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INTRODUCTION 

The Problem 

Training paradigms often depend on performance feedback to enhance motivation, increase enagement, 
and improve performance. However, the effects of feedback on task performance are mixed (Hattie & 
Timperley, 2007; Kluger & DeNisi, 1996). These mixed results may be explained by how individuals differ 
in their reactions to specific types of feedback, but this variability is often difficult to predict. Furthermore, 
task properties may influence feedback effectiveness. Feedback intervention theory, (FIT; Alder, 2007; 
Kluger & DeNisi, 1996) states that feedback interventions regulate behavior by changing the focus of at-
tention to a particular discrepancy between performance and standards. Individual differences in goal ori-
entations (i.e., trait regulatory focus) influence attentional focus, as well as intrinsic goals or standards, and 
therefore likely impact whether and to what extent feedback influences future performance. More study is 
needed investigating the effectiveness of feedback within the context of individual differences and their 
interactions with tasks and domains to inform learner models and better implement individually optimized 
instructional strategies. 

Relevance to GIFT 

The design of GIFT incorporates users’ individial traits to deliver tailored training. One of GIFT’s major 
design principles includes the delivery of individually tailored instructional interventions using empirically 
based generic instructional strategies (Wang-Costello, Goldberg, Tarr, Contron, & Jiang, 2013). GIFT con-
tains mechanisms to select appropriate feedback for given training tasks. Further refining a model which 
incorporates task properties and individual responses to feedback would improve GIFT’s ability to provide 
more tailored and effective training. What we present is (1) a particular trait to consider and (2) the impli-
cations that task properties may have in determining effective feedback. 

In the present work, we looked at the interaction of task affordances and trait regulatory focus as possible 
predictors of feedback effectiveness to inform GIFT’s existing models. Results can be incorporated into 
learner models but may also require domain module information for proper implementation. 

Regulatory Focus and Regulatory Fit 

Regulatory focus is a goal orientation construct (Higgins, 1998; Higgins et al., 2001) that contains two 
distinct motivational orientations that describe an individual’s propensity to approach gains or avoid losses:  
promotion focus and prevention focus. Highly promotion-focused individuals have a tendency to pay more 
attention to opportunities for gain and are motivated by intrinsic ideals as compared to highly prevention-
focused persons whose motivations are rooted in extrinsic obligation and avoidance of loss (Higgins, 1998; 
Van‐Dijk & Kluger, 2004). These propensities may have implications for responses to strategic affordances 
in tasks, such as eagerness/approach strategies and vigilance/avoidance strategies (Higgins et al., 2001). 
Promotion and prevention scores are largely independent of each other (Summerville & Roese, 2008), and 
can be obtained from questionnaires such as the Regulatory Focus Questionnaire (Higgins et al., 2001). 



Regulatory fit theory (Higgins, 2000) predicts that when an individual’s regulatory focus is matched with 
the nature of a goal, object, or reward structure framing (i.e. point-gains for promotion and point-losses for 
prevention), a more motivated and engaged state is elicited as compared to when they do not align. Accord-
ing to this theory, matching a highly promotion-focused individual with feedback framed in terms of gains 
should yield a more motivated and engaged learner as compared to a highly prevention-focused individual 
and vice versa. In addition, the nature of the task itself and its strategic affordances should also influence 
regulatory fit. To investigate whether regulatory fit theory may be useful to incorporate in learner models, 
we examined the effects of regulatory focus, feedback framing, and task affordances within the context of 
two inhibitory control go/no-go tasks that varied in the timing and number of trials. 

Inhibitory Control 

Inhibitory control involves the ability to override or halt an otherwise automated response, especially when 
that automated response is wrong or inappropriate. The ability to suppress inappropriate responses is es-
sential for healthy living and functioning. Difficiences in inhibitory control contribute to the risk of engag-
ing in maladaptive behaviors such as alchohol abuse (Kamarajan et al., 2004), poor sleep hygiene (Todd & 
Mullan, 2014), drug use (Fillmore & Rush, 2002), and over-eating (Houben, 2011). Individuals with a 
difficiency in inhibitory control experience difficulties with decision making (Shenoy & Yu, 2011), exec-
utive function and working memory (Carlson, Moses, & Claxton, 2004). Some work has shown that in-
ihibtory control can be improved with training (Berkman, Kahn, & Merchant, 2014). For example, one 
week of inhibitory control training significantly reduced civilian casualties in a simulated hostage situation 
(Biggs, Cain, & Mitroff, 2015). Inhibitory control can be trained using a go/no-go task, in which participants 
are asked to press a button in response to a “go” stimulus and withhold a response to a “no-go” stimulus. 
The simplicity of go/no-go paradigms makes them an excellent testbed for examining the effects of indi-
vidual traits, feedback framing, and task strategic affordances. The flexibility of go/no-go paradigms allows 
the same basic task to be performed using different strategic affordances, which may be encouraged via 
subtle changes of stimulus timing. 

Current Research 

We tested the effectiveness of regulatory fit as a means of increasing performance on an inhibitory control 
training task in two experiments using different trial timelines. Based on previous literature that supports 
regulatory fit’s ability to elicit a more motivated state, we predicted in both cases that the training would 
be more effective when the feedback framing matched the trainee’s regulatory focus and the task’s strategic 
affordances. Both experiments showed effects of regulatory focus, but the effects were different in the two 
experiments. In Experiment 1, the more prevention-focused the individual, the better they learned under 
the loss-framed feedback condition. In Experiment 2, the more promotion-focused the individual, the worse 
they learned under a points-free feedback condition. The differences may have resulted from different task 
affordances in the two experiments: a vigilant strategy (loss-avoiding) in Experiment 1 vs. an eager strategy 
(gains-seeking) in Experiment 2. Overall, these results highlight the relevance of regulatory focus for 
learner models, the complexity of regulatory fit (i.e., 3-way rather than 2-way fit), and how influential a 
small change in a task can be, if it changes the task’s strategic affordances. 

METHODS 

Two similar experiments were run, differing in their number of participants and the timing and number of 
trials in the training task. Experiment 1 included 103 participants. Data from 10 of those participants were 
excluded based on pre-specified performance criteria, leaving 93 participants. Experiment 2 included 33 
participants, of which 3 were excluded based on the same criteria, leaving 30 participants. Experiment 2 



had fewer participants, because it was designed as a small-scale pilot for a future planned experiment. The 
voluntary, fully informed written consent of participants in this research was obtained as required by Title 
32, Part 219 of the CFR and Army Regulation 70-25. All human subjects testing was approved by the 
Institutional Review Board of the United States Army Research Laboratory. 

After completing an online pre-screener, participants were tested for normal visual acuity and color vision 
and completed a battery of questionnaires including the RFQ. After completing the questionnaires, partici-
pants completed the training task. In both experiments, the training task was a speeded go/no-go task with 
a computer-rendered character holding a gun as the go stimulus and the same character wearing different 
clothes and not holding a gun as the no-go stimulus. Go stimuli were four times as frequent as no-go stimuli. 
In both experiments, stimuli were visible for 400 ms and were presented at a randomized location on the 
screen. Participants had a limited time to press a response button in response to a go stimulus. In Experiment 
1, participants were required to respond within 500 ms of image onset, whereas in Experiment 2, partici-
pants were required to respond within 1 s. After this deadline, feedback (see below) was displayed for 500 
ms. In Experiment 1, the next trial began 500 ms after the end of the feedback, but in Experiment 2 the next 
trial began between 1 and 2 seconds later (uniform distribution). 

Training in Experiment 1 consisted of 30 blocks of 30 trials each, lasting 20-30 minutes total. In Experiment 
2, training consisted of 20 blocks of 30 trials each; because the trials were longer, training lasted 20-30 
minutes. 

After the training task, participants completed questionnaires about the training task. Next, participants 
completed the transfer task. The transfer task was a desktop simulation of being a passenger/spotter in a 
vehicle patrol of a middle-eastern-themed town with intermittent fog. As the vehicle proceeded, images 
would pop into the environment. The task was to classify those images as threats or non-threats, and to 
press a corresponding response button within 1 s of image onset. Two of the images were the go and no-go 
images from the training task. The other two were a table either with (threat) or without (non-threat) a table 
cloth obscuring the view under the table. In total, there were 200 images. Periodically, a diffuse fog would 
obscure the view to make the task more difficult. There were 5 periods of fog and 5 periods of no-fog, each 
averaging 1-minute in duration, and the transfer task took 10 minutes total. Finally, the participants com-
pleted another set of questionnaires. 

The main independent variable of both studies was the framing of feedback in the training task. Participants 
were randomly assigned to point-gain-based feedback, point-loss-based feedback, or an informative con-
trol. In both the point gain and loss conditions, go trials were worth 30-60 points, with faster responses 
receiving more points and no-go trials were worth 180 points. In the gain condition, participants began with 
no points, and points were presented as gains. In the loss condition, participants began with the maximum 
points possible for a block, and points were presented as losses. For example, an average response time on 
a go trial in the gain condition would earn +45 points, but in the loss condition it would lose 15 points. 
These scoring systems are mathematically identical, but differ only in their framing. The control feedback 
showed a green check or red x to indicate correctness, and in the case of a response on a go trial, it also 
indicated response time. 

Many outcome variables were measured; here we focus on two of them to illustrate the different outcomes 
of the two experiments. These outcomes are change in correct rejection (i.e. successfully not responding on 
no-go trials) rate over the course of training (i.e. the first 3 blocks vs the last 3 blocks), and accuracy in 
responding to the character stimuli out of fog in the transfer task. Both of these quantities are typically 
expressed as proportions, but for analysis they were analyzed as the logarithm of odds ratios (i.e. logit-
transformed) in order to better meet the assumptions of linear modelling. Data from both experiments were 
combined and analyzed using a linear model with predictors of prevention strength, promotion strength, 
feedback condition (dummy coded), and experiment (1 or 2). The model included interaction terms for each 



strength with condition and experiment, condition with experiment, and the three-way interactions of 
strength, condition and experiment. Coefficients are reported with uncorrected 95% confidence intervals, 
and p-values are reported both uncorrected and corrected for multiple comparisons using false discovery 
rate (FDR).

RESULTS

Regression coefficient estimates with 95% confidence intervals appear in Table 1. There were no statisti-
cally significant effects of promotion strength on change in the logit correct rejection rate; however, there 
were effects and interactions involving prevention score, loss framing, and the experiment (1 or 2). The 
experiment term interacted with the effect of prevention strength, B = 1.15 [0.21, 2.10] T(105) = 2.42, 
p = .017 (p = .065 FDR), the loss condition B = 10.86 [1.7, 20.02] T(105) = 2.35, p = .021 (p = .070 FDR), 
and their interaction, B=-2.10 [-3.78, -0.41], T(105)=-2.47, p = .015 (p = .064 FDR). These interactions are 
visualized with slice plots (Figure 1) showing how expected change in the logit correct rejection rate varies 
with prevention strength under the three conditions and in the two experiments when promotion strength is 
held constant at the sample average.

Figure 1. Change in logit correct rejection rate in control, loss and gain conditions across Experiments 1 & 2.
Circles show individual participant results. Solid lines show expected values, and dashed lines show 95% con-

fidence regions of the expected values.
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In the analysis of logit accuracy on the transfer task (Figure 2), the experiment factor interacted with pro-
motion strength, B = -1.37 [-2.12, -0.63], T(105) = -3.66, p < .001 (p = .007 FDR), the interactions of pro-
motion strength with loss framing, B = 1.52 [0.43, 2.62], T(105) = 2.76, p = .007 (p = .043 FDR), and pro-
motion strength with gain framing, B = 1.81 [0.72, 2.90], T(105) = 3.28, p = .001 (p = .014 FDR). These 
reflect a negative effect of promotion strength on performance in the control condition in Experiment 2 that 
was not apparent in Experiment 1; moreover, this negative effect is counter-acted in both the gain and the 
loss conditions by effects in the opposite direction of the coefficient on the control condition.

Table 1. Regression coefficients and sta�s�cs 
  B 95% CI tStat p FDR 

Change in logit correct rejec�on rate 
(Intercept) 1.57  
prev. -0.50 -0.96 -0.04 -2.16 .033 .091 
pro. -0.11 -0.63 0.41 -0.43 .669 .711 
loss -6.72 -10.84 -2.60 -3.23 .002 .014 
gain -2.63 -6.08 0.82 -1.51 .134 .239 
Exp. 2 1.09 -4.36 6.54 0.40 .692 .713 
prev:loss 1.41 0.72 2.10 4.06 .000 .003 
pro.:loss 0.68 -0.23 1.59 1.47 .143 .244 
prev.:gain 0.64 -0.05 1.34 1.83 .070 .158 
Con�nues       

Figure 2. Logit accuracy on the trained stimulus with no fog in control, loss and gain conditions across Exper-
iments 1 & 2. Circles show individual participant results. Solid lines show expected values, and dashed lines 

show 95% confidence regions of the expected values.
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Table 1 Continued      

 B 95% CI tStat p FDR 
Change in logit correct rejection rate 
pro.:gain 0.28 -0.48 1.04 0.74 .464 .563 
prev:Exp. 2 1.15 0.21 2.10 2.42 .017 .065 
pro.:Exp. 2 -1.17 -2.56 0.21 -1.68 .096 .188 
loss:Exp. 2 10.86 1.70 20.02 2.35 .021 .070 
gain:Exp. 2 -3.05 -11.78 5.67 -0.69 .489 .574 
prev.:loss:Exp. 2 -2.10 -3.78 -0.41 -2.47 .015 .064 
pro.:loss:Exp. 2 -1.10 -3.14 0.93 -1.07 .286 .405 
prev.:gain:Exp. 2 -1.09 -2.40 0.21 -1.66 .100 .188 
pro.:gain:Exp. 2 1.46 -0.57 3.49 1.42 .157 .255 
Logit accuracy for trained stimuli out of fog 
(Intercept) 1.04      
prev. -0.13 -0.38 0.12 -1.03 .304 .414 
pro. 0.09 -0.19 0.37 0.65 .518 .587 
loss -1.48 -3.70 0.74 -1.32 .189 .279 
gain -0.81 -2.66 1.05 -0.86 .391 .492 
Exp. 2 3.16 0.23 6.10 2.14 .035 .091 
prev:loss 0.41 0.04 0.78 2.21 .029 .090 
pro.:loss 0.05 -0.44 0.54 0.20 .843 .843 
prev.:gain 0.39 0.02 0.76 2.07 .041 .099 
pro.:gain -0.12 -0.53 0.29 -0.60 .552 .606 
prev:Exp. 2 0.70 0.19 1.21 2.73 .008 .043 
pro.:Exp. 2 -1.37 -2.12 -0.63 -3.66 .000 .007 
loss:Exp. 2 -4.15 -9.08 0.77 -1.67 .097 .188 
gain:Exp. 2 -6.20 -10.89 -1.51 -2.62 .010 .049 
prev.:loss:Exp. 2 -0.63 -1.54 0.27 -1.39 .169 .261 
pro.:loss:Exp. 2 1.52 0.43 2.62 2.76 .007 .043 
prev.:gain:Exp. 2 -0.36 -1.06 0.35 -1.01 .317 .414 
pro.:gain:Exp. 2 1.81 0.72 2.90 3.28 .001 .014 

DISCUSSION 

Although both experiments demonstrated effects of regulatory fit between participant regulatory focus and 
feedback framing, the effects were different. This suggests that regulatory focus could usefully be incorpo-
rated into individual learner models, but that these models might also need to be task-dependent. The dif-
ferences between our two experimental training tasks were in the timing and number of the trials. The 
different regulatory fit relationships may result from the different strategic affordances these timing differ-
ences offer. In Experiment 1, responses were required to be fast (< 500 ms), and there was no variability in 
the inter-trial-interval. These factors together may have encouraged a strategy in which responding was 
essentially automatic unless it was canceled by some inhibitory process. In other words, success on this 
version of the task may have relied upon the participant adopting a vigilant strategy of avoiding false alarms 
on no-go trials. In Experiment 2, the slower pace and the unpredictability of stimulus onset might have 
reduced the automaticity of the go response, so rather than focusing on avoiding errors, participants might 
have focused on quickly reacting to stimuli and therefore relied on an eager/approach strategy. With only 



30 participants, this interpretation should be considered tentative until more data is collected. Taken to-
gether, these experiments are consistent with the effect of feedback framing on performance depending on 
a three-way interaction among individual regulatory focus, feedback framing, and the strategic affordance 
of the task in question. 

The three-way interaction has practical consequences, in that it would lead to recommending different 
point-based feedback interventions based not only on an individual’s regulatory focus but also on the nu-
ances of the task.  For example, framing feedback in terms of loss of points appears beneficial for training 
prevention-focused individuals, but only if the task itself has a prevention-like (e.g., vigilant) strategy. Ap-
plying loss-based feedback for prevention-focused individuals in other tasks may not be helpful. In the case 
of Experiment 2 (eager/approach task strategy), we found that the more promotion-focused an individual, 
the worse they did in the absence of point-based feedback. Either gain-framed or loss-framed points feed-
back eliminated this performance decrement. This unexpected result may have come about due to the extra 
and more variable timing in the second experiment. There may have been just enough time to allow the 
promotion-oriented participants to interpret either form of point-based feedback as indicative of achieve-
ment. This highlights the potential complexity of regulatory fit theory and of its application in practice. 

Overall, our findings point toward the need to include regulatory focus as a trait in individual learner models 
(see also Reinerman-Jones, Lameier, Biddle, & Boyce, 2017), as a potential source of adaptation (Goldberg 
et al., 2012) in training frameworks. More work is needed to develop an ontology of tasks and their strategic 
affordances in order to better predict the interaction effects of regulatory focus with different kinds of feed-
back, and the resulting effects on learner performance. Stronger predictive models could be incorporated 
into GIFT to support optimal feedback framing selection in different task domains.    

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

This work examined the effects of regulatory focus and feedback framing on performance in two go/no-go 
training tasks that differed in the timing and number of trials. Three major conclusions stem from this work. 

1) Regulatory focus is an important individual trait worth including in learner models for improving training 
outcomes. 

Regulatory focus describes an individual’s goal orientation. It is an individual trait tied to reward-based 
behavioral motivation, and thus is expected to influence how different individuals respond to reward-based 
training interventions and feedback. Our work revealed significant effects of regulatory focus on how indi-
vidual trainees responded to feedback framing in a go/no-go paradigm. Trainees’ prevention focus or pro-
motion focus, under different feedback conditions and different strategic affordances, predicted perfor-
mance improvements or decrements. Regulatory focus is simple to measure with a short questionnaire and 
can be included in learner models. These may be used by learner modules to determine states and thus help 
pedagogical agents select appropriate feedback framing options to maximize performance.  

2) Regarding regulatory fit theory, a 3-way model of regulatory focus x feedback-framing x task strategic 
affordances may be more predictive of training outcomes than the traditional 2-way model of regulatory 
focus x feedback-framing. 

The timing differences in our go/no-go paradigms yielded outwardly similar tasks that nonetheless differed 
in their strategic affordances. The first experiment’s task encouraged a vigilant (i.e., error-avoiding) strat-
egy by creating a rhythmic, pre-potent response to go stimuli that required inhibitory control to prevent that 
response in no-go trials. The second experiment’s task encouraged a more eager (i.e., achievement-seeking) 
strategy by rewarding rapid response to go stimuli that were less predictable in their onset. By exploring 



the relationship between regulatory focus and feedback framing on two strategically different tasks, we 
uncovered evidence of a 3-way regulatory fit effect. The mechanisms underlying this effect remain to be 
examined in future work. Measurements of motivation, attention, or other affective or physiological states 
may shed light on what mediates the 3-way regulatory fit effect. 

3) Small differences in training tasks, such as the timing differences in our study, may substantially affect 
the way that human variability dimensions interact with feedback framing and other personalized training 
interventions.  

The scientific literature shows mixed results for a variety of training interventions, including various points-
based reward schemes used for gamifying training tasks (Hamari, Koivisto, & Sarsa, 2014; Hanus & Fox, 
2015; Seaborn & Fels, 2015) One possible explanation for this variability is that superficially similar tasks 
may in fact encourage different strategies, and the most effective feedback framing may depend on the 
strategy that the task is encouraging trainees to use. In our study, a subtle difference in timing was enough 
to yield tasks that relied more or less on vigilant vs. eager strategies, even though both were go/no-go tasks 
with the same visual stimuli and same points-based feedback. This highlights a need to think clearly about 
what strategies a given training task may afford. It may be beneficial to develop an ontology of strategic 
affordances of candidate tasks and consult this when designing training interventions that rely on regulatory 
fit or, by extension, fit with other individual trainee traits or states. Strategic affordance may be a useful 
variable to include in domain modules in intelligent tutoring systems like GIFT.  
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