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ABSTRACT 
This paper examines machine learning methods to 
automatically generate a large number of child scenarios 
from a small number of parent scenarios in support of 
adaptive instruction conducted in virtual simulations and 
game-based platforms.  Adaptive instructional systems 
(AISs) include Intelligent Tutoring Systems (ITSs), 
intelligent mentors, recommender systems, personal 
assistants, and intelligent instructional media. AISs 
attempt to tailor instruction for individuals and teams 
based on their learning needs (e.g., knowledge or skill 
deficiencies), goals, and preferences.  This often requires 
much more content than current non-adaptive systems 
which provide one or a very limited set of training 
scenarios to address a given set of learning objectives. 
The goal of the research described in this paper is to 
reduce the authoring burden for developing a large 
number of unique and relevant training scenarios.  The 
methodology presented also ranks the resulting scenarios 
with respect to a set of author-specified learning 
objectives and learner/team competency in the domain of 
instruction. The unique contributions of this paper are 
tied to its hybrid machine learning approach, and 
consideration for both learning objectives and 
learner/team competency in automatically ranking 
generated scenarios. 
 
Keywords: adaptive instruction, adaptive instructional 
systems (AISs), automated scenario generation (ASG), 
combinatorial optimization search (COS), evolutionary 
scenario generation (ESG), genetic algorithm (GA), 
Intelligent Tutoring System (ITS), machine learning, 
novelty search, ranking algorithm, reinforcement 
learning 

 
1. INTRODUCTION 
Adaptive instructional systems (AISs) are a class of 
intelligent, machine-based tools that “guide learning 
experiences by tailoring instruction and 
recommendations based on the goals, needs, and 
preferences of each learner [or team] in the context of 
domain learning objectives” (Sottilare & Brawner, 
2018a; Sottilare & Brawner, 2018b; Brawner & Sottilare, 
2018).  AISs may include technologies like intelligent 
tutoring systems (ITSs), intelligent mentors, 
recommender systems, personal assistants for learning, 
and intelligent instructional media.  

In late 2017, the Institute for Electrical and Electronics 
Engineers (IEEE) Learning Technologies Standards 
Committee (LTSC) under the auspices of the IEEE 
Standards Association established an AIS study group to 
examine opportunities for potential standards to lower 
the entry and maintenance costs associated with AISs and 
the AIS study group identified authoring (development) 
as a major barrier to the adoption of AISs. The AIS 
authoring process can be divided into two sub-processes: 
1) developing or finding appropriate content (often called 
curation), and 2) sequencing or aligning content with 
learning objectives (sometimes called building or 
configuring depending on the authoring tool). 
Specifically, the AIS standards study group identified the 
skill and cost of authoring these systems as very high, 
usually requiring highly technical individuals with expert 
programming skills to develop and maintain these 
systems.  Compounding this problem is the fact that AISs 
often require significantly more content (as much as 2 or 
3 times) than non-adaptive systems since each adaptation 
(tailored instructional sequence) requires new content, 
and each remediation also requires new content.  
We are suggesting that the authoring barrier might be 
reduced by automating as much of the authoring process 
as possible.  Ideally, we would want to fully automate the 
entire AIS authoring process, but are taking the approach 
to solve one problem at a time beginning with the 
complex problem of automated scenario generation 
(ASG; Zook, et al, 2012) which can greatly expand the 
content choices for adaptive instruction offered by 
authoring tools like the Generalized Intelligent 
Framework for Tutoring (GIFT; Sottilare, Brawner, 
Goldberg, & Holden, 2012; Sottilare, Brawner, Sinatra, 
& Johnston, 2017), the Cognitive Tutor Authoring Tool 
(CTAT; Aleven, McLaren, Sewall, & Koedinger, 2006), 
the Authoring Software Platform for Intelligent 
Resources in Education (ASPIRE;  Mitrovic et al, 2006) 
and other AIS authoring platforms. 
The goal of ASG is to create training scenarios for 
domains that vary in their complexity, definition, and 
dynamics (Sinatra & Sottilare, 2016), and are ranked by 
their relationship with specified learning objectives.  The 
basic idea is to automatically create significantly 
different scenarios where all the variables in the scenario 
are allowed to vary maximally resulting a large number 
of training situations available to support tailored 
instruction.  Of course, not all the scenarios created 
would be relevant, doctrinally correct or even possible in 
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the real-world. A mechanism is needed to rank their 
relevance or fitness with respect to a set of learning 
objectives and the competency of the learner in 
performing the assigned task.   
By way of example, we have selected a room clearing 
task under varying conditions to illustrate the functional 
aspects of ASG and how it might work for military 
training.  Usually, an instructional developer would be 
responsible to handcraft each scenario using a scenario 
editor specific to the game/simulation being used and 
their expertise in the domain of instruction.  A military 
or law enforcement squad or fire team would usually 
train to master the task of entering and clearing a room 
of any hostiles.  ASG is critical to providing both 
challenging and doctrinally correct scenarios for 
adaptive team training.   
The next section of this paper explores the scope of the 
ASG problem space by way of defining terms and 
describing the process associated with a genetic 
algorithm (GA) approach. 
 
2. SCOPING THE PROBLEM OF ASG 
As part of examining the ASG problem space, we 
thought it would be useful to provide a few definitions to 
help shape the scope of our discussion: 
    

• Scenario - a process in which a learner or 
learners interact within an environment over a 
sequence of events which introduce and/or 
exercise a set of skills defined by a set of 
learning objectives 

• Fitness Function – criteria used to assess how 
close a scenario is to achieving a set of defined 
objectives 

• Scenario Generator - a computational system 
that solves the problem of producing a set of 
viable scenarios given knowledge about their 
attributes and their alignment with the fitness 
criteria 

• Initial Population – an initial set of scenarios 
that adequately represent a set of targeted 
learning objectives and are used to generate 
future scenarios through some machine learning 
technique 

• New Population – a resulting set of scenarios 
automatically generated that are more closely 
aligned with the fitness criteria than their 
parents; a scenario’s fitness is determined by the 
weighted linear sum of all evaluation functions 

 
The ASG problem space can be distilled into three 
distinct challenges: 1) how to insure sufficient variation 
in the parent population so these traits are passed to 
subsequent generations; 2) how to promote sufficient 
variation of complexity and tailoring in the subsequent 
generations/new populations; and 3) defining the fitness 
criteria to evolve and rank a population of new scenarios 
that support specified learning objectives, support goals, 
preferences, and learning needs of individuals or teams, 
and are realistic. 

Given the definitions and challenges described, we can 
now concentrate on describing a generalized process for 
ASG using GAs (Figure 1).  We chose to use GAs based 
on their flexibility in addressing a variety of tasks, their 
ability to cover the search space, and their ability to 
address the three challenges we identified. In the next 
section of this paper, we explore three approaches to 
developing an ASG capability using GAs. 
 
3. EXAMINING POTENTIAL GA 

APPROACHES  
According to Zook et al (2012), a genetic algorithm 
usually starts with a population of randomly generated 
potential scenarios and attempts to modify and/or 
combine aspects of different scenarios within the 
population to improve the fitness of the next generation 
of scenarios according to a given fitness function.  A GA 
is “a search heuristic that is inspired by Charles Darwin's 
theory of natural evolution” (Mallawaarachchi, 2017) 
that generates a pool of candidate solutions called a 
population. 
GAs have an advantage over gradient based methods 
which may trend toward local optima for many complex 
real-world domains.   GAs have the ability to provide a 
large number of usable (good enough) solutions 
relatively quickly (Wikipedia, 2018).  GAs are also 
relatively easy to implement and resolve to a solution in 
most cases.  For ASG, this makes them a more attractive 
choice over other approaches (e.g., deep reinforcement 
learning, artificial neural networks) which may be 
difficult to implement.  
For our exploration of ASG using GAs, we will use a 
“room clearing training task” as a basis for the 
examination of three machine learning approaches that 
exploit genetic algorithms: 
 

• Brute Force Search 
• Novelty Search 
• Combinatorial Optimization Search 

 
3.1. Brute Force Search Approach 
A brute force search (also known as an exhaustive 
search) solves the generation problem by systematically 
enumerating all possible candidates for the solution and 
checking whether each candidate satisfies the problem's 
statement (Wikipedia, Brute-Force Search, 2018).   
Depending upon the number and type of variables, how 
we decide to implement the GA for our room clearing 
task could be complex or very simple. Our example task 
discussed in Section 4 of this paper is very simple in 
order to illustrate the principles and process of 
implementing a GA.   
Brute force searches are the easiest to implement, and 
always find a solution if one exists. However, as the 
number of candidate solutions grows, the search time 
also grows rapidly. “Therefore, brute-force search is 
typically used when the problem size is limited, or when 
there are problem-specific heuristics that can be used to 
reduce the set of candidate solutions to a manageable 
size. The method is also used when the simplicity of 



implementation is more important than speed” 
(Wikipedia, Brute-Force Search, 2018).   
 
3.2. Novelty Search 
Fitness functions for genetic algorithms are typically 
goal-focused. The goal in ASG is to understand the 
alignment of candidate scenarios with specified learning 
objectives.  An exception to this is novelty search. 
Novelty search uses a fitness function to promote 
behavioral novelty instead of attempting to conduct a 
search through the use of a static objective or set of 
objectives (Lehman, 2012). Since the goal of this search 
is to identify unique candidates, the result is more likely 
to include candidates outside of what might be normally 
acquired through a static objective search or in systems 
where the number of candidates is limited.  Conversely 
for ASG, large numbers of initial candidates (parent 
scenarios) are likely to yield a more diverse set of child 
scenarios resulting in some non-viable scenarios. 
Genetic algorithms attempt to satisfy a criteria set by the 
fitness function so they generally do not identify optimal 
candidates and with the exception of novelty search do 
not tend to cover the entire search space.  Novelty search 
in its attempt to identify all unique candidates does tend 
to cover the more remote areas of the search space often 
left uncovered by other GA approaches.   
   
3.3.  Combinatorial Optimization Approaches 
Combinatorial Optimization uses a scenario generation 
approach to deliver the requisite diversity and quality of 
scenarios while tailoring the scenarios to a particular 
learner’s needs and abilities.  This type of optimization 
includes an eight step process illustrated in Figure 1 and 
discussed in detail in Sections 3.1.-3.6 (Shiffman, 2012). 
 

• Step 1: define fitness criteria  
• Step 2: create an initial population of N 

scenarios 
• Step 3: assess the fitness of each individual 

within the   population based on the fitness 
criteria until stop criteria is met, then go to step 
8 

• Step 4: create a mating pool based on fitness 
scores and select pairs for reproduction 

• Steps 5 & 6: reproduce N times through cross-
over and mutation and add each child to the new 
population 

• Step 7: replace the old population with the new 
one and return to step 3 

• Step 8: print results and terminate 
 
 

 
 

Figure 1. Combinatorial GA Approach 
 
 
In the next section of this paper, we discuss how we 
might apply and vary the GA approaches reviewed above 
to support ASG for our example task, clear rooms 
training task. 
 
4. COMBINATORIAL OPTIMIZATION WITH 

NOVELTY SEARCH 
In this section, we layout a process for combinatorial 
optimization with novelty search.  The steps discussed 
below are applicable to a variety of task domains and we 
provide an example task to illustrate its use.  The 
example task, an understanding of its elements and how 
these elements relate to a specified fitness function are 
critical to reusing this process for other domains.  
For our example task we have chosen a “clear rooms 
training task” (US Army, 2007) which is usually 
performed by squads of dismounted soldiers on patrol.  
Since the room clearing task is a psychomotor task, we 
refer to the GIFT authoring tools which use a 
psychomotor task model based on theories advanced by 
Dave (1970), Simpson (1972), Harrow (1972), and 
Romiszowski (1999) as adapted by Brown, Bell & 
Goldberg (2017).  The goal is to have the team practice 
and demonstrate a level of proficiency where 
automaticity and fluid motion are the norm.  In a game-
based training environment, the focus is more on the 
cognitive aspects of the task and mastering the interface, 



but in a fully immersive virtual environment, the focus is 
on mastering the physical aspects of the task, interaction 
with the environment, and interaction (e.g., 
communication and coordination) with other members of 
the team. 
All military training scenarios describe the task, the 
conditions under which each task is conducted, and the 
standards or measures of successful performance. The 
standards or measures of success for our room clearing 
task include:  
 

• Enter the room quickly and smoothly  
• Clear the doorway immediately 
• Remain within arm’s reach of another squad 

member 
• Secure room by neutralizing any enemy present 
• Maintain sufficient force to defeat any enemy 

counterattack and continue operations 
 
Note that even an identical environment (e.g., same room 
layout and same threats at the same locations) could 
result in a different scenario based on the squad’s 
decisions and performance.  The simple decision of 
entering the room at a different location can impact the 
sequence of events to follow. If we examine the dynamic 
elements (e.g., skill events, environment, and 
constraints) of our room clearing training example, we 
find that our scenarios can vary by type, sequence, 
length, and outcome of events, but can also vary in 
complexity by changes to the environment (e.g., threats 
or the physical configuration of the building) and the 
number and type of constraints (e.g., rules of engagement 
or presence of non-combatants).   
 
Next, we describe eight essential steps in the GA process 
described below and shown in the context of Figure 1.  
We have modified these to fit our example training task 
and to overcome our defined set of challenges: 
 

• define our fitness criteria 
• insure sufficient variation in the parent 

population 
• promote sufficient variation of complexity and 

tailoring in the child population 
 
For our technical approach to ASG (described in the 
eight steps below), we have chosen to primarily use a 
combinatorial optimization approach since it would 
inefficient to pursue a brute force approach for more 
complex scenarios than our example task.  This will 
allow us to represent more complex domains in the future 
with the same GA process.  We have also chosen to 
substitute a Novelty search in Step 2 (create initial 
population) to provide a more full representation of the 
search space and provide a higher degree of variability in 
subsequent generations. 
 
The resulting combinatorial optimization with novelty 
search process for ASG is based on a Darwinian model 

of evolution through natural selection and genetic 
variation: 

• Step 1: define fitness criteria  
• Step 2: create an initial population of N 

scenarios has two substeps: 
 2a. select 3-4 scenarios that vary 

across the variables selected for the 
fitness criteria 

 2b. use Novelty search to expand this 
population to N unique scenarios using 
single point crossover and single point 
mutation 

• Step 3: assess the fitness of each individual 
within the   population based on the fitness 
criteria until stop criteria is met, then go to step 
8 

• Step 4: create a mating pool based on fitness 
scores and select pairs for reproduction 

• Steps 5 & 6: reproduce N times through cross-
over and mutation and add each child to the new 
population 

• Step 7: replace the old population with the new 
one and return to step 3 

• Step 8: print results, output scenario editor file 
and terminate 

 
4.1. Step 1: Define Fitness Criteria 
The first and most important challenge is to define our 
fitness criteria such that scenarios that more closely align 
to our learning objectives are ranked higher than those 
that are more loosely aligned with the learning 
objectives. 
In scoping the ASG problem space, it is necessary to 
understand the relationship between task learning 
objectives and attributes of potential solutions in the 
initial population.  For our task, a squad will be trained 
to clear one or more rooms in a building in a virtual 
simulation (e.g., Virtual Battle Space).  The room 
clearing task involves many coordinated behaviors, but 
the learning objectives or standards for the squad can be 
distilled into five essential assessments defined 
previously in this section. 
The complexity of the task can vary and scenarios that 
account for varying complexity can be tailored to the 
competency (experience or prior knowledge) of the team 
members.  Each of these task learning objectives and 
thereby any associated scenario may be complicated by 
the:  

• Size and shape of the room  
• Number of armed enemy forces present 
• Number of non-combatants present 
• Obstacles at the doorway or in the room 

 
Given this task and varying complexity, we represented 
any given solution in the population of possible scenarios 
as a four digit integer where each integer varies from 0 to 
9:  

• Size and shape of the room - where 0 = simplest 
room (e.g., a small rectangular room) and 9 = 



most complex room (e.g., large room with 
interior corners and multiple doorways)   

• Number of armed enemy forces present – where 
0 = no enemy forces present, and 9 = 9 enemy 
forces present  

• Number of non-combatants present – where 0 = 
no non-combatants present, and 9 = 9 
combatants present  

• Obstacles at the doorway or in the room – where 
0 = no obstacles and 9 = 9 obstacles present 

 
Assuming it is physically possible to fit 9 enemy forces, 
9 non-combatants and 9 obstacles in the smallest room, 
this would mean we can generate up to 104 scenarios 
using a genetic algorithm approach as shown in Figure 2. 
 

 
 

Figure 2. Population Representation Schema 
 
For simplicity, we have elected to measure the 
complexity of a scenario by summing the four genes or 
attributes that make up a scenario.  For example, the 
complexity for the chromosome or potential solution 
shown in Figure 2 would be 6 (0 + 5 + 0 + 1) where 0 
would is the lowest complexity and 36 the highest.  If we 
align the complexity of scenario with the domain 
competency of the team, we would have alignment 
within Vygotsky’s (1987) Zone of Proximal 
Development (ZPD; Figure 3).  This alignment will help 
maintain engagement and positive affect during the 
training process. 
 
 

 
Figure 3. Zone of Proximal Development 

 
We could then use this as a fitness criteria by comparing 
the complexity of the scenario and domain competency 
of the team.  Defining the team domain competency in 

four intervals between 0 and 36 provides the following 
distribution for team competency: 
 
• Expert (28-36) 

• High Skills (19-27) 

• Moderate Skills (10-18) 

• Low Skills (0-9) 

We assume that some long term model of the team’s 
domain competence, a pretest, or subject matter 
assessment would determine where any particular team 
would fall on this competency scale, but the fitness 
function for this example task domain would be: 

Fitness = domain competency – scenario complexity 

For example, a moderately skilled team with a domain 
competency score of 17 would be sufficiently challenged 
by a scenario with a complexity of 17 ± σ.  Assuming σ 
= 4, then any scenario in the range of 13-21 would be at 
an appropriate level of complexity for that particular 
team.  While this example may be overly simplified, it 
does illustrate the process which could be applied in 
more complex training domains.  If we wished to 
generate the 10 most appropriate scenarios for this team, 
we would rank them from lowest difference to highest 
difference. 

4.2. Step 2: Create an Initial Population 
The next step in the process is to generate a set of 
individual scenarios (solutions or chromosomes) which 
comprise the population. Parameters are represented in 
the chromosomes as variables are known as genes.  
Normally, the initial population is generated randomly, 
but it is critical that sufficient variability is represented in 
this initial population or the GA search will produce 
limited results. We have chosen to start with a limited set 
of four scenarios and then stretch the variability of the 
population through Novelty search. In this way, we 
might find sufficient variety in future generations if 
variability is also represented in the initial population.   
For example, an initial population should contain at least 
one scenario for each of the levels of complexity (easy, 
moderate, and hard) could be expanded using Novelty 
search.  In our case, we aligned domain complexity 
intervals with the competency intervals defined in Step 
1.  Randomly using 0150 (low complexity), 5273 
(moderate complexity), 9911 (high complexity), and 
4997 (very high complexity) as a seed population for 
Novelty search will result in several solutions that 
represent a large portion of the scenario complexity 
required for future generations.  It also allows us to 
expand our approach to represent other learner/team 
attributes beyond complexity and competency.  The 
resulting unique set of scenarios will be sufficient to act 
as an initial population for a combinatorial optimization 
approach (e.g., crossover and mutation) in subsequent 
steps discussed below. 
 



4.3. Step 3: Assess the Fitness of Individuals 
The fitness function determines the suitability of an 
individual scenario as a potential solution.  The candidate 
solutions in the population are assessed with respect to 
the learning objectives which we used to determine the 
variables in the GA search and matched to scenarios 
aligning with the competency level of the team. 
 
4.4. Step 4: Select Individuals for Reproduction 
In our problem space, ASG, the GA selects the fittest 
individual scenarios in the current generation to produce 
offspring for the next generation of the population using 
a fitness function.  In the selection step the goal is to pair 
the fittest individuals to let them reproduce and pass their 
genes to the next generation.  Some number of pairs (two 
or more) are selected where the probability of selection 
of an individual scenario for reproduction is based on its 
fitness score.  Again, assuming a team competency of 17, 
we selected the top four scenarios in terms of fitness in 
our first generation resulting from Novelty search for our 
example task: 
 

• 1772 
• 1952 
• 1970 
• 0773 

  
4.5. Step 5: Reproduce using Crossover  
Genetic algorithms are usually used to find solutions 
meeting the fitness criteria by employing operators like 
crossover.  A single crossover point in the chromosome 
is chosen and the genes prior to the crossover point are 
exchanged between the pair of scenarios.  For our 
example task, using the four fittest scenarios defined in 
Step 4, we might see a pairing between 1772 and 1952 
resulting in 1972 and 1752 (Figure 4). 
 

 
 

Figure 4. Reproduction Using Crossover (also 
known as Recombination) 

 
4.6. Step 6: Apply Mutation 
In a percentage of the new individuals formed by the 
crossover reproduction, a random gene is selected for 
change (single point mutation).  Mutation randomly 
alters a parameter of a randomly chosen event in the 
scenario and then reevaluates the mutation to determine 
if its fitness has improved.  Mutation is critical step in 
maintaining diversity in the new population.  For our 
example task, we might see a random mutation that 
changes 1972 to 8972.  While this might seem inefficient 
since the fitness of the scenario went from 0 to 9, overall 

mutation infused the new population with greater 
diversity while the average fitness of the population will 
continue to optimize. 
Note that in addition to crossover and mutation, other less 
used operators include addition and deletion (Mitchell, 
1996; Zook et al, 2012).  Addition inserts a random event 
into the scenario at a random location and then 
reevaluates the resulting candidate scenario to determine 
if its fitness has improved.  Deletion removes a random 
event from the scenario. For simplicity, we elected to 
apply only crossover and mutation operators for our 
example task. 
 
4.7. Step 7: Replace Old Population with New 

Population 
In this step, we discard the old population in favor of the 
new population created using crossover and mutation.  It 
is important for the author to select a large enough 
number of iterations to allow the average fitness score of 
each new population to trend toward some optimal value 
or plateau.   
 
4.8. Step 8: Terminate 
In this step, we determine when to terminate the ASG 
process and output the results.  The ASG process may 
continue until a termination trigger is reached: 

• a candidate solution is identified that satisfies 
some minimum criteria 

• a fixed number of generations is reached 
• an allocated amount of time has elapsed 
• candidate solutions reach a level of fitness 

where they plateau (no significant change) 
 
The output of the ASG process is two-fold: 
 

• Printed list of scenarios (e.g., 1772) with their 
associated fitness scores 

• Scenario editor input (digital file compatible 
with common scenario editors for games and 
immersive virtual environments used for 
training 
 

5. RESULTS 
The pseudo code below represents the resulting 
combinatorial optimization with novelty search GA used 
to generate scenarios based on the example training task 
of room clearing: 

1. START: Set competency target = 17 with 
fitness = domain competency – scenario 
complexity and fitness goal = 0 

2. Selection: randomly 3 initial scenarios with 
significantly different complexity scores 
(results = 0342, 5172, 9145) 

3. Novelty Search: expand initial population to 10 
unique scenarios using single point crossover 
and single point mutation (10%) to create 7 
additional new scenarios (results = 0342, 5172, 
9145, 0372, 5142, 0345, 9142, 5145, 9172, 
7372) 



4. Compute fitness of each individual scenario 
(results for generation 0) 

a. 0342 fitness = abs(17-9) = 8 
b. 5172 fitness = abs(17-15) = 2 
c. 9145 fitness = abs(17-19) = 2 
d. 0372 fitness = abs(17-12) = 5 
e. 5142 fitness = abs(17-12) = 5 
f. 0345 fitness = abs(17-12) = 5 
g. 9142 fitness = abs(17-16) = 1 
h. 5145 fitness = abs(17-15) = 2 
i. 9172 fitness = abs(17-19) = 2 
j. 7372 fitness = abs(17-19) = 2 

5. REPEAT 
a. Selection for mating pool – based on 

fitness and stochastic universal 
sampling (Baker, 1987) 

b. Crossover 
c. Mutation (10%) 
d. Compute fitness 

6. UNTIL population has converged 
7. END 

 
6. CONCLUSIONS, CHALLENGES AND NEXT 

STEPS 
We presented a process and schema for applying a hybrid 
(Combinatorial Optimization with Novelty Search) GA 
approach to the automated authoring of scenarios for 
games and immersive virtual environments.  The process 
provided wide variability for the resulting scenarios that 
were aligned to author specified learning objectives and 
learner/team competency to support adaptive instruction.    
The ASG approach in this paper is applicable to a broad 
number of domains in digital training environments.  
While we focused this application of GAs to ASG for 
games and virtual simulations, we also see application of 
this process to live simulations (e.g., mission rehearsal).    
The GA approach to ASG described herein benefits 
greatly from more specific domain knowledge resulting 
in better objective values.  Of course it takes some time 
for a person to define schema and to incorporate this 
specific knowledge in each new domain, so this process 
is not fully automatic, but can be for the end user once 
the schema and fitness criteria are defined.  A likely next 
step is to create an author dashboard for unit commanders 
and subject matter experts to lead them through the 
process of developing learning objectives and critical 
variables as input to the ASG process defined herein. 
The primary challenges defined were three-fold: 1) 
generating a large number of feasible scenarios which 
cover a large portion of the search space for variables like 
complexity (e.g., easy, moderate, and hard scenarios) and 
which cover the highest percentage of the learning 
objectives, 2) ranking scenarios in order of relevance to 
a set of author-defined learning objectives, and 3) 
providing output from the ASG process which is 
compatible with scenario editors for both games (e.g. 
Virtual Battle Space) and immersive virtual 
environments used for military training.  The first two 
challenges have been met by the process described in this 
paper along with alignment between learner/team 

competency and scenario complexity ala Vygotsky’s 
ZPD.  This tailoring will enhance the relevance of the 
scenario for the learner/team and thereby enhance 
engagement and learning.   
The third challenge has not been met, but is simply a 
mechanical translation of the scenario code to a format 
that can be understood by scenario editors for games and 
virtual simulations.  The delay in meeting this challenge 
is based on understanding what games/simulations will 
have the highest use and thereby the most need for the 
ASG process.  We anticipate solving this problem very 
quickly once a set of target simulation environments is 
identified. 
One next step includes application of this ASG process 
to a diverse set of task domains for both individual 
learners and teams.  The application of ASG for teams is 
particularly challenging given the complexity of 
assessing team learning and performance, and will only 
strengthen the process over time.   
Another next step for GA-based process might also 
include alignment with other learner/team states that 
moderate learning.  For example, another desired end 
state for this research is to be able to adapt existing 
scenarios or select available scenarios based on 
individual learner emotions (e.g., boredom or anxiety) or 
behavioral markers (e.g., encouragement) which are 
antecedents to team states (e.g., team cohesion).  The 
emotional state of the learner(s) might also be a criteria 
for selecting either a more or less difficult scenario or 
injecting support feedback (scaffolding) into an existing 
scenario to make it easier per Vygotsky’s (1987) ZPD 
(Figure 3). 
We also anticipate experimenting with local search after 
the crossover and mutation steps to see if that will yield 
better solutions or enhance the speed of the ASG process 
for more complex domains. 
Finally, in spite of the complications in using deep 
reinforcement learning (Rowe, Smith, Pokorny, Mott, & 
Lester, 2018), we anticipate continuing research in this 
area with the hope of enhanced results over time.  This 
assumes that we will find a process that will be flexible 
enough to apply easily in a variety of task domains 
trained by military organizations.      
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