Authoring Tools, Complexity, Epistemic Forms, and Cognitive Development: *"What works for authors?"*

Tom Murray University of Massachusetts

ITS 2014 Workshop: Intelligent Tutoring System Authoring Tools

Authoring Tool Projects

- SETS (1991) Equipment maintenance training
- Eon ITS authoring for domain, student, teaching models, and interface
- MetaLinks hyperbook authoring tool
- SimForest-G Glass box simulation authoring
- Rashi Coached inquiry learning environment w/ authoring tool
- Wayang/MathSprings
 (2014) teacher tools

Authoring Tools for Advanced Technology Learning Environments

Murray, Blessing, Ainsworth (Eds) (2003)

Authoring Tools for Advanced Technology Learning Environments

Toward con-affective adaptive, interactive and intelligent educational asoftware

> Edited by Tom Murray, Stephen Blessing and Shaaron Aintworth

Kluwer Academic Publishers

Recent interests applied to ITS authoring -- Theory

- User Roles vs Tools: Matching Complexity
- Activity Theory: Tools, Tasks, Users, Community
- Epistemic Forms/Games
- **Developmental** Theory (of complexity)

ITS Authoring Tool Design Tradeoffs

Authoring Tool Users

<u>Roles</u>	<u>Benefits</u>	Problems
(tool use roles)	(of that role)	(of that role)
Teachers PRACTICAL	Practical experience	Not good at articulating or abstracting expertise
Domain Experts & Content Developers PARTIAL	Auth. tool infers the instructional methods	A fixed instructional method
Instructional Designers & Learning Theorists THEORETICAL	Know learning theories & research	Rare; not trained in knowledge engineering
Knowledge Engineers and ITS Developers EXPERIENCED	Know the tools; Are sometimes also plugged into user testing	May not know what it is like to teach or learn the material
Computer scientists & Software developers (ACTUAL?!)	Complexity capacity. Don't have to build to a real user base.	"its intuitively obvious to the casual observer"

Matching Complexity— Tools vs. User capacity

- 1) Know your user (anticipate user needs)
- 2) Usability Testing ("early and often")
- 3) <u>Theory</u> (of usability, cognition...)

Complex Software: (investment) Risk Assessment

ITS design == AI-complete.....ITS A-Tool design == ITS-Complete!

Jonassen & Rohrer-Murphy 1999; Engestrom et al. 1999;

Complexity Coordination

<u>Complexity matching:</u>

- 1. User <> Tool
- 2. Task <> User
- 3. COP (& user) <> Tool

- Cognitive Complexity (user)
- Task Complexity
- Tool Complexity
- Socio-cognitive complexity (COP)

Authoring Tools for All Users? (Tiered Authoring/Work Flow)

Roles	Polos Bonofits Problems			
(tool use roles)	(of that role)	(of that role)	<u>Complexity Design</u> <u>Capacity</u>	
Teachers PRACTICAL	Practical experience	Not good at articulating or abstracting expertise	LOW	
Domain Experts & Content Developers PARTIAL	Auth. tool infers the instructional methods	A fixed instructional method	MED	
Instructional Designers & Learning Theorists THEORETICAL	Know learning theories & research	Rare; not trained in knowledge engineering	MED	
Knowledge Engineers and ITS Developers EXPERIENCED	Know the tools; Are sometimes also plugged into user testing	May not know what it is like to teach or learn the material	MED-HIGH	
Computer scientists & Software developers (ACTUAL?!)	Complexity capacity. Don't have to build to a real user base.	"its intuitively obvious to the casual observer"	HIGH	

Capacity is context-dependent

• User complexity capacity: f(S,I,T)

Background **skill** (generic—see table) + Investment in **training** A-Tool

+ Time available to author this ITS

Sources of (software) system complexity

- Structural complexity (space)
 - Object has many properties
 - Many parts
 - Many types of parts
 - Many relationships
 - Many types of relationships
- Perspectival complexity
 - alternatives, hypotheticals, variables, decision spaces
- Dynamic complexity
 - Loops, Feedback, recursion relationships ("non-linearity")

<u>Epistemic Forms & Games</u> (Mental Models) (Collins & Furgeson, 1993)

- list
- matrix or table
- molecular model
- periodic table
- web page menu
- x-y graph
- pert chart
- binary tree
- floor plan

- street map
- org. chart
- musical score
- timeline
- cause/effect diagram
- network
- relational database
- sentence diagram
- term paper outline

Epistemic forms in interfaces

Can we estimate the complexity of epistemic forms/games in authoring tools?

>> use cognitive developmental theory

Cognitive Developmentalists

Kegan; Fisher; Commons; Cook-Greuter...

- Human development and learning can be described in terms of "qualitative differences in mental complexity."
- ...that add a hierarchical "structural perspective in analyzing the organization of actions and thought."

Development: the concept of Fun

Single Rep. (unconnected list)	Fun is swinging on a swing. It's sliding on a slide.	
Rep. Mapping (connections)	Fun is when Tommy and I put blocks together and then knock them down so that they make a loud noise that makes us laugh.	
Rep. System (interconnections)	Fun is different things. Sometimes I like to climb that makes me	
Single Abstr. (unconnected list)	Fun is a way of enjoying yourself. It is a form of pleasure.	
Abst. Mapping (connections)	There are a variety of ways that a person can have fun. Some people enjoy physical activities, like sports or just exercise. Some people	

- Actions at a higher order of hierarchical complexity organize and transform the lower order actions
- Complexity level (or "order") based on:
 1. complexity of objects operated upon (vertical complexity; order of abstraction)
 2. complexity of object coordination (horizontal complexity; structure of objects)

Fisher's Skill Theory

For any skill algebra, reading, piano, parenting, tennis...

Addition > Multiplication > Algebra > Calculus > ...

• Single Set (e.g. a list)

(e.g. addition; subtraction...)

- Mapping (e.g. linear causal link) (coordinating addition & subtraction)
- System (e.g. many interconnected parts)
 (e.g. coordinating +, -, x, /)
- [System of Systems (an entire complex system) (moving to Algebra)]

- System of Systems (an entire complex system with feedback loops)
- **System** (e.g. many interconnected parts)
- Mapping (e.g. linear causal link)

• Single Set (e.g. a list)

Increasing complexity of the Mental Model

Complexity Level	Epistemic Form
1 Simple objects/info	Text information fill-in boxes
1. Shiple objects/hito	Lists, choices, sliders, and check boxes
	Tables and matrices
2. Mappings & Abstractions	Hierarchies and trees
	Simple scripts, Forms, schemas, or templates
	Procedures with branches
3 Formal Systems	Variables/Equations and Boolean logic
5. Pormar Systems	Structural models: concept networks, boxology
	diagrams
	Causal and constraint models, Decision Trees
1 Dynamic Systems	Behavioral/procedural models: If/then and rule-
4. Dynamic Systems	based procedural representations
	Complex interactions
5. Architectures &	Systems of systems, models, or rule-sets
Leosystems	

Epistemic Forms Complexity

1. Simple objects: lists, sliders, simple relationships

RGB Sliders	Person	Employee
	One-to-One	One-to-Many

2. Complex mappings: tables, trees, scripts, concept nets

					Managing Director	Step Properties >>>
	А	В	С	D	R.Balasubramanian	Comments:
1	Date 🔽	Appl	Orang	Total Fri		
2	6/1/2012	125	75	200	Project Incharge Service Incharge Finance Purchase	Step Type: Schedule a procedure to run on a specified machine.
3	6/2/2012	118	84	202	1.5cmm Bonannuganand Bonavaiya Modelavel	Schedule Procedure
4	6/3/2012	164	72	236		Step Options
5	6/4/2012	114	65	179	Project Project Engineers HR & Admin Accountant Co-ordinator S-Sankaramoorthi S-Anuvenkat B.Balamurugan	Select the procedure to schedule :
6	6/5/2012	98	96	194	H.Badusha	Enter time delay in minutes before procedure executes:
7	6/6/2012	172	82	254		Enter the machine ID of the machine for which this procedure is
8	6/7/2012	122	82	204		scheduled:
9	6/8/2012	143	91	234	Senior Service Senior Service Store keeper Engineer (1) Engineer (2) K S Devanathan	
10	6/9/2012	137	87	224	M.Dinesh V.Vinoth	Perform Step on: All Operating Systems
					Service Engineer Team Team	Continue on fail
					10 traints 10 traints	

(cont.)

3. Formal systems: Add variables, equations, static models

4. Dynamic Systems:

Loops, conditionals, dynamic/constrain models, rule systems

(cont.)

5. **Dynamic Systems/ Architectures** (version control; constant monitoring)

Increasing complexity of the Mental Model

Complexity Level	Mental Model Characteristics
1. Simple objects	Facts, isolated info-bits
2. Mappings &	Many relatinships, fairly linear,
Abstractions	predicatable
3. Formal Systems	Abstractions, variables, decisions
1 Dynamic Systems	Non-linearities, sub-systems, decision
4. Dynamic Systems	trees
5. Architectures &	Complex interactions, whole-systems,
Ecosystems	evolving, unpredicatable

Review

- User Roles vs Tools: Matching
 Complexity
- Activity Theory: Tools, Tasks, Users, Community
- Epistemic Forms/Games
- **Developmental** Theory (of complexity)

Conclusions:

If "we build it will they come"?

- Market & Buy-in: Have ITSs demonstrated costbenefit yet? In what situations?
- Creating a pipeline for training and trained ITS authors and knowledge engineers
- Building communities of practice (examples: CTAT, WISE, Knowledge Forum...)
- Expectation management: matching tool and user complexity (and constraining the breadth/ depth of the outcome ITSs)
- Building an ITS authoring tool is like...?? What known completed project? Using lessons from a parallel domain?

Thank You