Perceptual-cognitive Training Improves Crosscultural Communication in a Cadet Population

GIFT Symposium – 10 May 2018

J. T. Folsom-Kovarik, Soar Technology, Inc. Michael W. Boyce, U. S. Army Research Laboratory Robert H. Thomson, United States Military Academy

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited. **SOARTECH**

Modeling human reasoning. Enhancing human performance.

Need

- GIFT conditions capture learner performance
 - Specific to one training system
 - Requires technical expertise to create
 - Captures individual observations, not relations between them
- Developing patterns to let instructors easily relate conditions
- GIFT tailoring in response to learner performance
 - Should deliver precise interventions based on what way the learner was wrong
 - Should inform future tailoring in other training systems
- Developing misconceptions for domain-specific & domain-general tailoring

Value

- What specific functionality will GIFT gain?
 - Recognize patterns across learner-system interactions.
 - Infer misconceptions to support domain-general tailoring.
- What will be higher quality?
 - Immediate tailored feedback during a GIFT course
 - Feedback, interventions, comparisons to others, or simply progress reports
- What will be easier for end users?
 - Overlaid over an existing GIFT course, not requiring a rewrite
 - Instructors choose and apply reusable adaptive feedback without engineer support
- What will be better for GIFT developers?
 - Native processing within GIFT
 - Compatible with GIFT Cloud

Approach

Current Functional Description

High-level data flow: GIFT SOA

High-level data flow: Additions

Patterns

- Focus on patterns of learner actions
 - Rather than, e.g., spatial patterns
- Basis in formal temporal logic / interval logic
 - Commonly used for reasoning about plans / software synchronization / timing guarantees
 - Focus on instructor and instructional use with a subset of higher-level operators
- Experimental patterns
 - Hesitation: change any answer two or more times before submitting
 - Hurrying: submit any answer within five seconds of a choice presentation
 - Improving: exhibit correct behavior twice with no intervening mistake
 This pattern enabled a positive intervention, rather than silence, when learners did well

Misconceptions

- Domain-specific detail on a "Below Expectations" estimate in learner module
 - Underlying reasons for incorrect behavior enable authoring more adaptive feedback
- Domain-general markup supports adaptive response in pedagogical module
 - Urgency
 - Importance
- Experimental misconceptions
 - Cautious: the learner is overly deferential or sacrifices a key goal
 - Authoritarian: the learner is overly concerned with being respected or obeyed
 - Mission-focused: the learner achieves a near-term mission at a high cost to relationships
 - Rules-focused: the learner follows rules too inflexibly

Experimental design

- N = 74 West Point Cadets used a subset of five training scenarios
 - Scenarios focused on seeing, interpreting, and acting on cues (e.g. body language) in Army cross-cultural communication settings (contact with civilians during missions)
- Pre-test and post-test (identical) measured near and far transfer of material
 - Situational judgment tests (SJTs) focused on skill application and required value tradeoffs
 - Cognitive load questionnaires and technology acceptance survey analyzed separately
- Scenario subset learning objectives:
 - Initiate and engage in encounters that support the mission and build rapport
 - Practice perspective-taking to make sense of encounter
 - De-escalate conflicts and repair relationships
 - Balance tact and tactics to achieve long-term goals in a safe manner.

Results – patterns

- Discovered new patterns, associated with later learning outcomes

- 3. $\otimes \bigcirc \bigcirc \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc$
- 4. $\otimes \circ \circ \circ \rightarrow \bullet$

5. $\bigcirc \bigcirc \bigcirc \checkmark \rightarrow \blacksquare$

- Patterns can help instructors detect ineffective training in near real time
 - Instructors can then author new adaptive patterns that improve training without engineers

Results – misconceptions

- Good accuracy comparing against pre-test and post-test
 - Manual analysis of Scenario 1 and matched test item
 - Future work will automate analysis and check against all items

- Discovered possible domain-general misconceptions
 - Frustration / disengagement, wheel spinning, curiosity / willingness to explore

Results – impact on learning

• Significant improvement (decrease = improvement) on 1-3, ceiling effect on 5

Future research directions

- Complete data analysis
 - Behavior patterns and associations with learning outcomes
 - Correlation of patterns displayed or interventions presented with final outcomes
 - Automate analysis and possibly reuse for machine learning of patterns
- Increase generality of the approach
 - Reuse same types of patterns in a second training domain
 - Domain-general misconceptions or inputs about learner states and traits
- Release for public use
 - Supports future end-user tool to easily author adaptive feedback

Questions

J.T. Folsom-Kovarik Lead Scientist Soar Technology, Inc. jeremiah@soartech.com 321-615-1279 (cell)

This material is based upon work supported by the Human Research & Engineering Directorate - Advanced Training and Simulation Division (HRED -ATSD) and the Army Contracting Command (ACC) - Aberdeen Proving Ground (APG) - Research Triangle Park Division (ACC-APG-RTP), Orlando Branch under Contract No. W911NF-16-C-0063. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the funders.

SOARTECH

Modeling human reasoning. Enhancing human performance.