

A Blended Approach to Adaptive Learning

Barbara Buck, Ph.D.
Matt Genova
The Boeing Company

Robert Sottilare, Ph.D.
Benjamin Goldberg, Ph.D.
U.S. Army Research Laboratory

Present Day Learning

Today's learning landscape hasn't changed in years

- One size fits all
 - Group paced and instructor led "Training-centric"
- Expensive to operate
 - Higher costs associated with full time instructor staff and infrastructure

Future Learning

Requires a Paradigm Shift

Custom-Fitting of Instruction Self-paced and student led "User-centric"

Less expensive to operate

Fewer instructors required, training at point of need, not all training needs to be completed in schoolhouse

Providing:

- Careful Measurement
- Instant Insight
- Direct Correlation of
 - Actions
 - Consequences
 - Performance
 - Competency

ARL/Boeing CRADA

Year 1

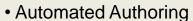
- Work to understand the adaptive training capabilities of the Boeing ITS and the GIFT architecture
- Determine an approach to integrate these two adaptive learning capabilities
- Demonstrate the viability of this concept through the development of an integrated adaptive prototype
- Define experimental design for Year 2 effectiveness study

Year 2

- Conduct an effectiveness study to quantify the benefits of the adaptive capability
- Analyze study data

Year 3

Implement suggested architectural changes based on study data


Generalized Intelligent Framework for Tutoring (GIFT)

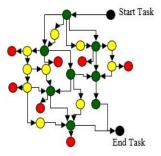
A free, modular, open-source tutoring architecture to:

- capture best tutoring practices and support rapid authoring, reuse and interoperability of ITSs
- lower costs and entry skills needed to author ITSs
- enhance the adaptiveness of ITSs to support self-regulated learning (SRL)
 - ontology
 - tools
 - methods
 - standards
 - exemplars

- Automated Instruction
- Accurate Learner Modeling
- Accurate Domain Modeling
- Evaluation Tools

Adaptive **Training** Systems

- Flexible
- Collaborative
- Critical Thinkers


- Affordable
- Effective

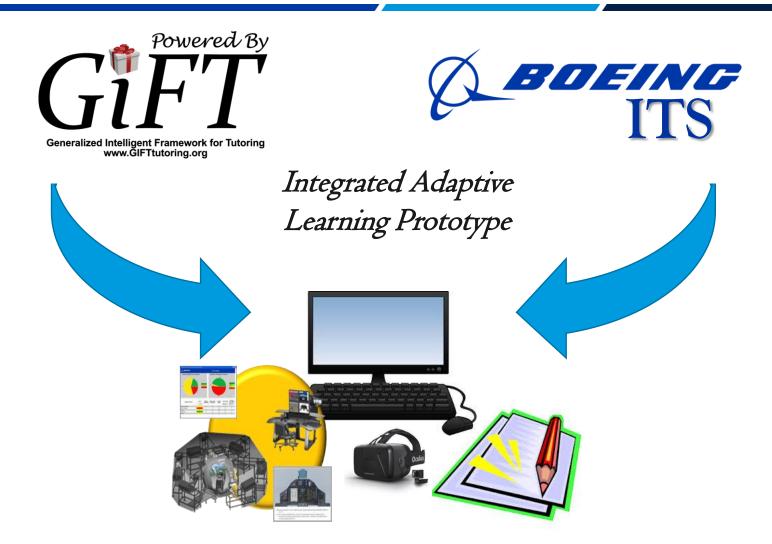
An Intelligent Tutoring capability that models the student and expert-level solutions to training exercises in order to provide personalized, task-specific instruction

Expert Model

- Allows system to solve problems
- Approach
 - ✓ Model solution paths
 - Encode rationales for and implications of actions

Student Model

- Estimates student's understanding
- Approach
 - Maintain dynamic profile of proficiency scores against learning objectives


Instructional Model

- · Allows system to implement interventions
- Approach
 - ✓ Manage sequence/selection of training activities
 - ✓ Manage hints and feedback on actions
 - √ Summarize performance

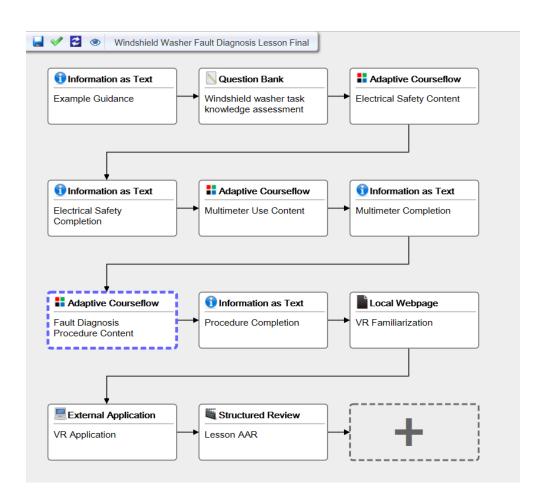
- Real-time student performance tracking on multiple learning objectives
- On-demand lesson help
- Customized feedback
- Within-lesson remediation
- Personalized learning experience

Combines aspects of both adaptive learning approaches into a blended personalized experience

Training Task Environment

GIFT Learning Concepts

Electrical Safety


Multimeter Use

Fault Diagnosis and Repair

Fault Diagnosis
Procedures

Integrated Prototype Overview

GIFT Functionality

- Lesson Flow
- Knowledge Assessment
- Adaptive Courseflow Modules
- Underlying EMAP Concept Sequencing (Merrill's Component Display Theory)
 - Rules
 - Examples
 - Recall
 - Practice

- Tailored Practice within each Adaptive Courseflow Module
- Final Practice Module within External Virtual Reality Environment

Scoring and lesson sequencing flowed seamlessly between the two environments

Integrated Prototype Overview

Immersive VR Environment for final task performance

- Automatically launched by GIFT
- Students provided with tutorial on interaction within VR
- Performance within VR practice environment is scored and student receives pass/fail grade
- Grades and completion sent back to GIFT

Integrated Prototype Overview

- Plans to evaluate adaptive training approaches are in work
- Evaluation using West Point Cadets
- Differing ITS Methods
 - GIFT alone with EMAP personalization
 - Boeing alone using focused ITS interactions
 - Blended GIFT/Boeing Prototype leveraging both pedagogical methods
- Prior Knowledge
 - High knowledge
 - Low knowledge
- Potential to consider additional personalization methods
 - Motivation
 - Feedback

Notional Experimental Design		Prior-Knowledge	
		High	Low
ITS Methods	GIFT Alone	X	X
	Boeing Alone	X	X
	GIFT/Boeing	X	Х

Conclusions and Lessons Learned

Lessons Learned

- Similarities in approaches to optimization of learning experience by adapting to student strengths/weaknesses
- Differences in how performance assessment was used to adapt lesson
- Able to merge the two approaches into a lesson that was seamless from the student perspective
 - GIFT for initial knowledge assessment and lesson sequencing
 - Boeing ITS for within-module assessments and practice, detailed remediation
 - Interfaced with external Unity-based application

Challenges

- Different approaches to student assessment and adaptivity
- Long-term student record persistence needed in GIFT
- Cannot remediate back to adaptive learning module within a lesson once mastered
- No GIFT standard for external application communication custom gateway creation
- Usability issues: bugs, size limitations, proxy conflicts, authoring documentation
- Technology obsolescence of lesson content

