state) is viable 

is whether its properties allow for the optimization of paths between any two states with respect to a 

suitable utility function that reflects cost and benefits. This raises the question of whether existing tutors 

have either explicit or implicit state models that are sufficient to do this. In most cases, the answer is 

likely no, and we see this as a limiting factor to making progress in the area.  
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We observe that most existing tutors focus on cognitive (and possibly affective) state variables that 

describe learning goals. These state variables are often represented as levels of competency with respect 

to a set of objectives, knowledge components, or similar constructs, and are implicitly considered to be 

observable (with error) through assessment. In reality, the situation is more complex, more akin to the 

patient analogy than the aircraft analogy.  

If we picture S as a higher dimensional 

object, then the typical tutor works in a 

projection of S onto a discrete structure (see 

Figure 12-1). This results in loss of 

information and makes it impossible to 

measure the distance between two learner 

states because there are many points in S 

that correspond to each point in the discrete 

structure. Moreover, the observability 

assumption means that, as far as the ITS is 

concerned learners never stop between 

observable states. For example, an ITS 

might observe through assessment that a 

learner knows or does not know a fact but 

cannot observe where the learner is in the 

process of learning the fact. No intermediate 

state between “not knowing” and “knowing” 

exists. Even if the discrete structure could be 

used to estimate distances between states in 

S, this further loss of information makes it 

hard to determine the learner’s path through 

S. ITS authors can program the inner and outer loops of a tutor, and they can empirically determine the 

effects of this programming on learning outcomes, but they cannot measure the effects on a utility 

function and cannot determine whether the tutor is close to ideal.
8
 

Universal Components: An obvious question, whose answer has many implications, is whether there is a 

universal state model. In other words, is there a set of state variables that can be used across multiple 

tutors? Even if a tutor has a different state space, could it be reduced to a common space without suffering 

a significant loss in effectiveness? Or, phrased differently, is there universal learner model that can and 

should be programmed into a framework such as GIFT? As argued in Robson & Barr (Chapter 2 in this 

volume), this is a key question, and it has been asked in various forms by Durlach (2012), Goldberg, 

Holden, Brawner & Sottilare (2011), and others.  

It is doubtful that a universal state space exists if one includes the cognitive dimension since concepts and 

knowledge constructs differ from domain to domain. Even should an “ontology of everything” be 

achievable, it may not be practical to maintain this for all systems at all times. However, if we separate 

these parameters into a domain model (as is done in GIFT), then it is reasonable to ask whether there is a 

formulation of domain models that can be used as a template for any S and, more importantly, whether 

motivational, affective and social parameters are sufficiently domain-independent to allow for a 

manageable set of associated state variables that can be effectively used across most ITSs.  

We do not know the answer to these questions, but we observe that affective, motivational, and social 

components are increasingly being inferred from sensor data and in-system responses (Arroyo et al., 

                                                           
*
 Surface image from http://en.wikipedia.org/wiki/File:Calabi_yau.jpg.  

Figure 12-1. How an ITS works* 

http://en.wikipedia.org/wiki/File:Calabi_yau.jpg
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2009; Calvo & D’Mello, 2010; D’Mello & Graesser, 2010; Robison, McQuiggan & Lester, 2009; Woolf 

et al., 2009). Since target states in S are usually defined in the cognitive or behavioral domain, these 

components are used primarily as control variables. A universal representation of these components could 

significantly improve the ability of the ITS to use them to effectively guide learning along optimal paths.  

Estimation: The algorithm a maps ITS observations to learner states. In real-world examples, a operates 

on data ranging from simulation and game data (Engineering & Computer Simulations, 2013) to data 

generated by LSA (Wiemer-Hastings, Graesser & Harter, 1998) and by using production rules to analyze 

student answers (Blessing, Gilbert, Ourada & Ritter, 2009). The challenge of transforming observables 

into a state model may be equal to (or greater than) the challenge of determining the state model and is 

just as critical. The ability of an ITS to follow an optimal path is limited by its ability to detect learner 

state.  

Intuitively, an ITS that continually tracks observable state changes along numerous dimensions, including 

multiple micro-adaptations, has a better chance at accurately estimating the learner’s state than an ITS 

which relies on static models, discrete measurements, and only on macro-adaptations. However, a 

relatively small number of observables may be sufficient to account for most of the variance in learner 

state. This has been observed in affect detection (Graesser, Rus, D’Mello & Jackson, 2008) and is a fertile 

area of research that can be supported by GIFT. 

Intervention Selection: Our final observation is that if we understood how different interactions affected 

the trajectory of the learner in S, it would seem relatively straightforward to design algorithms for 

selecting the best interactions. In other words, assuming we can estimate and evaluate reasonably, 

empirical experimentation can be used to come up with a potential set of interventions for which selection 

should be straightforward. Frameworks such as GIFT that can be used to integrate disparate types of 

interventions are ideal for developing this type of understanding, assuming we a reasonable model of S 

and estimation function a.  

Future Research and Recommendations for GIFT 

To be of general significance, the model presented in this chapter must be more precisely formulated and 

tested for its ability to model and provide useful insight into existing ITSs. This requires understanding 

what motivational, affective, cognitive, and social environment data is likely to be represented in S, which 

is perhaps the central problem addressed in this volume. As stated in (Goldberg et al., 2011:10), “While 

we intuitively know that it is better to have more information when we are making decisions to tailor 

instructional feedback and content to individual trainee needs, the influence of specific trainee attributes 

on instructional decisions can be debated. Additional experimentation is needed to quantify the impact of 

trainee attributes.”  

This chapter suggests that as this central question is addressed, it will be important to observe the paths 

traced through the learner state data collected by GIFT and not just the data themselves, and that it will be 

important to test whether the parameters in a learner model can be used to answer optimization questions. 

In addition, this chapter points out that GIFT can be used to empirically evaluate the effects of individual 

interventions, probably at a more granular level than the typical complete ITS, and that a lot of thought 

should be given to observables. Experiments that investigate what data is required to sufficiently 

determine affective states provide good models for analyzing data coming out of simulations, games, and 

sensors with regard to their ability to determine the parameters in S.  
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Introduction 

We have been examining ways to leverage video games to assess and support important student 

competencies, especially those that are not optimally measured by traditional assessment formats. The 

term “stealth assessment” refers to the process of embedding assessments directly and invisibly into the 

learning or gaming environment. Though this approach produces ample real-time data on a player’s 

interactions within the game environment and preserves player engagement, a primary challenge for using 

stealth assessment in games is taking this stream of data and making inferences about players’ 

competencies that can be examined at various points in time (to see growth) and also at various grain 

sizes (for diagnostic purposes). In this chapter, we present recent work related to creating and embedding 

various stealth assessments into Newton’s Playground, a computer game that emphasizes nonlinear 

gameplay and puzzle-solving in a two-dimensional (2-D) physics simulation environment. We conclude 

with a discussion on stealth assessment within GIFT, highlighting research recommendations for 

enhancing the architecture to support robust methods of evidence-centered assessment.  

In this chapter, we examine the possibility of using well-designed games as vehicles to assess and support 

learning. There are several factors motivating this research. First, our schools have remained virtually 

unchanged for many decades while our world is changing rapidly. This lack of reform in our schools 

could be a contributing factor in high dropout rates, especially among Hispanic, Black, and Native 

American students, which were described as “The Silent Epidemic” in a recent research report for the Bill 

and Melinda Gates Foundation (Bridgeland, DiIulio & Morison, 2006). According to this report, nearly 

one third of all public high school students drop out and the rates are higher across minority students. 

Importantly, when 467 high school dropouts were asked why they left school, 47% of them simply 

responded, “The classes were not interesting.” In light of this finding, we need to identify ways (e.g., 

video games) to get young people engaged in learning the skills needed to succeed in today’s competitive 

economy.  

A second reason for using games as assessments is a pressing need for dynamic and ongoing measures of 

learning processes and outcomes. Interest in alternative forms of assessment is driven by dissatisfaction 

with and limitations of multiple-choice items. In the 1990s, interest in alternative forms of assessment 

increased with the popularization of what became known as authentic assessment. Authentic assessment 

refers to tasks that resemble academic and real-world activities (e,g., Hiebert, Valencia & Afflerbach, 

1994). A number of researchers found that multiple-choice and other fixed-response formats substantially 

narrowed school curricula by emphasizing basic content knowledge and skills within subjects and not 

assessing higher-order thinking skills (e.g., Kellaghan & Madaus, 1991; Shepard, 1991). However, as 

Madaus and O’Dwyer (1999) argued, incorporating performance assessments into testing programs is 

difficult because they are less efficient, more difficult and disruptive to administer, and more time-

consuming than multiple-choice testing programs. Consequently, multiple-choice has remained the 

dominant format in most K‒12 assessments in our country. New performance assessments are needed that 

are valid and reliable, and can be scored automatically.  

A third reason for using games as assessment vehicles is that many games typically require a player to 

apply various competencies (e.g., creativity, critical thinking, problem solving, persistence, and 
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collaboration) to succeed in the game. The competencies required to succeed in many games also happen 

to be the same ones that companies are looking for in today’s highly competitive economy (Arum & 

Roska, 2011; Gee, Hull & Lankshear, 1996). Moreover, games are a significant and ubiquitous part of 

young people’s lives. For instance, the Pew Internet and American Life Project surveyed 1,102 youth 

between the ages of 12 and 17. They reported that 97% of youth – both boys (99%) and girls (94%) – play 

some type of digital game (Lenhart et al., 2008).  

In addition to the arguments for using games as assessment devices, there is growing evidence of games 

supporting learning (e.g., Tobias & Fletcher, 2011; Wilson et al., 2009). However, we need to understand 

more precisely how and what kinds of knowledge and skills are being acquired. Understanding the 

relationships between games and learning is complicated by the fact that we don’t want to disrupt players’ 

engagement levels during game play. Consequently, learning in games has historically been assessed 

indirectly and/or in a post hoc manner (Shute & Ke, 2012; Tobias, Fletcher, Dai & Wind, 2011). What’s 

needed instead is real-time assessment and support of learning based on the dynamic needs of players. We 

need to be able to experimentally ascertain the degree to which games can support learning, and how they 

achieve this objective. 

A challenge with developing a performance-based measure is crafting appropriate situations or problems 

to elicit a competency of interest. One way to approach this problem is to use video games to simulate 

problems for performance-based assessment (Dede, 2005; DiCerbo & Behrens, 2012; Quellmalz, Timms, 

Buckley, Silberglitt & Brenner, 2012). Digital learning environments can provide meaningful assessment 

environments by providing students with scenarios that require the application of various competencies. 

In this chapter, we introduce research that explores a variant of this assessment approach by investigating 

how performance-based assessments can be used in a video game we created called Newton’s 

Playground.  

Stealth Assessment  

Given the goal of using well-designed games to support learning in school settings and elsewhere, we 

need to ensure that the assessments are valid, reliable, and also unobtrusive (to keep engagement intact). 

The output from the assessments, however, should be transparent. That is, players should be aware of how 

they are doing relative to important competencies at any point in time to motivate learning. One way to 

meet these requirements is to use “stealth assessment” (Shute, 2011; Shute & Ventura, 2013). Stealth 

assessment refers to Evidence-Centered Design (ECD)-based assessments that are woven directly and 

invisibly into the fabric of the gaming environment. During game play, students naturally produce rich 

sequences of actions while performing complex tasks, drawing on the very skills or competencies that we 

want to assess (e.g., scientific inquiry skills, creativity). Evidence needed to assess the skills is thus 

provided by the players’ interactions with the game itself (i.e., the processes of play), which can be 

contrasted with a summative score – the norm in educational environments.  

Making use of this stream of gameplay evidence to assess students’ knowledge, skills, and understanding 

(as well as beliefs, feelings, and other states and traits) presents problems for traditional measurement 

models used in assessment. First, in traditional tests, the answer to each question is seen as an 

independent data point. In contrast, the individual actions within a sequence of events in a game are often 

highly dependent on one another. For example, what one does in a particular game at one point in time 

affects subsequent actions later on. Second, in traditional tests, questions are often designed to measure 

particular, individual pieces of knowledge or skills. Answering the question correctly is evidence that one 

may know a certain fact: one question – one fact. But by analyzing a sequence of actions within gameplay 

(where each response or action provides incremental evidence about the current mastery of a specific fact, 

concept, or skill), stealth assessments can infer what learners know and do not know at any point in time. 
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Now, because we typically want to assess a whole cluster of skills and abilities using evidence coming 

from learners’ interactions within a game, methods for analyzing the sequence of behaviors to infer these 

abilities are not as obvious. As suggested above, evidence-based stealth assessments can help address 

these problems. The next section reviews the game we created called Newton’s Playground and the 

associated development of stealth assessments for monitoring learner knowledge and progression. 

Stealth Assessment in Newton’s Playground 

Research into what’s called “folk” physics demonstrates that many people hold erroneous views about 

basic physical principles that govern the motion of objects in the world, a world in which people act and 

behave quite successfully (Reiner, Proffit & Salthouse, 2005). For example, when asked to draw the water 

level on a picture of a tilted drinking glass, about 40% of young adults draw lines that are not horizontal 

(McAfee & Proffitt, 1991). When asked to predict the path that a pendulum takes when the string is cut at 

various points, a large percentage of people make systematically incorrect judgments (Caramazza, 

McCloskey & Green, 1981). The prevalence of these systematic errors has led some investigators to 

propose that incorrect performance on these tasks is due to specific “naive” beliefs, rather than to a 

general inability to reason about mechanical systems (McCloskey & Kohl, 1983). Recognition of the 

problem has led to interest in the mechanisms by which physics students make the transition from folk 

physics to more formal physics understanding (diSessa, 1982) and the possibility of using video games to 

assist in the learning process (Masson, Bub & Lalonde, 2011; White, 1994).  

One way to help remove misconceptions in physics is to illustrate physics principles with physical 

machines (Hewitt, 2009). In physics, a machine refers to a device that is designed to either change the 

magnitude or direction of a force. Teaching about simple machines (e.g., lever, pulley, and wedge) is 

widely used as a method to introduce physics concepts (Hewitt, 2009). Recent research on science 

education also indicates that learners’ hands-on experience with such machines (both virtually and 

physically) support applicable understanding of important physics concepts (Hake, 1998).  

We developed a video game called Newton’s Playground (NP) to help middle school students experience 

and understand what we call informal physics. We define informal physics as a nonverbal understanding 

of how the physical world operates. Informal physics is characterized by an implicit understanding of 

Newton’s three laws, balance, mass, conservation of momentum, kinetic energy, and gravity. NP is a 2-D 

game that requires the player to guide a green ball to a red balloon. The player can nudge the ball to the 

left and right (if the surface is flat) but the primary way to move the ball is by drawing/creating simple 

machines (which are called “agents of force and motion” in the game) on the screen that “come to life” 

once the object is drawn. Everything obeys the basic rules of physics relating to gravity and Newton’s 

three laws of motion. The 74 problems in NP require the player to draw/create four agents: inclined 

plane/ramps, pendulums, levers, and springboards. All solutions are drawn with colored lines using the 

mouse.  

A ramp is any line drawn that helps to guide a ball in motion. A ramp is useful when a ball must traverse 

over a gap or obstacle. A lever rotates around a fixed point, that is, a fulcrum or pivot point. Levers are 

useful when a player wants to move the ball vertically. A swinging pendulum directs an impulse tangent 

to its direction of motion. The pendulum is useful when the player wants to exert a horizontal force. A 

springboard (or diving board) stores elastic potential energy provided by a falling weight. Springboards 

are useful when the player wants to move the ball vertically. For example, in the “golf problem” (see 

Figure 13-1), the player must draw a golf club on a pin (i.e., little circle on the cloud) to make it swing 

down to hit the ball. In the depicted solution, the player also drew a ramp to prevent the ball from falling 

down a pit.  
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The speed of (and importantly, the impulse delivered by) the swinging golf club is dependent on the 

size/mass distribution of the club and the angle from which it was released. The ball will then move at a 

certain speed, length, and trajectory. If drawn properly, the ball will hit the balloon.  

 

Figure 13-1. Golf problem in NP (left is solution; right is path of motion) 

All solutions are drawn with colored markers using the mouse. In a number of cases, the ball must go 

over a pit. If the ball falls into the pit, the player must start the problem over. Players can replay a problem 

as often as they like – even after successfully solving it. One motivation to replay a problem is to find 

even more elegant and creative solutions than were generated before. It is not uncommon for a player to 

revisit/replay particularly challenging problems multiple times, striving for a better, more elegant 

solution.  

Our system for agent identification (i.e., detecting the creation and use of simple machines) ignores visual 

data and instead uses information from the underlying physics simulation to classify agents of force and 

motion. We identify a primary object (PO) for each agent that provides the most salient features for the 

identification of that agent. That is, the ramp and pendulum agents each use only one object, thus it is the 

PO. For a springboard, the PO is the one that “springs” up to propel the ball. Finally, the PO in the lever 

agent is the object that rotates under the load of another object, to lift the ball. Our method continuously 

monitors all objects in the game for telltale characteristics of the PO in each particular agent of force and 

motion.  

We divide the agent identification process into three stages: default, monitor, and identify. All objects 

start in the default phase for each agent. When an object exhibits characteristics of the PO for any 

particular agent, it is elevated to the monitor stage. Once an object is in the monitor stage for a particular 

agent, detailed data about its movement and interactions with the game world are recorded and the object 

will inevitably move on to the identify stage, where the gathered data are analyzed and a decision is made 

about whether it is indeed the primary object in a current manifestation of the corresponding agent of 

motion. 

To illustrate our agent identification system, we now describe the process of identifying the pendulum 

agent of motion (which is the agent used in Figure 13-1 to solve the golf problem). A drawn object begins 

in the default stage for the pendulum agent. When the object meets the following criteria it is elevated to 

the monitor stage: (1) the object is attached to a single pin, and (2) the object has rotated more than 20°. 

The monitor stage will gather physics data for ¾ second and then the agent identification stage will be 

triggered. A positive identification is made if, during the monitor phase, the object made contact with the 
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ball (i.e., pendulum strike) and the ball moved more than a preset distance. Regardless of whether the 

identification is made, the object is then lowered back down to the default stage. The classification of 

other agents occurs in a similar manner. 

Task Modeling for Informal Physics 

All NP problems require the player to use one or more agents of force and motion in the solution. 

Successful solutions thus inform one or more of the competencies that we hope to develop in the student. 

As an illustration, consider the problem called ballistic pendulum, shown in Figure 13-2.  

 

Figure 13-2. Ballistic pendulum problem 

This problem requires the student to create a pendulum shape with sufficient mass and positioning so that 

the pendulum will fall down and “kick” the ball into a free-fall trajectory that ends up landing on the red 

balloon (the figure shows the ball en route to the balloon). Successfully solving this problem suggests that 

the student has an intuitive grasp of the concepts of torque, linear, and angular momentum since the 

correct application of each is required to get the ball to the balloon. Incidentally, the ballistic pendulum is 

also an experiment often done in introductory physics courses in high school or college. 

Other Gameplay Features 

NP consists of 7 playgrounds (each one containing around 10‒11 levels) that progressively get more 

difficult. The difficulty of a problem is dependent on a number of factors including: relative location of 

ball to balloon, obstacles, number of agents required to solve the problem, and novelty of the problem. NP 

also has introductory videos that show how to use the various agents of force and motion. These tutorials 

illustrate how to draw each agent to solve a simple problem (during gameplay, students have the option to 

watch any agent-drawing video at any time).  
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Object Limit 

In pilot testing, we discovered that players sometimes opt to draw lines under the ball in order to move it 

(called line stacking). Repeated use of line stacking can lead players to not learn the agents of force and 

motion. In order to preclude line stacking to obtain a solution we implemented an “object limit” of 10 

objects per level. Once a player draws 10 lines no more lines can be drawn until a line is deleted or the 

problem is reset (by hitting the space bar). Students can see their line limit in the bottom right hand side 

of the screen.  

Trophies 

NP also displays silver and gold trophies in the top left part of the screen, which represent progress in the 

game. A silver trophy is obtained for any solution to a problem. Players receive a gold trophy if their 

solution is under a certain number of objects (the threshold varies by problem, but is usually less than 

three objects). So a player can receive a silver and gold solution for each problem. It is not uncommon for 

a player to revisit/replay particularly challenging problems multiple times to receive a gold solution. 

Log Files 

The heart of the stealth assessment lies in the log files generated by NP. NP automatically uploads log 

files to a server for a session (i.e., log activity between login and log out). Figure 13-3 displays what the 

log file looks like for one problem.  

 

Figure 13-3. Example log file 

The session log displays counts and times for several features of gameplay relevant to physics. For 

example, the “object limit count” reports the number of time a player exceeds the object limit, which can 

be seen as a lack of knowledge of a particular agent of motion (depending on the problem). Also the 

“agent vector” reports the agents used in the problem along with the time stamp it was executed (e.g., at 

timestamp 61.78, a springboard [SB] was created). Finally, the “ball trajectory” reports the 2-D 

coordinates of the ball over the last few seconds of a solved problem (i.e., the “solution path” of the ball).  

A second log file NP reports is called a “replay file.” The replay file records all player interactions with 

the game while attempting to solve a problem. Such interactions include drawing and erasing game 

objects, creating pins and nudging the ball. NP can read this file to render a visual replay of a problem 
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attempt in real time. The replay system was integral in tuning and verifying the accuracy of the automatic 

agent identification system. 

Preliminary Results 

We recently conducted a study where we had middle school students (n = 165) play NP for around  

5 hours (split into six 45-min sessions). Working with a physics professor, we developed a physics test 

that assesses informal physics knowledge and does not require math for solutions to physics problems. 

For example, Figure 13-4 shows an item involving a pendulum. The correct answer is “B.” We 

administered the informal physics pretest at the beginning and a post-test at the end of the gameplay 

sessions. 

 

Figure 13-4. Example item from informal physics test 

So far, we have found a significant difference between the pre-test and post-test scores  

(t (154) = 2.12, p < 0.05). Students playing the game improved in their informal, conceptual physics 

understanding over time. Current analyses are revealing that our stealth assessment indicators correlate to 

a player’s knowledge of physics concepts as measured by the tests.  

We now turn our attention to how stealth assessment may be employed within the GIFT architecture.  
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Stealth Assessment within GIFT 

With domain-independency being a major requirement in the development of GIFT, it is important that 

the architecture supports varying open and dynamic game-based learning environments that apply 

distinctively different messaging protocols. This involves embedding components and processes within 

GIFT’s domain module to support the authoring of stealth assessments regardless of the game-engine 

being used. Rules and models built around game interaction must be explicitly linked to concepts defined 

inside the GIFT architecture. This enables the assessment of concepts within GIFT’s domain schema as it 

relates to evidence captured in a game. Based around this notion, GIFT must support the linkage of 

activities in a game with defined objectives that denote competent behavior within a given domain, 

regardless of the data structure being extracted from the game environment. For this purpose, a “Gateway 

Module” is incorporated that associates an external educational/training system’s state data with a domain 

or competency model built within GIFT. This linkage allows for two disparate systems to communicate 

with one another. In the case of GIFT, this enables the application of AI tools and methods that facilitate 

real-time assessment of player actions as they relate to desired learning and performance processes and 

outcomes.  

The challenge is that a majority of gaming platforms apply different messaging protocols. Developing 

approaches to rapidly pair GIFT with any platform is recommended, which will increase its utility across 

multiple learning environments. This allows any system to link interaction with GIFT’s domain model, 

where assessments are conducted and progress is communicated to the learner model for determining 

transitions in performance or competency. This approach to assessment is ideal in game-based 

environments as tracking interaction data as they relate to objectives can denote comprehension and 

understanding that is difficult to gauge in traditional assessment techniques. The application of stealth 

assessment within GIFT potentially provides further diagnosis of game performance, which can be 

communicated to the pedagogical model for more focused selection of feedback and remediation tactics. 

As discussed earlier, stealth assessment is dependent on data streams that can be pulled out of the system. 

In the example of NP, player interaction is monitored for the purpose of capturing a player’s creation and 

use of the relevant agents and inferring how their actions relate to mastery of informal physics knowledge 

within a specified problem space. Here, user interaction is monitored to determine the application of 

agents for solving a problem.  

Within the context of game-based systems, the domain model in GIFT must accommodate the inclusion 

of stealth assessment techniques, such as those implemented in NP, that distinguish competency from 

interaction within a dynamic environment where learners have free control of their movements. These 

relationships are currently authored in GIFT’s Domain Knowledge File (DKF), where a structured XML 

schema is used to associate specific domain content with generalized tags that can be communicated to 

the learner model (i.e., concepts, objects, and assessment logic). In the initial releases of GIFT, each of 

these components are hand-coded by programmers as they link available gameplay data with defined 

concepts as they relate to the objectives being instructed. This is not ideal, as the goal of GIFT is to enable 

instructors and trainers to author intelligent tutoring capabilities without possessing skills across the 

multiple disciplines (e.g., computer science, instructional design, psychometrics, cognitive psychology) 

required to build such a system.  

To ease this burden, research is necessary to identify and develop tools that intuitively guide a course 

developer through the authoring process. Ultimately, the overarching goal is for this process to involve 

minimal to no programming by using natural language and well-developed user interfaces to express 

policies that can be converted to code and implemented for real-time application. One such emerging 

technology is InternationalTechnology Alliance (ITA) Controlled English, which is a controlled natural 
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language that is unambiguous for computers and allows for the definition and expression of concepts, 

rules, and relationships (Harries, Braines & Gibson, 2012). Another available tool is Engineering and 

Computer Simulations’ (ECS) Student Information Models for Intelligent Learning Environments 

(SIMILE), which uses a set of standards-based data models and protocols that associate events within a 

game to learning objectives, tasks conditions, and standards for a given lesson/scenario. Researchers 

should explore the application of these tools and others like it for authoring assessments as they relate to 

particular activities taken within a gaming environment.  

In the current version of GIFT, there is a use case within Virtual Battle Space 2 (VBS2), a game-engine 

used by the Department of Defense for training purposes. In this instance, assessments are based around 

Distributed Interactive Simulation (DIS) Protocol Data Units (PDUs) that provide entity and environment 

state data information, and how they relate to defined objects (e.g., waypoints and time sequences). An 

example is determining what entrance a player used to enter a building, with waypoints placed at each 

entrance. When a player crosses one of these objects, the system can determine exactly which doorway a 

player used and this is then passed to GIFT for assessment purposes. If the intention is for a player to 

select a specific entrance, formative feedback can be triggered when a non-optimal doorway is selected. 

Currently, each defined object is identified through the VBS2 mission editor and then translated into the 

DKF. Research should be conducted looking at approaches to link game mission/scenario editors with the 

associated DKF. This would enable autonomous populating of fields within the XML schema based on 

defining attributes among available elements within the application. As related to the building entrance 

example above, an author could identify a location on a scenario map as an object for use in GIFT 

assessment, rather than the individual having to pull the data and entering them manually into the DKF. 

Another area of interest in game-based intelligent tutoring is being able to predict performance as a player 

progresses through a scenario so that interventions can be applied before user actions lead to poor 

performance outcomes. Research related to this function is the application of Markov decision processes 

(MDPs) that map associated goal objectives to state spaces in a game. Current applications include 

reinforcement learning and partially observable MDPs (Sigaud & Buffet, 2010; Folsom-Kovarik, 

Sukthankar & Schatz, in press). MDPs can be applied to determine if a player is heading down a non-

optimal path as it relates to defined standards, and can be used to deem what goals are being valued as it 

relates to meeting scenario objectives. It is recommended that researchers look into how MDPs can be 

used in GIFT for predicting performance outcomes and providing diagnostics into what elements of their 

interaction are causing the decrements in performance.  

Discussion and Future Research 

Well-designed games can provide meaningful assessment environments by providing players with 

problems that require the application of various competencies, then monitoring their performance. In this 

chapter, we presented an assessment methodology that enables us to develop tasks in digital games 

designed to elicit specific performance data that are then statistically linked to our focal competencies.  

The research can expand in a number of general directions. That is, we can push the bounds of our stealth 

assessments relative to implementing the models in additional digital games as well as other digital 

learning environments to determine the range of environments that may employ the same competency and 

evidence models for scalable, cost-effective, and engaging solutions to the assessment of complex 

competencies. In addition, we can examine any added value of including exploratory, data-mining 

methods to stealth assessment’s more theoretically driven approach regarding the quality of the 

assessment.  
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As we consider the development of stealth assessments for a diverse range of games and other learning 

environments, the need for an interface to communicate equally diverse data to GIFT’s domain module 

becomes apparent. As we alluded to in the previous section, the interface must be portable and flexible, 

both in terms of technology and content. Thus, it is important to research elements that are common to 

stealth assessments across learning environments and areas of assessment. The evidence-based models we 

developed for NP is a good start. 

Regarding future research related to learning, stealth assessment has the potential to be quite useful for 

diagnostic purposes due to the fine-grained analysis of student behavior in situated contexts. In addition, 

real-time information about player competency states can be useful to support learning through hints and 

feedback, as well as dynamic matching of game difficulty level to player ability (e.g., providing more 

challenging problems for those with high levels of various skills). Regarding the example used in this 

chapter, the indicators linked to the agents of force and motion can serve as the basis for diagnoses. For 

instance, if a student created a lever that did not successfully solve a problem that could have been solved 

with a lever, the indicators would inform the most likely reason(s) why. That is, the lever may have failed 

given (1) the wrong mass of an object that was used on one side of the lever, (2) the fulcrum was 

positioned inaccurately, and/or (3) the size/length of the lever was too short or too long. Those data (mass, 

position, and length) are calculated as part of the stealth assessment. 

We are excited that researchers are starting to use digital games for learning and assessment. We think 

stealth assessment is one way to maximize the positive impact digital games can have on students. As a 

result, the future developmental efforts of GIFT should aim at identifying authoring tools and methods 

that ease the process of embedding stealth assessment capabilities in game-based learning environments. 
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Introduction 

In recent years, an increasing number of models have been published that can infer if a learner is 

behaviorally disengaged while working within an interactive learning environment, and can conduct 

inference using features of data focused on learner interaction with the learning system. In this chapter, 

we discuss some of the behaviors that have been shown to be amenable to this type of modeling, 

including off-task behavior, gaming the system, and carelessness. We also consider some of the 

algorithms and approaches that have been found to be particularly effective. We contemplate the relative 

merits of knowledge engineering and data-mining approaches for this type of model, and focus on the key 

validity concerns that must be addressed for these types of models to be used with confidence in a 

comprehensive framework such as GIFT. 

Gaps 

Over the last decades, adaptive computerized instruction has become increasingly effective at assessing 

the knowledge state of a learner (Corbett & Anderson, 1995; Martin & VanLehn, 1995; Shute, 1995; 

Pavlik et al., 2009; Pardos et al., 2011), supporting automated decisions about which content to assign to 

students through the implementation of strategies such as mastery learning, where a student is assigned 

content for a specific skill or knowledge component until demonstrating mastery (Corbett, 2001).  

However, despite recent advances in the assessment of student disengagement (discussed in this chapter), 

and a small number of successful cases of models of disengaged behavior being used in learning 

interventions (Baker et al., 2006; Walonoski & Heffernan, 2006; Arroyo et al., 2007), adaptive 

computerized instruction is generally not as adaptive to engagement as it is to student knowledge.  

There are likely multiple reasons for this. First, engagement models thus far have had to be created for 

specific learning environments, with only moderate similarity for models of the same construct created 

for different learning environment. By contrast, creating knowledge models often involves applying one 

of a small set of known algorithms to a data set in a standard fashion (Pardos et al., 2011). This often 

requires some knowledge engineering and rational modeling to create mappings between items and 

cognitive skills, but that process is relatively well known and has been conducted for a large range of 

learning environments. Second, validating models of engagement is more challenging than validating 

knowledge models; knowledge models are often validated in terms of whether predictions of future 

student behavior are correct (Corbett & Anderson, 1995; Pavlik et al., 2009; Pardos et al., 2011), but 

validating an engagement model beyond face validity requires collecting human labels of data in terms of 

the target construct, typically involving external coders (Baker et al., 2004; Baker, 2007b; Cetintas et al., 

2010; Walonoski & Heffernan, 2006; Wixon et al., 2012). These labels often must be collected at 

considerable scale to ensure generalizability to a large and diverse target population.  

Emerging Concept, Model, or Method 

One of the challenges with modeling engagement within the context of adaptive computerized instruction 

is deciding which dimension(s) of engagement to model. Fredricks, Blumenfeld, and Paris (2004) have 

proposed that engagement be studied as a multifaceted construct, with behavioral, affective, and cognitive 
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dimensions. These dimensions can be understood as follows: behavioral engagement centers on the action 

of participation in an educational interaction (including academic, social, and extracurricular activities), 

affective engagement focuses on both positive and negative emotional reactions (with regard to teachers, 

peers, or academics), and cognitive engagement is based on investment at a cognitive level and 

thoughtfulness. Within these dimensions, there are many constructs, e.g., many behaviors that indicate 

engagement or disengagement. Each of these constructs can also be defined in a range of ways. This 

multifaceted view of engagement imposes added complexity to our ability to infer disengagement, as it 

broadens the breadth of behaviors necessary to detect in order to achieve a full multidimensional picture 

of a learner’s engagement. Fortunately, however, not all dimensions (or aspects of each dimension) need 

to be detected in order to support effective intervention. In addition, specific behaviors impact learning 

outcomes and longer-term engagement in different ways, and some are more important to identify and 

adapt to than others, depending on the learning context.  

Despite these complexities, opportunities exist for a combination of rich logs of student interaction and 

EDM methods to be used in concert to create richer detectors of student disengagement with regard to all 

three facets of the construct. 

In this chapter, we look at work that models the behavioral dimensions of engagement, focusing on work 

to identify behavioral disengagement in the types of adaptive computerized instruction being integrated 

with the GIFT framework (such as intelligent tutors, simulations, and serious games). We discuss the 

following behaviors: off-task behavior, gaming the system, carelessness, and WTF behavior (Wixon, 

Baker, Gobert, Ocumpaugh & Bachmann, 2012), which have been detected with validated models 

operating on data from learner interactions with adaptive computerized instruction (e.g., no physical 

sensors).  

Modeling Off-Task Behavior 

The first automated detector of whether a student is off-task within adaptive computerized instruction was 

published in Baker (2007b), which presented a machine-learned model to detect off-task behavior of 

students using an ITS for middle-school mathematics. Off-task behaviors were defined as behaviors that 

do not involve the system or learning task (including off-task conversation, off-task solitary behavior, and 

inactivity), building off past work studying off-task behavior within traditional classroom settings 

(Karweit & Slavin, 1982; Lahaderne, 1968; Lee, Kelly, and Nyre, 1999). These models were built using 

data from quantitative field observations conducted in middle-school classrooms by trained field coders, 

as training data. Models were validated by conducting cross-validation at the student level. Data features 

included in the model were the following: 

 Details of student actions, such as whether the action was correct and the type of user interaction 

used in the current problem step (e.g., choosing from a set of options, inputting an answer, or 

plotting points; some types of interactions naturally take longer than others).  

 Whether it was the student’s first attempt at the problem.  

 Time taken to complete a problem, expressed in three ways: (1) how many seconds the action 

took, (2) how many standard deviations faster or slower the action took compared to other 

students, and (3) time taken in the last three or five actions expressed as the sum of standard 

deviations faster or slower than other students. 

In order to model off-task behavior, Latent Response Models (LRM) were used as the statistical basis for 

all detectors in this study, as they are able to easily and naturally integrate multiple data sources at 
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different grain sizes. This framework included one observable level (assessing how frequently each 

student is off-task) and two hidden (latent) levels. The detector determines the proportion of time spent 

off-task by making a binary assessment as to whether each individual student action is off-task and 

determining the percentage of actions which are assessed to be off-task for each student. Model selection 

for the multiple-feature models were validated by adding parameters to the model until the parameter 

worsened the model’s performance in a student-level tenfold cross-validation. It was found that the best-

fitting multiple-parameter model fit the data with a cross-validated correlation of 0.55. 

A second automated detector of whether a student is off-task was developed by Cetintas and colleagues 

(2010), who added data on mouse movement to the features used in Baker (2007b), modeling student off-

task behavior within a math tutoring program designed to help elementary school students with learning 

disabilities and/or emotional disorders learn problem solving skills for Equal Group and Multiplicative 

Compare problems. This more multimodal approach extended past work that had not considered mouse 

movement data. Their approach also includes personalization of the detector to account for inter-user 

variability of behavior. The personalized version of the model incorporates data from a student’s past 

trials on each problem, which are used to generate a student-specific version of each feature while 

predicting that student’s behaviors for the current trial. The same general approach to coding students as 

on-task or off-task as was used in Baker (2007b) was used in this work. Quantitative field observations 

were conducted in the classrooms by trained field coders and synchronized with the log data. Students 

were observed sequentially (to avoid observer bias) and were coded as off-task if they were observed 

doing any of the following for more than 30 seconds: talking with another student about anything other 

than the subject material, being inactive, or exhibiting off-task solitary behavior. 

Within this work, ridge regression (Hoerl & Kennard, 1970) was used to estimate model parameters, and 

it was found that this approach (including mouse movement data and student-specific models) led to 

better detection of off-task behavior than approaches lacking one or more of these features.  

Modeling Gaming the System 

Gaming the system is defined as attempting to succeed in an education environment by exploiting 

properties of the system rather than by learning the material and trying to use that knowledge to answer 

correctly (Baker et al., 2006). The first automated detectors of gaming the system were presented by 

Aleven et al. (2004) and Baker, Corbett, and Koedinger (2004). 

One category of gaming detectors was developed using knowledge engineering (Beal, Qu & Lee, 2006; 

Buckley, Gobert & Horwitz, 2006; Shih, Koedinger & Scheines, 2008), where rational analysis is applied 

by a human analyst to derive a model that can be applied. Within knowledge engineering approaches, 

there is typically no gold standard used to validate models; models and their parameters are generated 

based on the judgment of the researcher(s), although in some cases research models are compared to 

learning outcomes. The first such detector was presented in Aleven et al. (2004) and refined within 

Aleven et al. (2006). This detector was developed using a knowledge engineering approach and took the 

form of a set of simple production rules. The detector was initially developed in the context of data from a 

Cognitive Tutor on geometry, but has since been applied to other intelligent tutors. Within this model, 

gaming behaviors were defined by a pair of rules, Clicking Through Hints, which consists of requesting a 

hint, and then requesting another hint too rapidly to read the first hint (defined as under 5 seconds), and 

Try-Step Abuse, where a student response took under 7 seconds. In related work, Beck (2005) looked at 

quick responses on difficult items, parameterizing “quick” and “difficult” and fitting values for these 

parameters based on data. Similar knowledge engineered models have been presented by Beal et al. 

(2006), Johns & Woolf (2006), Gong, Beck, and Heffernan (2010), and Muldner et al. (2011).  
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A second category of gaming detectors was developed using a combination of human labels of gaming 

behavior and data mining/machine learning methods, where a model is trained to infer what the human 

coder’s labels are. The first such detector was presented in Baker, Corbett, and Koedinger (2004) and 

refined within Baker et al. (2008). This detector identified gaming the system and distinguished between 

gaming behaviors characterizing unsuccessful students and gaming behaviors characterizing more 

successful students (the primary distinction was in terms of when gaming occurs, with unsuccessful 

students gaming on difficult material and successful students gaming on easier material). This detector 

was built for students using a Cognitive Tutor for middle school, using quantitative field observations and 

tutor log data collected across a total of four tutor lessons used by over 400 students in two separate 

school districts. Data features used in the model included time expressed in terms of how many seconds 

the action took, how many standard deviations faster or slower the action took compared to other 

students, and time taken in the last three or five actions expressed as the sum of standard deviations faster 

or slower than other students. Details about the interaction were also included regarding the learning 

system’s assessment of the action (as correct; incorrect, indicating a known bug; or a help request), the 

type of interface widget involved in the action, and whether this attempt was the student’s first attempt. 

The automated detectors, developed using a LRM framework (Maris, 1995) integrated the field 

observations and tutor logs, at different grain sizes, into a single model. In a gaming detector’s 

outermost/observable layer, the gaming detector assessed how frequently each of n students is gaming the 

system. The gaming detector’s assessments for each student were then compared to the observed 

proportions of time each student spent gaming the system. The detector was validated to be able to 

generalize to new students and new tutor lessons.  

In later work to detect gaming using machine-learning and human labels, Walonoski and Heffernan 

(2006) improved on the very coarse-grained label synchronization in Baker’s work by using time 

windows of five different sizes (30 seconds, and 1, 2, 4, and 6 min), increasing the degree to which the 

model was fine-grained. Next, work by Baker and de Carvalho (2008) achieved 20-second-level 

synchronization by using text replays rather than quantitative field observations, for human labeling. Text 

replays are log files presented in textual form, and represent a segment of student behavior during a pre-

selected duration of time or length. It has been shown that text replays have good inter-rater reliability and 

agree well with prediction made by models generated using quantitative field observation data (Baker, 

Corbett & Wagner, 2006). Using labeling at this label made it possible to use off the shelf classifiers, in 

this case J48 Decision Trees, an open-source implementation of C4.5 Decision Trees (Quinlan, 1993). In 

further work, this approach was extended to a constraint-based tutor for database programming (Baker, 

Mitrovic & Mathews, 2010) and a handheld app was developed to support synchronization of field 

observations with similar precision to what can be achieved with text replays (Ocumpaugh et al., 2012). 

Modeling Carelessness 

The construct of carelessness has been defined in two ways: as an error made on a task that the student 

already knows (Clements, 1982), or as impulsive and/or hurried actions (Maydeu-Olivares & D’Zurilla, 

1995). San Pedro and colleagues (2011a) identified Clements’s definition of carelessness as being the 

same as the contextual probability of slipping on a problem or problem step in an intelligent tutor, a 

construct that it was previously shown can be inferred through manipulating a BKT model (Baker, 

Corbett & Aleven, 2008). Based on this theoretical link, San Pedro and colleagues (2011a) manipulated 

the internal structure of a BKT algorithm in order to develop a model of carelessness, doing so using log 

files produced within a Cognitive Tutor for Scatterplots. The model of carelessness was developed by first 

obtaining ground-truth labels using future knowledge to drive a machine-learned model that can predict 

careless errors without using future data. Then, a model that only uses data from the past was created 

using sixfold student-level cross-validation linear regression modeling. Creating this model also serves a 

function of smoothing extreme estimates. The model achieved A’ and BIC’ values, which indicated that 
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the detector performed better than chance. The same approach was replicated within Science 

ASSISTments, a set of scientific simulations that scaffold student inquiry processes and assess students’ 

inquiry skill (Hershkovitz et al., 2013). 

This model has been validated to work for new students (Baker, Corbett & Aleven, 2008), new 

populations in different countries (San Pedro et al., 2011a), and additional tutoring systems (Hershkovitz 

et al., 2011). It has been also been shown to predict student post-test score even when controlling for 

student knowledge (Baker et al., 2010).  

Modeling WTF Behavior/Off-Task Behavior within environment 

Rowe and colleagues (2009) reported that students sometimes engage in behavior within online learning 

that seems unrelated to the student’s learning task, giving the example of students climbing on top of (in-

game) buildings or putting (in-game) bananas in an (in-game) toilet. They identified this construct as off-

task behavior within the learning environment. In 2012, Wixon and colleagues (2012) argued that this 

term may obscure considerable differences in why students engage in this behavior compared to 

traditional off-task behavior (where the student ceases to work on the task at all), as well as differences in 

impact, and suggested the alternate term of WTF behavior.  

Rowe and colleagues proposed an operational definition as behaviors that are clearly unrelated to the 

narrative and curriculum, and built a knowledge-engineered model to infer this construct in a narrative-

centered learning environment called Crystal Island, in which students solve scientific puzzles presented 

through interactive story scenarios. Their definition when expanded by Sabourin et al. (2011) consisted 

of: interactions with in-game objects that are not relevant to the scientific puzzle, moving a task-related 

object to an unrelated location, spending too much time in an irrelevant location, or exceeding a height 

achievable by normal navigation. 

Wixon and colleagues (2012) developed a data-mined automated detector of WTF behavior, within the 

context of Science ASSISTments. Within this environment, WTF behavior involves behaviors such as 

changing variable values many times without running trials, or rapidly pausing and unpausing a 

simulation. Ground-truth labels for this behavior were developed using text replays, and then a set of 

features were distilled using code that had been previously developed to detect student use of 

experimentation strategies and hypothesis testing within Science ASSISTments. Eleven common 

classification algorithms were attempted to fit detectors of WTF, and the best model performance was 

achieved by the Projective Adaptive Resonance Theory Model (PART) algorithm (Frank & Witten, 

1998), which produces rules out of C4.5/J48 decision trees. The models were evaluated using a process of 

sixfold student-level cross-validation, and the detectors were assessed using four metrics: A’, Kappa, 

precision, and recall.  

Use of Detectors in Intervention and “Discovery with Models” Analyses 

Once detectors of disengaged behavior have been developed, they can be used in two fashions: within 

“Discovery with Models” analyses to understand the relationship that the disengaged behavior has to 

other constructs, and within interventions, by embedding the detectors in running software to drive 

adaptation, and using them to change the system’s behavior. 

Automated detectors of off-task behavior, gaming the system, carelessness, and WTF behavior have been 

used in several “discovery with models” analyses. Early analyses on gaming the system indicated that 

gaming was associated with poorer learning (Baker et al., 2004; Beck, 2005), although fast responses are 

positively correlated with learning if correctness is not taken into account (e.g., Aleven et al., 2006). This 
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research was followed up by work by Cocea, Hershkovitz, and Baker (2009), who studied whether off-

task behavior and gaming the system had an immediate impact on learning or a more aggregate impact on 

learning, and found evidence that off-task behavior was not associated with worse performance in the 

short-term, but that it led to the student having fewer opportunities to practice the skill, leading to smaller 

learning gains over time. By contrast, gaming the system was found to be associated with worse 

performance in the short-term as well as the long-term. Both Rowe et al. (2009) and Sabourin and 

colleagues (2011) found evidence that WTF behavior is associated with lower learning gains. 

Baker (2007a) used an automated detector of gaming the system to determine whether differences in the 

frequency of student gaming were better predicted by tutor content than by which student was using the 

software. Interestingly, knowledge-engineered models have produced the opposite finding, that students 

were better predictors of gaming behavior than the lesson (Gong et al., 2010; Muldner et al., 2011), a 

contrasting finding which has not entirely been reconciled, although recent collaborative work between 

some of the authors of Baker (2007a) and Muldner et al. (2011) suggest that this contrast may be because 

the different detectors identify different behavior in general. Baker et al. (2009) and Baker (2009) 

followed up the finding in Baker (2007a) by studying which differences in lesson features predict the 

degree to which students will go off-task or game the system in a lesson, by combining data from a 

taxonomy of differences between 22 lessons with assessments of how often a set of students was off-task 

or gaming in each lesson, across the course of a year. They found that several features were associated 

with gaming, including ineffective or overly abstract hints, unclear toolbar icons or problem flow, and the 

lack of (interest-increasing) extraneous text in problem statements.  

Detectors of off-task behavior, gaming the system, and carelessness were used in Baker and Gowda 

(2010) to study the differences in the proportion of these behaviors between students in an urban, rural, 

and suburban school, across an entire year of usage of a Cognitive Tutor for Geometry. They found that 

urban school students go off-task and are careless significantly more than rural and suburban school 

students, and also that gaming the system was most prominent in the urban school. In work within a 

single population, Rowe and colleagues (2009) found that WTF behavior was significant more common 

among male students than female students.  

San Pedro and colleagues (2011b) used a machine-learned detector of student carelessness to study the 

relationship between carelessness and affect in high school students using a Cognitive Tutor for 

Scatterplots. It was found that errors made by students who are confused or bored are less likely to be 

careless errors. The negative correlation between confusion and carelessness increases in magnitude as 

students used the tutor more, even as confusion itself decreases in frequency. This suggests that students 

who were struggling the most and remained confused were less likely to become careless. It was also 

found that students displaying engaged concentration were more likely to make careless errors, a finding 

which seems strange but which may be consistent with offline findings in Clements (1982) that successful 

students are more likely to become careless. Affect was also studied in relation to WTF behavior by 

Sabourin and colleagues (2011), who investigated the affective role of this category of behavior in Crystal 

Island. They found that no emotional states were more likely than chance to lead to WTF behavior. 

However, it was found that students who had remained on-task after reporting confusion were more likely 

to report feeling focused next, while students who went off-task (in the environment) after reporting 

confusion were more likely to report boredom or frustration next. It was also found that frustrated 

students who went off-task (in the environment) were more likely to report feeling focused next, while 

confused students who went off-task (in the environment) were more likely to report a negative emotion 

next. By contrast, frustrated students who remained on-task were also more likely to report boredom next. 

This suggests that this type of behavior may be beneficial to frustrated students by allowing them to 

distance themselves from the problem. 
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Research has also been conducted to model the relationship between disengaged behavior and 

motivational variables. Baker (2007b) found that off-task behavior was associated with disliking 

computers, disliking mathematics, passive-aggressiveness, and lack of educational self-drive. Baker and 

Walonoski et al. (2008) investigated which student behaviors, motivations, and emotions are associated 

with gaming the system, across multiple studies with two different systems. They found that gaming the 

system was associated with disliking the software’s subject matter, lacking self-drive, disliking computers 

and the learning environment, believing that mathematics ability is innate, and believing that the tutor is 

not helpful for learning. Beal, Qu, and Lee (2008), using the gaming detectors from Beal, Qu, and Lee 

(2006), found that students with low math self-concept were most likely to engage in guessing gaming 

behavior. Hershkovitz and colleagues (2013) studied the relationship between carelessness and motivation 

within Science ASSISTments, finding carelessness is higher in students characterized by high levels of 

learning goal orientation and academic efficacy (in the case of academic efficacy, replicating off-line 

results by Clements [1982]), and high levels of both performance-approach and performance-avoid goals. 

By contrast, carelessness was lower in students having neither learning nor performance goals. 

Hershkovitz et al. (2011) also found that students with performance goals demonstrated an increase in 

carelessness earlier within the set of trials than students with learning goals. On the other hand, students 

who lacked either type of goal demonstrated consistently higher carelessness over trials. 

Detectors of this type have also been used to drive automated interventions, with the goal of improving 

student engagement and learning. One of the first examples of this can be seen in Baker et al. (2006), 

where an automated detector of gaming the system was embedded into an interactive agent (similar to 

non-player characters [NPCs] in games), who displayed negative emotion when students gamed, and who 

provided supplementary exercises designed to support students in learning material bypassed via gaming. 

This intervention improved student learning and reducing gaming behavior in the United States (Baker et 

al., 2006), although its results did not replicate in the Philippines (Rodrigo et al., 2012). Another 

intervention using gaming detection was developed by Arroyo and colleagues (2007), who provided 

meta-cognitive messages to students on the negative impact of gaming, combined with visualizations of 

students’ recent gaming behavior. This intervention also reduced gaming and improved learning. Off-task 

behavior detection, carelessness detection, and WTF behavior detection has not yet been used as the basis 

of automated intervention, although research projects along these lines are currently underway (Inventado 

& Numao, 2012).  

Discussion, Recommendations, and Future Research 

As this chapter indicates, the last several years have seen considerable work in modeling a range of forms 

of student disengagement, including gaming the system, off-task behavior, WTF behavior, and 

carelessness. These detectors have been developed through a range of approaches, and a consensus 

appears to be emerging that disengaged behaviors can be assessed in a range of different online learning 

environments. 

As such, there is an opportunity for a framework such as GIFT to incorporate models of this type. 

Historically, the ITS field has been better at developing these types of models and using them within 

discovery with models analyses than it has been in using them to modify tutor pedagogy and adaptivity 

(although successful examples of the latter exist, particularly for gaming the system – cf. Baker et al., 

2006; Walonoski & Heffernan, 2006; Arroyo et al., 2007; Roll et al., 2011). This limitation is holding 

back the potential of these approaches to provide information that can be used to reengage learners and 

enhance learning.  

A key step that could facilitate incorporation of these types of models into GIFT would be to incorporate 

tools that support detector-building into the GIFT framework. Several types of tools have been developed 
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to support this process, but the tools have been developed by a variety of research groups and are not well 

integrated with specific ITSs, or for that matter, with one another. For example, tools have been 

developed for automated feature generation by a wide variety of research groups, but have been often 

scoped for use with a single learning environment. One exception is found in the EDM Workbench 

(Rodrigo et al., 2012), which can generate a range of features for data in the format used by the PSLC 

DataShop (Koedinger et al., 2010), but can only do so post-hoc. Still, this system’s feature generation 

could be extended and used as a basis for feature generation within the GIFT framework. Ideally, feature 

generation should be conducted both on existing data sets, and at run time within a tutor, in order to 

facilitate both the creation and use of automated detectors of disengagement. A tool such as the EDM 

Workbench could be incorporated into the GIFT framework via creating explicit API-level links between 

GIFT and the EDM Workbench, where the EDM Workbench could pull data directly from GIFT, and 

export detectors back to GIFT for use in the user model. In addition, the feature generation code in the 

EDM Workbench could be integrated into the GIFT framework, so that distilled features could be directly 

used by detectors exported to GIFT’s user model. Simply making these tools available to GIFT users is 

useful but not sufficient. The process of importing data from GIFT to the EDM Workbench is time 

consuming if formats do not match, and an unnecessary step compared to the direct approach possible 

with API-level links. Similarly, the process of manually taking detectors and associated feature distillers 

from the EDM Workbench and building them into GIFT’s user model is challenging if integration is not 

created between these tools. These issues are not unique to the EDM Workbench, but are general to the 

problem of using tools for feature distillation or detector building to enhance GIFT. It is worth noting also 

that tools like the EDM Workbench are useful for modeling a range of behaviors, beyond the disengaged 

behaviors discussed in this chapter. 

A second opportunity is to integrate tools for labeling data in terms of engagement into the GIFT 

framework. There are currently tools for collecting both text replays (discussed above) and quantitative 

field observations of disengagement that could be integrated into GIFT. The EDM Workbench offers 

support for conducting text replays, though in a less visually attractive format than tools designed 

explicitly for conducting text replays in a single learning system. Tools for generating tailored text replays 

have also been designed for a variety of learning environments. Integrating text replays into GIFT would 

be a useful step towards a framework that can incorporate engagement detectors into a wider number of 

ITSs. Similarly, integrating code into GIFT for conducting field observation of student disengagement, 

such as the HART app for Android (Ocumpaugh, Baker & Rodrigo, 2012), would support the 

development of detectors for ITSs using GIFT. Another potential opportunity can be seen in work to 

develop detectors of carelessness. The development of detectors of carelessness relies upon initial 

estimates of carelessness computed using student knowledge models. Extending the knowledge modeling 

in GIFT to produce carelessness labels would be a valuable step towards incorporating this type of 

adaptation capacity into GIFT. 

Through these steps, it will become easier to build automated detectors of student disengagement into the 

GIFT framework. Doing so will make it feasible to conduct further research on how these models can best 

be used to reengage learners toward developing understanding in the field as to how ITSs can best adapt 

to differences in student engagement.  
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CHAPTER 15 ‒Knowledge Component (KC) Approaches to 

Learner Modeling 
Vincent Aleven and Kenneth R. Koedinger 

Carnegie Mellon University - Human-Computer Interaction Institute 

Introduction 

A distinguishing characteristic of ITSs is that they engage in learner modeling, meaning that they estimate 

key characteristics of each learner based on interactions with the tutoring system. Although learner 

modeling is not fundamentally different from other forms of formative assessment, some properties of the 

learner modeling approaches applied in ITSs are not widely shared with other forms of formative 

assessment. First, learner modeling methods used in ITSs typically assess learners over time and across 

many measurement moments. Therefore, they tend to take into account that the learner is learning. 

Second, the assessment is done primarily to support pedagogical decision making by the tutoring system. 

Third, learner modeling and instruction go hand in hand; the learners are assessed on the same problems 

on which they are receiving instruction. Finally, although the term “assessment” is typically associated 

with a focus on learners’ knowledge and skills, across the spectrum of ITSs, learner models hold many 

different types of information. 

In this chapter, we focus on models that represent the knowledge targeted in the instruction and also 

knowledge that may be used to learn target knowledge (e.g., metacognition or motivational beliefs related 

to learning). These kinds of learner models capture what a given learner knows (tacitly or explicitly) and 

does not know yet, so that the system can tailor its instruction accordingly. In particular, we focus on 

approaches that aim to model the learner’s knowledge with sufficient specificity that the learner’s 

performance on future tasks can be accurately predicted. In pursuit of this goal, it has turned out to be 

useful to model the learner’s knowledge as a set of inter-related KCs. The Knowledge-Learning-

Instruction (KLI) Framework defines a KC as “an acquired unit of cognitive function or structure that can 

be inferred from performance on a set of related tasks” (Koedinger, Corbett & Perfetti, 2012). Examples 

of ITSs that have taken a KC approach to learner modeling are Cognitive Tutors (Anderson, Corbett, 

Koedinger & Pelletier, 1995; Koedinger & Aleven, 2007), constraint-based tutors (Mitrovic, Mayo, 

Suraweera & Martin, 2001), and Andes (VanLehn et al., 2005). 

The KC approach to learner modeling comes with a number of key challenges. First, in any domain of 

interest, how can we determine what the KCs are that learners acquire? Put differently, how can the 

targeted expertise be decomposed into a set of KCs that have psychological reality, as evidenced by the 

fact that the model can be used to accurately predict student performance across tasks and over time? 

Second, given a KC model, how can a tutoring system accurately determine, for any learner at any point 

in time, what that learner’s level of mastery is for each of the individual KCs? Third, given an accurate 

model of an individual learner, how can an ITS tailor its instruction so learners learn more effectively 

and/or efficiently? In this chapter, we focus primarily on the first question while briefly touching on the 

other two. A key point in our chapter is that automated approaches to creating and refining KC models 

can substantially enhance “manual” approaches. 

In the KC approach to learner modeling, building an intelligent tutor for a new domain requires a KC 

model. Since existing KC models are rarely available or “just right,” typically, a new model needs to be 

built. Doing so, however, requires a substantial amount of effort. In a traditional approach to KC 

modeling, an author creates a model by hand, based on careful cognitive task analysis. Ideally, the author 

would conduct both theoretical task analysis and empirical task analysis (Lovett, 1998). In theoretical 

cognitive task analysis, an author elucidates the knowledge demands of a task by carefully analyzing its 
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structure (e.g., its possible goal/subgoal hierarchies). In empirical task analysis, by contrast, an author 

collects data about problem solving in the given task domain, employing methods such as think-alouds, 

interviews of experts, analysis of errors novices make on written tests, difficulty factors analysis (DFA), 

and so forth (Baker, Corbett & Koedinger, 2007).  

Given that creating a KC model tends to be labor intensive, ITS authoring tools support aspects of 

cognitive task analysis and KC modeling. In this chapter, we review how one set of authoring tools (the 

Cognitive Tutor Authoring Tools or CTAT, for short) support theoretical cognitive task analysis and KC 

modeling as an integral part of the process of building a tutor, with substantial gains in authoring 

efficiency (Aleven, McLaren, Sewall & Koedinger, 2009). However, it is becoming clear that manual KC 

modeling does not always yield optimal KC models. Manual KC modeling efforts have produced multiple 

cases where KC models created or refined through automated or semi-automated methods did better (e.g., 

on predicting student performance) than real-world models created by hand. For example, our original 

assumption in building the cognitive model (a kind of KC model) for story problem solving within 

Cognitive Tutor Algebra was that story problems are hard because it is challenging to comprehend a story 

and translate it to an equation. Without collecting data, these hand-crafted models would have been 

wrong. For beginning algebra students, introductory story problems are not solved using equations and 

are actually easier to solve than the matched equation (Koedinger & Nathan, 2004). Further, the challenge 

in translating a story to an equation is more in the difficulties in producing the symbolic equation than in 

comprehending the English (Koedinger & McLaughlin, 2010). As a second example, in the Geometry 

Cognitive Tutor, the cognitive model in the fielded tutor did not make a distinction for “decomposition 

problems” between those where the decomposition was scaffolded and those where it was not. Data 

mining showed a large and important difference between these two situations, however (Stamper & 

Koedinger, 2011), and a tutor redesigned based on the data-discovered new model yields more efficient 

and effective learning (Koedinger, Stamper, McLauglin, Nixon, in press). Third, across 11 datasets, an 

automated model refinement algorithm called Learning Factors Analysis (LFA) found better cognitive 

models than the original models and than best data-driven models (Koedinger, McLaughlin & Stamper, 

2012). 

Part of the problem may be that in practice, the manual approach to KC modeling relies too much on 

theoretical task analysis and not enough on empirical task analysis. It may be fair to say that the first cut 

at a KC model is often created without much empirical task analysis. In the process of developing a tutor, 

it can be difficult to find the time to collect data with students from the target population. A second reason 

why hand-crafted models can be suboptimal is that even common methods for empirical cognitive task 

analysis may not be able to address all modeling decisions that arise (often, there are simply too many of 

them) and may not uncover subtle over-generalizations and under-generalizations that novices make 

while learning new material. Such discoveries may require larger data sets than those typically collected 

in empirical task analysis, such as those collected as tutor log data.  

As second focus of the chapter, therefore, is on methods and tools for discovering or refining KC models 

using data on task performance (e.g., tutor log data). Specifically, we concentrate on three data-driven 

and/or machine learning approaches: (1) use of visualization and statistical modeling tools for analysis 

and refinement of existing models based student log data for example, by using the DataShop (Koedinger 

et al., 2010); (2) combining human expertise, machine learning, and log data to automatically discover 

better KC models (LFA) (Koedinger et al., 2012), again using tutor log data, and (3) using machine-

learning-based model of student learning (e.g., SimStudent) to learn an accurate KC model from being 

tutored in the domain (Li, Matsuda, Cohen & Koedinger, 2011).  
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Background: What Is KC Modeling? 

In this section, we review the notion of a KC as a central element in learning modeling. In the next 

section, we review some of the key evidence in the ITS literature in support this approach – instances in 

which a KC-based learner model was used in an ITS to adapt instruction with measurable impact on 

student learning. 

But first, what is a knowledge component? Does any decomposition of the knowledge needed for a 

particular task result in a KC model? And what does it mean for a KC model to have psychological 

reality? As mentioned, in the KLI framework (Koedinger et al., 2012), a KC is an acquired unit of 

cognitive functioning, which (being a latent construct) has to be inferred from learners’ performance. This 

definition encompasses a wide range of knowledge types, not just procedural knowledge. A complex 

cognitive task is viewed as involving many fine-grained KCs (Anderson, 1993). These KCs are learned 

separately in the sense that practice with one does not cause improved mastery of another. While there is 

no possibility of transfer from one KC to another, KCs provide a good way of thinking about transfer 

between problems or problem steps. In many domains (e.g., mathematics) different problems require use 

of overlapping sets of KCs. One expects to see transfer between different problems or problem steps, in 

the sense that practice on one leads to improved performance on the other, exactly to the extent that there 

is overlap in the KCs needed for these problems or steps. A key characteristic of the KC approach to 

learner modeling (which is not shared with other approaches to assessment, even prominent ones such as 

IRT analysis, cf., Wilson & De Boeck, 2004) is that such transfer relations are explicitly accounted for. 

The KCs are considered to be the units of transfer. 

We can now state what it means for a KC model to have psychological reality. Put simply, it means the 

model can be used to make accurate predictions of a given student’s performance on future problems 

based on that student’s performance on past problems. Put differently, it means that the transfer 

predictions that are implied by the model are actually observed in data about student performance, 

typically, tutor log data (Aleven, 2010). This description leaves open how a KC model can be used to 

predict future performance. There are multiple ways of doing so; below we describe one often-used 

method. A key pre-requisite for making accurate predictions is that the model captures knowledge at the 

right level of generality.  

It may be helpful to contrast the KC approach to learner modeling with an alternative but incorrect 

viewpoint, namely, that “students learn what they spend time on.” While that statement may have a ring 

of truth to it, it is actually misleading. It depends critically on how we categorize student activities. When 

we look at student activity at the level of problems, we may go wrong. We need to categorize problem-

solving steps, not problems, and we need to do so with respect to their cognitive demands. In a study on a 

tutor unit with geometry area composition problems, model discovery revealed a different skill is needed 

for unscaffolded decomposition steps than for scaffolded ones (Stamper & Koedinger, 2011). In these 

decomposition steps, students must realize that they can compute the area of irregular geometric shapes as 

the sum or difference of the area of two different regular shapes. In the fully-scaffolded tutor, students did 

not need to plan to decompose the irregular area shape on their own, as the tutor prompted for the areas of 

the regular shapes and then for their sum or difference. A redesigned tutor included unscaffolded 

problems where students were not prompted to decompose the figure; they basically had to figure it out 

themselves, as one big step in the tutor problem. New problems that isolate the decomposition planning 

step and did not require its execution were also created and used in the redesigned tutor. The students in 

the redesigned tutor condition learned better (Koedinger, Stamper, McLaughlin & Nixon, in press). All of 

the problems that both groups solved in this study were composition problems, and the students who 

worked with the scaffolded tutor spent more time on these problems overall. Thus, by the simple 

statement above, they should have learned the decomposition skills better. They did not. Students using 
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the redesigned tutor learned the decomposition skill better, because only they had practiced that skill – in 

the scaffolded group, the tutor’s scaffolding took over a critical part of the work. Generally, students learn 

the KCs they spend time practicing. However, what these KCs are is not obvious. KCs are not directly 

observable and most are not open to conscious reflection, despite our strong feelings of self-awareness of 

our own cognition. They can, however, be inferred and discovered from student performance data across 

multiple tasks via a statistical comparison of alternative categorizations, that is, of alternative KC models. 

As another contrasting case, we consider the ALEKS system and its underlying knowledge space 

algorithm (Falmagne, Koppen, Villano, Doignon & Johannesen, 1990). ALEKS is a commercial system 

for mathematics practice, focused on individualized problem selection to diagnose a student’s knowledge 

state. It presents problems to students and provides mathematical tools to solve them (e.g., digital version 

of a compass, on-screen calculator, grapher, etc.) but does not provide the step-by-step guidance (or 

equivalently, an “inner loop”) characteristic of ITSs (VanLehn, 2006, 2011).  

The adaptive problem selection technique in ALEKS relies on a “knowledge space” created offline that 

captures presumed precedence relations among problem types. That problem type A precedes (i.e., is a 

prerequisite of) type B is determined empirically. In essence, A is assumed to precede B if most students 

that get B right also get A right and if of those that get B wrong many get A right. In other words, 

evidence that a student knows B implies they know A. These precedence relations define a partial order 

among all problem types and this partial ordering is used to diagnose a student’s knowledge state, defined 

as the set of problem types that the student masters (i.e., can solve correctly). From the knowledge state, 

ALEKS can select an appropriate next problem – one of the problem types that follow those on the edge 

of what that student knows. 

The KC approach described in the current chapter and ALEKS’ approach using knowledge spaces share 

an important goal, namely, learner modeling in support of individualized problem selection. They also 

share the view that student performance data is a valuable source of information for model building 

beyond intuition or analysis. A key difference is that the KC approach attempts to explicate what the KCs 

are, whereas there is no such attempt in the knowledge space approach. Whereas the ALEKS approach 

uses data in place of theory and intuition, the KC approach uses data in addition to theory and intuition. 

To illustrate the difference, the knowledge space algorithm will identify A as a prerequisite of B if A is 

consistently easier than B (for the same students)
9
. However, unless the KCs used in A are also needed in 

B (e.g., A is finding factors of a number and B is finding the least common multiple of two numbers, 

which requires finding factors), the statistical regularity used to infer a prerequisite may be spurious. A 

second reason why the KC model approach values explication of the KCs is that the resulting explanatory 

model may not only enhance generalization, but can better be interpreted for use in course redesign 

(Lovett, Meyer & Thille, 2008) and in tutor redesign (Koedinger & McLaughlin, 2010; Koedinger, 

Stamper, McLaughlin & Nixon, in press) .  

It is worth noting that a knowledge space approach is not incompatible with a KC modeling approach and, 

indeed, we would recommend analysts using a knowledge space to try to explicate the in-common KCs 

implied by the links in the prerequisite graph. Links should be eliminated (or not produced) when a 

plausible KC cannot be generated. 

                                                           
9
 Note that the knowledge space algorithm is more nuanced then this treatment might imply: It is possible for A to 

be easier than B, but still have a number of students getting B right and A wrong and if that happens enough, a 

precedent relation from A to B will not be inferred.  
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Use of KC-Based Learner Models and Evidence of Effectiveness 

To motivate the KC approach, we briefly touch on the second and third key challenges identified in the 

introduction: Once a KC model has been created for a given task domain, how can an ITS assess an 

individual student’s mastery of the KCs in the model? Also, what are good ways of using that assessment 

to individualize instruction? We review some of the key studies in the literature.  

A widely used approach to tracking individual learners’ knowledge growth using a KC-based model is 

BKT (Corbett & Anderson, 1995). In this approach, the posterior probability of mastering a KC is 

updated each time a student encounters a problem step involving that KC. The posterior probability 

depends on the performance on that step, the prior probability of mastery, the likelihood of learning from 

a step, and conditional probabilities that allow for the possibility that the student may guess the step or 

slip. These parameters are typically set separately for each KC and are sometimes estimated from data 

(Corbett & Anderson, 1995). As an alternative to BKT, Bayesian Networks are often used to maintain 

KC-based learner models (Conati, Gertner & Vanlehn, 2002). Further, recent EDM research has 

developed new methods for tracking individual learners’ knowledge growth in terms of KCs (e.g., Gong, 

Beck & Heffernan, 2011; Lee & Brunskill, 2012). Some of these methods have been shown to have 

greater predictive accuracy than BKT. To the best of our knowledge, these methods have not yet been 

used for online learner modeling or online individualization of instruction, although one of them, AFM 

(described below) has been used offline for KC model and tutor improvement, and there is much ongoing 

work in this area. 

The primary use of KC-based learner models in ITSs is to support individualized problem selection 

(Corbett, McLaughlin & Scarpinatto, 2000; Corbett & Anderson, 1995; Mitrovic & Martin, 2004). In this 

approach, the system uses its learner model to select problems that (for the given student, at the given 

point in time) target unmastered KCs. It continues to do so until the learner model indicates that the 

learner has reached mastery of the targeted KCs. This approach to individualized problem selection, often 

called “Cognitive Mastery,” is used in Cognitive Tutors, a type of ITS used widely in American 

mathematics education (Anderson et al., 1995; Koedinger & Aleven, 2007). Individualized problem 

selection based on a KC model can be very effective in enhancing student learning. In studies with the 

Lisp Tutor, an early Cognitive Tutor, Corbett et al. (2000) found substantial improvement in student 

learning outcomes, due to this form of individualization, with on average only a very modest increase in 

the time spent. Also, a study by Cen et al. (2007) showed that improving the accuracy of learner modeling 

– by tuning the parameters of the BKT procedure – leads to more efficient learning by students. These 

studies on individualized problem selection provide key evidence that adaptive individualization by an 

ITS enhances student learning, an important argument in favor of this advanced learning technology. 

KC-based learner models have also been used for individualizing a number of other aspects of tutoring 

systems. For example, they have been used to individualize ways in which worked examples are used in 

ITSs. In the SE-COACH by Conati and VanLehn, a KC-based learner model is used to decide what steps 

in a worked example a particular learner should be prompted to explain, which for early learners was 

shown to be helpful, compared to a system in which the steps to explain were not selected on an 

individual basis (Conati & Vanlehn, 2000). In other work, a KC-based learner model was used to select, 

on an individual basis, suitable examples for analogical comparison (Muldner & Conati, 2007). In a study 

by Salden and colleagues, a KC-based learner model was used to transition adaptively (KC by KC) from 

studying worked examples to solving problems. In a lab study and a classroom study, this adaptive 

technique led to better or more efficient learning (Salden, Aleven, Renkl & Schwonke, 2009). KC-based 

learner models have also been used as components in models of metacognition, affect, and specific 

(desirable or undesirable) learning behaviors. For example, in work on modeling adaptive help seeking 

behavior (a key metacognitive skill), the learner’s decision to seek help depends on the student’s level of 
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mastery of the given KCs. Help requests are deemed to be adaptive only on steps that involve KCs that 

are unfamiliar to the student at the given point in time (Aleven, Roll & Koedinger, 2012; Roll, Aleven, 

McLaren & Koedinger, 2011). Further, in work on creating machine-learned models of various aspects of 

learners and learner behaviors (e.g., gaming the system, off-task behavior, affective states, etc.) the level 

of mastery of a KC is one of the features that serves as input to the machine-learned classifier (Baker et 

al., 2006; Baker, Goldstein & Heffernan, 2011). Finally, KC models are often used as open learner 

models (OLMs) (Bull & Kay, 2007; Long & Aleven, 2013; Mitrovic & Martin, 2007), which have 

become a common feature of ITS. The OLM communicates a sense of progress and may support useful 

self-assessment and reflection. A recent study showed higher post-test scores in a tutor for linear equation 

solving with an OLM, compared to a version without the OLM (Long & Aleven, 2013). 

One way to generalize from this body of empirical work is to say that individualization of instruction 

based on a KC-based learner model has been shown to be especially effective in the system’s outer loop 

(VanLehn, 2006), as studies on individualized problem selection and example fading indicate, while also 

being somewhat effective (but not as effective) in the inner loop. This generalization is quite coarse, 

however – future work may provide a more nuanced perspective. 

Tutor Authoring Tools and the KC Approach to Learner Modeling 

Let us now return to the first of the three challenges listed in the introduction of the chapter: How can 

accurate KC models be created? In the remainder of the chapter, we discuss the pros and cons of a variety 

of approaches, starting with ITS authoring tools that support a “manual” approach to KC modeling. By 

manual we mean an approach unaided by data mining or machine learning algorithms, although it could 

involve data collected in the course of doing cognitive task analysis. There are many ways in which 

authoring tools for ITS can support a manual KC approach to learner modeling. We see two broad areas 

of functionality. First, tools can provide support for defining/building KC models as part of an iterative 

tutor development process. This kind of tool support is used offline, when authoring or refining a tutor. 

Second, authoring tools can provide mechanisms that tutors can use at run time to maintain/update KC-

based learner models and tailor aspects of the instruction. While there are many ITS authoring tools 

(Murray, Blessing & Ainsworth, 2003), we focus on how these two areas of functionality are 

implemented in CTAT, a tool suite with which they have been involved in the past 10 years (Aleven et 

al., 2009). Many of our points hold for other ITS authoring tools as well. 

CTAT is suite of tools for ITS authoring that has been used to build a wide range of tutors, many of 

which have been used in actual classrooms or other real educational settings. These tools support KC 

modeling as an integral part of tutor development. CTAT supports the authoring of two types of tutors: 

example-tracing tutors and Cognitive Tutors, both of which reflect a KC approach to instruction and 

learner modeling. Example-tracing tutor rely on behavior graphs to evaluate and interpret student 

behavior, cognitive tutors rely on a rule-based cognitive model. We view both behavior graphs and rule-

based cognitive models as a form of KC models.  

A behavior graph is a map of the solution space for a given problem (Koedinger, Aleven, Heffernan, 

McLaren & Hockenberry, 2004; Newell & Simon, 1972). Creating behavior graphs is a key activity in 

creating an example-tracing tutor. The tutor uses the graph to interpret student behavior (Aleven et al., 

2009). As a first step toward creating such a KC model, an author can use a CTAT tool called the 

Behavior Recorder to record a behavior graph for a given problem, simply by demonstrating the solution 

paths on the tutor interface designed for the given problem type. The Behavior Recorder records the 

demonstrated steps in a graph; the graph may have multiple solution paths corresponding to different 

ways of solving the problem. The links in the graph represent the steps, and the nodes represent problem-

solving states. Behavior graphs are not in and of themselves KC models, however, until the author 
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annotates the links with KC labels. These labels (essentially, names of hypothesized KCs) characterize the 

knowledge each step is hypothesized to require. Thus, the Behavior Recorder helps an author in coming 

up with a decomposition of the knowledge in the given task domain, as a form of rational task analysis. A 

key assumption is that – in creating a KC model – it helps to think at the grain size of problem steps 

rather than whole problems and it helps to have laid out (and thought about) these steps explicitly. 

Creating a mapping between steps and KCs can be viewed as implicitly formulating transfer predictions 

(Koedinger et al., 2004). Annotating two steps with the same KCs implies that one expects to see full 

transfer between these steps; practice on one improves the other, and vice versa. Conversely, assigning 

different KC labels to two steps implies that one does not believe such transfer will occur. Partial transfer 

between steps can be modeled by annotating steps with multiple KCs, some of which are shared between 

the two steps.  

Although behavior graphs labeled with KC names are useful KC models, one limitation is that they do not 

explicitly state the conditions under which the KCs apply. Put differently, the KCs are defined 

intensionally, by labeling steps in solution graphs, but not extensionally, by stating applicability 

conditions. This state of affairs is not ideal, because it means that the exact range of transfer for any given 

KC is not defined. Rule-based cognitive models (the second kind of KC model an author can create with 

CTAT) address this limitation (Aleven, 2010). Rule-based cognitive models are computer-runnable 

simulations of student thinking that can solve tutor problems in the ways that students do. In these 

models, KCs are expressed in IF-THEN format. The IF-part captures the conditions under which a KC is 

applicable – in other words, it captures how far the KC transfers. Thus, in creating a rule-based model, an 

author is forced to think hard about these conditions, more so than when creating example-tracing tutors. 

CTAT provides a host of tools that help in creating production rule models, including tools for visualizing 

and debugging production rule models (Aleven, McLaren, Sewall & Koedinger, 2006). Interestingly, in 

the process of creating a rule-based model, it is often very useful to have behavior graphs with KC labels. 

These graphs are a specification of how the production rule model should behave. CTAT also supports 

the use of the behavior graph for testing of rule-based cognitive models. 

In addition to supporting the development of KC models, CTAT supports the use of such models within 

running tutors for purposes of assessment, learner modeling, and individualization. Both example-tracing 

tutors and Cognitive Tutors built with CTAT use their KC model in the inner loop to assess student 

problem solving and interpret it in terms of KCs. Both types of tutors are capable of tracking learners’ 

knowledge (i.e., their mastery of the KCs in the tutor’s KC model) over time using BKT, briefly 

described above (Corbett & Anderson, 1995). They also provide individualized problem selection based 

on Corbett’s cognitive mastery mechanism, also described above (Corbett et al., 2000). Thus, as one 

would expect from an ITS authoring tool, CTAT supports use of the learner model for outer loop decision 

making, namely, problem selection (VanLehn, 2006). It does not support use of the learner model in the 

inner loop to individualize instruction, given the limited empirical evidence that inner loop adaptivity 

leads to improved student learning. Nonetheless, it will be helpful if ITS authoring tools can support use 

of a learner model to individualize various aspect of the inner loop (e.g., deciding what type of hints to 

give (cf. Arroyo Beck, Woolf, Beal & Schultz, 2000), if only so that more studies can be done to evaluate 

what kinds of inner loop individualization are most effective.  

Returning to an issue raised in the introduction, the CTAT tools for KC modeling primarily support 

theoretical cognitive task analysis. Behavior graphs and production rule models help in thinking about 

what knowledge may be needed to solve particular problems, how that knowledge might be decomposed 

to capture distinctions that students might make, and how widely specific KCs will transfer. It is left up to 

the author however whether or not to do so with the aid of empirical task analysis. The tools themselves 

do not directly support empirical task analysis or the use of data to help create KC models, with one 

exception: a tool called “novice bootstrapping” supports a process in which behavior graphs are created 

directly from log data of novice problem solving, rather than from expert demonstrations (Harrer, 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

172 

McLaren, Walker, Bollen & Sewall, 2006). This capability is though to be useful especially for problems 

with large solution spaces or in ill-defined domains. While CTAT proper provides limited support for 

using data in tutor or KC model development, it is fully integrated with the DataShop (Koedinger et al., 

2010), which provides many tools for this purpose. 

Tools for Data-Driven KC Model Validation and Refinement 

Once a tutor has been created, log data from the tutor can be used in a variety of data-driven methods to 

evaluate how well the tutor’s KC model captures the psychological reality of student problem solving in 

the given task domain and how it might be refined/improved. We look at a set of tools we have developed 

called the DataShop. The DataShop is geared toward supporting a KC-based approach to learner 

modeling. The DataShop is a large, open, online repository for process data from ITSs and other 

advanced learning technologies. In addition to being a repository with data sets available for secondary 

analysis, the DataShop supports KC model analysis, discovery, refinement, and testing. It also offers a 

standardized format for tutor log data. Given that the DataShop offers an extensive set of tools for KC 

modeling, logging in DataShop format is a useful feature for any ITS authoring tool. CTAT is fully 

compatible with the DataShop in this sense. That is, all tutors built with CTAT write detailed logs of 

student-tutor interactions in DataShop format, without extra work by the author.  

Using DataShop tools, an author can perform the following:  

● Visually inspect learning curves for individual KCs or groups of KCs extracted from log data. 

Analysis of a KC model often starts with visual inspection of the learning curves. The learning 

curves may be based on an existing KC model, such as the one that the given tutor is using, or a 

new model created by hand. Learning curves capture the performance of a group of students on 

successive opportunities to apply the given KC or KCs. The learning curves show how 

challenging the KC is for the target population and the rate at which it is learned. Learning curves 

are useful tools for visualizing student learning with an ITS, both for researchers and developers. 

The visual appearance of the learning curves can indicate whether the KC model is 

psychologically real, with smooth, gradually declining curves suggesting that it is, and ragged or 

flat curves suggesting it might not be. 

● Evaluate or validate a KC model by testing how well it predicts performance in the given log data 

set. As described below, the DataShop uses a logistic regression model called AFM to predict 

student performance based on a given KC model (Cen et al., 2006; Spada & McGaw, 1985). 

● Search for explanations and newly hypothesized model features when learning curves fail to have 

their theoretically predicted shape (e.g., are ragged) or when a KC model has poor fit with the 

data (i.e., leads to inaccurate performance predictions using AFM). An author may try to pinpoint 

where in the tutor’s problem set deviations from ideal learning curves occur, so as to come up 

with hypotheses for how the KC model might be improved. For example, an author might look at 

problem steps that are notably easier or notably more difficult than the theoretically predicted 

value. This type of analysis is supported by a DataShop tool called the Performance Profiler. 

● Compare learning curves or learning rates (obtained from fitting AFM) across conditions in an 

experiment, e.g., does one condition lead to a more efficient or more effective learning process 

than another? (cf., Mathan & Koedinger, 2005). 

● Compare how well different KC models fit the same data set (using the AFM). This type of 

analysis is a way of exploring transfer or lack thereof or equivalently, of exploring the level of 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

173 

generality/specificity at which students learn skills or acquire knowledge. Comparing alternative 

KC models may help an author understand student learning and may be a key step towards 

finding a better KC model. An author may create alternative models by hand and upload them 

into the DataShop. The DataShop presents a “score board” ranking the different KC models for a 

given data set in terms of their predictive accuracy.  

● Analyze what errors are frequent in the data set, for purposes of both tutor improvement (e.g., an 

author might add error feedback messages for the most common or the most confusing errors) as 

well as model exploration focused on errors. 

● Automatically refine a KC model by running an automated best-first search procedure over a 

space of model variations; this procedure, called LFA, is described below. 

Now let us turn to the question how KC models can be evaluated beyond visual inspection of learning 

curves, a fundamental concern in the KC modeling approach. Above we said that KC models should be 

judged by their ability to support accurate predictions of student learning across tasks and over time, but 

we left open the question how exactly a model can be used to make predictions. Although there is not a 

single right way of doing so, a good way is to use a logistic regression model known as the AFM, shown 

in Figure 15-1 (Cen et al., 2006; Spada & McGaw, 1985). This model is used in the DataShop. 

 

   
   

       
           

 

           
 

        

Given: 

     (0 or 1) probability that student i gets step j correct 

     (0 or 1) whether KC k is needed for step j 

     number of opportunities student i has had to practice KC j 

Estimated: 

    proficiency of student i 

    ease of KC j 

    gain for each opportunity to practice KC j 

Figure 15-1. AFM built into the DataShop for using a KC model to make predictions about student 

performance 

AFM can be used to estimate the probability that the student will get a step in a tutor problem right, based 

on that and other students’ history on problem steps that involve the same KCs. Each step is assumed to 

involve one or more KCs. Thus, to use the model it is necessary to have a mapping between tutor problem 

steps and KCs. In a running ITS, this mapping is typically created in the system’s inner loop (VanLehn, 

2006), using the tutor’s KC model; the mapping is then recorded in the tutor log data. In offline 

approaches to KC model validation, a static “Q matrix” is often used, which specifies the mapping 
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between steps and KCs. This mapping is essentially what is meant by a KC model in this context. A 

mapping created dynamically by an ITS can be more flexible than a Q matrix, in the sense that the KCs in 

a step can depend on the particular solution path the student takes through the problem (Aleven, 2010). 

AFM estimates the log odds of the probability that the student will get the step right as the sum of three 

key quantities: the proficiency of the student (i.e., how good the student is in general, across all KCs, or 

 i), the ease of each KC involved in the step (  ), and how much the student has learned on prior 

opportunities to practice each of these KCs (     ). Thus, the model captures effects of practice over time 

and takes into account that a student is learning, essential characteristics of learner modeling approaches 

in ITS. Further, the model assumes that practice with a given KC does not have any direct effect on other 

KCs, a fundamental assumption in KC modeling discussed above. This regression model also makes a 

number of simplifying assumptions. First, it assumes that all students learn the same KCs. Second, it 

assumes that a KC that is more difficult than other KCs is so for all students. That is, the model does not 

allow for the possibility that a particular KC is harder than other KCs for one student, but easier than 

other KCs for other students (i.e., the model has no student × KC interaction term). Also, the model 

assumes that the effect of past practice opportunities is measured accurately solely by the number of such 

opportunities, and that there is no additional information to be gained for example from how successful 

these past opportunities were. In spite of these assumptions, the model has the virtue of (relative) 

simplicity and works well in practice. Addressing some of these assumptions leads to more complex 

models, as has been explored in later work by various researchers (e.g., Gong, Beck & Heffernan, 2011).  

In order to use the model to predict student performance, it is necessary to estimate the values for the 

parameters in the model, specifically, the proficiency of each student (  ), the ease of each KC (  ), and 

the learning rate for each KC (  ), as shown in Figure 15-1. These parameters can be estimated through 

standard logistic regression modeling techniques, such as generalized linear modeling (in R, the glm 

function with family= binomial). With such parameter estimates in hand, it is possible to calculate the 

predictive accuracy of the model on held-out data (i.e., cross-validation). Alternatively, predictive fit 

indices such as Akaike information criterion (AIC) and Bayesian information criterion (BIC) can be used, 

especially when the focus is on comparing alternative KC models for the same data set. 

How does a KC model’s psychological reality relate to its predictive ability? The short answer is, if a KC 

model is incorrect in the sense that it does not capture the true KCs that students acquire, then the 

parameter estimates obtained through logistic regression process described above will be inaccurate and 

therefore lead to inaccurate predictions. To illustrate, consider a model that models KCs at too high a 

level of abstraction, meaning that it misses distinctions that students actually make. This model models as 

one KC what for students are two separate KCs. To make the example concrete, consider a model for 

geometry problem solving that uses one KC for steps that use the circle area formula. Let us assume, 

however, that in reality, using the circle area formula when the radius is given is different for students 

from using it when the area of the circle is given – going from area to radius involves a square root, a 

difficult mathematical operation. As a consequence, the    (ease of KC) estimate for the overly abstract 

KC in our model would be a rough average of the   ’s of the two true KCs, which may have different 

true   ’s. Similarly, the learning rate parameter (  ) for the overly abstract KC might also not accurately 

reflect those for the true KCs. Similar comments can be made for a model with overly specific KCs. In a 

model with overly specific KCs (i.e., a model that misses abstractions that students actually make), the 

practice opportunities are not assigned correctly to the true KCs, which will lead to inaccurate parameter 

estimates. 
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Automated Methods for KC Modeling Learning Factors Analysis (LFA) 

While tools for data-driven KC model analysis and validation such as those provided by the DataShop are 

very helpful, a model author still needs to do a substantial amount of work to come up with model 

variations and test whether they have greater predictive accuracy than the model from which they were 

derived. In any realistic KC modeling effort, there may be many modeling decisions about which there is 

uncertainty. As a result, the space of models that might potentially do a better job than an initial model 

created by hand is often quite large. It would be difficult for an author to optimize a model by searching 

this large space by going through the manual (though tool-supported) model refinement process described 

in the previous section. Therefore, EDM research has started to produce automated methods for 

discovering and refining KC models. 

LFA is one such method (Cen et al., 2006). It automates the process of hypothesizing alternative 

cognitive models and testing them against data. This method searches a space of KC models, given (1) an 

initial model, (2) information from which model variations can be generated, and (3) a data set with step-

level problem-solving data from a group of students on relevant problems (a typical tutor log data set, in 

other words, such as those captured in the DataShop). The method does a best-first search, using AFM as 

described above to evaluate each model variation and using the AIC metric for relative model fit. 

To use LFA for model refinement, an author must provide information that the LFA algorithm uses to 

derive new KCs, item b in the list above. To this end, an author needs to identify factors in the given 

problem set that are hypothesized to make a difference in how students view or approach problems and 

therefore in the KCs that they acquire when they work through these problems. For each of these 

hypothesized difficulty factors, the author also needs to specify in which problems that factor occurs, a 

so-called “P matrix.” The LFA algorithm uses this information to split KCs into more specific KCs, based 

on the difficulty factors, resulting in a finer-grained model. The algorithm also is capable of merging two 

KCs under appropriate circumstances, resulting in a coarser-grained model. The new model (with the split 

and/or merged KCs) is evaluated using the AFM described above and it is retained in the best-first search 

process if the AIC criterion shows improved fit over the model from which it was derived. The LFA 

algorithm can be run, on request, on any DataShop dataset and has been run on tens of datasets.  

As a hypothetical example, a KC model for geometry problem solving might have a KC for applying the 

isosceles triangle theorem to infer the measure of one of the two angles opposite the congruent sides, 

given the measure of the other such angle. (The two angles are congruent.) A model author might wonder 

whether it makes a difference whether the isosceles triangle is acute or obtuse – students in the target 

population may be more familiar with acute triangles and recognize them more readily as being isosceles. 

Similarly, an author might wonder whether the triangle’s orientation in the diagram matters – the third, 

non-congruent side may be at the bottom (fir tree configuration) or at the top (ice cream cone) or one of 

the congruent sides may be at the bottom (lying on the side). Perhaps the fir tree configuration is more 

familiar and recognizable for students. Our author would therefore define two difficulty factors, one 

capturing the obtuse/acute distinction, the other the tree/cone/on-the-side distinction. These two factors 

together would yield 12 possible ways of refining the KC model for the isosceles triangle skill, all more 

fine-grained than the original model. The LFA search would test if any of the more fine-grained KC 

models better accounts for the student data that was observed, based on its AIC score. The example 

illustrates how the space of models can be quite large, which is a key reason why automated methods are 

useful.  

In a study by Koedinger, McLaughlin, and Stamper (2012), the LFA method was applied to 11 DataShop 

data sets from a variety of Cognitive Tutors and an educational game in a variety of domains. Models 

generated by LFA were found to improve upon handmade models in all 11 cases, demonstrating the 
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potential of the method for automated model generation. Among the improved models was one for 

problem solving with the geometry area formula. As described above, the method discovered that for 

circle area problems, it mattered whether the radius of the circle or the area of the circle was given, 

whereas for other formulas, it did not make a difference whether the formula was applied forwards or 

backwards – only the circle formula required use of the square root when applied backwards. 

A limitation of LFA is that it needs an initial KC model and therefore does not obviate the need for 

manual KC modeling. Some attempt at indicating categories of problem (steps), as simple as topics or 

learning objectives, is necessary. More desirable is to use LFA as supplement to cognitive task analysis 

done in the early stages of tutor building. Further, LFA cannot compensate for limitations in the breadth 

of the problem-solving tasks used in a tutor. Task difficulty factors that have a large effect on student 

performance can be recognized with just one or a few problems involving them. For LFA to detect 

smaller effects, however, a larger number of problems with and without a difficulty factor are needed. 

This frequency and variety may or may not occur when a problem set has not been designed with these 

difficulty factors in mind. Finally, better results can be achieved if there is at least some randomness in 

the order in which problems are assigned to students, which is not always the case in tutor problem sets. 

Use of Mixed-Initiative Machine Learning for KC Modeling 

As a final tool for KC modeling, we look at a machine-learning approach to rule-based KC modeling. As 

mentioned, advantages of rule-based models over other types of KC models are that transfer predictions 

are made explicit in the conditions of the rules (i.e., in their IF part, given they are written in IF-THEN 

format) and that they deal well with problems that have a large solution space, as occurs for example in 

algebraic problem solving (Waalkens, Aleven & Taatgen, 2013). However, writing rule-based KC models 

requires a substantial amount of work and technical expertise (i.e., AI programming skill). The machine 

learning approach described in this section helps address this shortcoming. 

Li, Matsuda, Cohen, and Koedinger (2011) developed an approach that automatically discovers student 

models using a state-of-art machine-learning agent, SimStudent. They show that the discovered model is 

of higher quality than human-generated models and demonstrate how the discovered model can be used to 

improve a tutoring system’s instruction strategy. SimStudent learns a rule-based KC model, of the kind 

that CTAT authors can create by hand, by being tutored. An author (e.g., a subject matter expert without 

programming expertise) interacts with SimStudent by first presenting it with a problem using a CTAT 

interface (e.g., an equation to solve like 100–4x=40). SimStudent uses any productions it has learned so 

far to try to generate a first step in solving the problem. If none apply to the current state, SimStudent asks 

the author to demonstrate the next step. It then uses multiple inductive learning mechanisms to learn the 

IF-part (information retrieval and conditions of applicability) and THEN-part (a function sequence) of a 

production rule that can reproduce the demonstrated step and generalize to other similar steps. If 

SimStudent has a production that applies (its IF-part matches the current state), it displays the resulting 

action (by executing the THEN-part) in the CTAT interface to be checked by the author. If the author 

confirms the step, this action is added as a positive example of the production. If the author rejects the 

step, the action is added as a negative example and the productions IF-part will be refined (e.g., by adding 

a condition that stops the rule from firing in states like this one in the future). SimStudent tries again, 

perhaps grounding out in asking for a demonstration of the next step. 

The author may (but need not) provide guidance to SimStudent about what steps to try to generalize 

across by providing the same skill label to these steps, similar to labeling steps in behavior graphs. Even 

when a label is provided for a set of steps, SimStudent may not find a single general production that 

works across all same-labeled steps. In those cases it creates multiple productions and these, then, are the 

key basis for theoretical discovery of a better cognitive model (these are an automated generation of the 
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equivalent of a factor used to perform a split in LFA). For example, in Li et al. (2011), equation-solving 

steps involving dividing by a coefficient (e.g., 3x=12, 15=–5x, or –x=8) were all given the same label 

(meaning that the author hypothesized that these steps involve the same KC). However, SimStudent 

learned separate productions for steps where there is number before the x (e.g., 3x=12 or 15=–5x) vs. 

steps where there is just a “–” sign before the x (e.g., –x=8 or –13=–x). In other words, SimStudent, at its 

own initiative, refined the KC model proposed by the author, by splitting the author’s hypothesized KC. 

The KC model created by SimStudent (it made other novel distinctions besides this one) was compared 

(using AFM) with the best existing hand-created model. It led to better prediction fit as measured both by 

AIC and root-mean-square error (RMSE) on the test set in cross-validation. In particular, the cognitive 

model SimStudent learned better captured that human students find the second category of problems, with 

no explicit numerical coefficient (e.g., –x=8 or –13=–x), to be much more difficult than the first category 

(60% vs. 30% error rate). This kind of cognitive model discovery via SimStudent has now been tested 

across multiple domains: algebra equation solving, fraction addition, chemistry stoichiometry problems, 

and English article choices. 

In some cases (e.g., algebra equation solving), the SimStudent-discovered cognitive model beat the prior 

best hand model and the prior best LFA model. However, adding the SimStudent discovered factors as 

input to LFA has so far always produced a better model (e.g., in fraction addition) than SimStudent or 

LFA alone.  

Discussion 

In this chapter, we focused on a key challenge in the KC approach to learner modeling, namely, that of 

accurately determining what the KCs are that learners acquire in a given task domain. While up until now, 

manual approaches to KC modeling have been prevalent, data-driven approaches have progressed to the 

point that they can at least be a useful supplement and perhaps even a substitute. The ways in which 

manual models based on intuition fall short provide interesting feedback on our intuitions about learning. 

Perhaps the examples given in the chapter illustrate that even experienced KC modelers tend to be over-

optimistic about transfer. Perhaps the exercise of refining handmade models through data-driven, 

automated methods will eventually lead to a better general understanding when transfer is and is not 

likely to occur. Interestingly, the educational impact of KC modeling approaches will reach well beyond 

ITS development, as lessons learned through KC modeling can be applied to the design of a wide range of 

instructional materials, not just advanced learning technologies and ITSs. For example, many or all of the 

examples of discoveries about student learning given in the chapter could be applied to textbook and 

(non-tutored) homework assignments. 

Given that we have described a range of tools for KC modeling, each with pros and cons, it may be useful 

to reflect on how these tools might feature in a realistic tutor development scenario. In an ideal scenario, 

an author might first build a tutor based on manual KC modeling. For example, the author might use an 

ITS authoring tool that supports KC modeling as an integral part of tutor development, such as CTAT. 

The author might build an example-tracing tutor, hand-write a production rule cognitive model, or 

automatically develop a production rule cognitive model by tutoring SimStudent. Ideally, the author 

would not rely on theoretical cognitive task analysis only but also do a substantial empirical task analysis 

(e.g., think-alouds and difficulty factors assessments), so as to increase the quality of the initial KC 

model.  

However, even with empirical cognitive task analysis up front, there is still room for improvement 

through data-driven discovery from search over a larger space of tasks and models. After deploying the 

initial version of the tutor in a real educational setting, an author might use the data-driven tools described 

in this chapter to analyze the tutor log data. Specifically, the author evaluates how effective the tutor is in 
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helping students learn the targeted KCs and explores ways in which the KC model can be refined using 

DataShop tools, using its learning curves display, fit indices for the AFM predictions, and the DataShop’s 

performance profiler. For example, the author might investigate the causes of ragged learning curves 

using the performance profiler and try out a few model extensions by hand to see if AFM fit improves. In 

a more systematic approach, the author may use LFA to find a better model. Having found a better KC 

model (i.e., one that better matches the data about student learning), the author updates the tutor to 

improve its effectiveness (“closing the loop”). We emphasize that although the data-driven approaches 

such as use of DataShop tools, LFA, or SimStudent are helpful, in our opinion, they do not do away with 

the need for a careful cognitive task analysis at least to interpret the resulting data, but better yet toward 

creating a good KC model for use in the first version of the tutor.  

Implications for GIFT 

In this final section, we discuss implications for GIFT and other ITS authoring tools. We started the 

chapter by identifying three key challenges related to KC approaches to learner modeling: identifying 

psychologically accurate KCs, modeling the knowledge of individual students, and using KC models to 

individualize instruction. To support a KC approach to learner modeling, an ITS authoring tool would 

ideally address all three challenges. We illustrated how CTAT, in combination with the DataShop, 

successfully addresses these three challenges.  

How could new authoring tools, such as GIFT, address these same challenges? Could they borrow from 

the CTAT/DataShop approach? We see some low-hanging fruit in particular with respect to the first 

challenge (creation/discovery/refinement of KC models). A good start is integration with the DataShop 

(Koedinger et al., 2010; Stamper & Koedinger, 2011). All that is needed is that tutors log student-tutor 

interactions in DataShop format (see http://pslcdatashop.org/dtd/). This integration is a good first step 

even before the authoring tool supports any kind of KC model. Even in the absence of any KC model 

within the tutoring system itself, the DataShop can be used for offline KC modeling based on tutor log 

data, which can lead to recommendations for improving the tutoring system. DataShop logging requires 

that the student interactions are divided into steps, which can involve successful attempts, unsuccessful 

attempts, and hint requests. VanLehn (2006) illustrates how interactions from many different tutoring 

systems can naturally be thought of as involving steps.  

In addition, behavior graphs may be useful in GIFT and other authoring tools. Mapping out the solution 

space for tutored problems (as behavior graphs do) is useful for purposes of theoretical task analysis, as 

illustrated in the current chapter, and is compatible with a range of different types KC models.  

Beyond this low-hanging fruit, the main challenge we see in supporting a KC approach in an authoring 

tool such as GIFT is in representing a particular type of KC model. Ideally, the authoring tool also makes 

it considerably easier for an author to build KC models of the targeted type in a range of application 

domains. A key related challenge is to the use of the KC model in the system’s inner loop to interpret and 

assess student behavior. The commitment to support a particular type of KC model influences many 

aspects of the authoring tool and should be made early on in the tool’s development. Different authoring 

tools address this challenge in their own way. CTAT supports two types of KC models, rule-based models 

and annotated behavior graphs. ASPIRE supports the authoring of constraints as key KCs with various 

tools (Mitrovic, Martin, Suraweera, Zakharov, et al., 2009).  

With respect to the second and third challenges (using a KC model to track individual students’ 

knowledge growth and individualizing instruction), innovative ITS authoring tools such as GIFT may 

include mechanisms or algorithms that enable tutors built with the tools to track over time how well 

individual learners do in terms of a given KC model. Also, they may offer a range of different ways of 

http://pslcdatashop.org/dtd/
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adapting the instruction based on such models of individual learners (the third challenge). By supporting 

easy customizability with respect to a range of options, authoring tools can do much to advance research 

into the benefits of different ways of individualizing instruction, a forte of ITSs. 
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CHAPTER 16 ‒Towards Learner Models based on Learning 

Progressions (LPs) in DeepTutor 
Vasile Rus, William Baggett, Elizabeth Gire, Don Franceschetti, Mark Conley, and Arthur Graesser 

The University of Memphis 

Introduction 

Learner modeling is a central component in any tutoring system that also claims to be intelligent. A 

learner model is a set of learner characteristics that impact learning, and therefore, is important for 

adapting instruction to each individual learner and thereby maximize learning. Indeed, research has 

shown that learners’ diverse backgrounds require tailoring instruction to each individual learner or, more 

realistically in classroom settings, to homogeneous groups of learners (Corcoran, Mosher & Rogat, 2009). 

It should be noted that a major advantage of computer-based instruction, including ITSs, over classroom 

instruction is the potential of offering tailored instruction to each and every learner. These systems 

presumably can be scaled up in the sense that once developed for one user they could be easily replicated 

or modified to handle many users. Learner modeling is a particular case of user modeling, which 

constitutes a central component in any user adaptive system. User adaptive systems tailor their behavior 

to the individual user’s characteristics in order to optimize the value of their function with respect to the 

user (Conati, Gertner & VanLehn, 2002; VanLehn, 2006). We focus here on user models in ITSs, i.e., on 

learner models. 

The learner model plays a role in both the outer and inner loop of ITSs (VanLehn, 2006). The outer loop 

handles macro-adaptivity in the sense that it selects tasks and other instructional materials to present to 

the learner. The outer loop also selects a mode for the task, e.g., demonstrating a step-by-step solution to 

the task or just providing hints. The inner loop manages the tutor-tutee interaction within a task by 

monitoring the learners’ actions while she is working on an instructional task. The inner loop handles 

micro-adaptivity. 

We present in this chapter a novel approach to learner modeling that enables improved macro- and micro-

adaptivity. We emphasize here the impact of the new approach on macro-adaptivity. The novel approach 

relies on a research framework, called Learning Progressions (LPs), developed recently by the science 

education research community as a way to increase adaptivity in traditional instruction. Indeed, 

“assessment for learning” (Black & William, 1998) has been a focus in this community for more than a 

decade (National Research Council, 2001, 2005, 2007). This effort led to the emergence of the framework 

of LPs, defined as “descriptions of the successively more sophisticated ways of thinking about an idea 

that follow one another as students learn” (NRC, 2005, 2007). Corcoran, Mosher, and Rogat (2009) state 

“progressions can play a central role in supporting the needed shift toward adaptive instruction as the 

norm of practice in American schools.” Importantly, LPs provide a promising means to organize and 

align content, instruction, and assessment strategies to give students the opportunity to develop deep and 

integrated understanding of science ideas. The time is ripe for the ITS community to integrate in 

computer tutors such advances in assessment and instruction proposed by the assessment and science 

education research communities in order to increase ITSs’ adaptivity and, in turn, their effectiveness at 

inducing learning gains in learners. 

Our dialogue-based ITS DeepTutor (Rus et al., to appear) incorporates the framework of LPs (National 

Research Council, 2007) as a way to improve assessment and better tailor instruction to each individual 

learner. DeepTutor is under development as of this writing, which explains the preliminary flavor of the 

ideas presented in this chapter. Because DeepTutor is a dialogue-based ITS, the main form of interaction 

in DeepTutor is tutorial dialogue that mimics interaction between human tutors and learners. Deep natural 
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language processing technologies are also needed to accurately assess students’ level of understanding 

while interacting with DeepTutor. In fact, the quality of the algorithms for dialogue and language 

processing has a direct impact on other core ITS tasks such as feedback generation. An authoring tool that 

allows us to explore and design algorithms for deep natural language processing has been developed (for 

more information about the Semantic Similarity, or simply SEMILAR, toolkit, see 

www.semanticsimilarity.org). 

Based on (1) LPs that promote deep and integrated understanding of science and (2) deep natural 

language processing algorithms (as well as several other novel aspects of DeepTutor such as advanced 

tutorial strategies which we do not discuss here), DeepTutor is expected to provide better assessment and, 

in turn, better adapt instruction to each individual learner. This will lead to learning gains beyond the 

interaction plateau, i.e., the hypothesis that as interactivity of tutors increases, their effectiveness plateaus 

(VanLehn, 2011). VanLehn’s interactivity plateau finding calls for ITS researchers to propose qualitative 

advances that can increase the learning effectiveness beyond the interactivity plateau. Indeed, the 

proposed advances in DeepTutor are meant to address this challenge by proposed qualitative shifts for 

core ITS components such as the domain and student modeling components through the use of LPs. 

The rest of this chapter is organized as follows. After a brief general discussion of learner modeling in 

ITSs, we describe the framework of LPs. Then, we describe general ideas about the development and 

validation of LPs and illustrate how this process is implemented in DeepTutor, the first ITS based on LPs. 

The role of LPs for macro-adaptation in our DeepTutor project is then highlighted. We conclude with a 

discussion about how GIFT can accommodate LP-driven ITSs. 

Learner Modeling in ITSs 

ITS researchers have investigated and integrated learner models in their systems to increase the 

effectiveness of these systems (Conati, Gertner & VanLehn, 2002; Corcoran, Mosher & Rogat, 2009; 

Lintean, Rus & Azevedo, 2012; Sottilare et al., 2012; VanLehn, 2006). Although other learner 

characteristics such as emotions have been considered recently, researchers and developers of ITSs have 

focused primarily on learners’ performance with respect to the target domain, i.e., knowledge assessment, 

to guide adaptivity. 

Different ITSs employ different approaches to the problem of learning modeling, including knowledge 

tracing in the Cognitive Tutor (Anderson et al., 1995), constraint-based modeling (Mitrovic, Martin & 

Suraweera, 2007), and the Expectation-Misconception approach used in AutoTutor (Graesser, Rus, 

D’Mello & Jackson, 2008). In all of these models, the emphasis is on supporting micro-adaptivity. 

Attempts to handle macro-adaptivity have been modest. The Student Modeling Approach for Responsive 

Tutoring (SMART) student model (Shute, 1995) uses regression equations to estimate students’ mastery 

of each curriculum element. Conati, Gertner, and VanLehn (2002) describe the learner model used in their 

Andes system that tutors students on Newtonian physics. The model is based on Bayesian networks in 

which explicit domain-general and context-specific rules are encoded. Conati and colleagues describe the 

use of the model for micro-adaptivity during example studying and problem-solving, but they do not 

report any use for macro-adaptivity. The mathematics tutor ALEKS (Doignon & Falmagne, 1999) relies 

on the knowledge space theory (KST) for domain modeling. KST relies on the precedence relation that is 

evident for some domains like mathematics where a student must learn a concept A before learning 

another that relies on A. A student’s knowledge state is the set of items mastered. Not all subsets of items 

are feasible knowledge states due to the precedence relations among items. Based on assessment, a 

student’s knowledge state is inferred, which guides instruction. Learning occurs on the outer fringe of the 

knowledge state that is the immediate successor state in the knowledge structure of the domain. The 

knowledge structure is the collection of all possible states. ALEKS offers macro-adaptivity but the 
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organization of the domain is based on a logical organization provided by experts according to intrinsic 

dependencies among concepts in a domain. There is no emphasis on the developmental milestones 

students pass while learning a topic. KST may be suitable for domains where precedence relations are 

well defined such as mathematics but for domains where there is no such clear structure KST is less 

useful. An interesting research question is about how KST for well-defined domains can be transformed 

into or combined with the LP framework. 

There are three general challenges with deriving knowledge assessment learner models for each 

individual student based on her actions during learning: (1) determining how much activity from an 

individual learner the system must monitor and analyze to reliably estimate the parameters of the learner 

model, (2) keeping the parameters up to date while the student’s level of understanding of a domain 

evolves, and (3) representing and handling misconceptions. The knowledge assessment learner models 

encode primarily what the students are supposed to learn, i.e., true knowledge, while not embedding 

explicitly alternative conceptions. These alternative conceptions, or misconceptions, are handled 

separately. Novel solutions based on LPs can better address these issues as shown next in the context of 

our DeepTutor ITS. 

We use the framework of LPs as a paradigm shift in learner modeling for ITSs. LPs model and organize 

domain knowledge based on what is known about how learners actually progress through that content as 

opposed to a logical decomposition of the content by a domain expert. LPs explicitly consider the 

alternative conceptions, mapping how they developmentally emerge. This learner-centered organization 

of content enables improved macro-adaptation and micro-adaptation. We focus here on the role of LPs in 

supporting better macro-adaptation. Coupled with appropriate assessment instruments and instructional 

strategies, LPs offer the possibility of qualitative shifts in learner modeling and learner experiences with 

ITSs. 

The Framework of Learning Progressions 

The National Research Council (NRC) (2001) report called for better descriptions of how students learn 

based on models of cognition and learning. Based on such descriptions of how students learn, 

“assessments can be designed to identify current student thinking, likely antecedent understandings, and 

next steps to move the student toward more sophisticated understandings” (NRC, 2001, p. 182). This was 

basically a call for developing LPs (Corcoran, Mosher & Rogat, 2009). The term “learning progressions” 

was first used in a subsequent NRC report (2005). According to Corcoran, Mosher & Rogat (2009), LPs 

in science are “empirically grounded and testable hypotheses about how students’ understanding of, and 

ability to use, core scientific concepts and explanations and related scientific practices grow and become 

more sophisticated over time, with appropriate instruction” (p.8). 

Corcoran, Mosher, and Rogat (2009) also mention as major conceptual contributions (although they did 

not use the term LP): (1) the work of Lehrer and Shauble (2000) on model-based reasoning in science; 

and (2) research by Valverde and Schmidt’s (1997) on the relationship between content and structure of 

curricula and student achievement. It is also worth mentioning the work of Roberts,Wilson, and Draney, 

(1997) on “construct maps” and work on progress maps by Masters and Fosters (1996). Wilson and 

colleagues and Masters and Fosters pushed for a concentrated effort on improving assessment to guide 

instruction. Work on learning trajectories in mathematics (Driver, Leach, Scott & Wood-Robinson, 1994) 

as well as work on cognitive development maps (Baxter & Junker, 2001) further contributed to the 

development of LPs. 

LPs can be viewed as incrementally more sophisticated ways to think about an idea that emerge naturally 

while students move toward expert-level understanding of the idea (Duschl et al., 2007). LPs define 
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qualitatively different levels of understanding of big ideas. The levels can be sequentially related or the 

relation could be more complex. For instance, topic A may develop the ideas from a less sophisticated 

topic B but also connect to other topics. LPs model how students develop deep and integrated 

understanding of complex science topics. The emphasis on increased sophistication (i.e., depth) and 

integrated understanding of ideas sets LPs apart from classroom instruction and assessment, which are 

typically based on curriculum materials that follow local, state, and national standards. These standards 

tend to support compartmentalized understanding and shallow coverage of a broad range of topics instead 

of a deep, integrated understanding of few key ideas (Schmidt, Wang & McKnight, 2005; Stevens, 

Delgado & Krajcik, 2009). The bottom line is that LPs adopt a learner-centric view of a topic, modeling 

students’ successful paths towards mastery as opposed to paths prescribed by domain experts following a 

logical decomposition of big ideas. The logical decomposition provided by experts could be useful as a 

starting point but then needs be reorganized based on evidence of how students actually develop mastery 

of the big ideas. These actual paths must be documented and guide instruction. While some paths towards 

mastery defined by domain experts may be successfully followed by some students, some other students 

may follow other paths, i.e., might be more responsive to different topic sequences as well as instructional 

tasks that help their conceptual change. 

LPs are organized in levels of understandings that reflect major milestones in learners’ journey towards 

mastery. The lower level, called the Lower Anchor, represents naïve thinking that usually novices hold. 

The top level, called the Upper Anchor, represents the mastery/expert level of understanding. If targeting 

a particular population, e.g., high school students, the Lower Anchor would coincide with the Upper 

Anchor of grade 8 students. Such an assumption is not always practical, as we learned during the 

development of our DeepTutor system, because not all students entering high school are at the Upper 

Anchor of grade 8. Furthermore, if someone develops an instructional intervention such as DeepTutor to 

be used by learners of all ages then the Lower Anchor should be specified accordingly, i.e., to reflect the 

lowest possible level of understanding. The anchoring of the Upper Level in an LP raises the issue of 

whether standards should indicate what the best and brightest students can achieve in a particular grade or 

whether standards should consider what average students can do (Corcoran et al., 2009). It is beyond the 

scope of this chapter to discuss this issue. In our work, we use standards to specify the Upper Anchor for 

a particular grade level. Our true Upper Anchor specifies the true and strongest scientific conceptions. 

Open Issues 

While there are many commonalities and a general understanding of what LPs are, some aspects of LPs 

are open for debate and interpretation and vary from one developer to another. For instance, the span of 

an LP can vary from one instructional unit that is covered over several weeks during a semester in a 

particular grade to covering multiple grades, e.g., 6‒8 years of instruction. Alonzo and Steedle (2009) 

differentiate between broad LPs and small LPs that cover in more detail a particular idea or construct in 

the sense proposed by Wilson in his Structured Construct Model (SCM; Wilson, 2009). That is, broad 

LPs may cover the development of a set of big ideas with each big idea constituting a small LP. The 

broad LP has the advantage of providing the big picture: the big ideas and how they develop across grades 

as well as the inter-dependencies among these big ideas. The smaller LPs provide sufficient detail such 

that instructors can use them to track students’ progress over instructional units and guide their 

instruction. 

Another varying aspect of LPs is their granularity. Fewer levels described in summary core ideas means a 

more general LP and also more reliable diagnostics. However, finer-grained LPs offer a more sensitive 

instrument to measure progress, have more explanatory power, and can be more useful in guiding 

instruction. A related contentious aspect of LPs is their relationship with curriculum and instruction. 

Some developers do consider instruction as an integral part of LPs (Songer, Kelcey & Gotwals, 2009) 
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while others develop LPs independent of instruction (Mohan, Chen & Anderson, 2009). The approach 

adopted affects the LP validation process. 

We conclude this section by noting that research on LPs is thriving with many LPs being developed 

(Alonzo & Steedle, 2009; Songer, Kelcey & Gotwals, 2009; Jin & Anderson, 2012; Neumann, Viering, 

Boone & Fischer, 2012; Johnson & Tymms, 2011), many LPs conferences and other events being 

organized, and LPs being adopted by various states.  Of note are the LPs adopted by the state of 

Massachusetts (Foster & Wiser, 2012). 

The Development and Validation of LPs in Deeptutor 

We now describe the structure and process of developing and validating LPs. LP development is driven 

by assessment, i.e., what gets measured and what counts as evidence for learning, and should include the 

following: 

1. Content and conceptions (student thinking) – what gets measured. That is, LPs must specify what 

students need to know and the various alternative conceptions they may have. 

2. Learning performances, which are the “operational definitions of what learners’ understanding 

and skills would look like at each of these stages of progress” (Corcoran et al., 2009) – what 

counts as evidence of level of understanding. 

3. The Upper Anchor describes the set of knowledge and skills students are expected to have at the 

end of the progression. These expectations can be found in state or national science standards and 

recent learning research on the subject matter. 

4. Progress levels or steps of achievement (intermediate levels) include both correct and 

incorrect/weak conceptions that learners consistently use to reason about phenomena in a given 

domain. Some of the correct conceptions are held early on. Some weak conceptions (or 

misconceptions) can be extremely persistent across many progress levels. 

5. The Lower Anchor describes student conceptions at entry level, i.e., when they start learning 

about something. 

6. Assessments that measure student understanding of the key concepts or practices. 

7. Purposeful curriculum and instruction that mediates targeted student outcomes (Duschl, 2011; 

Corcoran et al., 2009). 

We describe next the process we followed in developing the Force and Motion LP in our DeepTutor 

project. We adopted a design-based research iterative process that allowed us to develop and validate the 

progressions (Mohan, Chen & Anderson, 2009; Stevens et al., 2009). The process first conjectured a 

hypothetical learning progression (HLP) and then derived an empirical progression (EP), which is a 

refined version of the HLP. After several iterations of refinements and empirical validations, the HLP 

became an empirically tested LP. We used the following three criteria to guide our validation process: 

conceptual coherence, compatibility with current research, and empirical support from real student data 

(Mohan et al., 2009). The development of the initial HLP presupposes defining the ideas and concepts to 

learn at an appropriate level of detail while considering recent cognitive and education research that could 

provide insights about potential challenges students face or typical prior knowledge students may be 

expected to have. 
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The result of our LP design effort in the DeepTutor project is a broad Newtonian physics LP structured in 

seven strands, or smaller LPs in the sense of Alonzo and Steedle (2009). We have one small LP for each 

of seven themes or big ideas in Newtonian physics: Kinematics, Force and Motion (linear motion), Mass 

and Motion, Free-Fall new Earth, Newton’s Third Law, Vectors and Motion (motion in two dimensions), 

and Circular Motion. Each strand is organized in a number of levels. The number of levels in the broad 

LP varies from strand to strand, e.g., the Mass and Motion strand has three levels while the Free-Fall near 

Earth strand has seven levels. Levels are not equivalent across strands, i.e., level 2 in the Mass and 

Motion strand is not equivalent to level 2 in the Free-Fall strand. The strands, in turn, are ordered in terms 

of their complexity and prerequisite requirements. For instance, understanding the basic concepts of 

position, velocity, and acceleration covered in Kinematics is needed before studying Newton’s second 

law in the Force and Motion strand. That is, we have a 2-D broad LP in which one dimension illustrates 

students’ level of understanding and the other the complexity and interdependencies among the big 

themes (see the left side of Figure 16-1). The broad LP can also be regarded as a one-strand LP with 

seven levels of understanding, each level corresponding to one of the big physics themes/topics (see 

Figure 16-1, right side). This HLP has been validated based on data collected from high school students. 

The HLP is now an EP. Several more iterations of refinement are needed to obtain an empirically tests 

LP. 

 

Figure 16-1. The Newtonian physics LP: 2-D depiction (left) vs. 1-D, broad LP depiction (right) 

Our LP works in close relationship with a set of assessment items that allows the instructor, in our case 

DeepTutor, to place the student somewhere in the LP. Based on where the student is placed in the LP, 

instructional tasks and materials that are appropriate for that level of understanding are assigned to the 

student. Because the LP levels are so designed to encode the most successful paths to mastery followed 

by students, the LPs greatly facilitate the selection of tasks to be given to a particular student, i.e., LPs 

enable macro-adaptation of instruction. Tasks and materials associated with a level in the LP are so 

designed to help students improve their understanding and move up the LP hierarchy. 

It should be noted that tasks based on an LP can be sequenced in various ways, leading students on 

different learning trajectories. For instance, drilling tasks, which offer training on one big theme modeled 

by one LP strand, will more likely help students move up the level of understanding within that strand 

while not making progress on other big ideas. For some strands, e.g., Newton’s 3
rd

 law, for which the 

correct answer to many problems is the same (the tasks are isomorphic at some degree), a repetitive 
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drilling strategy is problematic as students may learn the jingle (“for every action there is an equal and 

opposite reaction”) after seeing the solution to a few problems and just recite the jingle when prompted 

for solutions to subsequent tasks without actually developing a deep understanding of Newton’s 3
rd

 law. 

Smarter sequencing of problems must be adopted as isomorphic problems lead to copying and therefore 

shallow learning (VanLehn, 2011; Renkl, 2002). 

DeepTutor infers learners’ levels of understanding of the target domain using both summative and 

formative or embedded assessment. Summative assessment consists of pre- and post-tests. The inferred 

levels of understanding based on the pre-test are continuously updated based on learners’ performance 

while working on various tasks with the system, i.e., through formative assessment. Formative assessment 

is seamless as learners are assessed as they work on a problem without being aware of this type of 

assessment. Formative assessment directly and immediately impacts micro-adaptation while indirectly 

impacting macro-adaptation through the continuous update of the learner model. For instance, learners 

who embrace many misconceptions or confuse concepts such as velocity and acceleration or do not 

understand the fine difference between velocity and speed will have their level of understanding updated 

accordingly even though they might have done well on the pre-test. We are moving toward a cloud-model 

of student assessment in which we allow students to simultaneously hold in their minds different models 

of reasoning or levels of understanding of a target domain (Rus et al., in press). Students will activate one 

model or level with a certain probability distribution. Improving the alignment between assessment and 

instruction using LPs is a major feature in DeepTutor, which is expected to increase the adaptivity of the 

system and in turn improve students’ learning experience and learning gains. 

Discussion with Respect to the Generalized Intelligent Framework for 

Tutoring 

GIFT (Sottilare, Brawner, Goldberg & Holden, 2012) aims at providing a standard that unifies and 

streamlines ITS development efforts. Modularity, communication among modules, and separation of code 

from content are the driving principles of GIFT. Furthermore, GIFT supports a service-oriented 

architecture to facilitate distributed and mobile learning. The GIFT framework includes the following 

major modules: sensors module, user module, pedagogy module, and domain module. All these major 

modules are domain independent except the latter. The user module includes the learner model among 

models for other users such as trainer, expert, and designer. The domain module performs assessment 

functions such that the only domain-dependent module is the domain module. 

As a web service, DeepTutor is accessible by any learner, anytime, anywhere. Indeed, DeepTutor can be 

accessed through an HTML5-compatible browser from desktop computers and mobile devices such as 

smartphones and tablets. As such, it ought to be generally compatible with a generic framework such as 

GIFT. However, integrating DeepTutor into the GIFT framework will require some important 

modifications. For one thing, although DeepTutor also employs a a modular design, the modules are 

organized differently than those in GIFT. For instance, assessment is a separate, independent module 

from the domain module. More modules mean that the development and management of these modules, 

especially when scaling up, are more feasible. Assessment is a big topic as well as is domain modeling 

(knowledge acquisition and representation), which may suggest that they have to be separate modules for 

scalability purposes. Also, because DeepTutor relies on LPs there is an intrinsic relation between the 

domain knowledge and learner model. The learner’s level of understanding as modeled by the LPs is not 

recorded in the persistent learner model, stored in a database to be updated and used over time, as a set of 

learner characteristics and their values (as suggested by the GIFT developers) but rather as pointers to LP 

levels.  This arrangement makes the learner and domain modules tightly connected. If the two modules 

should be decoupled as suggested by GIFT, then the learner module becomes domain-dependent. Indeed, 

the characteristic-value learner model implies that the learner model should include domain-specific 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

190 

information because some of the learner characteristics reflect learner’s performance in a target domain, 

e.g., how well the student understands Newton’s 3
rd

 law. That is, the learner module needs to include 

domain-specific performance measures that need be traced. A potential solution would be for GIFT to 

specialize its proposed specifications for various types of ITSs, similar to specialization principles 

outlined in Pavlik, Mass, Olney, and Rus (2012). 
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CHAPTER 17 ‒ Pushing and Pulling Toward Future ITS  

Learner Modeling Concepts  
Robert A. Sottilare 

U.S. Army Research Laboratory - Human Research and Engineering Directorate
 

Introduction 

In the previous sections, we examined the learner modeling literature, the state of current practice in 

learner modeling, and emerging concepts in learner modeling. In this section, we examine ideas related to 

future capabilities for adaptive tutoring systems, the technologies needed to realize these capabilities, and 

the maturity of those technologies today. We discuss how breakthrough technologies perceived to be 

outside the ITS domain today have the potential to change how we think about AI tutors in the future. 

Recommendations for long-term research are also provided that support both identified needs (technology 

pull) and innovation (technology push).  

A Vision for Future Tutoring Systems  

As we look forward toward increasingly intelligent and adaptable tutoring systems, an ontology is needed 

to characterize essential capabilities and establish standards of performance. Capability definitions might 

compare and contrast: the degree of tailored instruction that the tutor can provide; how effectively the 

tutor can support/enable learning; the ability of the tutor to perceive the learner as a basis for tailoring 

instruction and optimizing performance; or the tutor’s compatibility with existing training platforms (e.g., 

serious computer-based games). Whatever the capabilities of future ITSs, the real measures of success lie 

beyond learning effect. Future tutoring systems must be easier to develop, access, and use than their 

counterparts today. They must incorporate reuse standards to reduce time and cost for development. They 

must provide tailored user interfaces to support usability by learners, domain experts, 

teachers/instructors/trainers, ITS developers, instructional designers, and researchers.  

The theoretical concepts of today will evolve into the practical implementations of tomorrow. The 

capabilities characterized in ideal future tutoring systems will not just be the result of compromising 

practicality, mapping (compatibility), and computational complexity (Preface in this book) to realize a 

workable design, but instead will embody a collaboration between users and tutoring technologies over a 

lifetime of learning. The seeds of future ITSs are being sown in research that expands the definition of 

learner models in new directions. A future persistent learner model resides in the cloud, tracks long-term 

performance, and models competency, values, preferences, goals, and beliefs to help foster trust, 

creativity, and self esteem within individual learners and teams of learners.  

Learner Models in the Future 

The four chapters in this section highlight ongoing areas of research that were specifically broken out 

from the emerging concepts discussed in Section III of this book due to their impact to learning and their 

anticipated long-term evolution. Each chapter in this section identifies key challenges in developing a 

more useful and comprehensive learner model, tools and methods for GIFT to build upon. The research 

discussed points to the importance of comprehensive learner modeling in determining tailored learning 

experiences over a lifetime. 
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The chapter by Lester, Mott, Rowe, and Sabourin examines the detection of learner’s affective states and 

their impact on cognition, motivation, and metacognition during game-based tutoring events. The 

relationship between affect and learning is a critical link in determining optimal instructional strategies 

and tactics to be employed by the tutor. Significant challenges exist in accurately and unobtrusively 

determining affect in real-time. Affect detection is further complicated since affect is generally inferred 

by through observation of the learner by a human or computer-based tutor. Additional challenges arise 

when a computer must infer affect in complex training environments such as serious games with high 

degrees of freedom of learner interaction or when a computer must resolve ambiguity between learner 

behaviors and physiological measures.  

The chapter by Burleson and Muldner discusses the future role of ITSs as intelligent creativity supporters. 

Creativity is a key ingredient for moving learning forward beyond the sum of acquired knowledge and 

skill. In traditional classroom settings (one teacher and many students), there is generally insufficient time 

to support a creative curricula tailored to the individual needs of each learner. ITSs have an advantage as 

one-to-one tutors to provide the special attention needed to foster creativity. Future tutoring systems may 

be designed to adjust their instruction to promote risk-taking, support learner adaptability, encourage grit, 

and assess options that lead to creative solutions. A significant challenge may be the ability to efficiently 

author increased numbers of strategies and content as creativity support tools are linked with adaptive 

tutoring systems to allow greater flexiblity and assessment of solutions. In other words, ITSs with creative 

support should be capable of allowing more than a single “right” answer. On the flip side, a considerable 

advantage might be realized as ITSs are applied to ill-defined domains where creativity is at a premium, 

and there are multiple serviceable solutions. 

The chapter by Regan, Raybourn, and Durlach puts forth a concept for a Personal Assistant for Learning 

(PAL) that expands the capabilities of ITSs today to include advisory functions (coaching and mentoring). 

As in GIFT and other tutoring architectures, the PAL learner model will be of central importance to 

determine instructional strategies for learning, enhance creativity (see Burleson and Muldner, chapter 19 

in this book), motivate, activate, and support decision-making. The importance of this chapter in 

projecting learner modeling capabilities for ITS rests in its illustration of learners as drivers of their own 

learning experiences as opposed to someone to be guided/led by the tutor. A wealth of information is 

ready to be mined to enhance our future learner models. Social media is a goldmine of learner 

preferences, interests, habits, goals, knowledge, and skillsets in time-stamped, context-related bundles of 

information. These multiple sources of information call for standards for interoperability to support 

consumption by current and evolving ITS architectures.  

The chapter by Fletcher and Sottilare examines how the architectural principles and functions described 

by GIFT might be extended to support the training of teams. Shared mental models represent team 

objectives and the actions, both individual and collective, needed to achieve them. These models 

represent team communication and coordination, team posture, situation, and environment, and team 

member roles and responsibilities. The focus of this chapter is on shared mental models of cognition and 

includes models of team purpose, behavior, and functions that are analagous to individual cognitive 

models in most ITS today. Exploration of team affective models and physiological factors influencing 

learning are left for future discussions, but an exploration and understanding of shared cognitive models 

provides insight into how non-cognitive factors might be addressed in the future. Since teamwork differs 

in the quantity and quality of communication and coordination required, major challenges rest in how to 

measure how good communication, coordination, and other factors (e.g., goals, roles, individual 

knowledge and skills, and preferences) support (or detract from) optimal team performance.  
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The Long View of GIFT 

The contributors to this section of the book offered recommendations for developing the learner model 

component of GIFT across different dimensions (affect modeling, creativity support, data mining and 

open learner modeling, and shared mental models). The recommendations addressed substantial 

challenges and opportunities that are envisioned to evolve over an extended period of time due to their 

complexity. The following enumerates recommended actions for consideration in the long-term view of 

GIFT. Some of these recommended actions are already defined with known value (technology pull) and 

some are more speculative (technology push) in that their impact is difficult to predict at this time.  

1. Significant effort has been expended to develop affect detectors for individual learners. A 

systematic analysis based on empirical studies should be conducted to evolve standards that can 

be applied across training tasks and are suitable for both individual learners and teams of learners.  

2. Advance a new class of learning technologies focused specifically on creativity support tools that 

are linked directly to tutoring architecture components for domain knowledge and motivation. A 

systematic analysis based on empirical studies should be conducted to evaluate the effectiveness 

of these tools in teaching creativity and building innovation skills in individual learners and teams 

of learner. 

3. Develop open learner models to support intelligent selection of learner control during tutoring 

sessions. A systematic analysis based on empirical studies should be conducted to develop and 

evaluate open learner models to optimize learning. 

4. Enhance data-mining techniques to support persistent learner models that are automatically 

updated over time to reflect changes in preferences, interests, goals, knowledge, and skills. A 

systematic analysis based on empirical studies should be conducted to determine the effect size of 

various learner traits on cognition and motivation.  

5. Enhance data analysis techniques to support rapid development of expert and misconception 

models based on crowd sourcing. Develop standard tools and methods to allow for plug and play 

expert and misconception models in standard ITS architectures like GIFT.  

6. A prototype has been developed that implements characteristics of GIFT, including the learner 

model. A systematic analysis based on empirical studies should be conducted to evolve a similar 

comprehensive model for teams. These shared mental models should be applicable across various 

task domains including cognitive (e.g., problem solving), affective (e.g., value judgments), and 

psychomotor (e.g., controlled movement of the body) tasks. A library or repository should be 

established to house these models and support standards for instructional design of team training. 

7. Develop a formal ontology for GIFT with the support of the ITS community to help focus 

attention on critical missing learner modeling elements to support authoring, instructional 

management, and analysis constructs. Extend this ontology to incorporate other aspects of ITS 

research over time. 

8. Develop standards to classify tutoring system capabilities in critical areas (e.g., learning effect 

size, accuracy of cognitive and affective state classifiers) per the adaptive tutoring learning effect 

chain (see Preface of this book for individual tutoring or Fletcher and Sottilare, chapter 22 of this 

book for team tutoring). 
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9. For future capabilities to support adaptive tutoring of individuals and teams, tools and methods 

are needed to deeply engage learners and support their deep learning; encourage adaptability, grit 

(tenacity), and innovation in seeking solutions in military domains with multiple solutions; 

appropriate control by the learner in their own learning experiences; and shared mental models 

for teams. A stringent and extensive set design principles should be developed to support 

enhanced tutor-learner interaction and higher learning effect. A systematic analysis based on 

empirical studies should be conducted to develop and evaluate the following functions: 

 Sensors – behavioral and physiological sensor design should be unobtrusive so as not to 

interfere with or distract from learning processes during tutoring sessions. 

 State classifiers – learner modeling processes should be very accurate (near 100%) in using 

learner data to determine the cognitive, affective, and physical states (e.g., confusion, 

frustration, engaged concentration, boredom, fatigue), which are most influential with respect 

to readiness-to-learn and the learning gains of both individuals and teams. 

 Measures of success – tutor assessment engines should be designed to support easy authoring 

and linkage of success metrics to knowledge and skill acquisition, and performance, 

 Adaptive instruction and support – knowledge of the learner’s states and traits should lead to 

optimal selection of instructional content, strategies, and tactics along with additional 

adaptation based on the learner’s questions and goals, 

 Individual and team modeling – information about individual learners and teams of learners 

should represent their individual/collective domain competency, motivation, and expectations 

of success based on competency and task complexity (e.g., cognitive problem solving, 

affective valuing),   
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CHAPTER 18 ‒ Learner Modeling to Predict Real-Time Affect  

in Serious Games  
James Lester, Bradford Mott, Jonathan Rowe, and Jennifer Sabourin 

North Carolina State University - Department of Computer Science 

 

Introduction 

In recent decades research on human emotion has revealed that affect plays a central role in human 

cognition. Historically, emotion was viewed as separate from cognition, and only recently has there been 

consensus that affect is a central component of rational behavior and social interaction (Forgas, Wyland & 

Lahan, 2006). These findings have motivated the goal of designing affect-sensitive computer systems 

capable of recognizing and responding to users’ emotional states. This has led to the development of 

affective systems with a wide variety of capabilities and purposes, such as therapeutic virtual agents, 

mood detection of large social network groups, and empathetic tutorial systems (Picard, 1997). 

Applications such as these require that three critical decisions must be made to inform how affect will be 

modeled and detected: (1) How will affect be represented? (2) What signals will be used for affect 

detection? (3) How will affect predictions be used?  

Devising frameworks for representing affect has been the subject of considerable study in psychology and 

cognitive science (Ortony, Clore & Collins, 1990; Russell, 2003). Psychologists have proposed a broad 

range of solutions for representing affect. These representations have left computational researchers with 

a variety of frameworks from which to choose. For example, affect may be viewed as a concrete 

categorical state, such as anger or happiness. Alternatively, affect can be represented among a variety of 

dimensions such as valence or arousal, where a state is only differentiated by its position on the scale. 

Further, affect can be seen not as a state itself but as an emergent phenomena consisting of action 

tendencies, physiological responses, and conditional precedents. Each of these representations introduces 

benefits and challenges when used in computational systems, and these tradeoffs must be considered 

within the contexts of specific applications. This chapter explores the role of computational models of 

affect in serious games, with a focus on real-time affect prediction. 

Unrealized Capabilities and Gaps 

Computational Models of Affect 

Affect is fundamentally a hidden state. Detecting affect, when performed by either humans or computers, 

requires inference from observable signals. Selecting signals to incorporate into an affect-detection 

system requires consideration of several factors such as cost, invasiveness, and predictive value (Calvo & 

D’Mello, 2010). Common signals include physiological information such as heart rate and skin 

conductance, which can be measured through physiological sensors. Expressive traits such as facial 

expressions, posture, gaze, and gesture are other informative channels that can be measured with web 

cams or specialized sensors. Behavioral evidence of affective states is a complementary modality, and it 

is often inferred from logs of user interactions with software. Further, typed statements or spoken 

sentiment can be analyzed in a variety of meaningful ways to infer emotion. Each of these channels can 

be considered independently, but many successful approaches to modeling combine input from multiple 

modalities to arrive at a more complete and accurate representation of the states they are endeavoring to 

model. 
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A primary concern that often guides investigations of affect is the application for which the inferred 

knowledge about affective state will be used. In some cases, it is useful to simply know how the user is 

feeling as an evaluation of the system itself. In other cases, this information may be incorporated into run-

time interactions to dynamically improve user experiences or other important outcomes. Differences in 

objectives may lead researchers to consider multi-dimensional approaches, which are particularly 

beneficial if a single trait is being monitored over time. However categorical definitions are better for 

communicating with the user about their state. Similarly, if the application is multi-platform and intended 

to be used by individuals in a broad range of settings, some physiological sensors may be impractical. 

However, if the objective is inferring highly accurate representations of states, incorporating as many 

signals as available may be the best route. In many ways, the final application of the affective information 

drives all other decisions. 

Modeling Affect in Serious Games 

An important application of affective modeling capabilities is in serious games. Serious games combine 

two affectively charged activities, learning and gameplay, making them an interesting avenue for 

exploring issues of affective modeling. Affect is a critical component of learning and has been shown to 

influence how students process information, approach learning activities, and feel about themselves and 

their abilities (Baker, D’Mello, Rodrigo & Graesser, 2010; Pekrun, Goetz, Titz & Perry, 2002; Picard, et 

al., 2004). Meanwhile, though enjoyment and happiness are viewed as fundamental components of play, 

games can introduce degrees of frustration, confusion, sadness, and even anger. Together the rich 

affective experiences associated with learning and gameplay motivate the need to explore affective 

modeling in serious games.  

Serious games have considerable capacity to evoke a broad range of emotions, because they can 

contextualize learning and training activities within meaningful contexts that approximate authentic 

settings. For example, games often incorporate narrative plots, which in many ways are fundamentally 

emotion-inducing: interesting stories are defined by conflict, uncertainty, suspense, and surprise. 

Furthermore, they are often host to interactions with believable virtual characters, fantasy or simulated 

settings, and dynamically unfolding situations. These types of learning environments lend themselves to a 

broad range of emotional responses that are likely to shape learning processes, but may be atypical of 

alternate educational environments that deliberately separate educational content and application context.  

For a range of educational settings, evoking these types of emotional processes during learning may be 

desirable, or even essential, to produce learners who will be capable of performing skills in realistic 

settings that will similarly evoke these emotions. However, creating educational environments that can 

evoke these types of emotions raises a number of issues:  

1. How can we recognize students’ emotional states, including emotions that may not be commonly 

observed in non-game settings, such as fear, surprise, disorientation, anxiety, excitement, 

curiosity, and sadness, so we that we can better understand which, and how, emotions impact 

student learning?  

2. How, and to what extent, can we effectively model students’ emotions of these types in real time, 

including predictive models that converge on accurate predictions of student emotions in advance 

of their occurrence based on expected narrative states and affect-sensitive learner models?  

3. How can we devise models that dynamically tailor events in serious games, including tutorial 

events, narrative events, and game parameters, to aid students in self-regulating their learning and 

affective processes? 
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Recent work in this area has explored many varied components of affect in serious games. For example, 

Conati et al. (2009) have explored probabilistic models for affect recognition in Prime Climb, a serious 

game for young children learning number factorization. These models incorporate in-game context data 

along with physiological sensors to arrive at accurate predictions of student emotion. FearNot! is a 

serious game for teaching anti-bullying behavior to school children (Paiva, Dias, Sobral & Aylett, 2004). 

This environment seeks to model the affective states of virtual characters to drive empathetic relationships 

with the learner. Robust emotion models have also been incorporated into the BiLAT serious game (Kim, 

et al., 2009). This environment seeks to teach military personnel skills for multicultural negotiation and 

uses affective information to drive character interactions and responses.  

This work has highlighted the role that affect can play in the development and understanding of serious 

games and points to areas where future work is needed. First, much work in modeling user affect takes 

place in highly structured environments. In these systems, users typically have a small set of available 

actions and have a clear indicator of correctness and progress. This simplifies the identification of features 

relevant to affect modeling. However, it will be important to begin exploring how affect can be modeled 

in more open-ended exploratory games. There may be different sets of affective phenomena at play in 

these environments and it is likely that a different set of tools and techniques will be needed to build 

successful predictive models in these systems. Another important area of future work is more exploration 

of how affect models can be incorporated back into serious games. While FearNot! and BiLAT use 

affective information to drive narrative and character interactions, there is less exploration on how this 

information can be used to reason about the learner or guide tutorial strategies. A deeper understanding of 

both sides of this affective picture is needed to fully describe the important role affect plays during 

interactions with serious games. 

Future Concept 

Given these gaps in the research on computational models of affect, we envision three major thrusts of 

research for real-time affect detection in serious games. First, we anticipate the potential for sizable 

advances in early prediction of student emotions during game-based learning. Second, we anticipate that 

data-driven models of student affect will be combined with theoretical frameworks of student learning 

and emotion to improve models for assessing student knowledge acquisition and transfer. Third, we 

anticipate that real-time models of student affect will be incorporated into tutorial systems capable of 

personalizing events in serious games to scaffold student learning and promote sustained engagement. 

Predicting Student Affect in Guided Inquiry-Based Serious Games 

Modeling student affect in serious games poses distinct challenges relative to other educational systems. 

These challenges primarily stem from two components of these systems: (1) user actions and goals often 

unfold in a multitude of different orders within rich simulated environments, and (2) models must meet 

the run-time performance requirements of games. The open-ended nature of many serious games means 

that learners are free, and encouraged, to approach the task in any way they choose. This makes selecting 

contextual features for modeling tasks significantly challenging. Furthermore, most contemporary 

theories of emotion suggest that affect is often generated in response to the success or failure of one’s 

goals, and how this success or failure came about (Elliot & Pekrun, 2007; Ortony et al., 1990). In serious 

games, students’ goals may be unclear and without this knowledge, it will be difficult for the system to 

reason about success or failure and resulting affective states.  

Recent work has investigated predictive models of students’ educational goals and plans in serious games. 

These models consider sequences of student actions in a game environment, and provide early predictions 
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about the goal a student seeks to next achieve or the problem-solving plan currently being executed. 

Models of student intentions hold considerable promise for informing predictions of students’ affective 

states. Affective experiences are often a direct result of an individual’s intentions and how these are or are 

not being realized in the world. An accurate prediction of a student’s goals or intentions enables a system 

to make inferences on whether these goals are being achieved and offer the opportunity to reason about 

attribution of success or failure. Together, intention and attribution offer significant insight into an 

individual’s affective state (Ortony, Clore & Collins, 1990) and are an important component of a context-

based affect recognition model. 

State-of-the-art serious games often employ computationally intensive graphics rendering and simulation 

capabilities. These technologies require substantial computational resources, and therefore limit the 

resources available for other system components such as real-time affect prediction models. While many 

successful models of affect prediction have been achieved by combining multiple data streams, it will be 

important to identify the data sources that provide the most benefit while imposing the least amount of 

computational overhead. For example, rich data from physiological sensors may be highly informative, 

but unless it can be effectively processed along with games’ other required computational requirements, it 

may not be useful in practice. This highlights the importance of developing algorithms and data streams 

that are able to use computational resources as they become available and make predictions efficiently in 

real time. 

Affect-Informed Models of Student Learning 

While affect predictions alone can provide meaningful information about student engagement while 

interacting with a serious game, another promising direction is identifying how affect predictions can be 

incorporated back into the understanding of the user’s learning. Learner models are used to guide 

interactions and understanding of the student in a variety of systems. These models first seek to assess 

student knowledge, and then adapt tutorial interactions accordingly to maximize learning gains. A student 

model that incorporates affect may provide a richer picture of student learning. For example, affect has 

been shown to influence whether students are more likely process information in a bottom-up or top-

down fashion (Pekrun et al., 2002). By considering a student’s affective state as part of the learner model, 

considerations can be made about how a student is processing information, the connections that are likely 

being made, and how further information should be presented. 

Incorporating affective channels into models of student knowledge acquisition and transfer for serious 

games hold considerable promise, particularly in domains where real-world applications of the learned 

knowledge are affect-intensive. Affect has been shown to influence cognition in many ways, and 

exploration of how these relationships can be used along with students’ affective states is an important 

direction for developing comprehensive learner models.  

Affect-Informed Tutorial Planning in Serious Games 

Real-time models of students’ affective processes could inform models for dynamically enhancing 

students’ learning experiences in serious games. By combining serious games and ITSs, it is possible to 

devise models that tailor game mechanics, missions, rewards, and difficulty levels to scaffold student 

learning. In the case of story-based games, narrative-centered tutorial planners are a form of integrated 

pedagogical planner and interactive narrative director agent that discreetly support students’ learning 

processes by tailoring story events. Narrative-centered tutorial planners consider the state of the student, 

interactive narrative, and learning progression to make decisions about how to adapt event sequences in 

the storyworld to support students’ learning, problem solving, and engagement. For example, a narrative-

centered tutorial planner may modify a virtual characters’ behavior to provide additional hints and 
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explanations to a student requiring special assistance. Alternatively, the planner could introduce novel 

goals and sub-plots to provide remediation for students, or opportunities for assessing advanced skills.  

Real-time models of students’ emotional states are well positioned to enhance the capabilities of these 

narrative-centered tutorial planners. However, there has been little work to date investigating how real-

time affect models can enhance narrative-centered tutorial planners’ effectiveness. By making accurate 

and early predictions of students’ emotions, narrative-centered tutorial planners could direct characters to 

provide personalized affective assistance, such as encouragement when a student is feeling confused, 

empathy when a student is feeling anxious, or advice to take a break when a student has experienced 

prolonged frustration while investigating a complex problem-solving task. These types of capabilities are 

poised to significantly enhance students’ cognitive-affective processes in story-based serious games. 

Illustrative Scenario 

In order to illustrate these future concepts about real-time affect modeling in serious games, we describe a 

vision for affect-driven models in a game-based learning environment for middle school microbiology, 

CRYSTAL ISLAND (Rowe, Shores, Mott & Lester, 2011). CRYSTAL ISLAND (Figure 18-1) features a 

science mystery, in which the student has arrived on a remote island to discover that the research team 

that has been established there has fallen ill. The camp nurse explains that they have not been able to 

identify the cause or type of illness and asks for the student’s help. The student then works to collect clues 

by talking with virtual characters, running tests on objects in the world, and reading related books and 

posters. Once the student arrives at the correct source and type of illness and proposes a diagnosis, the 

student has solved the mystery and completed the game. 

 

Figure 18-1. Screenshot of the CRYSTAL ISLAND game-based learning environment 

As an open-ended game-based learning environment, CRYSTAL ISLAND features many goals and 

objectives that students may be working towards at any given time. For example, one student may be 

actively trying to identify the common symptoms among patients, while another may be trying to identify 
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common food items that may be the source of the illness. Distinguishing between these two goals is 

critical for identifying whether a student is being successful at their goals and how they may feel as a 

consequence. If the student is trying to identify common food sources, but only hears about symptoms, 

they will likely be frustrated, while the other student would be feeling confident and hopeful that they will 

progress successfully. 

Successful affect recognition in CRYSTAL ISLAND introduces opportunities for affect-driven learner 

models. Affective information can provide insight into how a student is learning, and the activities they 

are likely to pursue. For example, a student who is feeling confused is likely missing some piece of 

information that is critical to their understanding. A learner model that is able to assess knowledge and 

affect may be able to identify these gaps in understanding and drive tutorial planning so that the student is 

able to overcome this cognitive dissonance. 

Another possibility for incorporating affect in tutorial and narrative planning revolves around the 

system’s ability to foster positive affective states and engagement. For example, if the system detects that 

a student is frustrated or bored with the learning task, it may be advantageous to allow the student some 

respite from the difficult material. Game-based learning environments like CRYSTAL ISLAND allow 

opportunity for students to be engaged in the environment but not on the learning task specifically. 

Students may interact with the game environment’s physics simulation by jumping on and stacking 

objects, or by simply exploring the rich 3-D world. These types of actions may have positive affective 

benefits that can be encouraged if the system recognizes the need for affective regulation. 

Discussion 

The opportunities that we have outlined for real-time affect detection in serious games highlight a number 

of implications for research and design of intelligent tutoring systems and related learning technologies. 

In particular, the key capabilities and tools provided by the GIFT framework are synergistic with the 

requirements and opportunities that we have discussed for modeling student affect. GIFT provides three 

primary functions: authoring capabilities for constructing novel learning technologies, instruction that 

integrates tutorial principles and strategies, and support for evaluating novel educational tools and 

frameworks. These capabilities provide a foundation for investigating real-time affect modeling in serious 

games, and further extensions to GIFT will enable studies of generalizable affect modeling frameworks. 

Affect in Serious Games 

Creating serious games can pose significant costs, due to the need for aesthetic 3-D assets, novel 

interactive narratives, robust simulation models, and believable virtual agents, all meeting the run-time 

performance requirements of games. While serious games often do not compete directly with commercial 

entertainment-focused games, the continually rising bar for games’ production values also increases 

expectations of serious games’ complexity and aesthetics. Creating serious games requires close 

collaboration between interdisciplinary teams of digital artists, computer scientists, subject matter experts, 

game designers, and instructors. Consequently, devising tools that can reduce the authoring costs 

associated with integrating adaptive tutoring capabilities for real-time affect modeling and scaffolding 

will represent a substantial advance. Further support for reducing authoring costs and increasing 

component reusability through GIFT, as well as research demonstrating the authoring benefits of these 

technologies, would be valuable to serious game developers. 

Many serious games take advantage of advanced 3-D graphics and real-time agent behavior algorithms to 

create immersive, believable virtual environments. However, these characteristics are computationally 
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intensive, and typically must be performed at more than 30 frames per second to preserve visual fidelity. 

In many cases, this leaves limited local resources for updating computationally sophisticated models of 

student emotion or learning processes. Offloading these modeling and reasoning capabilities to external 

modules, especially modules hosted on external servers, is a promising approach for supporting 

computationally intensive probabilistic models of students’ learning and affective processes, while 

meeting the run-time performance requirements of serious games that run on students’ local computing 

hardware. GIFT’s modular framework and service-oriented architecture are conducive to decoupling 

learner modeling and pedagogical planning decisions from students’ client machines. 

GIFT also provides broad support for external sensors, which can supply real-time data on students’ 

physiological state such as skin conductance, heart rate, posture, and eye gaze. Self-reports provide a 

useful window into students’ affective processes, but they may be disruptive if presented during 

gameplay, and have limited accuracy particularly in cases where they are provided after an experience has 

concluded, and thus temporally removed from the actual occurrence of the emotion. Physiological sensors 

in many cases may be able to provide complementary information about students’ affective states without 

disrupting gameplay and learning experiences. Furthermore, sensor data are objective, which removes 

some of the limitations in depending on students’ abilities to recognize their own emotions and effectively 

and precisely report them.  

Affect and the GIFT Architecture 

The GIFT framework encompasses a modular architecture, which includes the following tutor 

components: a sensor module, a learner module, a pedagogical module and a domain module (Sottilare, 

Goldberg, Brawner & Holden, 2012). Given this architecture, there are a number of questions and 

opportunities concerning how to effectively incorporate affect sensitivity within the GIFT framework. 

Future extensions to GIFT in service of real-time affect modeling will likely touch upon each of these 

four modules.  

Each tutor module has its own distinct opportunities for processing affective information and 

communicating this to other modules. The sensor module is responsible for collecting and synthesizing 

information from various sources, such as webcams, electrodermal activity sensors, and pressure-sensitive 

mice. This module must handle raw multimodal input from multiple concurrent sensors and provide 

output metrics that are useful for modeling the affective states of users. For example, a webcam capturing 

a large stream of video data could be analyzed to identify facial expressions, posture, or non-verbal 

gestures indicative of affective states. In many cases, these sensors can produce large quantities of raw 

data. Consequently, as additional sensors are incorporated into GIFT, the sensor module must be capable 

of handling the memory and processing demands imposed by these new types of data, which are 

distributed across the collection, storage, cleaning, and transformation stages of data management. 

The learner module is responsible for representing the cognitive and affective states of learners using 

processed sensor data as well as learner performance data from the environment. Affective 

representations can include a variety of features, such as emotional state, self-efficacy, motivation, 

interest, and intention. Accurately modeling each of these components may require detailed knowledge of 

the task and learning environment in addition to inputs provided by the sensor module. For example, 

modern appraisal-based theories of emotion depend heavily on how learners’ actions and intentions play 

out in particular environments. Consequently, learner modules that implement these theories need to have 

access to information about the learning environment. Furthermore, affective and cognitive states are 

highly intertwined and must be considered in concert. For example, a learner’s performance and 

knowledge may influence emotional state and self-efficacy, which will then impact how the learner 

approaches the task moving forward.  
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The pedagogical module receives information about learners’ current and predicted states, and it uses this 

to guide instructional strategies. One challenge that must be addressed by this module is balancing the 

tutoring system’s affective and cognitive goals. For example, a more difficult learning task may be 

beneficial for increasing knowledge, yet an easier task may increase confidence and enjoyment. 

Furthermore, this module must consider a variety of strategies to bring about cognitive and affective 

improvements. Hints and feedback are commonly delivered to guide students’ knowledge acquisition and 

problem solving; however, these strategies may also include affective content. For example, empathetic 

feedback may encourage students to continue feeling positively in spite of poor performance. 

Alternatively, hints on effective emotion regulation strategies could be provided to students who appear to 

be struggling. Tailored support of learners’ cognitive-affective states is likely to have substantial positive 

impacts on increasing time-on-task and sustaining learner engagement. 

The domain module contains information about both the content area and the task environment in which 

learning interactions take place. It includes explicit representations of the types of feedback and 

adaptation capabilities supported by the learning environment, which can be used to enact the proposed 

strategies suggested by the pedagogical module. Such adaptations may involve virtual agents capable of 

verbal and non-verbal affective expression, tailored events in the learning environment’s narrative, or 

dynamic adjustments to task difficulty. This module is also responsible for assessing student performance 

and identifying learner behaviors that are indicative of cognitive-affective states. For example, student 

off-task or gaming behaviors may serve as powerful indicators of student engagement and motivation. 

Devising computational models for real-time affect prediction in serious games offers significant promise. 

Initial versions of GIFT have implemented modules primarily devised to effectively scaffold student 

knowledge acquisition and skill mastery. Future efforts to endow GIFT with affect modeling capabilities, 

such as the features described above, will require additional research and development efforts to expand 

the capabilities of each tutor module. 

Recommendations and Future Research 

GIFT provides a technological foundation for investigating predictive models of affect that can be 

generalized across different serious games. There are several promising directions for extending the 

capabilities of GIFT’s modules to integrate comprehensive support for recognizing, understanding, and 

expressing affect in support of learning. Specifically, achieving the vision we have outlined for real-time 

affect detection in serious games through GIFT will require solutions to several research questions: 

1. How can generalizable affect recognition, understanding, and expression capabilities be 

implemented within each of the modules of tutoring architectures such as GIFT? 

2. How should interfaces between tutoring modules be developed to ensure robustness in handling 

different configurations of affect sensors and training environment capabilities? 

3. How can generalizable, modular implementations of predictive affect models operate within the 

run-time performance requirements of serious games? 

4. How can game-specific models for affect support be incorporated into generalizable tutoring 

architectures and transfer to alternate tasks and domains? 

These questions highlight the challenges associated with investigating generalizable intelligent tutoring 

architectures capable of real-time affect modeling in serious games. With regard to GIFT specifically, it 

will be important to identify the key issues, and solutions, for incorporating affect sensitivity within each 
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of the tutor modules in the GIFT architecture. When designing these components, one must consider how 

these components communicate with one another, and how the system should be configured to support 

cases where components are missing. For example, physiological sensors are highly beneficial for affect 

recognition, but may not be available in all cases. Consequently, a learner model relying on output from 

such a sensor would need to be adapted, or gracefully deactivated, in a manner that minimizes negative 

impacts on other modules. Similarly, different genres of serious games have distinct capabilities and 

affordances. For example, serious games with believable virtual agents or rich narrative contexts may 

present different opportunities for affective feedback than serious games without these features. In cases 

such as these, pedagogical modules that recommend empathetic character behaviors or story event 

adaptations to provide affective support require mechanisms for handling cases where learning 

environments do not support these types of intervention naturally.  

Additional challenges are raised by the computational demands of serious games. Games impose 

significant run-time performance requirements because they are computationally intensive, and they must 

balance graphics rendering and simulation capabilities alongside affective and tutorial modeling. 

Predictive affect models must balance efficiency, accuracy, and relevance to shape effective pedagogical 

interventions embedded within game environments. Finally, it will be important to investigate the ways in 

which findings related to the benefits and constraints of supporting affect in serious games extends to 

other tutoring environments. Advancements such as these would likely reduce the costs of devising new 

intelligent tutoring systems, as well as enhance their effectiveness for different learning settings.  
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Introduction 

We present an argument for the advancement of Intelligent Creativity Support (ICS) systems as an 

integrating framework for ITSs, affective computing, and creativity support tools, in a manner that closely 

aligns each of these technologies and research agendas with the componential model of creativity, i.e., 

domain-relevant expertise, intrinsic motivation, and creative thinking style. We also present strategies for 

developing and evaluating student models for the just-in-time assessment of creativity.  

While there are over one hundred definitions of creativity (Amabile, Barsade, Mueller & Staw, 2005), 

there is consensus that it entails a product, idea, or process that is novel and useful (Mayer, 1999). 

Creativity is at the core of all societal advancements. However, it is also present “not only when great 

historical works are born but also whenever a person imagines, combines, alters, and creates something 

new, no matter how small” (Vygotsky, 2004).  

Creativity has been described as the most vital economic resource of our time (Florida, 2002; Kaufman & 

Beghetto, 2009) and the U.S. Council on Competitiveness has indicated that it will be the top factor 

determining America’s success in the 21st century (Robbins & Kegley, 2010; Wince-Smith, 2006). Thus, 

understanding how to foster creativity skills is a crucial societal goal (Tripathi & Burleson, 2012). U.S. 

universities, colleges, and K‒12 school systems can play a fundamental role in producing an innovative 

and creative workforce, by helping students develop such skills (Robbins & Kegley, 2010; Vance, 2007; 

Wince-Smith, 2006). Indeed, the 21
st
 Century Skills initiative (Trilling & Fadel, 2009) and Common Core 

Standards (NGA & CCSSO, 2012) call for teaching creativity, innovation, and deep problem-solving 

abilities.  

Unfortunately, various challenges have hindered the adoption of creativity instruction and practices in 

traditional classrooms (McCorkle, Payan, Reardon & Kling, 2007). For one, few teachers have been 

trained in how to teach creativity (Mack, 1987). More importantly, classroom settings do not enable 

teachers to provide the individualized support needed for effective creativity facilitation. In particular, 

while personalized instruction has tremendous potential to improve student learning (Cohen, Kulik & 

Kulik, 1982; Lepper, 1988), affect (motivation and emotion) (Lepper, 1988; Picard, 1997), and 

metacognitive skills (Bielaczyc, Pirolli & Brown, 1995), providing a human tutor for each student is 

simply not practical. Given these challenges, most of the work thus far reflects anecdotal, descriptive data 

(Ma, 2006; Robbins & Kegley, 2010; Runco, 2004; Scott, Leritz & Mumford, 2004), although some 

exceptions exist (Cheung, Roskams & Fisher, 2006; Clapham, 1997; Dewett & Gruys, 2007).  

Since ITSs can provide large-scale instruction that continuously adapts to learners’ needs (Aleven, 

McLaren, Roll & Koedinger, 2006; Arroyo, Cooper, Burleson, Muldner & Christopherson, 2009; 

Koedinger, Anderson, Hadley & Mark, 1997; Self, 1998; VanLehn et al., 2005), they present a unique 

opportunity to address issues associated with teaching creativity. ITSs have already successfully 

improved domain learning by tracking students’ problem-solving progress, providing tailored help and 

feedback, and selecting appropriate problems (Shute & Psotka, 1996; VanLehn et al., 2005). However, 

ITS have also been criticized for over-constraining student problem solving and over-emphasizing 

shallow procedural knowledge, and therefore not properly addressing 21st century higher-order skills like 

critical thinking and creativity (Trilling & Fadel, 2009).  
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We present strategies for designing a ICS system to foster student creativity during Science, Technology, 

Engineering and Mathematics (STEM) activities. The ICS framework is situated within Amabile’s 

validated and broadly adopted componential model of creativity (1983). Amabile’s model highlights three 

factors within an individual that are needed for creativity: domain knowledge, motivation, and creative 

thinking styles. Moreover, Amabile and others have demonstrated that positive affect contributes to 

creative problem solving (Isen, 2004; Isen, Daubman & Nowicki, 1987), leading to increased intrinsic 

motivation, deeper exploration, and more appropriate outcomes or solutions. Our goal is to have ICS 

integrate and leverage traditionally isolated technological components that are critical to advancing a 

student’s creative capacity (Figure 19-1): (1) domain relevant knowledge supported by ITS; (2) affect 

(motivation and emotion) fostered by Affective Learning Companions (ALCs); and (3) creative thinking 

skills scaffolded by Creativity Support Tools (CSTs). The ICS design can also implicitly account for 

external factors that influence creativity, such as evaluation and time pressure (Amabile, 1983; Amabile et 

al., 2005). The ultimate goal of the ICS strategy is to extend traditional ITS instruction with personalized 

affective support and metacognitive creativity training to improve creativity and learning outcomes.  

 

Figure 19-1. Advancing a new class of cyberlearning technologies, ICS will integrate personalized support 

with Amabile’s componential model of creativity. ICS will combine ITSs to increase domain relevant 

knowledge; ALCs to foster motivation; and CSTs to advance creative thinking styles. 

Student Models for Just-In-Time Assesment 

To provide creativity support tailored to a given student’s needs, an ICS requires a student model 

(VanLehn, 1988) that assesses students’ attributes relevant to creativity processes and outcomes 

throughout their educational activities. To prepare to conduct this research, we have taken steps in this 

direction through related work searches that have highlighted a preliminary set of attributes that we will 

take into account and extend as needed. These attributes are encapsulated by Amabile’s componential 

model of creativity and related research as follows: 
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Domain-Relevant Knowledge. Amabile (1983) shows that the more one knows, the more opportunities 

there are for creativity, something the ICS student model needs to account for in its assessment of a 

student’s creativity. Also related to the assessment of creativity is the fact that its very definition 

involves the production of a novel idea or problem-solving step – the most natural way for a model to 

determine novelty is whether the student already possessed the knowledge related to the idea or step or 

if it was constructed on the spot. 

Affect (Motivation and Emotion). How students feel greatly influences the creativity process and its 

outcomes. Thus, the ICS model will rely on the data from affective sensing devices as well as tutor 

variables to assess states like intrinsic motivation, central to Amabile’s theory (Amabile, 1983), as well 

as other affective states such as frustration (e.g., indicating Stuck!) and flow.  

Metacognition Related to Creative Thinking Styles. The third element of Amabile’s theory pertains to 

what she terms as “creative thinking style,” such as how flexible and imaginative people are in their 

approach to problems, indicating the metacognitive skills required for creativity.  

The ICS creativity student model will represent and infer information related to these three attributes. For 

the modeling of knowledge and metacognition, we will build student models via established techniques 

(e.g., Conati, Gertner & VanLehn, 2002; Corbett, McLaughlin & Scarpinatto, 2000; Mitrovic, 2012; 

Reye, 2004) for modeling of these attributes. Specifically, we will use cognitive and metacognitive task 

analysis to identify fine-grained skills needed to solve a problem (knowledge) and for creativity in general 

(metacognition, including, for instance, divergent thinking). These skills can be computationally 

represented using a rule-based approach that enables the system to automatically model both the target 

solutions and skills sets (Anderson, 1993). This is accomplished by tying parameters to each rule to 

represent the probability that the student knows the corresponding skill, which “fire” when a certain 

threshold is exceeded. In addition, this approach can be used to provide the backbone of a Bayesian 

network that makes the structure of the student knowledge and metacognitive skills explicit, as in (Conati 

et al., 2002). Overall, this probabilistic approach has the advantage of recognizing that modeling student 

knowledge and metacognition is not a black and white process, since there is typically inherent 

uncertainty arising from, for instance, student slips and guesses (Reye, 2004) and/or lack of direct 

evidence on student state of interest (e.g., divergent thinking).  

For the modeling of affect, initially, we will refine our existing student models developed in our work 

(e.g., Arroyo et al., 2009) and use their output as inputs to the ICS creativity model. These models already 

capture attributes that are relevant to the research at hand (e.g., interest, related to intrinsic motivation and 

Flow, frustration) by relying on data from the sensing devices and tutor variables. However, as mentioned 

above, these models do not take into account the uncertainty inherent in assessing affect as other existing 

affective models do (e.g., Conati & Maclaren, 2009) and so we will extend and/or redesign them as 

needed. 

In order to calibrate the main ICS creativity model, as well as its knowledge, affect, and meta-cognition 

sub-models, we will conduct empirical studies to collect data from students (high school and college) as 

they interact with the target tutor while a target set of sensors captures their physiological responses. The 

goal behind these evaluations will be to collect a rich data set that enable us to (1) evaluate the accuracy 

of the student models for capturing the target student attributes and (2) analyze how student actions and 

student affect influence the creative process during open-ended problem solving.  

Model Accuracy: To determine student model accuracy we will compare model output to a gold standard 

(Arroyo et al., 2009; D’Mello & Graesser, 2012; Muldner, Burleson & VanLehn, 2010). In the case of 

student knowledge, this gold standard is typically a test targeting the domain concepts. For affect and 

metacognition, the situation is more complicated since information on students’ feelings and high-level 
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thoughts is not readily available. Thus, we will use a two-prong approach that we have relied on in the 

past: (1) talk-aloud protocol by having students verbalize their thoughts and feelings (e.g., Muldner et al., 

2010) for a subset of the participants (since this is a laborious process that requires transcription and 

analysis of many fine-grained events), and (2) for obtaining affect information, the target system will 

intermittently ask students to report on their emotions (as in Arroyo et al., 2009). Note that these 

techniques are only necessary during model-testing – once the model is calibrated, the self-report prompts 

and talk-aloud protocol are removed. To use these data to assess model accuracy, we will transcribe the 

talk-aloud protocols and identify metacognitive and affective events, and then use these data in 

conjunction with the self-report data to compare against the corresponding submodel output.  

Factors Influencing Creativity: While work in psychology has provided indications of how various 

attributes influence creativity, the technological context of this approach affords opportunities for 

investigating creativity beyond traditional settings. In particular, the PI’s suite of sensors provides a 

unique chance for extending the community’s knowledge on factors that influence creativity. Thus, we 

will rely on the EDM techniques we have used in the past (Muldner, Burleson, Van de Sande & VanLehn, 

2011) and/or adopt additional ones as needed in order to mine the rich data set collected in this phase for 

factors influencing creativity. Specifically, relevant features will be extracted, e.g., affective states, 

productivity during problem solving, effort invested, and used as inputs to EDM techniques, e.g., 

Bayesian network parameter learning (Muldner et al., 2011) andlogistic regression (Cooper et al., 2009; 

Cooper et al., 2010). This will inform how various events contribute to creativity (e.g., a student reported 

frustration and this was related to a low creativity time span) and the relative utility of each event to the 

overall creativity process. We also plan to analyze the relative utility of each sensor (as we did for 

Muldner et al. [2010] and Cooper et al. [2010]) in order to understand which sensors are most valuable for 

creativity assessment as well as what the trade offs are when not all sensors are available.  

Realizing Creativity Support within the GIFT architecture 

As we have described above, ICS requires modeling of a range of student attributes, from domain 

knowledge, to meta-cognition, to affect. Aspects of the GIFT architecture are well aligned to support 

these modeling requirements. In particular, this architecture includes the sensor module that provides an 

interface for incorporating a range of sensing devices, which prior work has been shown to be useful for 

modeling affect (e.g., Arroyo et al., 2009). The input from these devices can then be sent to the GIFT 

learner module in order to map the low level sensor signals to the high level affective states of interest, 

like interest, frustration and/or flow – this module can also be used to assess students’ domain knowledge 

and meta-cognitive skills. The GIFT pedagogical modules can rely on this information to tailor 

interventions in order to support and foster students’ creativity.  

GIFT also includes a domain module, that is used to structure and represent the target domain knowledge 

the student is expected to acquire – this is also relevant to creativity support, as students are expected to 

learn about the domain through creative activities. However, one aspect that is not clear and will need 

future exploration is how well the GIFT domain modules support the more open-ended domains that are 

required for creative endeavors, i.e., domains that afford users opportunities freedom to explore multiple 

solutions, apply divergent thinking and exhibit flexibility in their approaches. Many open-ended domains 

are ill defined in that it is difficult to specify objective criteria for solution evaluation – consequently we 

foresee this as one of the challenges in realizing creativity support in general and within the GIFT 

architecture in particular. 
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Conclusion  

We have discussed the ICS framework and its application to the integration of ITS, affective computing, 

and CST to foster students’ creativity. We have also outlined our research strategies for taking the next 

steps to implement and evaluate this approach, as well as initial considerations on how ICS can be 

realized within the GIFT architecture and challenges associated with doing so. 
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Introduction 

The Advanced Distributed Learning Initiative (ADL) has a vision for a Personalized Assistant for 

Learning (PAL), which will help provide life-long, relevant, tailored, timely access to learning content 

and performance aids. It will recommend topics and engagement modes appropriate to the learner’s 

current context, and guide and support the user’s learning experiences. GIFT and PAL have compatible 

goals in that both favor modular, service-oriented architectures, and learner-centric approaches (Sottilare, 

Brawner, Goldberg, and Holden, 2012). Learner models used by GIFT and PAL should predict learner 

state so needs can be best addressed by each system. Where GIFT and PAL differ is with respect to 

emphasis on adaptive support during learning versus adaptive recommendation of learning activities. 

Present day intelligent tutors use data from student-system interactions to build a learner model, and use 

that model to support learning activities, but each tutor confines itself to guiding learning in a limited 

domain and is pretty much ignorant of the user’s context or their knowledge of other domains. In contrast, 

the PAL will need to aggregate data from student interactions with multiple systems and sensors in order 

to make context-aware recommendations about which learning activities to engage in. This chapter 

explores the challenges with establishing interoperability across sources of student data, so that the PAL 

learner model can use this information to provide assistance tailored to user preferences, goals, 

knowledge, and interests. These challenges are relevant to GIFT, because although not currently 

implemented, GIFT also intends to have a persistent learner model that provides a cross-domain view of 

the learner’s performance, experience, and preferences.  

Today, our learning opportunities extend well beyond traditional classroom education or on-the-job 

training. Recent years have seen the growth of educational technology such as distributed online content, 

serious games, simulations, MOOCs, and ITSs. Moreover, the distinction between formal and informal 

learning has become blurred through the availability of online resources such as Wikipedia and YouTube. 

There are applications that support online discussions, in which people post questions, obtain advice, and 

have discussions with both human and automated responders. Information pushed to users can be 

personalized through rich site summary (RSS) subscription feeds and aggregators; and social 

bookmarking allows users to add, annotate, edit, and share web documents. Learners “follow” the 

bookmarks, blogs, and posts of others. Digital tools also help people keep notes on, and products of, their 

activities (e.g., e-portfolios). The advent of cloud computing and mobile devices has freed these activities 

from the desk. In fact, there are so many possibilities available that learners may feel overwhelmed 

(Kuflik, Kay, and Kummerfeld, 2012). One of the overwhelming aspects is that each application or 

resource used by the learner knows little to nothing about what the user really needs. Some applications 

have the ability to collect user-system interaction data in order to alter or adapt future interactions 

(personalization), but since these tend to consider only the data they capture themselves, the picture of the 

user they create is just a tiny snapshot. Moreover, these adaptive systems tend to know little about the 

user’s current context. True personalization would take into account some knowledge of the user’s current 

situation and goals, and how these have changed overtime – context awareness.  

Context awareness may encompass factors like location, task, role, and time. Recent developments in 

device and environmental sensors (ubiquitous computing) offer the promise of providing digital 

applications with some of this information. Coupled with a broader appreciation of learner knowledge, 
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preferences, and interests, gleaned from user interactions with multiple applications, there is the potential 

to provide learners with just-in time content highly matched to their immediate requirements.  

With respect to learning, what is of most immediate use and relevance depends on what the learner needs 

to know, why the learner needs to know it, and what the learner already knows. ITS and other adaptive 

instructional technologies are the best examples of learning technologies that attempt to provide what the 

learner really needs. By assessing performance of the specific skills the learner is trying to master, such 

technologies build up a model of learning gains and learning needs in a particular domain. But ITSs are 

closed systems. They only know how to instruct on a fixed skill set, using a limited array of teaching 

tactics. If that doesn’t work, the learner is out of luck. They don’t know how to reach out to find other 

resources (e.g., when it turns out, for example, that the user needs a refresher on prerequisite knowledge), 

and they only have a limited way of teaching. Why can’t an ITS go out and find the user material on the 

prerequisites, or find other ways of teaching the same material when its own teaching tactics don’t seem 

to be working? What about when the user really doesn’t want a lesson, but just needs to get an answer 

quickly? How can we go from the situation of today, where each application we use has only a little bit of 

the picture – like the proverbial blind men feeling the elephant – to the situation in which these pieces of 

the picture can be amalgamated to produce more context-aware and personalized support?  

Future Concept 

ADL is investigating solutions to these challenging questions, under the PAL project. ADL intends for a 

PAL to enable learners to access personalized learning content and peer and mentor networks from 

multiple devices or platforms. It will track performance throughout the learning process, whether formal 

or informal. It will have a nonintrusive user interface and will consume data from device and 

environmental sensors to support context awareness. In the short to mid term, we envision core PAL 

services providing a user interface, experience tracking, user modeling, recommendation formulation, and 

content discovery. In the longer term, we envision that a PAL could also provide coaching and guidance. 

Thus, whereas GIFT has started out like an ITS (coaching) and will expand to encompass a persistent 

student model that spans domains, the PAL is starting out like a recommender system. A PAL will be 

knowledgeable about diverse domains and provide the appropriate level of guidance for the user’s current 

needs and goals. A PAL should help create a self-regulated learner with a thirst for knowledge, and not 

engender dependency on technology.  

PAL Scenario 

Consider the scenario of an U.S. Army Reserve soldier in 2020. Corporal Smith is about to deploy to 

Haiti on a hurricane relief mission. Since her PAL is linked to the Army’s personnel system, it already 

knows she is preparing to deploy and has recommended to her several relevant training exercises. Her 

PAL knew that she already had a badge for Level 2 French (limited working proficiency) according to the 

language competency criteria set by the Interagency Language Roundtable (ILR), and that she wants to 

get to Level 3 (professional working proficiency). Her PAL recommended some lessons and game-based 

scenarios so she could brush up on her old skills and learn some Haitian Creole. Her PAL knows that her 

main job while deployed will be managing the X22 search and rescue robot, so it has selected new 

vocabulary that will likely be useful in that situation. It also cued up the interactive technical manual for 

the X22. On the flight to Haiti from Kansas, her PAL offers her various methods of passing the time. She 

selects a documentary about the impact of the 2017 election to Pope of Archbishop of Port Au Prince, and 

she reviews the latest footage and reports available about the hurricane damage. Once on the ground, with 

a little free time, Corporal Smith networks with some colleagues back home who also have experience 

with the X22. They all know that the X22 sensors have a tendency to malfunction in humid conditions 
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and are discussing possible solutions. The corporal’s PAL suddenly alerts her network to a new blog it 

has found discussing the exact same issue, with an offered solution, but will she really find BOUNCE® in 

Haiti now? She wishes she had thought to investigate this issue before she left and asks the PAL for the 

Haitian Creole translation for dryer sheets. 

Omnipotent ITS or Interoperable Systems? 

This vision of a PAL is of an intelligence that can make recommendations and monitor user activities in 

real time. It has the ability to infer the user’s needs and respond by making recommendations for learning, 

and it also is ready to provide information in the form of assistance (e.g., to provide the translation for 

dryer sheets). Today’s ITS are not capable of this kind of support, because they are limited to intelligence 

about learning a particular domain, and they also tend to have a limited way of interacting with the 

student (e.g., designed to teach how to solve linear equations, but not prepared to help answer a real-

world problem the student needs to solve right now). It might be possible to grow an ITS into a PAL, by 

expanding its breadth of expertise as well as the various services it provides (e.g., supporting social 

networking, providing references, etc.). It might even be possible to create an ITS that can ingest 

information from the web and “learn” new domains. Given the challenges and resources required for 

creating an ITS for just one domain, this seems like a very daunting task. In addition, users will still 

always have other activities that the ITS will be ignorant of. Finally, it is unclear how a monolithic system 

could ever keep up with changing technologies. An alternative approach is to foster interoperability 

among existing and future heterogeneous systems, all of which can contribute some knowledge of the 

user to a persistent learner profile (Alrifai, Dolog & Nejdl, 2006; Carmagnola, Cena & Gena, 2011; Kay 

& Kummerfeld, 2012; Kulik, Kay & Kummerfeld, 2012). This learner profile would exist independent of 

any service or application, allowing those services and applications to both contribute and consume its 

knowledge about the learner. As discussed by Kay and Kummerfeld (2012), there are many technical 

challenges associated with persistent learner profiles. These include the learner’s ownership of their own 

data, and their ability to inspect them, as well as privacy control and protection of personal data. Our 

focus in this chapter, however, is on the interoperability challenge. How can we unlock the data from 

heterogeneous systems and make open data, content, and web APIs the new default?  

A Service-Based Approach 

One potential solution to the problem of data being locked up inside of applications is to securely expose 

the data through web APIs using common standards so that multiple applications can use the data (CIO 

Council, 2012). While it is clear that learner data need to be exposed securely through web APIs, it is not 

yet clear how that learner data should be represented. Approaches to represent interoperable learner data 

have historically focused on XML and resource description format (RDF) standards in the W3C Semantic 

Web stack (IMS, 2001; Dolog & Schafer, 2005). While these approaches have relied on standards, the 

barrier to entry appears to be too high, perhaps due to the complexity of requiring all contributors to use a 

common schema. Alternative approaches that exploit hypertext transfer protocol (HTTP), JavaScript 

object notation (JSON), and Representational State Transfer (REST) may better facilitate the feasibility of 

communication and the exchange of learner data (Carmagnola, Cena & Gena, 2011). The reason HTTP, 

JSON, and REST are important is that they are the simple and lightweight methods that web developers 

prefer to get started with – they lower the barrier to entry.  

The Mozilla Open Badges project (http://openbadges.org/) provides a new way to think about 

representing learner data that exploits HTTP, JSON, and REST. Mozilla Open Badges make it possible to 

get recognition for skills and achievements that happen online or out of school by making it easy for any 

organization to issue, manage, and display digital badges across the web. The Open Badges project 

includes a badge format specification, APIs, and a reference implementation for “badge backpack” 

http://openbadges.org/
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software. The badge backpack software, which keeps track of badges a user has been awarded, is a critical 

collection of learner model data. Various organizations that may issue badges can choose the granularity 

of a given badge.  

The ADL Experience API (http://www.adlnet.gov/tla/experience-api) is another project providing a new 

way to think about representing learner data that also exploits HTTP, JSON, and REST. The Experience 

API provides a way to track and report learning activity using simple statements. Together, Open Badges 

and the Experience API offer a new way to think about constructing interoperable learner model data.  

To illustrate how these new projects may be used together, consider how badges may be issued. A 

learning application can provide direct credit for a learner’s achievement using that platform in the form 

of a badge. However, this is not the only way a learner could be given credit. The Experience API allows 

many different learning experiences to be tracked and reported at a very granular activity level (e.g., 

Sarah watched Army Knowledge Online Video X). This activity data, for a given user, can be collected 

and securely made available through a Learning Record Store (LRS; http://www.adlnet.gov/tla/lrs). The 

data can then be analyzed independent of the learning experience. An assessment service for example, 

using specialized techniques, could examine a learner’s activity data stored in an LRS and provide credit 

(e.g., a badge) for relevant activity that may span different applications. Figure 20-11 shows these two 

techniques for providing a learner with a badge. 

 

Figure 20-1. Direct and indirect badge issuance. For direct badge issuance, a learning application assesses 

learning activity and puts a badge in the learner’s badge backpack when the activity reaches an objective 

criterion. That learning application may or may not also send information about the learner’s activity to a 

separate LRS. For indirect badge issuance, an assessment system examines data in the LRS. Those data may 

have been contributed by one or more learning applications. The assessment system puts a badge in the 

learner’s backpack when the evidence in the LRS reaches an objective criterion. 

http://www.adlnet.gov/tla/experience-api
http://www.adlnet.gov/tla/lrs
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Open Badges and the Experience API also provide a way to capture evidence for achievements. In Open 

Badges assertions (Cmcavoy, 2013), there is an optional field to track evidence for a given badge 

issuance. The evidence field is simply a uniform resource locator (URL) that should point to information 

about how the learner earned the badge. Given the Experience API and the collection of data in a web-

accessible LRS, the Open Badges evidence field can point to specific experience activity data located in 

an LRS as depicted in Figure 20-22. 

 

Figure 20-2. A specific badge could point to the specific activities in the LRS as the evidence concerning how 

the badge was earned.  

The Experience API is the first web service specification and Open Source Software element in a 

collection of web service specifications and Open Source Software elements that will make up the ADL 

Training and Learning Architecture (TLA). In addition to services for tracking learning experiences, the 

TLA will also include services for managing learner profiles (http://www.adlnet.gov/tla). It is anticipated 

that Open Badges will be referenced by learner profiles, which will likely contain other learner data such 

as goals, reflection, etc. The TLA will also include services for creating and accessing competency 

definitions to serve as a common way to reference educational standards, learning objectives, and 

competency definitions through web APIs. The Open Badges assertion specification also contains a field 

to reference criteria for earning a badge. The criteria field is simply a URL that should point to the 

badge’s criteria. Figure 20-3 illustrates how badge criteria could point to competency definitions. For 

example, a badge that the Khan Academy might issue for a learner mastering algebra could reference 

criteria for algebra using the Math Common Core standards accessible through the Achievement 

Standards Network’s (ASN) web APIs. 

 

Figure 20-3. TLA services linking the learner profile to the badge backpack, and the badge itself to 

sanctioned competency criteria  

http://www.adlnet.gov/tla
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A learner model used within an adaptive system can choose to model that learner data using any 

representations the developer of the application wants to use. However, interoperable and shared learner 

model data has to be represented and made available in standard ways to support as many applications 

being able to use the information as possible. If the standard representation is complex, this may enable 

some sophisticated applications to use very powerful representations of learner information. However, 

other less sophisticated applications may be unable to use the information because it is simply too 

complex. If the standard representation is simple, this will likely enable all applications to make 

maximum use of learner model data. However, in order to extract the power of the learner model data, 

specialized techniques will be required. The goal is find simple ways to share learner information that can 

be used and extended in powerful ways with significant community adoption. 

Machine Interpretation 

The effort to enable machines to access as much shared heterogeneous learner model data as possible will 

likely require making the effort to contribute that data from many applications as easy as possible. This 

means removing as many complex constraints on contributors as possible. A significant constraint past 

approaches have imposed on applications that contribute learner profile data is the requirement to 

conform that data to common sophisticated representations based on Semantic Web technologies. 

Simplified alternative approaches that impose less complex constraints are likely to make contributions 

easier and promote greater adoption. 

While the approach of removing as many complex constraints on contributors as possible may be good 

for contributors, it may make it difficult for consumers of data. Flexibility on publishing leads to 

complexity on consumption, where the machines have to be able to make sense of the data (i.e., 

translation). However, this seems to be as it should be, for each application that consumes learner model 

data will likely want to use data in a particular manner for a particular application. While the skills 

required to make sense of big data may be currently scarce and data science is a nascent field, it is taking 

off in a big way, with educational offerings growing and the pipeline of talent expanding (Davenport & 

Patil 2012).  

The method for making sense of heterogeneous learner model data has been described as bootstrapping 

learner models from external sources (Guo & Greer, 2007; Tiroshi, Kuflik, Kay & Kummerfeld, 2011). 

Guo and Greer (2007) bootstrapped (i.e., created and initialized) learner models from e-portfolios for an 

advanced programming course. The method of bootstrapping Guo and Greer (2007) employed involved 

experts and students linking of e-portfolio evidence for skill level claims in the learner model using a 

custom user interface and comparing their estimations. The system provided an evidence-recommending 

feature when a given e-portfolio artifact was selected. It should be noted that during bootstrapping, the 

raw experience data stored in a LRS referenced by an Open Badge, could be analyzed to perform an 

application’s own interpretations of that evidence, as suggested by Carmagnola, Cena, and Gena (2011). 

Guo and Greer (2007) concluded that the bootstrapping method showed promising benefits in adaptive 

learning environments. Tiroshi, Kuflik, Kay, and Kummerfeld (2011) summarized various boostrapping 

methods (i.e., content analysis, machine learning, and sentiment analysis) to initialize user models for 

recommender services from social web APIs and proposed a theoretical example of using the users’ social 

data to provide personalized tours tailored to users’ interests. 

To better understand the potential for the vision of bootstrapping learner model data, consider its 

application to a different kind of data. The Learning Registry is a distributed database for different 

educational sites to share metadata about educational resources and information about how resources are 

being used in different educational settings. The approach to make contributing as easy as possible was 

similar to the approach being described here of making it as easy as possible for applications to publish 
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learner model data. Thus, there were minimal constraints on the form metadata for resources needed to 

take – contribution focused on flexibility. 

The flexibility afforded contributors made it very difficult for consuming applications to use the large 

volume of heterogeneous data, however. To address this difficulty, ADL developed an approach to make 

sense of the data through an open source project called lr-data (https://github.com/wegrata/lr-data), which 

has subsequently been shared with and used by others. The technique is based on a distributed task queue 

called celery (https://github.com/celery/celeryproject). Different tasks are assigned to process each record 

of data (harvest it, clean it, filter it, augment it, store it, etc.). The beauty of the software is that it is open 

source, visible (i.e., hosted on github), and written in the easy to read language of python. Different 

applications can use and adapt this open source toolkit to process the data as they need for their specific 

application requirements.  

In the case of sharing and making sense of learner data, a similar model can be followed where any 

contributing application (e.g., an ITS or game) could easily publish activity data to a LRS, Open Badges 

to a learner’s badge backpack, or other learner model data to their shared learner profile as JSON over a 

RESTful HTTP connection. The LRS, badge backpack, or learner profile can exist anywhere (e.g., an 

employer organization, a commercial provider, or even self-hosted by a learner) – all the contributing 

applications need to know are the URLs and the learners credentials. If a learning application wants to 

make sense of all this data, it too just needs the URLs and the learner’s credentials to get started. The 

learner could set permissions concerning what applications can access their data. Then a bootstrapping 

method can be used to make sense of the data leveraging open source software customized for the needs 

of the learning application. The software would likely reference external ontologies, databases, and 

services. Finally, a learner could ideally be involved in running such software to make sense of their own 

data for their own purposes. 

Discussion 

The PAL, GIFT, and other learner applications that will exist in the future will benefit from sharing 

learner model data with one another to improve the way each learning application can best adapt to the 

learner. A flexible approach based on web services was proposed.  

The data sharing design goals of PAL and GIFT are complementary. Each seeks to monitor progress and 

provide tailored assistance by accessing heterogeneous data sources. For example both GIFT and PAL 

offer integration of domain-specific data and domain-independent modules or plug-ins to contribute to 

learner models. Key to both systems is the notion of data sharing via interoperable open standards. Data 

and data structures in GIFT reside within models and libraries, while executable code is expressed as 

interoperable modules (Sottilare, Brawner, Goldberg, and Holden, 2012). We are considering how PAL 

can use elements of GIFT, but also how PAL might bootstrap learner data that resides anywhere (as long 

as access permissions exist). 

To support comprehensive and persistent learner models to enable the adaptive tutoring learning effect 

chain (Sottilare, 2012), GIFT should plan to contribute and consume from external shared learner model 

infrastructure such as badge backpacks, LRSs, and learner profiles. GIFT should plan to participate in 

open source development of toolkits to support bootstrapping external learner data as part of the design of 

the GIFT authoring, instructional management, and assessment constructs for more flexible data-driven 

computer-based training systems (CBTS). 

As we struggle to understand which data are most important in a learner model for the desired learning 

outcomes (Holden, Sottilare, Goldberg & Brawner, 2012), having access to as much data as possible is 

https://github.com/wegrata/lr-data
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critical to conduct the anticipated research. Given that GIFT is particularly focused on the needs of adult 

learners (Holden, Sottilare, Goldberg & Brawner, 2012), capturing an understanding of their diverse 

experiences seems paramount. 

Finally, while much of the focus on GIFT learner modeling is on the current tutoring session and the 

learner’s state in that session, it is important to keep in mind how the learner evolves between tutoring 

sessions. When the learner begins a subsequent tutoring session, it would be valuable for a GIFT tutor to 

know what the learner may have experienced and learned since the last tutoring session. 
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Introduction 

In this chapter, we review research on leveraging eye-tracking information to improve the depth and 

accuracy of student modeling in ITSs. Eye-tracking has been extensively used both in psychology for 

understanding various aspects of human cognition, as well as in HCI for offline evaluation of interface 

design or as an alternative form of intended user input. In recent years, however, eye-tracking has also 

been investigated as a source of information on relevant users states and processes (e.g., attention, 

motivation, meta-cognitive activity) to inform the actions of an ITS. This chapter is an overview of some 

of the recent trends in this area. The overview is structured in two parts. In the first part, we describe 

existing research on investigating eye-tracking data as a direct source of information for student modeling 

and personalized instruction. In this part, we discuss efforts to model the learner at the behavioral, 

cognitive, meta-cognitive and affective level. The second part focuses on research that has used eye-

tracking mainly for the offline analysis of how students attend to specific elements of an ITS interface, in 

order to understand relevant student behaviors and processes. Although this work is less directly related to 

using eye-tracking data in student modeling than the work described in the first part, the results of this 

research provide important insights on additional ways in which student models could leverage gaze-data 

in the future. We conclude the chapter with a discussion of these insights and related recommendations 

for GIFT design. 

Investigating Gaze Data as a Direct Source Of Information for Student 

Modeling 

Leveraging Eye-Tracking Data to Capture and Adapt to Relevant Student Attention 

Behaviors  

The work by Sibert et al. (2000) represents, to our knowledge, the first attempt to use gaze tracking for 

real-time student assessment. Sibert et al. (2000) describe GWGazer Reading Assistant, a system for 

automated reading remediation that tracks a student’s reading patterns and provides support if these 

patterns indicate difficulties in reading a word. In particular, raw gaze data tracked with an unobtrusive, 

camera-based eye-tracker is parsed in real time to identify the word a student is currently reading, based 

on a reading dwell threshold that essentially defines the minimum amount of attention needed to be 

focusing on a word. A second threshold identifies delays in dwelling on a word that may indicate 

difficulty in reading it. When dwelling on a word exceeds this second threshold, the Reading Assistant 

pronounces the word for the student as an aid to reading it. Sibert et al. (2000) describe a preliminary 

informal evaluation of the system, in which eight children age 10‒14 read a series of textual passages 

twice, with the help of the Reading Assistant. Results are presented in terms of changes in reading speed, 

accuracy, and number of prompts received from the first to the second reading of each passage, showing 

improvements on all measures. While these results do not provide any formal conclusions on the 

effectiveness of the Reading Assistant gaze-drive audio prompts, a qualitative post-questionnaire revealed 

that students liked the system and found it easy to use and unobtrusive. Thus, this work can be seen as an 
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encouraging preliminary step in developing learning environments that leverage gaze information to 

provide personalized support to their users. 

Anderson (2002) conducted an early experiment with a gaze-contingent ITS. The study involved a 

research version of the Pump Algebra Tutor (PAT), created specifically for use in eye-tracking studies 

(e.g., the interface elements were spaced out more widely than in the standard tutor). The purpose of the 

experiment was theoretical, namely, to provide an existence proof that paying attention to “fine-grained 

temporal detail of the student’s behavior” can have instructional leverage. More specifically, building on 

the work by Gluck and Anderson (2000), Anderson made the tutor respond to certain instructional 

opportunities that could be identified only through eye-tracking. As one example, if following an error 

message, the student did not read the error message (as revealed through eye-tracking) and did not correct 

the error within 10 seconds, the tutor would give a brief auditory message (“Read the help message”). As 

a second example, when – through eye-tracking – the tutor detected that the student used a problem-

solving strategy that bypassed the instructional objectives, instead of using an intended problem-solving 

strategy, the tutor would give an auditory message suggesting that the student try the intended strategy 

(e.g., one in line with the instructional objectives). This happened in algebra problems in which students 

were given a problem statement describing a story context and were asked to (1) formulate an algebraic 

expression that captures the algebraic relations described in a story context and (2) use that expression to 

calculate specific quantities. On the second step (i.e., calculating quantities by applying the algebraic 

expression), eye-movement data revealed that students sometimes ignored the algebraic expression that 

they had created moments earlier and instead reasoned directly from the problem statement, a slower 

strategy that bypassed the objective of learning to work with algebraic expressions. When the student 

made an error on this type of step without fixating on the expression, the gaze-contingent tutor presented 

another auditory message: “Try using the formula to compute your answer.” With these gaze-contingent 

additions, the tutor helped students reach mastery 20% faster than the standard tutor, an impressive gain 

in efficiency. Further, eye-movement data revealed that students who worked with the gaze-contingent 

tutor attended to the algebraic expression more even before the gaze-contingent tutor would suggest they 

do, evidence that the gaze-contingent messages had the desired result. 

Wang et al. (2006) used eye data to control interaction with the Empathic Software Agents (ESAs) for 

teaching biology. Eye-tracking data were used in two ways: as user input and also to provide information 

for adapting the behavior of the pedagogical agents available in the ESA to the student. Using the gaze 

input, it was possible for the student to choose a topic to study by simply looking at the appropriate area 

on the screen for a pre-defined time period. The student could also reply to a yes/no question by using the 

appropriate eye gesture (moving the eyes vertically for “yes” and horizontally for “no”). By analyzing the 

eye-tracking data and pupil dilation, the system inferred the student’s focus of attention and responded to 

it with affective behavior and/or feedback. When the student showed interest in a particular content by 

dwelling on it, the agent moved to the appropriate location on the screen and provided additional 

information. In addition, the agent also provided positive affective feedback to the student’s attentiveness 

by showing facial expressions conveying happiness. In contrast, if the student appeared to lose 

concentration (e.g., by looking away from the screen), the agent would say something to bring the 

student’s attention back to the screen and showed mild anger. The agents also displayed adaptive 

behaviors based on student’s states inferred primarily from student actions, e.g., providing feedback if a 

student made a mistake, or trying to engage the student if she appeared bored or disengaged because of 

lack of mouse or keyboard input. A small preliminary study with 10 participants revealed a beneficial 

effect of the adaptive agents on the students’ motivation and concentration. The participants reported that 

they were more attentive to additional information and explanations provided by the agent than to the 

other content available in the system. Although the study does not provide sufficient information to 

discriminate which role the gaze-adaptive components played in these evaluations, it shows that, overall, 

an agent relying on both gaze and action data to provide cognitive and affective feedback has good 

potential to enrich a student’s learning experience. 
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D’Mello et al. (2012) provide the only demonstration so far (to the best of our knowledge) that an ITS 

responding to student gaze in real time can improve student learning. (The study by Anderson [2002], 

described above, demonstrated that adding gaze-contingent responses to an ITS can lead to more efficient 

learning, but not that it leads to better learning outcomes.) The study involved Guru, a dialogue system 

with an on-screen tutor agent that engages the student in a tutorial dialogue on instructional material 

displayed on the screen. The system used eye-tracking to evaluate whether the student was paying 

attention, as captured using simple rules (basically, not looking at the tutor agent or the relevant 

instructional material was considered not paying attention). When the student did not pay attention, the 

tutor interjected (in speech) any of the following messages: ‘‘Please pay attention,’’ ‘‘I’m over here you 

know,’’ ‘‘You might want to focus on me for a change,’’ and ‘‘Snap out of it. Let’s keep going.’’ 

D’Mello and colleagues conducted a study comparing tutor versions with and without these gaze-

responsive messages. The results were very interesting. First, there was substantial reorientation of gaze 

after the gaze messages, meaning that the tutor agent did succeed in directing students’ attention back to 

the tutor agent and the lecture. Further, students who worked with the gaze-reactive tutor did better on 

deep learning questions on the post test than students who worked with the version that was not gaze-

reactive. In contrast, learning gains for assertion questions in the pre-post test, which tap into knowledge 

of surface level facts, were higher with the non-gaze-reactive tutor.  

All the work described in this section leverage gaze information to capture momentous student attention 

patterns relevant to improving student interaction with the corresponding learning environments (i.e., 

patterns indicating reading difficulty in the GWGazer Reading Assistant, and patterns indicating attention 

or lack thereof in ESA and Guru). None of this work, however, uses the captured gaze information to 

make higher-level inferences regarding student’s states and processes. In the next section, we review 

work that takes this extra step, using gaze data to model students at the cognitive, meta-cognitive, and 

affective level. 

Leveraging Eye-Tracking Data to Model Student Cognitive, Meta-Cognitive, and 

Affective States 

Conati and Merten (2007) use gaze data to improve the accuracy of a student model designed to enable 

provision of personalized support to learning mathematical functions via exploration of an interactive 

simulation (Adaptive Coach for Exploration [ACE]). Providing this adaptive support is challenging 

because it requires assessing the effectiveness of behaviors for which there is no formal definition of 

correctness. Conati and Merten (2007) tackled the challenge with a probabilistic model that assesses 

exploration effectiveness by integrating information on (1) user actions in ACE, (2) user’s knowledge and 

(3) whether users actually reason about (self-explain) their exploratory actions. Self-explanation – 

generating explanations to oneself to clarify instructional material –is a well-known meta-cognitive skill 

in cognitive science. This work is the first to consider and model self-explanation in the context of 

exploration-based learning. To assess whether a student is self-explaining the outcome of an exploratory 

action, the ACE’s student model combines information on the time the student spent on that action with 

gaze information. This gaze information relates to the occurrence of a simple gaze pattern defined a priori 

as being relevant for learning with this particular simulation: a gaze shift between two panels, one 

showing a function equation and one showing the related plot. The main exploratory action available in 

this simulation is to change either the equation or the plot, and see how the change affects the other 

component. Hence the definition of the aforementioned gaze shift as a relevant pattern to indicate self-

explanation in ACE. A formal evaluation showed that the student model including eye-tracking 

information provides significantly better assessment of both a student’s self-explanation behavior during 

interaction with the simulation, as well as subsequent learning of the relevant mathematical concepts. 
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In the student model described above, Conati and Merten used gaze information related to the occurrence 

of a simple gaze pattern defined a priori as being relevant for learning with their target simulation. Kardan 

and Conati (2012) and Kardan and Conati (to appear) extend this work by looking at a much broader 

range of general eye-tracking features to capture student learning in the context of a different interactive 

simulation (IS). This is an important difference, because pre-defining gaze patterns that indicate learning 

in an IS may not always be easy or possible, due to the often unstructured and open-ended nature of the 

interaction that IS support. Furthermore, such pre-defined patterns are task specific, and may not directly 

transfer to a different IS. In contrast, the approach described in Kardan and Conati (2012) and Kardan and 

Conati (to appear) is more general and can be applied to a variety of ISs. It relies on giving to a classifier 

user model a broad range of standard eye-gaze features that are either task independent or based solely on 

identifying the main components of the target IS interface. Then, it is left to the classifier to identify 

patterns that are indicative of users’ learning with that IS. An evaluation of this approach was performed 

on a data set encoding the gaze data of students working with the constraint satisfaction problem (CSP) 

applet, an IS designed to visualize the workings of the AC3 algorithm for constraint satisfaction on a 

variety of available sample problems. The CSP applet provides various functionalities that allow a student 

to explore the run-time behavior of AC3 at their own pace. The evaluation described by Kardan and 

Conati (2012) showed that a classifier using solely information on a student’s overall attention patterns 

during a complete session with the CSP applet achieves an accuracy of 71% in distinguishing students 

who learned well from the CSP applet from students who did not (where learning was measured via a pre-

test and post-test administered during the study). Furthermore, giving the classifier additional information 

on how students’ attention patterns changed while solving two different problems of increasing difficulty 

further improved classification accuracy to 76%, with better balance in classifying each learner type (i.e., 

high learners vs. low learners, with class accuracy of 77% and 78%, respectively). In a follow-up study, 

Kardan and Conati (2013) showed that a student model for the CSP applet that combines information on 

both gaze data and interface actions outperforms models that rely on either gaze data or action data only. 

Kardan and Conati (to appear) also show that the action+gaze student model for the CSP applet reaches 

and stays above 85% accuracy in classifying a new user as a high versus low learner after seeing 22% of 

the overall interaction data (accuracy above 80% in each class), showing that the model can be used to 

trigger real-time interventions aimed at improving the experience of low learners with the CSP applet. 

Thus, Kardan and Conati’s work provides further evidence of the value of gaze data for user modeling, 

especially for interactions in which it is hard to predefine a priory the learners’ behaviors that should be 

detected as relevant or detrimental for learning. 

Similar results were obtained by Bondareva et al. (2013), when using gaze data only to predict learning 

with a different type of educational environment, namely, a multi-agent ITS (known as Meta-Tutor), that 

scaffolds self-regulated learning (SRL) while students study science material (Azevedo et al., 2012). 

MetaTutor is an adaptive hypermedia learning environment, which includes 38 pages of text and 

diagrams, organized and accessible by an interactive table of contents. Text and diagrams are displayed 

separately in the two central panels of the interface. In addition to providing structured access to relevant 

content, MetaTutor also includes a variety of components designed to scaffold learners’ use of SRL 

processes and their learning of a target science topic, e.g., the human circulatory system. Four 

pedagogical agents (PAs) provide spoken prompts and feedback on various SRL processes. For example, 

one PA assists the student in establishing two learning sub-goals related to the overall learning goal for 

the session. Other SLR processes supported by the PAs include taking notes, writing summaries of the 

viewed content, and evaluating one’s current understanding via interactive quizzes.  

The results in (Bondareva et al., 2013) show that, by leveraging gaze features similar to those used in 

Kardan and Conati (2013), a logistic regression classifier achieves 78% accuracy on predicting student 

learning with Meta-Tutor, after seeing all data from an interaction. Accuracy already reaches 72% 

accuracy after seeing 37% of the data. These results are especially important because, in combination 

with the results in Kardan and Conati (2013), they confirm the importance of gaze data as a predictor of 
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learning across different types of learning environments that can be leveraged for providing real-time 

personalized support to student learning. 

Qu et al. (2005) leveraged gaze data to assess student motivation in the Virtual Factory, an ITS that 

teaches engineering skills (Johnson, Rickel, and Lester, 2000). They started from observations that human 

tutors use information about a learner's motivational states related to effort, confusion, and confidence 

during coaching. Based on these observations, Qu et al. (2005) enhanced an animated pedagogical agent 

with the ability to infer the same motivational factors about students. Information about the student's 

interface actions as well as gaze data tracking a student’s focus and duration of attention were used as 

input for a dynamic Bayesian model, which inferred a learner’s confidence, effort, and confusion during 

interaction the Virtual Factory. This student model was tested through a Wizard of Oz study during which 

students were interacting with a version of the Virtual Factory with the PA’s interventions being directed 

by an experimenter. During the study, log data were collected, along with videos of the students’ face and 

student retrospective self-reports on their motivational states during interaction. Two judges labeled 

replays of each session, synchronized with the videos of the students’ face, for confusion, effort, and 

confidence (as Low, Medium, and High). The student model’s predictions over the three factors were 

compared against both the judges’ generated labels and the students’ self-reports, showing very 

encouraging accuracies between 70% and 82%. Thus, this work provides initial evidence that gaze 

information can help assess student’s affective states in addition to more strictly cognitive factors.  

Off-Line Analysis of Gaze Data to Understand Relevant Student Behaviors 

and Processes. 

Seminal work by Gluck, Anderson, and Douglass (2000) demonstrated that eye-movement data of 

students working with an intelligent tutoring system contain information about students’ cognitive 

processes that is not directly available from the regular stream of student-tutor interaction data (see also 

Anderson, 2002). By performing offline analysis of eye-tracking data obtained with a simplified version 

of the PAT algebra tutor (later named the Algebra Cognitive Tutor), these researchers were able to predict 

certain errors even before they happened. They also showed that eye-tracking data could quite reliably 

disambiguate domain-specific strategies even when they led to the same problem-solving steps. Finally, 

using eye-tracking, it became apparent that students did not attend to as many as 40% of the system’s 

error feedback messages. Although the work by Gluck et al. (2000) did not actually demonstrate a method 

for updating a learner model based on eye-tracking, it is important for this survey because it clearly 

indicates the potential of gaze data as a rich source of information for student modeling, especially the 

strategy disambiguation work, in which inferences from eye-movement data to cognitive processes were 

made quite successfully, which often tends to be rather difficult step, fraught with uncertainty.  

In relation to using gaze data to evaluate whether students attend to an ITS’s adaptive interventions, Muir 

and Conati (2012) performed offline analysis of gaze data to investigate not only if, but also why students 

pay attention to adaptive hints generated by an educational game for math (Prime Climb). Prime Climb 

provides game activities to help students practice skills related to number factorizations, and includes a 

pedagogical agent that helps students learn from these activities by providing individualized hints. These 

hints are based on a student model that assesses whether students are learning during a session with Prime 

Climb, given their game actions. The hints are provided at incremental level of detail when the model 

predicts that student’s knowledge of relevant factorization skills is low. The hints include (1) reminders to 

use available tools that can show how a number is factorized; (2) definitions of relevant factorization 

concepts, accompanied by illustrative examples; and (3) “bottom-out” hints that explicitly explain why a 

student action was correct or incorrect based on factorization knowledge.  
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Providing adaptive hints to support learning during game play is challenging because it requires a trade-

off between fostering learning and maintaining engagement, thus this study aimed at investigating if there 

are factors that impact student attention to hints and that could be leveraged by a student model to make 

these hints more effective. Offline statistical analysis of the gaze data collected from 12 students (age 

10‒11) playing Prime Climb showed that attention to hints is significantly affected by the following 

factors: time of hint (i.e., whether a hint is given in the first or second half of a Prime Climb session), hint 

type, attitude toward receiving help (i.e., whether a student likes receiving help or prefers to do things 

without help), game action correctness and pre-test scores (i.e., how much factorization knowledge the 

student has before starting to play the game). Thus, this offline analysis indicates that capturing these 

factors and student attention to hints in the Prime Climb student model could help tailor hint presentation 

to a specific student. Muir and Conati (2012) also found that increased attention to hints was significantly 

correlated to increased correctness of the subsequent action, showing that further investigation on how to 

increase student attention to hints is a worthwhile endeavor, because it can improve student performance 

with the game, and possibly, help trigger student learning.  

Eye-tracking has also been used to investigate the students’ interaction and usage of OLMs. Since the 

mid-1990s, OLMs have attracted a lot of attention within the research community. Allowing the student 

to access an abstraction of the student model is beneficial in several ways. First, by opening the student 

model, ITSs become more user-friendly. Many projects have shown that students are capable of 

scrutinizing their models in order to explore the adaptive nature of the systems, and are interested in 

seeing the OLMs (Bull et al., 2005; Bull et al., 2007). Moreover, students can be actively involved in the 

modeling process via OLMs, as some systems allow students to challenge or even update their own 

student model. Finally, OLMs encourage students to think about their own knowledge, thus involving the 

student at the meta-cognitive level.  

Eye-tracking has been used in several projects to investigate how students process the information in 

OLMs and evaluate the effectiveness of various types of OLMs. Bull, Cooke, and Mabbott (2007) 

investigate students’ exploration of six different OLMs for the domain of C programming: a ranked list of 

concepts, a textual summary of the student model, a hierarchical lecture structure, a concept hierarchy, 

prerequisite relationships between concepts, and a concept map. In all views except the text summary, 

color is used to indicate knowledge level, with shades of green indicating correct understanding, yellow 

and white indicating low knowledge, and red indicating misconceptions. The participants were asked to 

interact with the OLMs, edit them, and/or persuade the system to change student models. The eye-

tracking sessions lasted for 10 min, and students’ preferences for various OLM views were collected via a 

user questionnaire. Participants generally found the OLMs useful, but had different preferences for which 

OLMs to use, and spent more time viewing misconceptions in their preferred views. Participants spent 

much more time examining their knowledge level (which promotes reflection) using the textual 

representation and ranked concept in comparison to the concept map and the prerequisites. The more 

complicated OLM views resulted in a broader spread of attention; for example, in the concept map 

participants focused less on their knowledge level but instead examined the map itself (i.e., they focused 

on the concepts for which there were insufficient data in their student models). Such more complicated 

OLMs require more effort from the student to gain an overview of the relationships between concepts.  

Mathews et al. (2012) also used gaze data to analyze how students interpret OLMs in the context of EER-

Tutor, a constraint-based ITS that teaches conceptual database design. The participants of the study were 

familiar with EER-Tutor, having used it previously in a database course. The participants viewed four 

different OLM views: concept tag cloud, kiviat graph, concept hierarchy, and tree map. The goal of the 

study was to see whether the students understood the OLMs they were presented. The participants were 

asked three questions about each of the OLM views. For example, participants were asked how much the 

student (represented by a provided OLM view) had learnt about a particular concept. To answer 

questions, participants needed to examine the provided OLM. The eye-tracking data were collected in 
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addition to the answers provided by participants. The efficiency of an OLM view was calculated as the 

quotient of the participant’s score (on the answers) and the product of the time spent viewing the OLM 

view and the number of fixations. A significant difference was found between the efficiencies of the four 

OLM views. Kiviat graphs and concept hierarchies were significantly easier to interpret in comparison to 

tag clouds and tree map according to the efficiency measure. Responses from the user questionnaire also 

identified tag clouds and tree maps as difficult to use to answer precise questions about knowledge levels. 

Participants were asked to rank the four OLM views by their preference: the highest ranked OLM was 

kiviat graph, followed by tag clouds, concept hierarchy, and finally, tree maps. Participants commented 

that the kiviat graph was best for an overall understanding of the student’s knowledge, but that the 

concept hierarchy was valuable for more comprehensive understanding. 

As the last chapter in this section, we report work indicating that an additional type of eye-based data, 

namely, pupillary response, can be leveraged for offline analysis of relevant student states during 

interaction with an ITS. Muldner et al. (2009) looked at the relationship between pupil dilation and 

relevant student affective and meta-cognitive states during interaction with EA-Coach, an ITS that helps 

students learn from analogical problem solving by scaffolding the relevant meta-cognitive skills of self-

explanation and analogical reasoning. A study was conducted with 15 university students who verbalized 

their reasoning and affective states while interacting with the EA-Coach. The collected protocols were 

coded for meta-cognitive events (e.g., student utterances indicating self-explanation, analogical 

reasoning, and other forms of reasoning not falling into the first two categories), as well as for valence of 

affective states (i.e., negative vs. positive affect). The data analysis revealed that type of meta-cognitive 

event significantly affects pupillary response, with pupil size being statistically significantly larger for 

self-explanation events than for other forms of reasoning. Affective valence also had a significant effect 

on pupillary response, with pupil size being statistically significantly smaller during expressions of 

negative affect than during expressions of positive affect. The analysis in Muldner et al. (2009) does not 

provide concrete suggestions on how pupillary response can be used in real time for detection of positive 

versus negative affect or different types of meta-cognitive events. However, the fact that an effect of these 

states on pupillary response was found indicates that pupillary response should be further investigated as 

an additional source of information for student modeling.  

Recommendations and Future Research 

In this chapter, we have discussed existing research relevant to understand the value of eye-tracking data 

in student modeling for ITS. This research indicates that the potential of eye-tracking data for student 

modeling is substantial, because there is evidence that these data can provide information on relevant 

learner states at the behavioral, cognitive, meta-cognitive, and affective level. In particular, work by 

Gluck et al (2000), Conati and Merten (2007), Kardan and Conati (2013), and Bondareva et al. (2013) 

show explicitly that a learner’s eyes sometimes reveal more about cognitive and meta-cognitive processes 

than “overt actions” in a tutor interface. It follows that eye-tracking has the potential to enrich “standard” 

learner modeling techniques (i.e., those tapping only the regular interaction data).  

Further research, however, is necessary to uncover the full extent of this potential. Eye-tracking data have 

so far been used to direct the adaptive behavior of an ITS by capturing only simple gaze patterns 

indicating attention or lack thereof (e.g., Silbert et al., 2000; Anderson, 2002; Wang et al., 2006; D’Mello 

et al., 2012). Student models that leverage gaze data to capture higher level student states such as learning 

(Kardan and Conati, 2012; Kardan and Conati, 2013, Bondareva et al., 2013), meta-cognition in terms of 

self-explanation (Conati and Merten, 2007), and affect in term of motivation (Qu and Johnson, 2005) 

have been developed, validated in terms of accuracy, but not integrated in an ITS. Although it is 

encouraging that positive results in terms of ITS pedagogical effectiveness have already been obtained by 

relying on simple gaze patterns (D’Mello et al., 2012), the next step for research in this area will be to see 



Design Recommendations for Intelligent Tutoring Systems - Volume 1:  Learner Modeling 

 

234 

if and how ITS effectiveness can be improved by relying on more sophisticated gaze-enhanced student 

models.  

Another relevant next step is to exploit some of the insights generated by research on offline analysis of 

gaze data described in this chapter, to extend the usage of gaze data in student modeling and ITSs. For 

instance, although the findings of Gluck et al. (2000) on lack of attention to an ITS’s interventions were 

exploited in Anderson (2002) to devise an ITS that can track this lack of attention and react to it, the work 

of Muir and Conati (2012) on factors that affect attention to hints can be leveraged to further improve 

how an ITS can increase this attention. For instance, Muir and Conati found that attitude toward receiving 

help generates consistent patterns of attention to hints throughout the interaction with the Prime Climb 

edu-game (low attention for those who do not want help, higher attention for those who do). Thus, if a 

student model can “see” that the student is not attending to a hint and knows that the student has a 

negative attitude towards receiving help, it can employ strategies specifically designed to increase 

attention to hints in someone who does not like receiving help, as opposed to using generic prompts as in 

Anderson (2002). It would also be interesting to investigate if and how the results uncovered by Muir and 

Conati (2012) generalize to other types to edu-games and to ITSs at large, and whether other factors may 

affect attention to hints (e.g., affective state, cognitive overload). A similar analysis could also be done for 

gaining more detailed insights on which factors affect attention to OLMs in general, and to specific ways 

to visualize them, especially considering recent results on the impact of individual differences (e.g., 

perceptual abilities and visualization expertise) and on visualization effectiveness (e.g., Conati and 

Maclaren, 2009; Toker et al., 2012). Finally, the results in Muldner et al., (2009) indicate that further 

research should be devoted to investigating how to use information on pupil dilation in student modeling.  

Given that research on eye-tracking and student modeling is at a very early stage, as demonstrated by the 

relatively short list of references at the end of this chapter (we included all relevant articles we could 

find), should authoring tools for ITSs, such as ASPIRE, CTAT, and GIFT, support the use of eye-tracking 

data? If so, how? The answer to these questions depends on whether one views the primary purpose of 

such tools to support ITS research or support development of deployment-ready systems. Both are 

legitimate purposes and truly versatile authoring tools would cover both. Given that resources for 

development are always limited, however, existing tools tend to be more oriented towards either one 

purpose or the other.  

When supporting ITS research is a priority, supporting the use of eye-tracking data would be an 

interesting forward-looking feature for an ITS authoring tool such as GIFT. Given that no best practices 

for employing eye-tracking data in student modeling have emerged yet, the authoring tool should support 

rapid prototyping of different ways of building student models that leverage gaze data. This capability 

would be of tremendous help in studying how eye-tracking might enhance student modeling. A useful 

first step is to enable researchers to do offline analysis of eye-tracking data combined with other key data 

sources, such as tutor log data. At minimum, this would require syncing the different data streams so they 

share common time stamps. A good next step would be to create a versatile architecture that enables the 

student modeling module (and perhaps other key modules of the ITS) to have access, at run time, to data 

from an eye-tracker. Steichen et al. (2013) have recently completed an eye-gaze service architecture to 

address exactly this need for data at run time. Their system, called Eye Movement Data Analysis Toolkit 

in Real Time (EMDAT-RT), is a standalone application that can provide real-time eye-gaze statistics to 

third-party applications through a lightweight web service interface. A client application (e.g., an ITS) can 

simply place a request for eye-gaze analysis (either at regular intervals or specific times), to which the 

service responds with real-time statistics (calculated either starting from a specific start time or for a 

specific time window, e.g., the last 10 seconds). Their system integrates a feature-rich open-source eye-

gaze analysis module (called EMDAT), capable of calculating numerous summative gaze statistics 

beyond those usually provided by the analysis packages that come with commercial eye-trackers. The 

application has been designed to be application-independent, and may therefore be reused for different 
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application domains and purposes, including ITSs. The system (EMDAT-RT) and the internal analysis 

module (EMDAT) are currently compatible with Tobii eye trackers and will be released as open-source 

packages soon. Since both offline and online processing require interfacing with an eye-tracker’s low-

level API, an important goal would also be to make these tools independent of specific eye-tracker 

models or manufacturers, to increase versatility.  
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Introduction 

This chapter discusses ways ITS principles and structures found in GIFT (Sottilare, Brawner, Goldberg, 

and Holden, 2012) might be applied to the training of teams. It concerns using the cognitive models of 

team purpose, behavior, and functions that are shared – held in common – by individual team members to 

training for teams in a manner analogous to the use of cognitive models in ITS for individuals. We 

recognize that non-cognitive factors (e.g., physiological and affective) influence team performance and 

processes. For this chapter, however, we have chosen to focus on cognitive factors. 

The use of fully automated, computer-based tutoring technologies to provide training for teams is as 

embryonic as the problem space is complex. A necessary step in determining optimal strategies for team 

learning is to assess the collective state of the team, which may be accomplished through the use of 

shared mental models. Empirical evidence suggests that these models, contribute substantially to 

successful team performance (e.g., Cannon-Bowers, Salas & Converse, 1993; Rentsch & Hall,1994; 

Stout, Cannon-Bowers, Salas & Milanovich, 1999; Salas & Fiore, 2004; Banks & Millward, 2007; 

DeChurch & Mesmer-Megnus, 2010; Espevik, Johnsen & Eid, 2011). However, the notion that shared 

mental models of cognition within teams might somehow be additive or averaged among team members 

appears untenable. If AI tutoring is to equal or perhaps exceed skilled human tutoring, success will 

demand more elegant and powerful approaches for assessing these models and the learning state of teams. 

These approaches must accurately sense and interpret the critical individual behaviors, team interactions, 

and environmental factors that promote/inhibit team performance. 

Shared mental models represent team objectives and the actions, both individual and collective, needed to 

achieve them. These models represent team communication and coordination, team posture, situation, and 

environment, and team member roles and responsibilities. They enable team members “to interpret cues 

in a similar manner, make compatible decisions, and take appropriate action” (Cannon-Bowers & Salas, 

2001, p. 196). Their application in the design and development of intelligent training capabilities for 

teams appears to be a natural and promising approach for consideration.  

The motivation for developing/maintaining shared mental models of cognition is much the same as for 

maintaining individual models of cognition. For individuals, we refer to the adaptive tutoring learning 

effect chain (Figure 22-1), where selective mining of learner data (e.g., behaviors and sensor inputs) 

informs learner states (e.g., cognition, affect), which informs strategy and tactics selection by the tutor 

and ultimately influences learning gains. Better models of learner cognition result in accurate strategy 

selection and in improved learning (e.g., knowledge acquisition, skill acquisition). 

 

Figure 22-1. Adaptive tutoring learning effect chain (Sottilare, 2012) 
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When learners train as part of a group, they can encourage each other to ask questions, explain or justify 

their opinions and reasoning, and actively reflect on their developing knowledge and team performance. 

Research has shown these activities enhance group performance and individual learning outcomes 

(especially motivation and engagement – Tchounikine, Rummel, and McLaren, 2010). However, these 

benefits can only be achieved in well-functioning, actively learning teams (Jarboe, 1996; Soller, 2001). 

While some teams may demonstrate successful interaction and communication naturally, others may be 

incapable of developing a balance of participation, leadership, understanding, and encouragement (Soller, 

2001). This inability can rapidly degrade group and individual performance, motivation, and engagement, 

and thereby learning.  

As Figure 22-2 suggests an adaptive tutoring learning effect chain model could be extended for teams and 

then specifically adapted to focus on shared mental models of cognition. 

 

Figure 22-2. Notional Adaptive Tutoring Learning Effect Chain for Teams 

Mental Models – Shared and Otherwise 

Rouse and Morris (1986) identified common themes in the use of mental models. They described these 

models as “mechanisms whereby humans are able to generate descriptions of system purpose and form, 

explanations of system functioning and observed system states, and predictions (or expectations) of future 

system states” (p 351). Mental models are often dynamic – acting as mental simulations.  

Shared mental models may then be viewed as descriptions, explanations, and predictions that the 

members of a group, such as a team, hold in common. In the case of teams, they are defined by Cannon-

Bowers, Salas, and Converse (1993) as “knowledge structures held by members of a team that enable 

them to form accurate explanations and expectations for the task, and in turn, to coordinate their actions 

and adapt their behavior to demands of the task and other team members” (p. 228). 

Research on mental models intensified in the mid-1960s with the evolution of general theories of 

perception and learning. These theories evolved from the fairly strict logical positivism of behavioral 

psychology, which emphasizes the study of directly observable and directly measurable actions, to what 

researchers began to call cognitive psychology. Cognitive psychology gives more consideration to 

internal, less observable processes, which are assumed to mediate and enable human learning and thereby 

produce the directly observable behavior that is the subject of behaviorist theories.  
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Cognitive psychology opened the door to consideration of mental models, but its theoretical and empirical 

foundations preceded it. The notion of mental models may be found in the primordial origins of scientific 

psychology. For instance, William James (1890/1950) stated his General Law of Perception as the 

following: “Whilst part of what we perceive comes through our senses from the object before us, another 

part (and it may be the larger part) always comes out of our mind” (p. 747, 1890/1950). A mental model, 

then, is a mental representation of the perceived world informed, however imperfectly, by our senses. 

Despite the early enthusiasm for behaviorism in experimental psychology, empirical support for a more 

cognitive view continued to grow. In 1967 Ulric Neisser could point to a large body of empirical evidence 

indicating that many aspects of human behavior, such as seeing and hearing, could not be accounted for 

solely by external physical cues. His central assertion was “that seeing, hearing, and remembering are all 

acts of construction, which may make more or less use of stimulus information depending on 

circumstances” (p.10).  

Neisser’s contribution helped free researchers to pursue new, more “constructivist” approaches to 

perception, memory, learning, and cognition by emphasizing their necessity. These approaches require an 

active synthesis of the environment based on a runnable cognitive model – a cognitive simulation – that is 

validated or modified by cues impinging on the senses. These actively evolving simulations, not the 

external stimuli alone, are now assumed to account for what an individual understands about the 

environment. 

We can extend these notions to the functioning of teams. As information and data become available to 

teams, they are not assumed to be taken in “neat.” Instead, they appear to be absorbed and integrated into 

a rapidly evolving collective simulation of the external environment. Team decisions then result from 

shared cognitive simulations that are run forward under various scenarios and parameters in order to 

determine optimized courses of action. Team members must therefore take responsibility for the 

correctness of their own models and for the ability of others to share them.  

Determining how teams develop these models and/or simulations and then share their results should 

considerably strengthen our procedures for assessing team decision making and performance. Creative, 

accurate, and comprehensive mental models that take account of all salient cues and filter out others of 

less immediate importance appear to be critical. Rapid decision making that quickly assesses situations 

and selects among different decision choices may be at a premium. A large, collective working memory 

seems especially important for tactical teams whose performance depends on the number of cues they 

process rapidly and accurately. 

Teams and Teamwork 

As summarized by Salas and Cannon-Bowers (2000), teams may be described as groups consisting of two 

or more individuals who must interact with one another in order to accomplish a common task, objective, 

or mission. Roles and responsibilities of individual team members may be specifically assigned, or they 

may arise spontaneously, depending on team size, team leadership, and presence of newcomers (Guimera, 

Uzzi, Spiro & Amaral, 2005). These assignments include requirements for communication and 

coordinated action – absent such requirements these collectives could be groups but not teams. There are, 

of course, teams within teams – most teams are components of a larger enterprise. 

Teamwork differs in the quantity and quality of communication and coordination required. For instance, 

an early study by Jones (1974) compared baseball, tennis, football, and basketball teams by regressing the 

effectiveness of individual team members onto team effectiveness and success. Jones found success to be 

positively associated with the effectiveness of individual members of baseball, tennis, and football teams, 
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but not basketball teams, where success depends on more closely balanced communication, timing, and 

coordination among members than the other three. The greater the need for these functions, the greater the 

need to deal with the team as a learning unit – as a learner with its own team mental model – and a 

consequent greater need to develop and assess shared mental models. 

The scope and character of models that team members must share, therefore, differ with team objectives, 

extent of teamwork required, and roles that team-members play. At some level, however, all team 

members and their models must share a common understanding of team processes, interactions, and 

objectives. The extent to which they do and whether or not it matters can be assessed by team success in 

performing tasks, objectives, and missions.  

Training for teams must adapt to or even prepare for the self-organization and self-assembly that occur in 

all teams (Guimera, Uzzi, Spiro & Amaral, 2005). This preparation seems especially important for the 

pick-up teams that are frequently and inevitably assembled to perform military operations. Such teams 

initially lack the “transactive memory” developed by members of established teams. This memory 

contains the knowledge and skills of specific team members and an awareness of who can perform team 

tasks under what conditions of motivation and support (Wegner, 1986). It allows for a division of 

cognitive labor within a team, permitting the team’s collective knowledge to exceed that of any individual 

team member.  

Studies reviewed by Lewis and Herndon (2011) found a strong positive relationship between transactive 

memory and team performance. One reason for this finding may be the long noted inverse relationship 

between frequency of communication and the quality of team performance in reviews of collective 

behavior (Briggs & Johnston, 1967; Olmstead, 1992). Communications can be minimized only if the 

members of teams share a common understanding of the situation and what can be done by whom. 

Intelligent Tutoring Systems 

The definition of an ITS varies across researchers, designers, and developers and is discussed elsewhere 

in this volume. In accord with GIFT, an ITS may be viewed as an effort to capture in computer 

technology the capabilities and practices of a human instructor who is expert in both the subject matter 

and one-on-one tutoring.  

ITS development is motivated by the empirically evident benefits of human tutoring (e.g., Bloom, 1984; 

Graesser, D’Mello & Cade, 2011; VanLehn, 2011) and a long-standing desire to make these benefits 

more widely accessible and affordable than those delivered by human tutors (Fletcher, 1992, 2009; 

Corbett, 2001). Another motivation for the development of ITSs grew from the recognition that although 

computers could be used to teach effectively, it took time and considerable expense to anticipate all 

possible states of the learner and program all possible instructional responses to these states. Response to 

both of these motivations requires a generative capability, which is a defining characteristic of ITS. 

Dynamic information structures and mixed-initiative in computer-based tutorial dialogue were intended to 

generate instructional interactions in real time, thereby relieving much of the burden and cost of authoring 

adaptive, individualizing instruction (Carbonell, 1970; Fletcher, 2009; Fletcher & Rockway, 1986). To an 

appreciable extent, an ITS should eventually become a self-authoring system. With the capability to 

access almost all human knowledge through the global information infrastructure, ITS capabilities may 

make learning affordable and universally accessible, generated on demand – anytime and anywhere 

(Fletcher, 2006, 2009).  

As in most technologies, ITS development begins with a metaphor, i.e., producing computer systems that 

clone human tutors. Just as wireless telegraph led to radios, horseless carriages led to automobiles, and so 
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on, tutor-less tutoring may evolve into something as yet unforeseen. Sooner or later the “Columbus 

Effect” will exert its influence, but, for current ITS development and this chapter, this metaphor may 

suffice.  

ITS capabilities were early envisioned by Uttal (1962), Feurzeig (1969), and Carbonell (1970). They have 

been pursued into the present. Today ITS development suggests a future in which education, training, and 

performance aiding do not take place solely through prefabricated lessons and other material but are 

accomplished in the form of one-on-one, guided dialogues, that are generated on demand, tailored to the 

needs, abilities, interests, and values of individual learners, and are based on mixed-initiative 

conversations in which either the computer/tutor or the learner may take the initiative. Although not 

widely found, dialogues of this sort have been available since the 1970s (e.g., Brown, Burton, and 

DeKleer, 1982). Eventually, they may provide a Plato for every Aristotle, an Aristotle for every 

Alexander, and a Mark Hopkins for the rest of us.  

ITSs can be contrasted with drill and practice programs. The latter methods were found to be very 

effective in achieving lower level instructional objectives such as learning arithmetic facts (Suppes & 

Morningstar, 1972), grapheme-phoneme correspondences in beginning reading (Fletcher & Atkinson, 

1972), and foreign language vocabulary and phonetics (Van Campen, 1981).  

Such rudimentary objectives are found in initial learning of practically all subject domains. They consist 

of discrete items, simple concepts, or straightforward procedures to be memorized and/or applied and are 

limited to objectives in the lower reaches of Bloom’s (1956) hierarchy or the lower left-hand corner of 

Anderson and Krathwohl’s (2001) learning space. Drill and practice programs have a strong role to play 

at this level. They are effective and inexpensive to design, develop, and deliver (Fletcher, 2006). They 

require models of the learner, but all relevant states of the learner must be anticipated at design time and 

pre-programmed into the system. Learner modeling in these systems is predominately pre-assigned, 

implicit, and static. As effective as drill and practice programs are for helping learners master domain 

rudiments, they are limited in getting beyond these. 

ITSs are not unique in their use of learner models, but their approach to learner modeling is 

fundamentally different from drill and practice. ITS learner models are dynamic and generated on demand 

as needed by the instructional program. They are explicit, often with reference to comprehensive models 

of both the procedures and knowledge required to successfully attain instructional objectives. Because of 

their dynamic qualities, they are particularly suited to tutorial dialogue systems that must generate 

instructional and problem solving guidance on demand, in real time. 

Development of ITSs can aim for more conceptual, abstract, and analytical objectives, where their 

capabilities are better used, the expense to develop them is better justified, and they are evidently more 

effective (cf. Feurzeig, 1969). Effect sizes from ITS studies by Grasser, et al. (2003), Person, et al. (2001), 

and VanLehn et al. (2005) average about 0.62 for deep learning compared to ‒0.02 for shallow learning 

(Kulik & Fletcher, 2012).  

As suggested above, the subject domain rudiments needed for teamwork can be provided efficiently and 

effectively through individual drill and practice. Notably, much collective training of teams is provided 

through practice and feedback – very much in a drill and practice manner. As in individual training, team 

training objectives need to transcend subject domain rudiments as, for instance, Salas and Cannon-

Bowers (2000) discuss in detail. To do so, requires the ability, found in ITSs, to deal with higher order 

team capabilities.  

A specific strength of ITS is based on their generative capabilities to identify and then provide instruction 

that deals with unanticipated learner states of individuals as seen in the knowledge and model tracing 
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discussed by Anderson, Boyle, Corbett, and Lewis (1990) and Anderson, Corbett, Koedinger, and 

Pelletier (1995). Anticipating possible learner states for teams with their varying membership, the 

evolving roles and responsibilities of team members, and transactive understanding of team 

communication and coordination, is likely to be exorbitant in both cost and time – if not impossible. This 

problem is partially finessed by after action reviews (e.g., Morrison & Meliza, 1999), but these occur after 

the fact and, despite instrumentation, are dependent on subjective impressions and recollections. ITS 

techniques may have much to contribute in modeling team states and applying their capabilities to 

develop, and adjust team training, possibly in real time. The GIFT framework may well be used to 

examine this possibility (Sottilare et al., 2012). 

GIFT’s service-oriented ITS architecture and methodology may be summarized as containing four major 

components: 

 An interactive interface (for mixed-initiative dialogue, allowing either the learner or the 

computer-based tutor to initiate queries and discussion);  

 An explicit model representing the knowledge and skills that form the objectives of the 

instruction (where we want to go);  

 An explicit dynamic model of the individual learner’s evolving knowledge, skills, and progress 

toward achieving the objectives of the instruction (where we are now); and  

 Tutoring strategies that use these models to bridge the gap between the learner’s current 

knowledge and skills and the targeted instructional objectives (getting from here to there). 

These components will be familiar to most developers of ITS. GIFT’s contribution is in the details of 

their development, its modular and service-oriented architecture, and the particular attention it pays to 

sensors by separating out a sensor module as a major component of its framework. 

Team Training, Shared Mental Models, and Intelligent Tutoring Systems 

An issue at hand is whether team training can be informed by what we have learned about developing 

computer tutors for individuals. This consideration suggests two obvious levels of learning. The first level 

concerns the knowledge and skills of individual team members. At this level and as briefly described 

above, a highly effective learning environment is created by one tutor working with one learner. Meta-

analytic reviews by VanLehn (2011) and Kulik and Fletcher (2012) found this approach to be 

substantially more effective than classroom instruction where opportunities for individualized, tutorial 

instruction are limited. Instructional technology has made tutoring not only accessible but also affordable 

by imbuing computers with the capabilities of human tutors. 

To an appreciable extent, team performance is a product of personnel selection. Individuals chosen for a 

team need to possess the levels of knowledge and skills required by their team roles and responsibilities 

and to complement the strengths and weaknesses of other team members. Much training for team 

membership may be accomplished by individual training to meet the standards and conditions of 

performance required by an occupational specialty and the level of skill sought within it. The capability 

and likely performance of a team could even be viewed as nothing more than the sum of the competencies 

provided by the individual training received by its members. This might be true if teams were not 

composed of people. 
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People bring a notoriously wide range of individual differences to teams. These differences are found 

even when people who possess formally identified competencies can be identified, located, and assigned, 

which, itself, is not always the case. Beyond cognitive differences, people also bring to teams different 

attitudes, motivations, interests, and values. These differences strongly affect a team’s abilities to perform 

its missions. Researchers have repeatedly and empirically found that team training and team cognition 

transcend the sum of individual training received by team members (e.g., Stout, Salas & Carson, 1994; 

Liang, Moreland & Argote, 1995; Salas & Fiore, 2004; DeChurch & Mesmer-Magnus, 2010). 

A second level is needed, then, to train the team as a coherent collective. Although it relies on the prior 

individual training of team members, collective team training remains critical to the success of nearly all 

teams – and particularly teams formed to carry out military operations. Thompson’s (1967) hierarchy of 

pooled, sequential, and reciprocal interaction and Van de Ven, Delbecq, and Koenig’s (1976) methods of 

exchange within teams suggest increasing levels of interdependence of individual team members and 

increasing need for coordination among those members, and thus providing insight into what the ITS 

must know about the type of tasks being trained.  

In pooled team models (e.g., a team of painters painting rooms in a house) where there is low task 

interdependence, the workload of a tutor is lower. The tutor can simply track each team member’s 

performance and sum them all to determine the team’s performance (e.g., total number of rooms painted) 

at any given time during training. Pooled team members generally have the same skills and roles.  

For sequential team models (e.g., running a relay race) where task interdependence is higher since one 

member must complete an action before the next one begins, the tutor can track the output/performance of 

the last team member in the sequence to determine the team’s overall performance, and track individual 

performances earlier in the sequence to project overall performance. Individual team members in 

sequential tasks may (e.g., relay race runners) or may not (e.g., assembly line workers) have similar roles. 

The ITS workload quickly ramps up as the directionality of the workflow increases. Reciprocal, or two-

way workflow, means that each team member can be both a source and a recipient in the workflow. Since 

reciprocal team members tend to have specialized roles, workflow and thereby performance can be 

compromised by subtasks with longer duration than other subtasks. For example, subtask A takes team 

member A an average of five minutes to complete while subtasks, B and C take two and three minutes for 

team members B and C to complete. Assuming that the subtasks could be done in any order, team 

members B and C are more likely to have downtime waiting for team member A to complete a subtask. 

The ITS must be aware of the characteristics of the reciprocal workflow and subtasks to avoid providing 

feedback unnecessarily and negatively influencing the quality of the work. 

The complexity increases again as directionality increases from two (reciprocal) to a multi-directional 

(team model). To overcome this complexity and increase the probability of success, it would be useful to 

have teams with members who have multiple specialties and can switch tasks during downtimes. This is 

not always possible. The object of training is to build new knowledge and skills. The ITS’ 

“understanding” of the problem space and complexity is essential in developing the individuals on the 

team and enhancing the performance of the team. Similar to individual tutoring, team tutoring relies on a 

recognition of when the team is at expectation, below expectation, or above expectation.  

Might ITS capabilities developed for a single tutor working with a single learner apply to multi-learner 

teams? Might they be applied to develop team competencies, knowledge, cognition, and performance? 

For teams, and in accord with Sottilare et al. (2012), these questions may be structured around GIFT 

modules for sensors, learners, pedagogy, and domains. In today’s GIFT, modules include models and 

software processes to manage data, turn into information (e.g., states), and then use that information to 

make decisions about instruction for individuals. To extend GIFT for use with teams, we examine the 
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existing modules (sensor, learner, pedagogical, domain) and recommend enhancements to these and 

rationalize the development of specific team models. 

Challenges and Gaps in Developing Shared Mental Models  

While there are many challenges in moving forward with team training and the development and use of 

shared mental models in the process, some appear especially significant. A key to establishing effective 

collaborative learning is the ability of the tutor to manage uncertainty and dynamic nature of team 

interaction and communication.  

Team members come and go. Few teams work as an established unit with the same members over 

extended periods of time. The social interaction among team members that is necessary for trust-building 

will not always foster learning (Brown and Palincsar, 1989). Traditionally, trainees view learning as an 

independent and mildly competitive activity. Many trainees hesitate to ask for help from their peers for 

fear of appearing incompetent or dependent. Furthermore, peers tend to work together with the aim of 

simply accomplishing tasks (e.g., finding the right answers) instead of facilitating each other’s learning. 

The probability that all trainees understand the learning material and progress as a team increases when 

each member understands the roles and responsibilities, and actively participates in the training process 

(Soller, 2001). Shared mental models of team confidence and commitment may be essential tools for ITSs 

to promote active participation; encourage the exchange ideas, information, and perspectives for 

interaction; provide real-time monitoring of individual and team participation level (e.g., interaction 

analysis); and manage low participation levels. 

Another significant challenge is for the ITS to understand the relationship between team and individual 

performance and actions. Roles and responsibilities must be defined so the computer-based tutor can 

aggregate individual actions in a logical, weighted fashion and adapt to the team performance state. The 

tutor must also understand when to provide feedback to the individual team members based on positive 

actions (e.g., goals met) or negative actions (e.g., distracting off-task behavior). 

Peer interactions (and thereby their associated mental models) may change as the training domain 

changes. Interactions have been found to vary enormously even within the same domain (Brown and 

Palincsar, 1989). One aspect that contributes to this uncertainty in trainee communication is ill-defined 

roles and goals, and the adeptness of the team members at switching roles and between tasks (Burton, 

1998). Role identification and switching is good for social grounding and can create an environment for 

collaborative learning and more effective communication (Soller, Linton, Goodman and Gaimari, 1998). 

This indicates that the ITS might be more effective if it could develop and maintain a model of team 

adaptability. As the tasks and objectives become more complex, effective communication within the team 

becomes more important, and the ability of the team and its members to adapt may lead to a richer 

learning experience. An ITS should be able diagnose and redirect incorrect solution paths, divide complex 

tasks into sub-tasks associated with assigned individual team members, clusters of team members, and the 

entire team. The idea of a team tutoring system as observer, manager (decision maker), and director is 

evolving. 

While individual behaviors are observable, a primary challenge in developing shared mental models for 

ITSs arises from other, unobservable cues to individual states. Stress and anxiety, which limit cognition, 

may manifest themselves in outwardly observable behavior by novices, but may be more veiled by 

experts who have learned to set aside external stressors to focus on the task at hand. This is where 

physiological sensors have the potential to play a significant role in cognitive state detection. For 

instance, electro-dermal activity (EDA) has been shown to indicate stress and anxiety (Scheirer, Klein, 

Fernandez, and Picard, 2002). What is needed is a mechanism to indicate the source of the stress in order 
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for the ITS to help manage the training experience through guidance (e.g., scaffolding) and optimize the 

difficulty level of the training experience – in accord with Yerkes-Dodson’s (1908) inverted U, 

Vygotsky’s (1978) zone of proximal development, or similar notions for adapting difficulty to the learner. 

Finally, there is the challenge of training geographically distributed teams and developing their associated 

mental models. Local teams have been found to learn more than geographically distributed teams 

(Andres, 2002; Warkentin, Sayeed & Hightower, 1997), and distributed teams exchange information less 

effectively than local teams (Warkentin, Sayeed & Hightower, 1997). However, with sufficient time to 

develop strong group relationships and become comfortable with the communication environment, 

dispersed teams can communicate as effectively as co-located teams (Chidambaram, 1996). The military 

has developed distributed simulation for training as a way to make all team training affordable and 

accesible. Mechanisms to develop shared mental models based on the traits and experience of individual 

team members would be desirable in organizations where teams are short-lived. 

Enhancing GIFT Shared Mental Models for Team Training 

The GIFT sensor module provides interfaces for behavioral and physiological sensors. It accepts raw 

sensor data, in some cases processes this data, and then uses this information to determine individual 

states (e.g., workload, engagement) for transfer to the learner module.  

Sensor modules may be at an advantage in team training because many aspects of decision making and 

problem solving in teams must be carried out explicitly and can be assessed directly, whereas they are 

implicit and must be inferred for individual training. Collective team cognition and declarative team 

knowledge remain to be dealt with, but these assessments may also be facilitated by the observable and 

measurable actions and procedures that are generally the object of team training and the frequently 

observable and measureable coordination and cooperation required to perform them. Affective team states 

may be similarly amenable to assessment by sensors, but they and physiological states are set aside for 

this chapter. 

The learner module uses data received from the sensor module, performance and knowledge assessments, 

and demographic data to determine the learner’s present cognitive, affective, and competency states. This 

state information is sent to the pedagogical module, where states are compared to expected learner states 

and matched with successful practices of human tutors to determine which instructional strategy should 

be used next. 

Representation of team states and traits in the learner module should, in turn, benefit from sensor data 

provided by observation of the explicit processes and explicit actions taken in team training. Using sensor 

module data, a computer-based tutor will be able to deal more accurately and comprehensively in creating 

a dynamic representation of team cognition in general, the mental models shared by all team members, 

and the mental models of team communication and coordination being acquired by individual team 

members. Moreover, the massive amounts of team member historical, demographic, trait data, along with 

highly granular performance data can be rapidly recorded, accessed, mined, and updated as needed, using 

machine learning techniques. 

The pedagogical module is domain-independent. It uses learner state, performance data, and knowledge 

models to determine the content, order, and flow of instruction. It recommends general instructional 

strategies to guide the domain module’s choice of domain-dependent tactics. In team training, for 

instance, the pedagogical module might use ITS techniques for knowledge and performance model 

tracing to recommend a simulation with the type of scenarios intended to develop a number of strategic, 
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general team capabilities such as adaptability, grit, situation awareness, problem solving, communication, 

or coordination. 

The pedagogical module, in turn, benefits from team member trait and state data compiled by the learner 

module. These data not only inform decisions about what, pedagogically, to do next with a team, but also 

how to test the performance predictions on which its prior recommendations were based. Using learner 

module data, a computer-based tutor will be able to create more accurate, comprehensive, and dynamic 

representations of team cognition in general, the mental models shared by all team members, and the 

mental models of all sorts that are being devised by team members and that impact team performance. 

Additionally, the massive amounts of team member historical and demographic trait data can be 

combined with highly granular performance data to be rapidly recorded, accessed, mined, and updated as 

needed to enhance and apply the tutorial capabilities of an ITS.  

The domain module is domain-dependent. It defines and structures the instructional domain’s declarative 

and procedural knowledge requirements. It translates the pedagogical module’s strategic 

recommendations into domain-specific instructional tactics, which determine the content, order, pace, and 

feedback alternatives for presentation to the learner. For instance, it will assess and predict the learner’s 

progress toward achieving instructional objectives. 

The domain module will similarly apply ITS capabilities to learn and improve domain-specific 

instructional tactics as it responds to the strategic recommendations received from the pedagogical 

module. It will return accurate, real-time feedback to the learner module to help it model the team state, 

refine its representation of team traits, diagnostically assess the team’s progress toward achieving its 

overall instructional objectives, including those recommended for emphasis by the pedagogical module, 

and diagnostically model the development of individual team members in fulfilling their team roles and 

responsibilities.  

In short, the GIFT modules and their functions may in many respects perform in team training just as they 

do in individual training. However, there remain issues that are peculiar to team training and team 

cognition that require attention in using shared mental models in intelligent training for teams. GIFT’s 

modular, distributed architecture allows for asynchronous interaction and simultaneous tutoring of 

individuals. This architecture allows for individual feedback in a team context where each learner’s tutor 

communicates changes of individual state to the other tutoring agents within GIFT, thereby supporting 

both team level models and individual learner models. In other words, the tutor for learner A maintains 

information about learner A and shares it with the tutor for learners B, C, etc. and the team states (e.g., 

performance) so each learner has a fully informed tutor. 

Sottilare, Holden, Brawner, and Goldberg (2011) considered specific and separate team state models that 

may be informed by individual learner models and historical team performance data that might be 

gathered from relevant operational and training environments. In addition to the shared mental models 

discussed in the previous challenge section, models of performance, competency, cognitive, affective, 

trust, and communications were also considered. While this chapter has focused on team cognitive 

factors, it is worth noting that non-cognitive factors, such as affect, morale, confidence, and physical 

state, which are not discussed here, moderate cognition and their effects should eventually be considered. 

Team performance models, as noted above, may consist of observations of team behavior as it progresses 

toward one or more objectives, including their conditions and standards of performance. Team assessment 

techniques are crucial in developing a clear understanding of team performance. Salas, Rosen, Held, and 

Weissmuller (2009) argued that performance measurement works best when it captures and considers 

performance from multiple sources, it is tightly coupled to the action needed, it uses validated expert 

models to assess the performance, it directly supports learning, and it provides real-time corrective 
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feedback. Individual and team assessments analyze factors including (1) when each learner is ready to 

take an action, (2) delay in actually taking that action, and (3) value of the actions taken.  

Team competency models may be used to predict performance within a domain. They are based on 

previous related experiences and associated levels of success. Cumulative team competency models are 

needed for the ITS to choose initial training scenarios and set expectations for performance. Team 

learning objectives, individual state information, the interactivity of the training task, and the 

interdependence of workflow can be used to inform a team cognitive state model that assesses mental 

workload, engagement and compares progress with expectations to determine team and individual 

strategies and tactics.  

While not specifically targeted in this chapter, modeling of team affect is necessary for optimizing 

cognitive performance. Behavioral observations may be a pathway to understanding individual and team 

affect, but more evidence is needed. What is clear is that affect is a moderator of cognition. Problem 

solving and decision making become more difficult as affect becomes more extreme. A shared mental 

model of affect can inform the ITS to take action to guide, mediate, or challenge team members to get 

them back on track. 

In accord with Olmstead (1992), among others, the amount and type of communication is considered a 

significant behavioral indicator of team trust and cooperation for our notional shared mental model. Roles 

(e.g., leader, follower, domain expert) should also be considered a factor in that roles moderate/indicate 

communications and expected communications. For example, a team leader would be expected to 

communicate mission intent (goals), clarify roles, and direct activities as needed. The ITS managing the 

shared mental model of cognition would be expected to monitor communication to determine how it met 

or did not meet expectations. 

Next Steps 

Salas and Cannon-Bowers (2000) chose to emphasize 10 critical questions in their comprehensive chapter 

on team training. They assert that ITS have great promise for team training and performance 

measurement, which leads to question 5 in their list, “Can intelligent systems be developed to assess, 

diagnose, and remediate teamwork?” (p. 331). They go on to focus on dynamic assessment, a real-time 

assessment capability that provides immediate feedback and automated diagnoses of performances. This 

thought leads to question 6 in their list, “Can mechanisms of dynamic assessment be developed for 

teams?” (p. 331). 

In applying what we have learned from ITSs to the development of team competencies, an obvious first 

issue to address is how to extend ITS techniques for modeling an individual learner to modeling teams 

and team cognition to determine what a team “knows.” Such an extension may do much to inform GIFT 

learner modules and decisions made by its pedagogical modules, as they are applied to team training,  

Much discussion along these lines concerns declarative and procedural knowledge (e.g., Banks & 

Millward, 2007). Research in the service of ITSs and elsewhere has given us tools for assessing both. For 

example, ITS designers often use concept models to assess what a learner and teams must know in order 

to achieve learning objectives (Cooke, Salas, Cannon-Bowers & Stout, 2000). These concept models have 

tended to bundle declarative and strategic knowledge together -- there may be reasons to separate the two 

into separate concept models, but that seems best set aside for the moment.  

Further, much ITS activity consists of problem-solving exercises in which the progress of learners toward 

problem solutions can be explicitly and objectively observed (Kulik & Fletcher, 2012). ITS designers 
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employ procedural models that lay out the actions an expert might use to solve a problem in the subject 

domain. Based on a learner’s actions in solving a problem, an ITS can thereby infer what the learner 

knows. Bayesian techniques, for example, are currently prominent in such inferences. They turn cause 

and effect on its head, allowing us to estimate the probability of a given cause (e.g., a component of the 

knowledge model) that brought about the observed effect. These estimates improve as experience with 

additional learners build up, allowing the learning system itself to learn. 

ITS tracing activities (mapping actions taken unto procedure models and inferred knowledge onto 

knowledge models) lend themselves well to team training, much of which involves exercises and problem 

solving – practice with feedback. We might apply ITS modeling and model tracing processes to teams in 

two ways – to identify and assess the declarative (including strategic) knowledge of individual team 

members and to do the same for the team itself as a collective. Empirical study on both as they apply to 

the training of teams and accessing their progress toward targeted instructional objectives may do much to 

develop ITS capabilities for team training. It would answer some long-standing questions. 

For instance, in team exercises we have objective data on the performance of individual team members 

and of the team as a collective. ITS capabilities for inferring the knowledge element could then be used to 

determine the knowledge models of individuals, the collective knowledge of the team, and how the two 

compare. They could help determine if there is team knowledge or cognition that is separate from the sum 

of the mental models of its members, but the nature of this separate, collective model, how it contributes 

to successful performance of team tasks and missions, and what, if anything, can be done to develop it 

through training. 

A second issue that might be addressed concerns what must be shared among the mental models of team 

members. Given the research on transactive memory, which is discussed earlier in this chapter, and its 

evident contributions to successful team performance, it appears that not all team members must possess 

all team knowledge. This is not a surprising conclusion, but research on team and team member cognition 

(or mental models) may identify what must be shared, the priorities for sharing whatever separate 

elements are identified, and, again, what can and should be done about them in team training, which is 

typically given limited time and resources. 

A third issue concerns generic teamwork knowledge and skills that are separate from subject domains and 

must be acquired by individuals if they are to perform as successful members of a team. Most of this 

knowledge and skill is acquired in team training environments, which tend to be more expensive and 

logistically difficult to implement than individual training environments. Significant efficiencies and 

economies may be realized if at least some knowledge and skill in teamwork can be developed through 

individual training. That these competencies can be improved through individual training seems likely, 

but the nature and characteristics of these competencies must be more precisely identified and understood. 

A fourth matter concerns the tutorial dialogues that are the eventual target for ITS development. These 

dialogues seem likely to remain at the individual level, but computer-based tutors could have full access 

to team exercise instrumentation data, provided by the GIFT sensor module, individual history and other 

team-relevant information provided by the GIFT learner model, training objectives held in the 

pedagogical model, and domain-specific data obtainable from the domain module. These dialogues could 

initially provide private, individualized feedback to team participants. Capabilities to do this are well 

within the state of the art. Eventually these dialogues might become genuine facilitated discussions with 

an individual. A research task with fairly rapid return may be to link up ITS dialogue capabilities with 

team exercise data and provide these as individual feedback. Doing so will extract much more value from 

training exercises than is now possible because of their accurate and comprehensive access to data and 

their ability to interact privately with each participant as an individual team member. 
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Final Thoughts 

Other questions, as well as other lines of research, may well occur to readers. As Salas and Cannon-

Bowers (2000) suggest, there may be much in the ITS world of value if it is applied to team training. This 

chapter has focused on mental models and their sharing in team cognition, but many other paths also seem 

likely to return significant value. Cannon-Bowers and Salas (2001) point out a number of fundamental 

questions to be addressed by empirical study of shared mental models including determinations of what 

must be shared, what we mean by sharing, how we should measure it, and what outcomes and value can 

be expected if we are successful. Our suggestions only begin to fill out the GIFT framework with the 

specifics needed. Other pathways are available and might well be pursued.  
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Editors 

Arthur C. Graesser 

Dr. Graesser is a professor in the Department of Psychology and the Institute of Intelligent Systems at the 

University of Memphis and is an Honorary Research Fellow at the University of Oxford. His primary 

research interests are in cognitive science, discourse processing, and the learning sciences. More specific 

interests include knowledge representation, question asking and answering, tutoring, text comprehension, 

inference generation, conversation, reading, memory, emotions, computational linguistics, artificial 

intelligence, human-computer interaction, learning technologies with animated conversational agents 

(such as AutoTutor and Operation ARA), and automated analyses of texts at multiple levels (such as Coh-

Metrix, and Question Understanding AID [QUAID]). He served as editor of the journal Discourse 

Processes (1996–2005) and Journal of Educational Psychology (2009‒2014). His service in professional 

societies includes president of the Empirical Studies of Literature, Art, and Media (1989‒1992), the 

Society for Text and Discourse (2007-2010), the International Society for Artificial Intelligence in 

Education (2007‒2009), and the Federation of Associations for Behavioral and Brain Sciences 

Foundation (2012‒2013). In addition to receiving major lifetime research achievements awards from the 

Society for Text and Discourse and University of Memphis, he received an award in 2011 from American 

Psychological Association on Distinguished Contributions of Applications of Psychology to Education 

and Training.  

Heather Holden 

Dr. Holden is currently a researcher in the Learning in Intelligent Tutoring Environments (LITE) Lab 

within Human Research and Engineering Directorate (HRED) at the U.S. Army Research Laboratory 

(ARL) in the Simulation and Training Technology Center (STTC) in Orlando, Florida. The focus of her 

research is in learner modeling, artificial intelligence, and computer-based tutoring system application to 

education and training. Her research interests also include technology acceptance and human-computer 

interaction. Dr. Holden previously served as an Information Technology Specialist for the Social Security 

Administration (SSA) National Computing Center in Woodlawn, Maryland. Dr. Holden earned her 

Doctorate and Masters in Information Systems from the University of Maryland, Baltimore County. She 

also has a graduate certificate in Instructional Technology from the same university. Her doctoral research 

evaluated the relationship between teachers’ technology acceptance and usage behaviors to better 

understand the perceived usability and use of job-related technologies. Her work has been published in 

the Journal of Research on Technology in Education, the International Journal of Mobile Learning and 

Organization, the Interactive Technology and Smart Education Journal, and several relevant conference 

proceedings. Her doctoral work has been continued by other researchers in academia. Dr. Holden also 

possesses a BS in computer science from the University of Maryland, Eastern Shore.
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Xiangen Hu 

Dr. Xiangen Hu is a professor in the Department of Psychology at The University of Memphis (UoM) 

and senior researcher at the Institute for Intelligent Systems (IIS) at the UofM and visiting professor at 

Central China Normal University (CCNU). Dr. Hu received his MS in applied mathematics (1985) from 

Huazhong University of Science and Technology, MA in social sciences (1991) and Ph.D. in cognitive 

sciences (1993) from the University of California, Irvine. Currently, Dr. Hu is the director of the cognitive 

psychology at the UofM, the Director of Advanced Distributed Learning (ADL) Center for Intelligent 

Tutoring Systems (ITS) Research & Development, and senior researcher in the Chinese Ministry of 

Education’s Key Laboratory of Adolescent Cyberpsychology and Behavior. Dr. Hu’s primary research 

areas include mathematical psychology, research design and statistics, and cognitive psychology. More 

specific research interests include general processing tree (GPT) models, categorical data analysis, 

knowledge representation, computerized tutoring, and advanced distributed learning. Dr. Hu receives 

funding for the above research from the U.S. National Science Foundation (NSF), U.S. Institute for 

Education Sciences (IES), ADL of the U.S. Department of Defense (DoD), U.S. Army Medical Research 

Acquisition Activity (USAMRAA), U.S. Army Research Laboratories (ARL), U.S. Office of Naval 

Research (ONR), UofM, and CCNU. 

Robert Sottilare 

Dr. Robert Sottilare serves as the Chief Technology Officer (CTO) of the Simulation & Training 

Technology Center (STTC) within the Human Research and Engineering Directorate (HRED) at the U.S. 

Army Research Laboratory (ARL). He also leads adaptive tutoring research within ARL’s Learning in 

Intelligent Tutoring Environments (LITE) Laboratory where the focus of his research is in automated 

authoring, instructional management, and analysis tools and methods for intelligent tutoring systems. His 

work is widely published and includes recent articles in the Cognitive Technology and the Educational 

Technology Journals. Dr. Sottilare is a co-creator of GIFT (www.GIFTtutoring.org). He received his 

doctorate in modeling and simulation from the University of Central Florida with a focus in intelligent 

systems. In January 2012, he was honored as the inaugural recipient of the U.S. Army Research 

Development & Engineering Command’s Modeling & Simulation Lifetime Achievement Award. 

Authors 

Vincent Aleven 

Dr. Vincent Aleven is an Associate Professor in Carnegie Mellon’s Human-Computer Interaction 

Institute, and has 20 years of experience in research and development of advanced learning technologies 

based on cognitive science theory. His research focuses on metacognition, authoring tools, and the use of 

tutoring technology in ill-defined domains. Dr. Aleven and colleagues created CTAT, a suite of efficient, 

easy-to-learn, and easy-to-use authoring tools for intelligent tutoring systems, including a new paradigm 

called “example-tracing tutors.” CTAT is living proof that end-user programming techniques can 

dramatically increase the cost- effectiveness of tutor authoring even for non-programmers. Dr. Aleven is a 

member of the Executive Committee of the Pittsburgh Science of Learning Center (PSLC), an national 

Science Foundation (NSF)-sponsored research center spanning Carnegie Mellon and the University of 

Pittsburgh. He is a co-founder of Carnegie Learning, Inc., a Pittsburgh-based company that markets 

Cognitive Tutor™ math courses. He was the Program Committee Co-Chair of the 2010 International 

Conference on Intelligent Tutoring Systems. He is co-editor in chief of the International Journal of 

Artificial Intelligence in Education. He has been or is principal investigator (PI) on seven major research 

grants and co-PI on eight others. He has authored over 140 peer-reviewed publications. 

http://www.gifttutoring.org/
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William Baggett 

Dr. Baggett earned a Ph.D. in cognitive psychology from The University of Memphis in 1998. He also 

holds an MS in computer science and an MBA in management information systems. William is currently 

a Project Coordinator in the Computer Science Department at The University of Memphis, where he 

works on DeepTutor. DeepTutor is an intelligent tutoring system, implemented as a web application, 

which uses natural language dialog to teach conceptual physics to high school and college students. 

DeepTutor is funded by the Institute of Education Sciences. Previously, William was a professor and part-

time department chair of computer information systems at Strayer University and an adjunct professor of 

computer science at The University of Memphis. In both positions, William taught graduate and 

undergraduate computer science courses, mentored, tutored, and advised students, and developed new 

curricula. He was also a business analyst at FedEx Express, where he wrote software specifications for 

PowerPad, a mission-critical handheld computer carried by FedEx Express couriers. PowerPad software 

is designed to promote optimal courier behavior including the efficient pickup and delivery of FedEx 

shipments, package tracking, and conformance to policies and procedures for a wide variety of domestic 

and international services. 

Ryan Shaun Joazeiro de Baker 

Dr. Baker is the Julius and Rosa Sachs Distinguished Lecturer at Teachers College, Columbia University. 

He earned his Ph.D. in human-computer interaction from Carnegie Mellon University. Baker was 

previously Assistant Professor of Psychology and the Learning Sciences at Worcester Polytechnic 

Institute, and he served as the first technical director of the Pittsburgh Science of Learning Center 

DataShop, the largest public repository for data on the interaction between learners and educational 

software. He is currently serving as the founding president of the International Educational Data Mining 

Society, and as associate editor of the Journal of Educational Data Mining. His research combines 

educational data mining and quantitative field observation methods in order to better understand how 

students respond to educational software, and how these responses impact their learning. He studies these 

issues within intelligent tutors, simulations, multi-user virtual environments, and educational games, 

within populations from pre-schoolers, to middle school students, to military trainees. 

Avron Barr 

Mr. Barr is the director of The LETSI Foundation. He’s done research on intelligent tutoring systems at 

Stanford University, written a four-volume reference book about Artificial Intelligence, and co-founded a 

Silicon Valley software startup that went public in 1986. Since then, he has advised dozens of companies, 

startups, government agencies, and Non-Government Organizations (NGOs) about bringing innovative 

software products to market. During the 1990s, he co-directed a study of the global software industry on a 

Sloan Foundation grant at Stanford’s Graduate School of Business. In recent years, he’s advised the 

Defense Advanced Research Projects Agency (DARPA) DARWARS project on serious games; served as 

Strategic Director for SCORM at the Department of Defense’s (DoD) Advanced Distributed Learning 

Initiative; and helped start LETSI’s work on open software standards to support an era of rapid evolution 

in educational technology. He teaches a freshman seminar on The Business of the Internet at Stanford, and 

spends his spare time hiking in the redwood forests around Santa Cruz, California. 

Keith Brawner 

Dr. Brawner is a researcher for the Learning in Intelligent Tutoring Environments (LITE) Lab within the 

Human Research & Engineering Directorate (HRED) at the U. S. Army Research Laboratory (ARL). He 

has 7 years of experience within U.S. Army and Navy acquisition, development, and research agencies. 

He holds a doctoral degree in computer engineering with a focus on intelligent systems and machine 
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learning from the University of Central Florida. The focus of his current research is in machine learning, 

active learning, real-time processing, datastream mining, adaptive training, affective computing, and 

semi/fully automated user tools for adaptive training content. 

Winslow Burleson 

Dr. Burleson is an assistant professor of human computer interaction in the School of Computing, 

Informatics, and Decision Systems Engineering at Arizona State University (ASU) and a Visiting Honors 

Faculty Fellow in ASU’s Barrett Honors College. He is the Founding Director of the Motivational 

Environments research group and author of over 100 scientific publications (including the “best paper” at 

AI in Ed 2009 and the 2011 UMUAI James Chen Award) and has been awarded 10 patents. In 2009, he 

was recognized by the National Academy of Engineering as, “One of the nation’s brightest young 

engineering researchers and educators.” He received his Ph.D. from the Massachusetts Institute of 

Technology (MIT) Media Lab, is a Kavli Fellow, and serves on National Academy of Engineering, 

National Academies of Sciences, and National Science Foundation committees. Burleson has a B.A. in 

biophysics from Rice University and an MSE in mechanical engineering from Stanford University. 

Whitney Cade 

Ms. Cade is an experimental psychology doctoral student at the University of Memphis with a 

concentration in cognitive psychology. She graduated from Rhodes College with a B.A. in psychology. 

Working primarily in the Institute for Intelligent Systems, her primary interests include cognitive science 

and learning. Her research specifically focuses on expert human tutoring, large-grain pedagogical 

strategies, intelligent tutoring systems, pedagogical agents, image display techniques that support 

learning, and the application of machine learning in educational software. 

Zhiqiang Cai 

Mr. Cai is a research assistant professor with the Institute for Intelligent Systems at the University of 

Memphis. He has a masters of science degree in computational mathematics received in 1985 from 

Huazhong University of Science and Technology, P. R. China. His current research interests are in 

algorithm design and software development for tutoring systems and natural language processing. 

Cristina Conati 

Dr. Conati is an associate professor of computer science at the University of British Columbia, 

Vancouver, Canada. She received a “Laurea” degree (M.Sc. equivalent) in computer science at the 

University of Milan, Italy (1988), as well as a M.Sc. (1996) and Ph.D. (1999) in intelligent systems at the 

University of Pittsburgh. Dr. Conati’s research goal is to integrate research in artificial intelligence, 

cognitive science, and human-computer interaction to make complex interactive systems increasingly 

more effective and adaptive to the users’ needs. Her areas of interest include intelligent user interfaces, 

user modeling, user-adaptive systems, and affective computing. Her research has received awards from 

the International Conference on User Modeling, the International Conference of AI in Education, the 

International Conference on Intelligent User Interfaces (2007), and the Journal of User Modeling and 

User Adapted Interaction (2002). Dr. Conati is an associate editor for the Journal of AI in Education, for 

the IEEE Transactions on Affective Computing, and the ACM Transactions on Intelligent Interactive 

Systems. 
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Mark Conley 

Dr. Conley is a professor of literacy at the University of Memphis. He specializes in human and 

technology-based tutoring and assessment in literacy, mathematics, and science. He designed the 

Memphis Literacy Corps, the largest literacy tutoring effort implemented in the United States. Currently, 

he is designing tutoring programs for adult learners in community-based tutoring programs, including a 

program for potentially incarcerated youth. He has published numerous articles about literacy, 

disciplinary literacy, teacher education, and assessment in journals like the Harvard Educational Review, 

Theory Into Practice, and the Journal of Adolescent and Adult Literacy. He has published several books 

about disciplinary literacy, curriculum standards, and assessment. He has also advised officials at state, 

national, and international levels on curriculum standards and assessment. He holds a Certified Flight 

Instructor certificate with an instrument rating and teaches and practices guitar building as part of his 

passion for teaching and learning. 

Scott Douglass 

Dr. Douglass is a senior research psychologist with the 711/HPW Cognitive Models and Agents Branch 

(RHAC), U.S. Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio. He holds a Ph.D. 

(2007) in cognitive psychology from Carnegie Mellon University. Working with John R. Anderson at 

CMU, he acquired expertise in cognitive architectures, eye-tracking systems, and the modeling and 

simulation of complex situated cognitive processes. His research interests include large-scale cognitive 

modeling in event-driven computer-based systems, complex event processing, artificial intelligence, 

knowledge representation, multi-formalism modeling, and automated training aids. He is a member of the 

Society for Modeling and Simulation International (SCS). He can be reached at 

scott.douglass@wpafb.af.mil. 

Paula Durlach 

Dr. Durlach received her Ph.D. in experimental psychology from Yale University in 1982, and 

subsequently held fellowship positions at the University of Pennsylvania and the University of 

Cambridge. From 1987 to 1994, she was an assistant professor of psychology at McMaster University and 

then went on to lead the exploratory consumer science team at Unilever Research Colworth Laboratory in 

the U. K. She returned to the U. S. in 2001 to join the U. S. Army Research Institute for the Behavioral 

and Social Sciences. Since April 2012, she has been the Deputy Director of the Advanced Distributed 

Learning Initiative. Dr. Durlach has received recognition for her work in experimental psychology and 

cognitive science at the Army Science Conference and from the Department of Army Research and 

Development. She is a Fellow of the Association for Psychological Science, and member of the 

Experimental Psychology Society, the Psychonomic Society, and the Society for Artificial Intelligence in 

Education. With Dr. Alan Lesgold, she co-edited the book, Adaptive Technologies for Training and 

Education, published in 2012, and has also published research in journals such as International Journal of 

Artificial Intelligence in Education, Military Psychology, Computers in Human Behavior, and Human-

Computer Interaction. 

Dexter Fletcher 

Dr. Fletcher is a member of the senior research staff at the Institute for Defense Analyses where he 

specializes in personnel and human performance issues. His graduate degrees are in computer science and 

educational psychology from Stanford University, where, as a research associate, he directed projects for 

the Institute for Mathematical Studies in the Social Sciences. He has held university positions in 

psychology, computer science, and systems engineering and government positions in Navy and Army 

Service Laboratories, the Defense Advanced Research Projects Agency, and the White House Office of 
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Science and Technology Policy. He has served on science and technology advisory panels for the Defense 

Science Board, Army Science Board, Naval Studies Board, Air Force Scientific Advisory Board, National 

Science Foundation, National Academy of Sciences, and the National Academy of Engineering. He has 

designed computer-based instruction programs used in public schools and training devices used in 

military training. He is a Fellow of the American Educational Research Association and three divisions of 

the American Psychological Association. His research interests include intelligent tutoring systems, 

synthetic environments in education and training, mobile performance aids, analyses of skilled behavior, 

and cost-effectiveness analyses of education and training. 

Donald Franceschetti 

Dr. Franceschetti received his B.S. degree in 1969 in chemistry from Brooklyn College and the Ph.D. 

degree in physical chemistry from Princeton University in 1972. Following two postdoctoral 

appointments in physics departments (Urbana, IL and Chapel Hill, NC), he joined the department of 

physics at the then Memphis State University in 1979. Currently he is Dunavant University Professor of 

Physics and Chemistry at the University of Memphis. His research interests have ranged from the 

properties of liquid mixtures to spin-lattice relaxation in solids, ionic mobility in solids and x-ray states in 

metals and atoms. He has also worked on molecular electronic structure of biological molecules. Dr. 

Franceschetti has published about 70 research papers and has done several dozen presentations at 

scientific meeting. He has authored more than 100 articles on science and mathematics appearing in 

reference works for young people. He has been involved in developing intelligent tutoring systems for 

conceptual physics since the early 1990s. He has also been PI or co-PI of grants totaling about $10 

million.  

Elizabeth Gire 

Dr. Gire is an assistant professor of physics at the University of Memphis and conducts research in the 

area of physics education. Her research interests are in the areas of sense-making and problem-solving 

skills and representational fluency. As a graduate student working with Professor Barbara Jones at the 

University of California, San Diego, she investigated the epistemological development and the 

development of problem solving strategies of undergraduate physics majors. This work looked at students 

across the undergraduate curriculum, from freshman to senior level students. While working with 

Professor Corinne Manogue at Oregon State University, Dr. Gire studied students’ understandings of 

quantum operators and student reasoning about electrostatic phenomena. She has had intensive training in 

teaching and developing curricular materials in the Paradigms curriculum, which uses interactive teaching 

strategies and a unique content ordering and structure to help students think about physics content the way 

that professional physicists do. At Kansas State University, she worked with Dr. Sanjay Rebello to study 

introductory physics students’ representational fluency, and tracked the development of this fluency over 

the course of a two semester introductory sequence. Additionally, she worked on several other projects, 

including research on student reasoning about simple machines when interacting with real or virtual 

experimental apparatus, the correlation between visual attention and conceptual reasoning in physics, and 

students’ strategies for solving ill-structured problems in an advanced undergraduate electronics course. 

She has published several articles in peer-reviewed journals and many peer-reviewed conference 

proceedings. 

Benjamin Goldberg 

Dr. Goldberg is a member of the Learning in Intelligent Tutoring Environments (LITE) Lab at Human 

Research & Engineering Directorate (HRED) at the U.S. Army Research Laboratory’s (ARL) Simulation 

and Training Technology Center (STTC) in Orlando, Florida. He has been conducting research in the 

modeling and simulation community for the past five years with a focus on adaptive learning and how to 
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leverage artificial intelligence tools and methods for adaptive computer-based instruction. Currently, he is 

the LITE Lab’s lead scientist on instructional strategy research within adaptive training environments. He 

explores the development and integration of tools and methods for delivering tailored training 

experiences, and identifies strategies of interest for empirical evaluation to assess their effectiveness 

across multiple domains. Dr. Goldberg holds doctoral and masters degrees in modeling & simulation 

from  the University of Central Florida. Prior to employment with ARL, he held a graduate research 

assistant position for two years in the Applied Cognition and Training in Immersive Virtual Environments 

(ACTIVE) Lab at the Institute for Simulation and Training. Dr. Goldberg’s work has been published 

across several well-known conferences, with recent contributions to both the Human Factors and 

Ergonomics Society (HFES) and Intelligent Tutoring Systems (ITS) proceedings. 

Ken Koedinger 

Dr. Koedinger is professor of human-computer interaction and psychology at Carnegie Mellon University 

(CMU). His research has contributed new principles and techniques for the design of educational software 

and has produced basic cognitive science research results on the nature of mathematical thinking and 

learning. Dr. Koedinger is a co-founder of Carnegie Learning (carnegielearning.com) and the CMU 

Director of LearnLab (learnlab.org). LearnLab is supporting Big Data investigations in education and, 

more generally, leverages cognitive and computational approaches to support researchers in investigating 

the instructional conditions that cause robust student learning. 

Alan Lesgold 

Dr. Lesgold is professor and, since July 2000, dean of the School of Education at the University of 

Pittsburgh and also professor of psychology and intelligent systems. He received his Ph.D. in psychology 

from Stanford University in 1971 and also holds an honorary doctorate from the Open University of the 

Netherlands. He is a fellow of the American Psychological Association (APA), in experimental, applied, 

and educational psychology, and also of the Association for Psychological Science and the American 

Educational Research Association. In 2001, he received the APA award for distinguished contributions of 

applications of psychology to education and training. In 1995, he was awarded the Educom Medal. He 

was president of the Applied Cognitive Psychology division of the International Association for Applied 

Psychology 2002-2006. Lesgold is a Lifetime National Associate of the National Research Council 

(National Academies). He also was appointed by Governor Rendell as a member of the Governor’s 

Commission on Preparing America’s Teachers in 2005 and served later on the State’s commission on 

cyber high schools as well. He served as chair of the National Research Council committee on adolescent 

and adult literacy. In that role, he led an extensive study of the systems, both in the K‒12 world and in 

community colleges, for remediating literacy problems. From 1986 to 2000, he was executive associate 

director of the Learning Research and Development Center at the University of Pittsburgh. He is on the 

board of Teaching Matters. Lesgold has served the Pittsburgh community mostly in education-related 

activities, including board service for A+ Schools, Youthworks (completed), and the Pittsburgh Regional 

Center for Science Teaching. He serves as chair of the advisory board for the Center for Learning at 

Community College of Allegheny County. He was president of Rodef Shalom Congregation in 

2002‒2004. He is married to Sharon Lesgold, a retired mathematics educator, and they have two grown 

sons, Jacob and Noah. 

James Lester 

Dr. Lester is Distinguished Professor of Computer Science at North Carolina State University. His 

research focuses on transforming education with technology-rich learning environments. Using artificial 

intelligence, game technologies, and computational linguistics, he designs, develops, fields, and evaluates 

next-generation learning technologies for K‒12 science, literacy, and computer science education. His 
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work on personalized learning ranges from game-based learning environments and intelligent tutoring 

systems to affective computing, computational models of narrative, and natural language tutorial 

dialogue. He received his B.A. (Highest Honors, Phi Beta Kappa), M.S.C.S., and Ph.D. in computer 

science from the University of Texas at Austin. He received his B.A. in history from Baylor University. 

He has served as Program Chair for the International Conference on Intelligent Tutoring Systems, the 

International Conference on Intelligent User Interfaces, and the International Conference on Foundations 

of Digital Games, on the editorial board of Metacognition and Learning, and as editor-in-chief of the 

International Journal of Artificial Intelligence in Education. He has been recognized with a National 

Science Foundation CAREER Award and several Best Paper Awards. 

Antonija (Tanja) Mitrovic 

Dr. Mitrovic is a full professor and the Head of the Department of Computer Science and Software 

Engineering at the University of Canterbury, Christchurch, New Zealand. She is the leader of  the 

Intelligent Computer Tutoring Group (ICTG). Dr Mitrovic received her Ph.D. in computer science from 

the University of Nis, Yugoslavia, in 1994. Prof Mitrovic is president-elect of the International Society of 

Artificial Intelligence in Education. She is an associate editor of the following journals: International 

Journal on Artificial Intelligence in Education, IEEE Transactions on Teaching and Learning 

Technologies, and Research and Practice in Technology Enhanced Learning (RPTEL). Dr. Mitrovic’s 

primary research interests are in student modeling. ICTG has developed a number of constraint-based 

intelligent tutoring systems in a variety of domains, which have been thoroughly evaluated in real 

classrooms, and proven to be highly effective. These systems provide adaptive support for acquiring both 

problem-solving skills and meta-cognitive skills (such as self-explanation and self-assessment). Although 

most of the ITSs developed by ICTG support students learning individually in areas such as database 

querying (SQL-Tutor), database design (EER-Tutor and ERM-Tutor), data normalization (NORMIT), 

there are also constraint-based tutors for object-oriented software design and collaborative skills, various 

engineering topics (thermodynamics, mechanics), training to interpret medical images and language-

learning. ICTG has also developed ASPIRE, a full authoring and deployment environment for constraint-

based tutors. Recent research includes affect-aware tutors and motivational tutors. 

Donald “Chip” Morrison 

Dr. Morrison is a faculty affiliate at IIS. A graduate of Dartmouth, Dr. Morrison holds an M.A. from the 

University of Hong Kong and an Ed.D. from Harvard. Dr. Morrison has more than 40 years experience in 

education, including stints teaching English as a Second Language, as an educational software developer, 

and museum exhibit developer. As a senior scientist at Bolt, Beranek and Newman, Dr. Morrison helped 

found Co-nect, a comprehensive school reform model. Among other contributions, he established and 

directed the Co-nect Critical Friends Program, a review process used by hundreds of schools nationwide. 

After leaving Co-nect, he joined the Tripod Project, part of the Achievement Gap Initiative at Harvard’s 

Kennedy School of Government, and spent a year as lead School Quality Reviewer in New York City. 

Since coming to the University of Memphis in 2008, he has helped bring in grants and contracts worth 

more than $500K annually, including a five-year, $3.5M grant from the U.S. Department of Education to 

evaluate a large-scale science education initiative run by the Smithsonian Institution. His current research 

interests include models of human cognition and learning, and the application of these models in the 

design of conversation-based intelligent learning systems. 

Bradford Mott 

Dr. Mott is a senior research scientist in the Department of Computer Science at North Carolina State 

University. Prior to joining North Carolina State University, he served as Technical Director at Emergent 

Game Technologies where he created cross-platform middleware solutions for video game development, 
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including solutions for the PlayStation 3, Wii, and Xbox 360. Dr. Mott received his Ph.D. in computer 

science from North Carolina State University in 2006, where his research focused on intelligent game-

based learning environments. His current research interests include computer games, computational 

models of interactive narrative, and intelligent game-based learning environments. 

Kasia Muldner 

Dr. Muldner received her Ph.D. from the Department of Computer Science at the University of British 

Columbia, where she designed and evaluated a computational tutor that supported students during 

analogical problem solving. She is currently a post-doctoral researcher in the Department of Computing, 

Informatics, and Decision Systems Engineering at Arizona State University. Her work falls into the 

intersection of human-computer-interaction and artificial intelligence, dealing with the design and 

evaluation of interactive educational technologies that aim to help students learn effectively though 

personalized support. She is particularly interested in technologies that support high level student states 

related to meta-cognition, affect, and creativity.  

Rodney Nielsen 

Dr. Nielsen received a dual Ph.D. in computer science and cognitive science from the University of 

Colorado, Boulder in 2008. He is currently an associate professor of computer science and engineering at 

UNT, where he co-directs the Language and Information Technologies (LIT) lab. Prior to UNT, he was 

an assistant professor adjunct of computer science at CU Boulder, a research scientist in CU’s Center for 

Computational Language and Education Research, and a research scientist with Boulder Language 

Technologies. Dr. Nielsen’s research includes the areas of natural language processing, machine learning, 

and cognitive science, with an emphasis on educational technology (classroom engagement technology 

and intelligent tutoring systems), spoken-dialogue educational health and wellbeing companion robots 

(companionbots), health and clinical informatics, and end-user software engineering. One common theme 

across all of these areas is the need for a robust, informative model of the humans interacting with the 

system. Further information regarding Dr. Nielsen’s research and contact information can be found at 

http://www.cse.unt.edu/~nielsen/. 

Andrew Olney 

Dr. Olney is presently an assistant professor in the Institute for Intelligent Systems/Department of 

Psychology at the University of Memphis and Associate Director of the Institute for Intelligent Systems. 

Dr. Olney received a B.A. in linguistics with cognitive science from University College London in 1998, 

an M.S. in evolutionary and adaptive systems from the University of Sussex in 2001, and a Ph.D. in 

computer science from the University of Memphis in 2006. Dr. Olney’s primary research interests are in 

natural language interfaces. Specific interests include vector space models, dialogue systems, 

unsupervised grammar induction, robotics, and intelligent tutoring systems.  Dr. Olney is co-chair of the 

International Educational Data Mining Society Annual Conference (EDM2013) and frequently serves as 

program committee member and journal reviewer in the fields of cognitive science, artificial intelligence, 

and education. Together with his collaborators, Dr. Olney has been awarded $8.6 million from federal 

funding agencies including the National Science Foundation, the Institute for Education Sciences, and the 

Department of Defense. His research has been featured in WIRED Magazine, the New York Times, the 

Wall Street Journal, the Discovery Science Channel, and BBC Radio 4. Dr. Olney was awarded first 

place in an international robotics competition for the PKD Android (AAAI, 2006) and received the Early 

Career Research Award from the University of Memphis. 

 

http://www.cse.unt.edu/~nielsen/
http://www.cse.unt.edu/~nielsen/
http://www.cse.unt.edu/~nielsen/
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Philip I. Pavlik Jr. 

Dr. Pavlik is currently an assistant professor of psychology at the University of Memphis Institute for 

Intelligent Systems. Dr. Pavlik received a B.A. from the University of Michigan in economics and a 

Ph.D. from Carnegie Mellon University where he studied cognitive psychology with John Anderson 

(developer of the ACT-R cognitive modeling system) and received a neuroscience certificate from the 

Center for the Neural Basis of Cognition. With Anderson, Dr. Pavlik has pioneered changes in the ACT-R 

theory that have allow his research to use this theory to quantitatively optimize the learning of 

information for tasks such as flashcard learning. From this foundation, his work with Dr. Koedinger has 

developed to focus on problem solving, schema learning, optimal transfer, effects of motivational 

constructs, and student strategy use. His methodologies include theory development, experimentation, 

mathematical modeling, and educational applications. Dr. Pavlik has received more than 1.5 million 

dollars in grant awards from the Institute for Educational Sciences, the National Science Foundation, and 

other sources. 

Elaine Raybourn 

Dr. Raybourn has a Ph.D. in intercultural communication with an emphasis in human-computer 

interaction. She is a principal member of the technical staff in cognitive systems at Sandia National 

Laboratories.* Elaine led the development of an award-winning Government game identified by a 2006 

Defense Science Board Study on 21st Century Strategic Technology Vectors as “critical capabilities and 

enabling technologies for the 21st century that show promise.” She was an European Consortium for 

Research in Informatics and Mathematics (ERCIM) Fellow and a recipient of the Department of the 

Army Award for Patriotic Civilian Service, awarded to her by the U.S. Army Special Forces. Dr. 

Raybourn serves on advisory and editorial boards of the international journals Interactive Technology and 

Smart Education, Journal of Game-based Learning, and Simulation & Gaming. She is on assignment to 

Advanced Distributed Learning Initiative, Office of the Deputy Secretary of Defense (Readiness), where 

she leads research on transmedia learning, distributed cognition, learner adaptability, and next generation 

learners’ interactions with personalized assistants for learning (PAL).  

*Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia 

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of 

Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Damon Regan 

Dr. Regan is a contractor with The Tolliver Group, Inc. and supports the Advanced Distributed Learning 

(ADL) Initiative as a technical team co-lead. He has contributed to efforts of the ADL Initiative since 

2004 including most recently the Personal Assistant for Learning (PAL) and the Training and Learning 

Architecture (TLA). Damon completed his Ph.D. in instructional technology from the University of 

Central Florida. He also has an MBA from Rollins College and a B.S. in computer science from the 

University of Central Florida. 

Robby Robson 

Dr. Robson is a learning technology researcher, innovator, and entrepreneur. His first career was in 

mathematics in the areas of real algebraic geometry and computational number theory. In 1995, he began 

developing web-based learning environments and technologies, including one of the first online calculus 

courses. Soon thereafter he became involved in developing industry standards for eLearning 

interoperability, contributing to several of the early IMS and IEEE standards and chairing the IEEE 

Learning Technology Standards Committee from 2000–2008. Dr. Robson co-founded Eduworks in 2001 
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where he is CEO and chief scientist. Over the past dozen years he guided Eduworks while helping 

numerous commercial, academic, and non-profit organizations design and develop educational and 

training technology and formulate market strategies while serving as the principle investigator or lead 

scientist on multiple National Science Foundation and Department of Defense projects related to 

repositories, open content formats, competency management, and intelligent tutoring systems. His most 

recent work is in applications of semantic technology and natural language processing. He holds a 

doctorate from Stanford University in mathematics and has held posts in both academia and industry.  

Lisa Rossi 

Ms. Rossi works as a consultant through the Department of Social Science and Policy Studies at 

Worcester Polytechnic Institute (WPI). She currently studies at Georgia Institute of Technology working 

toward a master’s degree in human-computer interaction. Previously, she received her bachelor’s degree 

in psychological science and humanities & arts (music concentration) from WPI, after which she worked 

at WPI as a research analyst in the Educational Psychology and Learning Sciences Laboratories assisting 

with research projects focused primarily around intelligent tutoring systems for scientific inquiry skills 

used by middle school students. 

Jonathan Rowe 

Dr. Rowe is a senior research associate in the Department of Computer Science at North Carolina State 

University. He received his Ph.D. and M.S. degrees in computer science from North Carolina State 

University. He received his B.S. degree in computer science from Lafayette College. His research is in the 

areas of artificial intelligence and human-computer interaction for advanced learning technologies, with 

an emphasis on game-based learning environments. He is particularly interested in intelligent tutoring 

systems, user modeling, educational data mining, and computational models of interactive narrative. Mr. 

Rowe has led development efforts on several game-based learning projects, including Crystal Island: Lost 

Investigation, which was nominated for Best Serious Game at the 2012 Unity Awards and the 2012 

I/ITSEC Serious Games Showcase and Challenge. His research has also been recognized with several 

best paper awards, including best paper at the Seventh International Artificial Intelligence and Interactive 

Digital Entertainment Conference and best paper at the Second International Conference on Intelligent 

Technologies for Interactive Entertainment.  

Vasile Rus 

Dr. Rus is an associate professor of computer science with a joint appointment in the Institute for 

Intelligent Systems (ITS) whose areas of expertise are computational linguistics, artificial intelligence, 

software engineering, and computer science in general. His research areas of interest include question 

answering and asking, dialogue-based intelligent tutoring systems (ITSs), knowledge representation and 

reasoning, information retrieval, and machine learning. For the past 10 years, Dr. Rus has been heavily 

involved in various dialogue-based ITS projects including systems that tutor students on science topics 

(DeepTutor), reading strategies (iSTART), writing strategies (W-Pal), and metacognitive skills 

(MetaTutor). Currently, Dr. Rus leads the development of the first intelligent tutoring system based on 

learning progressions, DeepTutor (www.deeptutor.org). He has coedited two books, received several Best 

Paper Awards, and authored more than 90 publications in top, peer-reviewed international conferences 

and journals. He is currently Associate Editor of the International Journal on Artificial Intelligence Tools. 

Jennifer Sabourin 

Ms. Sabourin is currently a Ph.D. student at North Carolina State University in the Department of 

Computer Science. She received her B.S. (2008) and M.S. (2012) in computer science from North 

http://www.deeptutor.org/
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Carolina State University where she graduated as Valedictorian. She is a recipient of the National Science 

Foudation Graduate Research Fellowship award.  Her research interests include artificial intelligence and 

its application in education. In particular, her research focuses on modeling student affect, engagement, 

self-regulation, and problem solving in game-based learning environments. Her work has been recognized 

with a best student paper award at the third International Conference on Affective Computing and 

Intelligent Interaction. 

Valerie Shute 

Dr. Shute is the Mack & Effie Campbell Tyner Endowed Professor in Education in the Department of 

Educational Psychology and Learning Systems at Florida State University. Before coming to FSU in 

2007, she was a principal research scientist at Educational Testing Service where she was involved with 

basic and applied research projects related to assessment, cognitive diagnosis, and learning from 

advanced instructional systems. Her general research interests hover around the design, development, and 

evaluation of advanced systems to support learning – particularly related to 21st century competencies. 

An example of current research involves using immersive games with stealth assessment to support 

learning – of cognitive and non-cognitive knowledge, skills, and dispositions. Her research has resulted in 

numerous grants, journal articles, books, chapters in edited books, a patent, and a 2010 book co-edited 

with Betsy Becker entitled, Innovative assessment for the 21st century: Supporting educational needs. 

Anne Sinatra 

Dr. Sinatra is an Oak Ridge Associated Universities Post Doctoral Fellow in the Learning in Intelligent 

Tutoring Environments (LITE) Lab at the U.S. Army Research Laboratory’s (ARL) Simulation and 

Training Technology Center (STTC) in Orlando, FL. The focus of her research is in cognitive and human 

factors psychology. She has specific interest in how information relating to the self and about those that 

one is familiar with can aid in memory, recall, and tutoring. Her dissertation research evaluated the 

impact of using degraded speech and a familiar story on attention/recall in a dichotic listening task. Her 

work has been published in the journal Interaction Studies, and in the conference proceedings of the 

Human Factors and Ergonomics Society. Prior to becoming a post doc, Dr. Sinatra was a graduate 

research associate with UCF’s Applied Cognition and Technology (ACAT) Lab, and taught a variety of 

undergraduate psychology courses. Dr. Sinatra received her Ph.D. and M.A. in applied experimental and 

human factors psychology, as well as her B.S. in psychology from the University of Central Florida. 

Matthew Small 

Dr. Matthew Small is a research consultant and educational game developer working with various 

educational research entities including the College of Education at The Florida State University. His 

research interests center on re-designing the template for modern educational game development through 

embedding mechanisms for learning and assessment into engaging video games that rely on nonlinear 

gameplay mechanics. His work focuses on STEM areas of content knowledge that are traditionally 

considered difficult to teach and measure in “fun” digital environments. Dr. Small has collaboratively 

developed educational software including Newton’s Playground and Codecraft, games that teach 

quantitative physics and computational thinking, respectively, and are the focus of numerous publications 

as well as ongoing research. 

Abhiraj Tomar 

Mr. Tomar received his B.S. in computer science from BITS Pilani University, India and is currently 

working as a research intern at the University of North Texas. He completed a B.S. thesis on user 

modeling for companionbots. His work aims at developing dialog based healthcare agents to provide real-
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time care to elderly and depressed. For an undergraduate project, he worked on search engine 

optimization and developed a clustering algorithm using latent semantic analysis and graph theory. He 

has also worked on optimization of downstream processing and online question bank organizer. His 

research interests include artificial intelligence, algorithms, graph theory, natural language processing and 

multidisciplinary applications of computer science. He headed the marketing team of his undergraduate 

institution for a year and was also a manager for the public relations team. 

Matthew Ventura 

Mr. Ventura is a senior research scientist in the College of Education at Florida State University. His 

current research spans both cross-sectional and experimental research around how video games can affect 

cognitive and noncognitive skills. Specific skills of interest include large-scale spatial ability, problem 

solving, persistence, conceptual physics, and computational thinking. Mr. Ventura also designs 

educational video games and simulations that use embedded assessments to enhance learning. His work 

has resulted in numerous publications spanning the areas of assessment, cognitive science, and education. 

Learner Modeling Advisory Board Members 

The editors of Design Recommendations for Intelligent Tutoring Systems - Learner Modeling (Volume 1) 

would like to recognize the contributions of learner modeling advisory board members whose 

contributions to this effort were not in the authoring of book chapters, but provided motivations and focus 

to the development of this volume. 

Trey Martindale 

Dr. Martindale is associate professor for the Instructional Design and Technology graduate program with 

the University of Memphis, and is a research scientist with the Institute for Intelligent Systems. His 

research expertise is in the design and analysis of online learning environments. His research and 

development work has been funded by NSF, the Centers for Disease Control, the U.S. Department of 

Education, the Institute of Education Sciences, IBM, Microsoft, and others. Dr. Martindale has 

contributed to the creation of four fully online degree programs at three universities, and has developed 

numerous online courses. He has pioneered the effective pedagogical use of social software tools for 

enabling collaborative learning environments. He is an active consultant to companies and organizations 

seeking to improve their employee training and performance. He also leads consulting efforts within the 

university IDT program, directing IDT graduate students on instructional design and e-learning projects 

with external clients. He serves on the Board of Directors for the Association for Educational 

Communications and Technology, and is on the review board for Educational Technology Research and 

Development, and the Quarterly Review of Distance Education. 

Kurt VanLehn 

Dr. VanLehn is the Diane and Gary Tooker Chair for Effective Education in Science, Technology, 

Engineering and Math in the Ira A. Fulton Schools of Engineering at Arizona State University. He 

received a Ph.D. from MIT in 1983 in computer science, was a post-doc at BBN and Xerox PARC, joined 

the faculty of CMU in 1985, moved to the University of Pittsburgh in 1990 and joined ASU in 2008. He 

founded and co-directed two large NSF research centers (Circle; the Pittsburgh Science of Learning 

Center). He has published over 125 peer-reviewed publications, is a fellow in the Cognitive Science 

Society, and is on the editorial boards of Cognition and Instruction and the International Journal of 

Artificial Intelligence in Education. Dr. VanLehn’s research focuses on intelligent tutoring systems and 

other intelligent interactive instructional technology. 
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Ray S. Perez 

Dr. Perez is a senior scientist and program officer at the Office of Naval Research (ONR) in Arlington, 

Virginia. In this capacity, he is responsible for and actively manages ONR’s Cognitive Science of 

Learning Program. This Program has three major multidisciplinary and highly intertwined thrusts. 

Specifically, he is responsible for (1) training/education research and their core technologies, (2) 

individual differences research and (3) neuro-biology of learning research. Dr. Perez also conducts 

research in the development of new theories and methods for the assessment of human abilities. He is 

recognized as a DoD leader in learning, he was asked by the Chief of Naval research to be the program 

manager for ONR’s STEM Grand Challenge. Dr. Perez has conducted research in the areas of 

technology-based education / training spans over 20 years. Throughout his career, he has received 

numerous awards for his work in advanced learning technologies for training and education. He has 

authored four books on the use of technology in education and training. Most recently, he co-edited 

Computer Games and Team and Individual Learning Technology with Dr. Harry O’Neil that is published 

(2011) by Elsevier. His next book also co-edited with Drs. Harry O’Neil and Eva Baker entitled Teaching 

and Measuring Cognitive Readiness (in preparation) will be published by Springer Publishing Company.  

Prior to coming to ONR he served as program manager for the Presidential Technology Initiative 

Program at the Department of Defense Education Activity (DoDEA). While at DoDEA he was the 

Director of the K‒12 program within the Advanced Distribute Learning Initiative, sponsored by the 

Office of the Secretary of Defense, Readiness and Training. Earlier, he was principal scientist in 

Simulation and Advanced Instructional Systems, at the U.S. Army Research Institute for the Social and 

Behavioral Sciences (ARI) and was an assistant professor, in the Department of Psychology, at California 

State University Dominguez Hills, California. 

Dr. Perez continues to serve as an educational technology expert on various review panels including the 

National Science Foundation (NSF), National Academy Sciences (NAS), and the Defense Advanced 

Research Agency (DARPA). Dr. Perez received a Doctorate and Master’s degrees in Educational 

Psychology with emphasis on Cognitive Psychology from the University of California, Los Angeles 

California. 

Beverly Park Woolf 

Dr. Woolf is a research professor at the University of Massachusetts who develops intelligent tutors that 

model student affective and cognitive characteristics and combine cognitive analysis of learning with 

artificial intelligence, network technology, and multimedia. These systems represent the knowledge 

taught, recognize learners’ skills and behavior, use sensors, and machine learning to model student affect, 

and adjust problems to help individual students. Dr. Woolf has developed tutors in education and industry 

and in a variety of disciplines (e.g., chemistry, psychology, physics, geology, art history, mathematics, 

and economics). Some of these tutors enable students to pass standard exams at a 20% higher rate and one 

system is used by more than 150,000 students per semester across hundreds of colleges. Dr. Woolf 

published the book Building Intelligent Interactive Tutors along with over 200 articles. She is lead author 

on the NSF report Roadmap to Education Technology in which 40 experts and visionaries identified the 

next big computing ideas that will define education technology and developed a vision of how technology 

can incorporate deeper knowledge about human cognition and develop dramatically more effective 

instructional strategies. Dr. Woolf has delivered keynote addresses, panels, and tutorials in more than 20 

foreign countries and is a fellow of the American Association of Artificial Intelligence. 
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ACRONYM LIST 
 

 

 

2-D  two-dimensional 

AAWC  anti-air warfare coordinator 

ABC  Affective-Behavioral-Cognitve 

ACE  Adaptive Coach for Exploration 

ACL  agent communication language 

ACAT  Applied Cognition and Technology 

ACTIVE Applied Cognition and Training in Immersive Virtual Environments 

ADL  Advanced Distributed Learning Initiative 

AFRL  Air Force Research Laboratory 

AICA  kaike information criterion 

ALEKS  Assessment and Learning in Knowledge Spaces 

API  application programming interface 

ARL  U.S. Army Research Laboratory 

ASN  Achievement Standards Network’s 

ASU  Arizona State University 

BKT  Bayesian knowledge tracing 

CBM  constraint-based modeling 

CCNU  Central China Normal University 

CBTS  computer-based training systems 

CDOs  Cognitive doman ontologies  

CECEP  complex event processing 

CMU  Carnegie Mellon University 
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CRC  Current Relevant Contribution 

CSP  constraint satisfaction problem 

CTAT  Cognitive Tutor Authoring Tool 

CTO  Chief Technology Officer 

DAG  Directed acyclic graph 

DARPA Defense Advanced Research Projects Agency 

DKF  Domain Knowledge File 

DLs  Domain-specific languages 

DOD  U.S. Department of Defense 

ECD  Evidence-Centered Design 

ECS  Engineering and Computer Simulations’ 

EDA  electro-dermal activity 

EDM  educational data mining 

EER  enhanced entity-relationship 

EMDAT-RT Eye Movement Data Analysis Toolkit in Real Time 

EMT  Expectation and Misconception Tailored 

EP  empirical progression 

ERIC  Educational Resource Information Center 

EWS  electronic warfare signal 

FIPA  Foundation for Intelligent Physical Agents 

FYI  for your information 

GIFT  Generalized Intelligent Framework for Tutoring 

GME  Generic Modeling Environment 

GPT  general processing tree 

HAI  human-computer interaction 

HAL  Hyperspace Analogue to Language 
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HFES  Human Factors and Ergonomics Society 

HRED  Human Research and Engineering Directorate 

ICS  Intelligent Creativity Support 

IES  U.S. Institute for Education Sciences 

IO  input/output 

IRT  Item Response Theory 

IS  interactive simulation 

ISI  Instructional Strategies Indicator 

ITA  InternationalTechnology Alliance 

ITS  intelligent tutoring system 

JADE  Java Agent Development Framework 

KCs  knowledge components 

KERMIT Knowledge-based Entity Relationship Modeling Intelligent Tutor 

KST  knowledge space theory 

LCC  Learner Characteristic Curve 

LDA  Latent Dirichlet Allocation 

LIT  Language and Information Technologies 

LITE  Learning in Intelligent Tutoring Environments 

LM KQML Knowledge Query and Manipulation Language 

LMSs  Learning management systems 

LPs  Learning Progressions 

LRM  Latent Response Models 

LSA  Latent Semantic Analysis 

LSCM  Large-Scale Cognitive Modeling 

MDPs  Markov decision processes 

MICE  Michigan Intelligent Coordination Experiment  
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MOOCS massive open online courses 

MSF  National Science Foundation 

MIT  Massachusetts Institute of Technology 

NAS  National Academy Science 

NLS  Non-Latent Similarity 

NP  Newton’s Playground 

NPCs  non-player characters 

NRC  The National Research Council 

NSF  U.S. National Science Foundation 

OLMs  open learner models 

ONR  U.S. Office of Naval Research 

PAL  Personal Assistant for Learning 

PART  Projective Adaptive Resonance Theory Model 

PMI  Pointwise Mutual Information 

PO  primary object 

POKS  Partial Order Knowledge Structures  

PSLC  Pittsburgh Science of Learning Center 

PUDs  Protocol Data Units 

QUAID  Question Understanding AID 

PAPI  Personal and Private Information” 

PSLC  Pittsburgh Science of Learning Center 

PFA  performance factors analysis 

R  relevance condition 

RDF  resource description format 

RML  research modeling language 

RMML  research modeling language 
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R-N  relevance and novelty 

RPTEL  Research and Practice in Technology Enhanced Learning 

RSS  rich site summary 

S  satisfaction condition 

SB  springboard 

SCORM Sharable Content Object Reference Model 

SCM  Structured Construct Model 

SEMILAR Semantic Similarity 

SIMILE Student Information Models for Intelligent Learning Environments  

SMART Student Modeling Approach for Responsive Tutoring 

SOAs  service-oriented architectures 

SQL  Structured Query Language 

SRL  self-regulated learning 

STEM  Science, Technology, Engineering and Mathematics 

STTC  Simulation and Training Technology Center 

SSA  Social Security Administration 

TLA  Training and Learning Architecture 

UoM  University of Memphis 

URL  uniform resource locator 

USAMRAA U.S. Army Medical Research Acquisition Activity 

VBS2  Virtual Battle Space 2 

WAS  Word Association Space 

WBE  web-based education 

WPI  Worcester Polytechnic Institute 

WTF  Without Thinking Fastidiously 

XML  Extensible markup language 
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