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Abstract The U.S. Army is interested in extending the application of intelligent
tutoring systems (ITS) beyond cognitive problem spaces and into psychomotor
skill domains. In this paper, we present a methodology and validation procedure
for creating expert model representations in the domain of rifle marksmanship.
GIFT (Generalized Intelligent Framework for Tutoring) was used as the architec-
ture to guide development efforts and was paired with an Army marksmanship
simulator that collects behavioral information through sensor technologies. The
models were based on expert data from eight members of the U.S. Army Marks-
manship Unit’s Service Rifle Team. The goal is to establish validated models that
serve as artificial intelligence assessment criteria for driving a self-regulated
training environment. We review the techniques applied to the data for model
construction, the trends found in the data that are generalized across each expert
informed through cross-fold validation practices, and discuss how the models will
be used for driving real-time assessment. Results support the utility of generalized
expert models across the fundamental components of rifle marksmanship as
outlined in U.S. Army doctrine.
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Introduction

The United States Army seeks to leverage advancements in computing technolo-
gies to reshape how simulation-based training applications are used. Ultimately,
the goal is to develop adaptive digitized learning products that employ artificial
intelligence and/or digital tutors to tailor learning to the individual soldier across
an array of military relevant domains (Department of the Army 2011), with a goal
of replicating findings highlighted in Bloom’s 2-sigma problem (Bloom 1984).
The aim is to develop technologies that produce the same learning benefits
achieved when individuals acquire knowledge and skill through interactions with
an expert human tutor or coach. While Intelligent Tutoring Systems (ITS) have
seen success among multiple academic and military applications (Kulik and
Fletcher 2016; VanLehn 2011), most triumph stories are seen in well-defined
cognitive problem spaces (e.g., VanLehn 2011; Stottler et al. 2001; Steenbergen-
Hu and Cooper 2014; Steenbergen-Hu and Cooper 2013). A recognized gap in this
training paradigm is the soldier’s requirement to perform critical tasks in domains
that involve interplay between cognitive and psychomotor task components. Prior
work has investigated the application of ITSs for training procedural mechanical
tasks within virtual reality scenarios guided by pedagogical agents (Rickel and
Johnson 1999), but their utility has not extended into the physical task environ-
ment. In lieu of this, Lieberman and Breazeal (2007) investigated a vibrotactile
feedback approach to learning new motor skills, with improved accuracy when
that channel of feedback was active. The findings across this study are promising;
however, their approach outside of controlled lab settings is still unproven.

Creating an ITS that accounts for a combination of cognitive and psychomotor
elements can prove challenging. This is because a system of this nature must be able to
collect and model task relevant behavioral measures for the purpose of guiding
formative assessments. In addition, it must do so in the tasks’ natural environment
without hindering task-related movements of an individual (Goldberg 2016). This
ensures models derived from interaction are not impacted by the means in which the
behavioral data is acquired. Rather than modeling and monitoring steps toward solving
a problem and identifying misconceptions and impasses along the way, the psychomo-
tor use case focuses on behavior and its inherent influence on performance; specifically,
what nuances of a task are dictated by behavioral patterns and what strategies can be
enacted to assist an individual in acquiring the ability to replicate a desired behavior
across multiple trials. Investigating technologies to facilitate this inference procedure is
critical. A psychomotor ITS requires methods to consume perceptual information that
associates with task relevant behaviors, along with models that determine how the
captured data relate to a representation of desired behavior or common errors (i.e.,
expert models and buggy-libraries). Collection of such data is technologically difficult
to capture and classify in a manner that is directed for assessment purposes.

In an effort to evaluate the efficacy of utilizing ITS methods for training psycho-
motor skills, a military relevant domain was selected to guide development efforts.
From a programmatic perspective, we sought a domain currently using sensors to
collect behavior and performance data to assist in the development of a set of physical
skills. With this criterion, the domain of rifle marksmanship was selected, as it is of
the highest priority to the U.S. Army and currently utilizes high-end custom
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simulators with embedded sensors in their program of instruction (Ranes et al. 2014).
Marksmanship is an excellent initial use case as it is a complex psychomotor skill
demanding high levels of concentration and extended applications of fine motor
control (Pojman et al. 2009). In addition, it is considered a pivotal fundamental to
success of military operations (Yates 2004).

Basics of Rifle Marksmanship

For building an adaptive training capability, it is important to understand the nuances
associated with marksmanship training. In terms of objectives, rifle marksmanship
focuses on the basic functional elements for effectively operating the weapon, and
begins with instruction on consistently striking static targets at fixed distances
(Department of the Army 2016). The Engagement Skills Trainer II (EST II) is a
simulated firing range developed to provide a cost-saving solution for deliberate
practice of marksmanship functional elements (Department of the Army 2016). It
was primarily intended to help meet high throughput requirements while controlling
cost on ammunition and time associated with live range exercises.

The EST II was selected for our research because of its utility to collect behavioral
data at a granular enough level to inform model representations for driving assess-
ment. The simulated weapons utilized in the EST II are manufactured with embedded
sensors that captures behavioral data during system interaction (e.g. trigger pull,
weapon orientation, and aim trace). In practice, these sensor features were included
as information channels an instructor could monitor to better diagnose shooter errors.
This comes with the assumption that an instructor can efficiently access this data and
make accurate judgments on what an individual is doing incorrectly. Though proper
usage has been shown to increase performance while minimizing cost and risk to
soldiers (Platte and Powers 2008), James and Dyer (2011) point out that human
instructors can be subjected to high workload due to concurrent monitoring of
multiple trainees and can be inconsistent in their interpretation of the data and in
their capacity to provide effective coaching. Thus, the primary goal of this research is
to examine how artificial intelligence (AI) methods can be applied in this context to
drive objective assessments that are data-driven and void of subjective inconsis-
tencies related to limitations of human coaches attending to multiple channels.

Building an Adaptive Marksmanship Capability

From an implementation standpoint, applying intelligent tutoring to a psychomotor
domain requires the same piece parts associated with developing any ITS. At a mini-
mum, this includes (1) data types at a granular enough level to inform appropriate
assessments, (2) established models of expert performance to inform performance state
determinations, and (3) a pedagogical model that guides practice and accelerates skill
acquisition through formative feedback and adaptive sequencing (Goldberg et al. 2015).
With advancements in sensing technologies that capture a variety of behavioral markers,
creating a psychomotor ITS is now more achievable than ever (Goldberg 2016).

In the case of building an adaptive tutor for rifle marksmanship in the EST II, the
initial task is establishing models that designate performance outcomes across the set of
behavioral data sources made available from the simulator (Amburn et al. 2014). In this
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instance, we are using the Rifle and Carbine Training Circular, (TC) 3-22.9
(Department of the Army 2016) as guidance to match data sources with specific
functions of the shot process as taught by the U.S. Army. This TC is an Army generated
document that provides specific information on the carbine and how it functions, its
capabilities, and the application of the functional elements of the shot process. The
functional elements (stability, aiming, control, and movement) identified in the TC are
based on thorough task analyses that define the critical aspects of operating a rifle, with
explicit recommendations on how best to perform those functions. In this research, we
focus on selected elements of control (i.e., trigger squeeze and breath control) and body
stability, based on available data from the simulator and the goal of coaching grouping
procedures alone. Historically, these specific elements represented three of the four
fundamentals of marksmanship behavior within Army doctrine. Our approach to
assessing the fourth element, aiming, will be reviewed in the discussion. While the
TC provides a qualitative representation of proper fundamental techniques (top-down),
data is required to back-up these assertions with quantitative methods that provide an
objective-based approach to behavioral performance assessments (bottom-up). Similar
approaches have been applied to expert model development (Ritter and Feurzeig 1988),
but few studies have been applied to determine the effectiveness of such approaches.

In relation to this domain, prior work has investigated data-driven assessments in
marksmanship training. Using a sensor-embedded weapon simulator like those in the
EST II, Chung et al. (2009) were able to improve shooting skills by providing individ-
ualized instruction linked to errors in performance (shot placement) and behavior (body
position, breathing, trigger squeeze and muzzle wobble). In that study, a human coach
was used to review the data and diagnose errors based on a checklist provided by the
researchers.While the checklist was provided to assist in diagnosing error, the subjective
nature of a human coach introduces the potential for inconsistency. In contrast, an ITS
could autonomously review the data, diagnose the problems, and prescribe and deliver
relevant feedback based on a unified representation of appropriate behavior. To accom-
plish this, the ITS requires the capability to analyze the shooter data and determine how
the represented behaviors compare to Army standards. Thus, a critical step in developing
the logic to drive the adaptive marksmanship training systemwas to collect performance
data from expert marksmen and use that data to create an expert model for use in
evaluating shooter performance in real-time. In a complementary study, Nagashima
et al. (2008) examined sensor-based measures for determining differences in marks-
manship performance and expertise levels. Their resulting regression models found
breath and trigger control as significant predictors in classifying an individual as novice
or expert. However, their approach does not provide a real-time assessment capability at
the functional element level required for ITS application and focused coaching practices.

In the following sections, we describe the process employed to create models of rifle
marksmanship based on expert data from members of the U.S. Army Marksmanship
Unit’s (AMU) Service Rifle Team. For development purposes we leveraged GIFT
(Generalized Intelligent Framework for Tutoring), an architecture-based project pro-
viding the tools and methods for authoring and delivering adaptive training in a variety
of instructional domains (Sottilare et al. 2012). For this project, GIFT has been
configured to receive the sensor data coming from the marksmanship simulator, and
physiological sensors worn by the shooter. We present the modeling techniques
applied, the trends discovered, and the methods used for validation purposes. Further,
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we discuss how the models, used by GIFT, can serve as the AI assessment criteria for
providing autonomous, adaptive training.

Methodology

Participants

The expert marksmen for this study were recruited from the U.S. AMU Service
Rifle Team stationed at Fort Benning, GA. Based on previous expert modeling
efforts conducted by a leading researcher in the field at the University of Central
Florida, Dr. Avelino Gonzalez, the sample size selected was eight. This number is
sufficient for exploratory analyses that determine if a generalized model of expert
performance can be constructed. Dr. Gonzalez said, based on his experience and
those of colleagues, that once you get past a few experts they all start doing the
same thing, the same way. This is supported by a similar field of usability study,
where on average five experts identify up to 80% of usability problems (Nielsen
1994). You just have to get a few experts’ worth of data if they are truly top
performers in the field and then validate the models to see if they hold up. Of the
eight experts, six were male and two were female, with an average age of 26. For
reference, the average size of the AMU Service Rifle Team is 16, with small
fluctuations in composition from year to year. Two members were repeat national
champions in service rifle competitions, and five were recognized as being
members of the top one-hundred shooter’s in the country, having received the
President’s Hundred Tab (a badge awarded by the Civilian Marksmanship Pro-
gram to the 100 top-scoring military and civilian shooters in the annual President’s
Rifle Match).

Apparatus

The experimental setup consisted of hardware and software components associated
with Meggitt’s Fire Arms Training System (FATS) M100 Advanced Reality Simulator
(Meggitt Training Systems n.d.). Similar to the Army’s EST II, this apparatus includes a
simulated M4 carbine with embedded sensor technologies for monitoring behavior
variables. In addition, a physiological sensor was incorporated to collect data associated
with breathing patterns not inherently captured by the FATS M100. Each component is
described in detail below.

Marksmanship Training Simulator

The FATS M100 is a simulated marksmanship training environment that supports
individual and collective training events across a full range of weapons. The system
is composed of four components: (1) a computer hard-drive containing all simulation
components; (2) a projection system to visualize marksmanship ranges; (3) a hit detect
camera used to locate shot placements; and (4) the simulated weapon.

The system operates through an infrared laser mounted directly within the barrel
of the rifle. The shooter aims at digital targets projected on a screen. The system
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logs the point of aim in real-time as measured through the optical sensor in the hit
detection camera tracking the laser. When the weapon’s trigger is activated, the
ballistic flyout is computed and the point of impact is recorded. The performance
measures were computed locally on the FATS M100 and sent to the ITS framework
for logging.

The FATS M100 was configured with a virtual shooting range consisting of a
single firing lane and a standard 25 m zeroing target (see Fig. 1). The physical
distance from the firing line to the screen was 26 ft, with the system performing
all the required scaling to simulate the 25 m range. Although the target is placed
(physically in the real world, digitally on the simulator) 25 m away from the
firing line, the human silhouette on the target is scaled down to represent a target
that is 300 m away. Automatic dispersion and wind effects were disabled for the
data collection.

Fig. 1 Standard U.S. Army 25 m zeroing target
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Instrumented Weapon

The weapon used for this study is Meggitt’s fully-sensored M4 carbine that is laser
aligned and assembled specifically for simulator use. It has been validated by the
U.S. Army to have the form, fit, and function of an actual standard issue M4. The
weapon was designed with embedded sensors, including: point of aim through an
infrared laser mounted in the barrel at a 6 Hz sampling rate, a trigger sensor that
measures displacement during the execution of a shot, butt-stock pressure, and the
weapon’s cant angle. All sensors were built within the form of the weapon and
were not discernible to users. Each sensor stream was logged separately and used
as the primary inputs in model development. For initial modeling efforts, weapon
cant and butt-stock pressure were not analyzed, and will not be reported upon in
this paper. To keep the effort manageable, the first-pass at the adaptive marks-
manship trainer was to focus on models linked to the functional elements as
outlined in the Army TC (Department of the Army 2016), with barrel movement,
trigger, and breathing serving as the model inputs.

It is worth noting that the carbine was tethered by a long cable plugged directly into
the FATS M100 system for data logging, as well as into an air compressor that created
recoil effects in the weapon. The amount of recoil is not the intensity of a real weapon
fired (approximately 70%), but sufficient to require a trainee to manage the recoil and
realign their sights on the target between shots.

Breathing Sensor

The Zephyr Technology BioHarness BT is a compact electronics module that attaches
to a lightweight fabric strap with embedded sensors that monitor electrocardiogram
signals and breathing waveforms. The sensor is worn like a heart rate monitor and is
completely wireless. The device was used to monitor participants’ breathing trends
while firing the weapon.

Intelligent Tutoring System Framework

The Generalized Intelligent Framework for Tutoring (GIFT) is an evolving
architecture-based project (Sottilare et al. 2012; access GIFT software through
https://gifttutoring.org). This generalized approach enables system developers to
quickly construct intelligent tutoring capabilities through a set of standardized tools
and messaging schemas. For this study, GIFT provided the architecture required to
create a unified marksmanship system from which data was collected and logged while
subjects interacted with the FATS M100. Modules in GIFT were authored to enable
communication protocols for the collection of the FATS M100 performance
information, the FATS M100 sensor embedded rifle data, and metrics collected from
the BioHarness wearable sensor. All data was logged on a synced time stamp, for easy
merging in a post-hoc setting in support of model development and validation practices.
With respect to this study, GIFT was primarily used as a data collection apparatus to
sync data feeds from multiple channels onto a single logging timestamp to drive model
development. How the models will be integrated and applied in GIFT is discussed
below in the BFuture Work^ section.
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Independent Measures

There are two independent variables (IVs) driving model development: firing stance
and equipment setup (see Fig. 2). The firing stance IV consisted of two positions: (1)
prone and (2) kneeling. The second IV, equipment setup, consisted of two variations of
uniform/equipment arrangements: (1) wearing just the standard Army Combat Uniform
(ACU) consisting of trouser, t-shirt and Army Combat Boot minus the blouse (i.e.,
camo); and (2) same as Bcamo^ but wearing additional combat equipment consisting of
helmet and outer tactical vest with Small Arms Protective Inserts (SAPI) (i.e., gear). As
the goal of the study was to build models of expert performance, the IVs were used to
distinguish marksmanship behaviors to determine if differences are observable across
the two firing conditions and two gear setups.

Expert Model Attributes and Performance Parameters

Dependent measures are associated with two distinct categories. There are measures
linked to performance outcomes that dictate the quality of a firing event, and there are
measures linked to operator behaviors that occur during the execution of a shot.
Individual shot behavior metrics were used to observe how an expert functions during
a firing event and will be used to determine if experts consistently do the same things
across each trial. To determine consistency in application, the procedure involves a shot
group size. For this study, we apply a Bfive-shot group^, which measures the distance
between the two furthest shot points after an individual fires five shots while aiming at
the center of target. The Shot Group Size, Aim Trace and Trigger Displacement
measures were selected because the simulator already produces data supporting these
metrics and because of their relationship to the functional elements of a shot

Fig. 2 Expert model development conditions
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(Department of the Army 2016). Table 1 describes the measures being collected and
their relationship in the process of expert model development.

In this effort we set out to model the behavior of expert marksmen in the act of
using a standard issue M4 to place 5-shot groups on a 25 m zeroing target. In
particular we sought to model per-shot behavior for three functional elements of
marksmanship in temporal proximity to the fire event. The end goal was to
develop a unified set of independent but complementary models against which
the behavior of novices executing shots under comparable conditions could be
used for assessment purposes in an ITS. The shooting activity was patterned after
the B5-shot group^ procedure specified in TC 3-9.22 for zeroing during initial
marksmanship training (Department of the Army 2016). Though our focus was on
modeling individual shot behavior, we considered group size as an aggregate
overall performance measure, choosing to exclude from our modeling calculations
shots belonging to groups with size greater than 4.0 cm, the performance require-
ment specified by the TC.

Procedure

Before participants arrived, the simulated M4 carbines were mechanically and
digitally zeroed by the research team. This involves ensuring that the weapon
sights are set so a shooter will not have to take ballistics into account when
firing at the 25 m zeroing target. The simulated bullet strike will be exactly
where they aimed. To confirm this, the researchers would then fire a few test
five-shot groupings.

Upon arrival, participants received a brief overview of the study and were
asked to fill out an informed consent form. Next, subjects were fitted with the
BioHarness breathing strap, and the sensors were then synced to GIFT for time-
synced data logging. Participants then filled out a Demographics Questionnaire
covering experience in the AMU and the various awards they won throughout
their careers.

Following the administrative portion of the experiment, participants were pre-
sented a short PowerPoint slideshow that reviewed the purpose of the study. They
then received information on the FATS M100 simulator and all the sensors that
collected data during task execution. Next, participants were given the opportunity
for familiarization training with the system. They were instructed on tasks proce-
dures, and then practiced with the weapon for 5 min on the 25-m range. During
practice, the rifle was re-zeroed once for each individual participant. This was to
account for their own particular setup, as the zero applied by the research team was
based on a proctor’s shot placement. The re-zero was also only applied during the
practice portion, prior to main data collection window. The re-zero has no impact on
the analysis, as the goal was to model shots across consistent performance and
placement. Next, subjects were prepped for the main data collection window, where
they were asked to fire at the center of the zeroing target at their own pace. They
were informed that after every 5 shots fired (i.e., a B5-shot group^) the carbine
would become empty and that they would have to reload it with another 5-shot
magazine. After each five-shot group, the participants were presented the placement
of their shots and the associated group size score on screen.

Int J Artif Intell Educ



T
ab

le
1

Pe
rf
or
m
an
ce

an
d
be
ha
vi
or

m
et
ri
cs

dr
iv
in
g
ex
pe
rt
m
od
el
de
ve
lo
pm

en
t

C
at
eg
or
y

M
ea
su
re

ty
pe

D
es
cr
ip
tio

n
D
at
a
so
ur
ce

E
xp
er
t
m
od
el

P
er
fo
rm

an
ce

Sh
ot

G
ro
up

Si
ze

a
•
D
is
ta
nc
e
be
tw
ee
n
th
e
tw
o
sh
ot
s
(w

ith
in

a
5-
sh
ot

gr
ou
p)

th
at
ar
e
fu
rt
he
st
ap
ar
tb

•
U
se
d
to

ga
ug
e
co
ns
is
te
nc
y
ac
ro
ss

sh
ot
s

FA
T
S
M
10
0
Sh

ot
G
ro
up

A
lg
or
ith

m
U
se
d
to

de
fi
ne

ex
pe
rt
pe
rf
or
m
an
ce

B
eh
av
io
r

B
re
at
hi
ng

W
av
ef
or
m

•
R
ea
l-
tim

e
m
on
ito
ri
ng

of
re
sp
ir
at
io
n
pa
tte
rn
s
du
ri
ng

ex
ec
ut
io
n
of

a
sh
ot

B
io
H
ar
ne
ss

B
T
St
ra
p

B
re
at
h
C
on
tr
ol

A
im

T
ra
ce

•
R
ea
l-
tim

e
ca
pt
ur
e
of

op
tic
al
se
ns
or

re
ad
in
gs

in
re
la
tio

n
to

th
e
FA

T
S
M
10
0

FA
T
S
M
10
0
O
pt
ic
al
Se
ns
or

B
od
y
st
ab
ili
ty
,c
on
tr
ol

of
w
ea
po
n

T
ri
gg
er

D
is
pl
ac
em

en
t

•
R
ea
l-
tim

e
m
on
ito
ri
ng

of
th
e
di
st
an
ce

di
sp
la
ce
m
en
t
of

th
e
ca
rb
in
e’
s
tr
ig
ge
r

FA
T
S
M
10
0
T
ri
gg
er

Se
ns
or

T
ri
gg
er

C
on
tr
ol

a
Si
ze

of
gr
ou
p,

re
ga
rd
ed

as
a
pr
op
er
ty

of
ea
ch

sh
ot

w
ith
in

th
e
gr
ou
p

b
In
de
pe
nd
en
t
of

th
e
gr
ou
p’
s
po
si
tio
n
re
la
tiv

e
to

th
e
4
cm

ci
rc
le
on

th
e
25

m
ze
ro
in
g
ta
rg
et

Int J Artif Intell Educ



All participants were given 18 min in each of the four conditions to fire as
many 5-shot groups as they could with self-regulated breaks administered when
needed to control the effects of fatigue. If a participant’s shots were consistent in
their location but not in the center of the target, the M4 was digitally zeroed again,
simulating the mechanical process of a shooter on a real range adjusting their
mechanical weapon sights to correct for individual sight picture differences. This
re-zeroing process was applied only once for each participant, if necessary, to
account for their particular set-up and eye relief. This did not alter the measure-
ments collected but provided reassurance to the expert performers who were used
to seeing their shots accurately represented. Condition interactions were sequenced
in the same order for all participants; Camo-Prone, Camo-Kneeling, Gear-Prone,
and Gear Kneeling. Upon completion of data collection with the FATS M100,
participants completed a post-experiment survey.

For reference, the post-experiment survey was used to gauge reactions across each
experiment as it related to the apparatus and their performance. All eight experts agreed
they performed to the best of their ability, and zero experts claimed interference issues
due to the sensorized and tethered carbine.

Data Capture and Analysis

In this section we describe the process involved in expert model development, includ-
ing the capture and logging of data, initial data processing, and data reduction practices
to produce variables to drive model creation.

Data Capture and Logging

Time-stamped data from all systems and sensors were recorded by GIFT. The FATS
M-100 data were recorded as part of the domain session log using the GIFT logging
protocol. Sensor data was logged directly by the sensor module. These logs were
created by the system for each participant.

GIFT Plug-in for the Marksmanship Simulator and Breathing Sensor

A custom GIFT Gateway plug-in was developed to receive data from the Meggitt
System over a TCP socket connection. Simple binary packet formats were established
in collaboration with Meggitt staff.

Key packet types included:

& New Target
& Aim Data
& Weapon Sensor Data
& Fire Event
& Practice End

Aim data (based on x/y coordinates) and weapon sensor data were collected at 6 Hz.
Time sensitive packets (aim, weapon sensor data, and fire events) were time stamped
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by the Meggitt system. A time sync protocol was used to relate time stamps on the
FATS M-100 with the GIFT domain session time.

A GIFT plug-in was developed for the Zephyr BioHarness to receive the data
wirelessly via Bluetooth. Data types included ECG Waveform, Breathing Waveform,
and a General Packet. The breathing waveform data was sampled at 18 Hz and was
processed by GIFT in bundled packets.

Performance Criteria for Model Development

Before delving into the methodology applied to construct expert models, it is important
to highlight the expertise of the sample from which the data was collected. As described
above, each expert was asked to perform a series of five-shot groups across four
conditions. The goal was to collect a large sample of experts doing what they do best,
with performance criterion being defined to designate shots for inclusion in the model
builds. A current standard threshold associated with rifle marksmanship grouping
exercises is 4 cm for shot group size (Department of the Army 2016). Therefore, we
deemed all 5-shot groups under 4 cm to be expert-quality shots for further analysis. For
a visual breakdown of expert performance across all conditions, see Fig. 3.

In visually examining the performance outcomes across all experts, you can see the
quality of shots as represented by standard mean, min, and max descriptive statistics.
What is most noticeable is the variability in performance when comparing shots
produced in the prone condition against those in the kneeling stance (namely, kneeling
on average produces worse performance than the prone position). These outcomes
display a homogenous representation for the prone conditions, while exhibiting a
heterogeneous sample for the kneeling (see Table 2). This will impact the models
developed, as experts with more qualifying groups will contribute significantly more to

Fig. 3 Mean (black circle), min, and max shot group size for each expert in all associated conditions
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the resulting model. For a detailed statistical breakdown of performance comparisons
across conditions, see Amburn et al. (2016). It is worth noting that we experienced
technical difficulties with participant 6 in the camo/kneeling condition, where we only
collected a single 5-shot group before a system crash. Due to time constraints we were
unable to complete any further groups in that condition. As the produced group was
above 4 cm, participant 6 behavior data was not accounted for in the model built for
that condition. For reference, Table 2 lists the number of 5-shot groups collected for
each participant in each of the four conditions that met our 4 cm performance criterion
for inclusion on our model analyses.

Initial Data Processing

With a large sample of shots meeting the 4 cm performance criteria, the next phase in
expert model development is examining each expert’s behavioral characteristics across
each shot. The first step in processing the data was to combine the various logs into a
single CSV file containing all relevant experimental data using the GIFT Event
Reporting Tool (ERT; Sinatra 2014). This tool synchronizes all data on a single source
timestamp for appropriate temporal associations across all data streams collected at
varying frequencies. After processing with the ERT, the data for each domain session
was contained in a single CSV file having a row for each unique stamp. These files
were then loaded into the Marksmanship Data Viewer (MDV, see Fig. 4), a tool
developed specifically for viewing and manipulating marksmanship data exported from
the GIFT ERT. The MDV has the ability to load multiple CSV files, allowing batch
operations across multiple domain sessions.

After loading, domain sessions are presented to the user. Selecting a shot causes the
MDV to display that shot’s time-series data. Multiple shots can be selected and their
time series overlaid for comparison. To facilitate the comparison of time series data
from multiple shots the MDV adjusts the time scale of each shot so that t = 0
corresponds to the point where the trigger break occurred (i.e. when the shot was
fired). In addition to manual selection, the MDV also supports shot selection using a
filter. By entering filter criteria and then applying the filter, all shots matching the filter
criteria will be selected (and overlays of their corresponding time series data

Table 2 Number of 5-Shot
groups per condition meeting the
4 cm performance criterion for
each participant

Total number of groups fired are
indicated within parentheses
(*entry based on 4-shot group
calculation due to dropped shot
during data logging)

Participant Camo Gear

Prone Kneeling Prone Kneeling

1 10 (10) 7 (7) 8 (8) 6 (6)

2 10 (10) 2 (9) 11 (11) 7 (9)

3 12 (12) 7 (14) 17 (18) 6 (14)

4 11 (11) 2 (9) 9 (9) 3 (9)

5 10 (12) *1 (7) 3 (10) 2 (8)

6 9 (9) 0 (1) 9 (9) 4 (9)

7 10 (14) 2 (10) 11 (12) 4 (12)

8 7 (10) 3 (8) 10 (10) 8 (13)

Average 9.9 4.0 9.8 5.0
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visualized). In this instance, we applied the filter to identify each shot associated with a
4 cm or less group size measure.

Time Series Data

The design of the system naturally generates several sets of time series data for each
shot. These are referred to as raw time series data and include trigger displacement, aim
X coordinate, aim Y coordinate, and breathing waveform. For analysis purposes, we
found it useful to generate some derived time series as follows:

Barrel Movement Time Series To quantify barrel movement we combined the x and
y coordinates of consecutive aim points using the distance formula:

distancet ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δxtð Þ2 þ Δytð Þ2
q

ð1Þ

The aim points, as described under the data capture section, were derived from the
aim data provided by the FATS M100, which is collected at a rate of 6 Hz. At each time
step the distance is the distance (in normalized screen coordinates) that the aim point
moved since the last time step. This derived variable provides information on the
stability of an aim trace as it relates to distance between data points over a specified
time window.

Trigger Squeeze Time Series The raw trigger squeeze data received from the Meggitt
system was a value in the range of zero to 200, with values at or near zero indicative of
no trigger displacement, and values near 200 indicative of full displacement. A

Fig. 4 GIFT’s Marksmanship Data Viewer (MDV) with trigger squeeze and barrel movement data overlaid
across a single 5-shot group for a participant in the camo-prone condition. (At time 0 is when the shot is fired,
with trigger displacement at 175 units)
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normalization procedure was performed by mapping the minimum signal value to 0.0
and the maximum signal value to 1.0. All other intermediate values were scaled to fit
into range.

Breathing Waveform Time Series Firing during the natural respiratory pause in the
breathing cycle is a common technique used during grouping (Department of the Army
2016). Consequently, our primary objective in analyzing the breathing waveform was
to determine whether breathing was Bquiet^ during the time immediately preceding a
given shot event. Observation of a live feed of the breathing waveform indicated that
the signal reliably increases during an inhale, decreases during an exhale, and flattens
out (albeit with some drift) when the breath is held. Furthermore, we observed from
both live data as well as recorded data that the absolute value of the signal varies too
much to be directly useful. For these reasons, we decided the best approach was to
focus on the magnitude of the Bdeltas^ (i.e., first derivative of the breathing waveform).
Thus, at each time step the first derivative was computed by subtracting the signal value
of the preceding time step.

Figure 5 shows an overlay of the breathing waveforms of each shot within a five-
shot group. The increasing flatness of the curves as the time approaches the shot event
(t = 0) is indicative of the shooter quieting their breathing for each shot. The trace for
shot one (purple) is noticeably higher than the others, highlighting the need for a
derivative approach rather than one based on absolute value.

Data Reduction and Qualitative Analysis

As mentioned previously, each shot generates several sets of time series data. So for
each measure of marksmanship, we sought to distill the time series data for each shot

Fig. 5 Overlay of individual breathing waveforms for a sample 5-shot group for a participant in the camo-
prone condition
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into a single value reflecting the behavior on the relevant element. Doing so would
provide two benefits: The first is that it would create an efficient way to measure each
factor that can be assessed simply by comparing a shooters runtime value against a
threshold value established by the expert representation. Secondly, it allows us to
condense the multi-dimensional raw data set into manageable variable sets amenable
to straightforward statistical analysis.

Subjective Interpretation of Expert Behavior

To implement this approach we started with subjective human interpretation guided by
an understanding of the functional elements of marksmanship, as described in the U.S.
Army TC (3-22.9; Department of the Army 2016). This analysis was reliant on the
visualization capability of the MDV. In particular, we used the time-series overlay
capability to compare and contrast numerous sets of shot data to identify noteworthy
behavioral trends, especially in the period of time immediately surrounding a shot
event.

After viewing just a few graph overlays several observations were made. First, the
barrel movement (as evidenced by the aim trace data) invariably reduced to a minimum
in the vicinity of the time the shot was fired. Secondly, as evidenced by the flatness of
the breathing waveforms, the experts consistently quieted their breath leading up to the
execution of shot, with the hold extending a rough half second following the release of
the round. And lastly, shooters often started squeezing the trigger a second or more
before the actual break of the trigger; the trigger was often held close to the breaking
point (i.e., the point of resistance at which, if any more pressure is applied to the trigger,
the weapon will fire) for a relatively long period of time before a shot was eventually
fired (i.e., ranging between 750 and 2000 ms prior to shot execution).

Data Reduction to Represent Expert Behavior

Based on the subjective observations and the desire to reduce the behavioral data for
each individual shot into a single value, a common statistical approach was applied for
each model. This approach consisted of selecting a time interval (x-axis) in the vicinity
of the trigger break and integrating the sensor signal (either raw or derived; y-axis) over
that interval to calculate the area under the curve (AUC). As an example, we calculate
the AUC for trigger squeeze on a normalized value of the signal for a time window of
1.5 s leading up to execution of the shot, resulting in a single value to describe the
behavior of that signal for that time window. This descriptive metric provides a means
for representing the behavioral trend of a variable over a window of time, with
designated value thresholds serving as a means for performance classification. For
both breathing and body stability (as inferred by barrel movement), a smaller AUC was
viewed as desirable. This is in accordance with the accepted idea that minimizing barrel
movement and quieting the breath during aiming and firing contribute to better and
more consistent performance.

In the case of trigger squeeze, the desired behavior is for the trigger to be pulled
straight back in a smooth motion. After analyzing the data, it was clear that the
predominant behavior was an extended trigger squeeze, bringing the trigger near the
breaking point and holding steady until finally applying enough additional squeeze to
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fire the shot. Based upon this subjective observation, we chose to also perform an AUC
calculation on this data feed; effectively quantifying the degree to which the shooter
employed extended trigger control. To some extent the presence of an extended trigger
squeeze almost guarantees that the first part of the trigger squeeze was smooth, because
it is mechanically very difficult to pull the trigger to near the breaking point using
anything other than a smooth motion.

Once the integration approach was established for all functional metrics, the final
step was to select an integration interval and integration step size for each variable. The
intervals were chosen based upon visual inspection of relevant time series data using
the MDV. For trigger squeeze and barrel movement we chose the interval from 1.5 s
prior to the shot, up until the shot was fired (i.e., from t = −1.5 to t = 0.0). For breathing,
the interval also started at t = −1.5, but extended to t = +0.5; reflecting our observation
that the experts typically kept their breath still for a half second after firing.

The requirements for the integration step size were two-fold. First we wanted the
step size to divide evenly into the integration interval as a whole, and secondly we
wanted it to be as small as or smaller than the interval between the incoming raw data
points to take full advantage of the data. Since the weapon sensor (trigger and aim) data
arrived at 6 Hz, we chose a 100 ms (0.100 s) step size for barrel movement and trigger.
The breathing waveform data arrived very close to 18 Hz so we chose a 50 ms (0.050 s)
step size for integrating the breathing derivative. For each integration step, the midpoint
of the integration delta was calculated, and then signal value for that time was
computed using linear interpolation between the nearest preceding and nearest
succeeding data points.

With support for these computations (derived time series, integration approaches,
and integration parameters) in place, we output the marksmanship data for all shots
meeting our performance criteria to a single CSV file having one row per shot. The first
several columns were set to contain data such as the domain session ID, target ID, shot
ID, shooter-handedness, and the experimental condition (e.g., CAMO_PRONE |
CAMO_KNEELING | GEAR_PRONE | GEAR_KNEELING). Additional columns
were output according to the integration parameters described above, including AUC
calculation for barrel movement, breathing, and trigger squeeze. This spreadsheet
served as the basis for model development, where the AUC measurements were the
inputs to build descriptive representations of behavior. With this data set in place, we
performed a cross-fold validation test to determine the viability of a generalized expert
model based on all observed shooters.

Results

In this section we define the model creation process and review the cross-fold valida-
tion method applied to evaluate the models diagnostic accuracy. Following, the results
of a regression analysis are presented.

Model Creation with Cross-Fold Validation

An Bn-1^ leave-one-out cross-fold validation process was used to validate the accuracy
of the developed expert models. The process was carried out as follows:
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1. From the produced data set described above, set parameters to locate only shots
associated with a 4 cm group size or smaller. The 4 cm group size threshold was
used to identify shots that exhibited consistent behavioral application. An assump-
tion with this approach is that a small group-size associates with consistent expert
behavior, with the individually associated shots being ideal for modeling to
determine the utility of a generalized model of fundamental application of marks-
manship behaviors.

2. From this subset of expert performing shots, create a descriptive model of marks-
men behavior using individual shot data from seven of the eight participants (the
excluded participant will be used as a test case).

3. Resulting models (breathing, trigger control, and aim trace) are based on the mean
of all AUC measures across all individual shots recorded within the shot groups
meeting the performance criterion. Model thresholds are defined as any AUC value
within two standard deviations of the mean to be classified as expert-like behavior.

4. Compare (Bcross-check^) the excluded participant’s shots to the created model to
determine whether the excluded participant exhibited expert-like behaviors; the
behaviors in an accurate generalized model should align with the behaviors of any
given expert (e.g., the excluded participant). A measure of how well the model
performed is the percentage of shots by the excluded participant on which the
participant’s behaviors aligned with the model (within two standard deviations of
the model mean or better).

5. Repeat the above process for each condition (stance, gear), behavior (barrel
movement, breathing, and trigger control), and with each participant taking a turn
as the excluded participant (used as the test case).

Cross-Fold Validation Results

Table 3 summarizes the results from one iteration of the aforementioned cross-
fold validation process. A table of this nature was produced for each behavioral
metrics (breathing, barrel movement and trigger control) and across each of the
four firing conditions. This cross-check provides a means for identifying if there
are existing statistical trends in behavioral application, and for recognizing
outliers that produce expert-like results but perform the task in a dissimilar
fashion to the others.

In evaluating model builds, it is important to identify extreme outliers, as they
can impact models by skewing associated descriptive metrics. For instance, the
trigger control model tracks trainees’ behavior through the computed AUC mea-
sure, with steadier trigger pulls corresponding with larger values. In Table 3, one
such outlier was identified: Participant 3’s trigger control was recognized as being
so unlike the other experts’ (even with overall performance being very good) that
the Bmean minus 2SD^ column is filled with negative numbers whenever Partic-
ipant 3 is included in the model (negative values being an impossibility for AUC
calculations). As a result, all shots when compared to models incorporating this
participant’s data were classified as expert. For this reason, we opted to create
trigger control models with participant 3’s data removed entirely. Table 4 summa-
rizes the trigger control model tests with this omission.
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With the goal of establishing generalized models of behavior strategy, excluding
individuals who exhibit a different strategy is important to ensuring the generated
model depicts the strategy being modeled. This assumption is supported by Siegler
(1987, 1988) where strategies across different cohorts of students when learning math
were identified and modeled, with exclusion of student data when their strategy was
classified as different from the rest. When the trigger control models were built without
Participant 3, the AUC values were much more homogeneous and representative of
how most experts pull the trigger steadily; relative to the other experts, Participant 3

Table 3 Cross-fold validation summary table for trigger control in the Gear/Prone condition

Excluded from model
(used as test case)

Observation count Trigger control model
(higher = steadier)

Cross-check of
excluded participant

Participant Excluded
shotsa

Included
shotsb

Total
shots

Mean Mean minus
2SD

Expert-like shots
(trigger control)c

Pct shots
like expertc

1 40 350 390 0.913 −0.0081 40 100%

2 55 335 390 0.951 −0.058 55 100%

3 85 305 390 1.157 0.583 9 11%

4 45 345 390 0.945 −0.066 45 100%

5 15 375 390 0.936 −0.042 15 100%

6 45 345 390 0.911 −0.083 45 100%

7 55 335 390 0.920 −0.096 55 100%

8 50 340 390 0.890 −0.089 50 100%

a Shots taken by excluded participant, which is the one indicated in the left-most column (the number of shots
taken by each participant varies as a function of the number of 5-shot groups that met performance criteria)
b Shots meeting performance criteria taken by all remaining participants for that n-1 combination
c Comparing shots taken by the excluded participant (indicated in the left-most column) to the expert model
built via the behaviors of the other seven participants and the associated 2SD threshold

Table 4 Cross-fold validation table for trigger control in the Gear/Prone condition with participant 3 removed

Excluded from model
(used as test case)

Observation count Trigger control model
(higher = steadier)

Cross-check of
excluded participant

Participant Excluded
shots

Included
shots

Total
shots

Mean Mean minus
2SD

Expert-like shots
(trigger control)

Pct shots
like expert

1 40 265 305 1.139 0.542 40 100%

2 55 250 305 1.203 0.708 37 67%

3 – – – – – – –

4 45 360 305 1.186 0.633 40 89%

5 15 290 305 1.150 0.569 15 100%

6 45 260 305 1.141 0.553 43 96%

7 55 250 305 1.162 0.573 54 98%

8 50 255 305 1.118 0.534 49 98%
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was Bslapping^ the trigger (i.e., pulling and releasing very quickly). As a result, the
model’s threshold for a participant being considered an expert is a bit higher in Table 4
than in Table 3, and Table 4 therefore served as a better threshold to compare experts
against. For all conditions and all measures, participant 3 in trigger control was the only
recognized outlier that warranted removal from the model builds.

These generated tables were then evaluated to determine the efficacy of a general-
ized behavioral expert model, and to further identify experts that exhibit different
behaviors when performing marksmanship tasks. As an example, in Table 4, Participant
2 produced 55 qualifying shots, but only 67% of those shots exhibited expert-like
trigger control when compared to their peers. In this instance, the model generated
excluding this individual’s data is deemed to be the most representative of proper
trigger control from an assessment standpoint.

From our initial results, the data supports a generalized expert modeling
approach that accounts for multiple behavioral representations on a single mea-
sure. In Table 5 we present an overall summary of all cross-fold validation results
for all condition/metric pairings. In this layout, statistics are presented regarding
the number of shots meeting performance criteria for inclusion in the model
builds for each condition, along with the number of experts falling within
performance categories based on percentage of shots meeting the 2-SD threshold
during their cross-check procedure. For an expert’s data to be included in that
condition’s generalized model for, we required each individual to have their
behavior AUC values classify, at a minimum, 90% across their individual shots
as expert-level. Anecdotally, for each measure and in each condition, at least one
expert (but never more than two) exhibited significantly different behavioral
techniques when evaluated through cross-check procedures. While the perfor-
mance from these individuals met expert criteria, the behaviors recorded during
execution of those shots were statistically different from their counterparts, and
varied from the doctrinal descriptions of fundamental application. For this reason,
those individuals were excluded from the condition model builds on the associ-
ated behavior classified as non-expert.

Regression Analysis

Following model creation and cross-fold validation checks, using SPSS Statistics 19, a
final analysis on the expert data set was run to evaluate the influence these behavioral
measures had on performance outcomes. The goal was to determine the best combi-
nation of behavioral variables for predicting marksmanship scores. For this purpose, we
generated a performance value for each individual shot as it related to the shot group it
was fired within. With shot group size being applied for determining consistency of
marksmanship application, we calculate individual shot performance by measuring the
distance of each shot location to the designated center of that cluster of five shots. In
doing so, we can identify the shots within a group that had the greatest impact on
overall group size calculations, along with being able to link each behavioral repre-
sentation with a performance score that associates with its accuracy within that
designated cluster.

With this new performance metric at the individual shot level, a stepwise regression
test was performed on the entire data set (see Table 6 for results), with the individual
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shot performance score defined as the dependent variable and all behavioral data and
firing condition information entered in as predictors. At step 3 of the analysis the
behaviors of barrel movement and trigger, as represented by the AUC value, and the
stance from which an expert shot from (prone vs. kneeling) entered into the regression
equation and were found to be significantly related to shot group size performance. The
multiple correlation coefficient was .452, indicating that approximately 20% of the
variance of an individual shot score could be accounted for by the stance in which a
shooter fires from, and the control that individual had over their weapon’s aiming and
trigger. The gear setup and breathing AUC factors were not found to significantly
impact performance and were therefore not entered into the regression equation; they
were instead listed as exclusion variables (gear setup, t(1555) = −1.326, p > .1;
breathing control, t (1555) = −1.444, p > .1).

Discussion

In an effort to develop an adaptive marksmanship training capability, the above results
support the utility of a generalized model of expert performance for the purpose of
diagnosing novice errors across fundamental principles within rifle marksmanship. The
analysis is insightful as it aggregates functional elements of a psychomotor task into a
set of unified conceptual models for driving coaching practices within a grouping
exercise. Through cross-fold validation techniques, trends across experts when
performing standard shot grouping procedures were identified based on AUC metrics.
These AUC values, and their designated thresholds identified during model analyses,
will serve as the basis for the assessment logic in the first closed-loop adaptive
marksmanship tutoring system testbed. The outcomes supporting a generalized repre-
sentation of expert behavior are reinforced in literature centered on the modeling of
expert behaviors in cognitive problem domains. Siegler (1987, 1988) found experi-
enced individuals in the domain of mathematics to apply consistently similar behavioral

Table 6 Results of the multiple stepwise regression analysis

T P Β F df P Δ R2

Step 1

Overall model 295.939 1, 1554 < .0001 .159

Firing stance 17.203 < .0001 .866

Step 2

Overall model 188.923 2, 1553 < .0001 .195

Firing stance 9.620 < .0001 .579

Barrel movement 8.304 < .0001 156.668

Step 3

Overall model 171.142 3, 1552 <.0001 .202

Firing stance 9.632 < .0001 .577

Barrel movement 8.653 < .0001 163.047

Trigger control 3.989 < .0001 .224
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techniques to solve problem sets, with analogous findings from Rauterberg (1995) in
the domain of electronic data processing. Rautenberg posits that an expert’s more
complex cognitive mental representation of a problem space leads to less complex
behavioral solutions when comparing expert to novice solution paths in that domain of
study. While these conclusions are in support of a generalized expert model, the
application of this approach in a psychomotor domain requires further validation to
confirm the methods applied produce the diagnostic sensitivity required to inform
relevant assessments for driving coaching and feedback.

What’s interesting is a possible contradiction between what is described in the
TC, and what is observed in the data. In particular for trigger control, we observe
a slight discrepancy in what is described in the training doctrine and what was
observed in the data. While the TC focuses on a smooth application of pressure
through the shot, we observed the experts slowly remove the slack in the trigger,
with an extended pause at the breakpoint prior to shot execution. This highlights a
need to further apply modeling techniques to support a bottom-up validation of the
task descriptions provided in the TC. These analyses could change the way
doctrine is formalized with data-driven methods.

In integrating these models into GIFT’s architecture, design decisions must be
addressed that direct coaching decisions as derived from GIFT’s Learning Effect Model
(LEM; Sottilare 2015). In this context, GIFT must be able to assess both performance
and behavior, and use this information to select a concept to remediate and a feedback
strategy to intervene with. Therefore, creating logic to de-conflict performance and
behavioral outcomes is required, along with building logic to de-conflict the recogni-
tion of multiple erroneous behaviors within a single shot instance. To drive these
decisions, findings from the model analyses, along with results from the regression
tests, are used to establish pedagogical production rules for deciding what concept to
coach and when to coach it.

Handling the BNon-Expert^ Experts

Before addressing pedagogical considerations based on model outcomes, it is im-
portant to discuss the nuances between performance and behavioral application in a
psychomotor domain. In many instances, individuals apply unconventional methods
to attain performance goals, with some attaining expert performance marks. In this
research we found across all measures, and within each stance/gear combination,
there was always one recognized expert who performed at an optimal level while
exhibiting statistically different behaviors as read by the sensing technologies. In
terms of pedagogical management, this type of performer must be accounted for.
From a behavioral standpoint, this individual would be recognized as erroneously
performing fundamental behaviors, while registering expert-like performance out-
comes. These competing assessments must be resolved to prescribe the most appro-
priate feedback for that trainee. As an example, if a tutor was developed to train
overhand free throw technique in the domain of basketball, how would the system
operate for a player who shot very well underhanded? Naturally, the expert behav-
ioral models will determine that the performer is not executing proper technique as
deemed by a traditional overhand model, yet their performance could register
accuracy outcomes equal to or better than that of an expert.
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Should an ITS intervene and correct that individual’s behavior, or should it allow the
individual to continue with their technique as long as performance remains above
threshold? Based on this, we believe performance should be the overarching determi-
nant of feedback types. Only when performance is not optimal should behavioral
models be applied to determine the cause for erroneous application. Yet, for some
individuals, subtle feedback on identified non-expert behaviors while producing expert-
like performance might be enough for that individual to perform even better. Accord-
ingly, future research is required to better determine how to handle these unique
relationships and to optimize learning interventions based on empirical evidence.

Insights from Regression Analysis

In further breaking down the role of expert models in assessing functional elements of
rifle marksmanship, it is important to understand the relationship between each element
and performance. In addition, it is also important to determine if the assessed indepen-
dent variables produced enough variations in behavior to constitute developing separate
assessment models across both stance and gear conditions (see Amburn et al. 2016 for
additional analyses on gear effects). To examine these relationships, a stepwise multiple
regression was performed.

The outcome of this multiple regression identified firing stance as the most predic-
tive behavior to shot group size. This variable alone accounted for 16% of the variance
in performance, with barrel movement and trigger control also being identified as
contributing variables to the regression equation (see Table 6). With barrel movement
shown as a significant predictor, existing aim trace feedback tools already built into the
EST can be applied for coaching purposes, but their effect must be studied.

However, the most interesting finding from this test is the identification of both
breathing AUC and presence of gear as exclusion variables to the model (i.e., they were
not found to significantly contribute to the model’s predictive power). This is signif-
icant, as this study highlights the function of breath control to have little to no influence
over an individual’s resulting performance across shots (see Fig. 6). As you can see in
the graphic, there are many instances where non-steady breath patterns (signified by
higher value AUC measures) result in expert performance, and there are instances
where a steady quiet breath result in poor performance outcomes, showing little
correlation across the expert population. Furthermore, when comparing gear effects
across both prone and kneeling, those in gear exhibited a slightly noisier breath pattern
than those wearing just camo. Performance outcomes showed no difference within the
prone position; however, despite not breathing as steadily with gear in the kneeling
position, the experts on average produced smaller group sizes (see Amburn et al. 2016
for full statistical breakdown). This finding de-emphasizes breathing’s effect on shot
accuracy, and is in contrast to the resulting regression equations reported by Nagashima
et al. (2008), where they found breathing and trigger control as significant predictors in
determining novice from expert. However, it is difficult to compare the two studies as
this approach examines expert behavior alone and its impact on performance outcomes.
For a further breakdown of comparisons across experimental conditions, see Amburn
et al. (2016). With plans for novice data collection in place, future analyses will be
conducted to confirm these findings, and to establish profiles to better inform assess-
ment practices. It is important to state that these claims are based on the expert
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performers from whose data our analysis was conducted. Further research is required to
investigate the role breathing has on novice and journeyman performance.

Initially, the outcomes of this analysis will be applied for pedagogical purposes.
The pedagogy should be considered from two perspectives: (1) in a self-regulated
training environment where GIFT performs all assessment and provides all coaching,
and (2) in an instructor facilitated event where GIFT provides support to the instruc-
tor and coaching to the trainee when appropriate. For the self-regulated use case,
pedagogical considerations are made based on the assessment practices in place. It is
not the ideal situation, as the models do not account for the critical functional element
of the aiming process. However, to provide an initial coaching capability based on
available data sources, some inference procedures needed to be defined. In the
instance where all functional element behavioral measures are reporting as non-
expert, we will apply the outcomes from this analysis to rank the concepts for conflict
resolution purposes. According to the model, the most important component to
correct first is a stable position to achieve steady barrel movement, followed by
coaching a proper trigger control technique, followed by instruction on breathing
effects during shots. While we cannot directly assess how an individual is aiming
during a shot, we apply a pedagogical approach that targets a single functional
element at a time. The goal is to target the functional elements we can monitor and
track, with focused procedural training applied for the aiming process when consis-
tent behavior is recorded across the remaining shot behaviors. In the second use case
with an instructor in the loop, the pedagogical approach can be modified, as GIFTcan
be applied as a decision support tool. In this instance, we can use the instructor as an
additional assessment resource, where they can apply their subjective interpretation,
including elements related to aiming and sight alignment.

Fig. 6 Plot of breathing AUC values in relation to single-shot performance as computed for the regression
analysis
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Future Work

With established expert models holding up to cross-fold validation procedures, the next
step is integrating the model features in GIFT to establish a fully automated closed-loop
testbed, which requires two primary development tasks. First, GIFT must be able to
perform, in real time, the statistical computations the models are based on. With the
ability to consume and log all behavioral information already in place, condition classes
must be established for computing AUC values based on preconfigured parameters
(e.g., transform trigger signal data into normalized range from 0 to 1 and compute AUC
for time interval t = −1.5 s to t = 0 s). With this capability, GIFTcan be configured to act
on AUC values for triggering feedback interventions, which requires establishing
domain representations within GIFT’s authoring schema that adheres to the domain-
independent nature of all remaining modules.

In GIFT, the authoring schema applied for managing real-time assessment in
external applications is GIFT’s Domain Knowledge File (DKF). When building a
DKF, the author is responsible for three elements: (1) building an ontological hierarchy
of concepts a given training event will assess (e.g., the functional elements of rifle
marksmanship), (2) building assessment logic across all identified concepts based on
available data and established condition classes, and (3) building instructional inter-
ventions (i.e., coaching prompts) that will be triggered based on assessment outcomes.

In building the assessment logic, the author has the ability to define three levels of
performance based on GIFT standards (below-, at-, and above-expectation performance
state messages; see Table 7 for defined thresholds in GIFT’s DKF). Each of these
expectation classifications have their own designated thresholds for this marksmanship
testbed, where an AUC within 1 standard deviation of the expert mean is designated
above-expectation and an AUC within 1 SD and 2 SD are labeled at-expectation. After
each shot, these associated performance states are determined and logged. After a
completed 5-shot group, each functional element produces a score based on the DKF
assessments (above-expectation is worth two points, at-expectation is worth one, and
below-expectation is worth zero). If a group size is larger than the designated 4 cm
threshold, the behavioral functional element with the lowest score is selected for
remediation. In the event of a tie, the highest ranked concept based on the regression
analysis will be selected. It is also worth noting that our assessment techniques only
cover three of the four functional elements targeted for this study. With no viable source
to provide data on how an individual is aiming their rifle (i.e., aligning the front sight
post over a target’s center of mass, focusing their eyes on the front sight post and not
the target, etc.), we apply an inference procedure to manage this elements’ assessment.
If all behaviors register within expert thresholds (steady barrel movement, steady
trigger control, and a quiet breath) but their performance is above 4 cm, we infer that
individual is varying their sight picture from shot to shot. This is consistent with Army
doctrine which states, BWhen both a solid position and a good trigger squeeze are
achieved, any induced shooting errors can be attributed to the aiming process for
refinement^ (Department of the Army 2016, p. 8–2).

When authoring instructional interventions, the developer can select what a trainee
will see if a fundamental is selected for remediation. The author also has the ability to
enter multiple variations of feedback and interventions, allowing for escalating levels if
a concept is erroneously performed in multiple instances. These configurations are also
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entered in the DKF schema and link feedback content to instructional requests from
GIFT’s pedagogical module. For the initial coaching system using the generated
models, three levels of feedback are configured for each functional element being
assessed. The first level of feedback is a single summary slide highlighting important
aspects of the functional element being coached. The second level consists of a short
video displaying an AMU instructor explaining the functional element being coached.
And the third level is a detailed slide deck breaking down the functional element into its
piece parts. This approach is being applied to support the first closed-loop testbed and
will be used for an initial experiment with novice participants receiving ITS led
marksmanship training.

It is important to discuss the implications of using an expert modeling ap-
proach to drive the pedagogical decisions described above. While the models
derived from the AMU experts can be applied to determine if an individual is or
is not behaving like an expert, the models do not have the diagnostic power to
determine what error is occurring when expert behavior is not observed. In these
instances the pedagogical functions are limited to coaching interventions on the
techniques the models are based around. To explore extending the assessment
logic even further, the notion of a buggy-library modeling approach is being
considered (Pavlik et al. 2013). The challenge is generating a labeled data set that
accurately and consistently classifies common novice behaviors from expert
annotation. To support this modeling approach, we are generating a labeled data
set of shots based on assessments performed by an expert human instructor
during a novice data collection. Post-hoc analyses will allow us to determine if
shots classified with the same annotated label contain statistically similar behav-
ioral representations to build assessment logic around. This buggy-library ap-
proach would enhance the diagnostic power of GIFT assessments to account for
common novice misconceptions that would ultimately inform more prescriptive
feedback content.

Motor Response Inter-Dependency

Our analysis treated the three behavioral measures independently, yet they are clearly
not independent. Most notably, we used barrel movement as a proxy for a stable body
position, however barrel movement can be adversely impacted by both poor breathing
technique and poor trigger squeeze technique. No doubt, breath and trigger skills are
taught precisely because of their beneficial effect on barrel stability and the resulting
improvement in aim quality.

Unraveling the interdependencies of these variables could be crucial for the
eventual creation of an effective automated adaptive marksmanship tutoring
system. A clear understanding of these relationships could lead to optimization
of instruction via prioritized sequencing of targeted pedagogy. For the current
effort our intent was simply to capture and characterize the behavior of expert
shooters while in the act of creating quality shot groups. Interdependent or not,
the captured data reflects how the expert shooters perform under the conditions
set forth. With appropriate statistical analysis of the captured data we could
conceivably shed some light on the various interdependencies; however, such
an investigation would be more revealing if performed on a data captured from
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cohort of shooters representing a broad range of marksmanship abilities. Identi-
fying causal linkages can improve the assessment practices by demonstrating the
impact specific behaviors have on shooter stability, and as a result, improve
pedagogical practices that adhere to procedural coaching for promoting effective
behavioral application. Nevertheless this is certainly a promising avenue worthy
of future exploration.

Extending Methods Beyond Marksmanship Grouping Fundamentals

The initial scope of the first adaptive marksmanship capability is focused on the skills
linked to grouping exercises (i.e., getting an individual to consistently strike a target in
a repeatable fashion), and the models presented above fit that context alone. Further
application of ITS methods to more advanced marksmanship skill sets (e.g., hitting
targets with limited exposure times at varying distances, hitting moving targets, etc.)
requires additional research to determine the best way to model the task’s behavioral
variables that would drive assessment practices. The models created are limited to the
environment they were established within, and should not extend to training events
outside basic rifle marksmanship task types.

Conclusion

This work is among the first to address the need for automated, personalized, and
intelligent psychomotor training. Methods for measurement, model creation, and expert
validation were addressed, along with their implications of being implemented in
GIFT’s domain-independent architecture. In terms of modeling psychomotor domains
to guide adaptive instructional methods, this work lends itself to lessons learned that
can inform recommendations for future practitioners and future developmental features
native to GIFT’s authoring and run-time environments.

In terms of furthering the work presented, the next phase is to run a validation
study using novices with little to no experience handling rifles. Through this
approach we can evaluate the efficacy of using the AUC thresholds to diagnose
errors in accordance with some of the functional elements of rifle marksmanship,
as well as determine if feedback generated from these assessments can ultimately
improve performance over time. During the writing of this paper, we are currently
analyzing data collected from a four-condition experimental design: (1) ITS
managed assessment and feedback delivery, (2) randomized feedback delivery
regardless of assessment outcomes (used to determine if assessment driven
feedback is better than feedback by itself), (3) a human coach condition with a
rifle marksmanship instructor (ideal case), and (4) a no-feedback control condi-
tion. This study will provide initial training effectiveness measures on the
methods applied and will inform modifications to the training materials used
for coaching.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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