

Workload-Adaptive Training Scenarios for Synthetic Training Environments

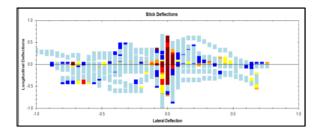
Nathan D. Smith¹, Ezekiel D. Gunnink¹, Thomas Schnell¹, Christopher Reuter¹, Jason D. Moss² Operator Performance Laboratory (OPL)¹, U.S. Army Research Laboratory (ARL)²

© 2018 OPL, ARL All rights reserved.

Introduction

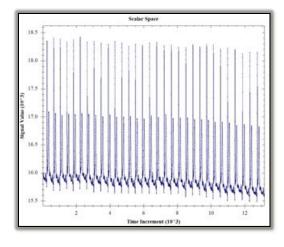
- Enhancements in soldier training systems using synthetic training environments (STEs)
- STEs often encourage brute-force lesson based administration as it is very easy to create and save static scenarios
- Students need rich feedback and guidance
- Adaptive scenario administration is needed in STEs to enhance individual training effectiveness

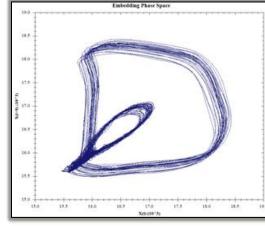
Unobtrusive Physiological and Adaptive Training

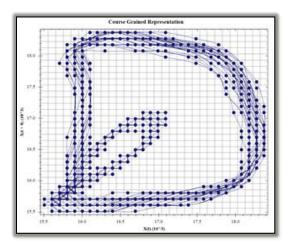

- Adapts training according to trainee performance and workload
- Combination of GIFT, VBS3 and CATS
- Generalized Intelligent Framework for Tutoring (GIFT)
 - Computer-based adaptive tutoring system
- Virtual Battle Space 3 (VBS3)
 - Serves as the STE
- Cognitive Assessment Tool Set (CATS)
 - Workload quantification library
- GIFT learner affect classifier
 - Not used to invoke scenario adaptations

Cognitive Assessment Tool Set (CATS)

- Relational database repository of all data
- Over a decade of physiological based assessment work
- For cognitive workload, preferred sensor is electrocardiogram (ECG) waveform
 - Proven workload assessment
 - NeXus 4 Bluetooth to monitor ECG (creator MindMedia)
 - Unobtrusive device for trainee
 - Deterministically nonlinear classifier





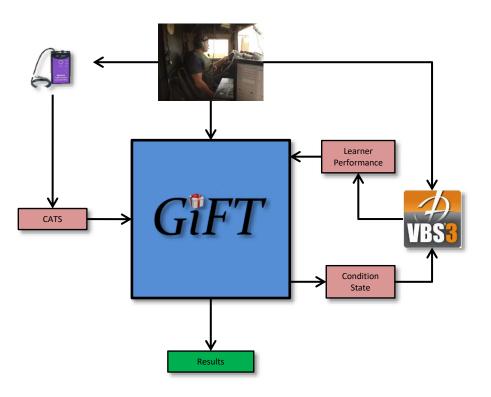


Representation of ECG

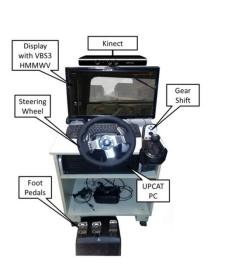
- Normal scalar space time series (left)
- Embedding phase space (center)
- Course grained representation of phase space (right)
 - Numerical array to represent quantitative signature
 - Chaotic Physiological Classifier method (CPC)

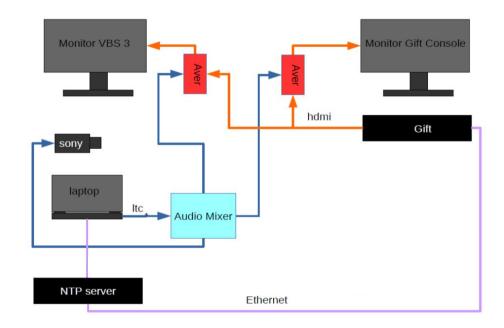
© 2018 OPL, ARL All rights reserved.

Study


- This paper describes a study that we are preparing to conduct over the next few months
- The present study is intended to assess the value of adaptive training systems that use measures of subject workload
- We intend to test the hypothesis that adaptation using performance and workload (P+WL) will lead to better training outcomes than adaptations using performance only
- In this experiment, both groups (A and B) will receive task training using their respective P only or P+WL adaption scheme
- The effectiveness of that training will then be assessed in a graded capstone checkride

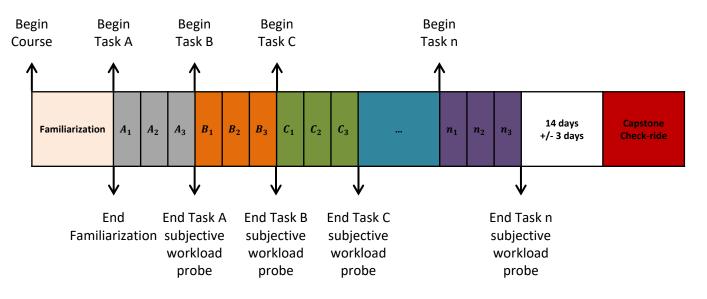
UPCAT System Architecture




© 2018 OPL, ARL All rights reserved.

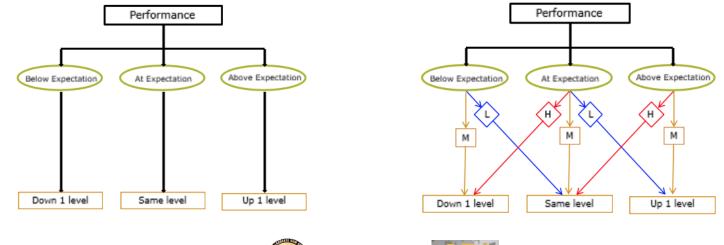
Audio and Video Data Capture System Architecture

All audio and video from the Human Machine Interface (HMI) and of the subject is recorded and synchronized



Adaptive Course Flow

- Complete a number of tasks
 - Each task has three levels of difficulty
 - Periodically administer subjective workload probes



Adaptation Decision Trees

- First attempt at the medium difficulty level $(A_2, B_2, C_2, ..., n_2)$
- Each attempt is first classified based on subject performance score
- Adaptation for subsequent attempts follow the decision trees
- Tasks are completed when "Up 1 Level' is achieved at difficulty 3.

Mark, J., Thomas, N., Kraft, A., Casebeer, W. D., Ziegler, M., & Ayaz, H. (2018). *Neurofeedback for Personalized Adaptive Training*, Cham.

© 2018 OPL, ARL All rights reserved.

Capstone Checkride

- One ever increasingly difficult task
 - All task elements from all previous
 part tasks
 - Continue through capstone checkride until they fall below performance thresholds
- Later failure being better than an early one
- Avoids ceiling or floor effects
 - Many or all participants pass or fail a checkride of a selected level of difficulty

Condition Evaluation

GIFT

- Corridor Boundary Condition
- OPL Workload Classifier
- VBS 3
 - Maintain Speed Condition
 - Collision Avoidance Condition
- VBS 3 maintained state variables
 - Corridor Boundary
 - Workload Classifier
 - Maintain Speed conditions

Condition Evaluation

- Six new Environmental Control Enums
 - One for each condition at each evaluation
 - CORRIDOR_AT
 - CORRIDOR_ABOVE
 - ...
 - Work the same way as existing enums
 - FOG_L1
 - FOG_L2
 - ...
- Example
 - 1. Subject has trouble tracking vehicle within the corridor
 - 2. Corridor Boundary evaluates to *below expectation*
 - 3. Corridor boundary *from anything to below* state transition strategy executed
 - 1. sends VBS 3 command ["BELOW"] call setCorridorState
 - 4. State variable maintained by VBS 3 is updated to *BELOW*
 - 5. The same happens for all evaluations and accompanying state transition strategies

Evaluation: Maintain Speed Condition

- Graded through the use of a target speed and a speed window
 - If the subject is outside the speed window, they are evaluated to below expectation
 - If the subject is inside the center onethird of the speed window, then they are evaluated to above expectation
 - If the subject is between inner onethird and outside of the speed window, then they are evaluated to at expectation

Maintain Speed and Corridor Boundary

- Called inside an event handler
- Event handler includes a timer
 - Evaluations only called at every evaluation interval
- VBS 3 maintains a timer for each of the below, at or above expectation evaluations
 - Elapsed times are added to their corresponding timers
 - The final evaluation for each is assigned based on percentage of total time spent in each state

Below/Total	At/Total	Above/Total	Evaluation
0%	0%	100%	ABOVE
0%	25%	75%	ABOVE
0%	50%	50%	ABOVE
0%	75%	25%	AT
0%	100%	0%	AT
25%	0%	75%	ABOVE
25%	25%	50%	AT
25%	50%	25%	AT
25%	75%	0%	AT
50%	0%	50%	AT
50%	25%	25%	BELOW
50%	50%	0%	BELOW
75%	0%	25%	BELOW
75%	25%	0%	BELOW
100%	0%	0%	BELOW

Evaluation: Collision Avoidance Condition

- Graded through the use of upper and lower bounds
 - Fewer collisions than the lower bound
 - above expectation
 - More collisions than the upper bound
 - below expectation
 - Anything in between
 - at expectation

Evaluation: Aggregate Performance

- Each task weights the evaluation of the three performance conditions differently
- Example: driving in reduced visibility, where the subject is evaluated on maintaining speed and corridor
 - Important to maintain speed
 - More important to stay within the corridor
 - $aggPer = 0.40 \times speedEvaluation + 0.60 \times corridorEvaluation$
 - Aggregate performance and workload evaluations used by the adaptation trees

VBS 3 Evaluation and adaptation logic

- Controlled by various scripts and event handlers
- VBS 3 *init.sqf* compiles multiple scripts
 - Set-up global variables
 - VBS 3 waypoints
 - Create data collection files
 - Task, time, grading and GIFT message related functions
 - Event handlers
 - Evaluation of conditions
- Scenario adaptations are also contained within their own scripts

Modified Corridor Boundary Condition

- The current GIFT Corridor Boundary condition does not allow an evaluation of above expectation
 - Concerned about fairness in the evaluations of the two groups (A & B)
 - Group A to reach an evaluation of above expectation and an adaptation of up 1 level
 - Group B's ability to reach the same adaptation through an evaluation of at expectation with a decreasing workload
- It works in much the same way as the Maintain Speed condition
 - If the subject is outside the corridor, they are evaluated to below expectation
 - If the subject is inside the center one-half of the corridor, then they are evaluated to above expectation
 - If the subject is between inner one-half and outside the corridor, then they are evaluated to at expectation

Data Collection

- All data related to decision
 - Evaluation of the different conditions
 - Aggregate scoring
 - Adaptations throughout the course
 - Written to .csv files
- Each data point is timestamped with the system time

Conclusions and Recommendations for Further Research

- GIFT learner affect classifier library (Ocumpaugh et al., 2017)
 - Uses a Microsoft Kinect sensor to classify learner affect
 - To date we are not yet able to gain a reliable classification
- Hard-coded commands are restrictive
 - VBS 3 allows for thousands of commands
 - Able to send multiple commands with a single call to *sendCommand()*
 - We believe the ability to create custom commands for use by state transition strategies to be an appropriate addition to GIFT
 - Add CUSTOM_COMMAND enum to the list of GIFT Environmental Control Enums
 - The command(s) could then be written into, and read from, the course .dkf file

Acknowledgements

- ARL
 - Dr. Robert A. Sottilare
 - Dr. Jason D. Moss
 - Dr. Keith Brawner

