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ABSTRACT 

 

This paper presents a case study of teams of soldiers training on dismounted battle drills in a mixed-reality training 

environment. Mixed-reality simulation-based training environments along with multimodal sensing devices have 

made it much easier to collect and analyze participant interaction and behavior data for evaluation and feedback. 

Advanced AI and machine learning algorithms have further enhanced the ability to create robust multi-dimensional 

individual and team performance models. The performance metrics computed within single training instances, can be 

extended to cover a full course of training scenarios. This provides valuable feedback to trainees and their instructors 

on their skill levels across cognitive, metacognitive, affective, and psychomotor skill dimensions.  However, develop-

ing objective data-driven performance metrics comes with a set of challenges that includes data collection and aggre-

gation, pre-processing and alignment, data fusion, and the use of multimodal learning analytics (MMLA) algorithms 

to compute individual and team performance. We develop a generalized multilevel modeling framework for the train-

ing domain and use machine learning algorithms to analyze the collected training data that spans video, speech, and 

simulation logs. We model teams of soldiers through multiple training scenarios and show their progression over time 

on both operationalized domain-specific performance metrics, as well as higher-level cognitive and metacognitive 

processes. We conclude with a discussion of how results from our analysis framework can be used to provide forma-

tive feedback to trainees and suggestions for future training needs, as well as data-driven evidence to be used as part 

of a longer-term summative assessment system. 
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INTRODUCTION  

 

Effective lifelong training is a critical component of success for complex workplace tasks. Training programs and 

technologies are designed for learners to practice a variety of cognitive, psychomotor, affective, and metacognitive 

skills in safe environments. One of the critical components for effective learning outcomes is proper assessment 

(Pierce, 2002; Tosuncuoglu, 2018). However, traditional methods for assessment have relied on observations by do-

main experts. This has its limitations, including the high cost of having experts present across multiple training in-

stances, the difficulties experts may have of remembering nuanced details of trainees’ activities, and the potential 

biases and judgmental differences introduced by each individual assessor. 

 

Motivated by these issues, in this paper we develop a framework for automated team performance assessment based 

on analysis of multimodal trainee data. Our methods use Cognitive Task Analysis (CTA) and Bayesian inference 

methods to generate evaluations that range from domain-specific to high-level domain-general concepts. Automating 

evaluations supports training analyses without expert intervention, thus increasing the objectivity and robustness of 

the assessments, and the feedback that can be generated from the assessments. In addition, our automated schemes are 

data-driven and evidence-centered, making them repeatable and decreasing the potential for biases.  

 

While our analysis framework is extensible across all LVC1 training, our initial development of the framework focuses 

on mixed-reality simulation environments (MRSEs). MRSEs offer unique advantages to virtual training. By using a 

mix of physical and digital elements, they keep the benefits of digital training, including safety and repeatability, while 

also maximizing psychomotor and cognitive experiences as trainees move around and physically interact in the space. 

However, this mix of physical and digital requires sophisticated analysis techniques that can link events across the 

physical and digital spaces of the environment. Therefore, multimodal data collection and analysis becomes a pre-

requisite for automated evaluation of trainee performance. An added advantage of MRSEs is that it makes our methods 

transferrable to digital (i.e., constructive and other virtual training) and physical (i.e., live training) environments.  

 

We demonstrate our analysis framework using a case study of fire team training in an MRSE. By analyzing the envi-

ronment’s multimodal data, we track performance of soldiers over time and show how this progression provides in-

sights into the personalization of current and future training of skills and the optimal length of training sessions to 

achieve effective learning gains. Along with the design, description, and demonstration of the automated analysis 

framework, we investigate the following research questions: 

 

1. How do we develop hierarchical teamwork model structures that provide a mapping from observable and 

measurable behaviors to higher-level teamwork skills in relation to the overall training task? 

2. How can the automated data-driven assessments of team performance be utilized by trainees and instructors 

to focus the training experience on specific trainee needs and improve overall learning outcomes? 

 

 

 

 

 
1 The US Army, classifies training systems into the Live (real people training on real systems and equipment), Virtual (real people training on 

simulated systems and equipment), and Constructive (simulated people operating simulated systems and equipment), i.e., the LVC taxonomy 

(Modeling and Simulation Glossary, 2011).   
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BACKGROUND 

 

Mixed-Reality Simulation-Based Training 

 

The application of simulation and MRSEs is not a new concept to the Armed Forces. eXtended Reality (XR) solutions 

merge physical task execution with interactive synthetic resources to create sufficient fidelity and immersion to elicit 

realistic behavioral responses. They have been applied successfully in early-exposure and refresher training across 

complex and dangerous task domains for combinations of cognitive, psychomotor, and affective skills. These ap-

proaches also offer unique training opportunities by rapid exposure to multiple scenarios under safe, controlled con-

ditions. These mixed reality methods have been successfully implemented across multiple Programs of Instruction, 

with well-documented impacts in marksmanship (Debeltz, 2017) and medical (Barrie, et al., 2019) training. 

 

MRSEs have matured significantly over the last decade across wireless computing technologies, wearable and behav-

ioral sensors, game engine mechanics, motion and weapon tracking fidelity, and visualization tools to support play-

back and After-Action Review (AAR). The Army’s Synthetic Training Environment (STE) modernization program 

(Goldberg et al., 2021; Synthetic Training Environment, n.d.) aims to take advantage of these state-of-the-art XR 

capabilities to deliver effective collective training at lower echelons that focus on deliberate practice of complex tasks 

(Ericsson, 2009). A requirement within STE is to establish training management tools that leverage multimodal data 

produced across XR environments. This will enable automated assessments and evidence-based intelligent tutoring 

functions to track performance and proficiency over time and optimize learning outcomes. These environments can 

combine multiple streams of data (e.g., video, audio, simulation, game-state interaction, physiological, and eye track-

ing data along with other behavioral signals) to develop a more comprehensive and objective understanding of the 

actions and decisions of a trainee or team during execution of a task. To facilitate extensible solutions leveraging these 

data types, research is required to establish a data architecture and a set of workflows to manage real-time capture of 

multimodal data, and analyses of this data using AI and Machine Learning algorithms to support data-driven perfor-

mance assessments.  

 

Cognitive Task Analysis 

 

In complex training domains, CTA methods are commonly used to decompose complex tasks and behaviors into their 

component sub-tasks (Clark & Estes, 1996; Zachary, et al., 2000). CTA models are hierarchical; tasks and concepts 

at the highest-levels represent general cognitive processes, and each deepening level contains more domain-specific 

actions and behaviors. The models are constructed by iterative refinement; each task is broken down into its compo-

nent sub-tasks at the next level of the hierarchy. Sub-tasks are then further deconstructed into more fine-grained sub-

tasks, until the leaves capture observable actions and behaviors. Our CTA models constructed by task decomposition 

include a thorough review of army doctrine, structured interviews with domain-experts and instructors, and observa-

tions of trainees performing their tasks.  

 

Our prior work on learner modeling in simulation-based training domains exploited the hierarchical structure of the 

CTA model to generate inferences about domain-general cognitive processes using observable, situation-specific low-

level data (e.g., Kinnebrew, et al, 2017; Zhang, et al., 2021). Biswas et al. (2020) used a CTA approach to analyze 

trainee performance in a counterterrorism simulation called UrbanSim. By logging trainee actions in the simulation 

environment, we monitored their performance across multiple levels of abstraction using quantitative measures to 

capture their cognitive and metacognitive processes. In Vatral et al. (2021), we applied CTA to generate a hierarchical 

model and associated quantitative metrics for the Enter and Clear a Room (ECR) dismounted battle drill. Continuing 

this work, Vatral et al. (2022a) generalized the CTA methods to examine teamwork behaviors in addition to individual 

performance. We created the Hierarchical Affect, Behavior and Cognition (H-ABC) model of teamwork that linked 

high-level teamwork concepts to domain-specific performance metrics using data collected from the training simula-

tion. By propagating these performance metrics in the hierarchical model, we generated automated evaluations of 

teamwork in the ECR domain. Furthermore, using a case-study approach, we showed that our automated evaluations 

of teamwork matched instructor evaluation and feedback. In this paper, we extend the H-ABC model to analyze team 

performance in the ECR domain. 
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Multimodal Analytics 

 

As discussed in the previous section, we use multimodal sensors, such as cameras, microphones, and chest harnesses 

to collect soldier activity data, which is then processed using the CTA model to derive a set of performance metrics. 

Analysis of multimodal data is a growing field that provides the basis for generating holistic inferences of trainee 

actions, behaviors, and affective states (Blikstein & Worsley, 2016). Multimodal analysis is even more important in 

mixed-reality team training environments. For example, with unimodal analysis, we might collect audio transcripts to 

look for patterns of communication among team members. However, even for simple commands, such as “Go check 

that,” we cannot infer its meaning from the transcript alone. An additional data modality, such as video may reveal a 

pointing gesture along with the command that allows us to disambiguate what “that” means in this context. Multimodal 

data facilitates a more complete analyses of trainee psychomotor, cognitive, and affective states (Ochoa et al., 2017). 

 

In our work, we adopt a late fusion approach to multimodal analysis (Sleeman et al., 2021). Individual performance 

metrics are calculated using single data modalities, and then multiple metrics are fused together using Bayesian net-

work models to generate the performance assessments at higher levels of the CTA hierarchy. Bayes nets are graphical 

probability models that allow us to infer unknown variable values using combinations of known variable values and 

conditional probability distributions that establish the relations between variables in the graph (Ben‐Gal, 2008). In our 

application, we use the observable data and the performance metrics derived from that data to infer performance values 

for the unobservable higher-level concepts. Our Bayes net follows the structure of the CTA model for the domain. 

Each performance construct can be in one of three possible states: below, at, and above expectation. This three-state 

learner model matches the design of the Generalized Intelligent Framework for Tutoring (GIFT) (Goldberg, et al., 

2021), and is analogous to the apprenticeship model often seen in Army training doctrine and psychology literature 

on expertise development (e.g., Novice, Journeyman, Master; or Crawl, Walk, Run) (Cassella, 2010; Klein & Hoff-

man, 1992; Sottilare, et al., 2017). We generated the probability distributions for the Bayes net by consulting domain 

experts and reviewing training doctrine. These distributions can be further tuned using trainee data. We reserve this 

for future work, as it requires more data than is available from our case study described in the next section.  

 

CASE STUDY 

 

To drive the development and validation of the analysis methods presented in this paper, we use data collected from 

a case study of two infantry fire teams that participated in a study at Fort Campbell over the course of two days. The 

teams trained on the ECR dismounted battle drill using the Squad Advanced Marksmanship Trainer (SAM-T). In the 

drill, the fire team enters a room with the goal of neutralizing all enemy combatants. Each room may contain any 

combination of enemy combatants, civilian non-combatants, physical obstacles, and unique weapons. From a doctrinal 

view, soldiers train to rapidly enter the room one after another, following paths of least resistance along the walls and 

neutralizing enemy combatants in their sectors of fire. Once all combatants are neutralized and all civilians are secured, 

team members, directed by the team leader successively search each entity to remove weapons. Once every entity is 

searched and neutralized, the team leader gives the all-clear signal, and the team exits the room, vocalizing their exits 

to ensure that no fratricide occurs. 

 

During each scenario, soldiers must also be aware of variable task conditions that dictate their behavior and modifi-

cations to the standard protocols. For example, situation changes may include items such as new combatants entering 

the room, civilians being noncompliant or becoming aggressive, or the presence of explosive devices in the room. The 

ECR scenario in SAM-T uses a U-shaped arena with three screens, on which a Virtual Battle Simulator 3 (VBS3)-

generated scenario that evolves in the room is projected. The soldiers move around in the space created by the U-

shaped arena and fire their weapons at enemy on-screen entities. The SAM-T system logs a variety of data related to 

both soldier and entity actions in the VBS3 scenario. Logged events include soldier weapon firing, Zephyr biometric 

harness data, VBS3 entity weapon firing, and VBS3 entity positions. In addition, we augmented the SAM-T environ-

ment to include two video cameras that captured soldier movements and actions from two distinct angles.  

 

We used the GIFT data collector on-site at Fort Campbell for live, synchronized data collection between SAM-T, 

VBS3, and our external cameras. The data recorded in log files can be played back through GIFT after the study. All 

our assessments were conducted offline after the study, but teams still received normal assessment feedback from the 

instructor during the training. We recoded the instructor feedback and the discussions among team members for sub-

sequent analysis. Each drill took between 30 seconds and 2 minutes to complete, and each team completed between 

20 and 30 drills. Intermittent sensor failure during the study affected some of the weapon firing, Zephyr bio harness, 
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and video camera data collection, thus resulting in some data loss. In total, we used complete data from 41 drills for 

the analysis in this paper. 

 

THEORETICAL FRAMEWORK 

 

Figure 1 shows our theoretical framework for automated assessment of team performance. Overall, it follows a generic 

input-process-output (IPO) structure, i.e., the model describes task execution as three modular components: (1) Input 

that represent the basic structure of the team, including individual personalities and knowledge, skills, and attitudes 

(KSAs), as well as more organizational concerns, such as the resources available to the team and the task context in 

which the team operates; (2) Processes that represent the actions taken by the team during task execution to accomplish 

their shared goals; and (3) Outputs that represent the outcomes of the team operation including actualized performance 

with respect to both individual and team goals.  

 

 
Figure 1. Overall framework to compute team performance from observable data in terms of the IPO model. 

Solid arrows represent causal relationships and dashed arrows represent computational processes 

 

The Three IPO Components 

 

In general, outputs represent a wide variety of outcome concepts including how well the team achieved their shared 

goals, whether the team followed proper protocols and best practices, the viability of the team for future training and 

missions, and perceptions of competency and efficacy. To describe these general outcome concepts, we developed a 

set of domain-specific performance metrics to score the outcomes as numeric measures. For example, army doctrine 

for ECR, suggests that the team should move along the walls of the room to minimize the blind spots at their backs. 

Table 1. The five domain-specific performance metrics which are automatically calculated from the ECR 

case-study data and used in the cognitive task model. 

 

Metric Name Description Calculation 

Points of Domina-

tion (PODs) 

How well soldiers reach and maintain their 

PODs? 

Normalized minimum Euclidean dis-

tance between soldiers and their PODs 

Move Along Wall 
How well do soldiers keep along the walls 

of the room while entering? 

Percentage of video frames where sol-

diers are within a distance threshold of 

the wall 

Entrance Vectors 

Do the soldiers enter the room and move in 

the opposite direction of the previous sol-

dier? 

Percentage of soldiers for whom the an-

gle of their entrance vector is opposite of 

the previous 

Total Entry Time 
How quickly does the team enter the room 

once commenced? 

Normalized difference between team’s 

entry time compared to the optimal time 

threshold 

Entrance Hesitation 
How quickly does each soldier enter the 

room after the previous soldier? 

Normalized difference in entry time be-

tween two successive soldiers compared 

to an optimal time threshold 
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Given this doctrinal best practice, we designed a performance metric to measure movement along the wall by com-

paring the average distance the trainee maintained from the wall to an optimal threshold value. Regardless of the 

specifics of each training domain, the metrics need to be directly computable from the collected data. For example, to 

compute the move along wall metric, we can use computer vision techniques applied to collected video. In our case, 

we use a number of machine learning and AI techniques to compute these domain-specific performance metrics, 

represented as the blue dashed arrow connecting observable data and team performance metrics in Figure 1. For our 

case study, we defined five domain-specific performance metrics that were calculated automatically (see Table 1). 

 

The process component represents the behaviors 

and actions taken by the team during task execu-

tion to accomplish their individual and shared 

goals. These actions and goals vary widely de-

pending on the domain being analyzed, but there 

are also shared commonalities in high-level cogni-

tive concepts and tasks that extend across domains. 

To facilitate both the commonalities and differ-

ences between analyzed domains, we model the 

process component using CTA (Zachary, et al., 

2000). In this work, we adopt the H-ABC model of 

teamwork as the highest levels of the task analysis. 

In Vatral et al. (2022a), we extend the H-ABC 

model by one additional layer containing the do-

main-specific performance metrics described in 

Table 1. We link each performance metric to con-

cepts in Level 3 of the model by analyzing the 

teamwork components that contribute to perfor-

mance of the metric (see Figure 2). For example, a 

metric that measures the hesitation of soldiers as 

they enter the room is linked to the Backup Behav-

ior and Task Comprehension concepts in Level 3 

of the H-ABC model. With the five team performance metrics that we used for this case study, not all the H-ABC 

model concepts are covered by links to the primary performance metrics. For example, affective components of the 

H-ABC model such as conflict resolution and mutual trust do not have any associated performance metrics that can 

be computed from the data collected in the case study. In future work, we will focus on collecting more data modalities 

to allow automated computation of additional teamwork competencies. 

 

In our previous work, we propagated the performance metrics up to higher levels of the CTA hierarchy by simply 

averaging the performance linked to each higher-level concept (Vatral et al., 2022a). While this simple rollup method 

showed promising results, it does not fully capture the complex interdependencies between teamwork concepts. In 

this work, we enhance the H-ABC model using Bayesian inference to propagate the performance metrics up to higher 

levels. Using the probabilistic graphical structure, we can derive the conditional distributions that capture complex 

interdependencies between teamwork concepts. For each concept, we model the trainee state using the three-state 

learner competency model: below, at, and above expectation as discussed above. In addition, we define a transition 

model, which represents the probability of transitioning between each of these three states after a training event, and 

a conditional probability model, which propagates the probability from lower-level concept values to the states of their 

higher-level parents. By defining these two probability models in the Bayes net, we can track the progression of the 

performance metrics over time and show how trainees transition between each of the three learner states over the 

course of the training program. Figure 1 illustrates this probabilistic propagation and inference of higher-level concepts 

states by the blue arrow connecting team performance metrics and team competencies. 

 

Finally, the input component represents the static inputs to the system at the beginning of a state of training episodes. 

This includes concepts such as the basic structure of the team, individual personalities, prior KSAs, the resources 

available to the team, and the task context in which the team operates. We represent this input component by prior 

probability distributions in the Bayes net model that account for varying skill levels and prior experience. For example, 

new soldiers will most likely be in the below-expectation (novice) state for most competencies, with perhaps a small 

Figure 2. The cognitive task model used for this study 
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probability that they are in the at-expectation (journeyman) or above-expectation (master) state. In contrast, an expe-

rienced infantry team that has previously trained together will most likely be in the at or above expectation state for 

their competencies, with a small chance of still being in the below-expectation (novice) state. To drive development, 

the persistent representation of performance is guided by standards and best practices implemented in the Army’s STE 

Experiential Learning for Readiness (STEEL-R) project (Goldberg et al., 2021). 

 

Complete Computational Framework 

 

Following our discussion of the IPO components, we present the complete computational workflow for automated 

assessment of trainee performance. At the start of the analysis, we define the prior probability distributions of each 

concept in the H-ABC model using persistent performance records. As the team completes training exercises, observ-

able data is analyzed using machine learning and AI methods to compute the domain-specific performance metrics. 

These metrics are fed into the Bayes net model to compute the updated competency-state and probabilities for each 

teamwork concept. The performance metrics become the evidence variables for the Bayesian inference of teamwork 

concepts. This process then repeats itself, this time with the computed competency-state probabilities from the last 

training instance representing the prior probability input for the next training instance. As the team continues to com-

plete training scenarios, the model continues to be updated with the new evidence and the confidence in the assessment 

of team performance increases. We can then track the progress of the trainees over time across levels of abstraction in 

the H-ABC model. Next, we demonstrate the application of this computational process to the ECR case-study and 

illustrate the performance progression of the two teams over the course of one full day of training. 

 

RESULTS 

 

We breakdown the analysis and results into two sections. First, we describe ECR domain-specific performance metrics 

used as the lowest level of the task model for our case study and the Bayesian network model used to propagate these 

metrics up multiple levels of the ABC hierarchy. Next, we show the results of the performance metrics, and how 

performance of the fire teams progresses over time at multiple levels of abstraction. 

 

Performance Metrics Calculation and Propagation 

 

For each of the five ECR-specific performance measures described in Table 1, we calculate a metric as a continuous 

value on a scale from 0 to 1 (Vatral, et al. 2021; 2022a). To convert these continuous numeric metrics to the three-

state learner competency model, we have applied a simple thresholding rule. We labeled scores under 0.4 as below-

expectation, scores from 0.4 to 0.9 as at-expectation, and scores above 0.9 as above-expectation. More advanced 

methods, such as Bayesian knowledge tracing (e.g., Vatral et al., 2022a), may be used to adaptively convert raw metric 

scores to learner competency states, but this is currently reserved for future work. In practice, this simple thresholding 

rule generates promising results that we describe in the next subsection. 

 

Once we have the five performance metrics calculated for a given run of the ECR scenario, we use the Bayes net 

model previously described to roll-up these low-level metrics to higher-levels of the H-ABC model. For this case 

study, we hand-designed the probability parameters for this model based on discussions with domain-experts and 

careful inspection of the data. We specified three probability distributions. First, the transition model specifies the 

probability of transitioning from one competency state to another (e.g., below-expectation to at-expectation) after each 

training instance. As trainees perform multiple training instances (as in our case-study), the probability of transitioning 

can go up or down depending on their current performance. Second, the conditional model specifies the probability 

of a parent concept in each competency state given the probability states of its children. For example, if the child, 

Backup Behavior is in the below-expectation state, it is very likely that Cooperation is also in the below-expectation 

state, with a small probability that it is in the at-expectation state and an even smaller probability that it is in above-

expectation state given the values of all other child nodes. In cases where a child has two or more parents, the full 

conditional probability distribution is constructed by making the independence assumption (i.e., by multiplying the 

conditional probability distributions of each of its parents). For example, Situational awareness (SA) has two parent 

nodes in the H-ABC model, shared perception (SP) and shared mental models (SM), so its full probability model is 

the multiplication of its individual parents’ conditional models, i.e., 𝑃(𝑆𝐴 |𝑆𝑃, 𝑆𝑀) ∝ 𝑃(𝑆𝐴 |𝑆𝑃)  × 𝑃(𝑆𝐴 | 𝑆𝑀). Fi-

nally, the prior model input specifies the competency state probability for each H-ABC concept at the start of this 

training episode, as described in the last section. For our case study, the fire teams had varying prior experience with 

the ECR drill, and they had not previously trained in the SAM-T environment. Since we did not have much information 
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about their prior knowledge, we initialized the model with all teams set to the below-expectation state with 100% 

probability at the start of training. 

 

 

 

 

 

Figure 3. Performance progression across each level of abstraction in the H-ABC model over the course 

of the entire training day for the two fire teams who participated in the case-study. 
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Performance Progression 

 

Using the domain-specific metrics and Bayes net propagation through the H-ABC model, we accumulated the perfor-

mance of each fire team at multiple levels of abstraction for an entire day of training. Figure 3 shows the performance 

progression for the two fire teams.  Three colors represent the competency states – red for below-expectation, yellow 

for at-expectation, and green for above-expectation. The results at each level of the H-ABC model are marked by 

horizontal dashed lines. From this performance progression data, three major themes emerge. 

 

First, both teams improved as they repeated the 

training throughout the day. For both teams, a 

number of concepts increased to at- or above-ex-

pectation by three-quarters of the way through the 

training session. By the end of the day, there were 

three to four H-ABC concepts that were still be-

low-expectation for the two teams. However, 

these concepts also showed improved perfor-

mance through the day. For example, Figure 4 

show the Bayes net probability for each compe-

tency state for the Adaptability concept for fire 

team 1. By the end of the day this concept was still 

below-expectation, but there was a clear upward 

trend in the probability of at-expectation (R = 

0.71) and a clear downward trend in the probabil-

ity of below-expectation (R = −0.71). This indi-

cates that while the team did not fully grasp this 

concept enough to move to the next expectation level, there is evidence that their performance was improving and that 

with further training, the team would eventually grasp this concept at the at-expectation level.  

 

Second, both teams mastered the lower-level concepts first, which then led to their mastering the related high-level 

concepts later in the day. For example, fire team 1 moved to at-expectation in Role Clarity and Task Comprehension 

very quickly after the training commenced, but Shared Mental Models, which has role clarity and task comprehension 

as child concepts, did not move to at-expectation until halfway through the training session. This trend is partially a 

result of the Bayes net model, which requires more evidence to support the higher-level concepts due to their distance 

from the observable performance metrics. However, this also mimics what we should expect to see from trainees. 

Mastering performance on one specific task (such as ECR) is much easier than mastering a domain-general high-level 

concept, so we should require more performance evidence from the trainees to justify that they have mastered these 

high-level concepts. 

 

Third, learner competency state transitions for the higher-level H-ABC concepts are smoother than state transitions 

for low-level concepts. At Level 4, the trainees exhibit a significant number of state transitions, jumping back and 

Figure 4. Progression of the competency state probabili-

ties for the Adaptability concept for fire team 1 

Figure 5. Competency state probabilities of below- and at-expectation for overall teamwork 
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forth between below, at, and above expectation levels between individual scenario runs. At Level 3, the state transi-

tions become smoother, only transitioning between states a few times through the course of the training session. At 

Levels 2 and higher, the state transitions are very smooth, typically only transitioning a single time during training. 

This behavior is sensible, since acute changes in the specific ECR scenarios are very likely to affect ECR-specific 

performance but are not likely to greatly affect higher-level teamwork concepts which require more evidence to tran-

sition. This illustrates one of the major advantages of hierarchical modeling. By analyzing performance across multiple 

levels of abstractions, we can gain insights about both domain-specific and higher-level performance concepts, which 

are typically hidden and difficult to observe. Because of this smoothing effect, it becomes easier to observe when 

gains accomplished by a specific training scenario, e.g., ECR, saturate. For example, Figure 5 show the progression 

of probabilities for the below- and at-expectation states for overall teamwork at the highest level of the H-ABC model. 

The teamwork concepts follow similar progression patterns for both fire teams, first beginning with a rapid rise in the 

probability of the at-expectation state, indicating improving performance, before starting level-off and reach a plateau. 

This plateau in high-level teamwork progression indicates diminishing returns for the training and suggests that any 

further training will not significantly increase performance. This is highly related to the idea of spaced practice, which 

suggests that people learn best with repeated, spaced practice/training sessions rather than a single long practice ses-

sion (Perruchet, 1989; Smolen et al., 2016).  

 

DISCUSSION AND FUTURE WORK  

 

In this section, we discuss the broader implications of our automated assessment framework for team training. Based 

on the case-study results, we highlight three potential advantages of our framework in assessing trainee competence: 

training session personalization; formative feedback for After-Action Review (AAR); and support for longer-term 

summative assessment. 

 

First, our assessment framework supports training session personalization. One example was introduced in the previ-

ous section and highlighted in Figure 5.  By examining when the learning gains for high-level H-ABC concepts begin 

to plateau, we can determine when a given training session should end to minimize the diminishing returns of contin-

ued training and to maximize the benefits of spaced practice. Our inferencing scheme can be further extended using 

additional sensors that monitor affective states, such as fatigue and stress. However, beyond simply helping to deter-

mine the optimal length of practice, the assessment framework can help identify tasks, competencies, and specific 

skills that trainees may need to pay more attention to. By examining the performance progression of the team across 

training episodes within a single session and across multiple sessions, instructors can highlight specific skills and 

concepts that may require additional deliberate practice. In addition, the simulation-based environments may be mod-

ified to emphasize tasks and activities that relate to the deficient skills and practices. For example, by the end of the 

case-study training session, fire team 1 was still below-expectation on the Backup Behavior, Adaptability, and Situa-

tional Awareness skills while most other skills were at- or above-expectation., The instructor could use this assessment 

to ensure that the next training session for team 1 contained scenarios focused on those three skills specifically. 

 

Second, our assessment framework can be used to support AAR. Specifically, by using the assessments that we gen-

erate combined with models of the specific training domains and general cognitive theory, we can generate formative 

feedback designed to aid the discussion during AARs and provide actionable suggestions to trainees. Our preliminary 

work investigating the use of our assessment framework for formative feedback has focused on generating visual 

feedback elements. Current prototyping leverages GIFT’s Game Master User Interface (Goldberg, Hoffman & 

Graesser, 2020).  The visual elements we are developing include charts, images, and videos, that highlight trainee and 

team progress, trainee actions that contributed to degraded performance, and actionable insight on behaviors trainees 

can change to improve their performance. For example, with the Move Along Walls metric in the ECR domain, our 

visual feedback element might show a top-down map of the scenario room with overlays of the movement paths of 

each soldier. From this visual map, soldiers can begin to see where they may have deviated too far from the walls of 

the room and to reflect on how to improve on these issues with the rest of the team. The overall idea is that the 

assessments generated from our framework are explainable and can be used as the basis for formative learner feedback. 

Further discussion about our formative feedback generation using the assessment framework is presented in Vatral et 

al. (2022b). 

 

Third, our assessment framework can be integrated into a larger ecosystem for performing summative assessment of 

trainees over the longer-term across multiple training scenarios and environments. Our assessments are evidence-

based and data-driven, meaning that assessment of learner competency is repeatable and does not rely on subjective 
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expert judgement, enabling reliable trend analysis. Because of this, the assessments will be consistent across time and 

across different teams, regardless of where a team trains or who the instructor is at the time, enabling reliable trend 

analyses across numerous scenarios and sessions. In addition, the assessments are backed by evidence, which can be 

played back if there are ever concerns for the validity of a given assessment. Our assessments are hierarchical, evalu-

ating both domain-specific performance and domain-general competence. Thus, we can use evidence from multiple 

sources to support a common assessment and conclusion about a team. When adapting our framework to a new do-

main, we simply change the lowest levels of the H-ABC model to new domain-specific performance metrics, while 

the upper levels that measure abstract team performance remain the same. Thus, we can use multiple specific domains 

to provide evidence for the assessments of common high-level concepts and behaviors. 

 

Though the initial results presented here are promising, this study has limitations and requires future work to fully 

develop and validate the framework. While the case study provided a promising start and initial validation of the 

architecture, the study focused specifically on the ECR drill on the SAM-T system. We were careful to design our 

framework in such a way that it will generalize to other environments and training domains, but future work will focus 

on validating the system using other battle drills, as well as entirely different tasks and training domains. In addition, 

the use of this case-study means that the framework has been developed in playback mode, meaning that evaluations 

were not generated during live training, but rather from playback of the recorded training logs and data. This was a 

necessary step in development, as it allowed us to rapidly iterate on prototypes without scheduling additional studies, 

but future work will test our automated feedback system during live training to ensure it can be used as part of a full-

scale training capability. In addition, this future live testing will allow us to collect feedback from trainees and instruc-

tors about the usability and accuracy of the assessment and associated formative feedback. This feedback from stake-

holders will provide valuable insights into furthering the capabilities and utility of the system for its target audience.  

 

Finally, future work will also focus on continued development of the system’s formative feedback capabilities de-

signed to present explainable and actionable feedback to trainees and instructors, as well as continued development 

of the framework as part of a larger long-term summative assessment system. For example, we have begun working 

with the STE Experiential Learning for Readiness (STEEL-R) project (Goldberg, et al., 2021) to integrate our H-ABC 

learner competency framework as a model for evaluating teamwork over the long-term. It is our goal that with con-

tinued research and development, this automated assessment system can represent a comprehensive evidence-based 

tool used to improve learning outcomes across a variety of team training. 

 

SUMMARY AND CONCLUSIONS  

 

In this paper, we presented a framework for generating automated performance assessments across a generalized for-

malization of competency using the multimodal data collected from mixed reality and LVC supported training envi-

ronments. Our framework is grounded in cognitive task analysis and structured hierarchically, allowing low-level data 

and domain-specific performance metrics to generate insights about higher-level cognitive, behavioral, and affective 

teamwork concepts using Bayesian inference across multiple levels of the hierarchy. We presented a case study of 

two fire teams of soldiers training on the enter and clear a room dismounted battle drill to demonstrate analysis using 

our automated performance assessment framework. From the case study analysis results, we showed how our frame-

work could be used to model performance progression of the teams over time to highlight areas where the team is 

performing well and areas for improvement. The overall goal is that our assessment framework could be used as part 

of a larger training management tool to inform decisions about current and future training needs. 
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