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INTRODUCTION 

The Generalized Intelligent Framework for Tutoring (GIFT) (Sottilare, Brawner, Goldberg, & Holden, 
2012) is able to tailor training content selection and presentation in order to give individual learners the 
support or challenge they need (Goldberg, Sottilare, Brawner, & Holden, 2011). However, the effectiveness 
of tailoring is always limited by the choices available. Automated scenario generation (ASG) offers promise 
to create many more variations on training content than human experts can create alone. A proof of concept 
ASG implementation is being researched and developed. The ASG can create variants on training scenarios 
that encompass multiple types and parts of scenario content to include simulation events and narrative, 
entity location and size, and feedback or framing text. Combining several such variants will let GIFT sim-
ultaneously support and challenge different learning objectives in one training scenario.  

A key insight in the work is that generated variants are labeled in a domain-general way according to their 
predicted impact across learning objectives. As a result, all the details of variations are expressed to GIFT 
in a manner easily processed by general pedagogical algorithms. Furthermore, the domain-general dimen-
sions of support and challenge for each learning objective define a space within which the ASG components 
should search. That is, ASG does not simply find random variations on the scenario factors it can control 
directly, such as entity location and size. Apparent variation in those factors could easily turn out to be 
different only at a surface level – not different at a level that adds new kinds of support or challenge to the 
library of choices available to GIFT pedagogical tailoring. A key portion of this work is not the simple 
generation of many superficially different scenarios, but the generation of scenarios which are sufficiently 
different from one another while still being pedagogically valid. 

Two steps enable ASG to create variants that are valuable for GIFT to tailor learning content. First, ASG 
must perform search in a space where movements are possible to directly control, such as entity size and 
location. Second, ASG must translate the variants it made in that space into the space defined by multidi-
mensional impact on learning support and challenge. The first step is carried out by a form of evolutionary 
algorithm called novelty search. The second step is carried out by defining a cognitive science-based un-
derstanding of learning factors and creating domain-specific rules that translate expert knowledge into the 
terms of the generalized framework. 

In the initial days of research and development, ASG is being prototyped in a specific training system for 
decision-making in the employment of small unmanned air systems (SUAS). The training system contains 
expert-authored content such as maps with geographical features, tactical objectives and constraints, 
friendly and hostile entities; text briefing materials and initial conditions; and learner decision prompts and 
feedback. In the current state of research, an example is presented using map variation. The example illus-
trates how novelty search programmatically creates candidate arrangements of elements on the training 
scenario map, then labels each one according to its predicted impact on learning. Specifically those map 
variations that change the scenario challenge level are stored in a library for the GIFT pedagogical module 
to select, using the domain-general labels on each variant. As research and development continues, more 
elements of training such as text content will also be varied using ASG. The result of having many variants 
is that GIFT may individualize the training experience in order to simultaneously support one learning 
objective and challenge another, according to learners’ needs. 



BACKGROUND AND RELATED WORK 

ASG has combined relevance across multiple research fields. This section discusses the current state of the 
art in (1) evolving scenario content, (2) novelty search as an approach to addressing issues of traditional 
evolutionary algorithms, and (3) computational accounting of pedagogical impact. 

First, there have been several successes in procedurally generated content for games or training scenarios. 
Evolutionary algorithms have generated content such as scenario terrain, behaviors, events, and narrative 
(Luo, Yin, Cai, Zhong, & Lees, 2016; Stanley, Bryant, & Miikkulainen, 2005; Zook, Lee-Urban, Riedl, 
Holden, Sottilare et al., 2012). Evolution is well-suited to spaces where there are too many possible varia-
tions to explore them all or randomly choose variants to evaluate. In generating training content, effective 
search is needed because it may not be easy to predict how the changes that are easy to make, such as terrain 
or unit locations, will affect the desired outcomes, which are to change how instruction works for learners. 
As a concrete example, changing the position of an enemy unit from “left of the hill” to “right of the hill” 
may have no training effect for a ground-based tactical movement scenario, but significant training effect 
for an indirect fire scenario, where accounting for wind velocity and smoke effects is a training objective. 

Second, evolutionary algorithms as a class suffer from certain shortcomings that are broad and practical in 
their importance. Evolution can require days to complete, or may demand high-performance server clusters. 
A key reason is that evolution typically needs to be carefully tuned to avoid premature convergence on one 
local optimum, finding the same variants repeatedly instead of new ones. However, a recent advance in 
evolutionary algorithms suggests that an entirely different approach both yields better results and reduces 
required computer resources. This approach is novelty search (Lehman & Stanley, 2008, 2011). Novelty 
search replaces evolution toward a higher fitness with evolution toward increasingly different individuals. 
Novelty search has been used with success to evolve content similar to training scenarios, such as game 
levels (Liapis, Yannakakis, & Togelius, 2015). 

Third, there is the question of letting novelty search predict the training impact of generated variants. In-
structional designers, educators, and cognitive psychologists are among those who have created frameworks 
for predicting the effect of training scenarios, interventions, and other content on individual learners and in 
different training contexts (Campbell, Ford, Campbell, & Quinkert, 1998). Two factors that have been re-
cently studied are scenario helpfulness and complexity. Helpfulness describes the explicit interventions that 
can be part of training, such as help messages, hints, or formative feedback—are they specific or broad, 
immediate or delayed, and so on (Shute, 2008). Complexity gives a good complement by measuring implicit 
interventions which vary scenario content in order to support or challenge learners, such as tailoring the 
number of enemies or the amount of time remaining to carry out a task (Dunne, Sivo, & Jones, 2015). 
Measuring different dimensions or categories of helpfulness and complexity has driven tailoring in past 
work, but has been manually defined for each variant (Folsom-Kovarik, Newton, Haley, & Wray, 2014; 
Folsom-Kovarik, Sukthankar, & Schatz, 2013; Graffeo, Benoit, Wray, & Folsom-Kovarik, 2015).  

In summary, evolutionary approaches may be able to generate meaningful scenarios from the infitine set of 
possibilities, to do so quickly when using a metric such as novelty search, and objectively measure instruc-
tional relevance. The natural divisions of the “genotype” and “phenotype” space within an evolutionary 
approach lend themselves to representing the literal scenario content (genotype) and its learning impacts 
(phenotype). An evolutionary content generation method that would also let end users such as instructors 
and subject-matter experts understand and control the content evaluation in an objective manner would help 
to improve usability and user acceptance of the approach (Folsom-Kovarik, Wray, & Hamel, 2013). 



NOVELTY SEARCH AND APPLICATION TO ASG 

Evolutionary algorithms are appropriate methods to search when a space is too high-dimensional, unevenly 
gradiated, or otherwise inappropriate for simpler enumeration or gradiant descent methods. Evolution typ-
ically maintains a notional population of points in the search space which are evaluated to find their fitness 
for the purpose at hand. The points in the population are then combined and varied with operators that aim 
to increase fitness of the next generation and remove points that have lower fitness. Novelty search ad-
dresses some limitations of evolutionary algorithms. Instead of working to increase fitness, the aim is to 
increase novelty and explore points that are as different as possible from what has been seen before. In this 
way, novelty search attempts to remove premature convergence concerns typical in evolutionary algorithms 
and produce many variants that can be filtered for fitness to a specific need. This is specifically an advantage 
in the training domain space where differences among the scenarios is an expliticly stated goal. 

This section describes the current state of the novelty search algorithm under development. Novelty search 
efficiently finds variants that are new in a domain-general sense. That is, the variants provide a different 
manner of support or challenge than any variant already available. As novel variants are created offline, 
they can be stored for human review and access by GIFT. The novelty search is an “anytime” process 
meaning that it can provide results immediately or continue to improve the results as more compute time is 
available when not actively training. GIFT is then able to select in real time during training between variants 
using its existing, domain-general Pedagogical Module. Instructors will be able to see what variants are 
available and identify any gaps that still need to be evolved. This allows for both the generation of content 
that the instructor can approve and for the further development of training exercises for students if the 
amount of approved content is exhausted. 

The current implementation of novelty search is built on the open-source library Distributed Evolutionary 
Algorithms in Python (DEAP) (Fortin, Rainville, Gardner, Parizeau, & Gagné, 2012). DEAP offers a com-
bination of fast prototyping now with fast computation and variant generation in future deployment. Like 
other evolutionary algorithms, novelty search depends on effective design of (1) genotype representation, 
(2) genetic operators, and (3) fitness function or in this case novelty evaluation function. In the current state 
of research, these are domain-specific. However, future research may be able to identify opportunities for 
reuse across broad domains such as the spaces of all images or all text documents. 

First, ASG differentiates genotypes from phenotypes in this way. Genotypes are those objects, such as 
strings of digits, that can be easily changed during evolution, while phenotypes are the objects that can be 
evaluated for their novelty. The phenotype is the scenario variant itself, that which the learner experiences 
during training and which the instructor must agree provides appropriate support and challenge. As a result 
of this difference, evolution is not needed when it is possible to jump straight to the desired phenotype. 
Instead, the separation of genotype and phenotype is necessary because the phenotype can be measured on 
dimensions that matter to instruction, like complexity and helpfulness, but the genotype cannot be measured 
until it is transformed into a phenotype. Conversely, at the genotype level there are a set of changes which 
are easy to apply to generate new variants, but it turns out to be difficult to make changes at will in the 
training experience phenotype, because human creativity would be required. 

The genetic representation currently used throughout the rest of this work in ASG is a direct representation. 
More complex representations such as neural networks or hypercubes (Kocmánek, 2015) have also been 
used in novelty search but were deemed unnecessary at this stage of development. The genetic representa-
tion encodes each element of the evolved training scenario one-to-one in a vector of descriptive values. For 
example, in order to evolve locations of objects in a two-dimensional space, the genetic representation 
would describe each object with its type, x-coordinate, y-coordinate, and perhaps scale or rotation values. 
The current representation describes points, lines, and regions in two-dimensional space, which is hypoth-
esized to be extensible to multiple domains. 



Second, genetic operators in ASG are designed to make changes to genotypes. The changes are not guar-
anteed to produce a better genotype, but they should be designed to build on what has already been evolved 
and create new genotypes that have a reasonable possibility to be viable. The genetic operators used are 
element insertion, single-point mutation, and single-point crossover. Element insertion increases the com-
plexity of lines and regions by adding a new point at random to the genotype. Single-point mutation chooses 
a numeric value uniformly at random and changes it by adding a random perturbation with Gaussian distri-
bution about zero. The crossover operator combines two existing genotypes by choosing a point in the 
vector and taking all elements to the left of that point from one genotype, all elements to the right of that 
point from the other. Since direct representations have been well-studied in other evolutionary algorithms, 
these operators are standard in the field and do not introduce additional domain specificity. 

Third, the novelty evaluation function in ASG is the tool that determines when evolution has produced a 
variant that is new in an interesting way, as opposed to a variant that appears to be new on the surface but 
does not provide any difference in training support or challenge. The terms “support” and “challenge” are 
considered to be opposite ends of a single continuous scale for the purposes of this work. The evaluation 
phase consists of applying domain-specific rules to each phenotype (training variant) in order to find its 
value on domain-general dimensions. Four domain-specific rules were created as a proof of concept and 
are described in the ASG Example section below. The domain-general measures that result from these rules 
describe facts about the training such as complexity of meeting one learning objective or another.  

 

Figure 1: Training complexity (a) in the first generation and (b) after 20 generations. The different point 
colors and x,y locations (spread) visualize the diversity of training options that the evolved variants offer. 

ASG determines which variants are novel in the training challenge sense by clustering variants on the train-
ing complexity values, finding the k nearest neighbors (k=2 for efficiency), and selecting the variants which 
maximize Euclidean distance from their respective nearest neighbors. A hall of fame was maintained to 
provide persistence across generations of the current maximally novel individuals. In this scheme, different 
factors that separately affect complexity formed additional dimensions in the complexity measure. Exam-
ples were number of distractors or time constraints. As such, evaluation was found to require a scaling step 
in order to make different dimensions comparable and prevent one dimension from outweighing others. 

The outcome of the overall algorithm for novelty search is an increasingly diverse collection of training 
variants. Figure 1 demonstrates the difference between an initial generation and the variation after 20 gen-
erations. The example complexity measures described below are projected into two-dimensional space. The 
increasing distance between the individuals after evolution indicates that novelty search produced variants 
which provide GIFT with more choices between noticeably different levels of challenge and complexity. 



A DOMAIN-GENERAL REPRESENTATION OF SCENARIO CONTENT 

The creation of a domain-general representation of learning impact enables contributions from many in-
structors, authors, and researchers to work together to increase GIFT tailoring options. A computational 
representation of factors that impact learning also enables automatically evaluating what is novel in ASG 
and what will help learners at scenario runtime. GIFT has previously conducted a literature review to sup-
port the selection of domain-general factors, including complexity. This proof of concept adds to that review 
a high degree of precision that breaks down support and challenge into multiple contributing factors that 
can be separately measured, varied, and objectively compared across learning domains and systems. 

Diverse instructional theories suggest categorizing or sequencing learning tasks based on a continuum of 
complexity. Gagné (1965) organized learning tasks into a broad hierarchy consisting of stimulus recogni-
tion at the least complex through application and problem solving as the most complex tasks for any par-
ticular identified skill. A similar concept of task complexity has been used in past research with a Dynamic 
Tailoring System (DTS) that could choose in real time between training variants that were labeled by human 
experts with scalar complexity values (Wray & Woods, 2013).  

In the context of ASG, a single scale for task complexity is not expressive enough to capture the different 
ways in which the same task can be varied to be more or less complex. Many generated variants are likely 
to have the same complexity when measured on a single scale – an example might be a hypothetical GIFT 
question bank that contains a hundred different multiple choice items. Empirically some challenge learners 
more than others and are answered correctly less often. However, they might all be evaluated as equal in 
complexity because they all require simple recognition (of the correct choice). In the multiple choice situ-
ation, which seems not atypical, two possible approaches could let a computer system differentiate the 
available variants in advance without human expert labeling. First, GIFT could have an extremely fine-
grained hierarchy of sub-concepts. In this case, GIFT could differentiate and sequence the available variants 
based on hierarchical relationships between the sub-concepts such as prerequisites. This approach is not 
attempted in ASG. The second approach, which is explored here, is to increase the dimensions by which 
variants may be described. Complexity itelf must be analyzed in more detail. 

Dunne, Cooley, and Gordon (2014) conducted an initial analysis of factors that contribute to learning com-
plexity. These factors included task complexity factors such as number of actions required and number of 
interdependent actions, as well as learning context factors such as number of possible ways to complete a 
task and number of distractors. These factors appear in Table 1. On the other hand, Table 1 also introduces 
a notional definition of helpfulness. As a complement to complexity, helpfulness has not yet been opera-
tionalized to provide concrete measures and will be discussed here at an early stage of exploration. 

First, Dunne and colleagues suggest theory-based, countable measures that help provide a multidimensional 
framework for objectively measuring complexity. Complexity increases with each of the factors in Table 
1, although possibly nonlinearly. Current work with ASG is working to build rules that predict the impact 
of scenario variants by counting factors such as the number of cues, actions, and distractors in each variant. 
Each dimension in the framework is furthermore related to one equation that calculates scenario complexity 
and has been initially validated with empirical study of a military training sequence in the same citation. 
The rules that carry out counting the complexity factors are domain-specific, but they result in domain-
general measurements. The domain-general measures let the GIFT pedagogical module work without do-
main-specific knowledge and enable objective comparison across variants.  



Table 1: Domain-general dimensions describing challenge and support for each task or learning objective. 

Measuring Complexity  Measuring Helpfulness 
Number of cues  Attention via perceptual arousal 
Number of actions  Attention via inquiry arousal 
Number of subtasks across actions  Relevance via previous link 
Number of interdependent subtasks  Relevance via needs link 
Number of possible paths  Confidence via evaluation link 
Number of criteria to satisfy  Confidence via learner control 
Number of conflicting paths  Satisfaction via feedback positivity 
Number of distractors  Satisfaction via future link 

 

Second, a measure is needed which describes the dimensions on which extrinsic or direct interventions can 
be measured. Interventions such as hints, help messages, and text documents that deliver remediation vary 
in their helpfulness with respect to specific learning objectives. As an intuitive example, a help message 
delivered inside a scenario by a character over the radio can be clear, concise, and on point to provide 
support, or it can deliberately challenge learners by being ambiguous, wordy, or distracting. A cognitive 
science basis for enumerating the possible differences in how helpful scenario components are lies in the 
ARCS model of instructional design (Keller, 1987). This model describes factors of attention, relevance, 
confidence, and satisfaction that motivate an adult learner to engage with learning content. Unlike the 
Dunne model, research is still needed to produce an accounting of how a computer system can see factors 
in this model. One example that moves the ARCS model toward countable dimensions might be a heuristic 
measure of inquiry arousal from counting the number or frequency of keywords like “how” and “why.” 

The combination of complexity and helpfulness is hypothesized to provide ASG with multiple objective 
measures to describe and differentiate the impact of every variant on different learning objectives. In this 
way, a domain-general representation of scenario content is hypothesized to increase the opportunities to 
apply learning theory in GIFT’s automated design and selection of content that is tailored for learners. ASG 
can augment a hierarchical analysis or a fragmented, parts-to-whole sequencing with recommendations that 
reflect how adults learn material of increasing complexity in context (Reigeluth & Stein, 1983). 

ASG EXAMPLE FOR SCENARIO LAYDOWN 

ASG is being developed and evaluated in the context of existing training for proper use of small unmanned 
air systems (SUASs). The training consists of sequential problem presentations in the context of a narrative 
supported by mission briefings and maps depicting the area of operations (Figure 2). Learners are also 
presented with adaptive hints and texts for remediation depending on their performance. The system has 
been designed to teach nine terminal learning objectives and 48 enabling learning objectives, a huge number 
of dimensions for evolution to explore if all combinations of learning objectives can eventually be varied 
in complexity and helpfulness. In the present research and development, a subset of three learning objec-
tives was chosen for initial exploration. The first target for evolution was the mission map. Future work is 
planned to evolve text-based content such as briefings, pop-up events, and hints or remediation documents. 



 

Figure 2: The SUAS training domain for developing and evaluating ASG. 

The ASG example seeks to evolve variants on the mission map depicted in the top left of Figure 2. In this 
example, the elements that can be evolved are shown in Figures 3 and 4. These include the locations of 
friendly and hostile units, a no-fly zone (red oval), and the shapes of roads, water, and forest terrain features. 
According to the ASG algorithm described above, these elements could be moved easily on the generated 
map variants. The next step was to demonstrate how the variants could be measured in training complexity 
space and selected as being more or less novel from a training impact perspective. 

Three training complexity measures were created for the example implementation. The measures were sim-
ple rules reflecting three of the learning objectives in the real training system: enemy air defense avoidance, 
recon and surveillance, and airspace coordination procedures. The simplified rules showed examples of 
three dimension types: continuous scalar, discontinuous scalar, and categorical. (1) For enemy air defense, 
one rule was created that stated training complexity increases with proximity to an enemy unit. The enemy 
was considered to have air defense capabilities that made it difficult to operate when near the enemy. (2) 
for recon and surveillance, two rules defined one complexity dimension. If an enemy unit was located 
within a forest region, the complexity of the training increased with the size of the forest. If the enemy was 
outside a forest, the complexity decreased in proportion to the distance from the enemy to the nearest edge 
of a forest region. (3) For airspace coordination, the rule was that complexity was high when a no-fly zone 
lay between the enemy and friendly units, while complexity was low otherwise. In Figures 3 and 4, red dots 
indicate scenarios with high complexity in this dimension while blue dots have low complexity. 

During novelty search, the first generation maps (Figure 3) typically did not even contain both a friendly 
and a hostile unit. This helps explain why they are all rated as similar in the complexity of air defense 
avoidance (Figure 1 above). 



  

Figure 3: First generation of evolving scenario variants. 

The last-generation maps (Figure 4) have evolved a greater frequency of having one friendly and one hostile 
unit on the map, which probably helped to explore more possible values of air defense avoidance complex-
ity and let ASG provide variants at more places on this scale. 

The last-generation maps also display increased complexity of the contours around water and forest regions. 
This is an example of a difference that is visually very apparent but makes no difference for the purposes 
of measuring training complexity. The value of novelty search using domain-general measures of the vari-
ants is that the simplicity or complexity of the scenarios are evaluated without regard to surface details 
except where a rule tells ASG that those will change the learning experience. 

  

Figure 4: Last generation scenario variants. 

In summary, the work of developing an example of ASG in a GIFT-enabled training domain has helped to 
develop some of the proposals and surface findings in this paper, as well as considerations that will be 
addressed in ongoing research and development. The initial novelty search examples presented here used 
only a small fraction of the potential dimensions that could be measured to describe the SUAS training. As 
a result, there is great potential for novelty search to create a large library of scenario variants that offer 
GIFT any desired combination of support and challenge for delivering tailored training. 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

Presented above are the first steps in the investigation of Automated Scenario Generation. This research 
divides the problem up into three problems – downselecting from an infitine number of possible scenarios, 
doing so in reasonable time, and making scenario variants which are instructionally relevant. The proposed 
approach uses genetic algorithms, with a novelty search fitness function and a domain-general representa-
tion of scenario content, to enable variant selection without a specialized pedagogical module and to present 
to instructors and students. Generally, the above research is incomplete – it did not include an analysis on 
whether the generalized scenarios are useful to SMEs or what dimensions of changes are needed or desired. 
This work is yet to be performed. 



This work, thus far, is able to make use of the existing GIFT logic, structure, and modules. The scenario 
selection logic within the pedagogical module should be written in a general enough manner so as to be 
able to be applied to a large number of generated scenarios. Performance assessment within the generated 
variants is also needed. Fundamentally, GIFT will have to provide the same tutoring to the new scenarios 
as it does to the old – the functionality is built into GIFT and the DKF structure. Integration at the end of 
the project may be as simple as a pointer to the optimal fit in a library of generated variants when the student 
reaches the appropriate experience at runtime. In the ideal case, performance assessment could be dynamic 
and follow rules drawn from or similar to the novelty evaluation rules, in the same manner as the DKF 
currently allows for pointers to external assessment engines. 

Next steps in the near term will be to replace the illustrative ASG example presented in this paper with 
more realistic rules for complexity. Instructor and SME interviews are planned to determine which learning 
objectives and aspects of the real training system are likely to be most impactful to vary. Understanding 
what dimensions human expert instructors actually want and need to vary will inform a more comprehen-
sive set of rules that will help test and improve the efficiency and effectiveness of the ASG approach. 

In regards to future work, scenarios represent the most complex piece of content represented within GIFT. 
The example ASG could easily be extended to other two-dimensional content like images or VBS terrain. 
Simpler pieces of content, such as prompted, hints, feedback strings, webpages and other items are also 
shown to the user in GIFT training but are not procedurally generated. Technology to procedurally generate 
these types of items may have to be implemented differently, as these items may rely on text or image 
processing techniques rather than modification and generation techniques, but there may be another class 
of ASG representations and operators that is effective for many types of text content. 
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