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This book is the fifth in a planned series of books that examine key topics (e.g., learner modeling, instruc-
tional strategies, authoring, domain modeling, assessment, impact on learning, team tutoring, machine 
learning, and potential standards) in intelligent tutoring system (ITS) design through the lens of the Gener-
alized Intelligent Framework for Tutoring (GIFT) (Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, 
Brawner, Sinatra, & Johnston, 2017). GIFT is a modular, service-oriented architecture created to reduce 
the cost and skill required to author ITSs, manage instruction within ITSs, and evaluate the effect of ITS 
technologies on learning, performance, retention, transfer of skills, and other instructional outcomes.  

Along with this volume, the first four books in this series, Learner Modeling (ISBN 978-0-9893923-0-3), 
Instructional Management (ISBN 978-0-9893923-2-7), Authoring Tools (ISBN 978-0-9893923-6-5) and 
Domain Modeling (978-0-9893923-9-6) are freely available at www.GIFTtutoring.org and on Google Play. 

This introduction begins with a description of tutoring functions, provides a glimpse of assessment best 
practices, and examines the motivation for standards in the design, authoring, instruction, and evaluation 
of ITS tools and methods. We introduce GIFT design principles and discuss how readers might use this 
book as a design tool. We begin by examining the major components of ITSs. 

Components and Functions of Intelligent Tutoring Systems 

It is generally accepted that an ITS has four major components (Elson-Cook, 1993; Nkambou, Mizoguchi 
& Bourdeau, 2010; Graesser, Conley & Olney, 2012; Psotka & Mutter, 2008; Sleeman & Brown, 1982; 
VanLehn, 2006; Woolf, 2009): the domain model, the student model, the tutoring model, and the user-
interface model. GIFT similarly adopts this four-part distinction, but with slightly different corresponding 
labels (domain module, learner module, pedagogical module, and tutor-user interface) and the addition of 
the sensor module, which can be viewed as an expansion of the user interface. 

(1) The domain model contains the set of skills, knowledge, and strategies/tactics of the topic being 
tutored. It normally contains the ideal expert knowledge and also the bugs, mal-rules, and miscon-
ceptions that students periodically exhibit.  

(2) The learner model consists of the cognitive, affective, motivational, and other psychological states 
that evolve during the course of learning. Since learner performance is primarily tracked in the 
domain model, the learner model is often viewed as an overlay (subset) of the domain model, which 
changes over the course of tutoring. For example, “knowledge tracing” tracks the learner’s progress 
from problem to problem and builds a profile of strengths and weaknesses relative to the domain 
model (Anderson, Corbett, Koedinger & Pelletier, 1995). An ITS may also consider psychological 
states outside of the domain model that need to be considered as parameters to guide tutoring.  

(3) The tutor model (also known as the pedagogical model or the instructional model) takes the do-
main and learner models as input and selects tutoring strategies, steps, and actions on what the tutor 
should do next in the exchange. In mixed-initiative systems, the learners may also take actions, ask 
questions, or request help (Aleven, McClaren, Roll & Koedinger, 2006; Rus & Graesser, 2009), 
but the ITS always needs to be ready to decide “what to do next” at any point and this is determined 
by a tutoring model that captures the researchers’ pedagogical theories.  

(4) The user interface interprets the learner’s contributions through various input media (speech, typ-
ing, clicking) and produces output in different media (text, diagrams, animations, agents). In addi-
tion to the conventional human-computer interface features, some recent systems have incorporated 
natural language interaction (Graesser et al., 2012; Johnson & Valente, 2008), speech recognition 
(D’Mello, Graesser & King, 2010; Litman, 2013), and the sensing of learner emotions (Baker, 

http://www.gifttutoring.org/
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D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 2010; Goldberg, Sottilare, Brawner, 
Holden, 2011).  

The designers of a tutor model must make decisions on each of the various major components in order to 
create an enhanced learning experience through well-grounded pedagogical strategies (optimal plans for 
action by the tutor) that are selected based on learner states and traits and that are delivered to the learner 
as instructional tactics (optimal actions by the tutor). Next, tactics are chosen based on the previously se-
lected strategies and instructional context (the conditions of the training at the time of the instructional 
decision). This is part of the learning effect model (Sottilare, 2012; Fletcher & Sottilare, 2013; Sottilare, 
2013; Sottilare, Ragusa, Hoffman & Goldberg, 2013), which has been updated and described below in more 
detail in the section titled “Motivations for Intelligent Tutoring System Standards” in this introductory 
chapter.  

Principles of Learning and Instructional Techniques, Strategies, and Tactics 

Instructional techniques, strategies, and tactics play a central role in the design of GIFT. Instructional tech-
niques represent instructional best practices and principles from the literature, many of which have yet to 
be implemented within GIFT at the writing of this volume. Examples of instructional techniques include, 
but are not limited to, error-sensitive feedback, mastery learning, adaptive spacing and repetition, and fad-
ing worked examples. Others are represented in the next section of this introduction. It is anticipated that 
techniques within GIFT will be implemented as software-based agents where the agent will monitor learner 
progress and instructional context to determine if best practices (agent policies) have been adhered to or 
violated. Over time, the agent will learn to enforce agent policies in a manner that optimizes learning and 
performance. 

Some of the best instructional practices (techniques) have yet to be implemented in GIFT, but many in-
structional strategies and tactics have been implemented. Instructional strategies (plans for action by the 
tutor) are selected based on changes to the learner’s state (cognitive, affective, physical). If a sufficient 
change in any learner’s state occurs, this triggers GIFT to select a generic strategy (e.g., provide feedback). 
The instructional context along with the instructional strategy then triggers the specific selection of an in-
structional tactic (an action to be taken by the tutor). If the strategy is to “provide feedback,” then the tactic 
might be to “provide feedback on the error committed during the presentation of instructional concept ‘B’ 
in the chat window during the next turn.” Tactics detail what is to be done, why, when, and how. 

An adaptive, intelligent learning environment needs to select the right instructional strategies at the right 
time, based on its model of the learner in specific conditions and the learning process in general. Such 
selections should be taken to maximize deep learning and motivation while minimizing training time and 
costs.  

Motivations for Intelligent Tutoring System Standards 

An emphasis on self-regulated learning has highlighted a requirement for point-of-need training in envi-
ronments where human tutors are either unavailable or impractical. ITSs have been shown to be as effective 
as expert human tutors (VanLehn, 2011) in one-to-one tutoring in well-defined domains  
(e.g., mathematics or physics) and significantly better than traditional classroom training environments. 
ITSs have demonstrated significant promise, but 50 years of research have been unsuccessful in making 
ITSs ubiquitous in military training or the tool of choice in our educational system. This begs the question: 
“Why?” 
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Part of the answer lies in the fact that the availability and use of ITSs have been constrained by their high 
development costs, their limited reuse, a lack of standards, and their inadequate adaptability to the needs of 
learners. Educational and training technologies like ITSs are primarily researched and developed in a few 
key environments: industry, academia, and government including military domains. Each of these environ-
ments has its own challenges and design constraints. The application of ITSs to military domains is further 
hampered by the complex and often ill-defined environments in which the US military operates today. ITSs 
are often built as domain-specific, unique, one-of-a-kind, largely domain-dependent solutions focused on a 
single pedagogical strategy (e.g., model tracing or constraint-based approaches) when complex learning 
domains may require novel or hybrid approaches. Therefore, a modular ITS framework and standards are 
needed to enhance reuse, support authoring, optimize instructional strategies, and lower the cost and skillset 
needed for users to adopt ITS solutions for training and education. It was out of this need that the idea for 
GIFT arose.  

GIFT has three primary functions: authoring, instructional management, and evaluation. First, it is a frame-
work for authoring new ITS components, methods, strategies, and whole tutoring systems. Second, GIFT 
is an instructional manager that integrates selected instructional theory, principles, and strategies for use in 
ITSs. Finally, GIFT is an experimental testbed used to evaluate the effectiveness and impact of ITS com-
ponents, tools, and methods. GIFT is based on a learner-centric approach with the goal of improving link-
ages in the updated adaptive tutoring learning effect model (Figure 1; Sottilare, Burke, Salas, Sinatra, John-
ston, & Gilbert, 2017).  

 

Figure 1. Updated adaptive tutoring learning effect model (Sottilare et al, 2017)  
 
A deeper understanding of the learner’s behaviors, traits, and preferences (learner data) collected through 
performance, physiological and behavioral sensors, and surveys will allow for more accurate evaluation of 
the learner’s states (e.g., engagement level, confusion, frustration). This will result in a better and more 
persistent model of the learner. To enhance the adaptability of the ITS, methods are needed to accurately 
classify learner states (e.g., cognitive, affective, psychomotor, social) and select optimal instructional strat-
egies given the learner’s existing states. A more comprehensive learner model will allow the ITS to adapt 
more appropriately to address the learner’s needs by changing the instructional strategy (e.g., content, flow, 
or feedback). An instructional strategy better aligned to the learner’s needs is more likely to positively 
influence their learning gains. It is with the goal of optimized learning gains in mind that the design princi-
ples for GIFT were formulated. 

This version of the learning effect model has been updated to gain understanding of the effect of optimal 
instructional tactics and instructional context (both part of the domain model) on specific desired outcomes 
including knowledge and skill acquisition, performance, retention, and transfer of skills from training or 
tutoring environments to operational contexts (e.g., from practice to application). The feedback loops in 
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Figure 1 have been added to identify tactics as either a change in instructional context or interaction with 
the learner. This allows the ITS to adapt to the need of the learner. Consequently, the ITS changes over 
time by reinforcing learning mechanisms. 

GIFT Design Principles 

The GIFT methodology for developing a modular, computer-based tutoring framework for training and 
education considered major design goals, anticipated uses, and applications. The design process also con-
sidered enhancing one-to-one (individual) and one-to-many (collective or team) tutoring experiences be-
yond the state of practice for ITSs today. A significant focus of the GIFT design was on domain-dependent 
elements in the domain module only. This is a design tradeoff to foster reuse and allows ITS decisions and 
actions to be made across any/all domains of instruction. 

One design principle adopted in GIFT is that each module should be capable of gathering information from 
other modules according to the design specification. Designing to this principle resulted in standard mes-
sage sets and message transmission rules (i.e., request-driven, event-driven, or periodic transmissions). For 
instance, the pedagogical module is capable of receiving information from the learner module to develop 
courses of action for future instructional content to be displayed, manage flow and challenge level, and 
select appropriate feedback. Changes to the learner’s state (e.g., engagement, motivation, or affect) trigger 
messages to the pedagogical module, which then recommends general courses of action (e.g., ask a question 
or prompt the learner for more information) to the domain module, which provides a domain-specific in-
tervention (e.g., what is the next step?).  

Another design principle adopted within GIFT is the separation of content from the executable code (Patil 
& Abraham, 2010). Data and data structures are placed within models and libraries, while software pro-
cesses are programmed into interoperable modules. Efficiency and effectiveness goals (e.g., accelerated 
learning and enhanced retention) were considered to address the time available for military training and the 
renewed emphasis on self-regulated learning. An outgrowth of this emphasis on efficiency and effective-
ness led Dr. Sottilare to seek external collaboration and guidance. In 2012, ARL with the University of 
Memphis developed expert workshops of senior tutoring system scientists from academia and government 
to influence the GIFT design goals moving forward. Expert workshops have been held each year since 2012 
resulting in volumes in the Design Recommendations for Intelligent Tutoring Systems series the following 
year. The learner modeling expert workshop was completed in September 2012 and Volume 1 followed in 
July 2013. An expert workshop on instructional management was completed in July 2013 and Volume 2 
followed in June 2014. The authoring tools expert workshop was completed in June of 2014 and Volume 3 
was published in June 2015.The domain modeling expert workshop was held in June 2015 and Volume 4 
was published in July 2016, the assessment expert workshop was held in May 2016, and the team tutoring 
expert workshop was held in May 2017. Future expert workshops are planned for machine learning tech-
niques, potential standards, and learning effect evaluation methods. 

Design Goals and Anticipated Uses 

GIFT may be used for a number of purposes, with the primary ones enumerated below: 

1. An architectural framework with modular, interchangeable elements and defined relationships to 
support stand-alone tutoring or guided training if integrated with a training system  

2. A set of specifications to guide ITS development 

3. A set of exemplars or use cases for GIFT to support authoring, reuse, and ease-of-use 
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4. A technical platform or testbed for guiding the evaluation, development/refinement of concrete 
systems 

These use cases have been distilled down into the three primary functional areas:  
authoring, instructional management, and the recently renamed evaluation function. Discussed below are 
the purposes, associated design goals, and anticipated uses for each of the GIFT functions. 

GIFT Authoring Function 

The purpose of the GIFT authoring function is to provide technology (tools and methods) to make it afford-
able and easier to build ITSs and ITS components. Toward this end, a set of authoring interfaces with 
backend XML configuration tools continues to be developed to allow for data-driven changes to the design 
and implementation of GIFT-generated ITSs. The design goals for the GIFT authoring function have been 
adapted from Murray (1999, 2003) and Sottilare and Gilbert (2011). The GIFT authoring design goals are 
as follow:  

• Decrease the effort (time, cost, and/or other resources) for authoring and analyzing ITSs by auto-
mating authoring processes, developing authoring tools and methods, and developing standards to 
promote reuse. 

• Decrease the skill threshold by tailoring tools for specific disciplines (e.g., instructional designers, 
training developers, and trainers) to author, analyze, and employ ITS technologies. 

• Provide tools to aid designers/authors/trainers/researchers in organizing their knowledge. 

• Support (structure, recommend, or enforce) good design principles in pedagogy through user inter-
faces and other interactions. 

• Enable rapid prototyping of ITSs to allow for rapid design/evaluation cycles of prototype capabil-
ities. 

• Employ standards to support rapid integration of external training/tutoring environments (e.g., sim-
ulators, serious games, slide presentations, transmedia narratives, and other interactive multime-
dia). 

• Develop/exploit common tools and user interfaces to adapt ITS design through data-driven means. 

• Promote reuse through domain-independent modules and data structures. 

• Leverage open-source solutions to reduce ITS development and sustainment costs. 

• Develop interfaces/gateways to widely-used commercial and academic tools (e.g., games, sensors, 
toolkits, virtual humans). 

As a user-centric architecture, anticipated uses for GIFT authoring tools are driven largely by the anticipated 
users, which include learners, domain experts, instructional system designers, training and tutoring system 
developers, trainers and teachers, and researchers. In addition to user models and GUIs, GIFT authoring 
tools include domain-specific knowledge configuration tools, instructional strategy development tools, and 
a compiler to generate executable ITSs from GIFT components in a variety of formats (e.g., PC, Android, 
and iPad).  
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Within GIFT, domain-specific knowledge configuration tools permit authoring of new knowledge elements 
or reusing existing (stored) knowledge elements. Domain knowledge elements include learning objectives, 
media, task descriptions, task conditions, standards and measures of success, common misconceptions, 
feedback library, and a question library, which are informed by instructional system design principles that, 
in turn, inform concept maps for lessons and whole courses. The task descriptions, task conditions, stand-
ards and measures of success, and common misconceptions may be informed by an expert or ideal learner 
model derived through a task analysis of the behaviors of a highly skilled user. ARL is investigating tech-
niques to automate this expert model development process to reduce the time and cost of developing ITSs. 
In addition to feedback and questions, supplementary tools are anticipated to author explanations, summar-
ies, examples, analogies, hints, and prompts in support of GIFT’s instructional management function. 

GIFT Instructional Management Function 

The purpose of the GIFT instructional management function is to integrate pedagogical best practices in 
GIFT-generated ITSs. The modularity of GIFT will also allow GIFT users to extract pedagogical models 
for use in tutoring/training systems that are not GIFT-generated. GIFT users may also integrate pedagogical 
models, instructional strategies, or instructional tactics from other tutoring systems into GIFT. The design 
goals for the GIFT instructional management function are the following: 

• Support ITS instruction for individuals and small teams in local and geographically distributed 
training environments (e.g., mobile training), and in both well-defined and ill-defined learning do-
mains. 

• Provide for comprehensive learner models that incorporate learner states, traits, demographics, and 
historical data (e.g., performance) to inform ITS decisions to adapt training/tutoring.  

• Support low-cost, unobtrusive (passive) methods to sense learner behaviors and physiological 
measures and use these data along with instructional context to inform models to classify (in near 
real time) the learner’s states (e.g., cognitive and affective). 

• Support both macro-adaptive strategies (adaptation based on pre-training learner traits) and micro-
adaptive instructional strategies and tactics (adaptation based learner states and state changes dur-
ing training). 

• Support the consideration of individual differences where they have empirically been documented 
to be significant influencers of learning outcomes (e.g., knowledge or skill acquisition, retention, 
and performance). 

• Support adaptation (e.g., pace, flow, and challenge level) of the instruction based the domain and 
learning class (e.g., cognitive learning, affective learning, psychomotor learning, social learning). 

• Model appropriate instructional strategies and tactics of expert human tutors to develop a compre-
hensive pedagogical model. 

To support the development of optimized instructional strategies and tactics, GIFT is heavily grounded in 
learning theory, tutoring theory, and motivational theory. Learning theory applied in GIFT includes condi-
tions of learning and theory of instruction (Gagne, 1985), component display theory (Merrill, Reiser, Ran-
ney & Trafton, 1992), cognitive learning (Anderson & Krathwohl, 2001), affective learning (Krathwohl, 
Bloom & Masia, 1964; Goleman, 1995), psychomotor learning (Simpson, 1972), and social learning (Sot-
tilare, Holden, Brawner, & Goldberg, 2011; Soller, 2001). Aligning with our goal to model expert human 
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tutors, GIFT considers the intelligent, nurturant, Socratic, progressive, indirect, reflective, and encouraging 
(INSPIRE) model of tutoring success (Lepper, Drake, & O’Donnell-Johnson, 1997) and the tutoring pro-
cess defined by Person, Kreuz, Zwaan, and Graesser (1995) in the development of GIFT instructional strat-
egies and tactics.  

Human tutoring strategies have been documented by observing tutors with varying levels of expertise. For 
example, Lepper’s INSPIRE model is an acronym that highlights the seven critical characteristics of suc-
cessful tutors. Graesser and Person’s (1994) 5-step tutoring frame is a common pattern of the tutor-learner 
interchange in which the tutor asks a question, the learner answers the question, the tutor gives short feed-
back on the answer, then the tutor and learner collaboratively improve the quality of (or embellish) the 
answer, and finally, the tutor evaluates whether the learner understands the answer. Cade, Copeland, Person, 
and D’Mello (2008) identified a number of tutoring modes used by expert tutors, which hopefully could be 
integrated with ITS. 

As a learner-centric architecture, anticipated uses for GIFT instructional management capabilities include 
both automated instruction and blended instruction, where human tutors/teachers/trainers use GIFT to sup-
port their curriculum objectives. If its design goals are realized, it is anticipated that GIFT will be widely 
used beyond military training contexts as GIFT users expand the number and type of learning domains and 
resulting ITS generated using GIFT.  

GIFT Evaluation Function 

The GIFT Analysis Function has recently migrated to become the GIFT Evaluation Function with an em-
phasis on the evaluation of effect on learning, performance, retention and transfer. The purpose of the GIFT 
evaluation function is to allow ITS researchers to experimentally assess and evaluate ITS technologies (ITS 
components, tools, and methods). The design goals for the GIFT evaluation function are the following: 

• Support the conduct of formative assessments to improve learning.  

• Support summative evaluations to gauge the effect of technologies on learning. 

• Support assessment of ITS processes to understand how learning is progressing throughout the 
tutoring process.  

• Support evaluation of resulting learning versus stated learning objectives. 

• Provide diagnostics to identify areas for improvement within ITS processes. 

• Support the ability to comparatively evaluate ITS technologies against traditional tutoring or class-
room teaching methods. 

• Develop a testbed methodology to support assessments and evaluations (Figure 2). 



 
 

10 

 

Figure 2. GIFT evaluation testbed methodology 

Figure 2 illustrates an analysis testbed methodology being implemented in GIFT. This methodology was 
derived from Hanks, Pollack, and Cohen (1993). It supports manipulation of the learner model, instructional 
strategies, and domain-specific knowledge within GIFT, and may be used to evaluate variables in the adap-
tive tutoring learning effect model (Sottilare, 2012; Sottilare, Ragusa, Hoffman, & Goldberg, 2013). In 
developing their testbed methodology, Hanks et al. reviewed four testbed implementations (Tileworld, the 
Michigan Intelligent Coordination Experiment [MICE], the Phoenix testbed, and Truckworld) for evaluat-
ing the performance of artificially intelligent agents. Although agents have changed substantially in com-
plexity during the past 20‒25 years, the methods to evaluate their performance have remained markedly 
similar. 

The ARL adaptive training team designed the GIFT analysis testbed based upon Cohen’s assertion (Hanks 
et al., 1993) that testbeds have three critical roles related to the three phases of research. During the explor-
atory phase, agent behaviors need to be observed and classified in broad categories. This can be performed 
in an experimental environment. During the confirmatory phase, the testbed is needed to allow more strict 
characterizations of agent behavior to test specific hypotheses and compare methodologies. Finally, in order 
to generalize results, measurement and replication of conditions must be possible. Similarly, the GIFT eval-
uation methodology (Figure 2) enables the comparison/contrast of ITS elements and assessment of their 
effect on learning outcomes (e.g., knowledge acquisition, skill acquisition, and retention).  
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How to Use This Book  

This book is organized into four sections:  

I. Competency Assessment 

II. Evidence-Centered Design and Data Mining 

III. General Assessment Methods 

IV. Assessment Methods for Particular Domains and Problems 

Section I, Competency Assessment, describes a variety of assessment methods for modeling long-term pro-
ficiency in a particular domain, and how those competency models might be used in GIFT and a variety of 
learning landscapes.  Section II, Evidence-Centered Design and Data Mining, highlights the importance of 
and examines the use of specific evidence to support assessments in ITSs and other instructional systems.  
Section III, General Assessment Methods, discusses the role of assessment methods in ITSs and other in-
structional systems.  Section IV, Assessment Methods for Particular Domains and Problems, provides as-
sessment examples within various domains and problem spaces.   

Chapter authors in each section were carefully selected for participation in this project based on their ex-
pertise in the field as ITS scientists, developers, and practitioners. Design Recommendations for Intelligent 
Tutoring Systems: Volume 5 – Assessment Methods is intended to be a design resource as well as community 
research resource. Volume 5 can also be of significant benefit as an educational guide for developing ITS 
scientists, as a roadmap for ITS research opportunities.  
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CHAPTER 1 – Understanding Competency Assessment 
Methodologies Applied to Adaptive Instruction  

in Intelligent Tutoring Systems 
Robert Sottilare, Ph.D. 

US Army Research Laboratory 

Introduction 

The first goal of this chapter is to provide the reader with a basic understanding of competence, competency 
assessment methods, and their relationship to processes leading to knowledge and skill acquisition during 
adaptive instruction. The second goal is to introduce the chapters in this section of the book and define each 
chapter’s importance to competency assessment and the design of Intelligent Tutoring Systems (ITSs). 
Let’s begin by defining competence and competency. In terms of learning, competence is an “ability or 
skill” or “the ability to do something successfully or efficiently” (Merriam-Webster, 2017). The goal of 
adaptive instruction is to guide the learner in developing competence in one or more domains.  

Adaptive instruction delivers content, offers feedback, and intervenes with learners based on tailored strat-
egies and tactics with the goal of optimizing learning, performance, retention, and transfer of skills for both 
individual learners and teams. The Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, 
Brawner, Sinatra & Johnston, 2017) is a tutoring architecture that has evolved over the last five years with 
three primary goals: 1) reduce the time and skill required to author ITSs, 2) automate best practices of 
instruction in the policy, strategies, and tactics of tutoring, and 3) provide a testbed to assess the effective-
ness of adaptive instructional tools and methods with respect to learning, performance, retention, and trans-
fer of skills. The cycle of adaptive instruction includes 1) assessment of the learner’s states (e.g., perfor-
mance), 2) selection of tailored strategies (plans for action) and application of tactics (actions) by the tutor, 
and 3) evaluation of the effect of tutor strategies/tactics on learning and performance.  

According to Person, Graesser, Kreuz & Pomeroy (2003), the tutoring process consists of 5 steps to deter-
mine knowledge or skill. During the first three steps in a dialogue process between the learner and the tutor: 
1) the tutor asks a question, 2) the learner answers it, and 3) feedback is received from the tutor about the 
learner’s answer. In step 4, the tutor and the learner work together to improve the answer collaboratively, 
and finally in step 5, the tutor assesses the learner’s understanding of their answer and this result provides 
an initial indication of competence. By following this tutoring process, the ITS is harnessing the power of 
previous approaches that have been shown to be successful with human tutors.  

This is an important part of the learning process and while competence can be demonstrated during a single 
performance, the idea that a learner demonstrates competency in a complex domain really requires more 
evidence. The ability of the learner to demonstrate knowledge and skill over time and in a variety of situa-
tions demonstrates a higher degree of confidence in their competency than just a single event. So, compe-
tency is more of a long-term assessment of skills and abilities in a domain rather than just a single measure 
of ability. The discussions that follow provide a short description of each chapter in the “competency” 
section of this book and it importance in relationship to ITS design. 
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Competence-based Knowledge Structures and Current Challenges for E-As-
sessment 

Our first chapter in this section by Dietrich Albert, Alexander Nussbaumer, Bor-Chen Kuo, Peter W. Foltz, 
and Xiangen Hu presents challenges for electronic assessment. Electronic assessment (also known as e-
assessment, online assessment, computer-assisted assessment, computer-mediated assessment, or com-
puter-based assessment) is the use of information technology in various forms of assessment, but in this 
case is focused on instructional assessment of competency in training and educational domains. The chapter 
presents an overview of Competence-based Knowledge Space Theory (CbKST) for knowledge and com-
petence assessment. According to CbKST, the knowledge and skills in a domain are a known set with the 
learner familiar with some subset of this domain set. This approach allows ITS developers to set standards 
and goals for development based on the hierarchical relationship of knowledge and skills in a given domain 
and thereby lends structure to both the authoring and assessment processes for ITSs. CbKST also supports 
personalization of the tutoring experience based on competency assessment or a mapping of what the 
learner knows, what they should learn next, and which concepts should be reviewed soon.  

Also discussed in this chapter are new psycho-pedagogical concepts that imply the need for new assessment 
approaches. These concepts include open-learner models (OLMs), learning analytics, game-based learning, 
self-regulated learning (SRL), and various learning environments. The mapping of competencies in OLMs 
provide the learner, peers, and instructors the opportunity to understand where the learner needs to improve. 
In ITSs, a standardized visualization or mapping strategy would also for e-assessment of domain compe-
tency, which could be used for tailoring future tutoring experiences. Learning analytics include methods to 
acquire, analyze, and report information about the learner that influences their learning and performance. 
Understanding what in human variability contributes to learning allows designers of ITSs to track and re-
spond to learning factors in real time during tutoring.  

Games are engaging experiences, which when combined with learning content and measures of assessment, 
make effective learning tools. Games allow ITS designers to motivate learners and unobtrusively assess 
their performance while also enticing them to compete against other and themselves through badging. SRL 
is the degree to which learners are “metacognitively, motivationally, and behaviorally active participants in 
their own learning process”. Learning goals can vary in time and intensity. Allowing learners to control 
learning goals and select learning experiences empowers them and increases the probability of return en-
gagements with computer-based tutors in the future. As learners become more familiar and confident with 
ITS technology and more competent in a domain of study, more effort should be made to design ITSs to 
offer more control to learners. Finally, new learning environments (e.g., learning management systems 
[LMSs] and online courses) require the development of competence with the use of the tools and methods 
that are part of that learning environment. Care should be taken to treat domain assessments in new learning 
environments with a lower degree of confidence until the learner has demonstrated tool competency.  

Total Learning Architecture (TLA) 

The next two chapters in section focus on a broad learning landscape of providers and consumers called the 
Total Learning Architecture (TLA) and its measure of competence, the experience application program 
interface (xAPI). The TLA is a vision of the next-generation integrated learning environment. The second 
chapter by Gregory Goodwin, J.T. Folsom-Kovarik, Andy Johnson, Sae Schatz, and Robert Sottilare is 
focused on how learning experience providers like GIFT might be integrated within the TLA and contribute 
to domain competence assessment. Potential methods for experience tracking, competency management 
assessment, learner modeling, and content brokering between GIFT and the TLA are discussed along with 
recommended standards for data exchange. Experience tracking is based on a series of xAPI achievement 
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statements that might be provided as at various levels of granularity (e.g., completed a degree, completed a 
course, completed an assignment, or completed a problem). The specifics of how these xAPI achievement 
statements might be weighed to provide a clear picture of domain competency is a challenge that hasn’t 
been completely worked out yet, but the building blocks for a competency model are available. 

The third chapter by Andy Johnson, Benjamin D Nye, Diego Zapata-Rivera, and Xiangen Hu focuses on 
GIFT and xAPI alignment in five main areas: 1) fine-grained achievement data, such as answering specific 
questions, 2) calculating duration to provide better metrics when compared with learner outcomes 3) mech-
anisms to allow a learner’s to assess the quality of their experience, 4) an effective model of competency 
and learning/forgetting, and 5) an assessment profile within xAPI to track both formal and informal learning 
experiences. 

Big Data, Career Management, and Competencies 

The fourth chapter in the competency section of this book by Brent Olde discusses the role of data analytics 
in career management and competency development. Olde puts forth a vision for career management in the 
US Navy that uses data analytic techniques to assess 1) competence and readiness from the individual to 
the collective level, 2) training efficiencies and effectiveness, 3) optimal personnel assignments, 4) transfer 
of training, and 5) training requirements based on current operational needs. Modeling skill needs, skill 
development, and skill transfer could provide organizational decision makers with a tool to shape both 
organizations and personnel to meet shared goals.  

Coordinating Evidence across Learning Modules Using Digital Badges 

The fifth chapter in our competency section by Ross Higashi, Christian Schunn, Vu Nguyen, and Scott 
Ososky discusses the use of digital badges as a mechanism for capturing evidence of domain competency 
across a variety of learning experiences. Much like the xAPI standard writes out achievement statements to 
a long-term learner record, badges could be issued as evidence of learning across different learning experi-
ences and sources. The authors envision badges as a method for selection and projection of their success: 
1) assessing competency to be a successful in a particular job or environment (college) based on prior 
experiences, or 2) selecting a next task for learning based on prior experiences. Toward this end, they pro-
vide three design guidelines for a badge-based, evidence framework: 1) the framework must support the 
inclusion of multiple kinds of evidence concurrently, 2) the design must recognize and represent multiple 
“levels” of evidence and define how much evidence is sufficient, and 3) each type of evidence in the badge 
must be summarizable for quick viewing, and the composite strength of the badged evidence claim should 
also be easily summarized. Badges have the advantage of being simple and easy to interpret whereas xAPI 
statements provide direct evidence of learning, they are more difficult to summarize. 

Leveraging Domain Models for Personalizing Problem Solving and Learning 

The sixth chapter in this section by Louise Yarnall, Eric Snow, Erica Snow, and Irvin Katz examines the 
basic elements of evidence-centered design (ECD) and describes the application of ECD to the complex 
skills of computational thinking and science inquiry. The chapter also discusses the implications for content 
authoring and assessment of problem solving tasks in a GIFT-based tutor. The authors assert that ECD 
modeling can support standardized approaches in the design of assessments of the most complex forms of 
applied reasoning and problem solving. The benefits of ECD modeling focuses on its theoretical soundness, 
consistency of documentation format, and potential for model adaptation across multiple domains and are 
well suited for a multi-domain framework like GIFT. 
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Assessing Individual Learner Performance in MOOCs 

The final chapter in this section by Ryan Baker, Piotr Mitros, Benjamin Goldberg, and Robert Sottilare 
examines assessment of individual learner performance during massive open online courses (MOOCs). 
This chapter describes an ongoing effort between ARL, Carnegie Mellon and University of Pennsylvania 
to integrate GIFT with LMS sites like edX. This effort expands the domains in which GIFT can guide 
learning, but also presents some challenges in assessment. 

The initial phase of the project developed a GIFT interface with the learning tools interoperability (LTI) 
component of edX. This enabled MOOC developers to reference GIFT-managed lessons within their struc-
ture and to receive data back following the completion of a GIFT lesson for performance tracking and 
accreditation purposes. With the LTI component in place, the next phase will involve configuring MOOC 
content into a set of lessons that adhere to the authoring standards and run-time schemas of GIFT.  
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CHAPTER 2 ‒ Competence-based Knowledge Structures and 
Current Challenges for E-Assessment 

Dietrich Albert1,2, Alexander Nussbaumer1, Bor-Chen Kuo3, Peter W. Foltz4, and Xiangen Hu5 

Graz University of Technology1, University of Graz2 , National Taichung University of Education3,  
University of Colorado Boulder & Pearson4, University of Memphis5 

 
This chapter presents a selection of new challenges for e-assessment. The first part presents 
a short overview of Competence-based Knowledge Space Theory (CbKST) and related 
methods for knowledge and competence assessment. Based on CbKST, the second part 
presents new psycho-pedagogical concepts and technologies that also imply the need for 
new assessment approaches. The psycho-pedagogical concepts include self-regulated 
learning and metacognition, as well as a need for non-invasive assessment that does not 
disturb the learner. The new technologies include open learner models and visualization, 
new learning environments from individually composed environments to augmented real-
ity. Several of these new assessment approaches include the need for interpreting the learn-
ers behavior in terms of competences in different environments, for example, the interac-
tions with computer systems and the real world.  

Introduction 

Technology-enhanced learning (TEL) and distance learning has been playing an important role in psycho-
pedagogical research and educational practice in the last decades. Intelligent tutoring systems (ITSs) and 
adaptive systems played a major role in research, because they aimed at tailoring the learning content and 
the learning environment to the pre-knowledge, learning progress competences, preferences, needs, and 
goals of the individual learners (Albert & Schrepp, 1999). To adapt the content and system’s behavior, data 
and information about the learner has to be known and stored in a structured way as a user or learner model. 
E-assessment of the learner’s knowledge and so on is a way to gain this information and enables an adaptive 
system to personalize the content and the learning environment.  

This chapter focuses on challenges for e-assessment and examines approaches from the point of view of 
Competence-based Knowledge Space Theory (CbKST). CbKST is a prominent framework for structuring 
knowledge, adaptive assessment, and personalization of the learning experience. It is based on a psycho-
logical-mathematical framework that allows to translate this method into a system design and development. 
CbKST has been used in commercial as well as in research applications to structure knowledge domains, 
define competences in such knowledge domains, provide assessment procedures, and adapt the learning 
content and learning trajectories. Different models and algorithms have been used for these purposes (e.g., 
Falmagne et al., 2013).  

While CbKST and e-assessment methods related to it could be applied seamlessly on adaptive systems in 
the past, new concepts and advancements in technology-enhanced learning require new ways of integration. 
Recent developments in the psycho-pedagogical field are evident and have strong effect on the methods, 
requirements, and role of e-assessment. For instance, self-regulated learning approaches aim to empower 
the learner to take over the control of their own learning process instead of letting the system decide on the 
learning alternatives. Game-based learning intends to integrate fun to play and learning by stimulating a 
flow experience. Moreover, new test-theoretical algorithms and methods were elaborated that allow for 
real-time assessment and adaptation.  
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In addition to the psycho-pedagogical field, new technical developments in the context of technology-en-
hanced learning took place during the last years. For example, learning analytics methods are used to ana-
lyze the learning behavior and provide feedback to the learner and the teacher. Semantic technologies are 
used to create meaningful models and structures of text-based content and student knowledge. Virtual re-
ality applications emerge from new hardware improvements, which allow the use of a new type learning 
environment.  

These new developments lead to new situations regarding e-assessment opportunities and procedures. Such 
new situations require the modernization of assessment procedures to fully exploit the potential of these 
innovations. This chapter investigates the aforementioned psycho-pedagogical and technical innovations in 
the light of assessment and e-assessment. The new opportunities, as well as new challenges and require-
ments, are elaborated and explained.  

Competence-based Knowledge Space Theory and Assessment 

Knowledge Space Theory 

Knowledge Space Theory (KST) is a mathematical-psychological theory for representing domain and 
learner knowledge (Doignon & Falmagne, 1985, 1999; Falmagne & Doignon, 2011; Albert & Lukas, 1999; 
Falmagne et al., 2013). In KST, a knowledge domain is identified with a set Q of problems. The subset of 
problems that a person is able to solve represents the knowledge state of this individual. Among the prob-
lems of a domain mutual dependencies will exist, such that not all potential knowledge states (i.e., subsets 
of problems) will actually occur. In KST’s simplest version, these dependencies are captured by a so-called 
prerequisite relation (also referred to as precedence relation or surmise relation), which restricts the number 
of possible knowledge states. Two problems, a and b, are in a prerequisite relation whenever the correct 
solution of problem a is a prerequisite for the mastery of problem b. Illustrated in a Hasse diagram  
(Figure 1), ascending sequences of line segments indicate a prerequisite relationship. The collection of 
knowledge states corresponding to a prerequisite relation is called a knowledge structure. In a knowledge 
structure, a range of different learning paths from the naive knowledge state to the expert knowledge state 
are possible (as shown in Figure 1).  

 

Figure 1. Example of a prerequisite relation and the induced knowledge structure. Dashed arrows show a 
possible learning path (from Albert et al., 2012, p. 26). 
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A knowledge structure enables adaptive assessment procedures for efficiently identifying the current 
knowledge state of an individual (see, e.g., Doignon & Falmagne, 1999; Hockemeyer, 2002). Through 
defining individual starting and goal states for a learner, meaningful learning sequences with reasonable 
choices for navigation and appropriate levels of challenge can be realized for each learner. 

The commercial Adaptive Learning with Knowledge Spaces (ALEKS; http://www.aleks.com) system is a 
fully automated, multilingual, adaptive tutor that grounds on KST (Canfield, 2001). The system provides 
individualized learning including explanations, practice, and feedback on learning progress for various dis-
ciplines, especially for mathematics, chemistry, and business administration. ALEKS adaptively and accu-
rately assesses which concepts a learner already knows, what the learner is ready to learn next, which pre-
viously learned material should be addressed for review, and continuously updates a precise map of the 
learner’s knowledge state (Falmagne, Doignon, Cosyn & Thiery, 2004; Hardy, 2004; Falmagne et al., 2013) 

Competence-based Knowledge Space Theory 

CbKST incorporates psychological assumptions on underlying skills and competencies that are required for 
solving the problems under consideration (Düntsch & Gediga, 1995; Korossy, 1997, 1999; Heller et al., 
2006, 2013a,b). This approach assigns to each problem a collection of skills that are needed to solve this 
problem and to learning objects those skills that they teach. Similar to the knowledge state a competence 
state can be defined that consists of a set of skills that the learner has available. Furthermore, there may also 
be a prerequisite relationship between skills. 

CbKST provides algorithms for efficient adaptive assessment to determine the learner’s current knowledge 
and competence state, which builds the basis for personalization purposes. Based on this learner infor-
mation, personalized learning paths can be created. Goal setting can be done by defining skills to be 
achieved (competence goal) or problems to be capable of solving. The competence gap to be closed during 
learning is represented by the skills that are part of the goal but not part of the competence state of a learner. 

Several implementation approaches make use of CbKST. For instance, the concept of competence learning 
structures were applied in the prototypical adaptive learning system Adaptive & Personalized E-Learning 
System (APeLS; Conlan, Hockemeyer, Wade & Albert, 2002). It can easily merge content from different 
sources to build an adaptive course. The only requirement is that the individual learning objects carry 
metadata information on required and taught competencies according to the competence learning structure 
approach given that the metadata author use the same competence terminology. 

Current Challenges in E-Assessment 

The previous section gave an overview of well-known assessment methods in the field of CbKST. How-
ever, in recent years, new psycho-pedagogical concepts and new technological developments have been 
observed that have influence on e-assessment. This section focuses on the current potential for e-assessment 
offered by CbKST.  

Open-Learner Models (OLMs) 

Learner models are a core component of ITSs and adaptive systems that use them for their internal strategies 
(Brusilovsky et al., 2007). The result of an assessment is typically a set of solved assessment items, available 
competences, or a probability distribution regarding knowledge and competences. In TEL systems, such 
results are typically stored in leaner models and used for adaptation and personalization.  

http://www.aleks.com/
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A newer trend follows the idea of opening up these models to the user to support the learners in their 
reflection of the learning process and support teachers to better understand their students. A promising 
opportunity how to facilitate reflection and how to raise awareness is represented by OLMs, where visual-
ization, trust, and credibility play the key roles (Bull & Kay, 2010). OLMs provide suitable interfaces for 
users to enable them to view and, in some cases, also to change their learner model. This information can 
be made available also to others (peers and teachers), who can assist learning of the user. Examples of OLM 
visualization techniques are overview-zoom-filter approaches including tree maps, tag clouds, or sunburst 
views (Bull & Kay, 2010; Mathews et al., 2012). 

Learning Analytics (LA) 

The Society for Learning Analytics Research (http://solaresearch.org/) defines LA as “the measurement, 
collection, analysis and reporting of data about learners and their contexts, for purposes of understanding 
and optimizing learning and the environments in which it occurs”. In the New Media Consortium (NCM) 
Horizon Report 2014, LA is described as a rapidly developing trend in higher education, where learning is 
happening more and more within online and hybrid environments (Johnson et al., 2014). According to this 
report, LA can potentially help to transform education from a standard one-size-fits-all approach into re-
sponsive and flexible frameworks. 

In this way, LA approaches offer new possibilities for e-assessment. Instead of conducting explicit assess-
ment at certain points during the learning process, LA approaches offer the possibility of non-invasive 
assessment by collecting and analyzing interaction data of learners. When learners interact with a learning 
environment and make use of its content and functionalities, data about this interaction can be collected and 
stored. An analytics module can analyze these data regarding knowledge and competences a learner might 
have. This approach requires an appropriate method how interaction data can be analyzed so that it results 
in a trustworthy assessment. This is even more important if the collected data are unstructured, from differ-
ent modules, or from an incoherent system.  

Game-Based Learning 

Digital learning games represent an e-learning technology that is increasingly recognized by educational 
practitioners (Johnson et al., 2014). With their highly engaging and motivating characters, games constitute 
effective educational tools for creating authentic learning tasks and meaningful, situated learning (De 
Freitas, 2013). An important characteristic of serious games is the flow concept (Csikszentmihalyi & LeFe-
vre, 1989), which describes a situation when people are highly engaged and lose track of time, which often 
happens, when competence development and game challenges are balanced (e.g., the game should not de-
mand too much or too little from the player). This concept indicates that the games can make use of the 
learners’ competences and thus they need to get this information.  

In order not to disturb the flow experience, the assessment has to be done in a non-invasive way and in real 
time. Besides LA approaches (as described previously), the concept of micro-adaptivity (Stefanutti & Al-
bert, 2003; Albert et al. 2007; Kickmeier-Rust et al., 2008) has been employed to assess the learners’ com-
petences during game play. Based on a model of competences, tasks, and learner activities, the learner’s 
behavioral actions can be interpreted toward a competences assessment. The non-invasive updating of the 
to be assessed competences during complex problem solving or game-based learning in real time requires 
very fast algorithms and calculations (Augustin et al., 2011, 2013, 2015). 

http://solaresearch.org/
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Self-Regulated Learning (SRL) 

According to Zimmerman (2002) students can be described as self-regulated to the degree that they are 
metacognitively, motivationally, and behaviorally active participants in their own learning process. To de-
fine students’ learning as self-regulated, they have to use specific strategies for attaining their goals and 
their learning behavior has to be based on self-efficacy perceptions. In self-regulated learning the learners 
are active and able to control, monitor, and regulate their cognition, motivational state, behavior, and con-
text. Furthermore, the learners set goals and try to achieve them through progress-monitoring. This type of 
learning is especially important when using digital learning environments because no teacher or tutor guides 
them.  

Assessment of SRL competences is significantly more difficult than the assessment of domain knowledge 
and almost not done yet. In principle, three approaches are known. The first is self-assessment through the 
use of SRL questionnaires (e.g., Fill Giordano et al., 2010). Such questionnaires asks questions regarding 
the own SRL capabilities where the items are related to different SRL competences. The second is asking 
teachers or tutors by employing a questionnaire where teachers can assess the SRL competences of their 
students (Mikroyannidis et al., 2013). Third, a learning analytics approach can be used that tracks the learn-
ers’ behavior and relates it to SRL competences by using underlying models and analytics methods (Nuss-
baumer et al., 2012).  

An important phase in SRL is self-reflection which can be fostered by experiencing the gap between an 
objective assessment and a subjective self-evaluation/assessment. Respective tools for supporting these as-
sessments have been developed and provided by Nussbaumer (2008), for example. 

Learning Environments 

Traditionally, technology for learning support was centered on learning management systems (LMSs). They 
primarily focus on distributing learning content, organizing the learning processes, and serving as interface 
between learner and teacher. In educational institutions LMSs have become very popular and are used in 
many universities and schools (Paulsen, 2003). Examples of LMSs are Moodle, CLIX, Blackboard, 
WebCT, Sakai, ILIAS and .LRN. They all have in common that different tools are integrated in a single 
system, such as discussion forums, file sharing, whiteboards, chat, and e-portfolios (Dalsgaard, 2006). 
These tools together with learning content are bundled by teachers or tutors, which leads to a centralized 
and standardized learning experience. 

In the last years, many learning environments were developed that are fundamentally different from the 
traditional learning management systems. Personal learning environments (PLEs) strive for a more natural 
and learner-centric approach and is characterized by the freedom that individual learners have to select and 
control services and tools they use. Virtual reality (VR) environments allow full immersion in a virtual 
world where the learners can freely navigate. Augmented reality (AR) solutions allow the overlay of digital 
information over the physical world. Typically, the AR applications recognize the physical world and the 
behavior of the learner in the physical world, and provide feedback and hints.  

These new types of digital environments entail new challenges for e-assessment. PLEs are individually 
composed and require a flexible design for assessment, when and how it should happen. VR applications 
require the interpretation of the learners’ behavior. Complex virtual worlds allow a magnitude of different 
actions, which makes the assessment difficult. Assessment with AR applications is even more difficult, 
since it relies on the interpretation of real-world behavior. 
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To assess the learners’ ability in composing and handling their PLEs, different types of competences have 
to be taken into account – like the competences to select (Berthold et al,. 2011) and use the selected tools 
(tool competence). Respective behavioral data have to be collected, analyzed and interpreted. A psycho-
pedagogical model developed for SRL in PLEs may become the basis to assess the different types of com-
petences by interpreting the learner’s actions (Nussbaumer et. al, 2014). 

Conclusion and Outlook 

This chapter presented a selection of new challenges for e-assessment. The first part presented an overview 
of CbKST and related methods for knowledge and competence assessment. The second part presented new 
psycho-pedagogical concepts and technologies that also imply the need for new assessment approaches. 
Many of these approaches include the interpretation of the learners behavior in different environments, for 
example, the interactions with computer systems and the real world.  

Beside the presented challenges for e-assessment, there are further topics to be considered in the future. For 
example, recognizing and assessing misconceptions would be beneficial in e-learning. Detecting key com-
petences can bring significant benefit for the learner. The use of open content is a challenge for e-assess-
ment, because the assessment methodology has to be adapted automatically to the visited content. While 
traditional assessment focuses on content, new methods of assessment also should take into account meta-
cognitive skills, motivation, preferences, social contexts, and many other learner characteristics. Further-
more, in open environments (in terms of content, peers, and tools) privacy and data protection aspects have 
to be respected.  
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Introduction 

The focus of this chapter is on the challenges and potential solutions to conducting real-time and long-term 
assessments of performance, learning, and domain competency in the Total Learning Architecture (TLA). 
TLA, a distributed learning ecosystem, is being developed by the US Office of the Secretary of Defense to 
support capabilities for instruction anytime and anywhere. TLA is an evolving set of standardized specifi-
cations that enable responsible sharing of essential learning data between applications using common in-
terfaces and data models. The applications that could be part of the TLA ecosystem range from simple 
desktop applications to immersive simulations to mobile apps, and would serve as either service providers 
or consumers. Expected services include applications like intelligent tutoring systems (ITSs; e.g., AutoTu-
tor, Cognitive Tutor, or Generalized Intelligent Framework for Tutoring [GIFT]-based tutor), which pro-
vide information to other services and consume information from other services. 

The TLA is expected to provide services including experience tracking, competency assessment, learner 
modeling, and content brokering. All of these fundamentally involve learner assessments. Experience track-
ing (via the experience application programming interface [xAPI]) provides a standard for encoding and 
storing data about learners’ interactions with learning experiences and applications, providing fine-grained 
evidence that can make assessment precise and timely. TLA will also establish a common way for systems 
to reference and represent competencies and competency relationships, supporting assessment sharing. 
Learner models will contain data about assessed mastery of competencies as well as traits, preferences, 
individual differences, and demographic data. Learner models that are broadly accessible to learning appli-
cations will support up-to-date and accurate competency assessment. Content brokering (i.e., recommend-
ing future experiences and training) also depends on learner assessments. Content brokering will support 
just-in-time learning and sequencing of learning events. Competency models will enable content to be tai-
lored to the individual learner’s needs.  

Training applications like GIFT operating in the TLA environment will both consume learner data available 
through TLA and provide learner data as they complete training. It will be challenging to insure that all 
training applications will be able to both obtain necessary learner data from TLA as well as insure that they 
all output learner measures that can be used by other applications within TLA. This chapter explores some 
of the challenges of integrating a training application like GIFT into the TLA. This includes discussion of 
the discovery and development of methods to assess competency based on xAPI statements and recommen-
dations for augmenting xAPI statements to facilitate interoperability among training applications and the 
TLA through methods such as semantic analysis.  

The Evolution of the Current Defense Training Architecture 

The rapid growth of the World Wide Web in the early 90’s opened new opportunities for delivering com-
puter-based instruction (CBI). As this medium was increasingly used in both higher education and business, 
learning management systems (LMSs) were created to facilitate the delivery of CBI (Kamel, 2008). By the 
year 2000, there were over 100 LMSs on the market though the vast majority of the market was dominated 
by a handful of systems (Falvo & Johnson, 2007). 
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There is no industry standard for what should or should not be in a LMS; however, there are some core 
functions that most of them possess. These include the ability to schedule courses and enroll students, sup-
port collaborative learning, store and deliver content, support learner evaluation/certifications, manage stu-
dent records, and support career planning (Hunke & Johnson, 2006; Kamel, 2008). 

In 1999, the Army published its requirements for the Army Learning Management System (ALMS) and 
began production in 2004. By the mid to late 2000’s, all services and the Department of Defense (DOD) 
were looking to adopt LMSs for the delivery and management of online and blended courses (Hunke & 
Johnson, 2006; Kamel, 2008; Shanley, et al., 2012; Graul, 2012).  

Though LMSs are widely used by government, academia, and industry today, they have their limitations. 
LMSs were developed to support enclosed learning systems on which the business of education depends. 
Specifically, LMSs control access to, schedule, and deliver curricula and by extension degrees and certifi-
cations earned.  

Increasingly, it is recognized that training and education take place continuously in peer-to-peer interac-
tions, during the execution of one’s job, and in any number of self-development activities. Through the 
internet, individuals can access how-to videos, blogs, forums, webcasts, etc., to get answers to questions or 
training on just about any topic. The current generation of LMSs are not equipped to monitor or manage 
any of these kinds of learning interactions. There is a need for LMSs to evolve.  

A learning architecture helps to define the basic functionality of the next-generation integrated learning 
environment (Kamel, 2008). The DOD Advanced Distributed Laboratory (ADL) has described just such an 
architecture. It is known as the Training and Learning Architecture (TLA). 

TLA Overview 

The TLA is a vision of the next-generation integrated learning environment. As mentioned previously, the 
capabilities of current LMSs define and constrain e-learning and blended learning environments today. 
LMSs provide standardization and structure to the way learners interact with content (Kamel, 2008). Un-
fortunately, these attributes work against a learning environment that seeks to deliver training in a way that 
uniquely adapts to each individual, an environment envisioned in the TLA.  

The TLA includes five basic functions: experience tracking, learner profiles, content brokering, and com-
petency networks (Johnson, 2013). To facilitate innovation and make it easier and less costly to maintain 
and improve, the TLA will be based on non-proprietary, open-source approach to delivering services.  

The first function of the TLA, experience tracking, is all about being able to monitor learner activities 
wherever they may occur. In most LMSs today, measures of learners consist of summary scores, course 
completion, hours of instruction, and the like. These are essentially the same measures that have been rec-
orded since formal education began. With the massive growth of online content, learners often spend a 
considerable amount of time outside of the LMS before, during, and after a course to prepare for the course, 
improve their understanding, refresh their training, seek tutoring or support on challenging topics, and even 
to share their own knowledge with others. By monitoring these kinds of behaviors, quite a few interesting 
outcomes are suddenly possible. For example, it would be possible to determine what course content is 
particularly challenging for students. It would also be possible to then automatically tailor training for those 
individuals. One could also determine what material is retained well and what seems to be most easily 
forgotten.  
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The ADL has created a specification for experience tracking called the xAPI, which is a non-proprietary 
specification for tracking and storing experiences across learning platforms (e.g., simulators, virtual worlds, 
web content, mobile devices, games, and observer-based measures). The learner’s activity stream (a series 
of xAPI statements) is stored in a JavaScript Object Notation (JSON) database called a learning record store 
(LRS). Each statement includes the actor, verb, object, and optional information about results, context, etc. 
The power of xAPI is that it can record human performance at both the micro and macro levels. For exam-
ple, a single keypress or behavior can be an xAPI statement, but it can also be a statement that the individual 
completed a course, received a certification, etc.  

The second capability of the TLA is learner profiles. A learner profile is a map of the learner’s background, 
experience, knowledge, and traits. It goes beyond a simple student record held in current LMSs, which 
primarily include courses completed, grade point average, etc. The learner profile in the TLA would include 
any information about the learner that may impact how and what training should be provided to the student. 
For example, cognitive abilities like intelligence, reading speed, and reading level. It also includes prior 
experience and knowledge in different domains like math or human psychology, small unit tactics, or how 
to operate a specific system. This profile is clearly dependent on the measurement of learners and so a LRS 
is a key enabler of the development of learner profiles. A learner profile is more than just a collection of 
measures. For example, over time, learners forget and lose skills when they don’t have an opportunity to 
practice. A learner profile needs to take into account skill and knowledge retention over time if it is to be 
accurate.  

The third capability of the TLA is competency networks. Each branch of the military has defined compe-
tencies that they need in their respective workforces. Some competencies may be common across all service 
members while others may be very specific to a single specialty. Competencies are defined by organizations 
as are the training and measures needed to develop and maintain those competencies. Competencies are 
complex and are usually developed over years through a combination of formal education, mentoring, job 
assignments, peer interactions, and more. A competency network is a way of representing those types of 
experiences and how they feed into the development of various competencies. By mapping the learner 
profile to the competency network, it will be possible to determine the competencies of the individual. The 
TLA will provide each service with a way to represent the training and measurement of their respective 
competencies.  

The final TLA capability is content brokering. Content brokering has to do with tailoring the delivery of 
content to individual learners. Content brokering is dependent on knowing what the learner has done (via 
experience tracking), what the learner currently knows (via the learner profile), and what the learner needs 
to be provided with (via the competency network). Content brokering uses content registries and reposito-
ries to make training recommendations. Because so much content is now available outside of the walls of 
most LMSs, tools that enable machines to find and understand learning content automatically will play a 
big role in content brokering. These tools will do more than simply perform a semantic analysis, they will 
consider who uses them, how they are rated, and which ones seem to provide the biggest benefit to learners.  

Current Learner Assessments in GIFT 

Although GIFT was developed prior to the TLA, the assessment mechanisms within GIFT are compatible 
with various aspects of the TLA. While the TLA may be concerned with experience tracking across a range 
of formal and informal learning activities, GIFT is also using evidence-based assessment techniques to 
determine the current and projected performance of each learner and team based on their historical perfor-
mance in a domain and based on behavioral markers and physiological measures, which indicate cognitive, 
affective, and physical states of learners. 
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In many ways, the assessments and services proposed for the TLA mirror those in GIFT. The key difference 
being that where the TLA is concerned with the progression of an individual at the curricular and career 
levels, GIFT is concerned with the progression of a learner at the course or lesson level. To do this, GIFT 
uses its own versions of experience tracking, learner profiles, content brokering, and competency networks 
to know where the learner’s knowledge and skill are at each point in the course (learner module), where the 
learner needs to go (domain module), and what methods and content (pedagogical and domain modules) to 
employ to help the learner get there (see table 1). Figure 1 illustrates how GIFT uses these assessments and 
processes to tutor an individual using what is known as the learner effect model (Sottilare, Brawner, Gold-
berg & Holden, 2012; Sottilare, Goldberg, Brawner & Holden, 2012; Sottilare, Brawner, Sinatra & John-
ston, 2017). 

 

Figure 1. Instructional processes and architecture of GIFT.  

GIFT is a framework that modularizes the common components of ITSs. These components include a 
learner module, an instructional or tutor module, a domain module, and a tutor-user interface. One of the 
main motivations for creating this framework was to lower the cost and labor needed to create ITSs by 
facilitating reuse of components and by simplifying the authoring process (Sottilare, Goldberg, Brawner &  
Holden, 2012). 

The learner module represents the current state of the learner and also tries to predict future states; however, 
the learner module is not typically conducting assessments in GIFT. Assessments are done by the domain 
and sensor modules which pass their assessments to the learner module. The learner module uses those 
assessments as well as demographic and historical data about the learner to provide a classification of the 
learner’s cognitive, affective, psychomotor, and competency states.  

Right out of the box, GIFT can collect student measures in several ways. First, GIFT uses surveys for 
soliciting responses from learners. Survey questions can be used to collect demographic information or 
administer standard psychometric questionnaires like the NASA Task Load Index. Survey questions can 
also be used to test comprehension or knowledge either pre, post, or during training. These assessments of 
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comprehension are done in the domain module and then passed to the learner module for manage-
ment/maintenance of learner state representation (Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, 
Goldberg, Brawner & Holden, 2012).  

GIFT can also log all student keyboard and mouse actions that occur when learners interact directly with 
the tutor-user interface. When GIFT passes the learner to another training application, like a simulator, 
GIFT can collect learner interactions with those applications via an application programming interface 
(API). In fact, GIFT comes with ready-made gateway modules for some popular applications like Microsoft 
PowerPoint and VBS2. Once again, when these interactions are used to assess learner’s understanding of 
concepts, knowledge, or skill by the domain module, those assessments are passed on to the learner module 
to update and maintain a representation of the learner state.  

Finally, GIFT provides a standardized means for collecting data from a variety of commercial sensors that 
record physiological (e.g., electroencephalogram, electrocardiogram, electromyogram) and behavioral 
(e.g., eye-tracking, Xbox Kinect, force transducers, accelerometers) data. Sensor data a filtered, segmented, 
and/or extracted by GIFT’s sensor module to provide a basic assessment of the raw sensor data. This basic 
assessment can then be used by the domain module to assess the learner’s state, and this state assessment 
is then passed to the learner module. Raw sensor data are also logged for post-training analysis.  

A simple framework for understanding how different types of assessments are used by GIFT is depicted in 
Figure 2. This framework divides assessments across two dimensions. First, assessments are divided into 
pre-training and in-training categories and second, they are divided into domain dependent or independent 
categories (Goodwin, et al., 2015).  

 

Figure 2. Conceptual framework for assessments. 

As can be seen in this figure, assessments that are completed prior to training primarily influence larger 
macroadaptive strategies that GIFT would employ. For example, if training on the operation of a tactical 
radio was being delivered to a medic, examples and exercises would be relevant to the medic mission as 
opposed to the infantry mission and so forth. Assessments done in training would primarily influence micro-
adaptive tactics such as whether to increase the difficulty of the instruction, whether to provide hints or 
feedback, etc.  
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Because GIFT and the TLA both engage in learner assessments, content brokering, learner modeling, and 
experience tracking, it is necessary to determine how these two systems would work together in a coordi-
nated fashion. These topics are discussed in the following sections.  

Integrating GIFT with the TLA: Experience Tracking 

The xAPI enables a revolutionary new capability for experience tracking that forms the core of data sharing 
and interoperation in the TLA. Experience tracking refers to encoding and storing in a sharable manner 
some fine-grained information about actions a learner takes or events that impact a learner during a simu-
lation, across a college course, or simply while consuming a video or text. In turn, understanding what 
individual learners experience from moment to moment can provide the grist to choose content that relates 
to the experienced context, promptly identify and respond to key moments, or proactively create conditions 
for learning. As such, the experience tracking approach colors the TLA perspective on competency man-
agement, learner modeling, and content brokering. 

General challenges associated with experience tracking include scope, tractability, and privacy. Scope re-
fers to the questions surrounding what types of data should be included in experience tracking, what level 
or granularity, what frequency of update, and so on. While recording more data certainly creates more raw 
material to work with, indiscriminate capture increases the difficulties related to tractability and privacy. 
Tractability refers to issues introduced with storage size, computation speed, network latency, human at-
tention if required, and any other resource that can be strained by large amounts of data. Experience tracking 
can be made more tractable with selectivity about what experiences are useful to store or using batching 
methods. Privacy concerns relate to the storage of experiences that reasonably impact learning but might 
not be desirable to share publicly, such as arrival at a real-world location or failure on a high-stakes test. 
Methods being explored to protect privacy include identifying opportunities to store categories of infor-
mation rather than unneeded specifics and introducing access control that limits who can read recorded 
experiences. 

Specific to adaptive training systems, there are exciting instructional design challenges surrounding how 
adaptation that responds to a different training system can improve learning. What is acceptable or helpful 
in terms of adapting learning to respond to a past experience in another system, or even shifting control 
over the learning experience between systems? At the technical level, an important challenge is the need 
for one adaptive system to understand the experiences recorded by another training system. Maximally 
effective adaptation requires knowing the learner’s past experiences, which are stored in recorded xAPI 
messages. However, it can be easy to share this valuable knowledge about experiences but hard to under-
stand what someone else has shared. Some reasons for this are varying interpretation of the standard xAPI 
vocabulary and the ease of creating new vocabulary to encompass every situation. The semantics of a mes-
sage might also vary subtly with context, such as the sequence of past experiences that led up to it or even 
which version of the software wrote it. As xAPI finds widespread acceptance, how to use each part of the 
vocabulary is being defined and agreed upon in communities of practice. However, new users and new use 
cases will continue to introduce variations. 

GIFT is capable of writing and reading xAPI messages. Examples include messages for GIFT course com-
pletion as well as for responses to tests or surveys. The specific xAPI statements generated by GIFT are 
currently determined by course authors. Because there are very few consumers of xAPI data streams, course 
authors have little guidance as to what kinds of experience statements should be produced. For the TLA to 
make use of the experience reporting capability of GIFT or other adaptive training systems, it will be nec-
essary for the TLA to be able to make requests to those systems. Additionally, it will be helpful for the 
ADL to provide some guidance on what kinds of experience streams it needs. For example, ADL is working 
to determine the balance between recording domain-specific data versus measures that would have more 



 
 

35 

general, domain-independent uses. Another challenge is developing standardized ways of reporting 
measures within specific training domains. There are always a variety of ways to report skill levels, 
knowledge, and experiences relevant to specific domains. To make it easier to compare and aggregate such 
measures across delivery platforms, standards are needed. Currently, the ADL is using communities of 
practice to develop standards for reporting activities, context, and processes so that a common vocabulary 
can be used by all practitioners.  

Integrating GIFT with the TLA: Competency Management 

The TLA uses common information about competencies that can help to coordinate teaching and training 
across systems. Competencies in the TLA refer broadly to skills, knowledge, abilities, and other targets of 
learning. TLA competency information includes human-readable descriptions, machine-readable defini-
tions, and relationships between competencies such as levels and prerequisites. Clearly defining competen-
cies helps make learner assessments portable across training systems. 

Typical challenges surrounding competency management include agreeing on the meaning of a competency 
and who is allowed to define the meaning. Many different interpretations and weightings of component 
factors are valid for different uses. For example, a competency reflecting knowledge of a cyber intrusion 
tactic for the general population might require knowing that it exists or knowing rules to avoid the attack. 
For more specialized learners, related but different competencies might need to be defined that require 
understanding of underlying principles or even ability to carry out the tactic. In addition, competencies may 
be associated with different learner performance across populations, which complicates leveling and 
norming. As such, competency definitions may be created that are so broad they become vacuous or so 
specific they are not amenable to reuse across the TLA. Human-readable and machine-readable competency 
definitions must be carefully aligned. Also, careful judgment may be needed in maintaining the competen-
cies because any change to a definition might disrupt another system that uses the same competency, while 
excessive versioning or division of the competencies might break links between systems that should survive 
that change. 

Within adaptive training systems that use managed competencies, different structures may be needed to 
make the competencies applicable to different models of learning. Systems may require different relation-
ships to be defined or interpret relationships differently (e.g., creating correlations between skills as histor-
ical data or for the purpose of machine learning and inference). They may need specialized data about 
relating competencies to specific content (e.g., which skills contribute to good performance in a simulator) 
or about content characteristics (e.g., what modes of presentation are appropriate). So, a key challenge is 
selecting the data to store for each competency and then collecting that data. The large number of compe-
tencies and all their details are unlikely to encoded completely or correctly, or they may become out of date 
in a process called concept drift. Because of these challenges, it is likely that adaptive training systems 
require a way to impute or learn and refine competencies. 

In considering the prospect of GIFT making use of competencies that are defined and managed in a TLA-
enabled location outside of GIFT, policy and technical challenges arise. Are GIFT competencies defined 
by a single central body with authority or are unit-specific differences expected? Are competencies defined 
by one military group allowed to be reused, reinterpreted, or even changed by outsiders? Finally, it is known 
that the existence and definitions of some competencies may not be published or shared, for example, when 
they are classified. The TLA supports such an environment by allowing multiple components to manage 
competencies separately, so that for example an unclassified component might manage most competencies 
while a component on a secured system could manage classified competencies. However, such a separation 
will introduce technical challenge surrounding replication and coordination of data for processes that need 
secure access. 
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Integrating GIFT with the TLA: Learner Profile  

Learner models contain data about assessed proficiency or mastery of competencies as well as traits, de-
mographic data, preferences, learning goals, and transient states of the learner. 

Broad challenges of learner models include those that are well discussed in the literature as well as inter-
esting new challenges introduced by the TLA focus on fine-grained experience tracking. First, there is a 
need to create unified measures to express each learner state or trait, and translate between measures. Since 
it is unlikely that every different training system will use the same scales or metrics to describe learner 
characteristics, methods must be created to let different measure interact. Does a four out of five on one 
scale equal an eight out of ten on another scale? Where does “meets expectations” fall on either scale? 
Standardization in the TLA aims to let systems answer some such questions automatically. Next, making 
sense of learner experience records requires rolling up raw data from one or many experiences into action-
able information. This requires understanding different models of change, including differing stages to ex-
press how learning takes place and differing models of skill or knowledge decay. Finally, variations in 
processing across training systems should reasonably lead to varying levels of trust in learner model con-
tents that are shared from other training systems. It should be possible to evaluate information in a learner 
model based on its recency, authority, and so on. Therefore, systems participating in the TLA require ar-
chitectural capabilities to tie each learner competency estimate back to the components and the evidence 
that produced it. 

An important challenge specific to adaptive training systems is the cold start problem, where computer 
systems must take time to identify learner traits necessary for adaptation. The TLA is specifically designed 
to mitigate cold start difficulties by sharing the needed information with participating systems. A second 
challenge is the often negative perception of assessment associated with high-stakes testing. However, the 
value of the TLA does not require high-stakes tests or formal assessments. The TLA may support more 
formative assessment that acts to address some concerns about time spent on testing. Finally, there exist a 
challenge surrounding learner models that may contain personally identifying information or otherwise 
sensitive information such as records of failures on important training events. As described previously, 
personal control over private information or intelligent filtering such as sharing the lack of a success to 
date, rather than a definitive failure, could provide approaches to address such challenges without reducing 
the important value of a shared learner model. 

In the GIFT framework, modeling learner characteristics outside of the established GIFT model suggests a 
possible opportunity for automated intake of new learner model definitions. However, the learner charac-
teristics in GIFT are by design very general to all training domains. As a result, it may be that design 
changes will be needed before GIFT can incorporate new shared characteristics that let GIFT take advantage 
of the learning context other systems know. For example, it may be desirable to introduce a layer of inter-
pretation that can translate learner model characteristics for GIFT instead of, or as an intermediate step 
toward, adding the characteristics as first-class members in the GIFT learner module. 

Integrating GIFT with the TLA: Content Brokering  

Content brokering refers to recommending future experiences and training based on learner goals, charac-
teristics, and assessments.  

Similar to competency management, managing characteristics of content is difficult to do at scale. Metadata 
and paradata describing each piece of content needs to be authored and stored. As we have argued, such 
automated collection and maintenance of such data is likely to play an important role in TLA-enabled train-
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ing systems. Automation will help ensure that data is accurate and up to date, which is of increased im-
portance when different systems need to coordinate to understand and recommend or broker learner expe-
riences. 

An interesting research question surrounds the assembly of a unified learning experience out of the atoms 
provided by different adaptive systems. Content brokering is likely to take advantage of, and be challenged 
by, new modes of learning such as second-screening or switching between systems when an experience is 
incomplete, as opposed to linear completion of a single recommended learning pathway. Unified language 
and surface presentation of instructional content is likely to require precise content descriptions that are not 
currently available. Some even argue that unified user interfaces, iconography, or fonts might be needed to 
avoid distraction and extraneous cognitive load caused by switching between training systems. 

The granularity of content to be brokered is an interesting question. While humans are able to make “close 
enough” fits between learner needs and content, or quickly identify atoms of content to a very fine-grained 
level, the same can be difficult for automated systems. For example a human may find it appropriate to 
direct a learner, “read the first two pages, the last three are not related to our work now.” Adaptive training 
systems need a way to link deep into content and markup the different competencies related to fractional 
portions of content that is experienced. This is an interesting challenge because content portions that are 
viewed or need to be viewed may be continuous and have graduated effects rather than discrete. As an 
example, watching the first 60 seconds of an instructional video may have different effects from watching 
the first 90 seconds. The video may or may not be possible to break into discrete segments that have begin-
ning and end points a machine can identify. In a training simulation, it may be desirable for a learner to 
experience one particular path or a few out of thousands of possible paths. Content brokering needs a 
method to understand these impacts and select, suggest, or influence certain paths at a fine grain that expert 
human instructors can achieve. 

GIFT may provide a central method for the TLA to start and control content in adaptive systems. However, 
this GIFT approach to content brokering currently requires a GIFT-specific interoperability program that 
costs developer time to create. The GIFT framework also assumes that content it brokers within its frame-
work will give GIFT certain types of control over the learning experience, such as allowing GIFT to termi-
nate running content. This kind of centralized control makes sense in GIFT and is used in useful ways such 
as switching to another activity without leaving too many windows open. However, not every system that 
participates in the TLA will find it possible to use this structure. A minimal set of direct interoperability 
controls should be identified and possibly modularized into a reusable content brokering component that 
could reduce the developer effort to participate in GIFT content brokering. 

Conclusions and Recommendations 

The framework being proposed here for the integration of GIFT (or any adaptive training system) and the 
TLA sees the TLA as handling management of training and education at the course and above levels while 
a system like GIFT handles management of training at the course and below. For example, the TLA might 
determine that a learner needs some block of training in GIFT to develop or maintain a particular compe-
tency and so it would in essence bring the learner to the GIFT classroom for training. As part of this handoff, 
the TLA would provide GIFT with a record of relevant prior experiences and training of this learner. At the 
conclusion of training, GIFT would return the learner to the TLA and would update the learner profile 
accordingly.  

As discussed previously, there are some challenges that need to be addressed in order for this framework 
to become reality as shown in Figure 3. First, for the TLA to deliver the learner to the GIFT classroom, the 



 
 

38 

TLA needs to be able to know about the training available in GIFT and how it maps into various compe-
tencies. To the degree that there are not clearly defined methods for identifying competencies and defining 
competency networks, it is not clear what the link between a GIFT course and a competency network would 
be. Even assuming such competency networks exist, there is still the challenge of determining how to eval-
uate the content of a GIFT course so that it could be mapped to specific nodes on the network.  

 

Figure 3. Challenges for integrating GIFT and TLA. 

In terms of experience tracking, GIFT can generate xAPI statements that can be fed into an LRS. So, on the 
surface, it would appear that GIFT is already largely TLA-compliant. The biggest challenges that exist with 
regard to experience tracking are not specific to GIFT, but are general challenges of experience tracking. 
Specifically, standards need to be developed for reporting of activities within specific training domains to 
facilitate comparisons of measures across applications. Other issues involve determining the granularity of 
learner activities that should be reported and the identification of critical contextual information that is 
needed for proper interpretation of activities. As communities of interest develop conventions and standards 
for experience tracking, GIFT will need to comply with those standards, but that shouldn’t be a difficult to 
do. 

In conclusion, it is clear that GIFT and other adaptive training systems must be part of an integrated learning 
environment like that envisioned in the TLA to realize their full potential. In this environment, GIFT will 
know about learners as soon as they enter the GIFT classroom, maximizing GIFT’s training efficiency by 
eliminating the need for it to spend time interrogating the learner before delivering its training. This envi-
ronment will also enable GIFT to adapt training across training venues or modalities. For example, suppose 
a course includes a sequence of classroom training followed by simulation training followed by live train-
ing. If learner’s activity streams are being recorded in the classroom, GIFT would be able to adapt the 
simulator session based on their classroom performance. Similarly, if performance is tracked during live 
training, GIFT could both use that data to evaluate the effectiveness of the training it delivered in the sim-
ulator and even to recommend additional remedial simulator training when needed.  
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Introduction 

Two trending areas in learning technology are intelligent tutoring systems (ITSs) that can create truly adap-
tive instruction for individual learners and teams and increased data interoperability through use of the 
experience application programming interface (xAPI). xAPI, a set of application programming interfaces 
(APIs), allows a common data structure that applications can use to share information. Developed by the 
Advanced Distributed Learning (ADL) Initiative as a free, open-source, and highly extensible specification, 
xAPI offers a great number of benefits to an intelligent tutoring capability (ADL, 2016). 

This chapter explores the possibility of implementing xAPI within an ITS or across ITSs. First, the current 
state of ITSs is reviewed to determine how domain-specific an ITS is and to see how difficult the barriers 
to implementation are to overcome. If ITSs can perform in an interoperable way, they can focus on a par-
ticular domain and optimize performance within that domain. At the same time, data should be accessible 
to enable those who could do powerful things with them. Next, data analytics are explored both in terms of 
what the field is doing as well as how ITSs are entering that field. This introduction into interoperability 
and data exposure provides the groundwork to look at the benefits and breadth of xAPI, with an eventual 
goal of semantic, not just syntactic, interoperability. Finally, the possibilities of ITS + xAPI has great po-
tential. As part of this discussion, we explore solutions with an xAPI community of practice (CoP) and 
examine methods to expand xAPI vocabulary to capture achievements within ITSs and support assessment. 

Related Research 

When determining the viability of an ITS, one needs to realize that an ITS is often very tied to a specific 
task domain. Obviously, subject domains such as English can react to anything thrown at it or simply find 
relevant content on the Internet based on an individual learner’s needs. Previously authored content may 
already exist. Learning content on its own cannot be a domain, it is far too dynamic. Activities in the 
“Learning” domain can include everything from essays to simulations to graphing to collaborative design. 
This gets to the central point made by Nye, Goldberg, and Hu (2015): learning tasks for a domain define 
how content is authored in that domain. This argument doesn’t even get into other domains that are ripe for 
ITS improvement such as assessment (interactions or checks to determine understanding), measures (a cri-
terion to determine whether a learner’s state is at, below, or above expectations), motivation (internal and 
external factors that affect achievement), cognition (acquisition, processing, and using knowledge), affec-
tive states (attitudes, values, and emotions), and psychomotor (manual or physical skill acquisition). 

The argument of learning tasks defining authoring practices has many facets to it. First, that a domain or 
subject area will have a subset of activities of the aforementioned “Learning” domain. This alone adds 
complexity of the notion of a generalizable ITS. Before proceeding to a further argument that ITS special-
ization is inevitable, we must define a learning task. A learning task from this authoring standpoint is de-
fined as 1) having a distinct pedagogical state, 2) having dynamics during that task that are mainly or wholly 
derived from task state, and 3) including actions performed by the learner (or learners) (Nye, Goldberg & 
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Hu, 2015). As one could guess, there are many complexities in an ITS, which relies on both a pedagogical 
and learner state model. The level of effort to author also increases with feedback. The larger the domain 
of the ITS, the more complex. 

The vision of a single, large ITS also loses viability when considering barriers to ITS adoption. Nye (2014) 
cites a number of these barriers. First, due to an explosion of data, it is extremely difficult to test which 
features of ITS are valuable by turning them on or off. Second, students still need to have access to and be 
motivated by an ITS. Access to technology cannot always be assumed, especially as the infrastructure 
needed for the ITS increases. Social expectations of an ITS also weigh heavily into consideration. In a 
similar way, the third barrier is proving value to teachers and administrators. Teachers need to be “in the 
loop” and reports of the student model need to be accessible. Finally, and related back to the authoring 
argument, usage of ITS is dependent on premade curricula. An ITS isn’t a magic box that creates learning 
content, it makes existing learning content better.  

All of these complexities make the possibility of having an ITS that contains all of a learner’s needs regard-
less of domain, virtually impossible. A single large ITS isn’t the solution for an ecosystem that can support 
all of a learner’s need. Instead, distributed ITSs that can communicate with each other seamlessly are 
needed. 

The Need for an ITS Framework for Interoperability 

One only needs to look at the technology landscape to realize the movement to distributed services. 
Smartphones and tablets with applications from multiple developers have replaced software bundles. Web 
surfers utilize a variety of services with a mentality of “if they don’t work nicely with each other, I’m not 
going to use it.” There is no doubt that ITSs will need to move in the same direction. Thus, it is no surprise 
that researchers in the area of ITSs have explored various methods for sharing student model information 
collected by various ITSs in different contexts with other systems. These approaches include student mod-
eling servers or shells (Fink & Kobsa, 2000), distributed agent-based platforms (Vassileva, McCalla & 
Greer, 2003), distributed agents and servers (Brusilovsky, Sosnovsky & Shcherbinina, 2005; Zapata-Rivera 
& Greer, 2004), peer-to-peer systems (Bretzke & Vassileva, 2003), service-oriented systems (Kabassi & 
Virvou, 2003; Winter, Brooks & Greer, 2005). Although this work has resulted in platforms that can support 
the integration and sharing of student model information, scaling-up and human support issues may have 
prevented the widespread use of these platforms among groups outside the institution where these ap-
proaches were originally developed. 

The biggest hurdle to these technology challenges is, of course, inertia. Many educational institutions have 
to deal with the challenge of consolidating student data that has been stored in silos across the organization 
(Daniel & Butson, 2013). Government is even more of a challenge with many more acquisition rules and 
layers of bureaucracy. Many software systems are large and were expensive to build, and are also extremely 
costly to maintain, which makes trying something new difficult. Despite these challenges, the field of ITSs 
would be best served to move to an open framework in the near term, rather than dealing with the predict-
able problems of increasing maintenance costs and old technology deprecation it would face if designed 
without interoperability in mind. 

The goals of this interoperability should be not only syntactical compatibility between two systems that 
want to exchange data, but actual semantic interoperability. That is, the machines not only agree on what 
data looks like, but also agree in what they mean in a larger learning ecosystem.  
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Discussion 

The Importance of Data Analytics  

An area of increasing importance as technology advances is data analytics. Data can move faster through 
increasingly fast infrastructure with servers that have more capacity and are able to process more infor-
mation than ever. We see this in ITSs as learning analytics and educational data mining methods are fre-
quently used to extract information from large datasets to inform the creation of adaptive educational sys-
tems and provide teachers with actionable data to support student learning (Baker & Inventado, 2014; Ar-
nold, 2010). There are many benefits to performing this type of analysis. Learning analytics can help with 
analyzing student data and creating models that can be used to identify students at risk and suggest possible 
interventions (Daniel, 2015). While identifying at-risk learners is important, so too is identifying those 
overachieving. Such learners are ready for more challenging tasks or potentially leadership activities. Mod-
els don’t have to focus on simply performance, but skill sets as well. Matching a person’s skills and abilities 
to job functions is a historically difficult problem in the DOD (and likely elsewhere). Using data to infer 
better matching would be a boon to employers. Data analytics enable some interesting social engineering 
possibilities. By displaying the results of analytics, dashboards can be created and exposed to learners as 
well, thus increasing both competitive and collaborative possibilities in a motivational/gamified environ-
ment.  

The field of ITSs can benefit from some lessons learned in distributed learning content, especially with 
regard to exposure of data for analytics purposes. Around 2010, the ADL Initiative launched a series of 
surveys, interviews, and questionnaires surrounding the Sharable Content Object Reference Model 
(SCORM) to prepare to create a new specification that could fill gaps as reported by current users and tool 
providers. While SCORM was very successful in bringing a standard to distributed learning, the aspects of 
“big data” and even access to data were raising needs that SCORM did not meet. Respondents reported a 
need for students, teachers, administrators, and authors to have access to data. They wanted ways to expose 
the data directly, and not be reliant on a proprietary user interface (UI). In addition, the scope of the data 
needed to change. The interest in data across a learner’s lifetime, how they perform in a group, and the 
varying types of assessment they take were all “need to haves” in this next specification (ADL, 2011). 
While SCORM was successful at aligning disparate learning management systems (LMSs) and their data, 
the requirements have aged 20 years, the field of ITSs would be better off looking toward lessons learned 
and the desired direction of those deploying distributed learning solutions. 

xAPI, Profiles, and Vocabularies 

The breadth and depth of what xAPI can track is outstanding. It can track different granularities of learning 
events by selecting an option within a multiple-choice question to graduation from a University program. 
xAPI’s range is also diverse in that it can track motions done by a solider during training using wearable 
technology or it can be used to record a conversation that happened between professors and their students. 
The reason is that xAPI has abstracted out many of the key fields in recording data. This flexibility has 
allowed applications to track any type of data that one can describe in language or in an attached file. 
Whether it is interacting with a digital publication; tracking the pauses, starts, and skips in a video; gathering 
training data from a simulation; or grabbing physiological data from wearable technology, xAPI can record 
events about learners in nearly any application. At the same time, xAPI provides details on how to represent 
users and other information, making it very flexible to build new ontologies. In addition, as xAPI is human 
readable (the names and values of the data format are intentionally based on natural language), barriers to 
entry are lower and creation of best practices is easier. A final benefit is that applications can and have been 



 
 

44 

developed that allow offline interactions, such as a technical evaluation of performance in an operation, to 
be integrated into an application post hoc.  

xAPI provides a structure any system or application can get “back to”. As previously discussed, “stove-
pipes” of data are a burden to doing high-value analysis on performance. In most cases, even data migration 
is not possible because of the nature of the data being only accessible through a specific interface. xAPI 
reduces the barriers causing these silos in two ways. First, all xAPI data are exposed through querying 
controls built directly into the specification. To be xAPI-conformant, a Learning Record Store (the name 
of the data storage of xAPI) must allow access to all data (provided that user account has permission to see 
that data). While this may sound trivial, the inability for most systems to produce output that is usable by 
any other application is widespread in government, academia, and beyond. Second, xAPI uses a simple data 
format called JavaScript Object Notation (JSON) used widely in industry that can go anywhere – mobile, 
simulation, Internet of Things (IOT) devices, sensors, etc. By using a general transport format rather than 
a specific database schema, any application’s database can easily export to xAPI or import xAPI. This 
alleviates the need for databases to “talk” to each other, which is important because the logistics around 
security and person-hours necessary for every single integration can quickly make collaboration unscalable.  

The collaborative nature of xAPI means it is flexible as situations change and industry best practices change. 
Because xAPI doesn’t incorporate its own vocabularies, CoPs can form around common interests and create 
their own best practices independent of the specification itself. It is expected that many CoPs exist, in 
particular to cover the variety of disciplines that want to track data. In addition, profiles, collections of 
vocabularies that the CoPs are likely produce, can be created and validated against in the same way con-
formance testing can be done on technical specifications. ADL is in the process of documenting processes 
and procedures for CoPs, profiles (and conformance testing of them), and vocabularies. The openness of 
the spec and CoPs also allow for the diverse requirements necessary in assessment. Organizations, states, 
and especially countries have very different requirements in regard to privacy, security, data tracking, and 
record keeping. xAPI offers support by being flexible in structure and in its use of identifiers rather than 
English tokens. 

Recommendations 

It is with this collaborative spirit that an ITS CoP needs to be developed and incorporated into the Gener-
alized Intelligent Framework for Tutoring (GIFT). Not as an ironclad set of rules to be followed when 
tracking performance or assessing with the ITS community, but  rather a common understanding of vocab-
ulary for all possible implementation points and allowing organizations to create their own distinct solu-
tions. While solutions may be distinct, developing a profile for ITSs would allow the common description 
of ITSs to have a clear path of how one ITS can interface with another. This interface is the key to assess-
ment interoperability in ITSs. Research has already been done around evidence-centered design (ECD; 
Mislevy, Steinberg & Almond, 2003). ECD offers a principled approach for designing assessments based 
on the principles of evidentiary reasoning. It can inform the development of a vocabulary for assessment in 
the field of ITSs. The ECD community has developed tools and a vocabulary to refer to assessment design 
components (ECD Wiki, 2016). It is hoped that by the time this book is published, leaders in ITSs and xAPI 
will have established a CoP to begin this collaboration, in particular in the area of assessment. ADL has 
worked alongside many xAPI CoPs as they have developed, most notably, the cmi5 profile. The cmi5 
working group has created a profile related to the traditional LMS model and combines the richness of xAPI 
with the structure of a basic learning assessment model. It has already being developed in Learning Record 
Stores and authoring tools. There is no reason that ITSs couldn’t follow a similar path to success. 

The best place for this CoP to start is with the recent recommendations of the US Army Research Laboratory 
team who created GIFT. Sottilare, Long, and Goldberg (2017) highlight five information classes that focus 
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on domain competence. The more accurate the competency modeling, the more effective an ITS can tailor 
or adapt instruction. GIFT and xAPI alignment needs to occur in five main areas. First, fine-grained 
achievement data, such as answering specific questions, navigating through certain sections, or interacting 
with components would be valuable to track in GIFT to make smarter decisions regarding content flow. 
Second, calculating duration will provide better metrics when compared with learner outcomes. This allows 
questions like “is a single 5-hour session more effective than 5-1 hour sessions” to be answered with data. 
Third, having a vocabulary and accompanying GIFT mechanism to allow a learner’s to assess the quality 
of their experience would provide valuable feedback about the content itself. Fourth, an effective model for 
competencies and their decay is needed. This allows for notifications for refresher training as well as as-
sessment of which strategies can allow for the least amount of decay. Finally, an assessment profile is 
needed within xAPI to track both formal and informal learning experiences. This profile goes beyond just 
a couple features and would have specific rules for usage. Implementing GIFT with boosted xAPI capabil-
ities will provide ITSs the dynamic capability to meet the needs of 21st century learners. 
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CHAPTER 5 – Vision Statement: Navy Career Management  
and Training of the Future 

Brent Olde 
US Office of Naval Research 

Introduction 

This chapter presents a vision of future Naval career management and training2 in which repeated perfor-
mance assessments are critical to achieving the vision.  

As technology become increasingly integrated into military systems, the ability to automatically gather 
operator performance data during day-to-day operations and training events has become easier and more 
cost effective. Collecting and analyzing these data provide an unprecedented capability to understand a 
sailor’s duties and the impact of their training on their readiness to execute their mission. Having a perfor-
mance assessment system that automatically identifies substandard performance and indicate areas for re-
mediation would allow supervisors, instructors, and the individual to better understand their current capa-
bilities and target interventions when and where needed. The data collected can provide training profes-
sionals with detailed objective metrics of their training effectiveness, allow comparative analysis of training 
efficiencies when training programs are modified, and provide military leaders with an understanding of 
their fleet’s readiness. It is very rare to be able to directly compare the impact of training and education on 
job performance. For example, universities do not track all of their graduates and assess how well they do 
in their jobs after graduation, then feed that data back into their teaching to optimize their curriculum. The 
Department of Defense (DOD) is in a very unique position, as it takes individuals straight out of high 
school, trains them in their jobs, and could monitor their performance throughout their military career. At 
a superficial level it does this, but with the current technological trends, the ability to capture on the job 
performance metrics in a detailed manner opens up new and exciting opportunities to deeply understand a 
military job and customize the training to that job.  

The Navy senior leadership have been promoting Sailor 2025 – Ready Relevant Learning (RRL), an initi-
ative that will change the way they manage, train, and develop sailors (Burke, 2017; Faram, 2017). RRL 
relies on the adoption of the next generation of training technology, which typically requires the collection, 
storage, and mining of performance data. The Navy sees how industry is utilizing Big Data analytics to 
understand consumer behavior and grasps that similar techniques can be used to understand and improve 
how they manage and train their personnel. If done correctly, these data can be used to accomplish the 
following: 

1. Assess and track individual/crew/unit/force performance and readiness. 

2. Improving training effectiveness through the detailed analysis of training efficiencies. 

3. Gather operational performance data to calibrate personnel selection and training. 

4. Understand the relationship between various levels of training and their impact on mission execu-
tion.  

5. Provide personalized, dynamic training requirements based on current operational needs. 

The following vision statement provides an example of how a sailor’s life could be in the future and alludes 
to the technologies needed to achieve that vision. 
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Paul is a couple years out of high school and is looking to get a better job. He has many skills but they were 
gained through self-study and experience but are not documented by a formal degree. He is interested in a 
job in the military, so he goes online to the Navy’s recruiting webpage. He meets a computer avatar called 
the Personal Assistant for Life Long Learning (PAL3), which talks to him and gathers information about 
his formal education (his high school diploma), his past jobs, and personal interests, and administers a 
general assessment test3. The system then provides a list of jobs he is currently qualified for but also sug-
gests he take an in-depth personality assessment4 that would match his personality to the jobs that best suit 
him. He is a bit of an introvert, so although he qualifies for many positions, only a subset have a strong 
compatible satisfaction rating – so the system recommends he focus on those jobs. The system allows him 
to select current qualified positions but also other jobs he is interested in. The system has the capability to 
outline a career path to qualify5 for any of those jobs (jobs he is not fully qualified for list the extra courses 
and training required).  

Paul is interested in electronics and would like to work on a submarine. He also believes he already has 
some of the required skills, so he launches an in-depth electronics repair simulation6 where he can trouble-
shoot a typical broken device. He is able to complete the task in the required time frame, so his profile is 
updated with his new verified knowledge, skills, and abilities (KSAs). He still does not fully meet the entry 
requirements for the job he is interested in, but the system indicates how he can gain the necessary 
knowledge and skills through several methods: college or vocational courses, apprenticeship/working in 
certain jobs, or some free online DOD classes. Over the next several months he takes a few of the free 
courses in math to qualify for the position. The system not only has the courses electronically7, but has an 
intelligent tutoring system (ITS)8 that provides assistance when he has questions or difficulty with the ma-
terials. The problems in the training are based on commonly experienced operational issues (mapped to the 
submarine electronics job he selected), so not only do the exercises proved realistic training but they provide 
an accurate preview of the type of work he can expect on the submarine9. The courses run on his personal 
mobile device and the device’s camera uses facial recognition software, which provides feedback to the 
system on his emotional engagement (i.e., frustrated or focused) and also ensures he is doing the work 
himself and not getting too much help from outside sources.  

Once Paul has completed all the required preliminary work, he goes to his local recruiting office. The 
recruiter accesses his profile and they discuss the opportunities available in the military. As a final step, he 
takes another assessment test (under controlled conditions) that verifies the pertinent KSAs needed for the 
job10. He passes this final test and is ready to enlist in the Navy; however, there are a couple months before 
he can report to the Recruit Training Command to start his basic military training (boot camp). During this 
time, PAL3 directs him to several available apps that provide material he will have to learn in boot camp 
(i.e., general orders of a sentry, recognizing Navy rank insignias, fitness standards, and general military 
training courses like sexual assault prevention and response). Paul studies hard and is well prepared for 
boot camp. He sails through graduation and quickly moves on to electronics school. Since he already has 
many of the skills needed, the system provides an accelerated curriculum, tailored to his specific training 
needs. The system provides a customized schedule, pacing the materials that need to be learned before a 
target graduation date. However, the schedule is only a recommendation. Paul can accelerate his training if 
he wants to put in more hours. He can test out of materials he has already mastered, or if he falls behind, it 
will adjust the schedule providing more time to complete. The flexible schedule tracks his progress and 
ensures he demonstrates full mastery of the topic areas before advancing. The system is also tied into a 
graduation tracking system, so any acceleration or delay in expected graduation date are tracked and re-
ported. 

The schoolhouse uses a flipped classroom model that allows the students to move through courses at their 
own pace. These courses contain basic computer content delivery but also virtual reality simulations that 
can walk students through immersive, job realistic problems to solve. There is an ITS available that provides 
nonjudgmental help anytime it’s needed (Paul is a little intimidated by his instructors, so he really likes 
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going to the synthetic tutor). The school instructors can track Paul’s progress with the learning management 
system (LMS)11; it automatically compares his progress to his peers and highlights his problem areas, thus 
allowing the instructors to spend their limited time providing in-depth, one-on-one assistance to those who 
request it or who the system flags as struggling. The system informs the instructor about specific material 
the student is struggling with and can even help set up an appointment for one-on-one instruction or reme-
diation.  

Paul completes his training early and is ready to join his ship; unfortunately, it is currently at sea and won’t 
make port for several months. During this delay, his PAL3 continues to help him manage his career, it sends 
him questions of the day and assesses his responses, making sure the knowledge and skills he has developed 
do not decay and thus, he remains ready. With this downtime, the system focuses on further understanding 
Paul’s career development goals and outlines the certifications, qualifications, and general path required to 
obtain those goals. With the time spent waiting, he is able to get a head start on some of his shipboard 
qualifications. Once onboard and actively working his new job, his daily completed maintenance actions 
are recorded. This provides the system with an objective assessment of the KSAs he is maintaining and the 
new ones he has acquired. Paul is driven and eager to advance, so he listens to PAL3’s recommendations 
and takes some additional online courses.  

This extra effort is tracked and can be seen by Paul’s supervisors, who can access a supervisor’s version of 
the system. The supervisor uses the information to track individual and unit readiness, conduct performance 
evaluations, and help recommend those individuals ready to take advanced training or promotion exams. 
The supervisor likes the performance evaluation feature. It provides an objective evaluation of a sailor’s 
performance (i.e., tasks completed, difficulty levels of tasks, time efficiency, and errors) rated against their 
peers and only requires the supervisor to add their subjective input on how the individual has performed as 
part of the crew.  

Since ships of the same class can vary greatly in the equipment they have onboard (variability abounds 
because the ships must rotate out of services to get updates), the tracked maintenance performance data in 
the systems is used to validate and update the current training content. The training material evolves as the 
fleet evolves; thus, as a new combat system become available, training for the older system is automatically 
replaced. Current sailors on the job and sailors going to that ship in the future are notified of the changes 
and are provided access to the new training. Since the system knows Paul is on a specific ship, he received 
customized training for that ship, with training that focuses on the common maintenance issues they have 
(based on historical norms and expected maintenance actions through predictive mean-time failure analyt-
ics). 

The maintenance data are mined and the selection criteria for any fleet job is modified as the ship’s duties 
evolve based on system changes, again maintaining accuracy to what is required as the position responsi-
bilities evolve. Finally, the tracking system provides validation for civilian equivalency certifications that 
can be used if Paul decides to transition out of the military to a civilian career. This comes in handy when 
Paul, after been in the Navy for several years, decides to take a civilian job. He is able to use his civilian 
equivalency certification to gain a job. He settles down with his spouse and small child back in his home 
town. He does well in the civilian sector and learns new skills and professional certifications. He continues 
to access and update his Navy profile with his accomplishments with a notion of returning to service at 
some point in the future. The PAL3 system continues to provide helpful feedback and guidance so when he 
decides to return to the Navy, he is slotted into a career path that takes advantage of the new skills acquired 
in the civilian sector and thus maximizes his usefulness to the Navy.  
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Recommendations 

The Generalized Intelligent Framework for Tutoring (GIFT) could be leveraged to achieve this vision; 
however, improvements need to be made in the following areas: providing users a method to gain insight 
into the performance, beyond the individual level (e.g., crew or unit), to provide readiness tracking; allow-
ing the comparison of training effectiveness across similar tutoring systems; and providing guidance on the 
“right size” of competency development and how KSAs comprise the competency.  

1. Dr. Brent Olde is a Commander in the US Navy. He is currently assigned as a Program Officer and 
Division Deputy at the Office of Naval Research, Human & Bio-Engineered Systems Division 
where he currently manages several training related science and technology programs. He received 
his undergraduate degree at the University of Missouri – Columbia and his PhD in experimental 
psychology at the University of Memphis, Tennessee, where his graduate work focused on the 
developed ITSs.  

2. Although the vision is influenced by current Naval guidance, this chapter contains thoughts of the 
author and does not express any official Naval position. 

3. General assessment tests could be the full or paired down version of the Armed Services Vocational 
Aptitude Battery (ASVAB) for enlisted or the Aviation Selection Test Battery (ASTB) for officer 
wishing to qualify for flight training.  

4. In-depth personality assessments, like the Army’s Tailored Adaptive Personality Assessment Sys-
tem (TAPAS) program. This type of assessment measure a persons’ “fit” for a job. High school 
and college career placement centers have be using these tests for years to provide guidance on 
how much one would like a prospective career field. The Navy has a test like this to provide guid-
ance on whether a sailor would be a good fit for life on a submarine.  

5. This could be used by those who want to provide career path to get a specific job, not just what 
they current qualify for.  

6. An individual may have skills developed through experience or self-training that are not reflected 
in any formal degree. A job relevant task simulation that can test an individual’s ability to do a job 
could be used as an alternative to a degree. If complete or partially complete, it would provide 
evidence of the person’s current skill level. There is a web based system that allows programmers 
to check out public-domain software. Programmers make changes to the programs and repost them 
to the site. A prospective employer can look at the quality and sophistication of the changes made 
by the programmer and see if they want to hire them.  

7. Electronic courses like those available at “Khan Academy” provide free content to the general 
public. However, just providing the content does not provide the help and feedback typically pro-
vided by a good teacher or tutor.  

8. A quality ITS can assess a student’s performance and provide assistance when the student runs into 
difficulty. It’s fairly easy to capture and address commonly ask questions and concept misconcep-
tions. These can be automatically detected and feedback can be provided. Through extended use 
and crowed sourcing student questions and responses, the system can evolve in the scope of mate-
rial and problems it can handle.  

9. Having an accurate preview of a job is a great predictor of how long someone will stay in the job 
and their overall job satisfaction. 
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10.  One hurdle to overcome acceptance of freely available education and training courses is the ability 
to verify that the person is actually doing the work without too much outside help. Some methods 
need to be in place to verify the completed work. 

11. LMSs can be used to track training performance. The Advanced Distributed Learning (ADL) has 
created the experience application programming interface (xAPI) as a standard to collect and trans-
mit performance data from different training systems and LMSs. Some standardization is required 
to track a sailor’s performance across training systems and throughout their career.  
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CHAPTER 6 – Coordinating Evidence Across Learning Modules 
Using Digital Badges  

Ross Higashi1, Christian Schunn1, Vu Nguyen2, and Scott J. Ososky3 

University of Pittsburgh1, Carnegie Mellon University2, US Army Research Laboratory3  

Introduction 

No matter how successful a learning module or intervention such as an intelligent tutoring system (ITS) is 
at producing learning, the fruits of those efforts cannot be employed efficiently without a suitable means 
for representing and conveying which learners possess which skills. Who will know to hire or promote this 
more knowledgeable individual, if there is no clear sign that they are more accomplished? Digital badges 
are digital artifacts that function as markers of achievement. Often described as building on the combined 
traditions found within Scouting (e.g., Boy Scouts or Girl Scouts) and online gaming (e.g., Xbox Live 
Achievements, PlayStation Network Trophies), badges are issued to an individual when the individual 
meets specific criteria embedded in program-relevant activities (Ostashewski & Reid, 2015). 

Functionally, badges are commonly framed as open digital microcredentials (e.g., Ifenthaler, Bellin-Mular-
ski & Mah, 2016; University of Minnesota, 2017). Openness means that any party should be capable of 
issuing badges. Digital means that the badges themselves exist in an online environment and are thus ame-
nable to digital transmission, e.g., over the Internet. Finally, the “microcredential” nomenclature empha-
sizes badges’ common purpose with traditional credentials such as diplomas and trade certifications, but 
with a finer-grain size. 

A 2014 survey of an early-adopter cohort of badge developers identified three common design goals for 
badges: “recognizing learning”, “assessing learning”, and “motivating learning” (O’Byrne, Schenke, Willis 
& Hickey, 2015). A growing number of studies (e.g., Abramovich, Schunn & Higashi, 2013; Reid, Paster 
& Abramovich, 2015; Suhr, 2014) have investigated effectiveness in individual areas, but the juxtaposition 
of the three is also informative. This is because, as with existing credentials, the assessment, recognition, 
and motivational components of badges are intertwined: the recognition afforded by a credential depends 
upon the fair assessment of the skill during the awarding process. Earners may be motivated to gain the 
credential because it is instrumental for scholastic or career advancement (utility), because it displays their 
prowess to others (achievement), or perhaps because they see owning the badge as consonant with their 
personal or professional identities. In all cases, the link between possessing the skillset and acquiring the 
badge depends, fundamentally, upon the validity and credibility of the assessment process. An attentive 
evaluator would reject (with prejudice) a badge that claims one thing but measures something else, and no 
learner would be excited to earn a token thus discredited. 

Thus, digital badges could substantially improve the efficiency of skill-based personnel or resource assign-
ment by effectively surfacing learners’ skills as they are developed, at a higher frequency and with greater 
granularity that traditional credentialing processes, although still at grain sizes large enough to be meaning-
ful to outsiders. This may bring with it advantages for learner motivation, and by extension, improve learn-
ing outcomes as well. Yet, these things are only possible if the badges contain a valid and credible assess-
ment of the indicated skills. In essence, the entire badging enterprise – and indeed, that of microcredential-
ing in general – hinges upon the question of why a viewer should believe the badge’s claim.  

In this chapter, we present a conceptual model for a badge system, illustrated within a computer program-
ming learning environment. The model is built upon theoretical foundations and practical use cases, which 
are leveraged in order to derive specific design considerations. The chapter concludes with the potential 
expansion of the badge system and opportunities for future research.  
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Related Research: Designing Badges for Assessment 

Theoretical Framework 

To productively connect assessment and evidence, we turn to the evidence-centered assessment design 
(ECD) framework laid out by Mislevy, Steinberg, and Almond (2003; Mislevy, 2006). Under this frame-
work, an assessment is fundamentally understood to be an argument from evidence, designed for a purpose. 
An assessment is valid if (and only if) its argument is sound, using observed data – things the student has 
done – to warrant claims that the student knows certain things. Furthermore, the knowledge claim must be 
useful toward a real purpose, i.e., relevant to a real decision about a student possessing a skill. In short, a 
valid assessment makes a claim that an individual knows something, backs that claim with evidence, and 
leads to a conclusion that is usable for a decision. 

How, then, might we design digital badges to embody a valid assessment claim? In the process of design, 
it is typical to connect these elements in reverse, reasoning from ends to means in a “backward design” 
process (Wiggins & McTighe, 2011). Intuitively, purpose will determine “which features and expectations 
are central, and which are irrelevant” (Messick, 1994; in Mislevy, Steinberg & Almond, 2003). This means 
that we must start with the purpose of the badge, i.e., why anyone cares whether a student possesses a 
certain skill in the first place. From there, we can ensure that the badge makes an appropriate claim to fulfill 
that purpose, and supplies evidence that compellingly backs its claim. 

Use Cases 

To gain better traction on this issue, we focus on three specific use cases. “Use cases” identify specific, 
representative scenarios in which the product-under-design must fulfill a certain need, in a certain context. 
These concrete scenarios allow designers to understand requirements and reference the scenarios as litmus 
tests for the sufficiency of proposed designs. 

Much of the policy interest in badges frames them as credible indicators of knowledge or skills, usable for 
making decisions about admission to program of study or employment, or for guiding one’s own learning 
(Duncan, 2011; LRNG; MacArthur, 2011). Therefore, we begin by proposing the following three use cases: 

• Use case 1: Digital badges should help a college admissions officer decide whether an applicant 
possesses sufficient academic preparation to begin learning college-level content. 

• Use case 2: Digital badges should help a learner, mentor, or ITS choose an appropriate next task 
or topic for learning. 

• Use case 3: Digital badges should help an employer decide whether an applicant will be able to 
perform certain tasks well on the job. 

Aligning Purposes, Claims, and Arguments 

Across the three use cases, two distinct kinds of “purposes” have appeared. 

Claims about Readiness to Learn. The college admissions officer and student/mentor (use cases 1 and 2) 
are both interested in the learner’s readiness to learn certain new content. The logic implicit in this framing 
is well established within the learning sciences: learners can only learn certain novel concepts after certain 
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prior learning has put them within reach of it. This type of claim is typically most relevant in cases of 
formative assessment – that which is intended to inform mid-course adjustments in learning trajectories. 

Research related to the zone of proximal development (Chaiklin, 2003; Vygotsky 1933), conceptual change 
(DiSessa & Sherin, 1998), learning hierarchies (Duncan & Hmelo, 2009), and effective tutoring 
(Koedinger, Corbett & Perfetti, 2012; Wood, Bruner & Ross, 1976) has unpacked theoretical and practical 
concerns around this phenomenon. For our purposes, this distinction is particularly important because the 
readiness-to-learn purpose informs the kind of assessment argument that is needed to support it. Specifi-
cally, the argument must allow us to conclude that the student possesses knowledge X in such a way that it 
has prepared them to learn X’. 

Claims about Proficient Reapplication. The importance of alignment is also evident when we consider the 
second major purpose contained in our use cases: that of the hiring manager (use case 3), who may be 
primarily interested in whether a job applicant will be able to perform certain skilled job functions reliably 
once hired. That is, the hiring manager wants to know that the applicant will be able to apply the skill 
proficiently and appropriately under working conditions. This type of claim is commonly associated with 
summative assessment – that which is intended to summarize qualifications. 

The logic underlying this framing is of a wholly different nature: it concerns the transfer of learning from 
the context in which it was learned (e.g., through a lecture in the classroom or in a training environment) to 
new contexts in which it should be applied (e.g., to a problem-solving task in the workplace). Learning 
scientists have given extensive attention to the fact that two students who appear to understand something 
well, may still differ in their ability to “transfer” that knowledge to a new situation. This is often a concern 
for intelligent tutors or simulation environments in which the learning environment is systematically sim-
plified to make it digital. Many models have been proposed and tested of both the underlying causes and 
ways in which transfer performance might be improved (e.g., Hammer, Elby, Scherr & Redish 2005; 
Kirschner, Sweller & Clark, 2006). An assessment argument for this purpose will likewise need to be of an 
entirely different character from a readiness-to-learn argument. Rather than focusing on a student’s ability 
to comprehend future material, this purpose demands that the assessment argument be made about the stu-
dent’s ability to transfer knowledge to the work context. 

Design Takeaways  

In practical terms, our digital badge designs must make the assessment claims that speak to both the “read-
iness to learn” and “reapplication” purposes, and back those claims with evidence. Stated in “forward” 
order, digital badges make assessment claims of the form: “Using past performances as evidence, we assert 
that the earner of this badge possesses the indicated skill, and will be able to apply it appropriately and build 
upon it in the future”. 

With these general design objectives in place around the alignment of assessment claims to assessment 
purposes, we now turn to the specifics of the “evidence subsystem” that facilitates the formation and deliv-
ery of an appropriately “backed” assessment argument.  

Design Principles for a Badge-Based Evidence Subsystem 

In this section, we propose detailed principles for the design of evidence subsystems within broader badging 
arrangements, designed to support valid arguments-from-evidence about the knowledge and skills of badge 
earners. Our objectives are twofold: 1) to more specifically address concerns about establishing evidentiary 
warrant and 2) to provide one concrete, practical solution. 
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Design Principles 

As a design progresses from “clarified problem statement” to “specific solution”, it sometimes acquires 
features that might be considered idiosyncratic and do not further any design goals. To make a small but 
powerful set of implementation decisions, while avoiding superfluous prescriptions altogether, we rely on 
a small set of guiding principles to help us maintain design discipline around the complex notion of “evi-
dentiary warrant with fidelity to purpose”. These principles reflect, in a sense, the two complementary facets 
of a parsimonious design: 1) the provided evidence must be sufficient to establish (or “warrant”) the claim, 
and yet 2) are no more complex than necessary due to practical and logistic concerns. In both cases, we 
draw again on our use cases, as both necessity and sufficiency are defined relative to purpose. 

Principle 1: Evidentiary Strength  

Strength of evidentiary warrant increases with both quantity and diversity of evidence. To address the issue 
of sufficiency of evidence, we draw upon the intuition of the replication study, or triangulation. In the 
sciences, we recognize that no single experiment, study, or perhaps even theory provides a complete picture. 
The single datum is thought of as fundamentally impoverished, lacking a robustness of perspective that can 
only be established through consideration from multiple angles. A conclusion supported by only a single 
data collection and analysis is at best promising, but provisional. Analogously, an assessment statement is 
only weakly warranted by a single piece of evidence. 

Furthermore, while additional evidence of the same type would increase our certainty in the conclusion 
somewhat, it does not achieve the same effect as a concurrent result from a fundamentally different analysis 
since the inherent weakness of any single source is maintained in an exact replication. Real replication is 
not duplication of an analysis, but the reproduction of an equivalent result in a different context. 

We extrapolate three important design features from this principle. First, we recognize that evidentiary 
warrant is not dichotomous, but dimensional — a small amount of evidence would provide weak support 
for the assessment claim, while more or better evidence would provide stronger support. It is not all-or-
none. Second, we recognize the existence of multiple, qualitatively different types of evidence that might 
speak to the validity of the skill or knowledge claim. This is concurrent with a central theme of modern 
learning science research: in addition to the classical cognitive theories of conceptual understanding (typi-
cally assessed by, e.g., standardized multiple-choice exam), several strands of research focus on environ-
mental and social factors involved in promoting the development of transferrable skills (e.g., Gresalfi, 2009; 
Lave & Wenger, 1991; Lee, 2008). Finally, as a combination of the first two, we recognize that the best 
conceptualization of the evidence space is in fact multidimensional: different amounts of different kinds of 
evidence. 

We conclude with two design decisions based on the aforementioned design features: 

• Design Decision 1: The framework must support the inclusion of multiple kinds of evidence con-
currently. The badge system must, at a technical level, support the inclusion of evidence types 
beyond traditional exam scores. For instance, a portfolio of works completed by the student may 
be considered a valid form of triangulating evidence. In the ECD framework, each piece of evidence 
is free to rely on its own theoretical sense of internal validity, as long as it is valid according to that 
standard. 

• Design Decision 2: The design must recognize and represent multiple “levels” of evidentiary war-
rant. These should be tied to the quantity and diversity of evidence provided. Strength of warrant 
must be kept meaningfully separate from the level of mastery being claimed. 
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Principle 2: Evidentiary Necessity 

The strength of evidence needed to support a claim is based on the weight of the decision that will be made. 
Stronger warrant is needed for higher-stakes decisions. Having established that the strength of evidentiary 
warrant can vary with the amount and diversity of the evidence, the second issue we must address is, “how 
much evidence is enough?” Since there is no definitive scientific answer to this question (Popper, 2005), 
we borrow an intuition from legal theory, where the use of imperfect evidence to justify conclusions is 
common practice. This intuition is that of the sliding “standard of proof”, in which the required strength of 
evidence is higher when the potential consequences are greater (e.g., in criminal vs. civil court). 

While the circumstances of a badge evidence evaluation are certainly not the same as being in court, deci-
sions made using badges do vary in terms of potential impact. A student’s decision to move on to the next 
chapter (based on a badge saying they understood the previous concept) is fairly low-stakes and can be 
made based on even relatively thin evidence because even in the worst case, a learner need only backtrack 
to review. On the other hand, a college admissions officer is making a substantially higher-stakes decision 
when using badges to determine an applicant’s readiness to learn in college and should be bound to accept 
only evidence that is more firmly established. Thus, we extrapolate one important design feature from our 
consideration of evidentiary necessity: our design must indicate in some meaningful way the strength of 
evidentiary warrant it provides, so that a viewer can have some sense of how firmly its claim should be 
considered established. 

• Addendum to Design Decision 2 (“2b”): The design must state or strongly suggest a clear rela-
tionship between stakes-appropriateness and strength of evidentiary warrant. This is functionally 
an addition to Design Decision 2 from the previous section. 

Principle 3: Efficiency 

There is a practical upper bound on how much evidence an evaluator is able and willing to examine. The 
more efficient the presentation, the more evidence can be used. Finally, we look at a practical factor that 
has implications for how much evidence we can effectively (rather than theoretically) bring to bear in back-
ing our assessment argument. Simply put, no evaluator has time to interrogate all the evidence in detail, for 
every badge that is presented. Looking back to our use cases once more, it is the highest-stakes decision 
makers – the college admissions officer and the potential employer – who are also tasked with evaluating 
the largest quantity of badged claims. Yet, per our second principle, these are the decision makers who must 
consider the evidentiary claims most carefully. Thankfully, good communication design techniques can 
mitigate this information bottleneck by distilling complex and ungainly information into easier-to-under-
stand visual summaries that can be easily reviewed without loss of the “big picture” regarding evidentiary 
warrant. 

• Design Decision 3: Each type of evidence in the badge must be summarizable for quick viewing. 
The composite strength of the badged evidence claim should also be easily summarized. 

This decision will probably not manifest a single large feature, but rather become a criterion in the design 
of many small features (for instance, whether we choose a single-number vs. a long-list display for certain 
evidence types). 
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A Conceptual Prototype of a Badge-Based Evidence Subsystem 

Based on the three design decisions we laid out in the previous step, we now present a set of badge evidence 
subsystem design concepts that implement those decisions. For an illustrative example, we follow the hy-
pothetical case of a Loops Programming badge in an introductory computer science learning context, as it 
attempts to make the argument that the earner possesses the (relatively basic) programming skills needed 
to “Use loops to repeat sequences of commands” and “Use conditions to end a loop at the appropriate time”. 
The purpose of this section is not to present an optimal design solution, but rather to illustrate and work 
through an additional layer of details. We thus frame the framework described in Figure 1 as a “conceptual 
prototype”. 

 

Figure 1. A composite overview of the proposed conceptual prototype. 

Four Dimensions of Evidence 

Based on Decision 1, to implement a multidimensional representation of evidence based around the types 
of evidence and amount of each, we have formulated a set of four major evidence categories. These cate-
gories are selected based on a combination of practical concerns, and the principle that greater epistemo-
logical diversity of evidences provides better triangulation. 
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XP: Experiences and Experience  

The XP category captures the amount of relevant experience in completing skill-relevant tasks that the 
learner possesses, and represents it summarily as an experience point (XP) total (drawing on a popular video 
gaming convention). 

Our Loops Programming learner might earn 10 XP for completing an online learning module about loops, 
15 XP for checking in at a hands-on programming workshop event, and another 25 XP for competing in a 
robotics programming competition (plus perhaps some bonus points for placing well in the competition). 
These would be pooled into a single summative “XP” statistic (Figure 2). 

 

Figure 2. An example of the XP tracker for a hypothetical learner’s Loops Programming Badge. 

Evidence of this type implicitly makes the claim that the badge holder has engaged with (and succeeded at) 
skill-relevant activities. This connects epistemologically to the main assessment claim that “the badge 
earner has X skill” largely through associationist theories of conditioning (training the brain to produce the 
right responses to task-relevant stimuli), rehearsal (repeated exposure to the correct problem-solution pair 
improves ability to recall the correct course of action in the future), and the motivational theory of behav-
ioral engagement (higher levels of participation in school activities predict higher learning outcomes). 
These theories suggest that greater levels of experience predict greater proficiency of application, applica-
tion under diverse contexts, and ability to build on these experiences to facilitate future learning. Summar-
ily, the more one participates in (and eventually completes) skill-related activities, the better one is expected 
to become at them. 

As a metric that lends itself to quantifiability, it is important to determine a rough scale for XP – that is, to 
set some common expectations around “what 100 XP means”. Since we expect XP to relate to the same 
kinds of outcomes as rehearsal and behavioral engagement, we will use those outcomes to establish an 
outcome scale. Specifically, higher XP should correspond to greater ease of recall, greater future participa-
tion, and greater spontaneous recall. We therefore define the XP reference scale in terms of these quantities 
(albeit with initially arbitrary cutoffs that can be refined with testing): 

• A learner at the 100 XP mark should be able to apply the skill with prompting and assistance. 
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• A learner at the 300 XP mark should be able to apply the skill with minimal guidance, when 
prompted. 

• A learner at the 1,000 XP mark should be able to apply the skill fluently and spontaneously in novel 
situations. 

Strengths of the XP metric are its easy quantifiability (number of XP) and summarizability (as a single 
number). When skill-relevant activities can be identified in advance, XP tracking is easily automated. Such 
systems might even incorporate, e.g., diminishing point returns on highly scaffolded activities for learners 
who already have high levels of XP. The XP mechanic also allows the incorporation of badges from other 
badge systems as a form of evidence, as many settings “badge” activity completion. There are two primary 
weaknesses of XP as a form of evidence. The first is opacity as to exactly what kinds of activity the student 
engaged in, heavily favoring quantity over quality. The second is opacity of methods for completing tasks; 
often tasks can be completed through both use of the indicated skill and alternative brute-force methods 
(e.g., guess-and-check or asking for outside assistance, which learners do for many reasons; see Baker, et 
al., 2008). 

Finally, it is worth noting that interpretability of “XP” leans heavily upon the framing of the badge as a 
whole. Fluency in “loops programming” is easier to characterize and understand than fluency in “organi-
zational leadership”, partly because the latter is so broad. This comparison also reiterates that point values 
are always relative to badge scope; a task worth many points toward a narrowly defined skillset would be 
worth only a few toward a broader one. 

Artifacts: Contextualized Work Product Examples 

The artifacts category captures specific concrete instances of submitted student work. Students describe 
and self-rate their submissions according to a badge-attached rubric upon submission. This rubric calls 
attention to salient features that demonstrate the skill, for both students and evaluators. It also serves as a 
first-order filter for quality and relevance of the submission to that skill (i.e., a student who is giving low 
ratings to their submission across all categories should recognize it as a poor fit for evidence toward that 
skill). Evaluators can subsequently interrogate the self-ratings along with the artifact as an estimate of a 
student’s understanding of the skill itself. 

A Loops Programming badge-seeker might submit an annotated copy of the source code from a class project 
as an artifact, and rate that work on the rubricized dimensions of “Using loops to repeat sequences of com-
mands” and “Using conditions to end a loop at the appropriate time”. Both the artifact and the rubricized 
rating would be made available under the “artifacts” evidence category (Figure 3). 
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Figure 3. An example of the artifact evidence interface and rubric summary display for the Loops Program-
ming Badge. Clicking the link gives the viewer access to the uploaded file (in this case a piece of source code), 

a copy of which is permanently stored on the server. 

Epistemologically, evidence of this type draws on the same assessment traditions as portfolio assessment: 
the objects in the portfolio directly demonstrate advanced examples of skill, and a well-constructed rubric 
maps relevant features of the skill to relevant qualities of the objects. The rubric-rated work product allows 
scoring of skill-relevant performance in an authentic context. 

The validity argument from this data is connected to 1) the transparency of skills in submitted objects; 2) 
the rubric’s relevance in representing the “right” qualities of the knowledge or skill for rating for submitted 
objects; and 3) the reliability and trustworthiness of the rater to give accurate ratings. The strengths of this 
approach lie in its dual provision of a work product with its context intact, alongside a scoring system 
mapped directly onto the skill claim being made. It further allows evaluators to inspect the quality of the 
work by examining the artifact itself. These speak directly to the earner’s ability to apply and reapply the 
skill proficiently. The primary weaknesses of this evidence type are its vulnerability to unreliable self-
raters, dependence upon the expertise of the person viewing the badge evidence (i.e., non-experts will not 
be able to understand the evidence), and the time-consuming nature of inspecting the artifact itself, espe-
cially for more complex artifacts (i.e., few people will take the time to investigate details for objects with a 
large amount of detail, such as thousands of lines of code). 

Endorsement: Expert and Participant Verification 

The endorsement category captures assessments of intangible expertise conferred by experts and peers 
within a practice space. Teachers, mentors, and peers are solicited to provide a short online endorsement of 
the student’s proficiency at the given skill, including both a rubricized evaluation and a short written state-
ment. This replicates, to some extent, the recommendation-writing system embedded in both college and 
job application processes. Judgments can be based in the artifacts within the badging system (i.e., adding 
an outside evaluation of the same submitted object) or based in observation of behaviors or discussion (i.e., 
connected to very different sources of evidence). 
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The Loops Programming badge earner might solicit an endorsement from the professional programming 
mentor on her robotics team. The mentor would log in to the online system and rate the student on the rubric 
for the Loops Programming skill (“Using loops to repeat sequences of commands” and “Using conditions 
to end a loop at the appropriate time”). If the mentor has registered correctly within the system, the endorse-
ment is marked as being “by an expert” (Figure 4). 

 

Figure 4. An example of the endorsements this learner has received for Loops Programming. The rater was 
identified as an expert based on credentials within the system. 

Evidence of this type contains two features with different epistemological roots: the rubric and social 
sources of endorsement. The use of the rubric maps scoring onto evaluation of relevant features of the skill, 
as it did in the artifact category (the rubrics should be equivalent for this reason). The scoring process for 
the rubric and the provision of the written recommendation, however, tap sociocultural mechanisms for 
evaluating skill. 

Epistemologically, there are certain kinds of skill that are notoriously hard to evaluate; tacit knowledge, for 
instance, refers to the unspoken and generally unmeasurable expertise that certain individuals have for 
making good decisions under poor information conditions (Collins, 2001). Army officers making difficult 
discipline and personnel decisions display a remarkable degree of similarity and expert consensus, but the 
underlying skill is exceedingly difficult to measure through means other than agreement among those ex-
perts (Schunn, McGregor & Saner, 2005; Sternberg & Horvath, 1999). In sociocultural frameworks such 
as Situated Learning (Lave & Wenger, 1991), acceptance by the community of practice leading to increased 
participation is the mechanism by which expertise is gained. 

The major strength of this evidence category is in capturing intangible, yet historically reliable, assessments 
of expertise by knowledgeable others within the learning space. This type of evidence is also uniquely 
positioned to reflect on certain types of skills that are impossible to evaluate through other means, such as 
collaboration quality, which is inherently social. The primary weakness of this approach is that it is difficult 
to establish the legitimacy of a rater, without the argument quickly becoming circular. This is particularly 
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difficult when dealing with “non-expert” raters, e.g., peers, whose actual level of expertise (and hence reli-
ability) might be quite low. We report this relationship (e.g., “Expert” or “Peer”) in the interface alongside 
the endorsement, so that an evaluator can choose to take this into account. 

Exams: Transfer to Strategically Chosen Tasks  

The exams category captures learner performance on designed measurement tasks. Implicitly, this tests 
students’ ability to transfer their learning to the testing context. Students take a scored exam of some sort – 
most commonly, this will be of a traditional examination format, in which students respond to crafted 
prompts designed to measure one or more validated skills. In the case of exams that measure multiple skills, 
only the items relevant to the badged skill would count toward this score. 

The Loops Programming badge might accept and electronically import exam scores from a list of trusted 
sources, such as vetted online courses and AP exams. These data providers would report a loops-relevant 
subscore, or scores of exams wholly relevant to the topic of loops programming (e.g., a Loops Chapter 
Exam). The Loops Programming badge interface displays the list of acceptable exams and provides a link 
to at least one free online exam option, as well as the highest available score among the eligible exams 
(Figure 5). 

 

Figure 5. An example of the exam evidence summary for the learner’s Loops Programming Badge. If the 
exam has a viewable sample item/page, clicking the link opens it for inspection. 

Epistemologically, evidence of this type draws on whatever measurement techniques are “baked in” to the 
exams themselves. Typically, these draw upon cognitive theories of skill development and transfer (“some-
one who knows X will answer A for test question item I”), backed by traditional methods used to validate 
such items, such as Item-Response Theory. ITSs often use evidence of this type. 

The main strength of this approach is its ability to incorporate traditional measurement media as a form of 
evidence. They are as valid as their own methodological backing, and lend that validity to the badged evi-
dence pool. They also allow for developing individual items that target each aspect of a large skill to allow 
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for “complete” coverage of the skill, and they encourage learners to completely master the domain rather 
than focusing on areas of interest. Finally, they also carry with them the cultural and policy “weight” of 
these exams as they are used in the world today – insofar as the chapter exam is trusted as a measure of 
knowledge or skills today, adding it as evidence to a badge increases the badge’s evidentiary warrant toward 
that knowledge or skill. 

The main disadvantages of this evidence type are logistical: finding test items that tap a given skill and 
disentangling a skill-specific score from a larger exam is difficult to scale as a general practice. In many 
cases, standalone exams are not well validated, capturing only superficial aspects or only declarative 
knowledge related to the skill (e.g., memorized answers to familiar questions), even though they may be 
accepted in practice. 

As a final note, some exams may allow only a limited number of attempts to prevent users from seeking 
high scores by “brute force” retaking of the test. The exams evidence construct is agnostic to this choice, 
leaving the decision to the individual exam administrators so as not to impinge their authenticity. While 
this creates the possibility that a user could be stuck with an irrevocably low score on a given test due to its 
strict retake policy, the user’s ability to select from among multiple exams for the exam evidence allows a 
workaround (albeit perhaps using a more onerous or less prestigious exam). 

Representing “Composite Claim Quality” 

Decision 2 (with addendum 2b) in the previous section task us with designing a system element that recog-
nizes and represents a sliding scale of evidentiary warrant, and simultaneously relates strength of warrant 
to stakes of decisions. 

Intuitively, we want to pick a single design element to represent both strength of evidence and suitability 
for higher-stakes decisions. We want to pick some visual device that we can use to represent higher versus 
lower levels of this shared “claim quality” dimension. However, in doing so, we should also consider other 
“qualities” of a badge claim that users might confuse it with. Two in particular seem to be likely sources of 
misinterpretation: one quality that badges frequently indicate is “more advanced skillsets”. This dimension 
is often represented by badge material (e.g., bronze vs. silver vs. gold), badge size, or cumulative marks 
such as stars. A second quality is “more advanced proficiency within the skillset” (e.g., very high levels of 
proficiency with beginner-level coding techniques). 

The first potential confound is neatly separable. “Proficiency at more advanced versions of the skill” is 
better represented by a different claim, as it represents different knowledge and techniques that should be 
separately represented and assessed. 

The other – more advanced proficiency within the skillset – maps nicely onto an evidentiary dimension we 
have already identified: it is the same as the “level of proficiency” that our multidimensional framework 
represents as rubric and XP scores. Furthermore, it correlates well with the notion of “higher stakes” – 
decisions such as hiring and college admissions are likely to want higher proficiency levels as well as more 
evidentiary certainty. Conversely, a claim of a higher level of skill deserves to be inspected more carefully 
and backed by stronger evidence, especially since knowledge of “all” of a skillset is likely to need a greater 
quantity of evidence to establish simply due to the larger “surface area” of the knowledge being claimed. 
Thus, we include this third dimension of “level of proficiency claimed” as a third dimension sharing the 
same design feature as the first two. Our composite quality to be represented is now composed jointly of 
“strength of evidentiary warrant”, “suitability for higher-stakes decisions”, and “proficiency level claimed”. 
For our design, we elect to use badge levels of bronze, silver, and gold to indicate the composite quality of 
stronger assessment argument, suitability for higher-stakes decisions, and higher levels of proficiency being 
claimed. 
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This is somewhat complicated by the fact that not all types of evidence may be available or suitable for all 
types of skill or knowledge claims. For instance, a “collaboration” skill will probably not involve an exam. 
This means that such a skill has, at most, three possible types of evidence. Other skills may not have rea-
sonably presentable work products (perhaps projects are too large, too small, or too confidential). Some 
may not have quantifiable “experiences” because they are innumerable, pervasive, or untrackable. Learning 
done by solo learners online may not have anyone to endorse them. In short, our system must be robust to 
a number of potential evidence types that varies anywhere from 1 to 4. 

We therefore define our “composite quality” index to include the following levels, using relative counts of 
evidences, rather than absolute counts: 

• A Gold badge provides all possible evidence types, with scores of 80% or higher on all available 
rubrics and exams. 

• A Silver badge provides all but one of the possible evidence types, with scores of 70% or higher 
on all included rubrics and exams. 

• A Bronze badge provides at least one type of evidence, with a scores of 60% or higher if it is a 
rubric or exam. 

• “Corner cases”: For badges which permit only two types of evidence, Silver is omitted. Badges that 
have only one evidence type available are referred to as “binary badges”, and they can only be 
earned or unearned.  

Recommendations and Future Research 

In this chapter, we have laid out a design blueprint for an assessment system rooted in the provision of 
evidence in and through digital badges. We began with theoretical foundations and practical use cases, and 
from these derived design principles, then a conceptual prototype. There remains work to be done in im-
plementing the prototype design. For instance, the user interface design of the system plays a key role in 
framing and explaining the evidence requirement and submission system to both badge earners and viewers. 
Given the complexity and novelty of the proposed arrangement compared to conventional “one and done” 
exams and certification routines, completing the full interface is no mean feat. An adequately scalable tech-
nology platform would also be required to host both the evidence-collecting activities (e.g., endorsing) and 
the resulting badge data indefinitely. 

At an organizational level, there is the challenge of identifying “expert” individuals who should appear as 
such when endorsing learners. Would such a qualification be imported through an existing registry of sorts 
(e.g., national teacher councils), or would they be “bootstrapped” into the system by some form of qualifi-
cation exam? There is also a short-term need to either develop in-house exams for skills, or vet existing 
exams to determine which ones can qualify as exam evidence, followed by the need to establish a digital 
data pathway for importing learners’ scores and associating them with the correct users in both systems. 
This activity extends into a long-term need to establish partnerships with commercial testing services and 
perhaps even individual states or school systems. 

With these things in place, however, additional opportunities also open up. The digital nature of badges and 
of the evidences allows for high levels of integration into, e.g., intelligent tutoring or game-based systems 
which can automatically award XP, upload student work, and prompt teachers to provide endorsement at 
opportune moments in the learning process (for an expanded overview of this topic, see Ososky, 2015). 
Social media integration could enable additional ways of acquiring evidence; perhaps community-based 
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“popular” endorsement by large numbers of peers could provide an alternative to “expert” endorsement for 
certain skills. 

These are only a few of the assessment opportunities that could be tapped with digital badges. Nevertheless, 
future sources of evidence, however creative, will be efficacious only if these diverse and powerful sources 
of evidence are harnessed through a robust framework for assessment. In this chapter, we have advanced 
the digital badge conversation toward the development and adoption of a principled assessment framework, 
for it is only with this in hand that digital badges can truly unlock their potential to inspire and reward 
learning. 
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CHAPTER 7 – Leveraging Domain Models for Personalizing 
Problem Solving and Learning  

Louise Yarnall1, Eric Snow1, Erica Snow1, and Irvin R. Katz2 
SRI International1, Educational Testing Service2 

Introduction 

This chapter explains the basic elements of one method for specifying assessment tasks—evidence-centered 
design (ECD)—and describes the application of the approach to the complex skills of computational think-
ing (CT) and science inquiry. Both are seen as useful for improving students’ capacity to perform the types 
of flexible applied reasoning and problem-solving skills that are in growing demand in technology-rich 
workplaces. The chapter closes with a discussion of the implications for content authoring and assessment 
of problem solving tasks in a Generalized Intelligent Framework for Tutoring (GIFT) system.  

Domain Modeling in Science Inquiry and Computational Thinking  

To improve American students’ readiness to engage in the flexible problem solving demanded by technol-
ogy-rich workplaces, policy leaders have called for greater instruction and assessment in applied reasoning 
and problem solving. For example, the Next Generation Science Standards (NGSS)—which have been 
reviewed by 40 states and formally adopted by 18 as of 2016—embody American science education’s shift 
away from a longstanding emphasis on declarative and conceptual knowledge to a greater emphasis on 
applied knowledge and skill (NGSS, 2009). Also, the White House has called for more than $4.2 billion to 
develop instruction to engage younger learners in computer science, an applied science field noted for its 
emphasis on reasoning and problem solving (Smith, 2016). Acknowledging the challenges of both teaching 
and assessing such applied skills, the US Education Secretary has emphasized the utility of automated as-
sessments in the nation’s standardized testing system (US Department of Education, 2015). Some educators 
developing assessments and instruction for these science reform initiatives have employed the standardized 
modeling approaches of ECD (Messick, 1994; Mislevy & Haertel, 2006; Mislevy & Riconscente, 2006). 
The goal of this chapter is to consider, based on an exploration of two cases from science, technology, 
engineering and math (STEM) education reform, the capacity of ECD to improve the capacity of developers 
of intelligent tutoring systems (ITSs) to apply their automated methods to a broader range of applied rea-
soning instructional problems.  

This chapter begins with a discussion of the need for modeling methods to support instruction around ap-
plied reasoning and problem solving. This discussion covers the challenges that ITS educational designers 
face to engineer learning processes around such skills consistently and rigorously, and the specific chal-
lenges around teaching applied reasoning skills in two fields of high interest in education policy—CT and 
science inquiry. Once these needs are described, the chapter then focuses on modeling methods. This sec-
tion discusses how ECD modeling methods have been used to analyze complex reasoning processes in CT 
and science inquiry, and then presents partial examples of ECD models in each field. The discussion around 
these two examples will bring out the common ECD features, but also illustrate how to tailor ECD modeling 
to focus on assessment at one level of proficiency (the CT case) or assessment at increasing levels of pro-
ficiency (the inquiry science case). The chapter concludes by considering the potential of using ECD mod-
eling methods more broadly to inform the design and development of standardized ITS content templates 
for applied reasoning and problem-solving skills in the GIFT system (Sottilare, Graesser, Hu & Holden, 
2013). 
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Background on ITS Designs to Support Flexible Problem Solving Skills 

To introduce this discussion, it is helpful to review how ITS developers model the path of learning and 
instruction. At the most basic level, ITS developers begin by specifying two models: s domain model of the 
knowledge to be learned and a student model characterizing the types of variations in learner’s characteris-
tics that affect learning progress, such as knowledge level, affect, and motivation (Park & Lee, 2003). Do-
main models often are derived from analyses of learning science and expert knowledge. Student model 
specifications may be based on common student misconceptions and errors and tutoring methods. In prac-
tice, ITS systems check learner performance against these two models, continually updating estimates of 
learner competency, and then making individualized learning recommendations (see reviews of ITS mod-
eling approaches by Desmarais & Baker, 2012; Galyardt, 2015; Koedinger, Brunskill, Baker, McLaughlin 
& Stamper, 2013).  

In the latter 20th century, ITS modeling began in domains with more regimented procedural and conceptual 
structure, such as mathematics and computer programming, but in recent years, ITS developers have fo-
cused more on modeling learning in domains with more learner-driven procedural and conceptual structure, 
such as writing and social sciences. They also have begun modeling the more dynamic facets of learning, 
such as perseverance, motivation, and affect.  

One of the findings from this more recent ITS research is that learning to solve problems in less structured 
domains relies to a greater extent on learners’ self-regulated learning processes, which refers broadly to 
the range of skills involved in goal-setting, planning, and metacognition (Butler and Winne 1995; Pintrich 
2000; Winne 2001; Winne and Perry 2000; Zimmerman 2000, 2001). To guide modeling of self-regulated 
learning processes in these domains, ITS designers rely on learning science and empirical research. Using 
this information, ITS designers specify the learner performance data to gather and the prompts to provide, 
such as those that human tutors offer. Some of the data they gather focuses on cognitive aspects of learning 
and some focuses on motivational and behavioral aspects of learning. Both present complex modeling chal-
lenges. The focus of this chapter is primarily on the challenge of modeling both cognitive and metacognitive 
aspects of learning applied reasoning.  

To provide a broad conceptual framing of the challenge of modeling applied reasoning, Jonassen (2000) 
provides a helpful guide. He was an early theorist who considered how to define both the cognitive and 
metacognitive aspects of applied problem-solving processes in multiple domains. He developed a problem-
solving design framework that characterizes the range of problem solving tasks, from simple to complex. 
His framework honed in on three distinct forms of knowledge and skill that individuals need to excel in 
problem solving: 1) knowing when to apply specific principles and concepts; 2) knowing what solutions 
are desired based on local beliefs, needs, and evaluation criteria; and, 3) developing skills of making deci-
sions about solution procedures (e.g., technical standards of elegance and parsimony, practical cost-benefit 
considerations). These forms of knowledge not only depend on accurate recall of factual, conceptual, and 
procedural knowledge, but they take into account the dynamic factors that influence how that knowledge 
is applied: timing, situation, and judgment.  

As is seen in the next sections of this chapter, these fundamental considerations defined by Jonassen offer 
a useful introduction to understanding the challenges of teaching and learning applied reasoning and prob-
lem-solving knowledge and skills. 

CT: Importance and Construct Definition  

Over the past decade, there has been a growing focus on the concept of CT both within and outside computer 
science (e.g., Adams, 2008; Astrachan, Hambrusch, Peckham & Settle, 2009; Denning, 2009; NRC, 2010, 
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2012; Wing, 2006, 2008). From this early work, we can broadly view CT as the intellectual and reasoning 
skills needed to master a range of reasoning skills, such as algorithmic thinking, pattern recognition, ab-
straction, decomposition, and other computational techniques to problems in a wide range of fields. CT is 
distinct from the specific skill of programming in a particular language; rather CT serves as a framework 
that captures a range of concepts, dispositions, and applied reasoning practices used when solving problems 
in many domains. 

To further specify the range of knowledge, skills and attributes underlying CT, Brennan and Resnick (2012) 
identified three main components: concepts, practices and perspectives. CT concepts include the key ideas 
and knowledge that are central to computing (e.g., conditionals). CT practices refer to the activities students 
engage in, like algorithmic thinking or testing and debugging, when creating computational projects. Fi-
nally, students need to develop empowered perspectives to feel confident that they can solve challenges in 
the world around them using computing and be active users of digital technologies.  

More specificity in definitions of applied reasoning skills in CT has come from research and standards. For 
example, Grover and Pea (2013) provide details about the range of applied reasoning processes involved, 
including making abstractions and pattern generalizations; systematic processing of information; recogniz-
ing symbol systems and representations; implementing algorithmic notions of flow of control; engaging in 
structured problem decomposition (modularizing); employing iterative, recursive, and parallel thinking; 
applying conditional logic; observing efficiency and performance constraints; and engaging in practices of 
debugging and systematic error detection. As can be seen, the range of applied reasoning processes involved 
in CT is broad and complex, posing educators with a challenge of where to start and how to develop com-
petence over time. The K–12 Computer Science Framework (2016), led by the Association for Computing 
Machinery, Code.org, and others, also emphasizes the thought processes in CT, identifying four specific 
CT practices, including recognizing and defining computational problems, developing and using abstrac-
tions, creating computational artifacts, and testing and refining computational artifacts. 

In common to many CT definitions and frameworks is the concept of practices, or the application of design 
and inquiry to solving computational problems and creating computational artifacts. This reflects an orien-
tation toward not just an internal, individual “thinking” but “ways of being and doing” that students should 
demonstrate when learning and exhibiting computer science knowledge, skills, and attitudes. Based on 
Jonassen’s (2000) approach, one can also discern from these CT practices the rough outlines of the sequence 
of tasks: framing a problem in a way that a computer can solve it, defining the relevant algorithms and 
subroutines for implementing a solution to that problem, and refining the solution through iteration and 
debugging.  

The centrality of the concept of practices to CT presents challenges to both computer science (CS) teachers 
in their instructional and assessment activities, and to ITS developers, who have to make complex decisions 
about how to model these practices in interactive assessment and tutoring systems. Secondary CS teachers, 
who are often underprepared to teach the subject, have limited curricular guidance on how to teach CS 
concepts and inquiry skills in a way that impacts student CT practices. More significantly, teachers are 
underprepared to effectively assess students’ CT practices. One of the main challenges they face is model-
ing the relationships between what they want students to know, what counts as observable evidence of these 
skills, and how to develop tasks to elicit the evidence needed for drawing valid inferences about student 
performance. This same assessment modeling challenge is extended to ITS developers, who face a myriad 
of decisions about which components of CT practices to prioritize, what tasks to emphasize to teach the CS 
knowledge and skills, and how to embed interactive assessment and tutoring around learning CT reasoning. 
Principled assessment modeling processes and CT design templates can be helpful to support such work. 
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Science Inquiry: Importance and Construct Definition 

In a similar fashion, science educators have developed a greater emphasis on inquiry skills over the past 
decade. The reasons for this shift are based in the increasing evidence that students learn science concepts 
best through applied reasoning, as exemplified in the quote: “Engaging in the practice of science helps 
students understand how scientific knowledge develops” (National Research Council, 2012, pg. 42). 

This shift to inquiry has culminated in recent years with the publication of the Next Generation Science 
Standards (NGSS Lead States, 2013) by a consortium of states and the National Science Teachers Associ-
ation, the American Association for the Advancement of Science, the National Research Council, and 
Achieve, a non-profit organization. The Standards offer a vision of what K–12 students need to know and 
be able to do to be scientifically literate and effective members of the US workforce. As of February 2016, 
18 states and the District of Columbia had adopted NGSS, and many individual school districts have de-
cided to introduce NGSS ahead of statewide adoption. The NGSS was designed with the goal of reflecting 
scientific activities within science education, consistent with calls from science educators and researchers 
over the past several decades (National Research Council, 2012).  

To achieve science education that extends beyond the view of science as the accumulation of facts, the 
vision offered by the Standards weaves three dimensions: scientific practices, disciplinary core ideas, and 
crosscutting concepts. For the purposes of this chapter, it is important to note that the standards integrate 
applied science practices as a way for students to learn and a way for teachers to assess the development of 
students’ understanding of core disciplinary ideas over time and students’ capacity to discern crosscutting 
concepts.  

The dynamic and applied quality of these standards is notable and worth reviewing in more detail. First, 
although the NGSS preserves the traditional disciplinary core ideas within the physical sciences; life sci-
ence, earth and space science; as well as engineering, technology, and applications of science, it takes a 
purposely developmental view. Indeed, the developers of the Standards state that educator’s role is “to 
prepare students with sufficient core knowledge so that they can later acquire additional information on 
their own “ (National Research Council, 2012, pg. 31). 

Second, this developmental perspective moves to another level in the crosscutting concepts, which “bridge 
disciplinary boundaries, having explanatory value throughout much of science and engineering” (National 
Research Council, 2012, p. 83). They are intended to provide students with a way to organize their under-
standing of scientific concepts and to see the connections across seemingly disparate concepts. Among the 
seven crosscutting concepts are cause and effect, energy and matter, and structure and function. For exam-
ple, structure and function is defined as “the way in which an object or living thing is shaped and its sub-
structure determine many of items properties and functions” (National Research Council, 2012, p. 84). 

At the heart of the NGSS, however, are the scientific practices that are comprised of eight scientific and 
engineering inquiry processes: asking questions (for science) and defining problems (for engineering); de-
veloping and using models, planning and carrying out investigations, analyzing and interpreting data, using 
mathematics and CT, constructing explanations (for science) and designing solutions (for engineering), 
engaging in argument from evidence, and obtaining, evaluating, and communicating information. As can 
be seen when reflecting back on Jonassen’s (2000) approach, one can again see that these practices unfold 
in a sequence that begins with framing a question or problem aligned with scientific principles, proceeds to 
defining the relevant models, investigative methods, and design approaches for addressing that question or 
problem, and concludes with engaging in a review of the evidence and developing the argument to com-
municate any results and findings.  
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The sheer complexity of these standards poses a formidable challenge for instruction and assessment that 
affects not only instructors, but also ITS developers. First, what are the best ways of integrating the three 
dimensions in tasks, such that every learning activity reasonably incorporates a core idea, practice, and 
crosscutting concept? Second, what science teaching and assessments can support student learning of this 
complex collection of knowledge and skill? One challenge of performance assessment is that they take 
considerable time for students to complete, with relatively lean information contained in students’ re-
sponses. This “data poor” quality of performance assessment is in contrast with multiple-choice, which is 
a relatively efficient way of obtaining information on candidate performance (see Shavelson, Baxter & 
Pine, 1991, for a discussion of this issue). Thus, although technology enables a greater range of performance 
assessments than in the past, there remains the challenge of interpretation: how to make sense of the rich 
array of data that performance assessments make available about student solution processes (cf. Katz & 
Gorin, 2016; Keehner, Feng, Gorin & Katz, 2016). To obtain richer and denser information on student 
performances from a performance assessment, some assessment designers have turned to using process data 
– log files, telemetry, clickstreams, and other reflections of the moment-by-moment actions of students – 
to provide insights into students’ knowledge and skills. However, interpretation of process data requires a 
deep understanding of student performance and the cognitive processes (i.e., knowledge and skills) that 
lead to that performance. 

The challenge for ITS developers is, therefore, in moving from complex, interactive performances (i.e., 
observable behavior, or evidence) to drawing conclusions about what students know and can do (i.e., un-
observable competencies), and to do so in a way that is consistent with prior results in the literature on 
cognition and learning. A principled and systematic assessment design process can help draw these con-
nections. 

Evidence-Centered Design (ECD) 

As the previous section makes clear, the process of learning applied reasoning skills involves not only 
knowledge recall, but also the development of other skills, such as understanding the timing and situational 
constraints that support judgments about when applying knowledge is useful and appropriate. Its develop-
ment is not linear, but more organic and dependent on opportunities for application. These aspects of ap-
plied reasoning pose a tremendous challenge to education and training, not so much from the perspective 
of how to sequence learning activities, but from the perspective of how to accurately detect where a given 
individual learner is in the process of learning to engage in applied reasoning. Seeing where the learner 
stands involves more than simply collecting a set of knowledge propositions and making sure the learner 
can articulate them; it involves having a way to see the full range of knowledge propositions and judgments 
that a learner generates over the course of changing situational constraints in any process of production or 
performance over time.  

Fortunately, the ECD model specification approach is well suited to such modeling challenges. At the high 
level, it organizes the entire process of documenting complex reasoning as an assessment argument. This 
argument has three parts: the student model, the task model, and the evidence model. Despite the similar 
terminology to ITS design, the actual operational meanings of these three models are distinct.  

While in ITS development, the term “student model” represents the inferred “state” of the learner’s 
knowledge and skill at any given time in the learning process, in ECD modeling, student model generally 
refers what knowledge and skills are being taught or measured. This student model can reflect 1) the desired 
end state of the learner’s knowledge and skills in a domain (e.g., the expert’s mind) and/or 2) a series of 
transitional developmental states that the learner takes on the path from novice to expert. It is derived from 
the processes of domain analysis and domain modeling (described later). Another core element of ECD is 
the evidence model, which describes how to measure the desired knowledge and skills in terms of learners’ 
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observable performances. Finally, the task model describes the attributes of tasks that will elicit the observ-
able evidence of measured knowledge and skills. The specific details of student, evidence, and task model 
are initially recorded in documents called design patterns, which may be adapted to apply across different 
domains. ECD helps designers link features of tasks to particular performances and how they yield evidence 
that specific types of knowledge and skill have been learned (Mislevy & Haertel, 2006).  

In practice, the ECD model specification process is typically described in terms of five layers: 1) domain 
analysis, 2) domain modeling, 3) conceptual framework, 4) implementation, and 5) delivery (Figure 1). 

 

 

Figure 1. Layers of the ECD process 

Although the layers suggest a sequential design process, cycles of iteration and refinement are intended, 
both within and across layers, and work in different layers can be pursued simultaneously. The focus of this 
chapter is on the first two layers of ECD, which represent the critical methods of documenting the 
knowledge, skills, and abilities in complex forms of reasoning. The additional layers build on these first 
two, and focus more on the development and implementation. 

Domain Analysis 

In domain analysis, developers and experts identify and analyze the domains, constructs, and underlying 
skills of interest, as well as relevant standards and benchmarks (if available). The analyses examine the 
ways people acquire and use the knowledge and skills, situations under which knowledge is used, and 
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indicators of successful application of the knowledge. Typical sources of information include existing do-
main and construct definitions, curriculum documents, and relevant research findings (such as those that 
support a validity argument or provide examples of assessment tasks). Typical outcomes of the domain 
analysis include lists of organizing concepts and principles in the domain(s).  

Domain Modeling 

Through domain modeling, developers organize information from the domain analysis as a design pattern 
(Mislevy, Steinberg & Almond, 2003). Design patterns are structured narratives explicating an assessment 
argument. Assessment arguments specify the knowledge, skills, and abilities (KSAs) one wants to address, 
potential observations and work products that can provide evidence about acquisition of this knowledge or 
skill, potential rubrics to evaluate student performances on the tasks, and features of task that enable the 
student to provide this evidence (Messick, 1989; Mislevy and Haertel, 2006). When completed, a design 
pattern makes the relationships among these attributes explicit.  

Modeling CT Practices  

To illustrate how ECD has been used to model CT practices (CTPs), this section presents an example of a 
design pattern that was developed by SRI International as part of a research project that designed assess-
ments for CT in K12 education, specifically early high school: Principled Assessment of Computational 
Thinking (PACT).  

The example design pattern was developed as part of a larger set of design patterns created to support 
assessment of CTPs across different curricula for CT. The CTP design patterns were developed in 2011 
through consultation with various experts and working groups in computer science education and assess-
ment, and close examination of STEM construct definitions; standards; curriculum; literature in computer 
science education, scientific inquiry, engineering design, communication, and collaboration; and previous 
CS assessment projects (see Bienkowski, Snow, Rutstein & Grover, 2015). Special attention was paid to 
the Computer Science Teacher Association (CSTA) standards, the Exploring Computer Science (ECS) cur-
riculum (including learning objectives), and the AP Computer Science Principles framework (including 
learning objectives and evidence statements).  

Table 1 shows the core attributes of one of these ECD design patterns for CTP: design and apply abstrac-
tions and model. The design pattern attributes begin with an overview of the CT practice, which provides 
a narrative summary of the key features of the construct. The next attribute consists of the focal knowledge, 
skills, and attributes (FKSAs) associated with the CTP and form the target outcomes for assessment. In this 
case, the design pattern lists a subset of KSAs that are associated with what is considered foundational 
knowledge involving abstraction in computing. These FKSAs, as well as others associated other construct 
components (analyzing a model or abstraction), form the core documentation material for the student model 
of the assessment. The attributes continue with the potential observations, which comprise the observable 
behaviors showing evidence of competence, and potential work products, which describe the kinds of tasks 
that elicit observable evidence of competence in the target outcomes (FKSAs). This is the core documen-
tation material for the evidence and task models of the assessment, and it is listed here because understand-
ing what one hopes to see will help frame the design of the task and rubrics in the subsequent sections of 
the design pattern.  
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Table 1. FKSAs, potential observations, potential work products. CTP design pattern: design and  
apply abstractions and models. 

Overview 

Thinking strategically about abstraction is a hallmark of computational thinking. This design pattern supports the development 
of tasks in which students use ideas and representations that capture general to specific aspects, or patterns, of an entity or a 
process and the relationships/structures among entities or processes, including level of detail. This may include designing gen-
eral solutions to problems or generalizing a specific solution to encompass a broader class of problems (functional abstrac-
tion). These ideas and representations may be used in different contexts (problem or disciplines). Students demonstrate 
knowledge of the representational properties of discrete mathematics, models, diagrams, computer programs (data abstrac-
tion), items found in the natural and manmade world, and others. They also demonstrate an understanding of the limitations of 
models to represent phenomena and attention to the purpose of the model or abstraction. 

FKSAs Potential Observations Potential Work Products 

• Ability to explain what abstraction 
is, both functional and data. 

• Ability to reason about a problem 
at multiple levels of detail. 

• Ability to explain the benefits of 
using abstraction in problem 
solving, e.g., to manage complex-
ity and generalize patterns. 

• Ability to explain that an algorithm 
is a form of abstraction that con-
tains a sequence of instructions 
whose end state or output can be 
determined once given a particular 
starting state. 

• Ability to explain the characteris-
tics of problems for which abstrac-
tion would be useful. 

• Ability to describe how a computer 
model makes a representation of 
the real world. 

• Ability to explain how computers 
represent mathematical objects and 
logical operations for purposes of 
computation and modeling. 

• Ability to explain how computers 
represent objects as data and data 
as objects (e.g., media files, QR 
codes). 

• Ability to explain the connections 
between elements of mathematics 
and computer science including bi-
nary numbers, logic, sets, and 
functions. 

• The degree to which the abstrac-
tion matches the need of the 
problem 

• The accuracy of the representation 
• The number of representations 

used 
• The appropriateness of the repre-

sentations 
• The appropriateness of the expla-

nation 
• The degree to which the imple-

mentation matches the abstraction 
• The degree to which abstraction is 

applied in the implementation 
• The degree to which the map is ap-

propriate for the problem and the 
elements 

• The degree to which the explana-
tion or documentation is a clear de-
scription of the abstraction (clarity 
of the explanation or documenta-
tion) 

• The degree to which the analysis is 
appropriate 

• The correctness of the analysis 
• The appropriateness of the applica-

tion or the correctness of the appli-
cation of the abstraction 

• The accuracy of the implementa-
tion or application of the abstrac-
tion 

 

• One or more representations of an 
abstraction, problem, problem 
space, or analysis 

• The explanation of or related to 
the abstraction (such as how it 
was applied, why it is appropri-
ate) 

• Implementation of the abstraction 
• A mapping between elements of 

the problem and elements of the 
abstraction 

• Explanation or documentation of 
the implementation or abstraction 

• The analysis of the abstraction or 
model 

• The application of the abstraction 
 

 
Design patterns typically include several additional attributes, including characteristic task features, rubrics, 
and variable task features, attributes designed to help the designer further refine the assessment tasks, in-
cluding essential features of all tasks measuring the practice, and features of the task that can be modified 
to rebalance FKSA coverage or the difficulty of the task. Note that all attributes in a design pattern are 
specified in narrative form, which makes them more accessible to cross-disciplinary assessment develop-
ment teams. 
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One of the primary benefits of using design patterns comes from their relational structure. This relation is 
illustrated in the boldface statements in the design pattern depicted in Table 1. In this simple example, if 
one wants know whether a student can explain how abstraction and modeling can help in computational 
problem solving then they need to develop an assessment task that elicits an explanation of how an abstrac-
tion is appropriate for solving a specific problem, or group of problems. Importantly, it also specifies the 
general type of evidence that is appropriate for making inferences about how well a student can explain 
how abstraction and modeling can help in computational problem solving, in this case, the degree to which 
the selected abstraction (in the explanation) matches the stated problem (e.g., why it is appropriate). The 
specific types of evidence will be further defined in one or more rubrics that will need to be applied to score 
the explanations.  

Using this design pattern, an assessment designer can insert questions into learning activities that require 
the development, justification, and explanation of abstractions of inherent processes. For example, learners 
may be asked to create a program that will solve a problem—and this creative process may unfold over 
several phases of the extended activity. For example, the learner may be asked to engage first in a task that 
requires identifying a real-world problem that a computer might be able to solve. Later in the design process, 
the learner may be expected to implement an algorithm (abstraction) in a computer programming language 
or environment that will produce the product or solution. In this stage, the example design pattern above 
may be most important to use for assessments. 

As this example illustrates, the narrative and relational structure of the example design pattern permits 
instruction and assessment designers to document and relate both the cognitive and metacognitive compo-
nents of CTPs for the purposes of assessment design. Such an approach permits a designer to clearly relate 
evidentiary performance data and ways of eliciting that data with each distinct component of CT. 

Modeling Science Inquiry Practices 

As described in the introduction of this chapter, the NGSS document (NGSS Lead States, 2013) frames 
science instruction as incorporating three intertwined dimensions: science practices, disciplinary core ideas, 
and crosscutting concepts. Creating appropriate instruction and assessments aligned with NGSS requires 
further detail. Researchers at the Educational Testing Service (ETS) have used ECD modeling over the past 
several years to develop a large-scale science competency model and associated evidence models and tasks 
that help developers create NGSS assessments (Liu, Rogat & Bertling, 2013). 

The researchers conceptualized the ECD competency and evidence models to focus not just on one level, 
but multiple levels of science achievement. This NGSS collection of gradually more sophisticated under-
standings is called a “learning progression.” The resulting indicators focus on evidence – “what students 
know and can do” – instead of general standards – “what students should know.”  

For example, target knowledge at the lowest level (level one) of the learning progression model might be 
defined as reflecting a very basic understanding of key concepts and may demonstrate particular miscon-
ceptions. Knowledge at an intermediate level (level three) of the learning progression model might include 
more sophisticated skills and concepts, and knowledge at the highest level would reflect complete and 
correct knowledge and skills. At each level, the learning progression might also contain instructional strat-
egies for helping students to move to the next level. Thus, a learning progression is a type of ECD model 
that defines attributes of both the student model and the evidence model, containing both descriptions of 
student competencies (whether knowledge, skills, or both) as well as statements of what students can do 
(i.e., evidence of those competencies). 
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Table 2 shows two levels of a learning progression (LP) for “matter and its interactions” (Liu et al., 2013), 
one of the NGSS disciplinary core ideas, and Table 3 shows an LP constructing explanations from evidence, 
for one of the science practices. 

Table 2. LP document for understanding of properties of matter.  

Achievements Gap/Challenge Instructional experience to support 
progression 

Level 1—Macroscopic compositional model (Not shown) 

Level 2—Microscopic compositional model (Not shown) 

Level 3—Developing particle model 

• Conceives of matter as made of parti-
cles that have mass and volume.  

• Sometimes thinks of empty space be-
tween particles for some materials.  

• Sometimes recognizes that particles 
of matter move.  

• May not recognize that there is 
empty space between particles 
in all conditions, although hav-
ing a nanoscopic notion of ma-
terial identity.  

• May not recognize particles 
move for all substances and all 
states of matter. 

• Help students understand that dif-
ferent properties of matter are de-
termined by the arrangement and 
motion of particles making up the 
matter by using computer simula-
tions. Provide investigative oppor-
tunities for students to explore the 
relations between properties of 
matter and the arrangement and/or 
motion of particles. 

Level 4—Particle model 

• Consistently conceives of matter as 
made of particles that have mass and 
volume.  

• Consistently thinks there is empty 
space between the particles.  

• Consistently recognizes that particles 
of matter move. (Note: students are 
not expected to think about absolute 
zero.)  

• Recognizes that temperature is a 
product of the average kinetic ener-
gies of the particles of the substance. 

• May not consistently recognize 
that different materials are 
made of specific atoms, or com-
binations of atoms forming 
molecules, although may have a 
general particle model. 

• Provide investigative opportunities for 
students to construct arguments about 
the behaviors of matter undergoing 
chemical change by using an atomic-
molecular model to evaluate which ar-
gument better explains and predicts 
chemical change. 

Level 5—Atom-molecular model (Not shown) 
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Table 3. LP document for constructing explanations. 

Achievements Gap/Challenge Instructional experience to sup-
port progression 

Level 1—Nonstructural mode (Not shown) 

Level 2—Noncausal relation model (Not shown) 

Level 3—Insufficient causal relation model 

• Student makes an accurate claim. 
• Student backs up the claim with 

evidence. 
   
  
    
   
 

• The evidence is insufficient / inap-
propriate  

     
    
   
 

• Make explicit to students what 
counts as appropriate and sufficient 
evidence (i.e., by appropriate, we 
mean data that are relevant to the 
problem and help support the 
claim; sufficient refers to providing 
enough data to convince another 
individual of the claim). Often 
providing sufficient evidence re-
quires using multiple pieces of 
data.     

• Model the justification of claims 
with sufficient evidence with ex-
amples. 

• Draw on what students know about 
evidence or justification in their 
everyday life and help them under-
stand what counts as good evi-
dence. 

• Provide feedback in response to 
students’ justifications.  

Level 4—Causal relation model 

• Student makes an accurate claim. 
• Student backs up the claim with 

sufficient and appropriate evi-
dence.   

    
   
 

• Student does not use reasoning to 
tie the claim and evidence together.  

     
    
   
 

• Help students understand why it is 
important to include reasoning to 
convince others to accept the 
claims.  

• Make explicit to students what rea-
soning is (i.e., reasoning links the 
claim and evidence and shows why 
the data count as evidence to sup-
port the claim).  

• Model the use of reasoning with 
examples that tie claims to evi-
dence.  

• Draw on what students know about 
reasoning in their everyday life and 
help them understand scientific 
reasoning.  

• Provide feedback in response to 
students’ reasoning.  

Level 5—Insufficient coherence model (Not shown) 

Level 6—Sufficient coherence model (Not shown) 
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In applied reasoning tasks and performances in science inquiry, learners often are engaged in multiple facets 
of knowledge and skill defined by these multiple ECD models. For example, they might be asked to explain 
how heat affects water during a classroom experiment, and their explanation may be judged according to 
the criteria of accurate conceptual understanding of the properties of matter (as partially illustrated in the 
LP shown in Tables 2 and 3) and according to criteria of well-supported explanations as defined in the LP 
for scientific explanations. The LP model has the added benefit of coordinating how learners may progress 
differently on conceptual understanding and specific practices.  

Discussion 

GIFT researchers emphasize the benefits of standardized approaches to the development of adaptive or 
automated instructional materials. This chapter has provided some illustrations of how ECD modeling can 
support such standardized approaches in the design of assessments of the most complex forms of applied 
reasoning and problem solving. The benefits of ECD modeling focus on its theoretical soundness, con-
sistency of documentation format, and potential for model adaptation across multiple domains. 

The design patterns and learning progression models presented in this chapter demonstrate the potential for 
developing a GIFT library of competency models that are thorough, detailed, and grounded in empirical 
learning science. The ECD documents have common attributes based on the highest standards of measure-
ment theory and psychometrics, and as such, provide a common language and framework that may be used 
by subject-matter experts and ITS developers in multiple domains.  

Further, the ECD documents are designed to address as many different components of knowledge and skill 
as is needed to accurately capture the complex processes of applied reasoning and problem solving in any 
given domain. This is possible because ECD documents lend themselves to being combined in flexible 
ways to address the unique conditions of applied reasoning in different domains. We have highlighted just 
two combinatorial schemes in this chapter: combinations that support phased assessment of applied rea-
soning as it unfolds in over time (the CT case), and combinations that support differentiated assessment of 
distinct knowledge and skill progressions involved in applied reasoning (the science inquiry case). 

Recommendations and Future Research  

Future research should examine what elements of the ECD modeling approach can be integrated into the 
GIFT platform and its standardized templates. Researchers face several challenges to developing efficient 
methods of defining and recording the attributes for automated assessment of complex reasoning and prob-
lem solving in ITSs. While ECD has laid the foundation for accurately recording the prevailing consensus 
of subject matter experts on core KSAs and their development, the narrative quality of these recording 
methods requires ITS designers to make many additional decisions and trade-offs, many of which continue 
to be made based on convenience rather than optimization. Too little is known about how to prioritize, 
integrate, and balance aspects of assessment across complex tasks to support improved competence. Future 
research needs to focus on 1) refining methods for representing the core KSAs in a manner that permits 
easy interpretation and use by designers of automated assessment systems; 2) defining a set of meta-design 
principles needed to support assessment selection and integration across complex tasks, including consid-
eration of the appropriate balance between covert and overt formative assessment; and 3) finding ways to 
provide guidance to ITS designers about the optimal levels of assessment feedback and monitoring to sup-
port learner progress in applied reasoning over time.  
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To maximize the potential for standardized design of a modular specification template for applied reasoning 
and problem solving, such research might occur concurrently across one or more domains and/or compo-
nent applied reasoning skills.  
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CHAPTER 8 – Assessing Individual Learner Performance in 
MOOCs 

Ryan S. Baker1, Piotr Mitros2, Benjamin Goldberg3, and Robert A. Sottilare3  
University of Pennsylvania1, edX2, US Army Research Laboratory3 

Introduction 

Massive open online courses (MOOCs) have emerged as a prominent mode of online education, but the 
quality of assessments in MOOCs remains inconsistent. There has been a consistent gap between the state 
of the art in assessment and the state of the practice in both MOOCs and other forms of educational tech-
nology. Improving the quality of assessment has the potential to improve their usefulness for certification, 
formative feedback, and learning. In this chapter, we discuss this gap and efforts to improve assessment in 
MOOCs. There are several potential directions for improving assessments in MOOCs, including improving 
the psychometric properties of simple assessment types, such as multiple-choice and fill-in-the-blank ques-
tions; creating richer assessment experience through more student interaction and more engaging experi-
ences (e.g., games, and simulations), through leveraging help resources to see how students perform with 
some degree of support; and using more powerful technology such as automated essay scoring to better 
assess students. We discuss both existing efforts and ways that research in other communities can be incor-
porated into MOOC platforms. 

In fall 2011, a small group of computer scientists from Stanford University launched the first xMOOC (an 
experimental MOOC based on a traditional university course), the Stanford AI Course. This early MOOC 
platform only supported three assessment types – multiple choice questions, select-many multiple choice 
questions, and numeric answers. However, the course used these types of assessment in a relatively sophis-
ticated way. Some assessments were embedded in the video and tightly integrated with content presentation, 
giving continuous formative assessment throughout the course. As instructors walked through mathematical 
derivations, students would do portions of the work (this practice is sometimes referred to as a partially 
faded worked example – e.g., Salden et al., 2010). In other assessments, students were given a problem, 
asked to develop an algorithm to solve that problem, and asked to enter the output of their program imple-
menting that algorithm into a numeric response question. This resulted in a relatively rich student experi-
ence.  

Shortly after the Stanford course, Coursera introduced two courses, one in machine learning and the second 
in databases. Coursera’s initial courses relied more on simple multiple choice questions, although they in-
troduced problem banks to create the possibility of mastery learning through selecting items from the prob-
lem banks and continuing to offer items until the student demonstrated mastery. In addition, Coursera in-
troduced assignments that could be graded via external software, a technology mostly used for program-
ming assignments. 

The MITx platform, now Open edX, was introduced approximately 6 months later. In the first MITx course, 
students worked through design and analysis problems which they could answer with numbers, equations, 
and circuit schematics. Their answers were verified with circuit simulations (in a JavaScript Spice clone), 
Python programs, plugging numbers into equations, or comparison of numbers with tolerance. Even with 
numeric answers, there were often multiple correct answers. For example, a design problem that required 
students to pick component values for a resistive divider of a given attenuation would need to verify 1) 
ratios of those components, 2) whether they were valid values, and 3) whether they were realistic values 
(Mitros et al., 2013). This type of nuanced complexity to student solutions is not unique to this course, but 
is found in a range of higher education course assessments, particularly in domains such as engineering. 
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The first dozen edX courses launched with several assessments that were discipline-specific, such as tools 
for evaluating computer code, chemical equations, and visualizing crystallography planes. 

Around the same time, Coursera introduced calibrated peer assessments where an essay or other artifact is 
graded by a student’s peers, allowing for human assessment at a scale that would not be feasible for an 
instructor or teaching assistant in a course with tens of thousands of students. 

However, despite the availability of support for programmatic auto-grading, calibrated peer assessment, 
and other forms of rich assessment embedded into teaching activities, most MOOCs rely upon relatively 
simple forms of assessment. The majority of MOOCs rely upon weekly quizzes or assignments where the 
student answers a fixed set of multiple-choice or fill-in-the-blank questions. While edX has support for over 
50 different types of activities available and ready to use as options for course authors, around 80% of 
assessments are either multiple choice questions or similar simple assessments. Most competing platforms 
rely even more heavily on multiple-choice questions.  

When compared to the rich and broad range of assessment seen within computer-based learning environ-
ments, for example, especially within the research community, the limitations of current practice in MOOCs 
and many other digital learning technologies, become especially notable. While learners using computer-
based learning environments such as Cognitive Tutor are assessed at the same time they are learning (Cor-
bett & Anderson, 1995), assessment in MOOCs is often separate from learning. For example, although edX 
is designed around interleaved learning sequences with integrated formative assessment, only half of the 
learning sequences with videos in courses deployed on edX.org include integrated assessments. While 
adaptive assessments in systems like the Assessment and Learning in Knowledge Spaces (ALEKS) deter-
mine where a student is in the progression from learning prerequisites to learning the skills that build on 
those prerequisites (doignon & Falmagne, 2012), MOOC developers rarely have the resources to create 
sufficient numbers of assessments to enable adaptive pathways, especially given the thousands of courses 
used at a university level. Consequently, adaptivity is limited to feedback and hinting. While learners using 
simulations take part in rich performance assessments (Clarke-Midura et al., 2012), MOOC learners often 
are assessed solely on multiple choice and fill-in-the-blank items, since such assessments have not yet been 
developed for the diversity of topics covered in MOOCs. Many examples of richer assessment can be found. 
Applying these approaches to the scale and diversity of courses offered as MOOCs remains an open chal-
lenge. The problem is complicated by the types of instructors teaching MOOCs – in contrast to trained 
educators at a K–12 level, university courses (and the MOOCs based on them) are generally taught by 
subject-matter experts, with little background in teaching and learning or educational technology.  

In this chapter, we discuss the efforts that have been made to enhance assessment within MOOCs and 
potentials for enhancing assessment in MOOCs further. As MOOCs continue to serve tens of millions of 
students with thousands of courses from hundreds of universities, enhancing assessment in this context has 
the potential to improve learning experiences for many people in many contexts.  

Improving the Quality of Current Common Types of Assessments 

As mentioned previously, many MOOCs assess learners with a fixed set of multiple-choice and fill-in-the-
blank items. Even within the paradigm of this type of item, there are several limitations to current practice 
in this regard. One limitation is that items are typically not validated. Item validity in assessment construc-
tion is a well-known area, incorporating both the psychometric properties of items (Dudycha & Carpenter, 
1973) and their mapping to the content goals for the assessment (Mislevy & Riconscente, 2006). However, 
applying such algorithms in MOOC settings is still an area of open research (Champaign et al., 2014). There 
are several challenges to integrating such algorithms into MOOCs:  

https://edocs.uis.edu/jcham4/www/p11-champaign.pdf
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• When courses rely on mastery learning, students have much more incentive to guess and explore. 
Incorrect answers are often a result of such exploration, rather than item difficulty, as assumed in 
models such as the Rasch model or other Item Response Theory (IRT) models. 

• MOOCs are open, and many learners have no intention of completion. Many students only target 
sections of courses that are relevant to them. More advanced learners are likely to skip over or rush 
through easy items, while novices might skip difficult problems, which can reduce the accuracy of 
knowledge estimation.  

• In contrast to an exam where knowledge stays constant during the course of the exam, or adaptive 
systems that alternate between learning and assessment (such as ALEKS), students in MOOCs 
learn over time, and items often have intellectual cohesion and sequential narrative. Models which 
presume learner knowledge is fixed, such as IRT, fail to work in such cases. Another popular 
knowledge modeling algorithm, Bayesian knowledge tracing (BKT), assumes that learners learn, 
but assumes a certain level of independence in the order of items. Learners self-regulate when 
working through MOOCs, invalidating such assumptions. 

• MOOC assessments rarely have a 1-1 mapping to learning components, unlike psychometrically 
designed tests. Analysis and design courses will have complex, multi-concept questions, where a 
single problem might take several hours to complete (Seaton et al., 2014), while history courses 
might spot-check facts, such as asking about a key date. Many psychometric models are undercon-
strained in such cases. 

• MOOC offerings typically decline in size with each run, where the first run is substantially larger 
than successive ones. Applying data from the first run to improve future runs would not impact the 
large number of students in the first run, so improvements would either need to be developed based 
on a prototype cohort1, or run in real time by analyzing and attempting to enhance problems after 
a minority of students attempted them (as found in systems such as the Learning Online Network 
with Computer-Assisted Personalized Approach [LON-CAPA]). 

Another key difference is that MOOC assessments typically grade students with regard to percentage cor-
rect. Psychometricians have been aware for decades that items have different properties – even in the same 
topic area, items may have different difficulties and different degrees of discrimination (how effectively 
they distinguish skillful students from non-skillful students), and as such, grading according to percentage 
correct is far from optimal for measurement of student skill. However, psychometric considerations must 
be balanced with other goals of exercises in courses: 

• Exercises serve as a primary means of learning. Mastery learning is a key technique for effective 
learning, repeatedly shown to lead to better learning outcomes (Bloom, 1987). In mastery learning 
settings, students are asked to continue to attempt problems until they demonstrate mastery, for 
example by getting a sufficient number of problems correct or according to the assessments of 
knowledge modeling algorithms (e.g., Anderson et al., 1995). This is, in many ways, opposite to 
the goals of measurement, where items students answer correctly 50% of the time contribute max-
imum information. A question that all students answer correctly is often an excellent tool for learn-
ing, but contributes little psychometric information.  

                                                           
 
1Many MOOCs first run in a residential format, and some MOOC providers have experimented with a prototype cohort with fewer 
students for validation of courses. 
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• Grading is used to motivate students. For those purposes, simplicity is paramount; students ought 
to understand grading schemes. Algorithms such as multivariate IRT are opaque to students.  

• Grading is used for certification. In this context, it is important for users of such accreditation to 
understand what the accreditation means.  

Nonetheless, MOOCs give a new opportunity for grading schemes which integrate psychometric consider-
ations into learning engineering and learning design. Some pilot work has attempted to take these several 
issues into consideration within the context of MOOCs – for example, Colvin et al. (2014) uses a form of 
IRT to better assess students in a physics MOOC, taking item difficulty and discrimination into account. 
Pardos and colleagues (2013) similarly extend BKT to assess the degree of student learning over time in a 
MOOC on circuit design, taking item difficulty and multiple student attempts into account. However, these 
innovations have not scaled to the broader range of MOOCs or led to better achievement of the non-psy-
chometric goals of exercises and assessments in MOOCs. How to do so effectively, what issues will come 
up with the diverse range of courses and pedagogies in MOOCs, and how to balance the competing design 
goals of assessments all remain open problems.  

These problems are unlikely to be solved until tools that ingest MOOC data are standardized and widely 
deployed. Instructors and course development teams generally do not have the capacity to do this type of 
research and enhancement on their own. There are a number of initiatives to create such tools (Cobos et al., 
2016; Dernoncourt, 2013; Fredericks, 2016), but none are standard or complete. A widely useful platform 
for open, integrated learning analytics (Siemens et al., 2011) remains a dream, for both technical and non-
technical reasons. Scaling existing learning algorithms to perform the complex calculations needed for clas-
sical psychometric modeling on the terabytes of data in MOOCs in real time remains a technical challenge, 
while sharing and integration of proprietary learning data are open legal and policy questions.  

Broadening Assessment in MOOCs 

Another way that MOOC assessment could be enhanced is through broadening formats for assessment. As 
noted previously, the first xMOOC alternated between providing conceptual content in the form of video 
lectures, having students manipulate information, and assessing student understanding. Many xMOOCs 
have included rich analysis-and-design problems. While the functionality to do this remains present in the 
primary xMOOC platforms, it is underutilized; at least half of MOOCs do not make adequate use of such 
functionality2. 

A common strategy in K–12 intelligent tutoring systems (ITSs) is to build problem sets where a larger 
problem is broken down into different steps, and the student receives feedback at each step. This is broadly 
the strategy used in the highly successful mathematics ITS, Cognitive Tutor (Anderson et al., 1995). An 
example of these step-based intelligent tutoring problems are seen in Aleven et al. (2015), where a data 
science MOOC’s assessments were converted into step-based problems. This allows more frequent feed-
back to students, and better tools for understanding student learning and knowledge gaps. However, it does 
not easily apply to all problems that might be seen in MOOCs. Many university courses strive for more 
complex, multi-concept authentic assessments, where students must not only work through calculations, 
but come up with a high-level problem-solving strategy in an open-ended setting. In an intermediate ap-
proach, students work in the platform in open-ended tools such as word processors, circuit schematic entry 
tools, or code editors, and the platform monitors student work. Traces of such activities mined for data. 
                                                           
 
2Approximately half of learning sequences on edX.org with videos do not include assessments. This number may be even lower 
on other MOOC platforms. 
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However, such systems are extremely expensive to build since such analyses tend to be very domain-spe-
cific. This engineering cost would be prohibitively expensive for the thousands of courses offered at a 
tertiary level.  

Additional types of problems may afford richer experiences, both in terms of learning and assessment. For 
example, in the ITS Betty’s Brain, students create concept maps to explain the interrelationships in a do-
main, and then the concept maps are evaluated in terms of their match to an expert-generated concept map 
(Leelawong & Biswas, 2008). Bringing such functionality into MOOCs is complex. Several MOOCs have 
encouraged learners to generate concept maps (e.g., Viswanathan, 2012; Bachelet et al., 2015), but MOOC 
developers have not yet leveraged the opportunity to automatically assess and provide immediate feedback 
on the resultant concept maps. There are several issues with bringing such tools to scale: 

• Such tools tend to be complex to develop, both technically and pedagogically. University courses 
are taught by subject matter experts, often with little background in teaching-and-learning, educa-
tional technology, or computer programming. Although edX.org has over 50 activity types availa-
ble to course authors, the Open edX ecosystem has at least twice that number, and many more are 
integrated through Learning Tools Interoperability (LTI), iframes, or JavaScript, only a minority 
of course teams are able to make use of such functionality. 

• Developing such tools is expensive. In the tertiary space, there are thousands of courses3, each 
taken by thousands or tens of thousands of students. Developing custom technology for each of 
these would cost hundreds of millions of dollars.  

• Even seemingly broadly applicable tools, such as the concept maps mentioned, only apply to a 
minority of courses. Many university courses cover areas of active research, and as such have 
poorly-defined concepts and learning objectives. In these courses, the curriculum and objectives 
are still being defined.  

A promising area of research is finding and encouraging the use of simple tools – both from a developer 
and course author standpoint – to enable cognitively complex tasks such as the concept maps seen in Betty’s 
Brain. For example, in the context of learning-by-teaching, MOOCs have used Q&A forums, peer feedback 
tools, and community TAs. With thousands of mature students in a course, it is often possible to come up 
with relatively simple techniques which mirror the cognitive processes of students in ITSs, but do so by 
relying on either the intelligence of crowds or the intelligence of individual students.  

Perhaps even richer interactivity and assessment can be found in systems that allow students to enter an-
swers to conceptual questions in natural language, such as AutoTutor (Graesser et al., 2005). AutoTutor 
uses natural language processing (NLP) both to evaluate student responses and to ask probing questions 
that help to explore how much students understand. This type of assessment, while expensive to create, can 
help to richly explore student understanding, toward offering more sensitive responses and support to stu-
dents. However, it is relevant to ask how to build out this type of learning and assessment activity in an 

                                                           
 
3According the National Center for Educational Statistics, even large majors such as computer science only have on the order of 
40,000 graduates every year. Smaller majors might have single-digit thousands. A high-caliber but narrow school such as the 
Massachusetts’s Institute of Technology (MIT) offers roughly 2,000 courses to cover primarily science and engineering education. 
If we assume similar numbers of courses across disciplines MIT does not offer, such as agriculture, education, medicine, or law, a 
complete set of courses to cover a broad university education would require about 10,000 courses. As of 2017, there are thousands 
of MOOCs. 
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economical fashion for the number of courses in MOOCs. It is also uncertain how systems like AutoTutor 
will integrate into the design of current MOOCs.  

The written word can also be the focus of MOOC assessment through the grading of essays and other 
extended written work. Several MOOCs have used peer review to grade essays, where (as mentioned pre-
viously) students grade each others’ work and give feedback (Balfour, 2013). However, peer review may 
be less useful for problems with a large expert-novice gap, where a substantial portion of the goals may be, 
for instance, to give feedback on how well students conform to good design practice or other professional 
conventions. In addition, many students prefer to have their assignments graded by an expert rather than a 
peer (who may even be less knowledgeable than they themselves are) (Luo et al., 2014). However, in the 
majority of cases, with a clear, well-designed, and relatively closed-ended rubric, and proper calibration, 
peer reviews can be more reliable than a single expert review for suitable assessments – and are definitely 
more scalable. 

Another potential approach to grading student essays is to use auto-grading, based on NLP. NLP-based 
auto-grading has been used at scale in other domains, perhaps most notably in standardized examinations. 
A thorough review of key systems for automated essay scoring can be found in (Dikli, 2006). Reilly and 
colleagues (2014) report on the use of automated essay scoring in a pharmacy MOOC, finding good agree-
ment between automated scoring and instructor scores. However, automated essay scoring remains contro-
versial in the context of MOOCs. edX piloted this capacity and found that when appropriately used, it had 
very high quality results (Mitros et al., 2013). However, practical engineering constraints prevented this 
approach from out to large numbers of courses. In particular, for such algorithms to work, the instructor 
must first hand-grade around 100 submissions. These free-form text submissions are typically unavailable 
the first time a MOOC is run, creating a chicken-and-egg problem. In addition, while the system worked 
very well in the courses in which it was piloted it is difficult to predict whether it would work in all such 
contexts. If an auto-grading system failed in a MOOC, leaving thousands of essays to be hand-graded, such 
a failure could either be exceptionally expensive or highly problematic. Such problems are solvable, 
whether by integrating with peer grading, use in prototype courses to obtain initial models, using teaching 
assistants in the developing world, or other solutions, but no solutions has currently been developed to the 
level of being production-ready for thousands of courses. 

Across approaches to assessment and instruction, one key lesson learned is that in MOOCs, usage of a 
feature is strongly tied to how easy it is for course authors to discover and use that feature. Course authors 
are willing to invest significant effort into making high-quality courses if they can figure out how to do so. 
For example, ITSs have a range of hinting functionality, including on-demand hints and so-called “bug 
messages” for incorrect answers. Such hints both enhance learning and have been shown to be a valuable 
component of more precise assessment, providing data beyond just student correctness that is predictive of 
long-term outcomes (Feng, Heffernan & Koedinger, 2009). The edX platform added simple authoring func-
tionality for hinting in 2015, including hints in default template problems. As a result, as of this writing, 
around ⅔ of edX assessments have hint functionality, either as on-demand hints or “bug messages”. 

Assessment: Beyond Knowledge 

Thus far in this chapter, we have discussed the assessment of students in MOOCs as if the only thing worth 
assessing is students’ knowledge and skills. It is true that knowledge and skill have historically been the 
primary focus of assessment work, across contexts and domains, but they are hardly the only constructs 
that can be assessed, or the only constructs that should be assessed. MOOCs are well suited to assessing 
more complex skills, such as group work, creative problem solving, and leadership. MOOCs capture minute 
click-by-click student interactions, across a diverse range of subjects, with data for some learners across up 
to five years. These data have the potential to help us study and assess student progress across a sequence 
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of several complex and group projects, providing insights into the details of the social interactions and 
problem solving within those projects (Mitros et al., 2014). However, MOOCs have not yet reached their 
full potential in this area.  

For instance, one of the key areas of research in the ITS community over the last decade has been the 
assessment of metacognition and self-regulated learning (SRL) skill. MOOC students are generally gifted 
high school students, college students, and adult learners, and even within that set, are disproportionately 
autodidacts. They can be hypothesized to have higher levels of SRL skills and metacognition than the more 
general population of learners whom ITSs traditionally target. The edX platform, while offering a linear 
default path through content, was designed to support SRL strategies by providing supplementary resources 
that students can choose to access, as well as multiple navigational elements for students to be able to 
monitor their learning, skip over material they know, or navigate back to material they did not adequately 
master4. However, evaluation of how well these design elements work is limited, and it is not yet known to 
what degree the edX design works as intended. In terms of assessing metacognition and SRL within 
MOOCs, some work has focused on the use of out-of-context questionnaires rather than recognizing SRL 
from behavior (Hood et al., 2015; Onah & Sinclair, 2016). However, it has been argued that this type of 
questionnaire does not capture key aspects of SRL (Winne & Baker, 2013). Other work has looked at 
whether students’ navigation patterns in MOOCs follow the default linear path, but has not fully closed the 
loop from quantitative description to qualitative understanding (Guo et al., 2014). We do see that a signifi-
cant number of students completing MOOCs skip over significant numbers of videos (Seaton et al., 2014), 
which suggests some different learning strategies are being applied.  

In the context of ITSs, models have been developed that can recognize a range of SRL strategies, from 
unscaffolded self-explanation (Shih, Koedinger & Scheines, 2011) to help-seeking (Aleven et al., 2006). 
Models that can assess help-seeking skills have been used as the basis of automated support for SRL, lead-
ing to systems that produce enduring positive changes in students’ help-seeking strategies (Roll et al., 
2011). Even simple training in strategies for planning, monitoring, and knowledge elaboration can lead to 
better learning outcomes in laboratory studies (Azevedo & Cromley, 2004). However, simply recommend-
ing SRL strategies to MOOC learners does not appear to lead to benefits (Kizilcec et al., 2016). Overall, 
the best way of encouraging effective SRL strategies in MOOCs is an open question.  

MOOCs offer several opportunities for measuring SRL at a behavioral level, including student use of dis-
cussion forums to use questions, and student activity in the face of incorrect answers within a knowledge 
assessment – after making a mistake, does the student give up? Try again immediately? Ask for help (per-
haps on the discussion forum)? Re-watch the video? By modeling these behaviors, we may be able to assess 
SRL in MOOCs in the same rich fashion as has been achieved for ITSs. 

Another area of assessment in MOOCs that goes beyond knowledge and skills, and which has received 
relatively more attention, is the assessment of student engagement. Inspired by student success systems in 
for-credit programs (Arnold & Pistilli, 2012), many researchers have attempted to identify the factors as-
sociated with a student not completing a MOOC and predict in advance whether or not (and when) a student 
will stop participating in a MOOC (Jiang et al., 2014; Kloft et al., 2014; Yang et al., 2013; Sharkey et al., 

                                                           
 
46.002x, the original edX course, was structured as learning sequences, composed of roughly a dozen elements each, replacing 
what would be lectures in traditional classrooms. These was linear navigation with back/forward buttons, but also a set of icons, 
one for each element of the sequence, with the icon indicating the type of element (e.g., problem vs. video), and tooltips describing 
what each element is about. Students, anecdotally, took multiple strategies. For example, some students would navigate to assess-
ments and only watch videos if they had problems with those assessments. Videos had links to multiple additional means of presen-
tation, such as textbook pages. Within the video, multiple speeds were available, for moving through the video more quickly or 
more slowly. In addition, a scrolling transcript allows students to read ahead and navigate to precise points in a video.  
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2014). Across studies, it appears that several forms of participation are associated with MOOC completion, 
including posting to discussion forums, reading discussion forums, completing assignments (somewhat 
tautologically, since completion of a MOOC is typically based on completing assignments with a suffi-
ciently high grade), and watching videos (see review in Andres et al., in press).  

A related area of research is in attempting to infer MOOC learners’ emotions or sentiment. This is a well-
established area in other types of online learning system (see the review in Baker & Ocumpaugh, 2014), 
with researchers developing, validating, and using models of affective states such as boredom, frustration, 
and engaged concentration/flow. Researchers have begun studying assessment of sentiment in MOOCs as 
well. For instance, Wen and colleagues (2014) use discussion forums data on Coursera to determine if 
students have positive or negative attitudes to a course’s lectures, assignments, and peer assessments. Chap-
lot and colleagues (2015) show that student sentiment from discussion forums can be incorporated into 
models that infer whether a student will drop out of a course, leading to more accurate prediction of reten-
tion. However, there is not yet work to detect emotions in MOOCs beyond simply positive and negative 
sentiment; research into more complex emotion in MOOCs has thus far depended on self-report instruments 
(Dillon et al., 2016) rather than the automated detectors used with ITSs and other types of artificially intel-
ligent learning software.  

Finally, some researchers have begun to study how behavior within MOOCs can be predictive not just of 
completing the MOOC, but of students’ career trajectories after the MOOC. Chen and colleagues (2016) 
find that many students learning in programming MOOCs take their knowledge beyond the MOOC, incor-
porating new programming knowledge into their publicly released software on gitHub. Wang and col-
leagues (2017) have determined that reading discussion forums is associated with submitting scientific pa-
pers in the field after course completion, but that posting is not associated with submitting papers, even for 
a MOOC where posting is associated with course completion. Assessing not just where a learner is today 
during a MOOC, but determining how it influences their future career, has the potential to help us better 
design MOOCs to positively impact students’ long-term trajectories. 

Assessments in GIFT to Drive MOOC Adaptation 

As previously reviewed, assessment techniques applied across MOOCs varies based on the domain being 
instructed and the activities and exercises configured across lesson interactions. While many of the afore-
mentioned assessments described are aimed at classifying performance states and comprehension levels, it 
is important to recognize the role these assessments can play in instructional management and remediation 
practices. With personalization and individualized course-flow serving as a recognized gap in the majority 
of current MOOC implementations, a current collaborative research effort involving Carnegie Mellon Uni-
versity, the University of Pennsylvania, and the US Army Research Laboratory (ARL) is investigating the 
utility of the Generalized Intelligent Framework for Tutoring (GIFT) for serving as a framework to structure 
MOOC content and lessons. In the enhanced MOOC this project is producing, configured assessments 
across the relevant MOOC-related activities will drive instructional management decisions at the run-time 
level based on GIFT’s pedagogical configurations.  

The effort is broken into two phases. The first phase of development focuses on making GIFT LTI compli-
ant, for the purpose of interoperating with large-scale learning management system (LMS) sites like edX. 
This enables MOOC developers to reference GIFT-managed lessons within the structure and delivery of 
their course flow, along with the ability to receive data back following the completion of a GIFT lesson for 
performance tracking and accreditation purposes.  

With the LTI component in place, the next phase involves configuring MOOC content into a set of lessons 
that adhere to the authoring standards and run-time schemas of GIFT. GIFT is unique because it provides 
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a domain-agnostic architecture that enables a course developer to build and sequence content within an 
instructional design theory that adheres to knowledge development and skill acquisition. GIFT’s Engine 
for Management of Adaptive Pedagogy (EMAP) is a pedagogical model embedded within the ‘Adaptive 
Courseflow’ course object, with David Merrill’s Component Display Theory (CDT) informing the design 
(Goldberg, Hoffman & Tarr; 2015; Merrill, 1994). When the EMAP is used, an author configures content 
for the delivery of “Rules” and “Examples” for each identified concept a lesson targets, followed by con-
figuring two levels of assessment: 1) knowledge recall as it pertains to the declarative and procedural in-
formation and 2) skill and application assessment as captured within a set of practice events and/or scenar-
ios.  

The “Recall” and “Practice” components of the EMAP can support any number of MOOC related assess-
ment activities, where the derived outcomes of the measures are used to drive what the learner experiences 
next. The decision involves letting the learner advance to the next configured interaction or remediation 
logic that is triggered, where the underperforming concepts or states are addressed through an intervention 
that targets the impasses or misconception identified. The utility of such an approach in a large-scale deliv-
ery scenario like an edX MOOC requires experimentation to determine impact and gauge overall effect. 

Conclusion 

In this chapter, we have briefly discussed the rich state of the art and the relatively more limited state of the 
practice of assessment in MOOCs. Although some MOOCs today offer calibrated peer assessments, auto-
matically graded essays, step-by-step problem solving, and psychometrically based assessment, most 
MOOCs continue to base assessment on somewhat arbitrary sets of multiple-choice and fill-in-the-blank 
items. Furthermore, many of the technologies pioneered in ITSs and other types of artificially intelligent 
software, such as natural language dialogues, remain unavailable in the MOOC world, and significant bar-
riers exist to bringing them to practice in such systems. Similarly, though there is some work to study 
metacognition, SRL, and sentiment in MOOCs, MOOC research in these areas has still not reached the 
level of sophistication seen other areas of educational research.  

In some ways, this finding is not surprising. Although there has been an impressive quantity of research 
conducted on MOOCs, the history of MOOC research remains rather brief. Several of the most impressive 
demonstrations of the power of assessment in online learning have involved expensive, several-year re-
search efforts. With time, MOOC assessment may reach the same peak in sophistication as ITSs. Having 
said that, the bigger challenge will be to roll out these benefits to the full diversity of existing MOOCs and 
use these forms of assessment to drive beneficial intervention. Even in the more mature field of ITSs, it has 
been challenging to develop interventions that take full advantage of the powerful forms of assessment now 
available. Solving this challenge in MOOCs will call on the collaboration of both assessment researchers 
and designers alike.  
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CHAPTER 9 – Evidence Centered Design and  
Data-Driven Assessment  

Arthur C. Graesser 

University of Memphis 

Core Ideas 

The chapters in this section are substantially pushing the envelope beyond classical psychometric assess-
ment of psychological constructs, such as those that analyze multiple-choice tests with item response theory 
and Rasch models. One important advance is that these approaches can analyze open-ended behavior, such 
as essays, answers to questions in natural language, conversation, collaborative interaction, problem solv-
ing, actions during scientific inquiry, and design of artifacts. This requires a fine-grained analysis of log 
files that record the stream of actions, events, processes, timing, and sometimes even physiological and 
emotional responses.  

A second important advance in these approaches is that they incorporate contemporary breakthroughs in 
computational sciences, such as artificial intelligence, computational linguistics, information retrieval, ma-
chine learning, data mining, and multichannel multisensory signal processing. These methods are needed 
to interpret the complex log file data automatically and to map data patterns to performance indicators and 
psychological constructs that make sense.  

A third important advance is that the models attempt to achieve a careful balance between theory and data-
driven discovery. Patterns of data in the log files sometimes match expected theoretical constructs that can 
be specified a priori. For example, taking the initiative in a conversation is manifested in a person when 
the person asks questions and introduces new topics. Or systematic inquiry is manifested by a person who 
manipulates one variable at a time in a simulation environment. On the other hand, some patterns of data 
are discovered through data mining and machine learning analyses that eventually are integrated with an 
ever-evolving theoretical framework. For example, there is a difference between 1) a person who asks for 
hints in an intelligent tutoring system (ITS) to help the person understand a difficult concept and 2) a person 
who abuses a hint help facility by quickly and mechanically asking for hints to finish the problem without 
learning anything. Data mining methods have differentiated these two types of learners.  

A fourth importance advance is that these methods attempt to integrate the computational sciences with 
rigorous quantitative psychometric models. The field of ITSs ignored psychometric methodologies for dec-
ades, whereas these chapters are attempting to break down the barriers. Both fields are destined to grow 
from this integration. 

The obvious implication for the Generalized Intelligent Framework for Tutoring (GIFT) is that these ap-
proaches to assessment need to be incorporated in the GIFT architecture. These approaches allow automated 
assessments of a variety of psychological constructs that can be stored in the student model and used in 
recommender systems of intelligent tutoring systems. The profile of knowledge, skills, and abilities in the 
student model can be expanded by the world of psychometric assessment. The empirical results of ITSs can 
also be appreciated by a wider community of researchers and other stakeholders in the learning sciences 
who have high standards of assessment methodology.  
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Individual Chapters 

The chapter by Mislevy and Yan describes the fundamentals of evidence-centered design (ECD) and how 
ECD would be applied to ITSs. ECD “embodies an evidentiary argument to reason from what students say 
or do in particular task situations, to claims about what they know or can do more broadly”. For example, 
they have analyzed a Hydrive ITS that simulates many of the important cognitive and contextual features 
of troubleshooting the hydraulics systems of a F-15 aircraft; this simulation involves the operation of flight 
controls, landing gear, the canopy, the jet fuel starter, and aerial refueling. ECD has a multilayer process of 
creating an assessment of both specific and general proficiencies from the stream of behaviors, events, and 
contextual features in the log file. One of these layers is the conceptual assessment framework, which is the 
main blueprint for the assessment that interrelates the student model, the evidence model, and the task 
model. ECD assessment is currently the dominant model of assessment for complex open-ended tasks, such 
as interacting with computer simulation trainers, games, collaborative interaction, design of artifacts, and 
hopefully more ITS in the future.  

The chapter by Zapata-Rivera, Brawner, Jackson, and Katz uses ECD in conversation based assessments 
with conversational agents (virtual characters). That is, students interact with one or more agents using 
natural language (i.e., speech or written responses) or menu-based predefined responses. The paths of con-
versational interactions in the conversation space are linked to particular psychological constructs that are 
being assessed. Conversation-based assessments have been applied to a variety of skills, including scientific 
inquiry skills, literacy, and mathematics. This chapter shows how the conversation-based assessment sce-
narios can be reused on new domain content, such as transferring from volcanoes to the weather. This 
chapter also describes how an evidence model could be incorporated in the GIFT architecture.  

The chapter by LaMar, Baker, and Greiff assesses inquiry skills in problem solving and the practice of 
science. Traditional, simple, static assessment items cannot capture inquiry processes, so complex, interac-
tive, dynamic tasks are needed. However, there is a challenge in identifying the inquiry skills manifested 
in the task on the basis of log data. The chapter describes three different methods for assessing inquiry 
skills. One uses theoretically defined features, such as the strategy of varying one thing at a time. The 
second uses data mining with machine learning to allow discovery of unexpected strategies. The third uses 
generative process models to compare student actions to agents that probabilistically implement specific 
inquiry strategies. The chapter describes the advantages, disadvantages, and appropriate assessment tasks 
for each method.   

The chapter by Rus, Olney, Foltz, and Hu provides an overview of the opportunities, challenges, and state-
of-the-art solutions in the area of automated assessment of learner generated natural language responses. 
Advances in computational linguistics have been incorporated in ITSs that have tutorial dialogue, auto-
mated scoring of essays, scoring of verbal answers to questions, and assessments of whether students’ ver-
bal contributions are semantically similar to expected good or bad answers. The chapter discusses compu-
tational approaches to interpreting natural language that vary from shallow detection of linguistic features 
to deep componential semantic analysis. The chapter summarizes recent breakthroughs in automating nat-
ural language and discourse, as well as toolkits in computational linguistics and large corpora that are avail-
able for machine learning projects.  

The chapter by Greiff, Gasevic, and von Davier discusses the complexities of analyzing the log files of rich 
open-ended tasks to be assessed. The authors argue that an interdisciplinary effort is essential. The three 
authors include a cognitive psychologist, a psychometrician, and a computer scientist. The chapter identifies 
the most prominent challenges that are encountered when analyzing the large amounts of computer-gener-
ated process data and when trying to discover informative relationships among features and patterns of data 
that unfold over time. They consider how ITSs can facilitate research on assessment in addition to learning.  
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CHAPTER 10 – Evidence-Centered Assessment Design and 
Probability-Based Inference to Support the Generalized 

Intelligent Framework for Tutoring (GIFT) 
Robert J. Mislevy and Duanli Yan 

Educational Testing Service 

Introduction 

Simulation-based assessments open the door to a new paradigm of learning that is characterized by inter-
action and adaptation. One of the applications using simulation-based assessment is intelligent tutoring 
systems (ITSs). For example, physicians can practice heart surgery, and technicians can interactively learn 
skills and be trained to troubleshoot and repair aircraft in simulation-based ITSs. The widespread use of 
simulations for learning and assessment, and the need for ITSs in the Generalized Intelligent Framework 
for Tutoring (GIFT) is increasing.  

In this chapter, we present an overview of such a framework, namely evidence-centered assessment design 
(ECD). ECD’s language and representations support ITS designers in projects across different domains, 
task types, and purposes. In particular, ECD has proved useful as the design framework for simulation-
based assessments (Clarke-Midura, Code, Dede, Mayrath & Zap, 2012; Mislevy, 2013), game-based as-
sessments (Mislevy et al., 2014), and ITSs (Shute, 2011). The Hydrive ITS for learning to troubleshoot the 
hydraulics of the F-15 aircraft (Mislevy & Gitomer, 1996) is used here to illustrate ideas.  

This chapter also describes probability-based inference in complex networks of interdependent variables 
for assessment (Almond, Mislevy, Steinberg, Williamson & Yan, 2015; Woolf, 2009) and offers recom-
mendations for developing an ITS to support GIFT.  

Background 

People often face similar difficulties in a wide variety of domains. Novices don’t know what information 
is relevant, how to integrate information, and what to do next. However, humans routinely display some 
amazing capabilities by working with patterns: patterns of perceiving, patterns of thinking, and patterns of 
acting. Thus, we can assemble these patterns flexibly in real time once we are sufficiently practiced. Expert 
performance is made possible through the continual interaction between the external patterns and the inter-
nal neural patterns, when the external patterns structure peoples’ interactions in situations, such as language 
and professional practices, and the internal neural patterns recognize, make meaning of, and act through 
these external patterns (Ericsson, Charness, Feltovich & Hoffman, 2006; Greeno & van de Sande, 2007).  

People develop their internal cognitive patterns through experience, that is, by participating in activities  
structured around these patterns, discerning regularities, seeing what happens as they act. Through reflec-
tive practice starting from simplified situations – best with feedback and support from others – people build 
their capabilities and overcome the pervasive limitations that plague novices (Ericsson, Charness, Feltovich 
& Hoffman, 2006).  

A simulation can emulate some features of actual situations. It may change size, speed up, slow down, or 
simplify some aspects of real-world situations. An assessment designer must determine what aspects of real 
situations to include in a simulation environment and what aspects to modify or omit. These design choices 
must be made based on the intended purposes of the simulation.  
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Designing simulations for learning requires focusing on the features of situations for the targeted 
knowledge and skills, at a level that is just beyond the capabilities of the test-takers. Designing simulations 
for assessment requires a focus on information the assessment needs about test-takers’ knowledge and skill.  

The designers need to consider both simulations for learning and for assessment when designing an ITS. 
The kinds of problems and situations in which one learns to think and act in a domain are the same kinds 
of problems and situations that provide evidence about these capabilities. The realm of assessment design-
ers and psychometricians is how that evidence to be evoked, captured, interpreted, summarized, and re-
ported. An assessment design framework coordinates the contributions from the domain experts and simu-
lation designers.  

Evidence-Centered Design (ECD) 

An educational simulation assessment embodies an evidentiary argument to reason from what test-takers 
say or do in particular task situations, to claims about what they know or can do more broadly. Messick 
(1994) summarizes its form neatly: 

[We] would begin by asking what complex of knowledge, skills, or other attributes should be as-
sessed, presumably because they are tied to explicit or implicit objectives of instruction or are 
otherwise valued by society. Next, what behaviors or performances should reveal those constructs, 
and what tasks or situations should elicit those behaviors? Thus, the nature of the construct guides 
the selection or construction of relevant tasks as well as the rational development of construct-
based scoring criteria and rubrics. (p. 16).  

The ECD framework lays out the structures that contribute to instantiating an assessment argument in op-
erational processes (Figure 1). Common language and representations across different forms of assessment 
help developers structure their work, both conceptually and operationally. These encourage reusability such 
as design patterns for generating tasks and adaptable scoring procedures.  

 

Figure 1. Layers of ECD, which include domain analysis, domain modeling, conceptual assessment frame-
work (CAF), assessment implementation, and assessment delivery.  
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Domain Analysis 

Domain analysis defines and documents the content or domains to be assessed. This is the relevant content 
knowledge, the ways people think and use it, and the kinds of situations they use it in. What do we know 
about progressions of thought or skills, patterns of common representations or errors? What knowledge, 
skills, goals, and tools are relevant? How do people interact with the physical environment, conceptual 
representations, and other people to accomplish goals? By what standards are these efforts judged in prac-
tice? Designers can consider the domain from a variety of perspectives including cognitive research, cur-
ricula, professional practice, expert input, standards, and current testing practices. This is information that 
developers draw upon when they design tasks, evaluation procedures, the nature of the test-takers’ profi-
ciencies they will report on and the interrelations among these. 

Domain Modeling  

Domain modeling is the process when designers organize information from domain analyses to articulate 
assessment arguments. ECD tools support this process with “claims and evidence” worksheets (Ewing, 
Packman, Hamen & Thurber, 2010), Toulmin diagrams for assessment arguments, and design patterns for 
constructing assessments around capabilities including design under constraints and model-based reasoning 
(Mislevy, Riconscente & Rutstein, 2009).  

Optimal design requires careful consideration of which aspects are at issue for a given purpose. Messick’s 
article “The Interplay of Evidence and Consequences in the Validation of Performance Assessments” 
(1994) remains the best source on how to think about what features should and should not be represented 
in simulations.   

The Conceptual Assessment Framework (CAF) 

The CAF is a blueprint for an assessment. It comprises the domain information, information about con-
straints and logistics, and models containing objects and specifications for operational aspects of work. 
These include 1) the creation of tasks, evaluation procedures, and statistical models, 2) delivery and oper-
ation of the assessment, and 3) analysis of data coming back from the field. While domain modeling em-
phasized the interconnections among key aspects of peoples’ capabilities, situations, and behaviors, the 
CAF capitalizes on the separability of the objects that are used to instantiate an assessment.  

Figure 2 is a schematic of the three central models in the CAF and objects they contain (Almond, Steinberg 
& Mislevy, 2002; Mislevy, Steinberg & Almond, 2003). The student model contains variables for express-
ing claims about targeted aspects of students’ capabilities. Their number and character depends on the pur-
pose of the assessment. For example, a single student-model variable can characterize students’ overall 
proficiency in a domain of tasks for a certification decision, or a multidimensional student model can sort 
out patterns of proficiency from complex performances or provide more detailed feedback. In an ITS, the 
student-model variables are keyed to the nature and grain size of feedback and instruction that the ITS is 
intended to provide. This is illustrated in the Hydrive example.  
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Figure 2. The central models of the CAF. 
 
A task model formally describes the environment in which students say, do, or make something to produce 
evidence (Vendlinski, Baker & Niemi, 2008). In simulation tasks, more information is required than in fixed 
tasks because of the variety of actions a test-taker can take and the reactions of the simulation environment 
in response. For a simulation task, the initial status and transition rules of a finite state machine can be used 
for task model. (Gomaa, 2010). A key decision is how best, in what form, to capture students’ performances, 
the work product(s). For example, a work product can be a sequence of steps in an investigation, the loca-
tions of icons dragged into a diagram, or the final solution of a design problem. Task model variables 
indicate salient features of a situation, and are used in evaluating performances and extracting data con-
cerning the situation in the assessment argument. In an interactive assessment, dynamic task model varia-
bles are determined as the performance unfolds. 

An evidence model connects the student model and the task model. The evidence rules identify and evalu-
ates the salient aspects of the work products, expressed as values of observable variables. Evidence rules 
are procedures such as rubrics for human scoring or algorithms for automated scoring procedures. Infor-
mation in the observable variables is synthesized in the stat model or measurement model component. The 
simplest measurement models are classical test theory models, in which scores for salient features are 
added. Modular measurement models assemble more complicated models such as those of item response 
theory or Bayesian networks (Mislevy & Levy, 2007; Shute, 2011). It is more complicated but more useful 
when the structures of evidentiary relationships in complex tasks and multivariate student models are ex-
pressed in reusable measurement model fragments. It’s important for task authors to create unique complex 
tasks but know ahead of time “how to score them” (Mislevy, Steinberg, Breyer, Johnson & Almond, 2002). 

Assessment Implementation  

The assessment implementation is about constructing and preparing the operational elements specified in 
the CAF. This includes authoring tasks, developing and finalizing rubrics or automated scoring rules, esti-
mating the parameters in measurement models, and producing simulation states and transition rules. It is 
suggested to use common and compatible data structures to increase the reusability and interoperability, 
thus to bring down the costs of simulation-based assessment in the areas of task design, measurement mod-
els, authoring frameworks, and automated scoring (Chung, Baker, Delacruz, Bewley, Elmore & Seely, 
2008; Frezzo, Behrens, Mislevy, West & DiCerbo, 2009). 

Assessment Delivery: The Four-Process Architecture 

The assessment delivery is where students interact with tasks, their performances are identified and evalu-
ated, and feedback and reports are produced. In Almond, Steinberg, and Mislevy’s (2002) four-process 
delivery architecture, the processes pass messages among themselves in a pattern determined by the test’s 
purpose. The messages are either data objects specified in the CAF (e.g., parameters, stimulus materials) 
or are produced by the student or other processes in data structures that are specified in the CAF (e.g., work 
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products, values of observable variables). Again, using common language, data structures, and a partition-
ing of activities promote the reuse of objects and processes, and interoperability across projects and pro-
grams. 

Figure 3 shows the four principal processes. The activity selection process selects a task or activity from 
the task library, or creates one according to what is known about the student or the situation. The presenta-
tion process is responsible for presenting the task to the student, managing the interaction, and capturing 
work products. Work products are passed to the evidence identification process for task-level scoring. This 
process evaluates work product using the methods specified in the evidence model. It sends values of ob-
servable variables to the evidence accumulation process for test-level scoring, which uses the stat or meas-
urement models to summarize evidence about the student model variables and produce score reports. A 
simulation-based task can involve many interactions among the processes in the course of a performance.  

 

Figure 3. Processes in the assessment cycle.  

Probability-Based Inference and Bayesian Networks for ITSs 

Probability-Based Inference 

Inference is reasoning from what we know and what we observe to explanations, conclusions, or predic-
tions. We always reason in the presence of uncertainty. The information we work with is often incomplete, 
inconclusive, and amenable to more than one explanation (Schum, 1994). We attempt to establish the 
weight and coverage of evidence in what we observe because they inform the inferences and decisions we 
wish to make.  

In probability-based inference, a “random variable” X is defined in terms of a collection of possible out-
comes and a mapping from events to numbers that correspond to how likely they are to occur (probabilities). 
We denote p(x) the mapping from a particular value x of X onto a probability. Basic probability structures 
can lead to consistent inference for very complex situations, such as game situations with unknown proba-
bilities linked in complicated ways or with events whose probabilities depend on the outcomes of earlier 
observations (e.g., the probability of x given that another variable Z takes the value z, denoted p(x|z)). In 
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large-scale applications, these values can be verified empirically because the assessment can actually be 
used many times and the frequencies of various events tabulated.  

Three kinds of reasoning play essential and interlocking roles in an ITS. Within an established framework 
of relationships among variables, Deductive reasoning flows from generals to particulars, that is, from 
causes to effects, from diseases to symptoms, from a student’s knowledge and skills to observable behavior. 
Inductive reasoning flows in the opposite direction, from effects to possible causes, from symptoms to 
probable diseases, from students’ solutions or patterns of solutions to likely configurations of knowledge 
and skill. Given outcomes, what state of affairs may have produced them? Abductive reasoning proceeds 
from observations to new hypotheses, new variables, or new relationships among variables.  

In all ITSs, predications are made at each step of the tutoring process on some form of student modeling to 
guide tutor behavior. Inferences about a student’s current skills, knowledge, and strategy usage can affect 
the type and pacing of problems, quality of feedback and instruction, and determination of when a student 
has completed some set of tutorial objectives. But we cannot directly observe what a student does and does 
not know; thus, we must infer, imperfectly, from what a student does and does not do.  

Central to ITS development is the conception of the student model. A student model can fulfill at least three 
functions. First, given a set of instructional options, a student model can provide information to suggest 
which of the available choices on tasks or events is most appropriate for an individual at a given point in 
time (Ohlsson, 1987). Since an ITS can explicitly represent a domain of knowledge and task performance, 
it should be possible to design instruction at a level of cognitive complexity that facilitates successful per-
formance and understanding (Kieras, 1988). Second, a student model enables prediction of the actions a 
student will take, given the characteristics of a particular problem state and what the system infers about 
the student’s understanding (Ohlsson, 1987). With some understanding of students and problems, one can 
more accurately predict performance than if no model has been specified. When student actions conform 
to these predictions, it is an indication of the validity of the inferences about students made through the 
student model. Third, the student model enables the ITS to make claims about the competency of individ-
uals with respect to their knowledge and various problem-solving abilities. These claims can be viewed as 
data summaries that can help the tutor make decisions about problem selection and exit criteria from a 
program of instruction, evaluate a person’s status of knowledge and skills, and determine whether a person 
is likely to negotiate successfully a particular situation.. 

In practice, an ITS must work with specific actions that students take in specific situations. The student 
model mediates between the level of unique and unrepeatable observations, and the higher level of abstrac-
tion at which theory about the development of competence and the design of instruction takes place. The 
inferential task consists of two major parts: 1) establishing a framework for interpreting specific actions in 
terms suited to guide instruction and 2) characterizing the information these actions convey about variables 
in the student model. Using probability-based reasoning as a means for structuring the inferential task has 
many advantages. A distinctive feature of the approach is the differentiation between a model for a student’s 
knowledge (i.e., values of variables in a student model space that encompasses key aspects of knowledge) 
and a model for an observer’s state of knowledge about this student model (Mislevy, 1994).  

Probability theory provides powerful mechanisms for explicating relationships, reasoning bidirectionally, 
criticizing and improving models, and handling evidentiary subtleties. The beliefs about the status and in-
terrelationships of aspects of students’ competences and actions can be approximated through variables 
modeling their interrelationships in a joint distribution.  



 
 

107 

Bayesian Inference Networks 

In practical inference, we must reason inductively from interpreted actions to updated beliefs about the 
student’s strategic knowledge. This is accomplished in probability-based reasoning by means of Bayes the-
orem. Let x be a variable whose probability distribution p(x|z) depends on the variable z. Suppose also that 
prior to observing x, belief about the value of z can be expressed in terms of a probability distribution p(z). 
For example, we may consider all possible values of z equally likely, or we may have an empirical distri-
bution based on values observed in the past. Bayes Theorem says  

  (1) 

where p(x) is the expected value of x over all possible values of z – a normalizing constant required by the 
axiom that belief about z after having learned x must also be represented by a probability distribution that 
sums to one.  

Efficient probability-based inference in complex networks of interdependent variables is an active topic in 
statistical research spurred by applications in such diverse areas as forecasting, pedigree analysis, trouble-
shooting, and medical diagnosis (e.g., Lauritzen & Spiegelhalter, 1988; Pearl, 1988). For an introduction 
to Bayes nets in cognitive diagnosis, see Mislevy (1995) and Martin and VanLehn (1993). Interest centers 
on obtaining the distributions of selected variables conditional on observed values of other variables, such 
as likely characteristics of offspring of selected animals given characteristics of their ancestors or probabil-
ities of disease states given symptoms and test results.  

A recursive representation of the joint distribution of a set of random variables x1,…,xn takes the form  

  

           (2) 

where the term for j = 1 is defined as simply p(x1). A recursive representation can be written for any ordering 
of the variables, but one that exploits conditional independence relationships is useful because variables 
drop out of the conditioning lists. A graphical representation of Equation 2, or a directed acyclic graph 
(DAG), depicts each variable as a node; each variable has an arrow drawn to it from any variables on which 
it is directly dependent (its “parents”). Conditional independence corresponds to omitting arrows (“edges”) 
from the DAG, thus simplifying the topology of the network.  

The conditional independence relationships suggested by substantive theory play a central role in the to-
pology of the network of interrelationships in a system of variables. If the topology is favorable, such cal-
culations can be carried out efficiently through extended application of Bayes theorem even in very large 
systems. Table 1 is an example of conditional probabilities defining the relationship between two variables 
in a Bayes net. Each row is a conditional probability distribution, expressing the probability of certain 
classes of actions by a person with the level of strategic-knowledge proficiency in the row label at the left. 
There is a row for each possible value of the strategic knowledge student-model variable. Note the direction 
of reasoning represented here: If a person’s strategic knowledge were such-and-such, then the probabilities 
of the different possible actions would be such-and-such. 
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Table 1. Numerical values of conditional probabilities of interpreted action sequences,  
given strategic knowledge. 

 
 Conditional Probability of Interpreted Action Sequence 

Strategic Knowledge Serial Elimination Redundant Action Irrelevant Action Remove and Replace 
Expert 0.75 0.10 0.05 0.10 
Good 0.50 0.10 0.10 0.30 
Okay 0.30 0.15 0.15 0.40 
Weak 0.20 0.20 0.30 0.30 

 
The following example shows how ECD ideas are applied to develop a Bayes net used in an ITS on a 
Hydrive tutoring/assessment system. The final form of a portion of the model, with probabilities set at initial 
values, is shown as Figure 4. It is comprised of student model variables representing states of belief about 
various aspects of trainees’ proficiency and observable variables representing evaluations of action se-
quences they take in a simulated troubleshooting environment.  
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Figure 4. Conditional probabilities of interpreted action sequences in a canopy situation where space-splitting 
is not possible, given strategic knowledge. 

An Example of an ITS: Hydrive 

We now turn to discussing the implementation of probability-based reasoning in the Hydrive tutoring/as-
sessment system for developing troubleshooting skills for the F-15 aircraft’s hydraulics systems (Gitomer, 
Steinberg & Mislevy, 1995). This includes presenting an example of Bayesian inference networks for up-
dating student models in ITSs. Specifically, we address issues encountered in defining variables, expressing 
their interrelationships, constructing conformable probability distributions, and carrying out inference, all 
illustrated in the context of Hydrive. We illustrate how probability-based inference can support generalized 
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claims about aspects of student proficiency through the combination of detailed epistemic analysis of par-
ticular actions within a system with probability-based inference. The psychology of learning in the domain 
and the instructional approach are seen to play crucial roles.  

The hydraulics systems of the F-15 aircraft are involved in the operation of flight controls, landing gear, 
the canopy, the jet fuel starter, and aerial refueling. Hydrive is designed to simulate many of the important 
cognitive and contextual features of troubleshooting on the flightline. In the Hydrive ITS, a task starts with 
a video sequence in which a pilot, who is about to take off or has just landed, describes some aircraft 
malfunction to the hydraulics technician, for example, the rudders do not move during pre-flight checks. 
Hydrive’s interface then offers the student several options, including performing troubleshooting proce-
dures by accessing video images of aircraft components and acting on those components; reviewing online 
technical support materials, such as hierarchically organized schematic diagrams; and making their own 
instructional selections at any time during troubleshooting, in addition to or in place of instruction the sys-
tem itself recommends. The state of the aircraft system, including the fault to be isolated and any changes 
brought about by user actions, is modeled by Hydrive’s system model. The student’s performance is moni-
tored by evaluating how that student uses available information about the system to direct troubleshooting 
actions. Hydrive’s student model is used to diagnose the quality of specific troubleshooting actions and 
characterize student understanding in terms of more general constructs such as knowledge of systems, strat-
egies, and procedures that are associated with troubleshooting proficiency.  

Defining Variables in Hydrive 

Most real-world problems do not present themselves in terms of natural, ready-made “random variables” 
that are features of the world. Random variables are rather features of our representations of the patterns in 
terms of which we organize our thinking about the world (Shafer, 1988). To map any real-world situation 
into any formal reasoning framework, we must choose the level of detail at which variables will be defined, 
relationships will be modeled, and analyses will be carried out (Schum, 1994; Kadane & Schum, 1992).  

“Strategic knowledge” is a clear abstraction that instructors use to summarize patterns of trainees’ behavior, 
not just troubleshooting actions, but in their conversations, classroom activities, and interactions with in-
struction (see Pearl, 1988, p. 44, on the very human drive to invent such constructs to organize and explain 
our experience). For example, novice trainees use serial elimination informatively, but they tend to take 
space-splitting actions increasingly often as they gain competence and they take fewer redundant or irrele-
vant actions. We might therefore propose a variable called “strategic knowledge” for our student model, 
with possible values that represent increasing levels of expertise.   

“Interpreted actions” constitute the interface between the individual-level variables of Hydrive’s student 
model and the virtually unique sequences of actions that individual students take as they work through a 
problem. These are the lowest level of probability-based reasoning in Hydrive. The input to these variables 
corresponds to “observed data” for probabilistic reasoning, although they are actually fallible judgments 
from a rule-based parsing of students’ actions. This is referred to as “virtual evidence” in the expert systems 
literature (e.g., Neapolitan, 1990, p. 230), and it highlights a source of uncertainty that we will have to take 
into account. The values of “interpreted action” variables are produced by Hydrive’s system model, action 
evaluator, and strategy interpreter. A student’s actions are evaluated in terms of the information they yield 
in light of the current state of the system model. The action evaluator calculates the effects on the problem 
area of a student’s action sequence. The strategy interpreter makes rule-based inferences about the student’s 
apparent strategy usage based on the nature and the span of problem area reduction obtained from the action 
evaluator.  



 
 

111 

The system model appears to the student as an explorable, testable aircraft system in which a failure has 
occurred. It is built around sets of components connected by inputs and outputs. Connections are expressed 
as pairs of components, the first producing an output that the second receives as an input, qualified by the 
type of power characterizing the connection. The system model processes the actions from the student and 
propagates sets of inputs and outputs throughout the system. A student activates the system model by 
providing input to the appropriate components, and then examines the results for any other component of 
the system. A student can move the landing gear handle down and then observe the operation of the landing 
gear. If the landing gear does not descend, the student may decide to observe the operation of other com-
ponents to begin to isolate the failure. 

The action evaluator considers every troubleshooting action from the student’s point of view, in terms of 
the information it conveys about the problem area. When a student acts to supply power and inputs to the 
aircraft system, the effects of this input spread throughout the system model create explicit states in a subset 
of components: the active path, comprising the points from which input is required to initiate system func-
tion to its functionally terminal outputs and all the connections in between. The action evaluator updates its 
problem area as if the student correctly judged whether observations reveal normal or abnormal component 
states. If a student observes the output of a certain component that the system model “knows” is normal, 
then it is possible for the student to infer that all edges on the active path, up to and including the output 
edge, are functioning correctly and remove them from the problem area. If the student makes the correct 
interpretation and draws the appropriate inferences, then the problem areas that the student model and the 
student hold will in fact correspond and troubleshooting continues smoothly. But if the student decides that 
the observed component output was unexpected or abnormal, then a student may decide that all the edges 
in the active path would remain in the problem area and any others would be eliminated. If the problem 
area maintained by the student model begins to diverge significantly from the one present in the student’s 
mind, then the student actions interpreted as irrelevant and redundant become more likely.  

The strategy interpreter evaluates changes to the problem area, or the entire series of edges belonging to 
the system/subsystem where the problem occurs. As a student acts on the system model, the problem area 
is reduced because the results of action sequences, if correctly interpreted, eliminate elements as potential 
causes of the failure. If the student inspects any particular component, the system model will reveal a state 
that may or may not be expected from the student’s perspective. Hydrive employed a relatively small num-
ber of strategy interpretation rules (~25) to characterize each troubleshooting action in terms of both the 
student and the best strategy.  

Deductive and Inductive Reasoning 

Consider a scenario near the end of a problem solution, where space-splitting is no longer an option. What 
are our expectations that a student at each level of strategic knowledge might perform, for action sequences 
interpreted as “serial elimination,” ‘redundant action,” “irrelevant action,” and “remove and replace”? Se-
rial elimination is the best strategy available; remove and replace is useful but not efficient and both redun-
dant and irrelevant actions are undesirable. Figure 5 shows the flow of deductive reasoning. Each subpanel 
depicts conditional probabilities of the various action categories, given level of strategic knowledge. These 
are values of p(x|z) in Equation (1). Table 1 gives numerical values for this illustration. As the level of 
strategic knowledge increases, we see increasing likelihood for serial elimination and decreasing likelihood 
of redundant and irrelevant actions. It should be noted that experts sometimes make redundant moves, and 
novices make what are interpreted as expert moves (but not always for the right reasons). 

Again, we must reason inductively in practice. Suppose that for a new student, before observing any per-
formance, we start from initial beliefs of equal probability across the four possible values of strategic 
knowledge. That is, the prior probabilities p(z) in Equation (1) are all 0.25. We then observe one action in 
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the scenario. Figure 6 illustrates the results of applying Equation (1) to calculate posterior probabilities 
p(z|x), that is, updated beliefs about the test-taker’s strategic knowledge that would be obtained if each of 
the possible evaluations were obtained. For example, if we observe an action interpreted as serial elimina-
tion and apply Bayes theorem, we obtain the results in the first panel of Figure 6. We maintain the direction 
of the arrow because this was the direction in which we specified conditional probabilities. Similar calcu-
lations would lead to the results in the other panels if we had observed any of the other possible interpreta-
tions. 

 

Figure 5. Conditional probabilities of interpreted action sequences in a canopy situation where  
space-splitting is not possible, given strategic knowledge. 
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Figure 6. Updated probabilities for strategic knowledge, after observing an irrelevant action in  
a canopy situation where space-splitting is not possible. 

 
Figure 4, introduced earlier, is a simplified Hydrive Bayesian inference network expressing the dependence 
relationships in simplified version of the inference network for the Hydrive student model. The direction 
of the arrows represents the deductive flow of reasoning for constructing probability distributions that in-
corporate the depicted dependence structure. A joint probability distribution for all these variables can be 
constructed by first assigning a probability distribution to each variable that has no parents (in this example, 
there is only one: “overall proficiency”); then for each successive variable, assigning a conditional proba-
bility distribution to its possible values for each possible combination of the values of its parents. Four 
groups of variables can be distinguished: 

• The rightmost nodes are the “interpreted actions”, based on the results of rule-driven epistemic 
analyses of students’ actions in a given situation. There are two prototypical sets, each correspond-
ing to an equivalence class of potential observables in a given scenario, and there are three members 
of the class are represented in both cases. 

• The immediate parents of the interpreted action variables are the knowledge and strategy require-
ments that define the class in each case. 

• The long column of variables in the middle concerns aspects of subsystem and strategic knowledge. 
These correspond to instructional options. 

• The nodes to the left are summary characterizations of more generally construed proficiencies.  
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The equivalence classes of actions in this figure concern canopy situations in which space-splitting is not 
possible and landing gear situations in which space-splitting is possible. Figure 7 depicts belief after ob-
serving one redundant and one irrelevant action (both ineffectual troubleshooting moves) and one remove-
and-replace (serviceable but inefficient) in three separate situations from the canopy/no-split class. Serial 
elimination would have been the best strategy in this case and is most likely to occur when the student has 
strong knowledge of this strategy and all relevant subsystems. Remove-and-replace is more likely when a 
student possesses some subsystem knowledge but lacks familiarity with serial elimination. Weak subsystem 
knowledge increases chances of irrelevant and redundant actions.  

Subsystem and strategy variables are used to summarize tendencies in interpreted behaviors at a level ad-
dressed by instruction and disambiguate patterns of actions in light of the fact that inexpert actions can have 
several causes. These student-model variables are particularly salient in Hydrive, in that these variables 
correspond to companion modules of instruction and practice on particular aspects of systems, strategies, 
and tactics. When observations over a course of actions lead to a belief that a student may be weak in one 
or more of these areas, Hydrive recommends the training module(s) to the student. A contrasting ITS that 
also employed Bayesian networks but was constructed at a finer grain-size was the Online/Offline Assess-
ment of Expertise (OLEA) tutor for kinematics (Martin & VanLehn, 1993). Its student-model variables 
were at the level of rules in a production system for mastering the course material. Instructional decisions 
and feedback were cast at this level, from this perspective. 

Figures 7, 8, and 9 show the state of belief that would result after observing different sets of actions in 
situations involving the landing gear in which space-splitting is possible. To begin, suppose we first observe 
three inexpert actions concerning the canopy subsystem. The resulting updated Bayes net is shown in Figure 
7. Belief for the student-model variables is shifted toward lower values for serial elimination and for all 
subsystem variables directly involved in the situation (mechanical, hydraulic, and canopy knowledge). Any 
or all could be a problem, since all are required for high likelihoods for expert actions. Variables for sub-
systems not directly involved in these situations are also lower, because to varying extents, students familiar 
with one subsystem tend to be familiar with others, and, to a lesser extent, students familiar with subsystems 
tend to be familiar with troubleshooting strategies. These relationships are expressed by means of the more 
generalized system and strategy knowledge variables at the left of the figure. These variables serve to exploit 
the indirect information about aspects of knowledge not directly tapped and summarize broadly construed 
aspects of proficiency for evaluation and problem selection.  
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Figure 7. Status of a student after observation of three inexpert actions in canopy situations. 

Suppose we then observed three additional inexpert action sequences dealing with the landing gear subsys-
tem. Entering these findings and updating beliefs about student-model variables produces the beliefs in 
Figure 8. The status on all subsystem and strategy variables is further downgraded and is reflected in the 
more generalized summary variables.  
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Figure 8. Status of a student after observation of three in-expert actions in both canopy situations  
and landing-gear situations. 

On the other hand, suppose that after the initial three inexpert canopy actions, we then observed three more 
expert actions in landing-gear situations: two space-splits and one serial elimination. The updated beliefs 
in this case, depicted in Figure 9, show that belief about strategic skill would increase, as would beliefs 
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about subsystems involved in the landing-gear situations. Problems in mechanical and canopy subsystem 
knowledge are the most plausible explanations of the three inexpert canopy situation actions.  

 

 

Figure 9. Status of a student after observation of three in-expert actions in canopy situations and  
three more expert actions in landing-gear situations. 
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Modeling Learning Effects 

The fundamental objective of an ITS is to help students change over time and improve their proficiencies. 
The preceding discussion and examples concerned updating belief about a static student model. That is, 
even though observations are obtained sequentially over time, they are presumed to simply provide addi-
tional information about values of student-model variables that remain constant over time. Most of our 
work have concentrated on modeling proficiencies within self-contained problem exercises. There are two 
other reasons for modifying belief about student-model variables: changes due to explicit instruction and 
changes due to implicit learning. In either case, the requirement under a probabilistic approach is to do so 
in a manner that maintains coherency. The approach described below accomplishes this end without requir-
ing a full-blown dynamic model to be constructed and maintained.  

Updating Based on Direct Instruction 

Although Hydrive’s system model functions as a discovery world for system and procedural understanding 
from the student’s point of view, its student modeling components’ evaluations are based on an implicit 
strategic goal structure observed in expert troubleshooting. This structure is made explicit in Hydrive’s 
instruction. The student is given great latitude in pursuing the problem solution. Prompts or reminders (i.e., 
diagnostics) are given only when a student action constitutes an important violation of the rules associated 
with the strategic goal structure. Hydrive recommends direct instruction only when accumulating infor-
mation across scenarios shifts belief (e.g., knowledge of a subsystem or strategy) sufficiently downward to 
merit more specifically focused feedback, review, and exercises. The student is free to follow this recom-
mendation, choose different instruction, or continue troubleshooting without any instruction. 

Such directed instruction can be expected to change students’ understanding. For presumably static student-
model variables, updating beliefs involved entering findings for the interpreted actions and propagating 
their implications upward through the network. For changes in student-model variables, updating beliefs 
involves direct manipulation of them. This implies that they are propagated both upward to related aspects 
of knowledge and downward to revise expectations for future actions. The degree of change is based on the 
student’s performance on the exercises that accompany the instruction. This can be modeled in a small 
standalone Bayesian inference network that embodies a Markov process for change, while incorporating 
our uncertainty about the exact value of the student-model variable of interest. Both the probability distri-
bution before instruction and the outcome of the instructional exercises are entered into the network. The 
modeled beliefs after instruction are output (Figure 10). Given the level before instruction and performance 
in exercises (e.g., Table 2), the conditional probabilities of student’s level of competence after instruction 
may be refined over time, starting with expert opinion and limited experience then honed with the results 
of accumulating experience. 

 

Figure 10. A Markov framework for direct updating of belief about strategic knowledge given results on a 
posttest score in an instructional module. 
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Table 2. Conditional probabilities of strategic knowledge after instruction, given probabilities  
before instruction and posttest performance. 

  Conditional Probability of Status after Instruction 
Status before  
Instruction 

Posttest  
Performance 

 
Expert 

 
Good 

 
Okay 

 
Weak 

Expert High 1.00 .00 .00 .00 
 Medium .95 .05 .00 .00 
 Low .90 .10 .00 .00 
      

Good High .70 .30 .00 .00 
 Medium .20 .75 .05 .00 
 Low .05 .85 .10 .00 
      

Okay High .20 .70 .10 .00 
 Medium .00 .30 .70 .00 
 Low .00 .15 .80 .05 
      

Weak High .05 .55 .40 .00 
 Medium .00 .05 .65 .30 
 Low .00 .00 .20 .80 

 

Updating Based on Learning While Problem Solving 

Students can be expected to improve their troubleshooting skills as a result of practicing them and thinking 
through the problems, likely in increments throughout any given problem. Kimball (1982) employed an 
expedient in a calculus tutor: revisions to belief associated with implicit learning are effectuated only be-
tween problem boundaries. Kimball’s tutor, like John Anderson’s LISP tutor (Anderson & Reiser, 1985), 
revises belief in a manner consistent with probability axioms through an explicit learning model, a la Estes 
(1950). That is, a particular functional form for change is presumed, and degree of learning must also be 
assumed or estimated. We employ a more conservative and less model-bound approach, which accommo-
dates student’s learning by “forgetting” model or gradually discounting information from past as opposed 
to a “learning” model.  

The basic idea is to enter each problem with student-model variable distributions that generally agree with 
the final values from the previous problem as to direction and central tendency, but are more diffuse and 
thus easier to change in light of new actions driven by possibly different (presumably improved) values. 
Levy (2014) describes dynamic Bayes nets to accomplish this blend of uncertainty due to unknown values 
of student-model variables and their change over time. Two simpler heuristic strategies are down-weighting 
the influence of actions as they recede in time and between problem sessions, mixing posterior distributions 
with noninformative distributions and propagating the revised versions through the network. 

Recommendations 

In GIFT, it is important to design a generalized ITS assessment. ECD provides a framework for evidentiary 
based assessment for ITS. Probability-based inference using Bayesian networks provide powerful machin-
ery for coherent reasoning about complex and subtle interrelationships. This is achieved to the extent that 
one can capture, within its framework, the key aspects of a real-world situation (what is important, how 
important things are related, and what one sees or knows tells about what one doesn’t see or doesn’t know). 
If this can be accomplished, advantages both conceptual and practical accrue. A Bayes net built around the 
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generating principles of the domain makes interrelationships explicit and public, so one can not only mon-
itor what one believes, but communicate why one believes it. A model can be refined over time in light of 
new information, as when originally subjective conditional probability specifications are updated in light 
of accumulating data. When able to calculate predictive distributions of any subset of variables given values 
of any others, one can investigate both deductive and inductive implications of a modeled structure, using 
hypothetical data to check for fidelity to what one believes or real data for fidelity to what one observes 
(see Crawford, 2014, Levy, 2006, Spiegelhalter, Dawid, Lauritzen & Cowell, 1993, and Williamson, Al-
mond & Mislevy, 2000, on model-checking tools for complex Bayesian networks).  

From this perspective, it may not be necessary or even desirable to attempt to exhaustively build all possible 
conjectures into one all-encompassing network. Shafer (1976, 1988) points out that in many inferential 
problems, frames of discernment often evolve over time as we accumulate evidence. We add possibilities, 
refine others, and abandon still others. Frameworks of probability-based reasoning aid our understanding 
of how available information informs current thinking, without claiming finality or “truth” at any stage; 
rule-based, inductive, and intuitive reasoning aid our construction and improvement of those frameworks.  

Two areas of attention are germane in an ITS: 1) understanding about principles of domain and how people 
learn those principles in order to structure the student model efficaciously and 2) explicating what we need 
to see and how to interpret it in light of students’ possible understandings in order to structure observable 
variables and their relationship to student-model variables. In Hydrive, we employed rule-based interpreta-
tions to identify critical features from a stream of relatively unstructured observations; Shafer (1987) sees 
the need for an associative memory mechanism for this purpose, strengthening the analogy to human per-
ception. 

This chapter has touched on three subjects: designing simulations, simulation-based learning, and simula-
tion-based assessment. The three topics overlap substantially. For simulation-based learning, attention is 
on the cognitive patterns and activity patterns that people develop to be able to perform effectively in the 
relevant situations. Optimizing the evidentiary value of simulation-based performances requires going back 
to the design of the simulator and the situations with a psychometrician’s perspective. Fewer options and 
more constrained situations may be less effective for learning but more effective for focusing test-takers’ 
actions on key aspects of cognitive structures or activity structures. Requiring an explicit work product may 
slow working through a simulation, but it can make some valuable evidence about unobservable thinking 
manifest. Simply having lots of data, for example, gigabytes of time-stamped mouse clicks and key strokes, 
may not provide much evidence at all if it is not about salient actions in relevant situations.  

This chapter has focused on the evidentiary-argument considerations that go into these design decisions 
using ECD. It does not have the space to discuss the importance of psychometric methods for modeling the 
data. It highlights assessment-related issues that the design team can understand and should be responsive 
to. It will require more esoteric methods from the psychometrician’s toolbox to see exactly how different 
choices affect the evidentiary value of data, decision accuracy, or instructional effectiveness. A long-stand-
ing lesson applies: “To design a rich simulation environment to collect data without consideration of how 
the data will be evaluated, and hoping psychometricians will somehow ‘figure out how to score it,’ is a bad 
way to build assessments” (Mislevy, 2013). Data mining techniques are limited by the strength of the rela-
tionship between the information in the data and its connection to the targeted inferences (Mislevy, Behrens, 
DiCerbo & Levy, 2012). Close collaboration and interaction from the very start of the design process is 
preferable. Collaboration is needed among 1) users, who understand the purposes of the assessment in-
tended; 2) domain experts, who know about the nature of the knowledge and skills, the situations in which 
they are used, and what test-takers do that provides evidence; 3) psychometricians, who know about the 
range of situations in which they can model data and examine its evidentiary value; and 4) software design-
ers, who build the infrastructure to bring the assessment to life.  
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In particular, in using simulation as the basis of assessments like Hydrive, all of the complex considerations 
that go into designing simulation for learning are now joined by the equally challenging considerations that 
go into designing assessments. It is difficult enough to become an expert in either area, let alone both. The 
way forward builds on what has been learned from the rapid developments and proven successes of the 
various kinds of simulation in ITSs and coached practice systems. Grounding well-targeted exemplars such 
as Hydrive simulations in an assessment design framework shows how to integrate the deep principles of 
domains, learning, and assessment in simulation-based assessments. The concepts and representations of 
ECD help by explicitly building the principles of assessment design into the work, enhancing at once its 
efficiency, validity, and transferability.   

A key idea is akin to Vygotsky’s (1978) “zone of proximal development” (ZPD): Given where a learner is 
currently, what aspects of situations will best solidify skills, add the next layer of complexity, or develop 
new variations of a familiar theme, with the support of a teacher or software or appropriate structuring of 
the challenge? The features of situations that are critical for interaction must be in the simulation. That is, 
the means for the student to act on the system (its affordances) must be included, and the system must react 
to student’s actions in ways that reflect the underlying principles of the system. Features to omit are those 
that add irrelevant complexity or require too much knowledge or skill that is not central. A high-fidelity 
system that models the way experts view problems may not be accessible to beginning students. Complexity 
can thus be introduced in stages to maximize effective learning. To help students learn optimally, a simu-
lation system for learning can provide opportunities to slow down or stop action to reflect on what is im-
portant in a situation, what to do next, or why something happened.  
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CHAPTER 11 – Reusing Evidence in Assessment and  
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Introduction 

Assessment design methodologies such as evidence-centered design (ECD) provide an approach for repre-
senting the “argument” underlying an assessment. Argument-based structures articulate the chain of rea-
soning connecting task-level data to the evidence required to support assessment claims about the student. 
Intelligent tutoring systems (ITSs) reflect similar underlying rationale, with decisions about how to update 
the student model and what to present to the student next, dependent on student performance (evidence). 
Although the concept of “evidence” is widely used within the assessment community, it is less well articu-
lated in the ITS literature. In this chapter, we argue for the necessity of formalizing the concept of evidence 
and for implementing tools and services that facilitate the use of evidence in ITSs. Explicitly representing 
evidence may provide a stronger theoretical basis for an ITS and facilitate the reuse of assessment compo-
nents across ITSs. Furthermore, additions to the Generalized Intelligent Framework for Tutoring (GIFT) 
may support defining links from observable evidence to claims (number of links, types of evidence, types 
of observables, and properties) as well as mechanisms for quantifying evidence. Several examples illustrate 
how this approach facilitates reuse and handling of evidence in the areas of conversation-based assessment 
and GIFT-medical prototypes. 

Introduction 

Understanding how student data are used as evidence to support inferences about students’ knowledge, 
skills, and other attributes (KSAs) is a key aspect in both ITSs and assessment systems. Assessment design 
usually begins by determining the construct(s) (or KSAs) that are intended to be measured, the claims, and 
purposes of the assessment; identifying the types of behaviors that we want to observe from students in 
relation to the target construct(s) (evidence); and defining the types of situations (tasks) through which 
students will show what they know or can do. When designing these situations/tasks, we need to think about 
operational constraints (e.g., time and costs associated with production and scoring). Evidence may come 
from a variety of sources and granularity levels. Following a principled approach to managing, weighing, 
and quantifying evidence becomes handy when implementing educational assessment systems. 

Central to assessment design is an evidentiary argument connecting what students do to different levels of 
the target constructs (Messick, 1994). Creating these evidence-based arguments is not a trivial task. Fortu-
nately, several assessment design methodologies have been developed to help designers with the creation 
of evidential arguments underlying assessments. Some of these methodologies include ECD (Mislevy, 
Steinberg & Almond, 2003), cognitive design system (CDS; Embretson, 1998), and assessment engineering 
(AE; Luecht, 2013). 

ECD provides a principled approach for designing assessments based on the principles of evidentiary rea-
soning. ECD can be used to design different types of assessments including standardized tests, simulation-
based assessments, and performance-based assessments. The main processes of ECD resemble those pro-
cesses typically used in ITSs (Almond, Steinberg & Mislevy, 2002; Shute & Zapata-Rivera, 2010): activ-
ity/task selection based on the student model, presentation of task(s) to the user, response processing (ex-
tracting evidence from the student’s response and providing task-level feedback), and summary scoring 
(propagating evidence through the student model and providing summary feedback). 
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In ECD different aspects of the assessment are conceived as models. ECD includes four different types of 
models, which correspond to particular assessment questions: the student model (what is being measured?), 
the evidence model (how is it measured?), the task model (where is it measured?), and the presentation 
model (how does it look?). These conceptual processes and models provide a common vocabulary to design 
a variety of assessment applications. Among these ECD models, the evidence model is the one that encap-
sulates an important part of the evidentiary argument. The evidence model describes how the student model 
variables should be updated based on the responses to the tasks provided by students (observables). The 
evidence model includes two components: evidence rules that describe how observables are to be summa-
rized and used as evidence of students performance (task identification and summary of evidence) and the 
measurement model, which connects the observables to the student model variables (accumulation and 
synthesis of evidence across tasks). The measurement model is usually implemented using psychometric 
statistical models. 

Formalizing the Concept of Evidence in Its 

Processes for eliciting, integrating, maintaining, and making decisions based on evidence are usually dis-
tributed among the components of a traditional ITS architecture. For example, the environment/task may 
collect student actions/responses and send them to the student model, which will use this information to 
keep an accurate representation of the student’s knowledge and skills. The pedagogical model can use in-
formation from the environment, the domain model, and the student model to determine how to intervene. 
Given this distribution of processes and data, explaining why decisions are made and their supporting evi-
dence (e.g., determining the series of actions/responses that were used to support a particular tutoring ac-
tion) can be difficult. 

A clear representation of how particular observables comprise the evidence needed to update the student 
model can facilitate the development of assessments and ITS. For example, when the pieces of evidence 
required to support particular claims (e.g., assigning a particular level to any of the student model variables) 
are identified, assessment or ITS developers can focus on developing the tasks that will allow the students 
to produce the required pieces of evidence. Also, when making changes to the structure of the assessment, 
it is useful to identify the claims and corresponding pieces of evidence that need to be modified to end up 
with a coherent argument structure that supports the new claims. As a mechanism of transparency, it is also 
important to know how each task is contributing with evidence and how that evidence is used to support 
particular claims. In terms of student models, this type of functionality could support the development of 
open student models that in turn could contribute to student learning (Bull & Kay, 2007). 

Reusing evidence model information across ITSs is one of the benefits of formally representing the concept 
of evidence in ITSs. Components of the evidence model could be repurposed when the need for collecting 
the same type of evidence arises in a different ITS. In addition to having access to the student model infor-
mation, ITS modules could have direct access to evidence model information and associated tasks, which 
will support the reuse of these components while maintaining the integrity of the system. 

The Case of Conversation-Based Assessment (CBA) 

CBA involve students interacting with one or more virtual characters using natural language (i.e., speech 
or written responses) or menu-based predefined responses. Conversations are designed to assess particular 
KSAs (constructs). CBAs are intended to be used as a mechanism to gather evidence that may be difficult 
to obtain using traditional assessment approaches, providing test-takers with multiple opportunities to 
demonstrate their knowledge/skills, and eliciting explanations about decisions that students make (e.g., 
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choices made in a simulation scenario) (Jackson & Zapata-Rivera, 2015; Zapata-Rivera, Jackson & Katz, 
2015). 

CBAs build on advances in areas such as dialogue-based systems (Adamson, Dyke, Jang & Rosé, 2014; 
Graesser, Person & Harter, 2001; Millis et al. 2011), human interaction with virtual characters/agents (Chin 
et al., 2010; Johnson & Lester, 2016), and technology enhanced assessments (Bennett, Persky, Weiss & 
Jenkins, 2007; Clarke-Midura, Code, Dede, Mayrath & Zap, 2011; Quellmalz et al., 2011). 

Conversations in CBAs are designed following the principles of ECD. The intended construct is defined, 
pieces of evidence required to support student claims are identified, and conversation elements that will 
provide students with the opportunities to demonstrate their knowledge are designed. Elements involved in 
the design of conversations include types of virtual characters, questions that will be asked, and character 
reactions to different types of responses. The resulting product is a conversation space that shows the con-
versation “paths” that students experience when interacting with the CBA system. Several CBA prototypes 
have been developed and used to measure skills such as science inquiry and other constructs (Jackson & 
Zapata-Rivera, 2015). 

Case Study: Reuse of Evidence in the Volcano and Weather Prototypes  

Two isomorphic CBA prototypes (the Volcano and the Weather) were developed and used to explore reus-
ability issues. In this section, we describe these prototypes and how evidence and other components of the 
first system were repurposed in the creation of the second one. 

The Volcano Prototype 

The Volcano prototype is a CBA designed to measure science inquiry skills in the context of collecting data 
to predict a volcano eruption (Figure 1). Virtual characters provide information about volcanic eruption, 
the use of seismometers to collect data, and the criteria for establishing eruption alert levels. After learning 
about volcanoes, students engage in data collection by placing seismometers on a simulated volcano. Stu-
dents can choose up to four seismometers. Students also determine the data collection time. Virtual char-
acters provide feedback and ask questions about the decisions students make (e.g., “Why did you select X 
seismometers?” “Which note would you keep to make predictions?” “Do you agree with Art’s prediction? 
Why?”). Depending on the student response, the virtual character responds by asking follow-up questions 
or providing additional information (e.g., rephrasing the question, asking for additional information, or 
clarifications) (Zapata-Rivera et al., 2016). 
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Figure 3. A screenshot of the Volcano CBA prototype. Lucas is asked which note he would keep to support 
his predictions later. 

Evidence in the Volcano Prototype 

Some of the pieces of evidence used in the Volcano CBA include the following:  

• quality of description of the process of volcano eruption and volcanic formation (earth science 
knowledge) 

• accuracy of selected sequence of volcanic seismic events (analyzing data and identifying patterns) 

• accuracy of identification and quality of description of high-frequency and low-frequency seismic 
events based on seismometer data (analyzing data and identifying patterns) 

• quality of selection between two data collection notes supported by different amounts of data (con-
ducting data collection) 

• accuracy of prediction based on data collected (making predictions based on data) 

• quality of explanation and demonstration of how data collected are used to support a volcanic pre-
diction (making predictions based on data) 

Assessment design patterns can be used to describe and document the evidentiary argument in a narrative 
form (Mislevy & Haertel, 2006). Design patterns describe the KSAs that are assessed, the features of the 
situations that are used to elicit required evidence, and the types of behaviors that we expect to observe 
from students and will count as evidence for the intended KSAs. The design pattern of the Volcano CBA 
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focused on the skills of planning and carrying out data collection in a virtual field and using collected data 
as evidence to predict a natural event. The Volcano design pattern includes a subset of components of 
scientific reasoning (using observation data to make a prediction for natural events) and includes four focal 
KSAs: earth science knowledge, analyzing data and identifying patterns, conducting data collection, and 
making predictions based on data. Conversations and other items in the volcano scenario provide the evi-
dence necessary to make claims about students’ levels on each of these four KSAs (Liu, Steinberg, Qureshi, 
Bejar & Yan, 2016; Zapata-Rivera et al., 2016).  

By looking at these design patterns for the Volcano prototype one can see how the observables are used to 
support particular assessment claims as well as to identify assessment claims that lack enough supporting 
evidence. In addition, enhanced score reports can be produced to provide additional information regarding 
the evidence used to produce the scores.  

Leveraging this work and evidence identification within the volcano activity, a parallel task was developed 
using the same design pattern in the area of weather exploration (collecting data and making predictions of 
the likelihood of a thunderstorm). 

Reusing Evidence in the Weather Prototype 

The Weather CBA prototype was developed with the goal of exploring the feasibility of reusing different 
aspects of the Volcano CBA prototype (e.g., assessment documentation and graphical components) to cre-
ate a new isomorphic task and evaluating how students would perform on each of these prototypes. The 
Weather CBA prototype is intended to measure the same KSAs as the Volcano prototype.  

The design of the Weather CBA prototype was informed by following the assessment design documentation 
available for the Volcano CBA scenario (e.g., design pattern information) to change the surface level fea-
tures while retaining the same underlying evidence structure. Thus, both CBA prototypes share the same 
types of tasks, structure and conversations. However, content aspects needed to be developed to accommo-
date them for the new context. Figure 2 shows a screenshot of the Weather CBA prototype, which shows a 
conversation between the student and virtual characters about the quality of data collection notes similar to 
the one shown in Figure 1. In this case, the conversation refers to weather stations rather than seismometers. 
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Figure 2. A screenshot of the Weather CBA prototype. Lucas is asked which note he would keep to support 
his predictions later. 

Some of the pieces of evidence used in the Weather CBA include the following:  

• quality of description of the elements of a thunderstorm and its formation (earth science knowledge) 

• accuracy of selected sequence of events leading to a thunderstorm (analyzing data and identifying 
patterns) 

• accuracy of identification and quality of description of levels of water vapor and instability and the 
presence of cold fronts based on weather station data (analyzing data and identifying patterns) 

• quality of selection between two data collection notes supported by different amounts of data (con-
ducting data collection) 

• accuracy of prediction based on data collected (making predictions based on data) 

• quality of explanation and demonstration of how data collected are used to support a thunderstorm 
prediction (making predictions based on data)  

A study comparing the psychometric properties of these two CBA prototypes (N = 210 students) showed 
evidence of the comparability of these tasks based on results from item analyses and factor analyses. Results 
showed similar discrimination and difficulty levels of items across the two prototypes. Results of confirm-
atory factor analysis suggests the presence of four constructs. The results also showed potential for using 
CBAs to measure science inquiry skills across different contexts (Liu et al., 2016). 
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The development of the second CBA resulted in significant cost savings due to the amount of reuse, which 
included the use of existing graphical components, code, measurement instruments, and documentation. 

Case Study: Reuse of Evidence in the Gift-Medical Prototypes 

The Generalized Intelligent Framework for Tutoring (GIFT) domain module contains all of the domain 
information in accordance with the original design principles (Sottilare, Brawner, Goldberg & Holden, 
2012; Sottilare, Brawner, Sinatra & Johnston, 2017). This module encapsulates domain-specific infor-
mation, especially assessment-specific information. The domain module is configured by the domain 
knowledge file (DKF), which has an extensible markup language (XML)-based file structure. As a byprod-
uct of this design decision, the following primary information that it has, examples of each, and concrete 
examples of content for a medical task occur: 

• A list of concepts and subconcepts to be instructed 

o Example: “stay with unit” concept 

o Example: “move casualties to a safe area” concept 

• Content to present on the concepts 

o HTML pages, pictures, videos 

 Example: a PowerPoint Show (.pps) file for how to stay with the unit 

 Example: a video on the importance of moving casualties 

o Variety of scenarios, terrains, situations 

 Example: a scenario which involves the concept of moving with the unit and mov-
ing casualties (this scenario teaches multiple concepts) 

• Assessment for the content 

o Quiz, test 

 Example: 3 test questions to gauge understanding of moving with the unit and 
moving casualties 

o Constraints, assessment rules 

 Example: logic, within a scenario, which assesses performance staying with a unit 
(player.location must be ≤ 20 meters from calculated unit centroid) 

 Example: logic, within a scenario, which assesses performance of whether an in-
jured unit is within a dangerous location for longer than 30 seconds (in-
juredPlayer.location must be ≤ 30 seconds in location.unsafe) 

• Feedback for the content 

o Hints, remedial material 
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 Example: replaying the .pps of staying with the unit 

 Example: a picture of what happens to people to fail to move casualties 

o Hints, prompts, scenario changes 

 Example: “You are part of a unit, you need to stay close to them.” 

 Example: “Move the injured soldiers to a safer location.” 

The configuration and specification of the DKF lends itself to relatively easy reuse of domain-specific 
content with minimal changes to the underlying structure. Within a simulation, the DKF schema naturally 
lends itself toward an ECD approach. When actions are observed which meet the conditions set out in 
condition classes, learner performance is noted, modeled, and communicated onwards to the learner mod-
ule. In this manner, assertion of individual concept performance is only communicated when there is evi-
dence of its demonstration. As an example, in the Tactical Combat Casualty Care (TC3Sim; Sotomayor, 
2010), a military medical simulation that implements the GIFT model, there are specific domain knowledge 
constraints that apply to many scenarios. Examples of these include the following: 

• Casualties should be safe before they are treated. 

• The area directly above a missing limb should receive a tourniquet to prevent blood loss. 

The domain-specific, evidence-based constraints created for TC3Sim, and their coupled feedback, are used 
across a large number of scenarios because they are relevant in a number of disparate situations. The as-
sessment logic is reused significantly across the simulator, while still being decoupled from the simulator 
itself, depending on how it was authored. The same constraints were used in the context of another simula-
tor, Virtual BattleSpace 2 (VBS2; Bohemia Interactive Australia, 2012), without a change in the authoring 
tool or underlying logic (US Army Research Laboratory, 2017). 

Other Military Use Cases 

Generally speaking, many modern military simulators use a shared protocol, with the majority choosing to 
use either the Distributed Interactive Simulation (DIS; IEEE 1278.1-2012, 2012) or high-level architecture 
(HLA; SISO-STD-004.1-2004, 2004) standards. This makes the link between the ITS and the training en-
vironment significantly reusable. Furthermore, because of the standardization of the simulator-tutor link, 
the assessment rules used in any domain can be reused to a new domain to add complexity. Consider a 
simple example scenario that involves investigating a residence where a scenario-specific constraint such 
as “don’t shoot anyone” is in effect. The abovementioned medical constraints can be layered on top of the 
existing scenario with minimal work. The separation of the assessment logic from the simulator and the 
student model allows for significant reuse. The reuse across similar interfaces allows for many different 
portable assessments, as DIS/HLA is used across a wide variety of simulators, including live operations, 
virtual operations, and constructive simulations in undersea warfare, flight simulators, and ground opera-
tions. In these examples, although the same assessment component is used, the appropriate observable be-
havior needs to be identified and mapped to the specific situation. For example, not shooting anyone is a 
universally understood behavior and the same actions (i.e., pulling the trigger) apply regardless of context 
or setting. However, with a more nuanced behavior like removing injured personnel from an active battle 
situation before administering aid could be exhibited through very different behaviors. For example, getting 
someone to safety in an urban context might mean getting into a room and closing a door, whereas in a 
more rural context it might mean removing line of sight by moving behind a large obstacle (e.g., geographic 
barrier). These behaviors accomplish the same assessment goal of getting injured personnel to safety before 
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applying aid, but the specific pieces of evidence within the environment need to be explicitly tied to that 
assessment goal since they require different context specific actions. Mapping these context specific actions 
to the construct(s) of interest is the primary purpose of an evidence layer and facilitates reuse of concepts 
and evidence across situations through clear and explicit links. 

Implications for GIFT: Evidence Model Layer 

ECD and other assessment design framework methodologies show that having a representation of how 
observed data are used to support assessment claims facilitates the creation of assessments that implement 
a sound argument structure. In addition to facilitating reuse of evidence, additional benefits of an evidence 
model layer for ITS include the following: 

• Integrating claims and evidence in reporting information produced by the tutor. Assessment claims 
and supporting evidence could be shared with different types of users to support particular ITS 
processes. For example, reports can be produced that show evidence available with the current tasks 
and the types of ITS decisions that are supported with these set of tasks. Other reports inform the 
development of new content and associated tasks, share information of the student model (assess-
ment claims), and share pieces of evidence collected by the system with teachers and students. 

• Automatic evaluation of evidence. If an evidence model layer is followed, it is possible to create 
tools that can perform multiple functions. These functions include the identification of evidence 
criteria, identification of missing pieces of evidence, and the ability to quantify the amount of evi-
dence available. Each of these functions can then support the claims or decisions made by the tu-
toring system. These tools can take into account the number and type of links from observables to 
claims available, the types of observables and other properties that characterize the pieces of evi-
dence collected (e.g., information about the context/tasks used to collect the evidence).  

The next section describes how the features of a separate evidence model could be integrated into the GIFT 
architecture. 

Exploring the Implementation of an Evidence Model in GIFT 

The GIFT architecture is a flexible open architecture that could support a formal representation of an evi-
dence model or a similar module. The design of the GIFT system has several overarching architectural 
goals. These include 1) the ability to rapidly transition new models from research to use; 2) the adjustment 
of assessment logic without reengineering; 3) the ability to easily add complexity, content, models, or new 
tasks; and 4) the need to be open source and freely available (Brawner, Sinatra & Sottilare, in press). Fun-
damentally, accomplishing these goals relies upon the availability of an open-source system of interchange-
able parts.  

In GIFT, it is possible to encapsulate each of the models of a traditional ITS architecture within a standard-
ized software process to allow for their easy interchange. By encapsulating some of the aspects that deal 
with evidence in the GIFT framework, it is possible to implement a component similar to the evidence 
model. This may be the use, handling, and sharing of evidence in GIFT. 

Aspects of the GIFT domain module, the learner module, and the pedagogical module can be integrated 
into a module that plays a role similar to that of the evidence model in ECD-based assessments. In fact, 
current work on The Training Learning Architecture (TLA) project has started looking at these types of 
synergies (Regan, 2013). The TLA project has grown out of the increasing need to be able to share learner 
information and experiences across systems. At its heart is the experience API (xAPI), which operates on 
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the actor-verb-object description of learner experiences, and shares its information with a learner record 
store (LRS). As an example, a statement might be issued that “Learner1” “mastered” “physics”, encoded 
as appropriate to the standard. The xAPI forms the backbone of sharing learner information across systems 
in the same manner that the Sharable Content Object Reference Model (SCORM; ADL, 2001) standard 
enabled the sharing of content across systems. 

As part of the growing TLA project, there are emerging APIs to reason about the xAPI information stored 
within a LRS. Among these are the performance API (pAPI), and evidence mapper API (eAPI), which aim 
to be able to share learner profiles across systems, and update a learner profiles based on evidence, respec-
tively. The objective is for both of these systems to have the underlying reasoning algorithms based on the 
ECD framework to update and share experiences across many different systems.  

Other efforts of incorporating domain-independent feedback and performance annotation are being exam-
ined by the US Air Force Research Laboratory (Galster & Johnson, 2013). This project has the goal of 
developing assessment information from simulator performance and physical sensors in a manner agnostic 
to particular simulators. It has experienced a modicum of success and is seeking early standardization. 

Conclusions 

The examples presented in this chapter illustrate how evidence can be reused to create additional tasks or 
support evaluation and development processes. The use of ECD principles in the form of assessment design 
patterns in CBA facilitates the identification and reuse of evidence. Current work on the TLA project ex-
plores similar ideas. 

A separate evidence model or a similar model in the GIFT architecture can be used to align content and 
evidence needs. This can be done by providing information about the content, feedback, and tasks required 
to cover the previously defined evidence. Furthermore, it supports the evaluation of the system by keeping 
an up-to-date list of KSAs covered and their status (e.g., for which KSAs the system includes enough high 
quality evidence to allow for more robust, valid, and supportable claims). Also, it can facilitate reuse of 
various aspects of the model including content, feedback, and tasks associated with particular pieces of 
evidence. 

Given the flexibility of the GIFT architecture, it may be possible to encapsulate various ITS components to 
improve the current support for handling and sharing evidence. This may result in enhanced reporting 
mechanisms available for developers and users (e.g., by including additional information on the reports 
such as the evidence used by the tutor to make particular decisions), and a faster development and mainte-
nance cycle (e.g., by identifying assessment claims that lack sufficient evidence). 
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CHAPTER 12 – Methods for Assessing Inquiry:  
Machine-learned and Theoretical 
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Introduction 

Inquiry skills are critical to virtually any kind of problem solving and particularly to the practice of science. 
However, these skills cannot be easily assessed using traditional static assessment items, in which it is 
difficult to follow (and capture) the actual inquiry process. Given a sufficiently interactive task, the chal-
lenge becomes how to identify and score the inquiry skills applied to the task. This chapter examines three 
different methods for assessing inquiry skills using the process data generated by computerized interactive 
tasks. The first two methods identify inquiry strategy-use based on specific features in the data. The first 
uses theoretically defined features, whereas the second leverages machine learning to identify and combine 
relevant features. The third method uses generative process models to compare student actions to probabil-
istic agents implementing targeted inquiry strategies. The advantages and drawbacks of each method are 
discussed along with assessment contexts that favor particular approaches. Implications for detection and 
scoring of inquiry within the Generalized Intelligent Framework for Tutoring (GIFT) are addressed. 

In a world that increasingly uses technology in the workplace, at home, and as a medium for commerce and 
communication, the ability to think scientifically and solve technical problems is increasingly useful in 
modern life. Both scientific inquiry processes and problem-solving skills have been identified as key 21st 
century skills due to their pivotal role for success in contemporary societies (Dede, 2010). As with many 
21st century skills, these competencies are inherently interactive, involving multi-step processes that must 
adapt to information gathered and results generated. In K–12 education, the need to teach authentic science 
practices has been a major impetus for the move from static textbooks and cookbook labs to more interactive 
science instruction (e.g., Next Generation Science Standards [NGSS; NGSS Lead States, 2013]) that fre-
quently use intelligent tutoring systems (ITSs), computer simulations, and games. With this shift in instruc-
tional emphasis comes a need to also assess these skills using interactive problem-solving tasks. ITSs in 
particular depend upon real-time skill diagnosis and assessment to allow for customized instruction and 
guidance. 

Scoring interactive performances, however, is much more complicated than scoring responses chosen from 
a small, fixed list of options such as in the multiple-choice item formats favored by standardized testing. 
While performance assessment is not new, evaluating performance has traditionally been conducted by 
human raters who call upon complex experience to interpret and judge the amount of skill and understand-
ing displayed in a particular performance. Machine scoring has made major progress, mostly in the form of 
scoring written text (Shermis, 2014; Liu et al., 2016), but more recently there has been progress in scoring 
competencies of complex problem solving or science inquiry with interactive tasks (Gobert, Sao Pedro, 
Baker, Toto & Montalvo, 2012; Greiff, Wüstenberg & Avvisati, 2015). In this chapter, we discuss methods 
for automatically identifying and scoring inquiry strategies based on logged interactions within computer-
ized simulations.  

Science Inquiry  

Science inquiry and problem solving have frequently been characterized in terms of two major phases: 
hypothesis generation and hypothesis testing (Popper, 1959; Klahr, 2002). While many aspects of practicing 
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science could be demonstrated using interactive science tasks, the focus of this chapter is on inquiry strat-
egies that might be used in the hypothesis-testing phase of scientific investigations. Successful strategies in 
scientific hypothesis testing largely overlap with strategies that are useful for complex problem solving 
(Jonassen, 2007; Klahr & Dunbar, 1988), thus making the detection and assessment of these inquiry strat-
egies applicable well beyond traditional science instruction.  

The definition of science practices in NGSS (NGSS Lead States, 2013) includes eight science practices, of 
which hypothesis testing is mostly covered by two practices: “planning and carrying out investigations” 
and “analyzing and interpreting data”. Key skills listed in these practices include identifying, controlling, 
and measuring relevant variables, deciding what and how much data to collect under what range of condi-
tions, conducting systematic analysis of data, recognizing evidence that contradicts the hypothesis, and 
evaluating the strength of conclusions that can be made from a set of data. Different theoretical frameworks 
break these skills down in different ways with different emphases (for example, see Wieman, 2015). How-
ever, the key elements of investigation remain: how to collect data and how to interpret data. 

Assessment and Scoring Challenges 

To assess skills in science inquiry and problem solving, it is necessary to have the examinees engage in the 
process of science inquiry or problem solving. The design of appropriately interactive tasks to allow for the 
demonstration of these skills comprises the first assessment challenge. Traditional test item design favors 
testing one skill at a time; however, the interdependency between the inquiry practices and the time com-
mitment required for an interactive task can make it more feasible to assess multiple skills simultaneously 
within a larger investigation. The impulse to limit the task, ensuring that we understand what we are meas-
uring, pushes design toward more scaffolded tasks with a fixed number of choices with limited options. 
The desire to measure more authentic inquiry including interdependent skills and content knowledge, on 
the other hand, pushes the design to open, exploratory, scenarios in which there are many choices and many 
ways to go wrong. Depending upon the purpose of the assessment, a more scaffolded versus a more open 
design are considered but in practice the choice is often made based on the limitations of the scoring. 

A second assessment challenge is scoring performances in inquiry investigation. The easiest scoring method 
is based on the outcome of the investigation alone. If the examinee is able to draw the correct conclusions, 
we can infer that they probably carried out a successful investigation. There are a number of problems with 
the outcome-only metric, however. While correct answers undoubtedly correlate with correct practices, it 
is also possible to stumble upon the correct answers by chance or, in more scaffolded tasks, to try every 
possible variable combination without taking the time to develop a systematic data collection plan. Further-
more, an incorrect answer might stem from a failure of any number of skills or content knowledge, espe-
cially in the more open-ended task designs. Thus, an incorrect answer could easily mask good overall in-
quiry skills.  

As an alternative to outcome-only scoring, a record of the actual steps taken within an investigative task 
can be analyzed for evidence of science-inquiry skills. This approach is particularly compatible with com-
puterized interactive tasks, which allow for a wide variety of experimental setups along with the collection 
of data about actions taken within the task. Scoring this collection of process data, however, is far from 
straightforward. For each decision the student is allowed, the number of paths through the task grows ex-
ponentially. Thus, scoring on the basis of a set of “correct” paths quickly becomes impractical. The methods 
presented here involve analysis of actions taken within an interactive task to detect instances of good sci-
ence practice and provide scoring data for generalized problem-solving tasks. This approach requires de-
fining not only what constitutes good inquiry, but also what the application of good inquiry skills looks like 
in specific task contexts. Further, detecting an instance of inquiry strategy use is not, in itself, a score. 
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Further analysis or a broader model might be needed to connect the identified behavior to valid inferences 
about the student’s problem-solving ability. 

In the following sections, we describe three different methods for identifying and scoring good inquiry 
practice from a record of interactions within a complex task. The first two methods identify inquiry strategy-
use based on specific features in the data. The first uses theoretically defined features, whereas the second 
leverages machine learning to identify and combine relevant features. The third method creates probabilistic 
models of decision making based on different inquiry strategies and compares student actions to model 
predictions to identify strategy use.  

Methods for Identifying Good Inquiry Strategy 

Theoretically Defined Performance Indicators 

A first approach toward identifying inquiry skills in computer-simulated task environments is based on 
theoretically developed behavioral indicators that are directly derived from the underlying definition of 
science inquiry and its theoretical components. In the theoretical approach, a definition of science inquiry 
is the starting point (Kuhn, 2012; Zimmerman, 2007). Along with this definition, carefully drafted tasks 
aimed at measuring science inquiry need to be developed. These tasks need to follow the theoretical ra-
tionale and incorporate those aspects of science inquiry that are considered crucial in the definition. 
Equipped with an adequate task environment, specific behaviors (or behavioral patterns) that can occur 
within the task environment are identified as indicating either high or low levels of science-inquiry skills. 
Thus, it is important that the task space is designed in a way that it allows for different behaviors that are 
indicative of the underlying theoretical conception and that represent high versus low proficiency levels of 
this conception. 

A straightforward example of an important concept in the field of science inquiry is the principle of isolated 
variation (sometimes referred to as the vary-one-thing-at-a-time strategy [VOTAT]; Tschirgi, 1980) in 
which students demonstrate their ability to comprehend, use, and argue along the lines of causal relations 
within scientific phenomena (Kuhn, Black, Keselman & Kaplan, 2000). Because the VOTAT strategy is 
effective in isolating causal relationships and reducing the influence of confounding variables, it is consid-
ered relevant across a number of domains and has been identified as an important strategy in the field of 
complex problem solving and science inquiry (Wüstenberg, Greiff & Funke, 2012). Interestingly, Kuhn 
(2012) highlights that even adults often suffer from an insufficient understanding of the principle of isolated 
variation. 

Figure 1 displays an example of a task environment taken from the field of complex problem solving, 
though it could easily be used as a science-inquiry task with a couple of small adaptations. This type of 
task, often referred to as MicroDYN-type of task (Greiff, Wüstenberg & Funke, 2012), features a small 
simulated system with multiple inputs or controls and multiple outputs or effects. The goal set for the stu-
dent is to map the relationship between the input and output variables. The example in Figure 1 is usually 
used in a secondary education context and students are asked to determine how different components of a 
windmill affect both the noise produced by the windmill and the costs associated with operating it. The 
problem environment presented here is not fully open because students have a small number of actions they 
can perform in the environment. However, there is no explicit guidance of student approaches, which allows 
expression of individual differences between students. There are several strategies to solve this task, but 
students who are familiar with and proficient in applying and using the VOTAT-strategy usually perform 
better on these tasks. This is no coincidence because the task environment was developed on the basis of a 
theoretical understanding of complex problem solving and the types of inquiry skills that are needed to get 
from the initial state to the goal state. The theory, which highlights the principle of isolated variation as an 
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important aspect of both science inquiry and complex problem solving, ensured the development of a task 
in which VOTAT behavior would be both productive and distinguishable from non-VOTAT behavior. 
Scoring for the task would be based on whether the examinees apply the principle of isolated variation 
during the unguided exploration phase. The final step is to define an indicator of the targeted behavior (here 
VOTAT) from the information stored in computer-generated log files. A theory-driven approach can be 
used along with other inquiry principles to do this. The common umbrella would be to develop the task 
design, targeted behaviors, and behavioral indicators in such a way that they elicit evidence of understand-
ing and competency of the theoretically defined underlying principles. 

 

 

Figure 1. Complex problem-solving environment within the MicroDYN approach. Students are asked  
to discover the relations between the inputs on the left side and the outputs on the right side during a phase of 

unguided exploration. 

Quantifying Use of the Principle of Isolated Variation (VOTAT-Strategy)  

The operationalization of science inquiry is still a matter of some theoretical debate. Even with a profound 
theoretical understanding, there are many ways isolated variation as an overarching principle might be 
scored in different (or even the same) task environments. Depending on the specific scoring, results might 
vary widely. In the following, some empirical examples are presented, but it is important to note that these 
indicators have been theoretically defined based on the specific assumptions and goals of this assessment 
and manifest within the scoring practices limited by those assumptions and goals. 
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Vollmeyer, Burns, and Holyoak (1996) reported on experimental studies in which they investigate the im-
pact of the use of isolated variation in a problem-solving environment called Biology-Lab, which includes 
four independent and four dependent variables. They differentiate between students who initially use or 
adopt isolated variation over the course of problem exploration from those who use other, less efficient 
strategies. Students were allowed four learning rounds, which consisted of six experimental trials per round. 
A round was coded as using VOTAT if, in at least four out of the six trials, only one input variable was 
varied while the others were set to zero. The general pattern of results indicated that use of an efficient 
strategy (here VOTAT) as compared to other strategies is associated with better learning outcomes and with 
a higher level of rule acquisition as an overall performance indicator. Thus, a theoretically defined process 
indicator of isolated variation was shown to relate to performance indicators within a problem-solving en-
vironment, thereby confirming the initial theoretical assumption.  

In a similar vein, Greiff, Wüstenberg, and Avvisati (2015) analyzed log file data from the 2012 assessment 
of problem solving in one of the most important educational large-scale assessments, the Programme for 
International Student Assessment (PISA; OECD, 2014). In a large sample of 15-year-old students, Greiff 
et al. scored whether students employed the principle of isolated variation for all of the three input variables 
during the unguided exploration phase (i.e., consistent use of VOTAT) or whether they did so either not at 
all or inconsistently (i.e., not for all of the input variables). They reported that the strategic use of isolated 
variation in a MicroDYN-like task (see Figure 1) was related to both overall task performance and the 
overall problem-solving score in PISA. That is, the specific strategic behavior within one task was related 
not only to performance in this task but beyond that one task to overall problem-solving performance (and 
thus to general problem-solving and inquiry performance).  

In explorative analyses, Greiff et al. (2015) employed an additional and more detailed scoring in which 
student strategy was scored along the number of input variables for which the principle of isolated variation 
was applied. Thus, scores ranged from 0 to 3 for the task with 3 input variables. In doing so, the authors 
(tentatively) reported progressive proficiency levels among students. These proficiency levels went beyond 
merely distinguishing between those students who used and those who did not use isolated variation as in 
the first analyses. Of note, since two different ways of scoring were used in the same sample, slightly 
different insights were gained depending on the specific way the principle of isolated variation was opera-
tionalized. 

The two studies mentioned here serve as examples that consistently show the relation between the use and 
application of the principle of isolated variation as an important conceptual aspect of inquiry skills, its 
operationalization through behavior-based indicators, and external criteria that serve as validity evidence. 
However, there are both pros and cons of this theoretically motivated approach, which are briefly discussed 
in the next section. 

Pros and Cons 

An important advantage of the above-described approach of employing theoretically defined indicators of 
inquiry skills is the direct connection to theories of the human mind in general and theories on inquiry and 
problem solving in particular. Because it is necessary to engage in elaboration of the underlying theoretical 
foundation before any indicator can be clearly defined, all indicators are easily interpretable. In contrast to 
the machine-learning approaches that are described in the next section, theoretically defined performance 
indicators are always embedded in some kind of broader framework that helps put the specific indicators 
into perspective and give them meaning. 

The theoretical approach is associated with drawbacks as well. One of them certainly is that in many cases 
a specific behavior (or, even more so, a non-behavior) cannot be directly mapped to an underlying theoret-
ical defined construct. For instance, it is quite straightforward to claim – against the backdrop of the above-
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mentioned empirical studies – that there is some causal connection between the use of VOTAT and perfor-
mance in problem-solving environments. However, what about students who did not employ this principle? 
There might be several reasons for their lack of adequate strategic behavior including a lack of understand-
ing, low level of motivation and task engagement, or issues with understanding the instructions of the task. 
Thus, it is often difficult to establish an isomorphic mapping between a theoretical concept and a specific 
behavioral indicator. In addition to this, complex strategies that involve a number of variables and indicators 
are difficult to detect in a purely theoretical approach because it requires a clear understanding of the spe-
cific underlying mechanisms and how they manifest as specific behaviors. Thus, the theoretical approach 
is often somewhat limited to a narrow set of theoretical aspects with the complex interplay of several be-
haviors being omitted. This last shortcoming is exemplified by the fact that the large body of literature on 
science inquiry mostly revolves around the rather straightforward and easily to define and detect principle 
of isolated variation (Kuhn, 2012). Overall, theory is the cornerstone for any sound and scientifically valid 
understanding. However, this type of confirmatory approach needs to be complemented by more data-
driven and exploratory methods such as machine-learned inquiry detection. 

Machine-Learned Inquiry Detection 

A second approach toward identifying effective inquiry strategies is to use machine learning, often referred 
to in the domain of education as either educational data mining or learning analytics (Baker & Siemens, 
2014). This research area refers to a broad range of methods that leverage the potential of analyzing thou-
sands of possible relationships among variables in an automated fashion. Educational data-mining methods 
are particularly useful either when there is relatively little known about the domain being analyzed (in 
which case “unsupervised” methods are used that do not privilege specific variables for analysis) or when 
the construct to be modeled is known but it is thought that the best prediction or inference of it will involve 
combinations of variables that are more complex than a human could reasonably identify (in which “super-
vised” methods are used that attempt to discover the best combination of variables that identifies a known 
variable). Supervised methods, such as classification, are used to categorize specific cases into one of a 
small number of known categories on the basis of “features” of the data for that case. Machine-learning 
approaches have the advantage that the relationship between the features and the categories do not need to 
be known in advance; the set of features and their interactions are selected by the algorithm based on the 
relationships found in the data. In this section, we describe two successful uses of supervised methods to 
identify student inquiry skill. In one of these, humans identified successful inquiry in a limited data set and 
then machine learning was used to replicate their judgments at scale. In the second, successful inquiry was 
identified as student success at solving a puzzle that required inquiry and machine learning was used to 
identify patterns of behavior that led to that successful performance. 

Replicating Human Judgment 

In this first example, humans identified inquiry within a limited data set, and then machine learning was 
used to replicate that judgment. This work was predicated on the assumption that expert researchers in 
inquiry could recognize appropriate inquiry when they saw it, but that transforming that comprehension 
into simple rules is challenging and may lead to overly precise rules that either exclude some acceptable 
strategic behavior or treat some inappropriate strategies as appropriate. For instance, the VOTAT rule does 
not clarify how to treat a case where a student runs an experiment, changes two variables, runs an experi-
ment, changes one back to the original variable, and then runs another experiment. The student has an 
unconfounded set of experiments, though perhaps a less efficient one, but did not use VOTAT between 
every pair of trials. At the same time, we would not want to credit a student who ran hundreds of trials and 
through exhaustion managed to hit every possible set of parameters in the simulation. Machine learning can 
develop rules that handle these special cases that align to expert intuition. 
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We studied the possibility of identifying appropriate inquiry strategies in a way that goes beyond simple 
rules such as VOTAT and can recognize a broader range of appropriate strategies in the context of an online 
learning system named Inq-ITS (formerly called Science ASSISTments), an ITS for scientific inquiry (Go-
bert, 2015), shown in Figure 2. Within Inq-ITS, students make hypotheses, manipulate simulations and 
collect data, and then interpret the results of their experiments in terms of their original hypotheses. As 
shown in Figure 2, students typically manipulate simulations by changing the values of a small set of pa-
rameters, where the choices are categorical (i.e., 3 choices per variable) rather than continuous.  

 

Figure 2. The version of Inq-ITS providing the data discussed in this article (more recent versions can be seen 
at http://www.inqits.com ). Students make hypotheses, manipulate simulations and collect data, and then in-

terpret the results of their experiments in terms of their original hypotheses. 

To develop models of student inquiry within Inq-ITS, student behavior logged within Inq-ITS is trans-
formed into a set of visualizations called “text replays”. Originally proposed in Baker, Corbett & Wagner 
(2006), text replays are “pretty-printed” representations of student behavior over time, designed to be fea-
sible for domain experts to read and use to identify behaviors or strategies of interest. For example,  
Figure 3, drawn from Gobert et al. (2012), shows text replays for Inq-ITS that were examined to identify 
whether the student is designing controlled experiments, whether the student is testing the stated hypothesis, 
and other aspects of student inquiry behavior. Within Inq-ITS, a single text replay corresponded to the 
actions a student made between creating hypotheses and interpreting their data in light of those hypotheses 
for a specific simulation. As Figure 3 shows, the human coders are able to see the relative time of student 
actions, what hypotheses the student made, what variables were manipulated between runs of the simulation 
to conduct experiments, and when (and how many times) the student ran the simulation. Not shown (but 
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also included in the text replays) are additional behaviors such as pausing the simulation, re-viewing the 
list of hypotheses, or opening the data table. 

 

Figure 3. A text replay (readable depiction for data labeling) of student behavior in Inq-ITS. 

The text replay infrastructure automatically samples which instances of student behavior will be coded by 
humans, in this case, stratifying the sample across students and across simulations (Sao Pedro et al., 2013a). 
Multiple coders label a sample of student behavior with reference to the constructs of interest and are 
checked for inter-rater reliability (San Pedro et al., 2013a). In this case, inter-rater reliability was good for 
labeling designing controlled experiments (Cohen’s Kappa = 0.69) and perfect for testing the stated hy-
pothesis (Cohen’s Kappa = 1.00). A total of 571 sequences of student behavior were coded.  

Next, a range of features of the student’s interaction with the system was extracted from the raw data, 
including aspects of behavior such as how many times the student changed variables, the time between 
variable changes, repeated trials, and the degree of change between runs of the simulation. Features were 
filtered based on a domain expert’s perception of which features would be most useful (Sao Pedro et al., 
2012). The combined data set, including both features (as predictors) and labels made within text replays 
(as predicted variables), was then used as input to data-mining software. Multiple algorithms were tested 
to determine which made the best inference of the labels provided by the human coders from the predictor 
features. The algorithms were tested on data from entirely new students (Sao Pedro et al., 2013a), across 
the full range of contexts of use of the algorithm within the system (Sao Pedro et al., 2013a). The algorithms 
were also tested for validity within entirely different scientific domains. In this second validation, a model 
developed for a physical science simulation with simple relationships between the variables was validated 
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to work correctly when used in a biological science simulation, which contained more complex relation-
ships (Sao Pedro et al., 2014). In the case of Inq-ITS, the algorithm that performed best was a relatively 
conservative decision tree algorithm, an unsurprising outcome given the relatively small data set. Overall, 
the model was able to distinguish appropriate science inquiry behavior from inappropriate science-inquiry 
behavior in a sequence of experimental trials 85% of the time. 

These models functioned at the level of identifying whether a student demonstrated appropriate scientific-
inquiry behavior in a single use of a simulation. They were also aggregated into broader inferences on 
student science-inquiry skill across simulations (Sao Pedro et al., 2013b, 2014). The broader models can 
then predict whether the student will be able to demonstrate the inquiry skill successfully in new situations. 
The model chosen for this was Bayesian knowledge tracing (BKT), a commonly used model for tracking 
student knowledge as it is changing (Corbett & Anderson, 1995). BKT takes a set of cases, each of which 
indicates whether a student is successfully demonstrating a skill, and aggregates the evidence over time into 
a running estimate of whether the student knows the skill and is likely to be able to demonstrate it in the 
future. The outputs from the inquiry behavior models were input into a BKT model, resulting in a model 
that could predict correctness on future simulations, as well as on future paper-based assessments of student 
inquiry skill (Sao Pedro et al., 2013b). This model was tested on new students and also across simulations 
(i.e., performance on one simulation was used to predict performance on another simulation – e.g., Sao 
Pedro et al., 2014). The model was able to predict future correctness for new students, in the same simula-
tion, 74% of the time, and in different simulations 75% of the time. 

Classification Based on Overall Inquiry Success 

Our second example of inquiry modeling through machine learning involves a scenario in which it is not 
feasible to directly identify good and bad inquiry. Instead, we use external evidence that inquiry was suc-
cessful as the basis for applying supervised machine learning. Specifically, in this example, we obtained 
data from students using a complex inquiry-learning environment where they had to answer a driving re-
search question by collecting and interpreting data. In this case, our assumption is that the correctness of a 
student’s answer to the research question would be highly correlated with productive inquiry behavior. 
Thus, we can use the scores from the students’ submitted answer for labels, as the human-coded labels were 
used in the previous example, and analyze the data of student interaction with the environment to determine 
which student behaviors were associated with correct final answers. 

This approach is used in work to model inquiry in virtual performance assessments (VPAs), which teach 
scientific-inquiry skills by presenting students with an authentic science problem in a virtual, simulated 
context (Clarke-Midura, Dede & Norton, 2011), shown in Figure 4. VPA provides students with the oppor-
tunity to interact with different scenarios in an immersive, three-dimensional (3D) environment. Students 
are asked to solve a scientific problem in each scenario by navigating an avatar through the virtual environ-
ment, making observations and gathering data. The avatar can collect several forms of evidence, conduct 
tests on it in a laboratory environment, talk to non-player characters, and read information kiosks.  
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Figure 4. VPAs, where students collect data, run experiments, talk to non-player characters, and read  
information resources in a rich, 3D virtual environment. 

In this example, discussed in greater detail in Baker, Clarke-Midura, and Ocumpaugh (2016), we obtained 
data from a pair of VPA scenarios, referred to as the frog scenario and the bee scenario. In the frog scenario, 
students are asked to determine the cause of a frog mutation, specifically why the frog has six legs. The 
virtual world contains four farms with frogs and other evidence and where non-player characters provide 
competing opinions about the problem, a research kiosk where students can read about possible causes of 
the mutation, and a laboratory that contains dead, mutated frogs and lab water to use as comparisons. The 
student can collect tadpoles, frogs, and water samples from the farms, which they can then bring to the 
laboratory to run DNA and blood tests on the frogs and water-quality tests on the water samples. Possible 
explanations for why frogs are sick include parasites (the correct answer), pesticides, pollution, genetic 
mutation, and space aliens. Once students think they have collected enough information, they make a final 
claim for what they think is causing the frog mutation and support it with evidence. In the bee scenario, 
students are immersed in a similar environment, but in this context they are asked to determine what is 
killing off a local bee population (in this case, it is a genetic mutation).  

Success in VPAs is identified by whether the student provides a correct final claim for why the frogs or 
bees are sick, and also by whether the student can correctly explain the chain of reasoning behind their 
claim. While it is possible to use rational or hybrid approaches to predict whether the student’s behavior 
will be correct (e.g., Clarke-Midura & Yudelson, 2013); in this case, we engineered an automated model to 
predict whether the student behavior would be correct.  

Our first step, as with Inq-ITS, was to distill a set of 48 semantically meaningful features (selected through 
structured brainstorming conducted by domain experts and machine-learning researchers) from the log files 
that contained data on all of the students’ interactions with the environment. The features included behav-
iors such as moving from one virtual region to another, picking up or inspecting different objects, running 
laboratory tests on objects, reading informational pages at the research kiosks, and talking to non-player 
characters, as well as features regarding how long the student spent and details of the actions, such as how 
many different tests the students ran.  

As in Inq-ITS, multiple algorithms were tested as potential mappings between the predictor features and 
classification labels. Algorithms were tested on data from entirely new students (Baker et al., 2016) to 
establish model validity. The models developed for each scenario were also validated to function effectively 
for the other scenario to increase confidence that these models would generalize to additional scenarios 
developed in the future for VPA. The algorithm that performed best was a relatively conservative decision 
rules algorithm (moderately more conservative than even the decision tree used in Inq-ITS). Overall, the 
model was able to distinguish appropriate science-inquiry behavior in a sequence of experimental trials 
79% of the time. One surprising findings was that the time spent reading the various information pages was 
more predictive of the student eventually obtaining the correct answer than their specific exploratory or 



 
 

147 

experimentation behaviors in the system. Although surprising, this finding does not indicate that the virtual 
environment was not useful, but instead suggests that students may need declarative or expository infor-
mation to best make sense of their activity within the virtual environment. 

Pros and Cons 

One of the biggest virtues of the machine-learning approach is that it can capture inquiry in complex settings 
where we don’t know, a priori, exactly what good inquiry looks like. This is in contrast to the theoretically 
motivated approach discussed earlier. Many of the attempts to assess inquiry by more theoretical means 
require simplification of the inquiry task to allow inquiry skills to be recognized by clearly defined rules. 
While the theory-driven approach is well grounded, it risks incentivizing teachers and curriculum designers 
to create artificial tasks that teach students artificial specialized rules that cannot be used in many real-world 
inquiry tasks. To the extent that we want students to be able to use inquiry in murky, complicated, real-
world situations, we need to create virtual environments where they learn inquiry strategies that are robust 
to situations and tasks that are not entirely straightforward.  

Relatedly, this type of approach may be able to better distinguish inquiry strategies that are effective, even 
if not flawless, within simplified and rationally describable assessment tasks as well. Because the machine-
learning approach is fundamentally data-driven, naturally occurring variations on successful strategies are 
more likely to be identified than in the case when content experts are required to define successful behaviors 
in advance. This allows machine learning to create models and assessments of student inquiry that apply 
more broadly and can be more flexible than purely theoretical approaches.  

However, this flexibility carries with it limitations as well. Whereas a rule like VOTAT can be applied 
quickly across a broad range of learning systems, machine-learning models typically must be re-validated 
for different learning tasks, as was done above in both the Inq-ITS and VPA examples. In addition, ma-
chine-learned models are sufficiently complex that they can be harder to interpret by outsiders and do not 
always map back clearly to a theoretical understanding of the constructs. This can lead to questions of 
legitimacy and validity because it can be hard to prove that the models are not selecting for features that 
co-occur with successful inquiry within the given data set but are not actually relevant to good inquiry 
practice. Such possible spurious correlations could lead to models that validate within the original context 
but break down when used with a different population of students or systems. Additionally, machine learn-
ing can be more expensive than other approaches, both to create and validate models, and justify beyond 
the team that develops them. 

Model-Driven Inquiry Detection 

The previous two approaches focus on identifying specific feature markers in process data that indicate 
stronger or weaker application of inquiry or problem-solving skills. These methods stem from a scoring-
oriented focus in which the motivating question might be: how would an expert rater recognize better ap-
plications of inquiry skills based on the data traces? In the model-driven approach, the focus shifts to the 
moment-by-moment decision making by the student. The motivating question here is quite different: how 
would we instruct an artificial agent to simulate the behavior of successful inquiry? 

The model-driven approach attempts to create one or more generative models of within-task inquiry behav-
ior based upon parameters that represent the latent traits we wish to make inferences about. The central 
feature of a model-driven approach is a mathematical model that does the following: 

• links the latent-traits to be measured to the observable responses of the student, 
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• is based on a theory of how the latent-traits produce the responses, and 

• predicts probabilities of specific responses as a function of both the person’s latent traits and the 
response context (item or problem state). 

Given such a model and sufficient performance data, the latent traits embedded in the model can be esti-
mated using likelihood maximization methods. Given multiple competing models, each can be separately 
fit to the data and the inquiry performance can be classified based on the best fitting model. In this section, 
the approach is illustrated by a set of science-inquiry detectors formulated as Markov decision process 
(MDP) models that were developed to identify different inquiry strategies students applied to a chemistry 
simulation task. 

Generative Models of Ideal Inquiry Behavior 

The first step in the model-driven approach is to define models for the inquiry behaviors we wish to identify 
or evaluate. A single model of ideal behavior can be used as an expert model against which the student 
actions would be compared. In this case, we would estimate a single latent trait, which represents the stu-
dent’s ability to implement proper inquiry. Alternatively, multiple patterns of behavior can be modeled to 
provide more diagnostic information. Modeling both correct and incorrect strategies enables inference of 
not only how well the student is performing inquiry but also what misconceptions they might have or which 
strategies they might need to learn. 

A probabilistic generative model will predict the probability of a student taking particular actions as a func-
tion of the current state of the simulation and the student latent traits. The model can be formulated to 
express the utility of each action as a function of the state of the experiment and the probability of choosing 
more useful actions as a function of the student ability. Because the action utility is dependent upon the 
current state of the simulation, the value of an action can change as students interact with the simulated 
experiment. For example, in a simulated experiment, we can imagine that a student has a choice of collect-
ing more data under the current conditions, changing one of the experimental conditions, or analyzing the 
collected data. As the experiment progresses, collecting more data will become less useful and analyzing 
the data will become more useful. The utility of changing experimental conditions will depend upon the 
hypothesis being tested and the data that have already been collected. 

One popular utility-based model is the MDP, which describes goal-driven behavior in a complex and pos-
sibly stochastic environment (Puterman, 1994). An MDP model relies on a definition of rewards, R, for 
achieving particular states along with costs for taking particular actions and a transition matrix T, which 
specifies the probability of transitioning from state s to s’ given a particular action a. The reward structure 
R includes both a definition of the goal (the state which yields a high reward) and an encoding of motivation 
in the relative magnitudes of the goal reward and the cost of actions required to achieve the goal. The 
transition matrix T encodes beliefs about the problem space, in particular, giving the likely results of actions. 
MDP models are frequently used in the field of artificial intelligence for reinforcement learning (Barto, 
Sutton & Watkins, 1989) and have recently been used as psychometric models for estimating beliefs and 
ability from actions in complex tasks (Rafferty, LaMar & Griffiths, 2015; LaMar, under review). 

MDPs for Inquiry Strategy Detection in the Concentration Simulation 

This model-driven approach to inquiry assessment has been used with an experimental simulation-based 
assessment to infer inquiry skills based on student interactions with the simulation. The assessment involves 
mixing solvents and solutes and uses an embedded PhET simulation (Perkins et al., 2006), as shown in 
Figure 5. In a series of seven inquiry questions, students are asked about the relationship between amounts 
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of solute and resulting concentration in different mixtures. They are prompted to use the simulation to 
collect data and then are asked to respond and explain their response. Early cognitive labs showed that as 
middle school aged children interacted with the simulation they would run sequences of trials that corre-
sponded to hypothesis-testing strategies. However, their strategies did not necessarily conform to the VO-
TAT-type strategy that the assessment designers had expected, nor did they confine themselves to a single 
strategy implementation. Instead a variety of strategies and strategy switching was commonly observed. 

To identify the inquiry strategies used in particular interaction records while remaining resilient to occa-
sional off-strategy behavior, MDP models were developed to embody both expected VOTAT strategies and 
additional strategies discovered in the initial data collection. Unlike the data-mining techniques described 
in the previous section, the generative-modeling approach requires all models to be defined in advance. The 
process of developing the candidate models, however, often include a combination of theoretical content 
knowledge and empirical discovery of student behaviors. For this study, information about student thought 
processes was gathered using cognitive lab protocols, in which students were asked to interact with the 
simulation and then explain their process to an interviewer. The combination of student-reported strategy 
use and the observed behavior of those students was analyzed in light of theory of student inquiry-skill 
acquisition to formulate preliminary strategy models. The models were then refined by using them to gen-
erate simulated student behavior and comparing the simulated actions to those taken by the original students 
and expert judgment of acceptable variation. 

 

 

Figure 5. The second screen of item 1 for the concentration simulation. 

To model inquiry behavior with an MDP, we needed to define the goal of the inquiry behavior, the sets of 
relevant actions and state variables, as well as the transition probabilities between states based on different 
actions. A single “ideal” inquiry model can be produced, which would allow comparison of student actions 
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with the expert model. This would result in a more score-oriented analysis where the student’s inquiry skills 
can be estimated directly, assuming the expert model is the only valid strategy. Such an approach can be 
useful when the problem is fairly constrained such that there is a single correct goal with a preferred strategy 
for accomplishing the goal. The model would consider attempts to meet other goals as off-task behavior, 
resulting in a low estimate inquiry skill.  

A more diagnostic approach can be taken by specifying different inquiry strategies as different MDP mod-
els. The models can then be fit to different sub-sequences of action data to estimate which strategies were 
being used at different parts of the inquiry process. Inquiry models can be developed for VOTAT strategies, 
directed search strategies, and other less productive approaches. As the goals and behaviors are quite spe-
cific, multiple productive and unproductive strategies can be modeled to provide both an overall inquiry 
score and diagnostic information that could be useful to adapt instruction.  

Example Application of MDP Detectors 

Based on data collected from 150 adult participants in an Amazon Mechanical Turk pilot study, three dif-
ferent inquiry strategies were identified and coded as MDPs for student interactions with question 1 (shown 
in Figure 5) and question 7, which was identical. Two of the strategies are different instantiations of the 
VOTAT strategy, one in which water is held constant and the solute is gradually increased (Increase Solute 
Strategy [ISS]) and the other in which water is held constant and the solute is gradually decreased (Decrease 
Solute Strategy [DSS]). For both ISS and DSS, the goal is to gather enough data to be able to answer the 
question. Because implementers of these strategies understand the importance of control-of-variables, data 
are considered to be a trial in which the amount of water is unchanged from the previous trial, but the solute 
amount is greater. 

The third strategy involves a directed search in which students seek a saturated solution (Find Saturation 
Strategy [FSS]). The goal of students implementing FSS is to test whether the solution will indeed saturate. 
Students who implement this strategy are assumed to have a fair amount of content knowledge because 
they know that saturation is possible and they further know what conditions are likely to cause saturation. 
The typical behavior for this strategy involves setting the solute to a high level and dramatically decreasing 
the amount of water added until saturation is detected, often multiple times. 

Note that all three of these strategies are productive inquiry strategies. While some non-productive behavior 
was observed based on student misconceptions, insufficient examples of those behaviors have been col-
lected to formulate and test an appropriate MDP model. 

To implement the identified inquiry strategies as MDPs, each strategy’s goals were translated into a reward 
structure. Similarly, their beliefs were translated into action sets, state space variables, and transition func-
tions. Table 1 shows the goals, rewards, and beliefs for ISS and FSS. The DSS strategy was similar to ISS 
with only data counted that decrease the solute rather than increase it. 

Once the MDP generative models were built for the three different strategies, the models were fit to the 
record of trials run in the simulation to identify which strategies were most likely being used. For each 
student record for a particular item, the sequence of trials ran may contain zero, one, or more instances of 
a strategy implementation. To enable detection of strategy implementations at any point in the sequence 
and of any length, the trial sequences are split into all possible sub-sequences above the minimum length 
of 3 trials. Each of the inquiry strategy models is then fit to each candidate sequence, giving a likelihood 
that that particular sequence was generated by a student attempting to implement the inquiry strategy. Final 
strategy sequence labels were determined by maximizing likelihood over the entire record. 
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Table 1. Model components for the ISS and FSS models. 

  Increase (Decrease) Solute Strategy Find Saturation Strategy 

Goal Gather enough data to determine how increasing 
solute affects concentration at one water level. 

To determine if this solution will saturate. 

Rewards Increase with: 
•  More data 
•  Range covered 

Increase with: 
•  Finding saturation 
•  More data 

Beliefs Data = Two trials with an increase (decrease) in 
solute but constant water 
Water amount unimportant as long as it doesn’t 
change 

Data = Trial with high solute and low water 
Saturation = More than one concentration result 
of the same value 

 
Using this method, log records from the first and last questions (1 and 7) were analyzed and sequences of 
implemented inquiry strategies were identified. For example, some students implemented multiple ISS 
strategies in a row (altering the amount of water in between), giving detected patterns of ISS-ISS-ISS, while 
others showed strategy switching such as ISS-FSS. Overall, the students who used more than one strategy 
implementation scored better on the following content question, indicating that more sophisticated inquiry 
patterns correlate with more successful conclusions.  

Pros and Cons 

There are a number of advantages of the model-based approach. As a theory-driven approach, the results 
are easily interpretable and can fit into existing frameworks for assessing science practice. Implemented as 
discrete single-strategy detectors, as demonstrated by the MDP detectors, multiple different inquiry strate-
gies can be identified, including both productive strategies and those based on misconceptions, making the 
approach ideal for formative assessment and tutoring scenarios. The probabilistic nature of the models, 
meanwhile, allow for detection of strategy behavior even when the implementation of the strategy is im-
perfect. These factors make this approach useful in complex, open-ended inquiry tasks.  

On the other hand, such complexity comes at a cost. The theory-driven modeling requires that theory exists 
to explain very low-level actions. Such fine-grained theory is often lacking in the current science literature. 
The formulation of MDP models also requires an understanding of how utility-theoretic state-space models 
work, making this method potentially difficult to access for science educators. Furthermore, the models that 
are developed are context-specific. While models for generalizable strategies, such as VOTAT, might be 
structurally similar in different tasks, each model needs to be customized to the actions and variables avail-
able in specific tasks.  

Implications for GIFT and Tutoring 

ITSs frequently include the affordance for simulation-based inquiry and problem solving (Murray, 2003). 
Principled assessment of student skills based on their actions within such tasks are critical to produce the 
relevant feedback and guidance that one expects from an advanced ITS.  

For any of these approaches to be useful in a computerized tutoring environment, the identification and 
assessment of inquiry skills must be available in the moment, not merely in post-processing. MDP and BKT 
are not currently available in the GIFT framework, but their inclusion would be relatively straightforward. 
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In particular, future work to create flexible, lightweight versions of MDP algorithms could make them more 
accessible to tutoring systems for online processing. There is already support for the inclusion of automated 
detectors based on Rapid Miner into GIFT trainee models, making this type of algorithm readily usable 
within the GIFT framework. Theoretically defined behavioral indicators, meanwhile, can be easily coded 
into the logic of the task programming because their definition goes hand in hand with the task design. 

Conclusions 

Computers allow students to interact with more complex science and problem-solving scenarios and edu-
cators call for teaching and assessment to include more realistic science and engineering tasks. As a conse-
quence, identifying and assessing inquiry strategies has become both pertinent and possible. This chapter 
has outlined three different approaches to assessing the science practice of hypothesis testing: a theory-
driven approach based on carefully crafted assessment tasks and corresponding performance indicators, a 
more theoretical approach based on using machine learning to identify successful or appropriate inquiry 
behavior, and an approach that builds off theoretical understanding but uses generative process models to 
recognize a wider range of behavior.  

Each of the approaches have their advantages and limitations, with the most appropriate approach likely 
dependent upon the type of task presented to the students and the types of skills intended to be taught and 
assessed. The theory-driven behavioral indicators are likely the best choice for high-stakes assessment be-
cause the behaviors detected are well understood and scoring is clean and defensible. The machine-learning 
approach provides a method for assessing inquiry in wide open environments and situations in which good 
inquiry cannot be cleanly defined. The model-based approach is something of a compromise between the 
pure theoretically defined behavioral indicators, which rely on consistently predictable behavior patterns, 
and the machine-learning inquiry detectors, which can discover patterns of behavior that experts might not 
predict. The MDP inquiry detectors are based in theory, although the theory can be developed iteratively 
with qualitative analyses of existing log files. Their probabilistically framed model allows strategy behav-
iors to be detected even when the strategy is imperfectly implemented.  
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Wüstenberg, S., Greiff, S. & Funke, J. (2012). Complex problem solving. More than reasoning? Intelligence, 40, 1–
14. 

Zimmerman, C. (2007). The development of scientific thinking skills in elementary and middle school. Develop-
mental Review, 27, 172–223. 

 



 
 

154 

  



 
 

155 

CHAPTER 13 ‒ Automated Assessment of Learner-Generated 
Natural Language Responses  

Vasile Rus1, Andrew M. Olney1, Peter W. Foltz2, and Xiangen Hu1 
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Introduction 

Eliciting open-ended learner responses gives learners the opportunity to freely generate a response to spe-
cific prompts as opposed to discriminating among several predefined responses (one of which is correct). 
In the latter case, i.e., multiple-choice questions, there is always the risk of learners picking the correct 
answer for the wrong reasons without the possibility of identifying such flawed knowledge. Open-ended 
responses eliminate such risks, reveal students’ thought processes, document explanation of reasoning, and 
allow for the expression of creative and original correct responses, none of which is possible when using 
multiple-choice assessment instruments (Parmenter, 2009; Walstad & Becker, 1994). Therefore, freely gen-
erated student responses to a question, e.g., asked by an intelligent tutoring system (ITSs; Rus et al., 2013), 
or an essay prompt, e.g., as in the high-stake exam Scholastic Assessment Test (SAT), should be used in 
educational contexts because they provide a unique opportunity to assess students’ knowledge and skills in 
an area. 

The Need for and Challenges with Automated Assessment of Learner-Generated  
Natural Language Responses 

The challenges (cost and effort) that arise from manually assessing open-ended student responses limit their 
use by educators. Automated methods to assess student-generated responses are fervidly pursued to address 
the cost and effort challenges. It should be noted that automated methods have the additional advantage of 
systematically and consistently assessing student responses as compared to human raters. This chapter of-
fers an overview of methods for automatically assessing students’ freely generated answers. 

The self-generation process, the key feature of open-ended assessment, offers unique opportunities and 
challenges for automated assessment. An effect of the self-generation aspect of open-ended responses, 
which is an advantage and a challenge at the same time, is their diversity along many quantitative and 
qualitative dimensions. For instance, free responses can vary in size from one word to a paragraph to a 
document. The challenging part is the fact that there needs to be a solution that can handle the entire variety 
of student responses, a tall order. Indeed, analyzing students’ responses requires natural language tech-
niques that can accommodate the endless variety of student input and assess such input accurately. 

Another major challenge is that open-ended responses may be assessed in different ways that depend on 
the target domain and instructional goals. This makes it difficult to compare assessments. For example, in 
automated essay scoring the emphasis is more on how learners argue for their position with respect to an 
argument the essay prompt while in other tasks, such as conceptual physics problem solving, the emphasis 
is more on the content and accuracy of the solution articulated by the learner. This chapter provides an 
overview of the opportunities, challenges, and state-of-the-art solutions in the area of automated assessment 
of learner-generated natural language responses. 
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Automated Methods For Assessing Learner-Generated Natural Language Responses 

We focus in this chapter on natural language open-student responses as opposed to responses that require, 
for instance, drawing a diagram. Assessing such natural language learner responses is a natural language 
understanding (NLU) task.  

Computational approaches to NLU can be classified into three major categories: true-understanding, infor-
mation extraction, and text-to-text similarity. In true understanding, the goal is to map language statements 
onto a deep semantic representation such as first-order logic (Moldovan & Rus, 2001; Rus 2002; Banarescu 
et al., 2013; Bender, Flickinger, Oepen, Packard & Copestake, 2015; Bos, 2015; Liang, Jordan & Klein, 
2013). This approach relates language constructs to world and domain knowledge that is stored in a well-
specified computational knowledge base (Lenat, 1995), and that ultimately enables inferencing. Incon-
sistency and contradictions can be automatically detected, revealing potential flaws in students’ mental 
model of the target domain. Current state-of-the-art approaches that fall into this true-understanding cate-
gory offer adequate solutions only in very limited contexts, i.e., toy-domains. These lack scalability and 
thus have limited use in real-world applications such as summarization or ITSs. Notable efforts in ITSs are 
by VanLehn and colleagues (Rosé, Gaydos, Hall, Roque & VanLehn, 2003; VanLehn, Jordan, Rosé, et al., 
2002). Related efforts use less expressive logics like description logic (Zinn, Moore, Core, Varges, 
Porayska-Pomsta, 2003) in conjunction with the two other NLU approaches’ categories discussed next. 

Information extraction approaches use shallow processing to automatically detect in learners’ free re-
sponses the presence of certain nuggets of information that represent key expected concepts or derived 
measures that could be used as predictors of student responses’ correctness or overall quality. These ap-
proaches focus on text surface features or matching of exact words. They are most appropriate for item 
types such as fill-in-the-blank short answers where there is a limited range of expected correct responses.  

Text-to-text  (T2T) similarity approaches to textual semantic analysis avoid the hard task of true under-
standing by defining the meaning of a text based on its similarity to other texts, whose meaning is assumed 
to be known. Such methods are called benchmarking methods because they rely on a benchmark text, which 
is generated, checked, or annotated by experts, to identify the meaning of new, unseen texts. We focus in 
this chapter primarily on T2T approaches because they are the scalable and dominant practical approaches 
at this moment and probably for the foreseeable future. One may argue that some of the information extrac-
tion approaches fall under the category of T2T approaches because, for instance, identifying in student 
responses a number of expected concepts that are specified by an expert is equivalent with a T2T approach 
in which parts of student responses are compared to key expected concepts provided by experts. To make 
the distinction less ambiguous for such approaches, we call T2T approaches those that compare a full stu-
dent response to a full benchmark or ideal response provided by an expert. If the expert only provides a set 
of key expected concepts, then such an approach falls under the information extraction category. 

We also distinguish between two major categories of student responses: argumentative essays versus accu-
rate-content responses, i.e., short essays. While these two types of essays are not mutually exclusive, nor 
are they inclusive of all essay types, these types of student responses are the result of two different major 
instructional goals. In argumentative essay scoring, there is an emphasis on how learners argue for their 
position with respect to the essay prompt, whereas in a task that scores conceptual physics problem solving 
the emphasis is on what is said, i.e., content/accuracy of the solution articulated by the learner. It should be 
noted that content is also considered in automated scoring of argumentative essays as, for instance, the 
essay must be “on topic”, i.e., related to the essay prompt. Nevertheless, in this case factors such as vocab-
ulary, grammaticality, and argumentation (the how) are emphasized. On other other hand, grammaticality 
and vocabulary size/richness are less important aspects to consider while assessing the correctness of phys-
ics problem solutions as compared to the conceptual correctness of the articulated solution. While gram-
maticality is not critical when assessing for correctness, it could be important because often content 
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knowledge cannot be fully explicated without correct expression. For instance, a response with a bad gram-
mar will negatively impact automated syntactic parsing, which in turn will negatively impact the overall 
outcome of the automated assessment method. Bad grammar leads to bad parsing and so on, and it leads to 
error propagation throughout the automated assessment software pipeline. However, from our experience, 
we can testify that syntactic information does not add significant more value on top of other factors for 
predicting accuracy. 

This chapter provides an overview of T2T opportunities, challenges, and state-of-the-art solutions. It is by 
no means a comprehensive review of previously published work in this area. Rather, it is a short summary 
of the area. 

It is important to add one meta-comment regarding terminology before proceeding further with details of 
various T2T methods for automated assessment of learner-generated natural language responses. The au-
thors of this contribution do not adhere to the so called “constructed student answers” label, which has been 
used by some researchers when referring to learner-generated natural language responses (Leacock & Cho-
dorow, 2003; Magliano & Graesser, 2012). First, this label implies that students construct their answers 
from some predefined primitives/blocks, e.g., pieces of the response that might be available to them. This 
is not the case as students freely generate the answers. Second, the “constructed” terminology has its roots 
on the fact that experts construct a reference/model/ideal answer, which is then used to assess student re-
sponses. That is, the “constructed student answer” terminology links the nature of students’ answers to the 
evaluation method (Leacock & Chodorow, 2003; Magliano & Graesser, 2012), i.e., comparing the student 
answer to a constructed reference/model/ideal answer provided by experts. We believe that the way students 
generate the answer, e.g., freely composing the answer versus selecting it from a set of forced answer 
choices versus something else, should be the only aspect that should inform the choice of a label of what is 
being assessed. For instance, a freely composed student answer can be assessed by a true understanding 
method as opposed to a semantic similarity approach that relies on a reference answer or reference set of 
concepts. 

Automated Essay Scoring 

Automated essay scoring (AES) has become increasingly accepted with multiple systems available for im-
plementing the scoring of writing for learning applications and ITSs (Shermis & Burstein, 2013). Studies 
of AES systems have shown that they can be as accurate as human scorers (e.g., Burstein, Chodorow & 
Leacock, 2004; Foltz, Laham & Landauer, 1999; Landauer, Laham & Foltz, 2001; Shermis & Hamner, 
2012), can score on multiple traits of writing (Foltz et al., 2013), can provide accurate feedback on content 
(Beigman-Klebanov et al., 2014; Foltz, Gilliam & Kendall, 2000), and can score short responses (Higgins 
et al., 2014; Thurlow, et al., 2010). These systems are now also being used operationally in a number of 
high stakes assessments like General Educational Development (GED) and various state K–12 assessments 
(Williamson et al, 2010), placement tests like Pearson Test of English and ACCUPLACER (suite of tests 
that assess reading, writing, math, and computer skills), and for writing practice in systems like Criterion 
and WriteToLearn.  

While there are differences among the various AES systems and the methods they employ, most share a 
common approach. This approach can be simply described as 1) represent a student’s writing quantitatively 
as a set of features and 2) determine how to weigh and combine the features to best characterize the quality 
of the student writing. The features are quantifiable natural language processing features that measure as-
pects such as the student’s expression and organization of words and sentences, the student’s knowledge of 
the content of the domain, the quality of the student’s reasoning, and the student’s skills in language use, 
grammar, and the mechanics of writing. In creating these features, it is critical that the computational 
measures extract aspects of student performance that are relevant to the constructs for the competencies of 
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interest (e.g., Hearst, 2000; Williamson, Xi & Breyer, 2012). For example, and explicated in greater detail 
in the following, features that measure the semantic content of student writing are used as measures of the 
quality of a student’s domain knowledge. A measure of the type and quality of words used by a student 
provides a valid measure of lexical sophistication. However, measures that simply count the number of 
words in an essay, although it may be highly correlated with human scores for essays, do not provide a 
valid measure of writing sophistication. 

To score a student-generated essay, multiple language features are typically measured and combined to 
provide a score or feedback. Combining and weighing the derived features is then performed by learning 
to associate the features with examples of student performance. These examples of performance can include 
samples of student responses that have been pre-scored by human raters or examples of ideal responses 
created or selected by experts. Machine learning (e.g., regression, Bayesian, classification) techniques are 
then used to build a model that weighs the features in relationship to the examples of performance while 
maximizing predictive performance and generalizability. The details of these approaches are beyond the 
scope of this chapter, but are covered in detail in Shermis and Burstein, (2013). However, we do describe 
important considerations in the features and methods used for assessing student-generated essays, most 
particularly with respect to content accuracy. 

The recent Automated Student Assessment Prize (ASAP), funded by the Hewlett Foundation, revealed that 
current AES technologies rival human grader’s performance (Shermis & Hamner, 2012; Shermis, 2014), 
although there are debatable aspects of the used methodology (Perelman, 2013). The ASAP exercise, which 
drew participation from seven commercial organizations and one academic lab, has shown that the domi-
nant approach is a form of semantic similarity in which new, to-be-scored essays are compared to human-
graded essays whose quality is already known. 

Accurate-Content Essay Scoring 

When assessing learners’ responses for content accuracy or correctness, the most widely used approach is 
semantic similarity. As already mentioned, such an approach involves experts providing one or more ideal 
responses to specific prompts or sets of student responses that are pre-scored by experts. New student re-
sponses to the same prompts are subsequently compared to these ideal or benchmark responses. The main 
advantage of the semantic similarity approach is the circumvention of the need to acquire and automatically 
use world and domain knowledge explicitly, which are required for a true understanding of learners’ natural 
language responses. It is assumed and hoped that the ideal response provided by experts contains enough 
cues that allows a simple or augmented semantic similarity process to make a good enough judgment on 
the correctness of students’ responses.  

While a semantic similarity approach still requires experts to generate ideal/benchmark responses, or score 
previously collected student responses, this manual step leads, overall, to a more scalable and cost-effective 
approach than the true understanding approaches. Consequently, the semantic similarity approach currently 
dominates. 

Before presenting more details about such semantic similarity approaches to assessing the accuracy/cor-
rectness of learner responses, we present key issues with automatically assessing students’ answers using a 
semantic similarity approach. Given the focus of this volume, we focus on student answers that need to be 
assessed in the context of intelligent interactive systems, namely, ITSs. In these systems, learners are 
prompted to provide answers and these answers must be assessed in real time to provide appropriate feed-
back and trigger appropriate instructional strategies that maximize learning. 
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Key Challenges 

There are many challenges when it comes to automatically assessment of students’ open-ended responses. 
We start by enumerating some of these challenges. 

Spelling and Grammatical Errors. Students’ responses often contain spelling and grammatical errors. De-
pending on various learners’ verbal and writing abilities, they will generate responses that vary in compo-
sitional quality. The good news is that reasonably good spelling and grammar correction software tools are 
available, at least for English. Furthermore, since the focus on content-accuracy assessment is often on 
content, issues such as spelling and grammatical errors are not a major conceptual hurdle to overcome. That 
being said, there are pragmatic implications due to the current state of natural language technologies, e.g., 
modest syntactic parsing accuracy, as mentioned earlier.  

Size Variability. There is great variability in student responses when it comes to size. For instance, student 
responses can be a single word, a phrase or chunk, a segment of a sentence such as a clause or several 
clauses, a complete sentence, a paragraph/short-essay or even a full essay. One needs to develop an ap-
proach that can handle student responses of various granularity or, alternatively, develop a separate ap-
proach for each of the mentioned granularity levels. Some approaches can be easily extended from a word 
to a sentence level but not to multiple-sentences/paragraph level. Other approaches scale well from words 
to sentences to paragraphs at the expense of disregarding information that is important for precise assess-
ments (Rus, Banjade & Lintean, 2014). 

Dialogue Utterances. Specific challenges arise when assessing learners’ language in a multi-turn dialogue 
context such as in dialogue-based ITSs. For example, elliptical responses similar to response #5 in Table 1 
are quite frequent. In spoken dialogue, the challenges are even greater due to peculiarities of spoken dia-
logue, which we address later in the spoken versus written input section. 

Heavily Contextualized. In many situations students’ responses are highly contextualized. For example, all 
the student answers shown in Table 1 are in the context of one particular physics problem that was used in 
an experiment with high school students who learned physics from a state-of-the-art ITS called DeepTutor 
(Rus, D’Mello, Hu. & Graesser, 2013). All these student responses must therefore be assessed while ac-
counting for the physics problem, which is the focus of the dialogue. Furthermore, the responses needed to 
be interpreted in the context of the full dialogue history up to the point where the response was generated. 
In general, the responses in Table 1 are targeted responses to a previous tutor question, which is yet another 
contextual dimension. 

Table 1. Examples of actual high school student answers showing the diversity of student responses to various 
prompts from the state-of-the-art intelligent tutoring system DeepTutor.  

ID Student Responses 
1 The force exerted by gravity and tension of the rope are equal. 
2 These forces balance each other. 
3 The tension is equal to the force of gravity. 
4 They are equal. 
5 Equal. 
7 The tension in the rope is greater than the downward force of gravity. 
8 The tension in the rope is greater than gravity in order to raise the child upward. 
9 They are equal and opposite in direction. 

10 The tension in the rope is equal to the mass of boy times gravity. Newton’s second law states the force is 
equal to mass times acceleration. In this case, the tension is the force. Gravity is the acceleration. 
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Textual responses vs. multi-modal. This chapter focuses on textual student responses but multimodal re-
sponses that contain text, diagrams, and other non-textual products, e.g., a diagram, are often generated and 
need to be assessed. There are specific challenges in these cases such as aligning the textual and non-textual 
elements to generate a more complete model of the student response. Even when student responses are pure 
textual, there may be reference to non-textual elements provided in context, e.g., a physics problem usually 
has a picture attached to it describing a visual rendering of the problem scenario. Students may refer to the 
provided picture instead of simply focusing on the concepts mentioned in the textual description of the 
problem. For instance, students may simply say “The truck is pushing the car to the right” when no explicit 
spatial relationship was mentioned in the problem description or the previous dialogue with the ITS; such 
spatial information, although irrelevant to answering the main question of the problem, is conveyed through 
the accompanying image depicting a truck pushing a car. 

Core Linguistics Issues. Additional key linguistic issues often need to be addressed for a more comprehen-
sive solution even when a semantic similarity approach is being used. These key linguistics tasks include 
coreference and anaphora resolution as students often refer to entities mentioned earlier in the dialogue and 
problem description using, for instance, pronouns (Niraula, Rus, Stefanescu, 2013; Niraula, Rus, Banjade, 
Stefanescu, Baggett, and Morgan, 2014), negation (Banjade, Niraula, and Rus, 2016), and synonymy (dif-
ferent words with same meaning) and polysemy (many meanings of the same word). Some of the semantic 
similarity approaches we summarize do include simple and sophisticated solutions for word sense disam-
biguation to address, for instance, polysemy. Semantic methods such as Latent Semantic Analysis (LSA; 
Landauer, Foltz & Laham, 1998) handle synonymy indirectly by mapping words into a semantic space 
where synonym words will be close to each other. 

Written vs. Spoken Input. Students’ responses can be typed or spoken. Spoken language has two main chal-
lenges: register versus technical. There are specific phenomena that are more prevalent in spoken language 
than written language. For example, there are disfluencies such as stop-restart segments where a speaker 
starts an utterance and suddenly stops before finishing it to restart and utter a replacement. Concrete exam-
ples of such disfluencies are fillers (“uh”, “um”), which are dialogue specific particles with no particular 
content value, false starts/re-starts (“I I really wanted …”), repetitions (“I would like a coffee a hot coffee”), 
and corrections (“I would like a an apple”). 

Compositional Approaches 

We focus in this section on compositional approaches to addressing the task of automated assessment of 
student open responses. The principle of compositionality states that the meaning of a text can be deter-
mined by the meaning of its constituents and the rules used to combine them (Lintean & Rus, 2012). The 
major steps in compositional approaches are outlined as follows: 

• Step 1. Derive a word-level meaning representation. This might include some necessary prepro-
cessing of the input text, which could include the detection of other constructs such as a noun phrase 
or a verb phrase. 

• Step 2. Discourse level processing. This includes resolution of content references, such as pronouns 
to their referents, to maximize the outcome of the next step, i.e., the alignment step.  

• Step 3. Alignment. Align words (or other constituents) across the paired student vs. ideal responses 
and combine the word-level meaning representations. The alignment could be based on lexical 
information, i.e., words and their meanings, and also take into account relations among words such 
as syntactic relations. Other contextual elements such as the nearby words (within a window of, 
say, three words before or three words after) or directly related words via a syntactic dependency 
could be considered. The alignment could also include explicit negation particles. 
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• Step 4. Report an overall, usually normalized, similarity score. The resulting score could be sanc-
tioned by extra semantic elements such as negation focus and scope. For instance, Rus and Graesser 
(2006) altered the alignment score using a negation term that accounted for single or double nega-
tion.  

• Step 5. Map the similarity score into qualitative decisions. After obtaining the similarity score a 
qualitative decision is being derived such as the student response is correct or the student response 
is incorrect. 

Word-level and Text-level Meaning Representations 

We focus in this section on the first step of the semantic similarity procedure outlined previously and which 
consists of deriving meaning representations of texts, a key issue in NLU. As previously stated, T2T ap-
proaches define the meaning of a text based on its similarity to other texts. 

Perhaps the simplest approach is to represent texts as sets of words and as a similarity metric the set inter-
section of the words of the two texts under consideration, i.e., U ∩ V for texts U and V. This intersection 
can be normalized by the cardinality or union of U and V to yield a variety of set-based metrics initially 
proposed by Paul Jaccard and known as the Jaccard similarity coefficient. Set-based metrics have the ad-
vantage that the calculation of similarity between texts is fairly direct (Manning & Schütze, 1999). In this 
family of “set-of-words” approaches, words are not given any particular kind of representation but texts are 
treated as sets of words. As we explain later, even for such methods of set-based textual semantic represen-
tations and similarity approaches, there is an underlying 1-of-N vector representation with binary weights 
(as opposed to representations based on distributional properties of words derived from large collections of 
natural language texts, which are explained next). 

A more sophisticated family of approaches is based on the distributional vector space representation in 
which the meaning of a word is represented as a vector in a multi-dimensional space. The dimensionality 
of the space varies from one vector space representation to another. Furthermore, these distributional vector 
space approaches rely on the distributional hypothesis according to which the meaning of a word is defined 
by the company it keeps. That is, they derive the vector representation of words starting with a word-to-
word co-occurrence analysis over a large collection of texts, as detailed later. Originally conceived for 
information retrieval, where the purpose is to match a textual query with the most relevant or similar doc-
ument in a large collection of documents (Salton, Wong & Yang, 1975), distributional vector space ap-
proaches are perhaps the most widely used for T2T similarity. 

As already mentioned, distributional vector representations rely on a statistical analysis of word co-occur-
rences in large collections of natural language texts, i.e., a corpus such as Wikipedia articles (Ştefănescu, 
Banjade & Rus, 2014). A typical and simple co-occurrence analysis consists of generating a term-by-doc-
ument matrix where each row vector represents a particular word or term and the columns represent the 
documents. Thus, each row captures statistical distributional information of a word across documents and 
each column represents distributional information of the words in a document, i.e., co-occurrence infor-
mation among words within a single document. Furthermore, this statistical distributional information of a 
word/term across documents and of word/term co-occurrence within a document is captured in an elegant 
algebraic format of a term-by-document matrix. This representation then enables the use of algebraic oper-
ations, an important attraction of this representation, serving different purposes. For instance, multiplying 
the term-by-document matrix by its transpose results in a term-by-term co-occurrence matrix where each 
cell provides a quantitative summary of how two words/terms co-occur with each other across all docu-
ments in the collection. 
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To construct the term-by-document matrix, many different approaches may be used. The original infor-
mation retrieval approach is a frequency approach where words are counted over documents. Thus, a given 
cellij of the matrix represents the number of times that wordi appears in documentj. Because not all words 
occur in all documents, the row vectors are necessarily sparse. The similarity between words can be com-
puted based on the similarity of their vectors, using metrics like dot product or cosine, i.e., normalized dot-
product, to eliminate bias toward longer documents. Furthermore these word vectors have the property that 
they may be added together, allowing one to obtain a vector of a chunk of text, e.g., a phrase or sentence or 
paragraph, by adding the vectors for words in the text. This additive process to obtain the meaning of a 
larger text from its individual words is a simple instantiation of the meaning compositionality principle (the 
simple co-occurrence in the same text is, in this case, the rule-to-combine or “relationship” specified in the 
definition of the principle of compositionality mentioned earlier). The resulting vectors can be compared 
with any other vector using the same vector similarity metrics. 

Although this basic term-by-document structure is shared by all members of the vector space family, vari-
ations are wide ranging. For example, words can be preprocessed before computing their frequencies using 
techniques like stemming (Rus, Banjade & Lintean, 2014). Rus, Banjade, and Lintean (2014) discuss in 
detail the implication of preprocessing steps on the performance of semantic processing approaches and 
show that such preprocessing steps have a much more significant impact than recognized by the research 
community (it is important to note that they identified and considered 1,152 combinations of preprocessing 
steps in their study). Raw counts may also be transformed in a variety of ways using information about the 
cell, its row, or its column. For example, the presence of a word in a document is typically more important 
than the number of times the word appeared, leading to word frequency normalization like log scaling of 
cell counts, and words that appear in many documents are less diagnostic of meaning and so can be down-
weighted using row weighting schemes like inverse document frequency; similarly approaches based on 
information theory can be used to weight cell counts based on word (row) or column (document) distribu-
tions (Church & Hanks, 1989; Dumais, 1991; Manning & Schϋtze, 1999). 

The set-based similarity approaches that we mentioned earlier can be regarded as using an underlying vector 
representation with binary weights: the word is present, corresponding to a value of 1, or not, corresponding 
to a value of 0. The dot product between such binary vectors corresponding to two texts results in the 
cardinality/size of the intersection of the underlying sets of words, i.e., the number of common words in the 
two texts. When using raw frequency as the weights, the result is a similar vector representation, which 
regards the texts as bag of words (multiple occurrences of the same word are accounted for) as opposed to 
sets of words (multiple occurrences of the same word only count once). In fact, we can think of a vector 
representation for individual words even if an explicit one is not derived from a corpus. Each word can be 
thought of as having a 1-of-N representation, where N is the size of the vector, i.e., the number of entries 
or dimensionality (and equal to the vocabulary size of the two texts), and only one cell or entry that corre-
sponds to dimension of the target word has a weight of 1 (all other entries being zero). 

Finally, some approaches transform the matrix into another matrix using matrix factorization techniques. 
In particular, the use of singular value decomposition to factorize the matrix is strongly associated with the 
vector space approach known as latent semantic analysis (LSA; Landuaer, Foltz & Laham, 1998; Landauer, 
McNamara, Dennis & Kintsch, 2007). The computational advantage of LSA is that it represents that mean-
ing of words using a reduced dimensionality space (300–500 dimensions) leading to fast computations of 
similarity scores, e.g., based on cosine similarity. A study comparing the effect of various local and global 
weighting schemes in conjunction with LSA was described by Lintean, Moldovan, Rus, and McNamara 
(2010). 

Although the basic approach outlined previously seems very sensible from an information retrieval per-
spective focused on documents, from a generic text similarity perspective, aspects of this approach are 
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somewhat arbitrary. For example, documents are not defined to have any particular length, leading to ques-
tions about whether there is an optimum length for documents or whether it matters if document lengths 
across a matrix are highly variable. Likewise, it is useful to have words as the unit of co-occurrence analysis 
and representation but in many applications of natural language processing sequences of words called n-
grams have been used with great success. Considerations such as these have led to proposals for abstracting 
from the word by document matrix to a feature by context matrix (Olney, 2009). In these matrices, the 
concern is counting a particular feature within a given context, where both context and feature can be arbi-
trarily defined. For example, a square matrix could be defined with rows and columns equal to the number 
of words in the collection, so a cellij might represent the number of times wordi occurs after wordj. Likewise 
a row could be a word and cellij might represent the number of times wordi is the syntactic head of wordj. 

Taking a feature by context perspective is useful when considering approaches where there is no document 
or the document is part of a larger interconnected structure. For example, the Correlated Occurrence Ana-
logue to Lexical Semantics model (COALS; Rohde, Gonnerman & Plaut, 2005; Olney, Dale & D’Mello, 
2012) implements a sliding window strategy. Similar to the previous example, the resulting matrix is square, 
but the cell counts are based on a symmetric window around the target word. The word at the center of that 
window corresponds to the row of the matrix, and the incremented columns are the other words within the 
window; however, the increment is inversely proportional to the distance between them and the target word. 
The matrix is normalized using phi correlation and then optionally transformed using singular value de-
composition. 

Structured texts, like Wikipedia, have inspired structure-specific approaches defining features and contexts. 
Explicit Semantic Analysis (ESA) uses the article structure of Wikipedia to determine contexts, and thus a 
cellij represents the number of times wordi occurs in articlej. ESA further weights the cells using log 
weighting of word counts and inverse document frequency. Another approach that uses the structure of 
Wikipedia to define both features and contexts is Wikipedia Link Measure (WLM; Milne & Witten, 2008). 
WLM uses articles as features and links to them from other Wikipedia pages as contexts. To compare the 
similarity of two words, WLM associates them with articles and then defines a metric over the shared links 
to those pages (in-links) and shared links from those pages (out-links) to determine similarity. Although the 
original definition of WLM is more set theoretic based on the graph structure of links, it trivially maps to a 
vector space approach where links are columns in a matrix (Olney et al., 2012). 

One other word meaning representation worth noting is Latent Dirichlet Allocation (LDA; Blei, Ng, and 
Jordan, 2003). LDA is a probabilistic, unsupervised method that models documents as distributions over 
topics and topics as distributions over words in the vocabulary. Each word has a certain contribution to a 
topic. That is, each word can be represented as a vector whose dimensionality equals the number of latent 
topics and the weights along each dimension correspond to the word contributions to each topic as derived 
by the LDA method. Based on these distributions and contributions word-to-word semantic similarity and 
text-to-text semantic similarity measures can be defined (Rus, Niraula & Banjade, 2013). It should be noted 
that LDA has a conceptual advantage over LSA because LDA explicitly represents different meanings of 
words, i.e., it captures polysemy. In LDA, each topic is a set of words that together define a meaning or 
concept, which corresponds to a specific sense of the various words sharing this meaning. Thus in LDA, 
each topic a word belongs to can be regarded as one of its senses. On the other hand, LSA has a unique 
representation for a word. That is, all meanings of a word are represented by the same LSA vector making 
it impossible to distinguish among the various senses of the word directly from the representation. Some 
argue that the LSA vector represents that dominant meaning of a word while others believe the LSA vector 
represents an average of all the meanings of the word. The bottom line is that there is a lack of explicit 
account for the various senses of a word in LSA.  

Yet another major trend in the area of distributional vector-based representations, is the new category of 
representations derived using deep neural networks. A typical example in this category is the word2vec 
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representation developed by Mikolov and colleagues (2013). They trained a recursive neural network with 
local context (continuous n-gram or skip-gram) using a process in which the input word vectors are re-
cursively adjusted until the target context words are accurately predicted given the input word. These rep-
resentations were shown to capture syntactic and lexical semantic regularities, have superior composition-
ality properties, and enable precise analogical reasoning using simple vector algebra (Mikolov, Chen, Cor-
rado & Dean, 2013; Pennington, Socher & Manning, 2014). 

A Categorization of Compositional based Semantic Similarity Approaches 

Once a word meaning representation is being settled upon, the meaning of larger texts can be derived com-
positionally in many different ways. We distinguish among the following major categories of compositional 
approaches. 

Simple Additive Approaches 

Simple additive approaches generate an overall semantic similarity score by applying simple operations, 
such as addition and average matching, to word level representations. Two examples of such simple addi-
tive approaches are the vector addition and word-average matching addition (Fernando & Stevenson, 2008). 
In the vector addition approach, an overall vector for each text is computed by simply adding up the vector 
representations of individual words. Then a vector similarity metric is applied on the resulting vectors of 
the two target texts. In the word-average matching addition approach, for each word in one text an average 
semantic similarity score is computed with all the words in the other text. To compute this average similarity 
score for a single word, the word is matched or paired with every single word in the other text and a simi-
larity metric is computed between the corresponding vector representations of the paired words. The aver-
age of all those word-to-word similarity scores is then taken. 

Alignment-Based Approaches 

In this category, the approaches have a distinguished feature of aligning first the words in one text to at 
most one word in the other text. From a student answer assessment point of view, performing the alignment 
first has the great advantage of detecting which main concepts the student articulated and which ones are 
missing from the response. Detecting the articulated and missing concepts, in turn, enables automated gen-
eration of feedback and informs the dialogue/interaction planning component of the underlying ITS. 

The alignment can be based on simple lexical matching (using the words themselves) in which case we end 
up with a simple lexical overlap score, i.e., the number of common words between the two texts. This 
simple lexical overlap score is computed after applying the various preprocessing steps chosen by the de-
signer such as lemmatization and can be normalized by the average length or the maximum length or some 
other normalizing factor (see Lintean, Moldovan, Rus & McNamara, 2010; Rus, Banjade & Lintean, 2014). 
The two texts can be treated as sets or as bags. In the latter case, words that match can be weighted by their 
frequencies in the two texts to account for multiple occurrences. 

A more advanced approach, called lexical similarity alignment, relies on word-to-word (w2w), or lexical, 
semantic similarity measures to find the best alignment between a word in one text and at most one word 
in the other text. We distinguish between two types of lexical similarity alignment approaches: greedy 
lexical similarity alignment and optimal lexical similarity alignment that only relies on lexical similarities 
between words but not on their relationship (e.g., syntactic and/or deeper semantic relations). The greedy 
approach simply aligns a word in one text with the word in the other text that leads to the highest w2w 
similarity score according to some w2w similarity measures.  
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The optimum assignment between words in one text, T1, and words in another text, T2, can be posed as a 
combinatorial optimization problem. That is, the goal is to find a permutation π for 
which ∑𝑛𝑛𝑘𝑘=1 𝛩𝛩(𝑣𝑣𝑖𝑖,𝑤𝑤𝜋𝜋(𝑖𝑖)) is maximum, where Θ denotes any word-to-word similarity measure, and v 
and w are words from the texts T1 and T2, respectively. This formulation of the T2T similarity problem is 
in fact the famous job assignment problem for which an algorithm, the Kuhn-Munkres or Hungarian method 
(Kuhn, 1955), has been proposed and which can find a solution in polynomial time. 

The assignment problem only focuses on optimally matching words in one sentence S to words in the other 
sentence T based only on how the words in S match the words in T. As briefly mentioned, it does not 
account for interdependencies among words in S or among words in T. A solution that simultaneously 
accounts for such inter-dependencies, thus capturing the context of each word in their corresponding sen-
tences, has been proposed by Lintean and Rus (2015).  

The optimal lexico-relational alignment method aims at finding an optimal global assignment of words in 
one sentence (e.g., a student response) to words in the other sentence (e.g., the expert answer) based on 
their w2w similarity, while simultaneously maximizing the match between the syntactic dependencies. Ac-
counting for the syntactic dependencies among words is the primary advantage of the quadratic assignment 
problem (QAP; Koopmans-Beckmann, 1957) formulation versus the job-assignment formulation of the 
student response assessment task (Rus & Lintean, 2012).  

The formulation of the QAP problem for textual semantic similarity proposed by Lintean and Rus (2015) 
is to maximize the objective function QAP (see below), where matrix F and D describe dependencies be-
tween words in one sentence and the other, respectively, while B captures the w2w similarity between 
words across the two texts. Also, they weighted each term resulting in the following formulation: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑄𝑄𝑄𝑄𝑄𝑄(𝐹𝐹,𝐷𝐷,𝐵𝐵) =  𝛼𝛼�
𝑛𝑛

𝑖𝑖=1

�
𝑛𝑛

𝑗𝑗=1

𝑓𝑓𝑖𝑖,𝑗𝑗𝑑𝑑𝜋𝜋(𝑖𝑖)𝜋𝜋(𝑗𝑗)  + (1 − 𝛼𝛼)�
𝑛𝑛

𝑖𝑖=1

𝑏𝑏𝑖𝑖,𝜋𝜋(𝑖𝑖) 

The 𝑓𝑓𝑖𝑖,𝑗𝑗 term quantifies the (syntactic or semantic or of other nature) relation between words 𝑖𝑖 and 𝑗𝑗 in text 
A which are mapped to words 𝜋𝜋(𝑖𝑖) and 𝜋𝜋(𝑗𝑗) in text B, respectively. The distance 𝑑𝑑𝜋𝜋(𝑖𝑖)𝜋𝜋(𝑗𝑗) quantifies the 
semantic relation between words 𝜋𝜋(𝑖𝑖) and 𝜋𝜋(𝑗𝑗). For words 𝑖𝑖 and 𝑗𝑗 that have a direct syntactic dependency 
relation, i.e., an explicit syntactic relation among two words such as subject or direct object, the “flow” 𝑓𝑓𝑖𝑖,𝑗𝑗 
is set to 1 (0 – if not direct relation). Similarly, the distance 𝑑𝑑𝜋𝜋(𝑖𝑖)𝜋𝜋(𝑗𝑗) between words 𝜋𝜋(𝑖𝑖) and 𝜋𝜋(𝑗𝑗) is set to 
1 in case there is a direct dependency relation among them and 0 otherwise. 

A brute force solution to the QAP problem, which would generate all possible mappings from words in a 
sentence to words in the other sentence, is not feasible because the solution space is too large. For example, 
when considering all possible pairings of words between sentence A, of size n, and sentence B of size m, 
where n < m, and there are no limitations on the type of pairings that can be made, there are  
𝑚𝑚!/(𝑚𝑚− 𝑛𝑛)! possible solutions. For sentences of average size 𝑛𝑛 = 𝑚𝑚 = 20 words, there are 2.4 * 1018 
possible pairings. An branch-and-bound algorithm was proposed by Lintean and Rus (2015) to efficiently 
explore the solution space in search for the optimal solution. 

Interpretable alignment based approaches perform first an alignment between words in one text versus 
words in the other texts while at the same time identifying semantic labels for aligned words (Banjade, 
Maharjan, Gautam, and Rus, 2016). The advantage of adding semantic relationships between the aligned 
words is that an explanation for the alignment can be provided based on these w2w semantic relationships. 
The set of semantic relationships used were proposed as part of the interpretable Semantic Textual Simi-
larity (iSTS) task (Agirre et al., 2016), organized by SemEval – the leading semantic evaluation forum, and 
includes: EQUI (semantically equivalent), OPPO (opposite in meaning), SPE (one chunk is more specific 
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than other), SIMI (similar meanings, but not EQUI, OPPO, SPE), REL (related meanings, but not SIMI, 
EQUI, OPPO, SPE), and NOALI (has no corresponding chunk in the other sentence). It should be noted 
that we presented alignment based methods focusing on words. Other units of analysis can be used such as 
chunks (Stefanescu, Banjade & Rus, 2014a).  

Resources 

Aside from a quantitative and qualitative outcome for T2T tasks, there recently has been a push to offer an 
explanation of the final T2T outcome. To this end, several resources and efforts have been reported as 
explained below. Additionally, we list some other relevant resources that have been developed and released 
publicly in order to foster research in this area. 

The SEMILAR Corpus. Rus and colleagues (2012) developed the SEMILAR corpus, which is the richest in 
terms of annotations as besides holistic judgments of paraphrase they provide several word level similarity 
and alignment judgments. The corpus includes a total of 12,560 expert-annotated relations for a greedy 
word-matching procedure and 15,692 relations for an optimal alignment procedure. 

The Student Response Analysis (SRA) Corpus. The SRA corpus (Dzikovska et al., 2013) consists of student 
answer-expert answer pairs collected from two ITSs. Both student answers and expert answers were related 
to specific tutorial questions from different science domains. There are 56 questions and 3,000 student 
answers from the so-called BEETLE corpus as well as 197 assessment questions and 10,000 answers from 
the ScientsBank corpus. These pairs were annotated using a combination of heuristics and manual annota-
tion. They used a 5-way annotation as opposed to the typical 2-way annotation. 

The User Language Paraphrase Corpus (ULPC; McCarthy and McNamara 2008). ULPC contains pairs of 
target sentence/student response texts. The student responses were collected from experiments with the ITS 
iSTART. Students were shown individual sentences collected from biology textbooks and asked to para-
phrase them. These pairs have been evaluated by expert human raters along 10 dimensions of paraphrase 
characteristics. The “paraphrase quality bin” dimension measures the paraphrase quality between the target-
sentence and the student response on a binary scale. From a total of 1,998 pairs, 1,436 (71%) were classified 
by experts as being paraphrases. A quarter of the corpus is set aside as test data. The average words per 
sentence is 15. 

DeepTutor Anaphora Resolution Annotated (DARE): The DARE corpus (Niraula, Rus, Banjade, 
Stefanescu, Baggett, and Morgan, 2014) is an annotated data set focusing on pronoun resolution in tutorial 
dialogue. Although data sets for general purpose anaphora resolution exist, they are not suitable for dia-
logue-based ITSs, which is the reason the DARE corpus was created. The DARE corpus consists of 1,000 
annotated pronoun instances collected from conversations between high school students and the ITS Deep-
Tutor. The data set is publicly available. 

DeepTutor Tutorial Dialogue Negation Annotated (DT-Neg; Banjade and Rus, 2016) Corpus. Negation is 
found more frequently in dialogue than typical written texts, e.g., literary texts. Furthermore, the scope and 
focus of negation depends on context in dialogues more so than in other forms of texts. Existing negation 
data sets have focused on non-dialogue texts such as literary texts where the scope and focus of negation is 
normally present within the same sentence where the negation cue is located and therefore are not the most 
appropriate to inform the development of negation handling algorithms for dialogue-based systems. The 
DT-Neg corpus contains texts extracted from tutorial dialogues where students interacted with the ITS to 
solve conceptual physics problems. The DT-Neg corpus contains 1,088 annotated negations in student re-
sponses with scope and focus marked based on the context of the dialogue. 
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DeepTutor Student Answer Grading Context-aware Annotated (DT-Grade; Banjade, Maharjan, Niraula, 
Gautam, Samei & Rus, 2016) Corpus. The DT-Grade corpus consists of short constructed answers extracted 
from tutorial dialogues between students and the DeepTutor ITS and annotated for their correctness in the 
given context and whether the contextual information was useful. The data set contains 900 answers of 
which about 25% required contextual information to properly interpret. 

Semantic Similarity Toolkit (SEMILAR; Rus, Lintean, Banjade, Niraula & Stefanescu, 2013). The SEMI-
LAR software package offers users (researchers, practitioners, and developers) easy access to fully-imple-
mented semantic similarity methods in one place through both a graphical user interface (GUI)-based in-
terface and a software library. Besides productivity advantages, SEMILAR provides a framework for the 
systematic comparison of various semantic similarity methods. The automated methods offered by SEMI-
LAR range from simple lexical overlap methods to methods that rely on w2w similarity metrics to more 
sophisticated methods that rely on fully unsupervised methods to derive the meaning of words and sentences 
such as LSA and LDA to kernel-based methods for assessing similarity. 

Conclusions and Recommendations for Future Research 

Given the importance of student-generated open responses in educational context, which, we argue, are the 
only assessment modality that leads to true assessment because are the only assessment modality that re-
veals students’ true mental model, future educational technologies including the Generalized Intelligent 
Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, Sinatra 
& Johnston) should include open-ended assessment items and corresponding facilities that enable the auto-
mated assessment of such open-ended student responses.  

True assessment is necessary to infer an accurate picture of students’ mastery level, which in turn is para-
mount for triggering appropriate feedback and instructional strategies and ultimately the effective and effi-
ciency of the underlying educational technology. Considering the early stage nature of the assessment mod-
ule in the educational processing pipeline and therefore the positive or negative cascading effect it may 
have on the downstream modules (learner model, feedback, strategies, and outcome, e.g., learning) the 
importance of automated assessment of open-ended learner responses cannot be overstated. 

Assessing students’ open-ended responses is complex and requires a multitude of factors to be considered, 
as illustrated in this contribution. However, this complexity is surmountable and there has been tremendous 
progress in terms of advanced methods and resources that have been developed and publicly released. 
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Psychometrician, and Computer Scientist Perspective 

Samuel Greiff1, Dragan Gasevic2, and Alina A. von Davier3 
University of Luxembourg1, University of Edinburgh2, ACTNext by ACT, Inc3 

Introduction 

Process data offer potentially rich information on how test-takers navigate through complex assessment and 
learning environments such as intelligent tutoring systems (ITSs). However, the actual exploitation of these 
data strings for facilitation of assessment and learning has proven considerably more difficult than initially 
anticipated and has often lacked the interdisciplinary efforts needed for deriving a comprehensive perspec-
tive. In this chapter, a cognitive psychologist, a psychometrician, and a computer scientist elaborate on the 
most prominent challenges they deem important when exploiting the large amounts of computer-generated 
process data and when trying to reveal the fuzzy relations therein. In this, three different perspectives are 
presented that, in an effort to contribute to an interdisciplinary discussion, are then investigated with regard 
to their potential of convergence toward the common goal of making ITSs strong facilitators of learning 
and assessment. 

Over the last decades, tools aimed at measuring and enhancing a variety of skills and competencies have 
undergone tremendous innovation, most visibly associated with a comprehensive shift to computer-based 
assessment and computer-supported learning tools. One class of these sophisticated learning tools are ITSs. 
ITSs are complex computer-simulated environments that help “the student master deep knowledge/skills 
by implementing powerful intelligent algorithms that adapt to the learner at a fine-grained level and that 
instantiate complex principles of learning” (Graesser, Hu, Nye & Sottilare, 2016, p. 60) and in which a 
number of tasks and problems need to be solved throughout the process. Depending on the set of actions a 
person performs when working on an ITS, feedback and specifically targeted support is offered by the 
system. Importantly, the overall course of information and support offered by the system might vary de-
pending on the individual proficiency levels. Thus, along the way, several learning experiences, most of 
them individually tailored to the learner, are offered that are aimed at enhancing the target skills. 

For instance, one typical ITS is Operation ARIES (Millis et al., 2011). Operation ARIES sets up an envi-
ronment that targets a student population within a context of an alien invasion of the earth. Within several 
missions, test-takers need to solve tasks that all require scientific reasoning and evaluation of scientifically 
rigorous studies. An automated tutor helps test-takers and provides support to them with the aim of facili-
tating students’ qualitative science inquiry skills. However, ITS are not limited to student populations in 
K–12 or college. There are a number of ITS that mirror complex real-world scenarios and are used for 
training purposes in the military and business communities. 

The overarching purposes of ITSs are 1) to elicit skills and competencies, such as planning skills, teamwork, 
or scientific inquiry, that are relevant in academic and real-world contexts; and 2) to make use of automated 
feedback and support within a computer-based environment to enhance and facilitate these skills. Obvi-
ously, the implicit hope behind this rationale is that learning that occurs within ITSs will transfer to better 
performance outside of the ITS as well. This is a highly challenging task and it is no surprise that develop-
ing, introducing, and using a scientifically sound and valid ITS involves substantial effort and usually re-
quires interdisciplinary cooperation that combines expertise from a number of different areas. 
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This chapter illustrates the added value of an interdisciplinary understanding of the development and proper 
application of ITSs that includes views from three crucial areas: cognitive psychology, psychometrics, and 
computer science. Whereas cognitive psychology can contribute to the understanding of what happens in 
the human brain and which cognitive processes are involved when working on ITSs, psychometrics can 
show ways of how scientifically sound indicators can be derived out of the seemingly endless data streams 
provided by ITSs. Computer science needs to set constraints and explore possibilities of what is technically 
possible, how the content of an ITS can be put into action and how it connects to the field of computer 
science. It is only in their combination and interplay that interdisciplinary efforts can evolve into palpable 
outputs, that is, into useful ITSs of high quality and validity. In this chapter, a representative from each of 
the three prominent fields mentioned above (cognitive psychology, psychometrics, and computer science) 
discusses from their personal perspective the challenges in developing an ITS. This is not the ultimate word 
but more like a starting point for a collaborative discourse. At the end, we offer some suggestions on how 
the Generalized Intelligent Framework for Tutoring (GIFT) might accommodate the expertise from multi-
ple fields.  

The Cognitive Psychologist’s View 

“Targeting the cognitively relevant processes and adequately mapping them to theories of the human 
mind.” 

ITSs produce data. A lot of data. When a person interacts with an ITS, there is a continuous stream of data 
that emerges, including active interventions, answers to questions, inquiries, timestamps for each action, 
overall performance, and so forth. To researchers, and in fact to anybody who wants to understand what 
happens in the course of an ITS, this data stream is tempting but it is also dangerous. It is dangerous for at 
least two reasons. The first is that one quickly gets lost in the almost infinite amount of data and that it is 
extremely difficult to actually extract the often fuzzy relations between learning, performance, and single 
actions. The second and even more worrying is that when facing such amounts of data and when discovering 
some empirical relations, it is all too easy to forget about what behaviors actually stand for and what kind 
of underlying process they indicate (or do not indicate), even though this is fundamental for any valid 
interpretation. 

More specifically, for cognitive psychology, it is not so much the overt behavior that is interesting and 
relevant, but rather the underlying cognitive processes that are of interest. For instance, it is not intrinsically 
interesting that Cindy shows a steep learning curve and solves most of the ITS tasks correctly after working 
with the ITS for a while, whereas Ben does not. The interesting question is whether these differences can 
be mapped onto some differences in an underlying cognitive skill or competency, such as scientific reason-
ing, critiques, and inquiry, the target skills in “Operation ARIES”.  

A theory from cognitive science on the underlying processes is needed as a firm starting point. For example, 
in the field of individual problem solving, several processes are distinguished over the course of problem 
solving. In the Programme for International Student Assessment (PISA; cf. OECD, 2014 for details), there 
are four theoretical processes in problem solving: exploring and understanding, representing and formulat-
ing, planning and executing, and monitoring and reflecting. Consequently, different tasks are developed 
that target the different processes to varying extents. In a similar way, in the field of science inquiry, several 
aspects of the overall skill (or set of skills) are separated. For instance, Gobert, Sao Pedro, Baker, Toto, and 
Montalvo (2012) distinguish between hypothesizing, experimenting, interpreting data, and communicating, 
with three out of these four separated into further subskills. 

These theoretically motivated conceptions about the underlying cognitive processes could serve as starting 
point of what the actual target dimensions are in ITSs and beyond, as compared to specific behaviors that 
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are unconnected to an underlying theory. However, there is usually no one-to-one mapping between specific 
behaviors and the cognitive processes associated with them and the reasons for this are manifold with one 
of them being the inherent difficulty of mapping specific behaviors onto cognitive processes. This is not 
surprising given that even high-resolution imaging methods of the brain allow only to a limited extent for 
straightforward relations between mental performance and activation of brain areas (but see Haier, 2016, 
for a worthwhile read on what neuroscience can tell us about intelligence). 

Put differently, there is no isomorphic mapping between a specific behavior and a specific cognitive pro-
cess. Time-on-task (TOT), as an example, has been targeted in a large body of research on cognitive per-
formance and has frequently caught researchers’ attention. However, measures of TOT can mean very dif-
ferent things; a short TOT can be indicative both of immediate knowledge of the answer and of low moti-
vation to engage with the task. A long TOT, on the other hand, can be indicative of in-depth cognitive 
processing as well as of slow reading time when the task involves some written instruction. In fact, we 
know surprisingly little on how the connection between specific behavioral actions and patterns on the one 
hand and cognitive processes on the other hand can be firmly established. However, establishing this con-
nection is crucial and the only reasonable starting point for this is sound cognitive theory. 

An example of how a general framework on cognition can serve as starting point is provided by the work 
of Goldhammer et al. (2014). Within a dual-processing theoretical framework (e.g., Schneider & Chein, 
2003), the authors derive differential expectations of how TOT relates to performance measures in two 
different types of tasks: problem solving and reading. The results of Goldhammer and colleagues confirm 
that individual differences in TOT are positively related to overall performance differences in problem 
solving as a cognitive task that requires large amounts of control, whereas there is a negative relation be-
tween TOT and reading performance in some reading materials that require largely automatized cognitive 
processing with low levels of complexity. Thus, depending on the level of automatization, either short or 
long TOTs indicate the adequate allocation of resources to a task. 

In a similar way, depending on the level of control (i.e., automatic vs. controlled processing), interindividual 
differences in TOT when working on ITSs might be an important marker of the type of the underlying 
processing going on. Even further, intra-individual differences in TOT (i.e., differences over time within 
one individual), for instance, at the beginning and at the end of working on an ITS, might be indicative of 
a change in resource allocation and worth analyzing. That is, a person working on an ITS might learn how 
to appropriately allocate time resources depending on the level of control needed. If so, the intra-individual 
profile of TOT could be an indicator of learning (for an example see Forsyth, Graesser, Pavlik, Millis & 
Samei, 2014). 

However, the core point from the perspective of a cognitive psychologist is that some kind of theoretical 
embedding is required to map specific behaviors onto cognitive processes and integrating them into a theory 
on the human mind. Goldhammer et al. (2014) employ a rather broad and general theory that serves as an 
example of how such a theoretical connection can be readily (and even rather easily) achieved. Obviously, 
this is not a mere theoretical effort, but requires empirical validation of the theoretical assumptions in a 
second step. This research-driven effort may sometimes conflict with the pragmatism needed when devel-
oping ITS for particular practical applications. However, in the long run, the validity and the utility of ITSs 
will greatly benefit from explicated efforts along theory guided design and systematic empirical methodol-
ogies.  
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The Psychometrician’s View 

“Objectively measuring the skills, abilities, and educational achievement relevant in ITSs with statistical 
tools embedded in measurement theory.” 

Technology is a powerful foundation for the assessment of complex skills through higher fidelity simula-
tions and ITSs, without manually and painstakingly recording the details of a specific performance, often 
without the use of pre-and post-tests, and without self-reports (Rosen & Foltz, 2014; Hao, Liu, von Davier 
& Kyllonen, 2015). We are now able to record the actions of multiple test-takers in real time if the assess-
ment takes place in a virtual environment. Moreover, the available technology allows the collection of 
different types of data, including multimodal data, which can record affective behavior of test-takers during 
the performance, learning, and assessment process (CPS; see Luna Bazaldua et al., 2015). However, the 
richness of the data that we can collect is beyond the scope of standard psychometric models. Data from 
ITSs and performance assessments require different types of analyses, from time-series models and dy-
namic models from statistics and economics, to algorithms from data mining and machine learning. Re-
cently, von Davier (2015) introduced the concept of computational psychometrics to emphasize the need to 
blend the data-driven algorithms in a theoretical psychometric framework in order to support accurate and 
valid measurements.  

Process data include the minutia of actions of the test-takers and fine-grain states of the virtual tutoring 
environment during the interaction of the test-takers with the ITS. The process data are automatically col-
lected and stored into log files in conjunction with the outcomes of the test-takers on the performance tasks. 
Hao, Smith, Mislevy, von Davier, and Bauer (2016) describe systematic ways to design structured log files. 

One challenge in analyzing log file data is determining the meaning of individual actions. There may be 
some process variables that are relatively easy to measure, such as the identification of a specific path 
through the different levels in an ITS or the time spent at each task. The number of attempts in solving a 
problem and the number of hints requested by the test-takers before solving a problem correctly can also 
be easily counted. However, beyond these kinds of descriptive variables, interpreting actions may be much 
more complex because of the dynamics of learning and the sheer volume of data generated in log files. In 
fact, both the cognitive psychologist and the psychometrician struggle with the sheer amount of data and 
the usual lack of structure found in log files.  

The major challenge in analyzing ITS data from a psychometrician’s point of view resides in the depend-
encies and multidimensionality in the data. First, there are dependencies among the responses of the test-
takers to the questions or items at each point in time. Some of these dependencies are due to the number of 
attempts to solve each item, some others are due to the task design, for instance, a reading passage with 
multiple questions referring to the same passage. Then, there are dependencies across time, which occur 
due to the fact that the test-taker is expected to learn over time from the interaction with the previous items. 
These data dependencies invalidate the assumptions of the traditional psychometric models, such as item 
response theory (IRT) models. Second, the multidimensionality in the data comes from the subskills or 
knowledge units that comprise and define the domain to be taught in the ITS. Extracting key features from 
the noise surrounding such data is crucial not only to make analysis computationally tractable (Masip, Min-
guillon & Mor, 2011), but also to extract relevant features of test-taker performance. One way to attempt 
to find patterns among these different types of data is to make use of data-mining techniques (Baker, 2015).  

The outcome data that are used in ITS for measuring test-takers’ skills and subskills are collected through 
the evaluative scoring. This is the scoring of step-by-step responses of individuals throughout the process. 
Here we distinguish between the scored-responses and the process of delivering a response. In other words, 
some parts of the process data are directly scorable and considered outcome data. For example, if the test-
takers respond to explicit questions, then those responses are “outcome data”. The timing information and 
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the navigation through the ITS are process data. While we often analyze process data and creative measures 
that aggregate over observations in ITSs, or examine sequences of observations that match strategies, we 
may also apply stochastic processes to the process data that were not aggregated, hence the distinction 
between outcome and process data. Nevertheless, the outcome data exhibit the same dependencies and 
multidimensionality described previously. For example, a test-taker’s actions during the performance task 
can be scored as correct or incorrect by a human rater or an automatic scoring engine for each attempt. In 
addition, pretest and posttest data, if available, are individual outcome data. If either of these tests is avail-
able, then the test scores that contain information about the test-taker ability can be corroborated with the 
information contained in the actions scored throughout the task.  

Until recently, the methodology used for measuring test-takers’ proficiencies and skills in ITSs has been 
the subject of the field of educational data mining (EDM), computer science, and cognitive science rather 
than of psychometrics. In the frameworks of EDM and computer science, the most common approach is 
the Bayesian knowledge tracing (BKT) method (Corbett & Anderson, 1995). In this method, the test-taker 
knowledge is modeled as a latent variable. The latent variable is updated based on the correctness of the 
observed responses to the items, which present test-takers’ opportunities to apply the skill that is being 
taught by the ITS (these are the responses to explicit questions, such as multiple-choice items and are called 
the outcome data in the description above). Test-takers receive attribute‐specific feedback based on many 
practice opportunities over time. The method assumes that knowledge is dichotomized and represented as 
a set of binary values of variables, one per skill; the skill is either mastered by the test-taker or not after 
each one particular observation. Observations in BKT are also binary: a test-taker gets a problem either 
right or wrong, which is used to estimates the levels of proficiency of the test-taker in each of the knowledge 
units/skills in a Bayesian framework.  

BKT is a special case of a stochastic process called the hidden Markov models (HMMs). This HMM in-
stantiation has two latent states, “learned” and “not learned,” and describes a learning process. In its com-
mon parameterization, it has four parameters: two parameters that describe the learning (the probability that 
the skill is known before the first item is presented and the probability that the skill is learned after an item 
is presented) and two parameters that describe the performance (the probability of a correct guess and the 
probability of a slip). The traditional BKT does not model the potential “forgetting” of a learned material. 
The HMM can deal with the data dependencies over the course of the ITS. The BKT method relies on the 
decomposition of the construct to be learned into knowledge units, which is conceptually slightly similar 
to a learning progression in formative assessments, and it can be as sophisticated as a learning progression.  

This step is followed by a mapping of the items and tasks onto these knowledge units, not unlike a Q-matrix 
in diagnostic models in psychometrics. The test-taker will need to solve correctly a specified number of 
items from each knowledge unit before moving ahead to the next knowledge unit or next level. The number 
of attempts and hints that the test-taker receives, the number of responses, or the path of the test-taker 
through the knowledge units create traces of the test-taker’s knowledge. ITSs often uses BKT for mastery 
learning and problem sequencing and most often BKT has only skill-specific parameters, but Yudelson, 
Koedinger, and Gordon (2013) extended this model by introducing test-taker-specific parameters. The BKT 
method assumes that the subskills are independent to address the complications due to multidimensionality. 
By applying the BKT method to a very large data set, one hopes that violating this assumption will not 
substantially impact the ongoing estimation of the subskills. 

Very few attempts have been made in using any of the traditional psychometric methods on ITS data be-
cause of the dependencies among the items and the dependencies over time that are impossible to account 
for in the traditional models. Some studies considered dynamic Bayesian networks (DBNs) for modeling 
these data. Other approaches that have been considered are traditional HMMs to model the latent states of 
learning across different units of knowledge and the probability of transitioning from one state to another.  
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The Computer Scientist’s View 

“Building new computational methods and techniques for the development of learning systems and the 
analysis of data about learning.” 

From a computer scientist’s perspective, much of the early work in ITSs was built on the use of different 
artificial intelligence techniques. Commonly used techniques coincided with those applied in the develop-
ment of expert systems such as (fuzzy) production rules in AutoTutor for dialogue-based tutoring of science 
(Graesser, 2016) and constraint-based modeling in SQL-Tutor for tutoring about the development and use 
of relational databases (Suraweera & Mitrovic, 2002). The application of these techniques has significantly 
improved learning outcomes, help seeking behavior, and meta-cognition (Ma, Adesope, Nesbit, 2014). The 
early intelligent component of these systems came from techniques typically based on symbolic knowledge 
representation and formal reasoning traditions of artificial intelligence. However, the early ITSs could not 
handle data about learning experiences accumulated by many learners. They were designed as closed sys-
tems whose domain, tutoring, and assessment modules were defined during the development phase and 
their changes would be difficult to implement.  

The field of educational data mining emerged as an attempt to address some of the above limitations of 
early ITSs. There was a discovery-based analysis of digital traces of learners’ activities (also known as log 
or trace data). Borrowing the foundations from data mining and machine learning, educational data mining 
has developed methods that are commonly used to address a number of tasks such as prediction perfor-
mance of learners, identification of strategies commonly used by different test-taker subpopulations, and 
probability of guessing and slipping rates while studying (Baker & Yacef, 2009). The commonly used 
methods for addressing various tasks are based on clustering, classification, and association rule mining 
with the most used methods being decision trees, neural networks, and Bayesian modeling (Romero & 
Ventura, 2010). The main computational challenge in educational data mining is related to the design of 
scalable data-mining methods for analysis by incorporating components taken from learning theories and 
psychometric theories.  

Principles established in ITSs have recently been applied in the development of more open learning envi-
ronments. For example, an authoring toolkit for the development of ITSs can now be used to deploy ITSs 
onto open-ended learning environments, such as massive open online course (MOOC) platforms (Aleven 
et al., 2015). As mentioned earlier, the most prevalent method in educational data mining is BKT (Corbett 
& Anderson, 1995), which now found its applications outside ITSs such as MOOCs. To support such ap-
plications, the work of computer scientists on BKT also involved the design of computationally efficient 
and scalable versions of the BKT algorithm and the construction of practical software libraries that can be 
used for both the development of learning systems and the analysis of different data sets (Slater et al., in 
press).  

A number of phenomena are still not fully understood about learning with the use of trace data only, alt-
hough many insights can be obtained from the analysis of log data about the use of ITSs. For example, trace 
data can be used to detect some of learners’ affective states (Bosch et al., 2016) and explain how affective 
states change as learners are interacting with an ITS (D’Mello & Graesser, 2012). Alternative sources of 
data about learning with ITSs (and beyond) – such as galvanic skin response, eye gazing, and face recog-
nition – have attracted much attention recently to complete the use of trace data (Calvo & D’Mello, 2010; 
Azevedo, 2015).  

In general, there are two main challenges from the perspective for analysis of such multi-channel data. First, 
the shortage of standard methods that are used for analysis of different data streams (Sottilare, Graesser, 
Hu & Holden, 2013). While cognitive psychologists collect huge amounts of data from multiple channels, 
the challenge for computer scientists is to provide them with methods that go beyond the basic analysis 
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(e.g., time plots) of data streams from a single channel (e.g., electro-dermal activity). Therefore, feature 
engineering in EDM for data streams is an important challenge for computer scientists who need to collab-
orate closely with cognitive psychologists and psychometricians to identify meaningful yet practically use-
ful features from these data streams. Future engineering also needs to make sure that theoretically valid 
constructs are identified that are of relevance to cognitive psychologists. Second, the need to combine mul-
tiple sources of data in the analysis is another challenge of computer scientist in EDM and ITS applications 
that needs to be addressed. For example, there is a need to triangulate findings obtained from data streams 
with data collected through content analysis of discourse data collected with either think aloud protocols or 
group discussions. However, creating a combined and comprehensive analysis model that incorporates dif-
ferent data types is an open research challenge.  

Conclusions and Recommendations for Future Research 

In this chapter, a cognitive psychologist, a psychometrician, and a computer scientist each presented their 
view on the most prominent challenge in their respective field when exploiting the large amounts of data 
collected within ITSs and when considering how this type of data could be used to improve the validity of 
ITSs. Each of the three researchers did so without knowing specifically what the others were writing and 
when collating the entire chapter, it came a bit as a surprise that the overlap across perspectives was more 
pronounced and substantial than initially expected. For instance, in all three perspectives, the large amount 
of data and the fuzzy relations between the different variables are flagged as a major challenge albeit with 
somewhat different emphasis depending on the specific view. 

This implies that, on the one hand, the discourse is not at its beginning anymore and that substantial ex-
change between the fields occurs, whereas there is, on the other hand, still ample room for improvement. 
This is important for the development and implementation of GIFT for several reasons. One of them is that 
GIFT now has the opportunity to fortify ITSs with more rigorous and advanced assessment tools that are 
developed under a multidisciplinary perspective. That is, when assessing knowledge, skills, and abilities of 
test-takers, it is beneficial for the validity of ITSs to incorporate psychometric advances and to implement 
assessment tools that allow for inferences on the level of psychological constructs and not on specific em-
pirical indicators only including all three perspectives. In addition to this, the development of ITSs within 
the general GIFT architecture needs to ensure that all stakeholders – and this includes cognitive psycholo-
gists, psychometricians, and computer scientists alike – have the chance of making specific and targeted 
input to achieve the best and most relevant information from several disciplines. To this end, each of the 
three sections contains a brief summary with outlook and all of these specific outlooks could well serve as 
an overall outlook of this chapter. So, in concluding, it only remains to say that the kind of discourse ex-
ampled in this chapter is already ongoing in the real world and within ITSs, but that – as this discourse 
intensifies and as borders across disciplines become increasingly weak – the validity of the use of process 
data as well as ITSs in a more general sense and within a more general framework such as GIFT will 
continue to increase as we cross borders in interdisciplinary efforts. 
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CHAPTER 15 – Principles of Assessment in the Generalized 
Intelligent Framework for Tutoring (GIFT) 

Gregory A. Goodwin 
US Army Research Laboratory 

Introduction 

The challenges of assessing human performance have been around for centuries, long before the advent of 
the Generalized Intelligent Framework for Tutoring (GIFT). This section focuses on a discussion of prin-
ciples of assessment and on how those principles should be applied in the context of GIFT delivered train-
ing. While concepts like reliability and validity are discussed, the goal of this section is not simply to pro-
vide a review of basic psychometric terms and methods. Rather, the authors have focused more on applying 
lessons learned from their respective experiences and disciplines to make recommendations on the devel-
opment and design of GIFT. 

The chapters examine quite a range of topics from the somewhat philosophical (e.g., understanding the 
reasons and goals of assessment) to the very practical (e.g., developing an instructor dashboard to make 
student performance measures more accessible to instructors). Key themes that run through these chapters 
include understanding how evidence and data can be used to automatically support the validation of assess-
ments in GIFT, creating a standardized method for implementing assessments in GIFT, and providing trans-
parency of assessments to users of GIFT.  

Chapter Summaries 

Why Assess: The Role of Assessment in Learning Science & Society 

Benjamin D. Nye, Piotr Mitros, Christian Schunn, Peter Foltz, Dragan Gašević, Irvin R. Katz 

This chapter begins with some challenging questions like: Why do we assess? What outcomes and goals 
are worth assessing? What outcomes and goals are possible and impossible to assess? Are there cases where 
assessment might be harmful, and why? In answering these questions, the authors explore the trade-space 
of assessment. All assessments have strengths and weaknesses and understanding those is necessary to 
choose the most appropriate measure. 

Assessments can have unintended consequences. For example, we know that high-stakes assessments that 
are used to determine pay and promotion for teachers or rankings of schools often pressure instructors to 
narrowly focus their teaching on the test. Rather than trying to teach students a broad range of skills that 
they need, instructors drill students on test-taking techniques and on solving the kinds of problems that are 
likely to be on the test. Fortunately, the authors note, reliance on these high stakes tests are giving away to 
lower-stakes, formative assessments in educational settings. 

In selecting assessments, consideration should be given to four primary factors: reliability, validity, use, 
and proportionality. Reliability refers to the stability of the measure. Validity and use are related in that 
they should be aligned. For example, a measure that is designed to address math skills should not be used 
to determine whether someone should be a mathematician. Finally, proportionality refers to the alignment 
between the importance of the outcome being measured and the priority of that measure in the instrument.  
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The authors provide recommendations for assessment design and also discuss the connection between as-
sessment and societal goals, getting at the issue of whether we are assessing things that matter. Ultimately 
the authors remain optimistic about the role of assessment in intelligent tutoring systems (ITSs) and educa-
tion more broadly. They see positive trends toward healthier uses of assessment and they believe that ITSs 
may be part of a trend toward implementing continuous, low stakes, formative assessments that serve a 
constructive role facilitating learning of critical knowledge and skills.  

Assessment of Forgetting 

Philip I. Pavlik Jr., Jaclyn K. Maass, and Jong W. Kim  
 
This chapter discusses the importance of several factors including forgetting, task type, and assessment 
methodology in the measurement of knowledge and skills. When considering task type, the main distinction 
that needs to be made is the difference between semantic knowledge and procedural knowledge when con-
sidering assessment. For example, when assessing semantic knowledge, different techniques have different 
sensitivities to recall and forgetting. Tests of recognition are usually much easier and less sensitive to for-
getting than tests of recall, or transfer.  

When assessing procedural skills, techniques will vary depending on whether the evaluation is of a motor 
or a cognitive procedure. Motor procedures should be evaluated in a way that allows the student to demon-
strate the skill with good physical fidelity. Cognitive procedures, like tactical decision making, need to 
consider the situation in which those procedures are executed. That is, it is important to replicate the con-
ditions that require the skill to be executed, so that the learner also gets practice determining that the cog-
nitive procedure needs to be employed. 

Finally the authors talk about the fact that skills and knowledge decay over time and assessments should 
take this into account. An assessment immediately after training will typically show the maximum recall 
but over time, performance and/or knowledge declines. The authors point out that, if the goal of the training 
is to produce long-term recall, GIFT should adjust the training schedule to facilitate long-term retention. 
For example, spaced practice over a long period of time. On the other hand, if the student is going to practice 
the skill or use the knowledge in his/her job almost immediately, then the training schedule could be used 
that does not need to promote long-term retention. 

Validity Issues and Concerns for Technology-based Performance Assessments Con-
clusions and Recommendations for Future Research 

Irvin R. Katz, Michelle M. LaMar, Randall Spain, Juan Diego Zapata-Rivera, Jo-Anne Baird, and Samuel 
Greiff  

This chapter provides an excellent discussion of the complex nature of validity. One of the primary themes 
of the chapter is that there are many ways to measure validity and the way that one might choose depends 
on the claims being made about the assessment. As the authors put it: “Assessment is a form of evidentiary 
argument, for which evidence is collected in support of a particular claim that is defined by the testing 
purpose”.  

To illustrate this point, consider the Scholastic Aptitude Test (SAT). This test, taken by millions of high 
schoolers hoping to go on to college offers scores on dimensions like math and verbal ability. If the claim 
being made about these scores is that the scores reflect an overall math or verbal ability, then one would 
validate that claim by looking at student performance on a representative set of tasks that depend upon those 
respective abilities. On the other hand, if the makers of the SAT claim that it predicts grades in the first year 
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of college, then that claim would be validated very differently (for example, by looking at the correlation 
between SAT scores and freshman year GPAs.  

Technology provides unique ways of conducting assessments that were inconceivable until recently. Tech-
nologies such as computer adaptive testing, natural language assessments, game-based assessments, and 
more, have both opened exciting new opportunities for assessment and new challenges for the validation 
of those assessments. In the last section of this chapter, the authors discuss some of the challenges for 
validation that are created by these technology based assessment methods. 

Toward Systematic Assessment of Human Performance Interventions in the US 
Army: An Assessment Process Framework 

Kara L. Orvis, Jared M. Freeman, Jeffrey M. Beaubien, Clayton W. Burford, Joan Johnston, Lauren 
Reinerman-Jones, Grace Teo 

This chapter describes an assessment process framework (APF) to standardize the conduct of training as-
sessments within the Army. The APF was developed to be broadly applied across the evaluation of tech-
nologies, studies of training interventions, the introduction of new work procedures and policies, the adop-
tion of new organizational structures, and so forth. At the end of the chapter, the authors outline how it 
could be useful for planning assessments in GIFT.  

The APF identifies the major steps for planning and executing an assessment. This process begins with the 
receipt of a task to conduct an assessment. The assessment team then plans the assessment by first refining 
the goals and framework. This entails identifying the hypotheses to be tested and/or the question to be 
answered. It also includes the identification of a theoretical model to predict the effects to be observed. 
Next, the team defines its measurement methods. Once the plan is complete, the team should develop ma-
terials and pilot test the measures to insure that everything works as expected. The final design and materials 
would then be approved by the sponsor and then the assessment can be conducted.  

In the final section of the chapter, the authors describe how the APF could be applied to developing assess-
ments in GIFT. Currently, there is no framework for a course developer building assessments in GIFT. It 
is just assumed that the course developer will know what to assess and how, but this may not be a valid 
assumption. Providing a framework and perhaps integrating that into the GIFT authoring tool has the po-
tential to insure better quality control for the development of assessments in GIFT.  

Assessment in Intelligent Tutoring Systems in Traditional, Mixed Mode, and Online 
Courses 

Anne M. Sinatra, Scott Ososky, and Robert Sottilare 

This chapter discusses possible ways of using GIFT for instruction in traditional, mixed mode, and online 
courses. For example, GIFT might be used to provide a block of instruction in a classroom or it might be 
used for remedial training for students that are having trouble with concepts in the class. It might also be 
used to provide an in-class quiz or to provide preparatory instruction for an in-class lesson. There are many 
other possible uses of GIFT in these different modes of instruction but all of them fundamentally boil down 
to being able to use the assessment capabilities of GIFT.  

Currently however, GIFT does not have a convenient, easy to use means of viewing the results of learner 
performance and interactions. This highlights the need for an instructor dashboard. Though such a dash-
board does not currently exist in GIFT, the authors describe a notional user interface and functionality that 
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could be associated with an instructor dashboard. Some of the measurements that an instructor dashboard 
would facilitate include measures of learner progress through the material, learner attitudes about the train-
ing, learner behaviors and performance, and interactions among learners when doing group exercises to 
name a few.  

Lessons Learned from Large-scale e-assessments: Future Directions for GIFT 

Jo-Anne Baird, Anne M. Sinatra, Gregory Goodwin 

Computerized assessment was embraced in high-stakes testing as soon as it was available. Originally, punch 
cards were used for statistical processing, optical scanners for processing multiple-choice answer sheets, 
and mainframe computers for handling the huge amounts of data processing and reporting. Unfortunately, 
despite decades of development of computer technologies, the use of computers in large-scale testing has 
evolved very little. Despite the possibilities of using complex virtual environments, games, and simulation 
to evaluate skills and knowledge in completely novel ways, computers are still largely used to deliver the 
same sorts of assessments that were traditionally given on paper and pencil tests.  

Two of the biggest challenges associated with current large-scale computerized tests are transparency and 
generalizability. Transparency refers to the ability of the test-takers to understand the basis of the evalua-
tion. Traditionally, large-scale test developers fought to keep their questions secret so that they could be 
reused and still maintain their validity. Test-takers were not shown the questions they answered correctly 
or incorrectly so they had no way to challenge the assessment of the exam. Just as in the civilian world, in 
the military, any system that provides an evaluation without offering a basis for that evaluation is unlikely 
to be trusted or used. Especially if the evaluations are suspect or have a negative impact on the careers of 
service members.  

Generalizability, the other challenge associated with large-scale testing, has to do with the transferability 
of the measure. That is, do the assessments generalize to real-world performance? As noted in other chap-
ters, this question is similar to the question of validity. Specifically, what evidence is there to support the 
claim that the assessment predicts/reflects performance in real world contexts.  

The use of GIFT in live or simulation based training events has both great promise and potential risks. It is 
possible that GIFT could use very sophisticated algorithms to provide performance assessments; however, 
if those assessments lack transparency, leaders will be unlikely to pay attention to them. Somehow GIFT 
will need to be able to provide evidence of the generalizability, transfer, and or validity of the measures.  

Recommendations for GIFT 

A theme that comes through all chapters in this section is the importance of the validation of measures in 
GIFT. Validation is described as an evidence-based conclusion. That it, the claims of an assessment, 
whether it is to make a prediction or measure a construct must be supported with some kind of evidence. 
Not all validations are created equally. For example validating a measure of declarative knowledge (e.g., 
does the learner know the state capitol of Florida?) can be verified with a simple multiple-choice question. 
On the other hand, validating a measure of leadership ability may be much more challenging. Currently, 
most assessments in GIFT are at a fairly low, declarative knowledge level but over time they will need to 
measure increasingly complex competencies in learners.  

All of the chapters envision tools that GIFT can use to facilitate and automate the process of validating 
these assessments. As GIFT evolves, it would be good to provide validation tools to content developers. 
For example, if GIFT were to have access to performance measures that were available from databases at 
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training sites, it might be possible to automatically examine the validity (or transfer) of skills learned in 
GIFT to other, more advanced live training or operational environments. Some of this validation data should 
probably be presented in the instructor dashboard.  

Additionally, GIFT should be able to generate measures of question reliability by cross-referencing related 
questions. For example if some items are poorly correlated with other items that assess understanding of a 
concept, then the inconsistent measure should be flagged as unreliable so that it can be removed from the 
test bank. 

Another means of improving the quality of questions is the incorporation of the APF, presented by Orvis et 
al., provides a standard method for developing assessments that could be used in GIFT. This is a tool that 
would be useful for course developers and the incorporation of this tool into the authoring interface might 
help to insure a consistent quality for assessments developed for GIFT. Future research should consider 
ways in which the assessment process framework, or at least some of its components, could be incorporated 
into the GIFT interface. 

Ultimately, these tools will need to provide a means of addressing the three questions of validity, generali-
zability, and transparency of GIFT’s assessments. That is, they will need to enable students and instructors 
to understand the basis or evidence for the assessments made by GIFT. Adding these capabilities to GIFT 
will be instrumental in insuring a widespread adoption of this system.  
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CHAPTER 16 – Why Assess? The Role of Assessment in  
Learning Science and Society 

Benjamin D. Nye1, Piotr Mitros2, Christian Schunn3, Peter W. Foltz4,5,  
Dragan Gašević6, and Irvin R. Katz7 

USC, Institute for Creative Technologies1, EdX2, University of Pittsburgh3, University of Colorado -Boulder4,  
Pearson5, University of Edinburgh6, Educational Testing Service7 

Introduction 

Why do we assess? What outcomes and goals are worth assessing? What outcomes and goals are possible 
and impossible to assess? How do we use assessment to improve all outcomes? Why has assessment be-
come controversial in recent years? Are there cases where assessment might be harmful, and why? What 
are sources and levels of error in assessment and how do those impact individual students, schools, and 
society? Are there times when we might not wish to assess certain outcomes?  

Even though assessment often is imperfect, it provides valuable input to the process of teaching, learning, 
and educational resource design. However, narrow assessment, especially used in high-stakes settings, can 
lead to worse educational outcomes (e.g., performance in later courses, workplace, or social settings; Hout 
& Elliott, 2011). Teachers may have a strong incentive to teach to the test, leading to a strong focus on 
memorization and rote procedural knowledge, while compromising key skills such as empathy, groupwork, 
mathematical maturity, and analytical reasoning. These are thorny problems – education shapes the skills1 
that shape society, so these questions have broad implications. With that said, by constraining the discussion 
to the kinds of constructs considered when building learning experiences, the goals of assessment become 
more tractable.  

To fully consider the role of assessment for learning technologies and intelligent tutoring systems (ITSs), 
we must first consider the role of assessment in general. Fundamentally, educational assessment measures 
relationships that influence the learning process and its outcomes (Gipps, 1994). These measurements are 
intended to help make better pedagogical decisions to achieve learning and behavioral outcomes. Tradi-
tionally, the results of these assessments are leveraged by students, teachers, administrators, policymakers, 
employers, and other educational stakeholders. More recently, artificially intelligent machines such as ITSs 
use assessments to achieve their goals. The types of assessments and skills included in ITSs have tradition-
ally been fairly uniform (e.g., math problem solving, recall) when compared to the broad range of potential 
assessments (e.g., peer review, team performance, complex simulations unfolding over hours or longer). 
With that said, ITSs have recently been growing to accommodate a greater range of assessments, such as 
interactive dialog-based assessments, assessments of physical tasks such as marksmanship, and assessments 
of project teams for engineering classes (Nye, Goldberg & Hu, 2015; Rosen, Ferrara & Mosharref, 2016; 
Chesler, Ruis, Collier, Swiecki, Arastoopour & Shaffer, 2015). This raises the question of what the next 
generation of ITS architectures should assess. 

This chapter considers the multiple roles for assessment of and for learning, the (sometimes competing) 
high-level outcomes we seek to measure, and how local measures of learning connect to broader societal 
goals. We begin with a discussion of “what gets measured gets done”, how the consequences of assessment 

                                                           
 
1 While this chapter frames assessment in terms of measuring skills, we recognize that educational assessment covers a wide 
range of constructs, from invariant traits to attitudes toward different academic domains. We believe that the majority of this dis-
cussion also applies to this broader conception of assessment, but focus on skills/knowledge as this is the primary focus of educa-
tional assessment. 
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plays out in the classroom (sometimes leading to an emphasis on superficial skills rather than deeper in-
struction), and approaches to mitigate this. These issues lead to a consideration of how we decide what to 
assess, and the role played by newly recognized 21st century skills, such as persistence, digital literacy, and 
teamwork. Then, connections between traditional skills, 21st century skills, and longer-term emergent out-
comes are discussed. We conclude with recommendations for generalized ITSs in terms of the domains 
they assess and how skills are measured across different time horizons, such as formative during learning, 
summative after learning, future on-the-job performance, social group/team performance, as well as with a 
discussion about strategies surrounding important outcomes that cannot yet be measured. 

What Gets Measured Gets Done: Intended and Unintended Consequences 

The primary benefit of educational assessment, like many assessments, is the old adage “what gets meas-
ured gets done,” attributed to Lord Kelvin (1883). Assessments can serve a variety of positive functions in 
education, relevant to either individual learners and/or for aggregates (e.g., classes, districts):  

1) Identifying areas of competence or weakness for specific topics (e.g., certification). 

2) Evaluating instructional strategies that could be replicated in other contexts. 

3) Tracking improvement over time. 

4) Adapting to student or class behaviors in real time or between lessons. 

As such, assessments play a critical role for monitoring and improving the learning process. When com-
pared to real-life tasks, assessments tend to cover a lower-dimensional set of skills (i.e., simplified tasks) 
or a lower-dimensional range of contexts (i.e., assessed under a reduced range of conditions). Despite this, 
even simple assessments may measure skills that are required for success in an extremely broad range of 
real-life tasks. For example, the ability to pass a simple literacy test implies basic fundamental skills needed 
for a vast number of careers and other roles in society. Traditionally, assessments for education tend to 
focus on preparation for a broad range of later experiences, which implies an emphasis on generalizable 
skills or competencies. On the converse, assessments for training (e.g., for an on-the-job task or piece of 
equipment) may instead rely on assessments that emulate specific tasks and their environment as closely as 
possible. In both cases, a variety of assessment tasks are possible. Some common examples of assessment 
tasks2 are shown in Figure 1. 

However, even when carefully designed, assessments are often weak reflections of the actual skills and 
knowledge that we want students to master. This is necessary for many traditional assessments designed to 
identify knowledge gaps, where measurements should ideally identify individual skills and many observa-
tions of applying the same skill are desired. Likewise, from the standpoint of instruction, assessments that 
simplify a problem can help to scaffold a limited subset of skills by practicing on highly simplified tasks 
(e.g., analogous to how athletes practice simple drills before coordinating them into a competitive game). 
In both cases, assessments from the lower-left of Figure 1 are logical: a large number of skills may need to 

                                                           
 
2 There is a great degree of overlap between these different kinds of assessments, and different types can also be combined (e.g., 
adaptive simulation-based assessments, open response situational judgement tasks, and peer-assessed portfolios). In general 
though, these assessments when used in practice tend to not be less complex than shown in Figure 1 (e.g., peer assessment is sel-
dom used for simple recall selected-responses, open responses such as essays or open problem solving tend to require integrating 
more skills than multiple-choice questions). 
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be measured quickly and reliably, with minimal confounds due to context. Unfortunately, when used indis-
criminately and exclusively, such simplified assessments can lead to optimizing for lower-dimensional 
models for skills that do not align to real-world tasks or outcomes.  

 

Figure 1. Number of skills and context involved in different assessment types. 

In Figure 1, the axes roughly indicate how assessment types are often used in practice, in terms of the 
number of skills they tend to measure simultaneously and the breadth of contextual information integrated 
into such assessments. Brief assessment tasks (e.g., multiple choice) often use abstract problems with little 
context, for maximum reusability and reliability. As assessments use more contextual information, they 
may leverage different but related tasks, the same task at different times/places, or different situations con-
taining a mixture of both relevant and irrelevant/incidental information to a task. Contextualized tasks might 
also involve a series of related or interconnected subtasks (common in real-life applications, performances, 
or simulations).3 

Stereotypical educational assessments are standardized multiple-choice exams taken annually (or even less 
frequently) and which are used to make inferences about student, teacher, school, and school district per-
formance. Such exams are very time-limited relative to the breadth of topics and skills they must assess. 
This means that they can either assess complex skills, such as creative problem solving or give statistical 
significance through repeated measures, but not both. A similar tradeoff can be found in assessing skills in 
context-free problems versus assessing the same skills in the context of rich, authentic problems (Anderson 
& Schunn, 2000). Further, when stakes are high, policies tend to be more conservative about leveraging 

                                                           
 
3 In this discussion, “varied contexts” means the conditions under which assessments test for certain skills. It does not have any 
implications about the range of contexts where the skill may be applied, which can be very broad, even for very simple assess-
ments (e.g., a multiple-choice test on basic addition). 
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innovations in test design, particularly when it impacts evaluations at the teacher, school, or district levels. 
For example, while adaptive testing has the potential to help optimize traditional tests of student knowledge 
(higher precision in fewer items), this is still not ubiquitous more than twenty years after initial explorations 
of its practical feasibility at scale (Mills & Stocking, 1996). As a result, while such tests are useful for 
identifying areas of competence/weakness and, in some cases, effective pedagogical strategies (e.g., value-
added classrooms), they occur too infrequently and are usually too shallow to be useful for tracking indi-
vidual improvement or adapting instruction. 

At the opposite end of the spectrum, we have seen an increased shift toward low-stakes continuous forma-
tive assessment. Continuous assessments allow for a more-varied set of assessment types (more time to 
apply skills) and also repeated-measures from similar tasks over time or contexts. These have been designed 
to help students to gain a better understanding of what they do and do not understand (metacognition) and 
also for instructors to calibrate their pedagogical content knowledge (Black, Harrison, Lee, Marshall & 
Wiliam, 2004). With growth of educational technology, systems for assessment have become increasingly 
integrated into classroom experiences, and increasingly rapid in providing feedback (Schell, Lukoff & Ma-
zur, 2013). Systems have also been moving toward gamification and open student models – visualizing and 
rewarding student progress individually or relatively to peers to motivate students to persistently engage 
with the system (e.g., Brusilovsky, Somyürek, Guerra, Hosseini & Zadorozhny, 2015). 

ITSs can contribute to continuous assessment and increase learning gains both through user-adaptation 
(VanLehn, 2011) and also through reports to instructors and students produce learning gains (Black et al., 
2004). As a side effect, such systems also tend to allow for mastery learning and self-paced learning, which 
can be beneficial for both learning and student affect (Kulik, Kulik & Bangert-Drowns, 1990). Since they 
do not punish students for mistakes in the same way as traditional human-graded homework assignments 
do, they may also reward intellectual risk taking, which may avoid the traditional association of schoolwork 
with punishment, and allow for more intellectual diversity. This is particularly important because research 
on adaptive systems indicates that optimal learning may occur when students are less risk-averse, allowing 
them to encounter desirable difficulties (Tang, Gogel, McBride & Pardos, 2015) and space their practice of 
different skills over time (Pavlik, Bolster, Wu, Koedinger & Macwhinney, 2008). 

That said, even when effective assessments are used, we have seen pitfalls at all levels with reward struc-
tures based on many assessments. When school funding and teacher performance is tied to test outcomes, 
teachers have a strong incentive to teach to the test and may abandon more-effective pedagogy and assess-
ments (e.g., realistic scenarios) in favor of lessons that exclusively align with high-stakes test items (Hout 
& Elliott, 2011). In terms of Figure 1, this essentially amounts to aligning in reverse: rather than aligning 
classroom teaching and assessment to the complex real-world skills we want, teachers are incentivized to 
align backward to reliable but not very useful tasks that capture a limited subset of such skills. Similarly, 
when students are provided continuous formative feedback and continuous assessment, a subset of students 
tend to game the system (Baker, Walonoski, Heffernan, Roll, Corbett & Koedinger, 2008). They will often 
exhibit satisficing behavior, and do the exact minimum required to pass, advance, or achieve the desired 
outcome, although the design of the assessment tasks can have a large effect on whether such gaming be-
havior occurs (Kessler, Stein & Schunn, 2015). In high-stakes assessments, such as college entrance exams, 
this can be seen through high levels of not just gaming behavior, but explicit cheating (Mehra, 2012). De-
spite these issues, strategies exist that can mitigate some of the risks of assessment, which is discussed in 
more detail in the following section. 

Selecting Assessments: Methodology to Determine How and What to Assess 

Theory on how to develop assessments is very broad, and a comprehensive overview is beyond the scope 
of this work. With that said, we here briefly summarize four factors which determine how assessments are 
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developed and considerations about what should be assessed. When developing assessments, the two pri-
mary considerations for tasks have traditionally been reliability (repeatable) and validity (measures what it 
is intended to measure). Modern assessment practices also consider the use of assessment (Darling-Ham-
mond et al., 2013). Finally, when considering use, it becomes vital to consider how multiple assessed con-
structs are weighted proportionally to the importance of the skills to some ideal real-world outcomes. To 
summarize, a well-designed assessment regime should consider the following: 

• Reliability: Whether an assessment is repeatable and will give similar results when repeated across 
time and across different test-takers. 

• Validity: Whether an assessment is measuring a meaningfully interpretable construct. 

• Use: What purposes the assessment will be used for in practice. 

• Proportionality: Whether the assessment measures and balances each construct relative to their 
level of importance to the goals for their intended use. 

Reliability 

Reliability is primarily a question of measurement noise and statistical significance: less-reliable measures 
will require more samples to derive the same confidence for inferences. Reliability also considers issues of 
eliminating items that give bad evidence and of bias. For example, if better students answer a question 
incorrectly, that is a good indication there is an error in the assessment. Similarly, reliability measures can 
be used to analyze relative levels of bias or discriminability by learner subgroups, such as reading ability, 
age, gender, and ethnicity. Certain domains, such as math and reading, have a long history of developing 
reliable test items, such as those used on the GRE, SAT, ACT, and similar tests. This is partly due to the 
facts that a large amount of data can be collected and constructs are very carefully defined, allowing con-
sistent measurement. In addition, assessments have incorporated open-ended responses such as writing 
where the rubrics can still be constrained to ensure reliability (e.g., Foltz, 2016).  

Other domains, such as creative writing, are not easily tested using reliable metrics: assessments about the 
quality of a short story writer might require a portfolio of stories, take many readers, and change over time. 
Instruments designed for seemingly-fuzzy constructs such as creativity do exist, such as the Torrance Tests 
of Creative Thinking (Kim, 2006) and recent work toward assessing general problem-solving skills (Greiff, 
Wüstenberg, Csapó, Demetriou, Hautamäki, Graesser & Martin, 2014). For some other skills such as criti-
cal thinking, text mining of student discourse can be used for assessment (Kovanović et al., 2016).  

A significant gap for many under-assessed skills is the challenge of developing simple, fast assessments 
that are suitable for automated grading (a requisite for most standardized testing and also a critical time-
saver in a classroom context). That said, continuous assessment of complex tasks, performance-based as-
sessment, and peer assessment are all emerging as potential options for assessing skills that have tradition-
ally lacked reliable assessments (Mitros, 2014). In many cases, these advances are possible either by lever-
aging more data (e.g., fine-grained analysis of a tutoring scenario; Segedy, Kinnebrew, Goldberg, Sottilare 
& Biswas, 2015) or by using structured methodologies to derive reliable assessments from either multiple 
crowdsourced items on a construct (e.g., Mitros, 2015) and/or multiple peer assessments on a learner’s 
response to an item (e.g., Luo, Robinson & Park, 2014). That said, while reliable assessments may be chal-
lenging to develop for some skills or outcomes, the fundamental science for reliability is relatively mature. 

One hurdle for reliability, gaming the system, is particularly relevant to ITSs, which often provide hints 
that can sometimes be abused (Baker et al., 2008). One recommendation for avoiding this behavior is to 
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diversify assessments to include both human and machine assessment, leveraging social dynamics to help 
control gaming behavior. Likewise, carefully controlling stakes associated with assessment may also reduce 
incentives to game the system. For example, at one extreme, assessment can be purely formative, even 
allowing students to override measurements (e.g., mark things as known/unknown). This is common in 
systems where assessments exist to help students self-regulate. Where such alternate assessments are ap-
propriate, these may help increase reliability even in the presence of learners who would otherwise use the 
system improperly. 

Validity and Use 

The validity of an assessment is a more complex issue, since it involves both an objective and a subjective 
component. Kane (2013) frames validity in terms of the strength of evidence that an assessment gives for 
one or more inferences. These inferences might be, for example, about an expected theoretical construct 
(interpretability), about some future event (predictive value), or about their value to influence some decision 
or action (usefulness; Darling-Hammond et al., 2013). A variety of methodologies exist to gather evidence 
for validity, some of which rely on theoretical assumptions and others on accumulated empirical evidence. 
In all cases, validity lies on a continuous scale of the level of confidence that a given assessment gives for 
an inference. This is further tempered by the expected use of the assessment, in that certain uses may require 
very high (or very low) levels of confidence and that an assessment may be more valid for some uses than 
for others. 

Aligning to theoretical constructs (interpretability) traditionally relies on coherence and agreement, where 
multiple raters determine that the results of an assessment fit a certain shared construct. It may also involve 
agreeing with prior assessments intended to measure the same construct. An initial step in exploring assess-
ment validity can involve cognitive task analyses with domain experts and also cognitive interviews, in 
which pilot participants restate the assessment items in other words and explain their choice rationales 
(Leighton, 2004). There are also related strategies for building items with higher validity, such as asking 
open-ended questions on pilot assessments prior to building final assessments that use multiple-choice 
questions (Thissen-Roe, Hunt & Minstrell, 2004). 

That said, from a practical standpoint, all assessments should ultimately align to real-world outcomes: either 
they should directly measure real outcomes (e.g., performance or behavior on some space of relevant tasks) 
or should provide useful inferences about such outcomes (e.g., interpretation or indirect prediction, often 
based on theoretical or substantive arguments). The first approach, championed by Wiggins (1990), is to 
use authentic assessments: ones that align closely to real-life conditions. This has a strong appeal in that it 
ensures that skills should be valid in at least some space of realistic contexts. However, an authentic assess-
ment is not always practical or desirable. First, authentic assessments may be much more time consuming 
to conduct, resulting in fewer assessment observations and less evidence. Second, authentic assessments 
may introduce confounding information required to anchor the problem in a realistic instance, but can in-
troduce cultural confounds such as certain learners being unfamiliar with the context used to anchor the 
task (e.g., a math word problem on baking french bread is unlikely to translate to rural Afghanistan; Nye; 
2014). Third, in many contexts, one wants to measure or practice an isolated component of a real-world 
skill. This is due to the fact that the authenticity of an assessment is partly subjective, depending on the 
frame of reference for defining a “real-life” task (Gulikers, Bastiaens & Kirschner, 2004). 

The second approach to alignment is based on inferences between the assessment to real-life outcomes and 
performance (Darling-Hammond et al., 2013), even if such inferences require a chain of inferences through 
other assessments (e.g., prerequisites, analogues, preparation for future learning). Such chains may be the-
oretical, but are ideally empirical (i.e., derived from data). Two common ways to collect validity data about 
how an assessment predicts behavior are longitudinal analysis and the ability to discriminate between 
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groups of experts and novices. In the longitudinal case, earlier assessments may be studied for their ability 
to predict later real life outcomes, such as success at on-the-job tasks. In the group case, assessments tie 
their inferences to the assumption that performing similarly to an expert on an assessment implies a greater 
capability to perform tasks and behaviors like those experts. Both reference points for inferences have trade-
offs: longitudinal data can be slow to collect so assessments or even skills may become dated, while group-
based data does not necessarily guarantee that the assessed skills are necessary or sufficient to act as an 
expert. 

In practice, assessment validity is estimated using either a psychometric approach or a data-mining ap-
proach. In the psychometric approach, assessments are carefully designed for an optimal measurement of 
one or more constructs, paying careful attention to validity and reliability under models such as item re-
sponse theory (IRT; Embretson & Reise, 2013). In an educational data-mining approach, the learning ex-
perience is not always designed for assessment, but assessments can be mined out of traces of learner ac-
tivity (Shute & Kim, 2014). ITSs often use hybrid approaches of the two, which can assess behavior at the 
step level (VanLehn, 2011). 

In terms of validity, stealth and purely data-mined assessments can have downsides. First, teachers may not 
wish to use the assessments because they have low face validity (i.e., they do not seem to be measures of 
what they claim to measure). Second, data-mining can produce assessment indicators that are very specific 
to the particular tool and context that might not generalize to other contexts. Third, data-mining often re-
quires larger dataset to validate the items, to reduce the risk of finding “fluke” predictors from a potentially 
infinite sea of predictors. One workaround for these issues is to align such bottom-up assessments to exist-
ing top-down measures to establish consistency (e.g., a separate test used for validation purposes only). 

Another significant shortcoming for assessment validity (across all types of assessments) is often the lack 
of useful measurement of real-life outcomes such as job performance, life satisfaction, societal outcomes, 
and preparation for future learning. Lacking such data can lead to substantial guesswork, such as entire 
required courses or assessments that may show great validity in assessing constructs that are not useful 
because they are unactionable (e.g., correlated but not causal to later outcomes) or even entirely unrelated 
to later outcomes. Integrating ITSs into on-the-job tasks or realistic simulations with high predictive validity 
for such performance could provide a wealth of data to back-propagate and inform the validity of simpler 
assessments. Likewise, artificially intelligent assistants connected to ITSs may someday lend insight into 
longer-term life outcomes that are associated with certain assessment performance (e.g., identifying the 
effects of financial literacy tutoring through Amazon purchases). 

Proportionality 

While not always noted in assessment literature, the concept of proportionality for an assessment program 
is also essential. In part, this is because proportionality does not necessarily apply to a single assessment 
item instead applies a group of related assessment items meant to support multiple inferences (e.g., skill 
levels). In short, since some skills and outcomes are more important than others, it is sensible to prioritize 
assessment in reasonable proportion to the importance of each desired outcome. For example, when teach-
ing electricians, it would not be sensible to base certification equally on hands-on expertise, knowledge of 
electrical circuits, and particle physics, since theoretical physics plays a relatively small role in that com-
petency. 

While this seems intuitive and obvious initially, proportionality breaks down quickly and silently in prac-
tice. First, due to reliability or validity issues, many critical skills and outcomes may have no fast or reliable 
assessments. Second, the relative importance of skills is often subjective or simply unknown (e.g., fre-
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quency of use or consequences of failure never measured rigorously). Finally, due to issues such as prereq-
uisites and co-requisites, certain skills that are not intrinsically important may be pivotal stepping stones to 
more advanced skills or outcomes. While the last issue can be addressed quantitatively, assuming enough 
data, the first two are socio-technical problems. Unfortunately, when these challenges exist, too often the 
solution is to ignore outcomes that lack reliable, valid assessments and instead invalidly base all decisions 
on only the assessments available. Since many essential skills lack fast and reliable assessments (e.g., com-
plex problem solving, creativity, curiosity), this is analogous to having poor visibility out of your car wind-
shield so you just watch your speedometer instead. 

Of all issues in assessment, this can be the most subtle, since it is an error of omission. If assessment design 
is not done proportional to importance, it is easy to leave out key assessments. If assessment design is done 
proportional to importance (i.e., outcome importance established prior to selecting assessments), then it 
should be obvious that key skills and outcomes lack measurements. In many cases, this might not be a 
solvable problem: reliable assessments may not exist, may not be cost effective, or may not be reasonable 
within time constraints. However, if any of these are the case, then it means that the confidence of the 
overall set of assessments for a given use must be downgraded as a result (e.g., in the car example, one 
might drive very slowly in reverse). Without this practice, it can be very easy to over-optimize for a set of 
relatively unimportant assessments at the expense of more important ones that are not currently measured 
(but might have been in the past, even if subjectively). 

Recommendations for Assessment Design 

When selecting assessments from this broader set, we would suggest the following guidelines:  

1) For simple procedural knowledge and rote memorization, traditional assessments may be sufficient 
(bottom-left of Figure 1). Any deeper set of skills should ideally be measured using multiple types 
of assessment to enable both realistic application and simplified diagnostics.  

2) a) Where direct assessment is impractical, data-mining techniques such as stealth assessment may 
be applied or b) indirect assessment can also be done using a combination of qualitative instructor 
assessment and/or peer assessment, paired with quantitative assessment of classrooms and schools.  

3) If assessments cannot be designed to evaluate distinct skills, alignment may be established at the 
task level (e.g., simulating real-life tasks) or at the process level. For example, one can look at the 
alignment of the curriculum design and classroom instruction to evidence-based best practice. 
Classrooms may also be evaluated be peer assessment by other instructors.  

4) Assessments must have a clear (diagramed theory or statistically supported) chain of connections 
that demonstrates how that assessment provides useful inferences for a real-life outcome. 

5) Sets of assessments should be proportional, meaning that they also show this chain, but with the 
added requirement of the level of importance of each of multiple outcomes for the assessment 
goals. Outcomes that cannot be assessed properly must not be removed, and their uncertainty 
should be considered rather than ignored. 

This line of thought leads to our final central questions: What is worth assessing? Why are we assessing? 
This process starts with desired learning outcomes, with recent candidates including a particular focus on 
complex 21st century skills, such as persistence, digital literacy, and teamwork. Once the set of learning 
outcomes is defined, it is possible to find assessment techniques for some of those outcomes, but not for 
others. Toward this end, the next section briefly considers the role of education and assessment with respect 
to broader societal outcomes. 
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Emergent Outcomes: Connecting Individual Assessments to Societal Goals 

As a background for this chapter, a session on this topic with a cross-section of approximately two dozen 
education experts in different fields and different roles (e.g., researchers, software developers, teachers) 
identified a set of over 75 distinct learning outcomes, from a broad set of perspectives (Nye, 2016). Two 
questions framed an intense discussion: “What is worth assessing?” and “How do readily-measurable as-
sessments connect to emergent and societal outcomes that we care about?” The focus was not on specific 
subjects, but on capturing qualitatively different behaviors and outcomes to track.  

Outcomes were first brainstormed, then sorted into four categories based on their grain size for assessment: 
Near-Term, Emergent/Intermediate, Societal, and Big Picture. Near-Term outcomes included brief assess-
ments (e.g., tasks) and also measurement methodologies that support assessment. The Emergent/Interme-
diate category covered outcomes that can only be assessed by monitoring patterns across time or contexts. 
Societal outcomes included results or learner characteristics perceived by participants as beneficial at a 
cultural level (subject to the lens of cultural values of the participants). Finally, Big Picture outcomes rep-
resented high-level ideals stated by participants. The three key Big Picture outcomes identified during the 
session were summarized as Adapting to New Things, Communication, and Happiness/Utility, which ap-
peared to have some consensus as being intrinsically valuable (as opposed to instrumentally valuable to 
reach some other outcome). 

  

Figure 2. Influence map derived from an expert brainstorming session. 

In Figure 2, a set of desired outcomes and assessment methods of those outcomes, as identified by a diverse 
group of experts. The outcomes are sorted on a scale from immediately measurable, up to highly longitu-
dinal and emergent. This map gives an idea of why assessment is a complex and sometimes controversial 
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topic – while it is possible to objectively discuss individual outcomes, the prioritization of such is inherently 
subjective, and different cultures and communities place different importance on each of these. 

In the rough influence map inferred from the results of this session shown in Figure 2, a number of pathways 
in this graph were the result of notable discussions: 

1) Diversity: The upper-left measurements (Biometrics and Brain Activity) connected with Neurodi-
versity, nature/nurture interactions (Genetics x Behavior), and ultimately, a broader discussion on 
the dual nature of Diversity at both the biological level (Biodiversity) and of ideas (Plurality of 
Ideas). In both cases, the ultimate goal was Adapting to New Things (not necessarily just by people, 
but also by ecosystems). There was some consensus that diversity had an optimum where special-
ization and uniqueness was balanced against the need for communication (i.e., avoiding a Tower 
of Babel collapse), but with no known metrics to measure this balance. 

2) Curiosity: The concept of Curiosity was thought of as measurable through Exploration (looking 
for new things) and Discovery (finding new things), which were both considered a function of 
overall novelty-seeking (Tendency to Try New Things). These skills were thought of as measurable, 
but not measured commonly enough. 

3) Innovation: Agency, Competition, and Entrepreneurship were all considered central to this out-
come. Agency and Autonomy represented acting independently. Competition was added based on 
the tendency to innovate to beat out others. Entrepreneurship was identified as a third factor, which 
connected Innovation to a broader pair of constellations of traditional competencies (Skill Set for 
Student) and Cooperation (through Identify Society Needs). Some elements of these were noted to 
have some assessments (e.g., creativity, entrepreneurship, identifying others’ needs), though a sig-
nificant number of experts felt that the current state of the art was insufficient to model or predict 
meaningful innovation. 

4) Communication: The center of Figure 2 is dominated by team and social competencies, which con-
nect to Communication through Trust, Cooperation, and Socio-Emotional Connectedness. These 
were highlighted as key skills in society, which are assessed insufficiently, but which had many 
known assessment methodologies related to Team Grades, Organization (i.e., leadership/organi-
zational theory), value-added to other members in a group (Optimizing Others’ Contributions), and 
measures of Empathy and Listening. Peer Assessment and Process/Patterns (e.g., as analyzed using 
data mining) were considered central to measuring components underlying Communication. 

5) Subjects/What Society Learns: The final major constellation of outcomes was related to assessing 
traditional academic and vocational competencies, and it could be said that the majority of this 
paper focuses on the bottom-left quadrant of Figure 2 (e.g., discussions on how to Align to Perfor-
mance). While most of the items in this area are fairly typical (e.g., Prerequisites, Learning Rates), 
emphasis was also placed on Metacognition and related issues of both Retaining Skills and also 
Forgetting/Pruning outdated or irrelevant skills. Literacy and ongoing Re-Defining of Literacy 
were also explicitly highlighted, with the understanding that reading must expand to consider not 
just text comprehension, but also data graphs, digital literacy, and other as-yet-unknown critical 
understandings of symbols. 

While this is clearly a very small slice of the space of outcomes that warrant assessment, there were a 
number of unanticipated implications. First, despite great advances, ITSs and educational data mining 
(EDM) can currently only meaningfully measure and interpret a small fraction of the outcomes of interest 
even among the Near-Term and Emergent/Intermediate categories. In some cases, this is because certain 
outcomes suggested are beyond the scope of an ITS (e.g., Gross Domestic Product growth). In other cases, 
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this is because the outcomes are inherently complex to assess, such as entrepreneurial skills. However, the 
majority of outcomes suggested by experts do have measures for assessing a learner’s progress but are 
simply not measured by existing ITSs (e.g., identifying the needs of another person). For example, while 
certain ITSs provide learning experiences that may improve social interactions (e.g., team tutoring) or 
agency (e.g., raising self-efficacy), these are very seldom assessed meaningfully by the ITS and used for 
personalized adaptation for a student. As such, future ITSs might emphasize assessment of social skills 
(e.g., communication and group dynamics) and also on general adaptation/innovation factors (e.g., curios-
ity, agency, diversity of ideas). 

Conclusions 

Assessment has both benefits and pitfalls for the educational system. Achieving positive outcomes while 
avoiding unintended consequences of assessment requires careful planning not only at the level of individ-
ual assessments or assessment systems, but also at school, policy, state, or federal policy levels. A reason-
able rule of thumb may be that no assessment should have stakes higher than we would trust its alignment 
to some set of real-world skills that learners actually need (e.g., for career or general life performance). This 
alignment does not (and often should not) imply a one-to-one relationship between assessments and real-
life skills: education is intended to prepare learners for a broad range of experiences, many of which are 
unknown (e.g., who knows what careers programming might be useful for in 50 years?). With that said, 
there should be some chain of inferences that connect an assessment to expected real-life needs. For exam-
ple, math problems to evaluate the costs of different credit card payment plans would be more ecologically 
valid than calculating how many washers and driers you could buy to spend exactly $1,245. This guideline 
inherently trends toward more anchored and complex problems, leading to assessments that capture the 
skills that society needs rather than skills that are highly reliable but have low ecological validity. 

Similarly, it implies a sliding scale for aggregate performance by teachers and schools that is weighted 
based on such validity to avoid perverse incentives to overfit performance on trivial and low-fidelity tasks. 
This means evaluating both what we know and what we cannot yet measure to guide development of future 
assessments that can reduce our uncertainty about hard to measure but critically important skills. This has 
significant implications for ITSs as well, particularly in the context of machine learning. For example, 
reinforcement learning to optimize for posttest performance (a common metric) amplifies many of the risks 
stated here about teaching-to-the-test and, unlike a teacher, the machine will uncritically optimize for trivial 
tasks if told to do so. This implies the need for a more diverse set of rewards to optimize for, such as 
subjective assessments (e.g., peers, teachers). 

Despite these pitfalls, we remain optimistic about the role of assessment in education and ITSs due to two 
trends. First of all, the set and types of skills assessed by digital systems is rapidly increasing. As more 
education moves into digital formats, we are starting to see traces of social skills, complex problem solving, 
and teamwork. Adapting educational technology systems to collect such information, and use it to assess 
such skills is the next great frontier in assessment. Second, we see increased focus on integrating evidence-
based best practices with feedback for assessment. At this point, we have substantial research on how to 
effectively develop skills such as teamwork. While most measurements used in such research projects have 
yet to be applied in classrooms or commercial grade learning technology with solid statistical significance, 
the results of such research are increasingly informing practice. 

Educational policy is slowly beginning to move from an unhealthy system of poorly proportional high-
stakes outcomes for students, teachers, and schools, to one where assessment is ubiquitous, but high-stakes 
assessment is only one of many indicators of best practice. Qualitative feedback, through processes such as 
multiple instructors in classrooms providing peer feedback, is becoming increasingly common. A key pol-
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icy issue will be integrating evidence-based best practices, qualitative assessment, and quantitative assess-
ment into reasoned, thoughtful pedagogy decisions. These are socio-technical issues that have serious im-
plications for large-scale use of learning technology in the future, where intelligent systems like the General 
Intelligent Framework for Tutoring (GIFT) will be responsible for both collecting and analyzing these data 
to help recommend learning resources and courses. However, such recommendations can only be successful 
if they align to broader educational and training goals. As such, educational assessment and artificial intel-
ligence in education should share strong ties as both fields develop. 
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CHAPTER 17 – Assessment of Forgetting 
Philip I. Pavlik Jr.1, Jaclyn K. Maass1, and Jong W. Kim2  

University of Memphis1 , US Army Research Laboratory2 

Introduction 

Most efforts to educate individuals in a domain conclude with efforts to assess the effectiveness of the 
educational activities. During education research, the assessment activity tends to focus on the performance 
of the students and what that reflects on the quality of the educational intervention. After a quality educa-
tional intervention has been deployed, the focus of assessment turns to the individual students. In both 
cases, there are multiple considerations in collecting, analyzing, and interpreting the results of assessments. 

Types of Knowledge to be Assessed 

Starting with the assessment itself is the question of what to assess. This depends directly on the goals of 
the assessment. If the assessment is designed to measure what the student learned in the exact same form 
they learned it, then the test is probably best considered a test of recall of (factual) course content. If the 
assessment measures transfer to unpracticed problems that require some generalization of the material 
learned in the course, then the test is best considered a test of transfer (application). Of course, any assess-
ment may measure both aspects of learning, which may be wise, since theories of learning have implied 
that simple factual knowledge underpins more complex or applied understandings (Bloom, Englehart, 
Furst, Hill & Krathwohl, 1956). 

This distinction between factual and applied skills seems to be inherent in human brain processes, with 
evidence suggesting that learning may begin with episodic representations of events a student experiences 
(McRae & Jones, 2013). These episodic representations can be called upon when the student needs to re-
trieve knowledge of specific prior events. These simple prior events are typically not transferable, since 
they have no generality. When these prior events are repeated verbatim, the brain comes to represent this 
as a static commonality, AKA a fact. While this kind of memory is necessary for some performances, e.g., 
times tables, these contexts are limited, since factual representations need strong specific cues for retrieval. 
In other words, one only thinks “Paris” in reference to “the capital of France”, and this fact stands alone 
even if one knows nothing else about France. 

Knowledge is likely generalized in two ways. First, it may become “semantic” in that it accumulates asso-
ciations with multiple contexts or functions because it is repeated in a way that varies with each repetition. 
When exemplars represent an underlying type in this way, we can say they represent a category, and the 
learning of such categories is foundational to our current understanding of concepts. For example, our con-
cept of the word “capital” is deeply connected to the many examples of capitals we have been familiar with, 
whether that is “D.C., Lansing, Paris, or London.” This conceptual knowledge supports the creation of on-
the-fly “mental models” that allow us to represent and make decisions given more complex situations, for 
example, if we are in an unfamiliar capital, we might assume it has features of these other cities. Assessing 
such conceptual knowledge can be difficult, since it may be highly individualized. This makes it difficult 
to assess, since the materials used for assessment must be different from study materials to see whether the 
student has learned more than just the factual instances, but also the generalizable knowledge. 

In addition to these types of semantic knowledge, there is production skill, which is perhaps most important 
in workplace environments. Production skill refers to some sort of specific function that needs to be as-
sessed, such as the ability to hit a target or drive a complex piece of heavy equipment. These sorts of skills 
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range in complexity and in the amount of support they get from the episodic and semantic knowledge. 
Highly motor skills such as firing a weapon at a target may begin with semantic understanding of the proper 
breathing method and operation of the gun, but after long practice become generalized operational skills 
deployed with little if any thought about the tool being used. In psychological terms, they become automa-
tized. Automatization requires large amounts of practice. In contrast, non-motor skills, such as tactical de-
cision making also likely involve production knowledge, but in combination with a semantically supported 
episodically represented “situation model” that integrates their understanding of a complex situation with 
their production rules for action in such contexts. 

Types of Assessment: Recognition, Recall, or Transfer 

Each of these types of knowledge requires different considerations for assessment. This is because both the 
type of assessment tasks needed and the stability of the assessment vary as a function of type of knowledge 
being assessed. For example, often with text-based instruction, assessment types are defined based on the 
number of cues available to aid the learner in remembering the desired information. The formats of assess-
ment for textual information range from recognition, e.g., true/false, multiple choice, to cued recall or fill-
in-the-blank to free recall or essay prompts. The fewer cues available in the assessment question (i.e., free 
recall has the least amount of retrieval cues), the more rigorous it is as a test of memory.  

There is also the consideration of how deeply to assess memory or learning. For example, when measuring 
reading comprehension, research by Kintsch and Van Dijk (1978) suggests two levels of text comprehen-
sion: a text-based model (comprehension specific to the information provided within the studied text) or 
situation-based model (incorporating knowledge of the information within the text to prior knowledge). If 
one is only interested in someone’s memory for facts or information provided in a text, a relatively simple 
test of recognition or cued recall would likely be appropriate. If one intends to measure someone’s situation-
based model of text comprehension, questions that measure transfer would be ideal. Transfer refers to ask-
ing questions in a different context than they were originally provided (Barnett & Ceci, 2002). Transfer 
items are a much more difficult form of assessment, as many times people do not perform well in a situation 
or example that differs dramatically from the way in which they studied or practiced, which is sometimes 
referred to as transfer appropriate processing (Morris, Bransford & Franks, 1977). 

However, not all learning is text-based. If one is learning a procedural or motor task (e.g., cooking, driving 
a car, etc.), it is also important that the assessment should be as close to end goal task as possible. This 
increases the accuracy of the assessment as a measure to see how the person would perform in the real 
world. Based on the notion of transfer appropriate processing (Morris, et al., 1977), being able to answer 
text-based multiple-choice questions about how to replace a bicycle chain is not often highly correlated 
with being able to perform that action. In other words, the choice of assessment should align both with the 
style or format of learning that has occurred, as well as with the ability, skill, or knowledge that one wants 
to assure the learner has gained. 

Recency of Assessment Delivery and Interpretation 

Just as the type of knowledge being assessed affects what type of assessment one uses, the recency of the 
assessment is also an important component to consider. We can talk of two types of recency: the recency 
of the assessment after the student learns the knowledge and the recency of the interpretation of the assess-
ment results by stakeholders after it is completed. The former of these two types of recency is an especially 
important aspect to consider, as forgetting rates vary over time.  
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Recency of assessment considerations may be in inverse proportion to transferability of the knowledge. In 
other words, well-learned complex knowledge and production skills may be rather resistant to forgetting, 
while simpler memory skills are often forgotten quickly even after what appears to be mastery-level recall 
performance by the student. These differences in forgetting lead to the recency effect and come from many 
differences that are due to how the knowledge is learned. For example, from a cognitive neuroscience per-
spective, it may be that more stable production-type skills are encoded through many repetitions into the 
neocortex in a highly distributed manner that is resistant to forgetting, i.e., is more stable. In contrast, simple 
episodic memories, including recent verbal events, may be encoded in a relatively local compressed man-
ner, likely involving the temporal lobe and hippocampus specifically, where they are quickly represented, 
but where the memories are very susceptible to interference and forgetting (McClelland, McNaughton & 
O’Reilly, 1995). 

Recency effects may also come from the neural level, where researchers have described how more widely 
spaced stimulation results in stronger long-term potentiation of neural connectivity (Scharf et al., 2002; 
Wu, Deisseroth & Tsien, 2001). This may explain the well-known advantage of spaced practice, or corre-
spondingly, the well-known disadvantage of massed practice or cramming. This effect may cause large 
difference in the stability of acquired knowledge, such that, particularly for verbal information, distribution 
of usage/practice over more time leads to longer-term learning. So for a course, particularly a course with 
a large amount of cumulative content where prior information must be maintained, distribution of the course 
over 16 one-hour sessions might be expected to result in much more long-term knowledge than two 8-hour 
sessions. However, assessors beware, if the two-session course has a test immediately afterward, they may 
show more learning than for the 16 one-hour sessions. This is because it is not the amount of learning that 
is improved by spaced practice; rather, it is the stability of what is learned. So, even though wide spacing 
results in more difficulty during practice, after a reasonable retention interval (perhaps 1 month) the dis-
tributed class might be expected to perform better when assessed. In neuroscience, this stabilization of 
memories is directly linked with long-term potentiation (LTP) of neural connections and formation of neu-
ral connectivity (Govindarajan, Israely, Huang & Tonegawa, 2011). 

Recency effects make assessment even more difficult due to the changing rate of forgetting. This lack of 
constancy in the speed of forgetting may have been first described in terms of Jost’s law, which says that 
given two memories of equal current strength (but of different ages), the older one will be forgotten more 
slowly (Simon, 1966). This implies that a power decay function (where a variable is raised to a constant 
negative power) may be an accurate way to represent forgetting. While this theory began as an observation 
about memory behavior, more recent work shows how averaging of multiple exponentials (such as might 
be expected if individual neurons had varying exponential decay rates) may produce a power law forgetting 
(Anderson & Tweney, 1997). Indeed, it has been suggested that in a healthy human, forgetting either be-
comes immeasurable or ceases after about 3 to 6 years (Bahrick, 1984). 

Practical Assessment Guidelines 

This discussion of forgetting leads to some practical guidelines for assessment. These guidelines assume 
that assessors desire a stable and accurate measure of the students’ ability to perform in real job contexts. 
As the previous discussion suggests, interpreting these measures depends on the type of knowledge assessed 
and how students learned that knowledge. Therefore, the following guidelines are split into two categories. 

Skills – Here a skill means a reflex-like complex behavior that students learn through extended practice 
and refinement. This includes skills such as driving, shooting, swimming, or archery, but also includes 
cognitive skills of the same nature, such as fluent language production or perceptual identification skills. 
These two categories of proficiencies are grouped together and probably share a basic perceptual/motor 
nature that is nonverbalizable and somewhat automatic as proficiency increases. One thing to note about 
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skills is that initial practice for a skill is often practice of knowledge, our second category. It is only after 
basic knowledge about a skill is learned that a student can “compile” that knowledge to form a skill and 
begin refining that skill (Taatgen & Lee, 2003). We can assess skills during learning, i.e., microgenetically, 
because skills are typically more stable and less likely to show decrement over time. For example, in a 
marksmanship class, measuring the shooting accuracy as student learns in the class, will be effective in 
measuring their long-term retention, since these production rule skills are only forgotten very slowly and 
are easily maintained. Despite this ability to do assessment while learning, skills of this sort may need 
varying practice if we care about the skill generalizing to similar situation, i.e., practice with shooting while 
standing up transferring to shooting while crouched (Judd, 1908). This well-established finding implies that 
for optimal transfer we should configure learning to vary each repetition during practice. 

Knowledge – Here knowledge refers to facts and other concepts that can be verbalized. While such 
knowledge is often called declarative, this sort of knowledge may include images or pictures to the extent 
that they are not yet compiled for automatic access as skills. While skills are likely learned after many trials, 
knowledge may be learned up to 100% recall after only a single encounter. However, such knowledge is 
often very difficult to remember at a delay, particularly if the knowledge is disconnected from deeper mean-
ing. 

Because of this rapid forgetting, which has a power function form, the assessment of knowledge may re-
quire three measurements to accurately determine future proficiency. With only a single, one-time meas-
urement, the stability of the knowledge cannot be determined. On the other hand, with two measurements, 
most usually the last measurement during practice and some posttest measurement after a delay, we can see 
how quickly information is being forgotten. But with just two points of measurement, the curvature of the 
forgetting function cannot be estimated, since two-point measurement only allows inference of forgetting 
if we expect forgetting to be linear with time. Since forgetting is not linear, but decreases with time, meas-
urements at three time points are needed. A three-point measurement allows the assessor to estimate the 
rate at which forgetting is slowing. This can be done mathematically by fitting a power function to the data, 
or heuristically, by observing that the proportion forgotten in the first interval is much greater than the 
proportion forgotten in the second interval. 

This difference in forgetting rates also reveals a distinct and serious problem with knowledge assessments 
relative to procedural skill assessments. Knowledge assessments can be gamed by the student who expects 
an upcoming exam and crams before the exam. Since declarative knowledge can be learned quickly, this 
strategy can be effective at maximizing short-term recall, but the exam score cannot be trusted to reflect 
long-term proficiency. While this crammed knowledge will be available in the short-term, as with any 
newly learned knowledge, it will be forgotten quickly. This problem is quite intractable, with the only clear 
solution being to give exams to students without warning. If a knowledge quiz is unexpected by the student, 
there is no opportunity to game the system, and assessment can be trusted to reflect the current state of 
long-term learning in the student.  

Conclusion 

In this chapter, we have discussed different types of knowledge and assessment. Particularly, our discussion 
asserts the necessity of an intelligent framework for assessment and its interpretation when it comes to 
forgetting and its assessment. Long-term focused proficiency may not be always necessary (e.g., when use 
of the knowledge and skill provides frequent practice), but it is needed for some types of knowledge and 
skills that are infrequently used but critical to respond to a certain situation (e.g., emergency response skills). 
A period of disuse of knowledge and skills can cause performance degradation. Assessment of forgetting 
should be employed to better maintain such types of knowledge and skills. It is, therefore, necessary to 
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provide an improved framework to assess stability and transferability of the acquired knowledge and skills 
in an unannounced and unobtrusive way.  

This problem can be approached by using and extending an intelligent tutoring system (ITS). One of such 
systems is the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare & Goldberg, 2012; Sot-
tilare, Brawner, Sinatra & Johnston, 2017). GIFT can support learning and assessment of the knowledge 
types discussed earlier in this chapter (e.g., simple recognition, cued recall, transfer of knowledge). In the 
GIFT’s modular construct, the pedagogical module manages courses that the student learns. The student is 
guided to go through four quadrants (rules, examples, recall, and practice) based on the component display 
theory (CDT; Merrill, 1983). In the recall quadrant, cued-recall and recognition can be assessed. Also, in 
the practice quadrant, the student performs the task in a simulated environment, in which the procedural 
skill can be assessed using a microgenetic approach.  

For example, a marksmanship study in GIFT (Goldberg & Hoffman, 2015) affords a real-time assessment 
by gathering physiological states (i.e., breathing, heart rate variability), and performance (e.g., scores, 
movements, and accuracy), which are tested against the expert model in real time. In GIFT, a hierarchy of 
concepts being taught, which is implemented in domain module, can be also expanded to deal with the 
ontological representation of knowledge, and the microgenetic nature of procedural skills (e.g., tasks and 
subtasks, skills and subskills, or movements or submovements). A microgenetic approach to assess forget-
ting in an ITS will help us to better identify the learner state and support improved knowledge and skill 
proficiency.  

A main challenge of this work is to support ITS-based optimal training schedules. The training proponent 
needs to decide retention needs (e.g., a decision on a training program that requires a long-term proficiency) 
by manipulating training regimens. That is, a massed or spaced training regimen can promote different rates 
of forgetting (or different rates of learning and retention). Currently, GIFT modules assess the learner state 
without considering the forgetting of knowledge. Thus, it is worth addressing the assessment of the different 
types of knowledge and skills in GIFT. By identifying the different forgetting rates for different types of 
knowledge in GIFT we may be able to determine the optimal training schedule in terms of retention needs, 
which will help to identify a way to achieve training proficiency.  
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Introduction 

Advancements in technology have led to a revolution in assessments. No longer limited to the bubble-and-
booklet approach of the 20th century, today’s assessments may involve rich, interactive exercises, assess 
new and complex constructs, and automatically record and score evidence of skills. Still, the inferences 
drawn from technology-rich assessments must adhere to the same principles of good measurement as do 
traditional assessments. In other words, the inferences or claims made about test-takers (e.g., “this learner 
is ready to move on to the next unit”) must be valid: having sufficient empirical, theoretical, and logical 
backing. The process of collecting evidence that supports a particular interpretation of assessment results, 
in the context of a particular use of those results, is called validation.  

The purpose of this chapter is to introduce the concepts of assessment validity and validation evidence, with 
the hope that this material serves as a framework for understanding how validity theory and practice may 
help the research and development of intelligent tutoring systems (ITSs). Our focus is on technology-based 
assessment, but the reader should interpret “assessment” broadly to include any task – from multiple-choice 
questions to essays to complex, interactive performance tasks, such as solving algebraic equations, con-
ducting scientific experiments using a simulation-based environment, discussing a story with a virtual peer, 
or playing an online game. As long as the tasks produce information that allows someone (e.g., parent, 
teacher, test-taker, administrator) or a system (e.g., an ITS) to make a decision about test-takers (students), 
we have a situation in which the concepts of assessment validity and validation can apply. 

Assessments differ, of course. Assessments target different knowledge and skills, and may engage those 
knowledge and skills at different levels (e.g., a test of recalled facts, an essay to evaluate one’s ability to 
convey a reasoned argument). Assessments also have different purposes or uses (e.g., to predict college 
success, to provide formative feedback to help guide instruction). While the specifics of validity and vali-
dation may change depending on these assessment factors (especially the intended use of the assessment; 
Kane, 2013), and this chapter only scratches the surface of a full accounting of validity issues, the general 
framework presented in this chapter should help researchers in making decisions about how to approach 
validity and validation in a variety of assessment circumstances. 

While validity is a well-known concept as applied to assessment, validity is also vitally important to ITSs 
and other forms of technology-based learning environments that use student inputs to drive their learning 
experience. These technologies use scores from assessments, usually inherent in the ITS, to make inferences 
about student mastery and learning state and to guide instruction. Without an appropriate assessment as an 
integral part of the learning environment, ITSs cannot make accurate decisions about student competency 
or make optimal decisions about what to show a student next (i.e., instructional sequencing). An error in 
any of these inferences can significantly impact the accuracy and effectiveness of an ITS. For example, 
inaccurate interpretations of test scores or student performance during ITS activities can produce inaccurate 
estimates of student proficiency and mastery within the student model. As a result, the tutor may offer the 
wrong form of support or feedback or the wrong type of remedial content, or may place the students within 
the wrong instructional track. These actions not only reduce instructional efficacy, they may also cause the 
learner to become frustrated with the system, undermining the students’ motivation. Just as a good human 
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tutor needs to know how to interpret the actions of students on learning activities or the scores from an 
assessment to provide optimal instruction, so too does a good tutor within an ITS.  

In the next section, we discuss how advances in technology have led to new types of assessments that blur 
the distinction between learning and assessment tasks. We then describe a general framework for thinking 
about validity and validation with respect to technology-rich assessments and their ITS counterparts, in-
cluding a discussion of the different types of evidence researchers might use in their validation efforts. Then 
we examine validity issues and concerns for three example technology-rich assessment techniques: assess-
ments that provide practice and feedback on targeted topics (mastery-learning tutors), assessments involv-
ing simulated dialog with on-screen avatars (conversation-based assessment), and assessments in which 
performances are collected during students’ ongoing interaction with technology environments (stealth as-
sessment). We conclude with implications for the Generalized Intelligent Framework for Tutoring (GIFT). 

Related Research 

Technology-Rich Assessment, or When Did Assessments Get So Similar to ITSs? 

Technology has a long history in the field of assessment. In the 1960s, technology first changed the nature 
of the scores that could be reported for traditional, dichotomously scored (e.g., multiple-choice and con-
structed response) paper-and-pencil tests because of advances in computation-intensive psychometric mod-
els. These models allowed for efficient estimation of abilities (and shorter test-taking time) through com-
puter-adaptive testing (e.g., Lord, 1970). The movement toward performance assessment in the later dec-
ades of the 20th century brought automatic scoring of essays and, eventually, interactive performance as-
sessments that allowed content and interactions not feasible without digital technology (e.g., viewing the 
inside of a volcano), and automated scoring that incorporated automatic evaluation of solution procedures. 
Current research expands the range of assessment contexts (games, conversations) and types of evidence 
collected (interactive action logs; see Katz & Gorin, 2016, for more details on this chronology of events).  

Some assessments that incorporate new technology are large-scale assessments designed to provide a snap-
shot of, for example, the skills of students of a certain age in skills that are considered relevant for later 
success in life across a nation or even across several nations. A good example of such a large assessment is 
the Technology and Engineering Literacy test recently administered as part of the National Assessment of 
Educational Progress (National Center for Education Statistics, 2016). The target domain is new for a large-
scale assessment, involving reasoning about and with technology, skills that pervade students’ school, work, 
and lives in the 21st century. The assessment poses a series of extended tasks in which students might design 
a terrarium, troubleshoot a hand-pumped well, or investigate the usefulness for making a decision of Inter-
net-presented and other information, all delivered through simulated environments tailored to the particular 
task. For instance, to troubleshoot the hand-pumped well, students “try out” the pump, observe components 
that appear to be working or not working, and decide on approaches to fixing it. Decisions indicated through 
mouse-clicks, movements of the pump’s components, and more traditional selections (e.g., multiple-choice 
questions) combine to indicate better or worse trouble-shooting approaches, which ultimately produce a 
task score that is not only composed of the overall performance outcome but also incorporates behavioral 
patterns that students exhibited while working on the task. Such an interactive assessment task is concep-
tually not that different from the types of interactive tasks posed by many ITSs or other advanced learning 
environments. 

Relevant to our focus in this chapter on validity, technology has improved the assessment process in ways 
that are central to the evidentiary argument of the assessment – that is, how an assessment provides evidence 
that allow test users (e.g., teachers, parents, test-takers) to draw conclusions about test-takers. Computers 
are now used to administer both traditional tasks, previously presented on paper, and new item formats and 
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content that are only feasible (e.g., safe and cost-effective) through computer administration. Via this com-
puter administration, human behaviors and interactions with test content can be captured and stored, either 
for immediate or later processing. This increases the amount and type of evidence available to support 
drawing conclusions about test-takers based on their assessment performance. Sophisticated computational 
models and algorithms emerging from various fields, including mathematics, statistics, psychometrics, 
computational linguistics, natural language processing, and computer science offer innovative tools for both 
the modeling and scoring of the evidence that our computers can now capture. We can even use computers 
to administer more tailored, adaptive tests that are responsive to individuals’ ability levels, interests, and 
engagement, all of which serve to improve the reliability and validity of our score interpretations. In fact, 
such tailored, adaptive assessments share many properties with tasks delivered through ITSs or other com-
puter learning environments, blurring the distinction between learning and assessment (Bennett, 2015). It 
is this combination of learning and assessment that renders the question of validity fundamentally important 
for ITSs. 

Validity and Validation 

Assessment may be considered as a form of evidentiary argument, for which evidence is collected in support 
of a particular claim that is defined by the testing purpose. The quality of the assessment is defined by the 
degree to which the evidence that is collected can be interpreted as persuasive and compelling evidence of 
the intended claim (Gorin, 2012). Taking this viewpoint, assessments create observational opportunities 
that give rise to evidence of test-taker knowledge and skills, producing scores (or other descriptions) that 
allow the assessment stakeholders to apply appropriate tools to interpret that evidence. 

The interpretation of assessment results is generally made in the context of a claim about the test-takers. A 
licensure exam makes the claim that test-takers who pass are qualified to practice the relevant profession. 
The Scholastic Aptitude Test (SAT) claims that students who score higher are more likely to be successful 
in their first year of college (higher first-year GPA). An end-of-chapter test claims that passing students 
have learned most of the material contained in the chapter. Michael Kane has argued that the unifying 
purpose of validity studies is to validate the claims that assessment developers make. To support those 
claims, a validity argument must be crafted (Kane, 2013).  

The validity argument connects observed behaviors on the given tasks to the claims put forth by the assess-
ment developers. Actual validity of assessment claims cannot be directly observed and can never be com-
pletely proven. However, the argument for that validity can be strengthened by both logical structure and 
collected empirical evidence that supports the validity of the interpretation. The shape of the validity argu-
ment and the amount and types of evidence needed to support it will depend strongly on the claims being 
made. Clearly, a licensure exam will require higher standards of validity than will the end-of-chapter test. 
For all assessments, however, some attention must be paid to the claims that are made and the evidence 
available to support those claims. 

While many different types of evidence can be collected as part of a validity argument, the primary burden 
of validity evidence is to support the potentially weakest elements of the argument (Kane, 1992). Thus the 
evidence needed depends not only on the claims being made, but also on existing contrary evidence and 
plausible alternative explanations. Ordering becomes important here; the argument must be formulated and 
carefully examined first, and then the evidence to support (or refute) that argument must be sought.  
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Sources of Validity Evidence 

Validation is the process of gathering and analyzing information to support our inferences. The results of 
the validation process present evidence that tell us what types of inferences can be made from scores ob-
tained on an assessment. Five types of evidence are commonly examined to support the validity of an as-
sessment. These include evidence of test content, response processes, internal structure, external structure 
(i.e., relation to other variables), and testing consequences (American Educational Research Association, 
American Psychological Association & National Council on Measurement in Education [AERA, APA & 
NCME], 2014).  

Test content evidence is concerned with whether or not an assessment contains items and questions that 
adequately represent or cover the domain of interest. For example, a mathematics test that primarily con-
tains addition problems would provide adequate evidence of a student’s ability to add, but inadequate evi-
dence of a student’s ability to solve subtraction, multiplication, and division problems. As a result, the test 
may be less useful for making inferences about a student’s overall mathematics ability. Evidence regarding 
test content is also concerned with item formatting, wording, scoring procedures, and the fairness of test 
items. Items and response formats that are inconsistent with the construct domain may be a source of irrel-
evant variance (i.e., affect scores in ways that are unrelated to the knowledge and skills being assessed), 
which can impact the validity of test score interpretations. Evidence about the appropriateness of content is 
most often determined on the basis of expert judgment (Webb, 2007). Usually subject-matter experts sys-
tematically judge the degree to which test items cover topics in the domain of interest and that scoring 
procedures are adequate. These ratings can be reviewed for consistency and reliability to determine how 
well a test aligns with the assessment plan. Unlike other sources of validity evidence, content evidence is 
primarily concerned with the design and construction of a test, rather than examining the empirical relation 
between test scores and other outcomes.  

Evidence based on response processes is concerned with the degree of coverage between the constructs or 
knowledge components being assessed and how well a test’s response format elicits and captures these 
processes. This form of validity evidence is similar to content validity in that it is concerned with the design 
of the test, and in particular whether the item response design facilitates or suppresses the types of cognitive 
processes expected for the item. For instance, a test that uses a series of multiple-choice question to assess 
high-order skills may be deficient in capturing the evidence needed to determine how well an individual 
can apply and integrate concepts and solve problems. A more appropriate response format may be a short 
or long essay in which students can construct an argument and provide concrete examples of how they 
would solve the problem, thus providing traces of their high-order thinking skills. Messick (1989) discusses 
several techniques that can be used to analyze the processes and strategies underlying task performance to 
guide the development of response formats or provide supporting validity evidence. One method is to con-
duct a protocol analysis in which students think aloud as they solve problems or describe retrospectively 
how they solved a problem (Ericsson & Simon, 1984). Another method is to ask students to provide a 
rationale for their answers or their way of responding to the item. The information gathered from these 
analyses can be used to ensure the test response format elicits the processes and reasoning they were in-
tended to elicit, or help clarify the dimensions a test is measuring (Hamilton, Nassbaum & Snow, 1997). 
Ideally, these procedures would be used prior to developing a test to ensure the testing format captures the 
reasoning and knowledge components required to solve a problem or answer a question. The validity evi-
dence drawn from the response process also extends to how raters view and interpret constructed-response 
items (Lane, 1999). In this case, evidence is needed to ensure that raters are interpreting and using scoring 
criteria adequately when grading constructed response items and performance based tests.  

The third type of evidence that we discuss is internal structure evidence. This form of evidence is described 
as “the degree to which the relationships among test items and test components conform to the construct on 
which the proposed test score interpretations are based” (AERA et al., 2014, p. 16). Because constructs are 
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not directly observable, test items and the assessment as a whole must be designed to sufficiently opera-
tionalize the underlying characteristics of the trait or concept. Sources of internal structure evidence can 
come from reliability metrics, item fit statistics, analyses of item distractors (the incorrect multiple-choice 
options), or exploratory or confirmatory factor analyses. The latter allow researchers to examine item cor-
relations and factor loading patterns. Using this information, researchers can determine if items are loading 
on the intended constructs or if more complex patterns are emerging from the assessment. If more complex 
patterns emerge, then this may suggest a test’s content or response format are not properly aligned with the 
intended construct(s) (Lane, 1999). 

Evidence based on relations to other criterion variables refers to traditional forms of validity evidence such 
as those collected through concurrent or predictive validity studies. It also extends to establishing evidence 
of convergent or discriminant validity (AERA et al., 2014, p. 16). Convergent evidence is provided by 
showing that scores from an assessment correlate with similar measures that assess the same construct. 
Discriminant evidence is provided by showing that scores are less related to assessments that measure dif-
ferent or unrelated constructs. Criterion-related evidence is demonstrated by showing relations between test 
scores and performance on a criterion measure or different student outcomes (such as training performance, 
job performance, grade point average, or another outcome of interest). For instance, in the context of em-
ployee selection an official may want to determine whether scores on a particular assessment, such as a 
work sample test, predict whether a candidate will perform well on-the-job. Ideally, high scores on the 
assessment activity should suggest high performance in the transfer domain. If test scores are correlated 
with relevant job criteria, then the official can begin to draw inferences about an individual’s likely future 
job performance. 

Gathering criterion-related evidence works particularly well in cases in which a good (e.g., appropriate, 
interpretable, useful) criterion score is readily available. If test scores are used to predict future performance 
on-the-job or in the classroom, and objective measures of performance are readily available, then correla-
tion and regression concepts can be used to forecast how changes in test scores correspond to changes in 
the criterion (job performance ratings, course grades, etc.). The limitation of criterion-related evidence is 
that in some cases it can be difficult to develop or locate an acceptable criterion measure. In other cases, it 
can be difficult to implement a criterion that is better than the test itself or even to determine what an 
appropriate criterion is (Kane, 2013).  

The fifth source of validity evidence is evidence based on consequences of testing. This source of evidence 
is concerned with intended and unintended consequences of testing and whether the benefits of using a test 
score have been realized. Evidence based on consequences of testing may include examining adverse im-
pact (i.e., does a test unintentionally discriminate against a subgroup or population), evaluating the effects 
of testing on instruction (does testing improve instruction or does it introduce unintended changes or con-
sequences), or examining how testing impacts other outcomes of interest (e.g., course pass rate; final grades, 
career opportunities). The AERA et al. (2014) note that gathering this evidence is particularly important 
when it can be used to determine weaknesses of a test or identify sources of construct contamination or 
deficiency. 

What Validity is Not: Common Myths 

One common myth about validity is that it is a property of the test. That is, a test is either valid or invalid, 
and this outcome is based on available evidence. However, validity is neither a single number nor a single 
argument, but an inference from all available sources (Guion & Gibson, 1988). Although it is true that 
assessments must demonstrate certain psychometric properties to maintain valid interpretations, tests them-
selves are not validated. Rather, it is the inferences from test scores that are validated (Kane, 2013). Ac-
cordingly, there can be as many validations as test usages; each usage or inferences requires sufficient 
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evidence to form an argument-based approach to validation. For instance, suppose we wanted to determine 
if performance on a verbal ability test predicted academic success. If we found test scores were correlated 
with relevant academic criteria, such as GPA, then we may draw certain inferences about the students who 
took the test. In this hypothetical example, we could conclude that test-takers might succeed in some future 
academic endeavor (or not, depending on their score). However, it would be inappropriate (i.e., not a valid 
inference) to use this same test to predict another outcome without evidence that this test also was useful 
for predicting this other outcome; perhaps one that was not at all related to the content within the test, such 
as mechanical aptitude. Thus, the test is not “invalid” generally, but use of the test and inferences drawn 
from it is supported by evidence for certain uses with certain test-taking populations and not others.  

Another common myth is that there are different “kinds” of validity. Support for this widely held belief is 
rooted in many text books, and in historical discussions of validity, in which concepts such as content or 
criterion “validity” are described in succession without connecting them to an overarching model of evi-
dence for the use of a test to make valid (supportable) inferences. This misconception might lead people to 
consider each “kind” of validity as operating separately in its own sandbox. However, consistent with the 
earlier discussion, many researchers consider validity to be a unified concept with these different “kinds” 
of validity serving as different sources of evidence (Messick, 1989). Each source provides an additional 
layer of evidence that can be used to strengthen the argument or case for validity. 

Discussion 

Validity within ITSs: An Example of Mastery Learning, Feedback, and Multiple So-
lution Attempts 

ITSs often use a mastery-learning approach (Bloom, 1968) in which students practice a skill until they can 
show mastery of it (Corbett & Anderson, 1992; Heffernan & Heffernan, 2014). In traditional synchronized 
classroom instruction, a topic is studied for a fixed period of time after which students are evaluated on 
their understanding of the topic using an end-of-unit quiz. Independent of their quiz scores, all students are 
then moved on to the next topic. The idea behind mastery learning is to flip the equation so that rather than 
having fixed time and variable learning, students achieve fixed learning in variable time (Block & Burns, 
1976). While this approach has been shown to achieve better outcomes than traditional instruction (Bloom, 
1984), it is difficult to implement with a single teacher in a moderate to large classroom. Computerized 
instruction, on the other hand, more easily allows for individualized pacing and personalized instruction, 
making ITSs a natural medium for mastery-learning approaches. 

Mastery learning, and ITS implementation of mastery learning in particular, presents interesting questions 
for assessment validity. Within the context of a mastery-learning tutor, a variety of claims can be entertained 
and the evaluation of assessment validity will depend upon which claim is being presented. The primary 
assessment claim centers on the mastery of the material being taught. The tutoring approach depends upon 
continuing instruction and practice until the topic has been mastered, so the assessment of mastery is key 
to proper implementation. As a categorical inference, determination of mastery is actually making two 
claims about students over time: 1) mastery-classified students have mastered the topic and are ready to 
move on to the next topic, and 2) non-mastery-classified students need more practice and/or instruction. In 
addition to the mastery classification required to make mastery-learning work, mastery learning can also be 
used as an assessment, making claims about differences in student ability. In the original formulation of 
mastery learning, it was proposed that differences in ability would manifest as differences in the time it 
took to achieve mastery (Block & Burns, 1976). Thus as an assessment, the methodology puts forth the 
claim that differences in ability within a particular domain can be distinguished by time-to-mastery 
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measures. A final claim that might be made, especially when evaluating ITSs compared to traditional in-
struction, is that students are learning when using the tutor. The claim of learning is different from the claim 
of knowing as it involves a change in state from not-knowing to knowing, and both states need to be cor-
rectly measured to achieve a valid inference that growth has occurred. 

When viewed as an assessment, most computerized mastery-learning systems are similar in form to tradi-
tional assessments in that they present a series of problems to the student and collect and score student 
responses. A few critical differences, however, challenge the traditional assessment mechanics and there-
fore add complexity to issues of assessment validity. First, a mastery-learning system, such as an ITS, 
provides feedback or hints to the student when they are unsuccessful at a problem and the type and number 
of hints are not the same for all students. This type of scaffolding aids learning, but complicates assessment 
as it becomes unclear how much the student is relying upon the hints versus actually improving in perfor-
mance. Similarly, mastery-learning systems often allow repeated attempts on the same problem, presenting 
questions about how to score a correct answer on a second or third try. Put differently, in this blending of 
learning and assessment experience, students at different levels are presented with different tests (e.g., some 
receive hints, others do not) making it difficult to derive scores that are comparable across individuals. 

Thus for assessment validity, one of the primary challenges of scaffolding and repeated attempts lies in the 
question of how dependent the student is on the aid they are receiving from the system. If an item is pre-
sented as a fixed-choice, for example, the simple information that one choice is incorrect can greatly in-
crease the probability of correctly answering the item on a second attempt, even without any learning taking 
place. In the case that there is more informative feedback, the student may be successful in later attempts 
due to context-specific learning, which may or may not generalize to other problems that require the same 
skill. It is worth noting that the features of scaffolding and repeat-attempts are also found in educational 
games (Shute, 2011) and dynamic assessments (Sternberg & Grigorenko, 2002). Thus the validity chal-
lenges produced by them are relevant to a wider array of educational instruments and are increasingly pre-
sent in technology-based instruction and assessment. 

To illustrate how validity arguments and validity evidence can be evaluated for these types of assessments, 
we examine the mastery-learning claim and outline the key elements of the validity argument, potential 
threats to validity, and what validity evidence might be gathered to support the argument. The validity 
argument for student mastery might look like this: 1) students are able to correctly respond to most of these 
items; 2) correctly responding to items indicates understanding of the specific topic represented in the item; 
3) these items are representative of the topic being taught; 4) therefore, these students have mastered the 
topic being taught. Threats to validity can then be identified in the places where the argument might break 
down. How many items are required to make a mastery determination? How many must be correctly an-
swered? Does a correct response imply understanding? Are the items representative and sufficiently cover-
ing the topic in question? Does a display of mastery on these items in this context imply mastery of the 
topic in other settings and/or times? 

To address some of these questions, psychometric modeling can be useful. A common model used in mas-
tery-learning situations is Bayesian knowledge tracing (BKT), in which the performance of the student over 
a series of presumed equivalent items is tracked as a time series to determine at what point in the series the 
student has achieved a high probability of having mastered the required skills (Corbett & Anderson, 1994). 
Validity evidence produced by BKT generally focuses on prediction: how well can the model predict the 
student’s performance on the next item? If the model has correctly inferred the skill mastery profile of a 
given student, the prediction should fall within a reasonable confidence interval determined by the param-
eters of the model (such as the so-called slipping and guessing parameters). Here correct predication pro-
vides evidence of internal consistency of the measurement instrument as it shows that performance on past 
questions correlates highly with performance on future questions, suggesting both reliability and sufficient 
modeling of the content dimensionality. A validity threat remains, however, that the scaffolding provided 
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by the tutor is inflating the number of correct responses, making students appear to have mastered the topic 
before they actually have. An extension to BKT that incorporates scaffolding into the model has been de-
veloped and may alleviate the problem produced by different levels of feedback given to different students 
(Sao Pedro, Baker & Gobert, 2013). None of these models deal with the questions of content, however, and 
a careful review of the items presented and their mapping to the domain being taught will provide important 
content validity evidence toward the mastery argument. Further evidence to support a validity argument for 
skill mastery should include performance on appropriate transfer tasks and performance on similar tasks 
but after a delay period during which the immediacy of the provided scaffolding would be mitigated. Once 
all the evidence has been gathered, the validity of the inference, that the tutor is able to correctly diagnose 
mastery, can be either supported or refuted. 

Validity Issues Surrounding Specific Technology-Based Assessment Techniques 

Research on new types of performance assessments pose challenges for validation because research is done 
to explore general assessment capabilities rather than specific assessments. Validity is a characteristic of an 
inference that one makes based on assessment results (Kane, 2013), such that a test-taker has sufficient 
mastery of a topic (an accountability usage), needs a specific type of remediation (a type of formative 
assessment), or is ready to enter college (a prediction of future potential). Challenges for validation arise 
because without a specific context – a specific population, usage, or full targeted construct – a full validity 
argument would be premature. Nevertheless, validation efforts can begin just by collecting evidence re-
garding key validity claims of the assessment technology approach or threats to validity arising from the 
approach. That is, just as validation efforts for a mastery-learning assessment, as outlined earlier, might 
focus on the weakest portion of a validity argument, so too might validation efforts for an assessment tech-
nology focus on just those claims and threats to validity – the presumed weakest points of a validity argu-
ment for any particular assessment that would use the new technology. 

In the next sections, we discuss two general assessment technologies. These technologies – conversation-
based assessment and stealth assessment – have been used to create prototype assessments that might have 
specific uses. Nonetheless, these technologies raise validity concerns that likely span specific assessment 
uses. In each section, we first describe the technology and give examples of its use, then discuss the key 
claims or threats to validity posed by the technology. When possible, we provide examples of validation 
efforts, namely, empirical studies that examine the extent to which the threats to validity affect the inter-
pretation of assessment results using some of the five types of validity evidence described earlier. 

The different sources of validity evidence described earlier provide the backing for the claims within a 
validity argument. In a similar way, when we investigate claims of an assessment or possible threats to 
validity implied by new assessment technology outside of a particular assessment use, these sources of 
validity evidence might help to direct validation efforts. Knowing the different possible sources of validity 
evidence might help researchers to recognize possible validity threats (or assumed claims) that might not 
have recognized originally. 

Conversation-Based Assessment (CBA) 

Dialogue-based systems have been used in the area of ITSs to support student learning (Graesser, Person, 
Harter & Tutoring Research Group, 2001). These dialogue systems engage students in natural, written, or 
spoken conversations about different aspects of the domain; analyze and extract information from these 
conversations; and use it to react appropriately based on the goals of the system. Conversation-based as-
sessments (CBAs) involve students interacting with one or more virtual characters using natural language 
(i.e., spoken or typed responses) or predefined responses (e.g., menu-driven conversations). By carefully 
designing the overall “space” (or script) of a conversation (Zapata-Rivera, Jackson & Katz, 2015), CBAs 
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seek to collect and evaluate rich evidence about students’ knowledge, skills and other attributes (e.g., addi-
tional evidence that may be difficult to obtain using traditional assessment approaches), provide test-takers 
with multiple opportunities to elaborate or demonstrate their knowledge/skills, and elicit explanations about 
decisions that students make while interacting with a task (e.g., a simulation scenario; Jackson & Zapata-
Rivera, 2015). The CBA approach builds on advances in natural language processing technology (e.g., 
Dialogue and Speech Systems; Adamson, Dyke, Jang &, Rosé, 2014; Graesser et al., 2001; Graesser et al., 
2004; Millis et al., 2011) as well as advances in technology-enhanced assessments (Bennett, Persky, Weiss 
& Jenkins, 2007; Clarke-Midura, Code, Dede, Mayrath & Zap, 2011; Quellmalz et al., 2011). 

Figure 1 shows a screenshot of a CBA prototype used to measure both English language and mathematics 
skills. In the scene depicted in the figure, the student is interacting with two virtual classmates by taking 
turns at answering mathematics word problem questions. These questions involve understanding the prob-
lem, finding relevant information in tables, and applying the concept of ratio to find the answer. Virtual 
characters provide feedback and ask additional questions based on the student’s responses. Other CBA 
prototypes have been developed and used to measure skills such as science inquiry (Zapata-Rivera et al., 
2014), collaborative problem solving (L. Liu, Hao, von Davier, Kyllonen & Zapata-Rivera, 2016), language 
argumentation (Song, Sparks, Brantley, Oliveri & Zapata-Rivera, 2014), mathematical argumentation 
(Cayton-Hodges, Bauer, Bertling, Katz & Wylie, 2015), and English language skills (So, Zapata-Rivera, 
Cho, Luce & Battistini, 2015). 

 

Figure 1. A screenshot of a CBA prototype designed to assess English language and mathematics skill. 

Validity Issues and Concerns 

In considering possible approaches to validation for CBAs, we may start by thinking about the possible 
threats to the validity of inferences drawn about test-takers based on their performance in a CBA. Of course, 
valid inferences cannot be separated from the assessment context (e.g., are we making a prediction of future 
performance? Are we recommending areas for remedial support?), but the general CBA approach of inter-
active dialogs with virtual characters suggest possible areas in need of validation efforts. 
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To what extent does the virtual interaction of a CBA distract from the construct of interest? The CBA 
environment might introduce construct-irrelevant variance, whereby knowledge and skills unrelated to 
those intended to be assessed affect test-takers’ performance. For example, because of the dialogic nature 
of tasks, CBAs might involve more linguistic skills than a multiple-choice assessment. If an English lan-
guage learner performs poorly on a CBA of scientific-inquiry skills it might be because that learner isn’t 
able to express understanding via a dialog rather than due to a lack of science-inquiry skills. 

To what extent does the CBA environment help us to assess unique knowledge and skills compared with 
more traditional forms of assessment? In other words, should we be using a CBA if a more traditional (and 
possibly more familiar and less time-consuming) assessment would suffice? The intended realistic interac-
tion might encourage more meaningful preparatory instruction than is typically associated with preparation 
for multiple-choice tests (e.g., a focus on lower-level skills; Madaus, Russell & Higgins, 2009). For such 
an outcome to be meaningful, however, the CBA approach should provide at least some type of measure-
ment benefit as well. 

In the next sections, we discuss some of the validation research that has been conducted using particular 
CBA prototypes. To better connect the validation approaches to the earlier discussion of validity, we use 
bold type when we mention particular sources of validity evidence. 

Scientific-inquiry Assessment  

The Volcano Scenario is a CBA prototype that was designed to measure science-inquiry skills. In this sce-
nario, students play the role of an apprentice to Dr. Garcia, a professional volcanologist. After learning 
about volcanoes (parts of a volcano, information about volcanic events, seismometers, seismic events, and 
alert levels), the student is asked to place seismometers to collect data on a volcano, annotate the data 
collected, and make a prediction about the volcano’s alert level. The scenario includes several conversations 
with both Dr. Garcia and another apprentice (Art) about topics such as the quality of the annotated data, 
common misconceptions, and evidence supporting a volcano eruption prediction. A form of validity evi-
dence related to the response processes elicited by the scenario was investigated through a small-scale 
study (N = 10 middle school students; Zapata-Rivera et al., 2014). The students indicated that they were 
able to complete the activity with minimal instruction, enjoyed the activity, felt that the virtual characters 
(Dr. Garcia and Art) understood their responses, and expressed that they would like to engage into similar 
conversation in the science classroom 

Zapata-Rivera, Liu, Chen, Hao & von Davier (2016) investigated the internal structure and external rela-
tions (two types of validity evidence) of the Volcano CBA. Five hundred adults (via Amazon Mechanical 
Turk) completed the scenario, which resulted in four scores based on performance during the conversation 
and two scores based on multiple-choice questions embedded in the conversational scenario that were de-
signed to assess similar scientific-inquiry skills. The participants also completed a separate multiple-choice 
assessment of general science knowledge. All of the scenario-generated measures correlated moderately 
with the general science assessment (correlations approximately 0.3), providing (albeit weak) evidence that 
the conversation-based assessment taps the construct of interest. This result provides a type of criterion-
related evidence, namely, convergent evidence of relation with a predicted criterion measure, although 
stronger evidence might have been obtained by using discriminant measures as well. However, while the 
conversation-generated scores correlated with each other (rs about 0.7), they did not correlate with the 
scores from the embedded multiple-choice questions. These results suggest that the conversational dialogs 
provide useful assessment beyond what might be possible with multiple choice, a type of evidence based 
on the internal structure of the assessment. 

Validation efforts continue both for this CBA and another, parallel, CBA that seeks to assess the same 
knowledge and skills using a scenario related to weather. Sparks, Andrews, Zapata-Rivera, Lehman & 
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James (2016) demonstrated that the virtual characters might inadvertently introduce irrelevant variance. For 
example, when asked whether they agreed or disagreed with a virtual peer’s answer, middle school partic-
ipants (N = 145) appeared unwilling to explicitly disagree with the peer in front of Dr. Garcia despite the 
participants demonstrating elsewhere that they understood that the peer’s response was incorrect. This type 
of evidence related to students’ response processes suggests that such situations should be avoided when 
designing future CBA situations.  

English Language Assessment  

Scenario-based tasks such as those in a CBA might be particularly appropriate for assessing multiple lan-
guage skills (listening, reading, writing, and speaking). In a CBA prototype designed around these ideas, 
students interact and complete tasks with a virtual teacher and two virtual classmates in several familiar 
situations, such as listening to directions from a teacher and reporting them to a classmate, engaging in 
classroom conversations with classmates, and telling a classmate about the rules in the library based on a 
posted sign (So et al., 2015). To mitigate the potential validity threat of having non-native English speakers 
type all their responses, the prototype includes opportunities for students to respond verbally, using auto-
mated speech recognition (Evanini et al., 2014).  

Validation efforts are ongoing, but small-scale studies (N ~ 20) provide some preliminary evidence for the 
use of this CBA to assess English language skills. For example, So et al. (2015) investigated the prototype’s 
use by English language learners in grades 3–5, who represented a range of native languages and different 
levels of English proficiency. Students’ performance on the CBA matched their ability as judged by their 
teachers, with the top three students outperforming the bottom six students, a type of criterion-related 
evidence (convergent; the teachers’ judgment serving as the criterion). The students reported enjoying talk-
ing with the virtual characters and felt that the characters understood them. Similar results were obtained 
by Evanini et al. (2014) in a study that focused on the performance of the automated speech recognition 
system of this prototype. The researchers demonstrated that the prototype’s categorization of student re-
sponses was robust relative to errors made by the speech engine. Together, these results suggest that stu-
dents were both able (by virtue of the system working) and willing (via their engagement) to interact with 
the CBA in an intended way to allow for assessment of their language skills, a type of response process 
evidence. 

Stealth Assessment 

The original idea of stealth assessment refers to embedding a performance assessment within a video game 
(Ventura & Shute, 2013), sometimes described as “evidence-based assessments that are woven directly and 
invisibly into the fabric of the gaming environment” (Shute, Leighton, Jang & Chu, 2016, pg. 52). However, 
the notion of assessing people as they are engaged in an activity is not new. In one sense, we are all doing 
this on an everyday level; making assessments about one another without applying explicit assessment 
tasks. Indeed some of the assessments we make have significant consequences. As Foucault (1975) wrote, 

The judges of normality are everywhere. We are in the society of the teacher-judge, the doctor-
judge, the educator judge, the “social worker”-judge; it is on them that the universal reign of the 
normative is based; and each individual, wherever he may find himself, subjects to it his body, his 
gestures, his behavior, his aptitudes, his achievement. (pg. 304) 

Yet, many of these judgments are of questionable validity – borne of bias and reaffirming current societal 
structures and practices. Notwithstanding, the electronic era offers greater opportunities for us to collect 
data and make inferences about people from such stealth assessment data. 
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The promise of stealth assessment is that during an activity, such as a computer game, “students naturally 
produce rich sequences of actions while performing complex tasks, drawing on the very skills or compe-
tencies that we want to assess” (Shute, Leighton et al., 2016, pg. 52). Without disrupting flow, data could 
be collected on multifaceted, dynamic performances that are as close to the behaviors, knowledge, and 
skills that are needed for the real-life performances that we want the students to demonstrate (Ke & Shute, 
2015). On a more general level, stealth assessments could also be used to collect data beyond traditional 
measures of learning to include emotional responses to learning interactions and social skills (DeRosier, 
Craig & Sanchez, 2012). Thus, stealth assessments, with the affordances of computer-based systems, could 
provide a better platform than paper-based tests to allow students to demonstrate what they know and can 
do.  

To achieve these promises requires careful validation efforts surrounding any application of stealth assess-
ment. 

Validity Issues and Concerns 

Almost by definition, during a stealth assessment, learners (or test-takers) might not know that their perfor-
mances are being monitored or that assessment data derived from their performances (such as scores deliv-
ered to a teacher or other assessment user) will be used to draw inferences about their knowledge and skills. 
Because people may perform differently when they know they are being assessed, designers of a stealth 
assessment must consider the ways that their implementation of this assessment technology (i.e., the par-
ticular assessment usage) allows for valid inferences to be drawn about test-takers. Additionally, threats to 
validity must be considered, such as the possible ways that the stealth assessment may inhibit valid infer-
ences or raise concerns about fairness (e.g., making consequential decisions about test-takers based on data 
they did not know was being collected). Validation plans – empirical data collected – should be designed 
both to test hypothesized claims and gather evidence that disconfirms potential threats. 

For example, high-stakes assessments have been heavily criticized for the effects they have upon teaching 
and learning, especially for inducing a narrow curriculum, enabling shallow learning, and drilling instruc-
tional practices (Madaus et al., 2009). Additionally, students might be too anxious under high-stakes testing 
conditions to show what they know and can do. A stealth assessment might provide a more natural, less 
anxiety-provoking method of assessment. Thus, validation efforts might focus on evidence related to the 
consequences of stealth assessment. For example, to what extent do stealth assessments have the purported 
benefits on a curriculum or on students’ levels of test anxiety relative to high-stakes testing, and are there 
any unintended, less beneficial consequences?  

At the same time, not knowing that one is being assessed might introduce construct-irrelevant variance 
(Haladyna & Downing, 2004), namely, performances that obscure inferences about what a student knows 
or can do relative to the target domain (construct) of an assessment. Learners’ schemas for assessment 
include individual assessments taken in silence in an examination hall, with a proctor present (Richardson 
et al., 2002). When these schemas are not cued, we might not get the best performances from people and 
therefore draw the wrong conclusions about their capabilities and/or the rank order of the students. Stu-
dents’ motivation to perform well is directly related to how well their test scores reflect their knowledge 
and skills (O. L. Liu, Bridgeman & Adler, 2012). Additionally, stealth assessments might be embedded 
with learning activities. However, during learning, students might choose to try different techniques, just 
to experience and explore them. They might even try things in the knowledge that they will fail, or simply 
find out that they failed but learn from these mistakes. Making mistakes is important for learning, but com-
plicates drawing valid inferences based on assessment results. 
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Another potential validity concern relates to the generalizability of stealth assessment performance. Games 
and simulations are invariably “small-world” variants on the real-world behaviors that we wish to encour-
age in learners. Just as with traditional testing, we are usually assessing only a small sample of the perfor-
mance of interest. Like last century’s complaint that some people were only book learners but could not 
apply their learning to anything practical, we must be careful that this century’s learners can apply their 
learning beyond the confines of the game. We have to help learners to recognize how to transfer their 
learning, recognize situations in which it will be relevant, and map the structural features of the games’ 
problems onto those that they will encounter beyond the game. Validation efforts should include investi-
gating that the scores generated by the stealth assessments are generalizable to real-world performance, 
which might be investigated using measures hypothesized to reflect real-world performance (i.e., criterion-
related evidence) or evidence of response processes. For the latter, we might investigate the extent to 
which test-takers’ response processes on the assessment correspond with processes elicited by real-world 
(or real-world-like) tasks (see Snow & Katz, 2010, for an example of this latter approach for a [non-stealth] 
performance assessment).  

Along these lines of thinking, Shute, Wang, Greiff, Zhao, and Moore (2016) report an example of how 
problem solving as an imminent 21st century skill can be captured through stealth assessment. In their study, 
55 seventh grade students worked on a game that was a slightly modified version of the well-known Plants 
vs. Zombies™ 2 game. On the basis of a theoretically derived problem-solving model as an indicator of 
construct validity, several in-game measures were derived with the aim of extracting students’ problem-
solving skills. Importantly, the scores derived in the stealth assessment were related to external measures 
of problem solving indicating, to the extent possible, criterion-related evidence of the underlying stealth 
assessment in a game-like environment. For example, using tools efficiently and effectively correlated with 
a test of IQ as measure of simple problem solving (r = 0.40, p < 0.01 with Raven’s Matrices) and a test of 
complex problem solving skill (r = 0.41, p < 0.01 with MicroDYN). Although these were modest correla-
tions and questions remain about the extent of coverage of complex problem solving in Plants vs. Zombies 
2, this research is a useful step forward (Shute et al., 2016). In another study, correlations were found 
between students’ physics knowledge from a traditional test and their “gold trophies” in the game Newton’s 
Playground™ (correlations between 0.22 and 0.40). Some very practical recommendations for stealth as-
sessment designers were given by Wang, Shute, and Moore (2015), including that an external criterion 
measure should be identified in advance, so that designers can check whether their scores do in fact correlate 
meaningfully with the constructs of interest. 

Stealth assessment has been discussed in relation to gaming in the literature to date, though its conceptual 
connection with big data and data mining or learning analytics is also apparent. The term surely applies 
when smart watches and bathroom scales send data to smart phones and the data are collated with health 
club attendance. These combined data might then be sent to the health insurance provider, affecting premi-
ums. Normal ethical rules of transparency of the process, data privacy, and consent have not always been 
applied under these new modes of assessment (Prinsloo & Slade, 2013). Given that the outcomes of stealth 
assessments might have serious consequences for individuals, these ethical issues need to be considered, 
and validation efforts should evaluate any particular application of stealth assessment. As applications con-
tinue to be developed, there is no doubt that this area will attract attention with regard to protocols and legal 
requirements for ethical behavior on the part of the assessors. 

Recommendations and Future Research 

The application of technology to education in the form of ITSs, adaptive assessments, and game-based 
assessments has produced considerable excitement, extending the hope for improving both learning and the 
student experience of education. As educators, however, we must take care that what we claim as effective 
instruction really is effective and when we claim to be able to measure student understanding, those 
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measures allow for valid inferences to be made about test-takers. The study of assessment validity has a 
long history in education and its principles can be applied to these new forms of assessment. This chapter 
has introduced several key validity concepts and illustrated their use in several technology-rich contexts.  

As noted previously, ITSs rely on assessments to make appropriate decisions about student knowledge 
states, instructional support and feedback (micro-adaptive strategies), and instructional sequencing (macro-
adaptive strategies). Providing sources of validity evidence is paramount in establishing the benefits of 
ITSs. In this chapter, we have discussed different sources of validity evidence and provided examples of 
how researchers can gather evidence to support the validity argument for ITS assessments. As a research 
platform, GIFT can support the design and implementation of ITSs that collect different types of evidence 
to validate their use by providing tools and guidance on the types of studies that can be carried out. The 
GIFT community can be a good mechanism for disseminating these ideas. In particular, formalizing the 
notion of evidence (Zapata-Rivera, Brawner, Jackson & Katz, this volume) can facilitate the implementa-
tion of some of the ideas presented in this chapter. 
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Background 

For over 100 years, the Army has relied on systematic assessments of human performance to help ensure 
force readiness. For example, upon America’s entrance into World War I, the Army developed the Alpha 
and Beta tests to quickly and efficiently select potential recruits. By the mid-1960s, the Army adopted the 
Armed Forces Qualification Test (AFQT), which remains in use today, to place recruits into different Mil-
itary Occupational Specialties (MOS) based on their unique profile of aptitudes. More recently, the Army 
has developed the Officer Evaluation Report (OER) system to manage its leadership pipeline; Mission Es-
sential Task Lists (METLs) to assess individual and unit readiness at the conclusion of training; and the 
Functional Solutions Analysis (FSA) process to assess the effectiveness of prototype tools and technologies 
prior to deployment in the field.  

While significant progress has been made in assessing various aspects of individual and unit performance, 
there is no unified, standardized measurement framework that can sustain progress over time. As a general 
rule, human performance-related data collection activities tend to be disparate and unorganized, thereby 
minimizing the possibility of reusing critical tools, techniques, and lessons learned. Additionally, there is 
no centralized mechanism for the aggregation of results across studies for use in meta-analysis. Assessments 
also rarely address longitudinal effects. Finally, a majority of current Army systems assume stereotyped 
human input that is geared toward an “average” soldier, rather than capitalizing on known variability in 
intelligence, personality, physical endurance, and related attributes. Taken together, these factors have de-
creased the Army’s return on its investment in the science of human performance assessment.  

In 2016, the US Army Research Laboratory (ARL) launched the Unified Multimodal Measurement for 
Performance Indication Research, Evaluation, and Effectiveness (UMMPIREE) project to design and build 
a framework that will “standardize the vocabulary on human performance assessment; promote the estab-
lishment of ‘best fit’ measurement in project- or context-specific assessments; and ultimately, increase con-
fidence in the results of human performance experiments and interventions”. UMMPIREE is a means to 
improve the assessment of individual and/or unit performance so that Army leaders can better use them in 
making decisions on topics such as personnel selection, training, promotion, performance augmentation, 
and related issues. Ultimately, the capabilities developed during the UMMPIREE project will be a point of 
departure for other applied research and development (R&D) efforts, thereby saving time and money, while 
at the same time facilitating rapid and reliable entry of assessment-related results into operational Army 
systems. 

The purpose of this chapter is to present some of the ideas emerging from the UMMPIREE effort. Specifi-
cally to present a definition of assessment and a framework that depicts steps regarding how assessment 
should be accomplished. The framework is applied to assessing human performance in technologically-
augmented learning environments such as intelligent tutoring systems (ITSs), specifically the Generalized 
Intelligent Framework for Tutoring (GIFT). 
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Defining Assessment 

For the purpose of this chapter, we define assessment as an evaluation on some metric of the state, behav-
iors, or affect of an agent in a given context at a given point in time. The evaluation is typically a qualitative 
statement about the capability or readiness of the agent (e.g., passing a test, mastering a skill, or being ready 
for deployment). The agent can be a person, a team, or a team of teams, while the performance context is 
the setting in which the agent takes, or fails to take, various actions. Generally speaking, the assessment 
context should attempt to match the complexity of the target environment for the assessments to be mean-
ingful.  

An assessment is generated by collecting data about the agent, calculating a summary score about the 
agent’s performance, and then comparing that score to established performance standards or benchmarks. 
For example, the Army Physical Fitness Test (APFT) assesses each soldier’s muscular strength and cardi-
ovascular endurance using three tests: push-ups, sit-ups, and a two-mile run. For each test, the soldier re-
ceives a score, which is rated on a 0–100 point scale. Individual test scores are computed by comparing the 
soldier’s performance to age- and gender-specific standards. For example, to receive a minimum acceptable 
score (60%) on the push-up test, an 18-year-old male would need to perform 42 push-ups in two minutes;  
to receive the maximum score, that same soldier would need to perform 71 push-ups, again in two minutes. 
Similar scoring methods are used for the sit-ups and two-mile run. Since a minimum score of 60 is required 
to pass each test, each soldier’s total PFT score can range from 180–300.  

The assessment data can come from a variety of sources, such as self-reports, expert observer ratings, tools 
and technologies (e.g., simulators, radio networks), and sensors in the environment. Summary scores are 
computed using logical or mathematical formulae that codes, combines, transforms, and synchronizes the 
raw data to create a summary about the agent’s performance (Freeman, Stacy & Olivares, 2009). Scores 
may be quantitative (e.g., number of push-ups, percentage of correct responses on a test) or categorical 
(e.g., a subjective “readiness” rating). The summary scores are then used to make some kind of decision 
(an assessment) about the agent. For example, a soldier who performs poorly on the APFT would likely be 
assigned remedial physical training.  

Assessment Process Framework 

The Army relies heavily on the results of human-performance assessments to ensure force readiness (e.g., 
Hawley, 2007). The Department of Defense (DOD) has made evaluation standards readily available online 
(e.g., Department of the Army (2004) Training and Doctrine Command [TRADOC] Pamphlet 350-70-4; 
DOD [2011] MIL-STD-46855A) and there are published handbooks (e.g., Boldovici, Bessemer & Bolton, 
2001; Charlton & O’Brien, 2001) that describe procedures for conducting training evaluation and human 
factors testing to include the design, development, testing, reporting, and/or reuse of assessments. However, 
they are primarily high-level guidelines, with little or no specific details. Instead, individual assessment 
teams must make specific decisions and develop details about how to conduct assessments. Those assess-
ment teams may vary greatly in terms of their experience and expertise in conducting assessment activities. 
Further, there is a plethora of strategies, techniques, tools, and instruments that can be applied. Even expe-
rienced assessors may differ significantly in terms of their methods. This leads to a great deal of variability 
in methods, impacting the both the quality and comparability of assessments. We offer the opinion that 
there is a clear need in assessment community for a guiding framework that describes the major elements 
of assessment related activities that are particularly relevant to the Army. Generally speaking, such a frame-
work would serve to as a useful tool for both novice and expert assessors, providing high-level guidance 
for critical stages of the assessment process.  
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Figure 1 presents the Assessment Process Framework (APF), a conceptual framework that describes how 
assessment is accomplished across multiple phases: planning, execution (which includes data capturing, 
training aids, and monitoring), postprocessing data analytics, and cyclical improvement based on the ob-
served results. Recognizing the futility of trying to develop a prescriptive “one-size-fits-all” approach, a 
high-level set of diagnostic questions is included in the framework to assist researchers and engineers – 
many of whom may have no formal experience in human-performance assessment – in navigating this 
complex and multifaceted process. At each stage of the process, users are presented with a series of ques-
tions or issues for consideration. Collectively, the user’s responses to these questions guide them toward 
the best measurement approach that balances their project-specific needs with opportunities for reuse. 

The APF was developed to be broadly applied across evaluation of technologies, studies of training inter-
ventions, the introduction of new work procedures and policies, the adoption of new organizational struc-
tures, and so forth. The process described here is consistent with best practices promulgated by the DOD 
(e.g., Bjorkman, 2008; Department of the Army, 2012) and NATO (DOD, 2002). Like that guidance, the 
APF process assumes that the assessment team has the expertise necessary to do the job, either themselves 
or by reaching out to credible experts.  

As illustrated in Figure 1, an assessment typically begins with a specific task, usually from the sponsor or 
governing body. The assessment team must first ensure that they fully understand the objectives, con-
straints, and context of the task that has been presented to them. The team then plans the assessment. This 
involves developing the goals, approaches (or framework) and specific methods. The team then exercises 
these plans via a pilot test, simulation, or thought experiment. The formalized plans are then provided to 
the sponsor or governing bodies for review.  

Upon receiving formal approval to proceed, the assessment team then develops assessment-related materi-
als. This may entail designing or buying measurement instruments or stimuli and training the assessment 
team members who will act as field observers or data analysts. A pilot test is recommended as it may lead 
to revised and improved methods and materials. Next, the team executes the assessment, analyzes the as-
sessment data, and issues a report of findings and recommendations to the sponsor, who in turn may make 
a decision or take action that is proportionate to the cost of the assessment. The decision may shape future 
assessment tasking from that sponsor. Feedback from the sponsors and from assessment team members 
supports an After Action Review (AAR), in which the assessment team identifies lessons learned and re-
vises its assessment procedures to improve their future work. In the following paragraphs, we break the 
planning part of the assessment process down into its component parts.  
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Figure 1. The APF. 
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Refine Goals and Framework  

Upon receipt and clarification of an assessment task, the assessment team should refine its goals and de-
velop its approach (or assessment framework). In this activity, the team may (in any convenient order), 
codify the decisions to be made by sponsors, the hypotheses to be tested, or the research questions to be 
explored; study the technology (or other augmentation, such as training or a new procedure) that is intended 
to enhance human performance; and consider the context in which it will be used.  

The team should examine or propose a theoretical model that explains or predicts the effects of the perfor-
mance augmentation; define the type(s) of information that an assessment must produce; and identify the 
baseline, standards, or metrics on which to judge (or, literally, to assess) that information. In addition, the 
team should consider any constraints on resources (e.g., money, time, facilities, and expertise) that may 
narrow the space of potential assessment designs.  

Define Methods  

Having established a useful framework, the assessment team then defines its methods. This entails discuss-
ing and making decisions about the environment in which users can apply technology (or other augmenta-
tions) to execute the tasks of interest, the participant sample that best represents the user population (given 
resource constraints), the measures that will be applied to the participants during task execution, the instru-
ments that capture data to compute those measures, and the protocol for executing the assessment. In addi-
tion, the assessment team needs to consider how exactly the captured data will be transformed into measures 
and assessments, and how those assessments will inform recommendations. The product of this activity is 
the methods section in an assessment report.  

It is advisable to pilot the assessment methods in some manner during the planning process. This is a rapid 
and inexpensive sub-step that identifies errors and inconsistencies in the methods. It can be executed as a 
thought experiment, an exercise over a conference table, a simulation, or a trial run in the operational envi-
ronment. Following any refinement of the assessment method, the team should document its goals, frame-
work, and methods, and provide these for governance review (in the upper right of Figure 1). With this 
documentation, sponsors can ensure conformance with their objectives and resources, both of which may 
change during or as a result of planning. In addition, assessments involving human research participants 
often require review by a Federally approved Institutional Review Board (IRB), which ensures that the 
protocols balance costs and benefits of using human subjects in research.  

Example Use Case 

In this section, we illustrate the application of the APF to a hypothetical, operationally motivated use case. 
Our intent is to demonstrate the types of diagnostic issues that an assessment team might identify and ad-
dress at each step of the process. This presentation assumes a knowledgeable assessment team with exper-
tise in areas such experimental design, statistics, and social science. The use case described here is relevant 
to Army programs of record and presents the assessment team with a diverse set of issues. 

The use case involves an application based on a simulation to Mission Command Interoperability (SIMCI) 
automated course of action (COA) concept (Smith, Sprinkle, Powers, Xu & Knapp, 2015). The application 
is a planning tool that enables COA comparison within the Military Decision Making Process (MDMP). 
Currently, staffs make COA decisions based on mental and discussion-based COA comparison meetings. 
The proposed application in this use case would allow for Army staffs to easily draw out their COA in a 
planning tool and make decisions based on quantitative metrics enabled through constructive simulation. 
The assessment question becomes, whether that intervention, the COA comparison application, enhances 
staff performance in a meaningful way.  
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Receipt of Tasking 

Upon receipt of tasking from the sponsor, the assessment team can clarify the sponsor’s goals. The Heil-
meier Catechism (Defense Advanced Research Projects Agency, 2016) is a useful list for this purpose: 
What are you trying to do? How is it done today? Who cares? What difference will it make if you are 
successful? Specific responses for this example use case might be the purpose of determining whether the 
COA automation tool improves the quality of mission planning vis-à-vis current methods. The Army or-
ganizations who care about the answers to this study include the TRADOC Capability Manager for Mission 
Command (TCM Mission Command) and the Program Executive Office Command Control Communica-
tions-Tactical (PEO C3T), because the proposed tool has the potential to improve mission plans, thereby 
saving lives, time, and materiel.  

Refine Goals and Framework 

After confirming the tasking that was provided to them, the assessment team needs to refine its goals and 
assessment framework by answering such questions as What are the critical decisions, comparisons, or 
hypotheses to be tested? What are the likely contextual constraints? What relevant theories, models, or 
doctrine help inform the problem space? What is the critical metric or baseline for comparison? Specific 
responses for this example use case might involve the critical decision of whether or not the Army should 
fund the COA automation prototype to bring it from stage 6.3 (Advanced Technology Development) to 
stage 6.4 (Demonstration and Validation). The project constraints might be that only five battle staffs are 
available to participate in the experiment, and that the experiment must be completed within the next six 
months. Critical theories that inform the problem space include models of teamwork (Kozlowski, Gully, 
Salas & Cannon-Bowers, 1996), trust in automation (Lee & See, 2004), and automation-induced compla-
cency (Parasuraman, Molloy & Singh, 1993). Finally, according to the project sponsor, to advance the effort 
from 6.3 to 6.4, the COA automation tool results needs to improve COA quality by 25% and reduce COA 
development time by 25% versus current MDMP standards. 

Define Methods 

Next, the assessment team needs to operationalize its approach by responding to such questions as What 
scenarios will elicit the critical behaviors or phenomena that are to be assessed? What assessment envi-
ronment or facilities can support those scenarios? Do the participants require any special backgrounds, 
expertise, or access for the assessments to be meaningful? What measures address the constructs of inter-
est? What instruments or sensors can capture data from those sources? Specific responses for this example 
use case might include the scenario of a battalion-level armored engagement modeled on current National 
Training Center (NTC) pre-deployment exercises. The environment may involve one with resources similar 
to those available at the Mission Command Battle Laboratory (MCBL) at Ft. Leavenworth, KS. For the 
assessment to be meaningful, the participants need to include an intact battalion battle staff that has worked 
together for at least one full combat deployment. The measures include expert Observer/Controller ratings 
of COA quality, time to completion, and number of missed opportunities. The instruments required to per-
form the assessments include expert observer ratings, participant self-reports, and system-based measures 
(e.g., time to completion) from the COA automation tool.  

Taken together, the questions addressed at these three stages should well position the assessment team to 
develop its assessment materials, scenarios, and data collection protocols; pilot test their methods prior to 
formal data collection; conduct their experiment; collect, analyze, and summarize the experimental results, 
and then present these results to the project sponsor or governance board for feedback and/or subsequent 
tasking.  
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APF and GIFT 

As mentioned, the APF was developed as a broad guide for assessment across many domains and types. 
This section discusses the usefulness of the APF within the context of GIFT.  

GIFT is a framework for assessment-driven instruction and instructional research. Accordingly, assessment 
is central to GIFT. Assessment-driven means that its three major functions involve assessment, and most 
of its software modules either generate or incorporate assessments. The major functions of GIFT include 
1) authoring of instructional systems, 2) delivering instruction, and 3) analyzing those systems (Sottilare, 
Brawner, Goldberg, Holden & Smith, 2012). Each function entails assessment. Authoring engages instruc-
tional designers to design standards by which assessments are made and generate content that exercises the 
knowledge and skills to be assessed. Instructions assess and predict the state of learners and adapt training 
content and instructional strategy to their needs. In GIFT, learner state is broadly defined to encompass 
affect, cognition, performance, demographics, and learning history, each of which is a function of assess-
ment. Finally, the analysis function produces assessments of the formative and summative effects of tech-
nologies, learning processes, and learning outcomes. 

Four of the five GIFT software modules (or functional elements) perform or incorporate assessments to 
implement the GIFT functions (Sottilare et al., 2012; Sottilare, Brawner, Sinatra & Johnston, 2017). The 
sensor module transforms raw sensor feeds to processed data concerning learner affect and cognitive states 
for the learner module. The learner module assesses and predicts learner states as a function of 1) input 
from sensor module, 2) current performance data from domain module, and 3) demographics and historic 
performance data from an learning management system (LMS). The pedagogical module takes assessments 
from the learner module and generates new requests for assessment (e.g., to discriminate between hypoth-
eses concerning learner state or effects of training treatments), as well as requests for feedback, instructional 
content, and instructional strategies. Finally, the domain module represents assessment standards, which it 
compares to live performance data to generate the assessments requested by the pedagogical module. 

Example Use Case 

The planning process defined in Figure 1 can inform the design of tutors that use GIFT. Assume that an 
eminent engineer, Emily, plans a design of two tutoring systems to learn which one accelerates the acqui-
sition of technical maintenance skills including fault diagnosis, repair, and testing. 

During planning, Emily refines the goals and framework of her instructional project. At this planning stage, 
she may take the following actions: 

• Identify competing theories of learning, one that correlates learning with depth of processing, an-
other with time on task. 

• Define hypotheses that reflect those theories and that drive tutor design. For example, one tutor 
might incite deep processing by leading students to induce mental models of devices they must 
repair. Another tutor might present diagnostic rules to students and engage them primarily in mem-
orizing and applying those given rules. 

• Select metrics of performance on diagnostic, repair, or testing tasks from current training require-
ments or operational requirements. 

• Consider the context in which the tutors may be used. Perhaps she concludes that technical special-
ists should use the tutors while on military deployments (e.g., in the ship’s mess or a base library 
in theater). 
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The goals and framework that Emily has identified in the previous step influence the methods she defines. 
She methodically plans how she will do the following: 

• Design a maintenance task environment that is relevant to personnel from all of the services, per-
haps one that focuses on common machinery such as electrical motors. 

• Characterize her participants in ways that enable her to distribute her tutors systematically and test 
their effects on these different groups. For example, she might partition students by expertise – as 
novice, journeyman, expert, or master (Charness, Feltovich, Hoffman, Ericsson, 2006) – to test for 
differential effects of each tutor given prior knowledge. 

• Define measures of the frequency and timing of use of her tutors, the overall effects of each tutor 
on expertise, and the contribution of each exercise to that effect. 

• Define technical and logistical procedures for capturing data from field units. 

• Define analyses of the main effects of each treatment and the interactions between the treatments 
and initial expertise. 

This example, we hope, illustrates the benefits that an instructional researcher or designer gains by system-
atically planning assessments using the framework presented here. 

Recommendations and Future Research 

The UMMPIREE research program is in its early stages of identifying methods and tools to enable system-
atic assessment of training and augmentation interventions for the Army. The APF was a first step in iden-
tifying the critical steps in conducting assessment for a variety of purposes including assessment with the 
context of technology-enabled learning environments. This framework can serve as a high-level guide to 
those conducting military-based assessments and is a step in the right direction. However, we have identi-
fied additional challenges to achieving the goal of systematic assessment across the Army. First, a stand-
ardized method of assessment must be relatively flexible to accommodate the range of assessment chal-
lenges. In particular, manual techniques will be appropriate for some tasks (such as developing theory and 
measures), technologies will fit others (such as automated capture of experimental data), and both must 
include options for many (e.g., pilot tests may be conducted with automated simulations or live enactments). 
Second, to the extent that the vocabulary of human performance assessment can be standardized, human-
readable and computer-executable languages can be developed to automate assessment tasks. Third, selec-
tion of the “best-fit” measures can be furthered if measures are well defined and catalogued for discovery 
and reuse by different assessment teams. Finally, the goal of increasing confidence in experimental findings 
is, itself, a measurable goal. Accordingly, a process and authority must be established to monitor and refine 
use of the framework we have presented.  
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CHAPTER 20 – Assessment in Intelligent Tutoring Systems in 
Traditional, Mixed Mode, and Online Courses  

Anne M. Sinatra1, Scott Ososky1,2, and Robert Sottilare1 
US Army Research Laboratory1; Oak Ridge Associated Universities2 

Introduction 

As technology has continued to develop, there have been new and creative ways to use it in the classroom. 
Classes have transformed into learning environments that rely not only on the in-person instructor, but have 
many other resources easily available for students. At the college level, courses can vary between different 
modes of instruction: traditional in-person, mixed mode (classes with both an in-person and online compo-
nent), and online. Students routinely bring laptops and tablets to class to both take notes and work on their 
assignments. Further, there are often computer labs available for students to use for assignments at univer-
sities. In some cases, these labs can be reserved for specific classes and provide all students with the oppor-
tunity to engage with a computer during class time.  

Even traditional in-person courses often have online materials available for students through learning man-
agement systems (LMSs) such as Blackboard or Webcourses. Students often engage in message board dis-
cussions with their classmates and download resources such as class PowerPoints from the sites. Grades 
are often times managed digitally and are available to students through logging into the system. Many LMSs 
also have built in assignment submission sections that in some cases can check the student submitted work 
against others for plagiarism. Many of these resources are used by instructors as they design and supplement 
their courses. These resources can be combined with in-class instruction to build a learning environment 
that provides students a self-regulated method of engaging with additional educational materials. In the 
case of mixed-mode or online course, the students heavily rely on these LMSs and primarily receive their 
instruction through engaging with the computer-based materials. In these types of classes, the instructor’s 
goals when developing materials will be different than for in-person classes, such that the online materials 
will need to be deeper and more self-explanatory. In online and mixed-mode courses, the instructor moves 
from a lecturing capacity to a facilitator and subject-matter expert who engages with students when they 
turn in assignments, when they seek help and when they have questions. The online class environment is 
much more self-directed and requires the students to engage in self-regulated learning and be more aware 
of what knowledge that they have (metacognition), which does not necessarily come naturally to all students 
(Schraw, 1998). 

Discussion 

Among the different methods that can encourage the engagement of students and further provide the student 
with tailored learning opportunities are intelligent tutoring systems (ITSs). ITSs have been found to be as 
effective as a live human tutor working directly with a student (VanLehn, 2011). In many cases, students 
do not seek out in-person tutoring or fail to even engage with instructors during office hours to improve 
their performance. ITSs provide a means of offering personalized tutoring to an individual that is tied di-
rectly to the student. Tutoring can occur based on individual difference characteristics, previous experiences 
or knowledge, current performance, among other variables that are at the discretion of the author of the 
ITS. ITSs can be used in conjunction with a formal course, as a required assignment, or as a course com-
ponent. ITSs can be powerful tools for educators, as they can target in on specific material or components 
of material that students are having difficulties with. Some ITSs can engage students in a reflective conver-
sation or try to correct misconceptions that they have. The progress that the student makes on the ITS 
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materials can also be recorded and used to make further decisions about materials that the student is to 
receive. 

Courses which include computer-based components may have students engage with premade materials that 
linearly walk them through the learning process or provide practice. ITSs provide a means to give students 
personalized learning without needing to have a human tutor involved in the situation. There is upfront 
work that requires planning and creation of course materials that will send individual students down differ-
ent remediation paths. Therefore, time is spent on planning and coming up with alternative ways of teaching 
the material to be learned. Similarly to the development of a fully online class, a great deal of time is spent 
up front preparing the materials that will be used in an ITS. However, after that initial time, the course does 
not need to be redeveloped and can just be monitored and changed as needed. 

Currently, there are a few major hurdles to ITS use in the classroom and for assessment. The first hurdle is 
that creating an ITS is time consuming and often requires specialized skills such as computer programming 
knowledge. Secondly, ITSs are not always easily accessible from the internet and are not always available 
in mobile platforms. Thirdly, ITSs are costly to produce and tightly coupled to the material that they are 
teaching (Sottilare, Goldberg, Brawner & Holden, 2012). Projects such as the Generalized Intelligent 
Framework for Tutoring (GIFT) are making an effort to tackle these issues. GIFT is an open-source, domain 
independent ITS framework (Sottilare & Holden, 2013; Sottilare, Brawner, Sinatra & Johnston, 2017). 
GIFT is now available online (at https://www.gifttutoring.org) and can be accessed by both teachers and 
students over the internet. Further, GIFT provides a set of web-based authoring tools that are domain inde-
pendent and designed to be straightforward to use (Ososky, Brawner, Goldberg & Sottilare, 2016). Care 
has been put into the design of the tools to ensure that subject-matter experts and instructors can create their 
own adaptive tutoring systems without the need for a background in computer science. The generalized 
tools that have been created for GIFT allow for the reuse of the materials and the ability to quickly and 
efficiently create adaptive content. Additionally, GIFT is open source and freely available for use by in-
structors. 

Assessment in ITSs 

ITSs can be used to not only supplement in class lectures, but also can provide a means of assessing stu-
dents. ITSs such as those made with GIFT can include multiple-choice questions, and other assessment 
methods that can be used to determine the progress of an individual student and the understanding that they 
have of the subject. Assessments in ITSs can either be at the end of overall lessons or they can be leveraged 
to provide questions during the learning process that can lead to individual remediation based on the per-
formance of the student, while still retaining a record of the original scores. ITS authors can determine the 
point values and difficulty levels of questions to set up the types of remediation that they want their students 
to receive and how they want assessments to be graded.  

There are many approaches that instructors can use to incorporate ITSs into their classes (Sinatra, 2015), 
for instance, completion of an ITS by a student can be used as checkmark completion grade or as a more 
fine-grained assessment that can count toward the individual student’s semester grade. Another approach 
is to use it as a required remediation tool prior to an in-course exam, which could be compared to the 
performance of students that did not have that specific study tool to examine the effect of it. Thirdly, ITSs 
could be used as an assessment by having students design, create material for, and author their own ITSs 
using a framework such as GIFT. This practice could be beneficial to students specifically in the field of 
education, but also graduate students in general who may end up teaching their own classes. Even those 
who do not intend to teach a course could benefit from interacting with the authoring of an ITS, as it would 
get them to think about what types of questions could be asked about material. Students could be assigned 
a chapter and asked to think critically about what could be tested on in that chapter and create their own 

https://www.gifttutoring.org/
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ITS with questions to assess it. Students could also be asked to create their own experiments to determine 
how others would learn most efficiently, by having different methods of assessments and running partici-
pants through them. See Table 1 for examples of techniques in which ITSs could be used for assessment.  

Table 1. ITS assessment techniques. 

Student Population Assessment Approach Benefit 
Graduate students Ask students to create their own ITS to 

help them practice for teaching courses. 
Real-world experience with creating 
courses and assessments 

Undergraduate students Assign a chapter to students and ask 
them to create components of, or an en-
tire ITS to teach that chapter. 

Encourages students to engage in meta-
cognitive assessment of themselves, and 
reflect on material that they learned. 

Graduate or undergraduate 
students 

Create assessments in the ITS for use for 
in class grades. 

Assess student knowledge of material. 

Graduate or undergraduate 
students 

Educational research Teachers create alternate means of teach-
ing and compare to other years/methods 
or students are asked to create studies that 
do so and bring in others to participate. 

 

ITSs can be extremely useful to instructors. See Table 2 for examples of the benefits of ITSs in different 
modes of classes. There are a number of considerations that arise when implementing the use of an ITS in 
a classroom environment. There will be an impact to classroom management, to the amount and type of 
content needed, and the information that an instructor will want about the students during class time. 
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 Table 2. Benefits of using ITSs in different types of classes. 

In-Person Mixed-Mode Online 
* Supplements in-person lectures. 

* Provides opportunity for clarifi-
cation on points that were not 
completely understood. 

* Can be designed to encourage 
metacognition and allow self- 
assessment of class material. 

* Can provide an automatically 
graded quiz or exam to the in-
structor, which can then be ex-
amined to see what questions 
were answered correctly or in- 
correctly. 

* Provides engaging opportunities to 
build on material provided in class. 

* Can be used to introduce new ma-
terial before it is discussed in class. 

* Can be used to assess under- 
standing of in-class material, and re-
sults can be gone over with students 
at the next class meeting. 

* Students can generate their own tu-
tors for chapters that were presented 
in class, which can then be shared 
with each other in addition to the in-
structor. 

* Increases engagement. 

* Assists with self-regulated 
learning. 

* Demonstrates  personalization. 

* Students can receive custom-
ized feedback without needing 
to see an instructor in-person. 

Considerations for Using an ITS as a Learning Tool in the Classroom 

Although many ITSs have been designed to provide one-to-one tutoring experiences, they are being applied 
in traditional classrooms more often to augment instructors/teachers and support concepts like flipped class-
rooms where classroom lectures are viewed at home and typical homework elements (e.g., assignments or 
projects) are done in the classroom under the supervision of the instructor (Tucker, 2012). ITS capabilities 
exist today to allow teachers to deploy parallel assignments to their students to support independent, tailored 
learning experiences in the classroom where each student can proceed at their own pace. To manage the 
independent lessons of their students, ITS developers have designed dashboards to represent the students’ 
progress toward objectives, their domain competency, emotional state, level of engagement, and other data 
analytics about the time each student spends using each piece of content.  

While ITSs have value in the classroom in supporting self-paced individual exercises, they also have limi-
tations that should be considered prior to their application. First, allowing students to progress at their own 
pace means that content must be developed/curated to meet all levels of performance. In particular, low-
performing and high-performing learners have different content and feedback needs. Low performers may 
require multiple passes at content to reach a desired level of competency. High performers may consume 
content at such a rate that they run through the available content and are seeking more challenging material. 
Considerations should be given to allow high performers access to material in more challenging subsequent 
modules. Mechanisms should be available in the ITS to allow this type of assessment of learning trends. 

A second consideration is in supporting the assessment of collaborative learning, an educational approach 
to instruction where groups of learners work together to make a decision, solve a problem, complete a task, 
or create a product (Bruffee, 1999). Considerations should be given to provide access to data to perform 
team assessments. The use of low-cost, unobtrusive sensors and mechanisms to capture learner actions on 
a computer, on a mobile device, or within a simulation will allow ITSs to capture physiological and behav-
ioral data needed to classify individual and team states based on an evidence-based approach. 

A third consideration is in managing the instructor workload associated with using ITSs in a flipped class-
room. Inevitably, students may find themselves in situation where the ITS cannot support their learning 
needs (e.g., unable to answer a question or unable to provide new content). At this point, it may be necessary 
for a live instructor to intervene. With 20–30 students, how might a single instructor prioritize these needs 
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for interaction? The answer is likely to be some type of computer-based dashboard where the status of each 
student is tracked and alerts inform the live instructor as to the type of issue the student is encountering. 

Current effort is being made in GIFT to create an instructor dashboard to assist with the identified issues, 
and to help the instructor monitor the progress of students. The design of the dashboard is expected to be 
customizable and domain-independent. 

GIFT Instructor Dashboard 

The previous sections have discussed ITSs and how they have been used for assessment in classroom set-
tings and how interacting with ITS authoring tools can teach students about tutor development. This section 
focuses on an instructor’s needs supporting assessment with an ITS, specifically the application of an in-
structor dashboard within the ITS platform. GIFT is used as the exemplar ITS platform for the purposes of 
this discussion.  

Instructor-Centered Design  

An instructor dashboard for GIFT, and ITSs in general, should be able to serve an instructor’s goals. In-
structors may have one or many goals related to the course, the students, and their own planning. Goals of 
interest to an instructor may include increasing student learning and reducing attrition, enabling effective 
time management given an instructor’s various responsibilities, designing effective materials and courses, 
and enabling effective information management for external reporting (Siemens et al., 2011). Those goals 
are not mutually exclusive and those goals may change over time. Instructor dashboards do not directly 
meet those types of high-level goals; rather, they enable the completion of individual tasks that ultimately 
serve those goals. 

Let’s consider, for a moment, what tasks may be accomplished by an instructor dashboard. An instructor 
may want to track the progress and performance of students over the duration of a course’s administration, 
including predictions of final grades. The instructor may similarly want to track learner behaviors and atti-
tudes regarding the course over the same period of time. There may be interactions between students or 
between students and the instructor that need to be monitored within the dashboard. That may include 
providing feedback to students, as needed (Holman, Aguilar & Fishman, 2013). Taking a broader-picture 
view, the instructor may want to monitor student performance within the context of a learner’s education 
career or compare performance against some institutional set of standards. Also, the instructor may want to 
evaluate the design of their course (Grover, Pea & Cooper, 2014). 

Furthermore, the learning content, assessment material, and adaptive interventions that populate a tutor 
within an ITS may greatly differ between modules, even within the capabilities present in GIFT. Incorpo-
rating adaptive information into the instructor dashboard is a challenge not found in traditional computer-
based instruction. The instructor will likely want to know what adaptive paths a learner encountered. That 
might include the items that were dynamically presented from a question bank, as well as the difficulty of 
those questions and the course concepts addressed by those items. Adaptations may take the form of real-
time assessment, such as those found within a practice environment, like an educational simulation envi-
ronment. Adaptation in GIFT may also be found within a student’s conversation with a synthetic agent, or 
the dynamic selection and presentation of content to the learner, which occurs in discrete time. Given the 
variety of potential goals the instructor may have in conducting assessment-related activities and the ways 
in which a GIFT tutor can be adaptive, it would seem appropriate that an adaptive tutoring platform has the 
capability to configure adaptive instructor dashboards. Those dashboards will need to react to the data 
sources available to the system and output the information in such a way that the instructor will be able to 
conduct the relevant analyses in order to address their needs.  
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Data Sources 

Data are at the heart of the instructor dashboard. Under ideal circumstances, GIFT will integrate data from 
both external and internal sources. External sources might include information from individual learner mod-
els, such as previous grades from related and/or prerequisite courses, learning preferences, personal inter-
ests, or other relevant academic information (Sabin, 2012). Some of this information could come from a 
centralized system (e.g., Blackboard, edX) using a standardized format (e.g., experience application pro-
gramming interface [xAPI]). The dashboard should also account for instances where this information may 
need to be manually integrated (or perhaps by means of a questionnaire presented to the learner at the start 
of a module or course). In any event, prior information may be inconsistent between students, incomplete 
within a student, or simply not available at all. A learner dashboard in GIFT should be flexible enough to 
work with external information when it is available, but still draw meaningful conclusions for the instructor 
when external information is not available or not complete enough to be useful.  

Internal data sources to populate a GIFT learner dashboard for assessment can come from many sources 
within GIFT. Learner interactions with surveys will naturally produce data suitable for assessment within 
a learner dashboard. GIFT, however, provides additional information with respect to survey interactions. 
Survey questions can have partial scores or multiple correct answers. Data may also include metadata about 
the difficulty of the question and the concept(s) being assessed. If a survey was generated from a question 
bank, the order and selection of questions presented to the learner may also be of interest to the instructor. 
GIFT also includes options for non-scored (e.g., demographic) surveys, which may add additional ways to 
slice assessment data within a dashboard.  

GIFT tutors are made up of individual parts, known as course objects. Course objects represent presenta-
tions of interactive and static content, or contain the logic for advanced interactions including external 
applications. For static content such as text, images, or video, data might be collected about the time spent 
looking at these materials (dwell time). GIFT’s structured review course object allows learners to review a 
previous assessment; information regarding the pages that were accessed, and time spent reviewing the quiz 
could be recorded for further analysis. In addition to the dynamic display of survey materials, GIFT’s adap-
tive courseflow course object can dynamically display media, documents, and web information based on 
characteristics of the content and learner, respectively; the instructor may want to know what material was 
presented, as well as how often remediation was given, to better understand survey/quiz scores. GIFT’s 
external application course object leverages real-time assessment logic to exchange data with software 
such as simulators and games; this is a potentially rich data source that might include changes in learner 
performance states, learner behaviors within the external software, or strategies, tactics, and feedback in-
voked by GIFT during the interaction. Finally, GIFT also supports the use of sensors (e.g., physiological 
devices) which are most commonly used as part of a real-time assessment. 

Data Analysis and Presentation 

Given the types of assessment-related questions an instructor may be trying to answer and the various data 
sources available to them, determining the so-called best way to present relevant information to the instruc-
tor may be something of a moving target (Brown, Lovett, Bajzek & Burnette, 2006). Additionally, the level 
at which the information is presented may be just as important as the source data itself. An instructor may 
prefer a presentation of raw student data, perhaps when the class size is small or when it is required based 
on the task to be performed. Aggregate or descriptive statistics may be preferable with larger class sizes, or 
when analyzing trends within the class or comparing against other populations. Further, an instructor may 
want to view some type of predictive analytics, during the administration of a course, to more quickly 
identify students that may be struggling based on some classification criteria (Siemens et al., 2011).  
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Statistics, data analytics, and visualization are all relevant parts of the instructor dashboard; however, there 
is one important caveat when approaching these data. Specifically, all data points represent some aspect of 
an actual student engaged within a particular course. In practice, this means that anomalies in the data, such 
as outliers, unusual, or otherwise missing values cannot simply be discarded or excluded from analysis. An 
outlier may indicate a student that is performing either highly above or below the class average. Investigat-
ing such data points in greater detail may yield useful information that can be used to either identify aspects 
of the course that are working, a student that may need more assistance than what is provided within the 
course or even the potential to identify behaviors consistent with cheating. Unusual data might include high 
and low time spent in various activities. While these are not necessarily indicative of any specific behavior, 
it might be to the instructor’s benefit to follow up with a student that may potentially be skipping through 
content or perhaps leaving the tutor open while walking away to do something else (such as eating). The 
latter is relatively harmless, but the former may require additional instructor intervention. Again, the pur-
pose of the dashboard is to allow the instructor to quickly and efficiently get to the ground truth of how 
students are progressing through the course, and provide support to those students that may require addi-
tional interventions.  

Conceptual Design of GIFT Instructor Dashboard for Assessment 

Given the prior discussion, it is worth reiterating that adaptive tutors should be supported by adaptive in-
structor dashboards. This means that an instructor should be able to call upon the tools needed, but the 
system should also be semi-autonomous in preparing the layout of the dashboard and generating the appro-
priate visualizations. This section presents some conceptual notions of an instructor dashboard (Figure 1) 
and describes how an instructor may interact with the interface to help them accomplish tasks supporting 
their overall work goals.  

 

Figure 1. Conceptual sketch depicting modularity of dashboard divided by different elements associated with 
the course. The image above is intended to be more conceptual than it is prescriptive of a specific layout 

and/or user interface design.  
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An adaptive instructor dashboard can be enabled by a modular interface. This discussion starts from the 
center and works outward (both metaphorically and literally). The center/primary section of the interface is 
where the instructor would generate visualizations and interact with data. This area is intended to be entirely 
configurable to suit the instructor’s tasks or questions to be answered with the data. However, the burden 
of building the visualizations should not be with the instructor. Instead, GIFT should provide a set of com-
ponents that can be added to the dashboard (e.g., drag and drop) and preconfigured with a default set of 
options. Since the instructor dashboard resides in GIFT, it would seem practical that appropriate visualiza-
tion modules would be made available to the instructor based on the known course object types in a specific 
tutor and the data sources that those course objects can provide. Providing preconfigured visualization mod-
ules will increase the efficiency of the tool, but at the potential expense of flexibility for power users. The 
ability to build one’s own custom charts and graphs could be added as an advanced feature in a later version 
of the dashboard.  

Once visualization modules have been added to the dashboard panel, the instructor would be able to re-
arrange and resize the panels to increase their readability and highlight their relative importance to the 
instructor’s inquiries. Once that has been completed, the instructor is now ready to begin exploring the data. 
The “data selection” area has been modeled after a database query. Clicking on a visualization panel should 
populate the available options in the data selection area. From that area, the instructor should be able to 
specify what data they want to see, as well as how it should be displayed, grouped, and sorted.  

Application of Instructor Dashboard 
 
Even in regard specifically to assessment related goals, an instructor may have many different questions 
they need to answer: How did student A do? How did the class do in comparison to last semester’s class? 
Are there items on the quizzes that students are consistently missing? Does my question bank need more or 
less material? Are the lesson materials supporting the instructional goals? To those ends, it would seem 
appropriate to introduce the concept of viewing data at the object level (Figure 1, 2nd level menu bar), which 
includes students and classes, but also may directly focus on specific assessments, media content, or prac-
tice environments (e.g., games or simulations). For example, imagine that an instructor analyzes the ratio 
of correct to incorrect responses for a particular quiz. The instructor finds that students are performing 
poorly only on a specific concept (Concept 1 in this scenario); the instructor decides to investigate how 
much time students spent on average, with the various lesson materials for the course concepts (Figure 2).  
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Figure 2. An object-oriented approach to high-level dashboard creation enables the ability to answer differ-
ent types of assessment related questions within an instructor dashboard. Note that the “data selection” area 

changes based on the elements under investigation. 

The instructor notes that students spend, on average, far less time with the documents (e.g., PDFs, text, web 
pages) associated with Concept 1 compared to the other lesson concepts. This might suggest that students 
spent less time reading the lesson material, or perhaps the tutor simply did not present that specific yet 
important material during the adaptive portions of the course. Either way, the instructor dashboard is in-
tended to arm the instructor with the data and knowledge necessary to make better decisions about support-
ing students and improving the design of their assessments and courses.  

Additional Interactions 
 
There are a couple of other elements of this conceptual dashboard that can increase the efficiency with 
which instructors can accomplish their goals. First, the interface should allow the instructor to save the 
personalized dashboards that are built, presumably to revisit them at a later time or use them with other 
courses. Sharing dashboard layouts might also be on the short list for a second version of this tool.  

The dashboard will also need user interfaces to guide instructors through the process of connecting to ex-
ternal data sources, such as an online LMS or an offline spreadsheet. Despite the technical complexities 
that this process may introduce on the system backend, the system should endeavor to provide a guided, 
semi-autonomous experience for integrating these data, even if the initial set of available connections is 
limited. Additional connection logic for other external data sources can be added at a later date. The inter-
face should also offer the option to enable, disable, or disconnect these data sources in the event that data 
are no longer needed or wanted.  

Finally, the instructor dashboard should eventually allow the instructor to navigate through the dashboard 
by making the visualizations interactive. For example, clicking on a specific rating attribute from the bottom 
chart of Figure 1 should allow the instructor to view the raw data, including any open-ended comments that 
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were made regarding that dimension of the survey. Similarly, clicking on one of the media types in  
Figure 2 should present the instructor with a list of the specific files, URLs, etc., that makes up that category 
of media, for the specific concept clicked-on. In addition to moving vertically through the data, it should 
eventually be possible to move horizontally through data or pivot between the different element types at the 
top-level navigation. For instance, an instructor may wish to quickly pivot from media types to concept-
related information by clicking the relevant elements of the chart in Figure 2. doing so would change the 
data selection options and toggle the top level navigation automatically into a different element type. 

Summary 

Adaptive tutors require adaptive instructor dashboards to accommodate the varied data sources that may be 
found within a tutor. To effectively analyze assessments within a course, it may be necessary to consider 
other elements of the course, such as supporting materials and student behaviors. A conceptual model was 
proposed that included a semi-automated modular dashboard, leveraging preconfigured visualizations and 
dynamically updating data selection tools. It was recommended that a robust yet limited set of efficient 
options should initially be prioritized over advanced, granular flexibility. The instructor dashboard should 
also provide the ability to connect with external data sources, save/load/share dashboard layouts, and even-
tually provide a visual navigation capability by interacting directly with the visualization panels in the 
dashboard. 

Recommendations and Future Research 

General Recommendations for GIFT 

In the current form, GIFT and other ITSs can be used in classroom environments for assessments. In the 
case of GIFT, it provides a means of recording all student performance/actions in the GIFT system and 
saving it to external log files that can have data extracted from it at a later time. 

As GIFT continues to develop, there are a number of features that will be helpful to instructors that could 
be considered: 

• Breaking down the questions that students got right or wrong into a report 
• Statistics for the percentages of students that got questions right or wrong 
• Ways of allowing students to provide feedback about the material 
• Sending student grades directly to the teacher 
• Exporting data directly to LMS formats such as Webcourses 

 
The development of an instructor dashboard for GIFT will begin to address some of the above features. In 
GIFT’s current form (pre-user roles), students can login anonymously and engage with the course or they 
can import a course into GIFT. The implementation of user roles and permissions is the next step, so that 
students in specific courses can see a course appear in “My courses” without needing to specifically import 
it. There should also be a mechanism that would send the student scores to a teacher’s gradebook in the 
LMS. GIFT is in a stage where the concept of user roles and permissions is still being developed. Ulti-
mately, the students and instructor login interfaces will need to be different. The instructor dashboard that 
is currently being developed will be a great resource for an instructor who wishes to use GIFT for assess-
ment. Additionally, the functionality of the dashboard and information provided on it makes it useful for 
in-person, mixed mode, and online course instructors. With regard to a student interface, ideally, students 
should be limited to the courses that they are enrolled in and then the information should be automatically 
sent to the appropriate instructor, instead of just generating log files on the local computer or the cloud. 
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Unless they have specifically created a course, the student should not have the option to edit a course. 
Teachers should have options in regard to visualizing the grades that students received. Their tools should 
allow for reviewing test answers/percentages correct, and helping them to make decisions about good or 
bad questions. In the current state, GIFT is primarily populated from already generated log files. However, 
if a teacher determines that there is a problem with a specific question, it might be beneficial to be able to 
make an adjustment after participation has occurred, where the grading of the question is updated in the 
system. If this type of mechanism is not implemented, then it is important to provide an instructor’s GIFT 
handbook so that they know the ins and outs of what GIFT does and so that their expectations are in line 
with GIFT’s capabilities.  

GIFT currently has a method for taking questions from a user generated bank and compiling them into tests 
that cover concepts. While the questions that were asked are in the log files, a way to visualize these and 
provide a record of the asked questions will be needed for instructors. Instructors want to know what ques-
tions students are doing well on and make sure there is equal difficulty in the assessments that everyone is 
receiving. Therefore, it is important than an export feature be implemented that shows the student’s pro-
gress, the grade they got on the question, and other information that will assist them in their assessments. 
GIFT’s instructor dashboard will be a step forward to assist instructors in visualizing student progress and 
activities. 

Recommendations for Instructor Dashboards 

To effectively analyze assessments associated with classroom-based adaptive tutors, adaptive instructor 
dashboards are required. GIFT already generates tutor interaction information that can currently be found 
within an event reporting tool; however, its usability is currently limited to researchers and power users. 
An instructor dashboard should seek to automatically organize this data for the benefit of the instructor. 
Preconfigured visualization options should be provided, prioritizing depth and usability over flexibility.  

Additionally, a number of hypothetical instructor questions were described in the instructor dashboard sec-
tion. These questions generate tasks that an instructor will perform within the dashboard to answer questions 
that ultimately serve broader goals (e.g., effective lesson planning, meeting organizational objectives). At 
this time, it is not clear that GIFT natively generates appropriate data to power all of the proposed aspects 
of the dashboard. For instance, GIFT can provide some monitoring of student interactions with PowerPoint 
files, but this is inconsistent with the data generated from viewing a media course object. Surveys generate 
data regarding student performance, but not necessarily the amount of time spent on the survey, page, or 
question. Conversely, physiological sensors generate vast amounts of data, often requiring a customized 
viewer for each, which may be difficult to translate into the instructor dashboard interface in a meaningful 
way. It is recommended that instructor requirements guide the design of the dashboard and, in turn, inform 
the type of data that should be generated when a student interacts with various course objects in a GIFT 
tutor.  

Instructors would benefit from a function in GIFT that generates student data through simulation. This is 
relevant not only to quality assurance in course design, but also the instructor’s planning for a dashboard. 
With simulated data, the instructor could activate and explore different visualization modules in the dash-
board to ensure that the questions they will later pose with actual students can be answered by the data 
provided. An instructor may similarly use a dashboard layout that was used for a different course or one 
that was shared with them in evaluating its usefulness for the current course. Simulated data can also be 
used to test a new dashboard with an external connection to ensure that the imported data will add value to 
the data generated internally. 



 
 

246 

For ITSs to be more useful in the classroom, first, we recommend additional investigations into automated 
authoring methods to reduce the ITS developer burden and more easily expand the type and quality of 
content available to different levels of performers. A second recommendation for ITSs in the classroom 
centers on the development of low-cost, unobtrusive sensor suites that include the sensor hardware and 
associated classification models, which use individual learner behaviors and affect along with team behav-
ioral markers to identify individual learner and teamwork states like team cohesion or collective efficacy. 
Finally, a third recommendation related to using ITSs in the classroom is the development of an instructor 
dashboard, which could be used for multiple task domains, but is primarily tied to cognitive tasks and 
assessment of cognitive task performance. This dashboard should also include a visualization of the long 
term learner model attributes which contribute to success in the current domain under tutoring. 

Conclusions 

ITSs provide many benefits to instructors who wish to use them for assessment. While the execution of 
using ITSs in the classroom will vary based on the level of the student (e.g., high school, college, etc.) and 
the mode of the class (in-person, mixed mode, online), there are many useful generalizable features of ITSs 
that instructors can use. The inclusion of an ITS in a classroom environment will lead to adjustments that 
need to be made by the instructor such as managing the classroom, authoring additional material, and de-
termining how the ITS will be incorporated for grades. Using an ITS framework such as GIFT provides 
instructors the flexibility to use GIFT either in-person or online, and to not only create, but reuse parts of 
their ITSs for different classes. The addition of user rules, and the development of an instructor dashboard 
will make GIFT an even more powerful tool for instructors to use in or out of the classroom.  
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CHAPTER 21 – Lessons Learned from Large-Scale  
E-Assessments: Future Directions for the  

Generalized Intelligent Framework for Tutoring (GIFT)  
Jo-Anne Baird1, Anne M. Sinatra2, and Gregory Goodwin2  

Oxford University Centre for Educational Assessment, UK1, US Army Research Laboratory2 

Introduction 

Computerized assessment, with all of its promised affordances,1 has been eagerly anticipated in the field of 
educational assessment for some time. The technology was embraced in high-stakes testing as soon as it 
was available, with punch cards being used for statistical processing, optical scanners processing multiple-
choice answer sheets, and mainframe computers being brought into service to handle the huge amounts of 
data processing requirements of running an examination board. Yet, in 2017, we have not seen the revolu-
tion in forms of large-scale assessment that we all expected. There are some encouraging, notable develop-
ments, which we shall return to, but first, we recount the story so far to understand the issues that may have 
relevance for the Generalized Intelligent Framework for Tutoring (GIFT) in its venture into the field of 
computerized educational assessment in conjunction with intelligent tutoring. 

Professor Dave Bartrum, Research Director for the SHL Group, former President of the International Test 
Commission and winner of the British Psychological Society’s Award for Distinguished Contributions to 
Professional Psychology, reviewed the field of automated testing in psychology in 1984 (Bartrum and Bay-
liss, 1984). He concluded that computerization had helped in generating reports from the data collected 
through conventional methods. Further, some tests had been transcribed into computerized form without 
changing the nature of the test content. In such cases, there had been concern about whether this change 
had brought about a different level of difficulty for test-takers or was simply requiring different skills from 
a pencil-and-paper testing alternative format. Thus, research on equivalence of these forms began and issues 
regarding the authenticity of computerized versus paper-and-pencil testing, potential inequalities in oppor-
tunities for test-takers relating to computerized testing and the cognitive skills demanded by each form 
came to the fore. 

Additionally, Bartrum and Bayliss (1984) commented that adaptive testing was beginning to be used. In 
adaptive testing, examinees are presented with an initial question and, depending upon their response, they 
will be given a question that is (on average) harder or easier. Thus, the test adapts to the apparent level of 
ability of the examinee. Each test-taker might have a different, personalized test and the duration of the test 
is shorter because examinees do not have to answer questions that are likely to be far too easy or too difficult 
for them. As such, adaptive testing was seen to be a very promising development indeed.  

Ten years later, the field looked very similar, with generation of reports, equivalence of forms and adaptive 
testing being the prevalent ongoing developments (Bartrum, 1994). Bartrum made the prediction that within 
the next ten years we would see the widespread use, understanding, and acceptance of computerized as-
sessment. Few at the time, or at any point in time since, would disagree with this prediction, so the fact that 
this is not the state of the field requires significant explanation. Surely, the claims that have been made for 
the potential benefits of technology in this field cannot (all) just be hype, though there is no doubt that there 
is a lot of over-claiming in this area. 

                                                           
 
1 The qualities or properties of an object that define its possible uses. 
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When it comes to large-scale, high-stakes examinations, the experience for students has been very similar 
for hundreds (Redecker and Johanssen, 2013), if not thousands, of years. Archives show that in the second 
century BC, civil service examinations were set in China in much the same way as we experience them 
today (Lehmann, 2000, 44). So far, as discussed previously, we have seen technology used in assessment 
to substitute the paper-and-pencil version, with little gain in affordance and there has been some augmen-
tation through the use of adaptive testing (Figure 1). Indeed, technology has been used far more to improve 
logistics in large-scale assessments than in the user-facing aspects. More adventurous applications, which 
would significantly redesign the assessment process and even redefine and transform it, are still anticipated 
(Figure 1). We are on the cusp of moving from reinvention of existing assessments in computer-based 
assessment to embedded assessments that will transform not only assessment, but learning, according to 
some (Redecker and Johanssen, 2013). Any time now, we will see the expanded use of automated feedback, 
behavioral tracking, learning analytics, intelligent tutors, serious games, online collaboration, simulations, 
and virtual laboratories.  

 

Figure 1. The promise of computerized testing (adapted from Redecker and Johanssen, 2013). 

Readers of this chapter are probably coming to this text due to their enthusiasm for these uses of technology. 
The chapter authors are also enthusiastic, but cognizant of history in this field. GIFT is not in the high-
stakes, large-scale testing arena, but perhaps there are some lessons that could be borne in mind before 
embarking upon assessment design.  

Costs of computerized testing have been surprisingly high for many organizations. Software development 
has not reduced the cost of test production. In the next section, we look at issues related to transparency of 
assessment and its effects upon the learning process. A transparent, or even a memorable, test is costly 
because it is unlikely that the same questions can be reused without compromising the validity of the test. 
Military applications for computerized testing have long spearheaded the field (e.g., the Computerized 
Adaptive Test version of the Armed Services Vocational Aptitude Battery [CAT-ASVAB]; Segall and 
Moreno, 1999), so there is good understanding within the community about the likely costs of such an 
enterprise. Some of the benefits of computerized assessment relate to its capacity to produce relatively 
authentic contexts for assessment, which should help us to generalize legitimately from test-takers’ scores 
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to their performances in real-life tasks. We discuss the issues related to designing assessments with prop-
erties of good generalization. Following this, we look at the distinction between live and simulation training 
events and the role of the tutor in intelligent assessment. Finally, we conclude with some remarks about 
how these issues might have applications for the future of GIFT. 

Before we turn to those issues, it is useful to first consider to what purpose GIFT assessments might be put. 
A standard categorization for the possible purposes of educational assessments has been the following: 

1. Formative – to aid learning of the student, 

2. Diagnostic – to give the tutor information about the student’s strengths and weaknesses, and  

3. Summative – for decisions regarding review, transfer, or certification of the test-taker. 

More recently, the field of educational assessment has come to accept that there are a much wider variety 
of purposes to which the results of our assessments are put (Newton, 2007). Our point here is not to overly 
complicate matters, but to flag that assessment design should reflect at least the primary purpose to which 
the test results are to be put. A test that will license a drone operator will not necessarily have the same 
design principles as one that is for formative feedback purposes. Many of these issues are subtle and do not 
always register with subject-matter experts (SMEs), thus assessment design expertise in conjunction with 
SMEs is an indispensable combination of skills for a team designing GIFT intelligent tutor assessments.  

Lessons Learned 

Transparency of the Assessment  

Large-scale assessments have a history of secrecy, in which the content of the examinations and how the 
scores or grades were assigned were kept out of the public domain (see Lehmann, 2000). Such secrecy 
suited commercial interests because the large examining boards could maintain the security of the test items, 
meaning that they could be reused without fear that people had been able to prepare specifically for those 
items in advance of the test. Thus, the costs of test development could be kept lower. Further, test producers 
were authoritative in society and questioning of this status was unwelcome.  

If questions can be kept secure, they can be reused without compromising the validity of the assessment. 
However, if the examinees can remember the questions and there is a high likelihood of them being repeated 
(high item exposure), even if the questions are kept secure, they could become widely known among the 
test-taking population. This situation occurred in practice in 1993 when employees of Stanley H. Kaplan 
Educational Center memorized at least part of 200 GRE questions. This led to the costly, if temporary, 
suspension of the computer adaptive test. In the legal wrangles that followed, it became the responsibility 
of test producers to make public their questions and correct answers and examinees have to be able to 
review the questions they have seen and answers they gave, so that they are not disadvantaged by computer-
adaptive methods. 

Nowadays there is far more transparency of the test content, scoring, and standard-setting mechanisms even 
in high-stakes, large-scale tests. Public trust in authority figures has declined in all walks of life and ques-
tioning of experts, even doctors, is normal practice (Simpson and Baird, 2013). Tensions are caused by 
transparency of assessments, as it enables teachers to teach to the test to a larger extent, but even when there 
was a high level of secrecy, there was always a privileged group who were in the know. Keeping the test 
content and processes of producing the outcomes secret is not likely to be acceptable to society and makes 
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it difficult for people to know on what they are being assessed. Secret tests are difficult to prepare for in the 
right way. 

In a computer-based adaptive training system such as GIFT, it is possible to envisage the assessment being 
conducted by algorithms that operate behind the tutoring system. These algorithms would essentially codify 
and score learners’ behavior as they operate in the system. At one level, this is no different from other 
assessment systems and the same arguments as discussed above apply. As the algorithms are applied elec-
tronically, their operation suffers immediately from a lack of transparency. They are not like examination 
questions and scoring rubrics, where one can see their operation. Thus, extra caution is required to ensure 
that they are assessing the right things, rather than spurious behaviors, but ones that can easily be captured 
electronically. In other words, validity of the assessment depends upon the electronic assessments scoring 
people’s behavior in the right ways. Further, if people are to learn what was intended, it is highly desirable 
for them to know what will be given credit in the system, so that they can set themselves the right learning 
goals and work toward them. At worst, electronic assessment systems could become systems that nobody 
fully understands and that assess invalid aspects of people’s behavior. To avoid this situation, it is very 
important that the construct that is being assessed is spelled out in advance and that there is validation of 
how the system is measuring that construct (see Chapter 18 entitled, Validity Issues and Concerns for Tech-
nology-Based Performance Assessments, by Katz et al., within this volume). Assessment constructs are 
usually developed using a mix of four methods: 

1) Theory – usually a review is conducted of what is known about the property from empirical re-
search and theory, which shows both its features and what counts as higher and lower values of 
those properties. 

2) Empirical findings on previous tests – often constructs are written with previous test results in mind, 
as they show what was feasible for learners previously. Additionally, new constructs are often re-
vised in the light of test results. 

3) Expert panels – typically, experts in the field are involved in setting out their views of what the 
construct looks like on the basis of their experience of theory, previous empirical findings and 
practice. 

4) Politics – at some level, whether it be politics with a small or a large p, there are usually aspirations 
regarding what students must learn that influence the content of the assessments. 

Deciding upon the construct that should be assessed is done in conjunction with decisions about what we 
want to know more broadly about the test-takers; that is, what the scores are likely to tell you more generally 
about the person’s likely performances on other tasks. It is to this issue that we turn next. 

Generalization  

Interactive tutorial systems like GIFT present the opportunity to collect a wealth of information about indi-
viduals’ interactions with the system. The output log files from GIFT interactions could be used to generate 
assessment data. Equally, specific assessments could be set up to collect particular data on individuals’ 
performances. Exactly what data are collected is just as important for validity as the way in which the data 
are scored. Not only do those data need to tell us about the construct of interest, we want that construct to 
be some aspect of individuals’ performances that is relevant in the real-life task. In other words, we want 
performances on the GIFT assessment scores to be generalizable to real-world performances. The questions 
to be addressed when designing the assessment should be about what the designer needs to know about 
people on the real-world task rather than what data can easily be provided from GIFT. Otherwise, there is 
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a danger that the technology dominates the design of the assessment and the scores are less informative 
than might otherwise have been the case.  

In designing the assessment, then, consideration needs to be given to the limitations of the simulation. To 
what extent can GIFT provide data that mimic the real-world task. These same limitations need to be con-
sidered when the user of the scores interprets their meaning. Additional assessments might be required that 
add to the information provided by GIFT to ensure that individuals are properly trained for the working 
environment. Ideally, a set of valid scores for real-world performances would be available so that they could 
be used as a criterion with which to validate the GIFT assessment scores. A high correlation between the 
two sets of scores would provide a justification for generalizing scores from the GIFT assessment to the 
real-world performances in future.  

The foregoing discussed the generalizability of GIFT scores. This relies upon the task performances being 
generalized to the real-world environment in some way; this is the underlying mechanism. Therefore, de-
sign of the tasks themselves need to be carefully thought through in those terms. Some aspects of the task 
fidelity might not be important for generalization of performances learned in GIFT simulation, but others 
might be crucial. This is of crucial importance because we know from a wealth of cognitive psychology 
experiments that people find it very difficult to transfer their training from one circumstance to another 
(e.g., Evans, 1989). These studies beg the question of how people learn at all if they cannot naturally transfer 
training from one situation to another. The issue is, of course, that we have to recognize the structure of the 
problem as being similar and able to apply our learning to that new situation. Scaffolding learning for 
people, through debriefing for example, is therefore also necessary (Csikszentmihalyi, 1990). Also, the 
more authentic the training environment, the more likely transfer of training will be. As such, the use of 
technology to construct more authentic assessment experiences is a very promising feature of GIFT.   

Assessments in Live and Simulation Training Events  

Military operations typically take place in very complex environments requiring individuals and teams to 
have a wide range of competencies that they can leverage across a wide spectrum of possible operations. 
Assessing individuals and units for readiness to deploy to such environments is challenging and requires 
units to execute complex live and/or simulation based events. Though these are often described as training 
events, their complexity and cost prohibits multiple iterations and therefore they tend to serve primarily as 
assessments. That is not to say that all live and simulation-based training serves only to assess. There are 
many uses of these training venues that are used to practice and refine individual and collective skills.  

Assessment in complex scenario-based training events, wherever they are executed, has always been diffi-
cult. The Army tends to rely on SMEs who observe, control, and provide feedback during these events. 
Feedback is most typically a binary pass/fail rating (or in Army parlance go/no-go). Another common rating 
scale is the three-level trained, practice needed, untrained (TPU) rating. While these ratings are used for 
recordkeeping purposes, another form of feedback is known as the After Action Review (AAR). AARs are 
performed at the conclusion of the event and are led by the SMEs who observed the training. They employ 
a Socratic approach, asking the trainees questions about their actions while guiding them to understand their 
mistakes. This encourages the trainees to reflect on their actions and decisions, their consequences, and 
how they as trainees could have done better.  

As can be seen, there are summative evaluations (go/no-go or TPU) as well as more formative evaluations 
(AAR) that take place within scenario based training events. The summative evaluations are more typical 
of the kinds of evaluations in high-stakes testing, which usually seek to provide a single value that serves 
to rank the individual on some dimension like quantitative or verbal ability. As with high-stakes testing, 
these evaluations are part of the unit’s or individual’s permanent record. Formative evaluations that come 
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out of the AAR are meant to help the unit and/or individual understand why it succeeded or failed. This 
feedback identifies specific training needs which drives future training events. There is rarely any perma-
nent, official record of these formative assessments. 

As with high-stakes testing, units and individuals are under pressure to receive passing scores on these 
kinds of assessments. Furthermore, unit leaders are generally responsible for scheduling training and eval-
uating the performance of their respective units. The advantage of the off-record AAR is that individuals 
can be much more candid about their failings and can provide constructive ways to improve.  

A big challenge of having a system like GIFT assuming a larger role in the evaluation of individuals and 
units is that leaders will lose some control over those evaluations. As we know from high-stakes testing in 
public school systems, this process can have some deleterious side effects. For example, leaders will look 
for ways to game the system to ensure that they receive passing scores. They may begin narrowly teaching 
and training to the assessment. This may result in leaders neglecting training on skills that, though im-
portant, are not part of the assessment.  

GIFT and systems like it are really designed to provide very granular formative types of assessments, which 
drive both feedback and adaptation of the training to specific individuals and teams. Because these assess-
ments are automated, there is the potential for all of these measures to be permanently stored somewhere, 
if not in a personnel record system. In addition to GIFT’s assessments, trainee self-assessments might be 
recorded by GIFT and used by it during an automated AAR. One has to be concerned about the potential 
impact of this on the willingness of unit members to be completely candid about their failings during an 
AAR guided by an automated system like GIFT.  

Transparency of measures is also critical. Unit leaders are likely to reject any summative assessment from 
an automated system unless they can see exactly how that assessment was derived. Furthermore, if they 
disagree with those assessments, they will lose faith in GIFT. Even at the individual trainee level, transpar-
ency of measures will be needed to ensure trust in the assessment.  

Though the use of GIFT in these high-stakes scenario based testing events has some potential risks, it also 
has many benefits. For example, a much richer set of assessments than simply pass/fail is possible. These 
assessments would be useful to multiple communities including leaders, resource managers, training devel-
opers, personnel managers, as well as the trainees. To realize these benefits, it will be necessary to consider 
how these assessments will be used and by whom as well as how such assessments will be stored and finally 
how to ensure necessary levels of both transparency and anonymity of these assessments so that effective 
training can take place. 

Role of the Tutor in E-Assessment  

While assessment is generally an end goal of instruction, by using computer-based learning there are dif-
ferent techniques or methods that can be used to tailor learning and assessments to an individual. Intelligent 
tutoring systems (ITSs) allow a learner to engage with material, and provide specific feedback to them 
based on their knowledge, skills, and abilities. The ITS also can assess the learner’s current state and make 
determinations on material that would be relevant to the learner. In an ITS framework such as GIFT, there 
is the possibility of going a step further than just tutoring, but to use the given tools to construct assessments 
that are relevant to the specific learner based on their experiences with the system. GIFT could be leveraged 
for large-scale assessment in many forms, including, but not limited to, standardized testing and military 
training scenarios. GIFT authors can either create a static multiple-choice test that always provides the same 
questions or a dynamic test can be generated for the individual. GIFT allows an author to create a course 
specific questionbank that can be used by the instructor or test designer to enter all questions that they have 
constructed or believe are relevant to a given topic. The questions can be tagged with metadata by difficulty 
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level (novice, journeyman, expert) and also for the concept that they are assessing. The concepts are set up 
prior to instruction by the course author. The course author can create assessments by determining the 
number of difficulty level questions that they would like to use for each of the concepts. The specified 
number of questions would then be randomly selected from the authored questionbank. The questions that 
were given to the students would be accessible through retrieving the GIFT log files after the fact; however, 
each test would likely be unique to the specific learner.  

If remediation is desired, GIFT’s Engine for Management of Adaptive Pedagogy (EMAP) could be used 
(Wang-Costello, Goldberg, Tarr, Cintron & Jiang, 2013). The EMAP is based on component display theory 
(Merrill, 1983) and uses the questionbank. Students engage with two types of presented material: rules and 
examples. Students then engage with two types of “assessments”: recall and practice. The recall section of 
the experience draws the desired number of questions per concept from the questionbank. Based on the 
performance of the individual during the recall and practice phases, they are sent back for remediation on 
the concepts if it is found to be necessary. While this may not be advantageous to use during traditional 
large-scale assessment tests, it is an opportunity for tutoring to occur in a similar environment as the test 
will occur in. Further, it allows for targeted instruction based on the questions that the individual is missing. 
GIFT closely ties courses to concepts, and concepts to specific questions; therefore, there is tractability in 
the assessment that is being provided in GIFT. Once user roles are fully implemented in GIFT, using the 
questionbank technique will be highly relevant to instructors, as they will have access to the question editor, 
but their students will not (Sinatra, 2015). The ability to use a questionbank and difficulty level also in-
creases the flexibility of testing concepts with varying questions, which ensures that an individual experi-
ence occurs for the learner. 

Implications for GIFT  

In the opening paragraph, we mentioned that there have been some high-profile developments in the field 
of computerized testing with large-scale examinations. The Programme for International Student Assess-
ment (PISA),2 operated by the Organisation for Economic Cooperation and Development, has managed to 
introduce computerized testing despite the fact that it operated in 71 jurisdictions for the 2015 round of 
tests.3 Of course, not all countries used the computerized version and not all students took the tests on 
computer. The cooperative problem-solving tests, using avatars and natural language processing were a 
huge step forward compared with any other testing conducted on this scale. Advances in technology will 
help large-scale assessment managers to overcome the significant cost and logistics difficulties in making 
best use of the affordances of computerized testing.  

As such, GIFT has been designed with flexibility in mind. That flexibility allows for authors to use the 
provided tools and create interactions that meet their goals. In a traditional GIFT interaction, it would be 
used as a means of providing adaptive training in a given area and remediation. However, the functionality 
in GIFT can also be leveraged to provide large-scale assessments, by using the tools in slightly different 
ways. In the current EMAP-based adaptive courseflow, information is provided to the learner, followed by 
quizzes, which then result in remediation on the specific topics that are being taught. One suggestion for a 
future assessment based feature in GIFT would be that instead of remediation being provided on the topic 
that was missed, additional quiz questions are given on the same topic. Perhaps the questions can rephrase 
or test different aspects of the initial concept that resulted in low performance, but it would help to target 
in on the knowledge of the individual and any misconceptions that the learner might have. 

                                                           
 
2 http://www.oecd.org/pisa/test/. 
3 http://www.oecd.org/pisa/aboutpisa/pisa-2015-participants.htm. 
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In current form, GIFT can be integrated with external computer-based games and feedback can be provided 
during the practice phase of the adaptive courseflow. This may be important in assessment in less traditional 
domains; however, in more traditional domains such as math or physics, a demonstration of performance 
may be the completion of a complex problem. It is recommended that in the future both the recall phase of 
the adaptive courseflow and the practice phase allow for multiple choice and short answer assessment ques-
tions. This would lead to different types of tags and functionality in the questionbanks such that recall-
based questions could be more straightforward fact-based questions, whereas practice ones could be con-
ceptual and require the solving of a problem. This modification would allow for the adaptive courseflow to 
be leveraged in a way that would assist in large-scale e-assessment. 

While a future direction of GIFT is setting up user roles, making distinctions between the student and the 
teacher will be vital to using it for assessments. Additionally, setting up ways to report both the real-time 
and after-the-fact logs of performance to those who are evaluating the tests is a challenge that has not yet 
been resolved and will be of great importance. GIFT has many functions that could be leveraged or added 
to assist in using it for e-assessments, with some small changes in the way that some of the adaptations 
operate, and determining ways to report results it could be an even more powerful tool for large-scale com-
puter-based assessment.  
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CHAPTER 22 – Selected Assessment Techniques for the 
Generalized Intelligent Framework for Tutoring (GIFT) 

Xiangen Hu 
University of Memphis, Central China Normal University 

Introduction 

In this section, there are a total of seven chapters focusing on various aspects of assessment techniques of 
intelligent tutoring systems (ITSs). While these seven chapters do not cover all possible assessment tech-
niques in ITSs, they nevertheless offer a good view on a few very important aspects. To understand the 
contributions of the authors, I suggest the reader first consider the following: 1) the special role an ITS 
plays in an advanced learning environment (ALE) where the ITS serves the role of an educator, 2) that in 
the ALE, if any two components interact in an active fashion, there is a need of assessment, and 3) the 
structure of the General Intelligent Framework for Tutoring (GIFT), which has been introduced and proto-
typed by the US Army Research Laboratory.  

Adapting from a general definition of educational assessment: In education, the term “assessment” refers 
to the wide variety of methods or tools that educators use to evaluate, measure, and document the academic 
readiness, learning progress, skill acquisition, or educational needs of students (http://edglossary.org/). This 
general definition of assessment is applicable for assessing the overall quality of the ALE, except the edu-
cators here has a double meaning: learning scientists who design and implement the ALE in education 
systems, and ITSs that serve as an educator (human teacher) that educates students. From this perspective, 
the assessment techniques offered by the authors consider both the assessment needs for learning scientists 
to evaluate education systems and the specific needs of computer tutors (ITSs) for assessing learner’s 
knowledge, skills, and attitude.  

In these seven chapters, the authors recommend enhancements/extensions of the GIFT assessment tech-
niques in several dimensions. Chapter 23 recommends incorporating assessing GIFT’s overall quality/ef-
fectiveness based on technology that evaluates the quality of questions for teachers in the classroom. Chap-
ters 24 and 25 recommend an assessment technique for GIFT in team/collaborative tutoring environments. 
Other authors recommend assessment techniques based on different types of data: Chapter 26 considers 
discrete and categorical behavior, Chapters 26 and 27 consider natural language interactions, and Chapter 
28 examines time latency and accuracy. In addition to the usual assessment of cognitive skills that most of 
the assessment models/techniques address, Chapter 29 recommends an assessment technique for GIFT to 
assess the learner’s motivation.  

Outline by Chapters 

In Chapter 23, Assessing Teacher Questions in Classrooms, Olney, Kelly, Same, Donnelly, and D’Mello 
offer their recommendation based their research and development of a system called CLASS 5.0, which 
automates the process of classroom observation through speech recognition and machine learning. They 
specifically recommend a technique to assess ITS question-asking behavior. Given the ITS plays the role 
of a human teacher in an ALE and the evidence that if human teachers ask better questions, their students 
learn better, they assume that if there are mechanisms for assessing the question-asking behavior of natural 
language-based ITSs, then the overall quality of an ITS can be evaluated. Notice the goal of implementing 
this assessment is not assisting the ITS to assess the learner, instead this recommendation suggests an as-
sessment technique for the overall quality control of an implemented GIFT application (of a given domain).  

http://edglossary.org/
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In Chapter 24, Assessment of Collaborative Problem Solving, Graesser, Cai, Hu, Foltz, Greiff, Kuo, Liao, 
and Shaffer introduce a Collaborative Problem-Solving Framework (CPSF) from PISA 2015 and propose 
a possible enhancement to the current GIFT in the following steps: 1) extending GIFT to handle team ITSs 
and 2) consider CPSF as an assessment framework evaluating students’ collaborative ability for the ex-
tended GIFT. Successful implementation of the two steps for an extended GIFT will make it possible to  
1) analyze of interactive log data to assess the learner as a single team member or assess the performance 
of a mixed team of learners and GIFT, and 2) use the CPSF as a recommending system (such as production 
rules) to guide the tutoring behavior of the extended GIFT. 

In Chapter 25, Challenges for Assessing and Tutoring Collective Skills, Ayers, Bink, and Diedrich provide 
three recommendations based on their research and development (R&D) in systems that involve coordina-
tion and communication between human and/or synthetic actors. It is understandable that such an ALE 
would be more complicated than the existing ITSs that have been implemented where the ITS spends most 
of the time interacting with single learners.  

In Chapter 26, Cognitive Assessment as Service in the General Intelligent Framework for Tutoring (GIFT), 
Hu, Xu, Sottilare, and Albert recommend a possible assessment service component for GIFT. They demon-
strate the feasibility for such a complement by providing two sample assessment web services. One is the 
Multinomial Processing Tree (MPT) model, which is in the field of cognitive psychometrics, and the other 
is Semantic Representation & Analysis (SRA). The MPT service can be used to assess a student’s 
knowledge by analyzing categorical behavior and the SRA service to assess a student’s knowledge by an-
alyzing natural language interactions with the ITS.  

In Chapter 27, Assessment in AutoTutor, Cai, Graesser, Hu, and Kuo provide an assessment technique based 
on the current implementation of the AutoTutor framework. Their recommended assessment techniques 
includes the assessment of a student’s knowledge in an inner loop (within AutoTutor) and an outer loop 
(outside of AutoTutor). The recommended technique in the inner loop (of AutoTutor) uses semantic anal-
ysis technique to measure the similarity between students’ verbal contributions and pre-stored semantic 
answers. The semantic analytic methods have proven efficient in assessing students’ knowledge and can be 
used to create a learner model. The recommended technique in the outer loop uses another research-based 
knowledge organization/domain modeling technique, Learning Space Theory. 

In Chapter 28, Assessment of Individual Learner Performance in Psychomotor Domains, Kim, Sottilare, 
and Goodwin report their previous research and implementation of a three-stage model of a theory of skill 
learning and retention. Their R&D indicates that it is possible to model psychomotor domain with this 
theory. They recommend a possible extension of GIFT to include sense/location aware devices such as 
smartphones to assess trainees’ knowledge from the speed and accuracy information on psychomotor tasks.  

In Chapter 29, Motivating Individual Difference in an Intelligent Tutoring System, Reinerman-Jones, 
Lameier, Biddle, and Boyce provide a general framework for assessing learners’ motivational differences. 
Most importantly, they introduced a framework that includes six factors that influence learner motivation. 
They go further by recommending methods for tool development and strategies for implementation.  
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CHAPTER 23 – Assessing Teacher Questions in Classrooms 
Andrew M. Olney1, Sean Kelly2, Borhan Samei1, Patrick Donnelly3, and Sidney K. D’Mello3 

University of Memphis1, University of Pittsburgh2, University of Notre Dame3 

Introduction 

Prompted first by the federal No Child Left Behind Act and subsequently the Race to the Top grant program, 
states have moved to adopt accountability systems that not only hold schools accountable for producing 
learning, but also individual teachers (Gamoran, 2013; Kelly, 2012). These efforts are consistent with re-
search demonstrating the variability in teachers’ capacity to improve student achievement growth 
(Hanushek & Rivkin, 2006, 2010; Kane et al., 2013; Nye, Konstantopoulos & Hedges 2004). In most cases, 
educator evaluations are based in part on student test scores, but also incorporate observational measures 
of instruction. Observations of classroom practice are valuable because they capture dimensions of school-
ing not captured by test scores, such as socialization outcomes in elementary school (Jennings & Corcoran, 
2012). Classroom observations also enhance school principals’ role in managing teachers’ work (Harris, 
Ingle & Rutledge, 2014). Moreover, the presence of observational measures places an emphasis on the 
process of instruction itself and can be used to facilitate professional development quite apart from teacher 
evaluation (Goe, Biggers, Croft, 2012). Thus, many experts advocate balanced systems of accountability 
that include observational measures of instruction (Gates Foundation, 2013; Hamilton, 2012; Stein & 
Matsumura, 2009). 

To date, several observational protocols have been developed, some for use across multiple classroom con-
texts (e.g., the Danielson Framework for Teaching [FFT], see Sartain, Stoelinga & Brown, 2011), and some 
targeted to instruction in specific subjects (e.g., the Protocol for Language Arts Teaching Observation 
[PLATO], see Grossman et al., 2013; and the Mathematical Quality of Instruction Instrument [MQI], see 
Hill et al., 2008). Systems of observational evaluation are currently in use in 47 states in the United States 
(American Institutes for Research, 2016). Yet, current methods are logistically complex, requiring observer 
training and are also an expensive allocation of administrator’s time (Archer et al., 2016). For example, for 
use in evaluation, studies show that, typically, four class observations of each teacher are needed to provide 
a reliable sampling of teachers’ instruction and afford an adequate opportunity to demonstrate excellence 
in multiple instructional domains (Kane & Staiger, 2012). Without a carefully managed classroom obser-
vation process, the observation results are open to criticisms of bias or arbitrariness. 

To address the problems of cost, reliability, and bias inherent in traditional observational protocols, we have 
undertaken the development of a system called Classroom Language Assessment System (CLASS) 5.0 that 
automates the process of classroom observation through speech recognition and machine learning. The 
primary focus of our work is on teacher question-asking behavior, which is a common component across 
various well-known observation protocols. We first review some recent results in the classroom observation 
literature before describing our own work and making recommendations for future research. 

Observing Effective Teaching 

Efforts to evaluate teachers’ performance are based on the logical assumption that the individual teacher’s 
classroom is the most important site of student learning, and thus, closer evaluation and support for teach-
ers’ work constitutes a powerful lever of educational reform. Basic research on teacher effectiveness sup-
ports this perspective (Hanushek & Rivkin, 2010; Kane et al., 2013; Konstantopolous, 2014). For example, 
Nye et al. (2004) estimate that a 1 standard deviation increase in teacher effectiveness would increase stu-
dent achievement by about 1/3 of a standard deviation. Other research finds somewhat smaller, but still 
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important achievement gains attributable to teacher-to-teacher variability (Cantrell & Kain, 2013; see Hill 
et al., 2008 for a discussion of interpreting effect sizes in education research). In contrast, in much prior 
research, readily available indicators of teacher quality, such as years of experience, educational attainment, 
or certification status have generally explained a frustratingly small proportion of the variance in teacher 
effectiveness (Clotfelter, Ladd & Vigdor, 2006; Hanushek, 1986). Given these two sets of findings, directly 
assessing individual teachers’ performance via test scores and/or teacher observations may offer the best 
insight into teaching quality. What does existing research demonstrate about the role of observation in 
assessing effective teaching? 

A recent, multi-year study called Measures of Effective Teaching (MET) examined several different class-
room observation measures, student perception surveys, and student achievement gains across approxi-
mately 3,000 teachers in seven states (Cantrell & Kane, 2013). Although previous research has shown a 
connection between various classroom observation measures and student achievement, the MET study is 
unusual in two respects. First, it used a randomized controlled trial design that, in year 1, collected teaching 
effectiveness data and built predictive models of teaching effectiveness, and in year 2, randomly assigned 
teachers to new classrooms to see if the predictive models from year 1 could account for changes in student 
outcomes in the randomly assigned classrooms. The purpose of the randomized controlled trial was to es-
tablish a causal, rather than correlational, correspondence between teaching quality and student outcomes, 
making MET the largest study of its kind to do so. Second, classroom observations were conducted using 
recorded video, allowing multiple observers and diverse observation measures for each video. This ap-
proach allowed for an in-depth examination of the reliability of the various classroom observation protocols 
across different types of observers. 

MET used both general and subject specific classroom observation protocols, such that various observa-
tional measures of effectiveness could be compared to each other and value-added estimates of student 
achievement growth (Mihaly et al., 2013). One of the major MET findings was that these classroom obser-
vation protocols were all positively correlated with student achievement gains and were highly correlated 
with each other at the summary score level when using dis-attenuated correlations to account for measure-
ment error (Kane & Staiger, 2012). Considering the correspondence in teacher ratings across different ob-
servational protocols, FFT, Classroom Assessment Scoring System (CLASS), and PLATO had pairwise 
correlations above 0.86, and FFT, CLASS, and MQI had pairwise correlations above 0.67, ostensibly lower 
due to the specific mathematics focus of MQI. A principal component analysis on each protocol yielded 
three major components that accounted for approximately 90% of the variance in scores across teachers. 
The first two components were the same across protocols: overall quality and classroom management (Kane 
& Staiger, 2012). The third factor varied across protocols, but most often involved question asking behav-
ior, the focus of this chapter. Considering the relationship between observational scores and achievement 
gains, the teachers rated most effective on observations were also effective in raising test scores. For exam-
ple, correlations between FFT (Danielson, 2011) scores and the value-added achievement measures (state 
tests) ranged from 0.17 to 0.41 (Mihaly et al., 2013, Table 3). 

Measurement of Dialogic Instruction 

One limitation of the protocols used in the MET study is the relatively coarse-grained nature of the coding 
as CLASS, FFT, and PLATO were all coded on 15-minute intervals, i.e., every 15 minutes, while MQI was 
coded on 7.5-minute intervals (Kane, Kerr & Pianta, 2014). The time delay between a classroom event and 
the coding of it on these interval boundaries may have facilitated observer’s use of holistic judgments of 
instructional quality, which would explain the lack of differentiation among the various dimensions of these 
protocols with respect to the first principal component (e.g., the FFT has 22 rating components and 76 
smaller elements within them). 



 
 

263 

In contrast, the present study is based on Nystrand’s CLASS, a real-time, or “live” coding system first 
developed by Martin Nystrand and colleagues in the mid-1980s (Nystrand, 1988). Nystrand’s CLASS fo-
cuses on individual questions and their properties, in addition to the basic allocation of classroom time to 
various instructional activities. In this study, we use data from updated versions of the original CLASS 
program, which was used in coding both archival data from the Partnership for Literacy Study (see Kelly, 
2008) and in newly collected data. We pair these human coded measures from the CLASS program with 
new automated codes, referring to the automated version of the system as CLASS 5.0. Note that the MET 
study used a separate system, also called CLASS, developed by Robert Pianta and colleagues (see Allen et 
al., 2013). 

The micro (i.e., individual question events) rather than macro orientation of CLASS 5.0 is highly salient to 
adopting a machine learning approach to classroom observation, because it provides labeled data conducive 
to training classification models. Application of machine learning to the data coded in the MET study seems 
much less promising, because the long durations between class events and actual coding creates a credit 
assignment problem (Minsky, 1961) in which it is unclear what action or event led to a given code. In 
CLASS 5.0, the relationship is much more direct, though not perfectly so. Instructional segments (e.g., 
discussion, lecture) have clear timestamped boundaries and categories. Within these timestamps, classroom 
activities and language are strong markers of the segment category. Questions likewise have clear 
timestamps, as do some clear properties like speaker identity. However, some associated properties extend 
beyond the question per se and instead are more properly considered part of a question event. These ques-
tion properties include whether there was a response, cognitive level, authenticity, and uptake. These last 
two properties are the hallmarks of dialogic instruction, in which questions do not have predefined re-
sponses (authenticity) and are part of an evolving discussion that incorporate ideas from the respondent 
(uptake). Compared to common initiation-response-evaluation (IRE) format of classroom instruction in 
which the teacher quizzes students by asking them “test” questions, dialogic instruction focuses on the 
open-ended discussion and the exchange of ideas (cf. Bakhtin, 1981). For example, “What was your reac-
tion to the end of the story?” is an authentic question because there is no pre-scripted response, and a follow-
up question “Why do you think that?” has uptake because “that” refers to the student’s previous reply. As 
is clear in these examples, dialogic properties are contextualized by the discourse and not purely determined 
by the question alone. Thus, the question event is characterized by the antecedents and consequents of the 
question in addition to the question itself. 

Currently, it is not clear from the MET results whether instructional processes surrounding question-asking 
behaviors (one of the principal components of effective instruction in the MET study) have a significant 
effect on student achievement. On the other hand, previous research on the CLASS 5.0 system has shown 
that authenticity and uptake are significant predictors of student achievement (Gamoran & Nystrand, 1991; 
Gamoran & Kelly, 2003; Nystrand & Gamoran, 1997). Moreover, teacher training can increase the preva-
lence of dialogic instruction (Caughlan, Juzwik, Borsheim-Black, Kelly & Fine, 2013). Thus, the rationale 
of our work is that dialogic instruction, by promoting student achievement and being responsive to profes-
sional development, might be a crucial factor to assess when it comes to using classroom observation for 
measuring teaching effectiveness. In addition, unlike principal components of overall quality derived from 
statistical analyses of covariance, it can be precisely defined. However, an obvious limitation is that ques-
tion-asking behaviors constitute a narrower domain of classroom instruction than assessed in global ratings. 
For example, in English and language arts, many important instructional dimensions (e.g., goal clarity, 
challenge) pertain to writing activities rather than discourse. Overall though, we view the measurement of 
dialogic instruction as an appropriate target of classroom observation to improve teaching effectiveness via 
feedback and professional development. 
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Class 5.0 

In our work, we have pursued the goal of measuring dialogic questions in classrooms from two perspectives, 
text based and speech based. Text-based work makes use of both human transcripts of questions, which are 
available as archival data from previous CLASS 5.0 research, and automatic speech recognition (ASR) 
transcripts derived from current data collection. Speech recognition in classrooms is quite challenging given 
the ambient noise and the impracticality of individual microphones for each student. As a result, we have 
primarily focused on high-quality teacher audio collection and lower-quality classroom audio collection, 
from which we can determine student speech activity (D’Mello et al., 2015). Although speech features like 
prosodic, spectral, and voice quality features do contribute to the accuracy of question detection and in-
structional segment classification, text-based features alone are very effective (Blanchard, D’Mello, Olney 
& Nystrand, 2015; Blanchard et al., 2016b, 2016a; Donnelly et al., 2016a, 2016b, in press). Thus, text-
based features are central to assessing classroom discourse, so there is considerable need for transcripts 
from which to extract these features. Perhaps surprisingly given the recent advances in ASR and industry 
claims of word error rates at 10% or less (Ryan, 2016), word error rates in our classrooms are closer to 
50%, even when using a high-quality microphone and available state-of-the-art deep neural network-based 
ASR systems (Donnelly et al., in press). 

We are currently still exploring how speech recognition errors differentially affect our models at the feature 
level. In our previous work, based on archived human transcripts from 418 classes, we trained J48 decision 
trees (Quinlan, 1993) that were able to automatically detect dialogic question properties at approximately 
64% accuracy, which rivals humans coding questions out of context (Samei et al., 2014). In contrast, using 
new data collection ASR transcripts from 77 classes, our models are only 54% accurate. There are two 
likely causes for this difference in performance between models trained on human transcripts and ASR 
transcripts. First, ASR errors could be corrupting key features needed to build successful models. Second, 
the new data collection ASR transcripts have only a fraction of the original amount of human transcript 
training data, so the difference could be that there is not enough data to build a successful model. Both 
likely causes for performance differences may be examined by subsampling the human transcripts, i.e., 
creating new data sets for training by sampling without replacement various percentages of the total data 
set. Figure 1 shows model performance on human transcripts at 1% to 100% increments of the total data 
set. As the amount of data increases, model performance (defined as percent correct) improves, but the 
growth of improvement slows as more data are added.  

In terms data size, the amount that is available from new data collection with ASR transcripts is approxi-
mately 6% of the human transcript data set size, for which Figure 1 shows trained models are 57.6% percent 
correct. Based on this analysis, it seems likely that a significant part of the difference between human tran-
script and ASR transcript model performance is due to lack of data, because when there is a comparable 
lack of data in the human transcript data set, the results are only 3.6% better rather than 10% better as they 
initially appeared to be. Overall, this implies that ASR errors are only negatively impacting model accuracy 
by 3.6%, and that this deficit could be narrowed simply by collecting more ASR transcript data for training. 
Using the equation of the line of best fit in Figure 1, the amount of data required would be approximately 
2.5 times the number of human transcripts currently available. However, this estimate should be treated 
with caution since there is no guarantee that ASR based models will exactly follow the curve for models 
trained on human transcripts. 
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Figure 1. Model accuracy as a function of training data size for models trained on human transcripts. 

In this chapter, we focus on our recent work training models for authenticity and uptake using human tran-
scripts of questions collected in previous projects by Nystrand and colleagues.  

Assessing Questions in Isolation 

Our initial work on the assessment of dialogic questions focused on questions in isolation, meaning ques-
tions removed from the discourse context in which they occurred. The rationale for this line of inquiry was 
pragmatic, in terms of both the data available and building better machine learning models. The data avail-
able at the beginning of our project consisted entirely of archival data produced by previous versions of 
CLASS 5.0. These data contained human transcriptions only of coded questions and not of the surrounding 
speech. Non-instructional questions, such as procedural questions, were excluded from the coding scheme 
(Nystrand, 1988).  

From the perspective of creating machine learning models, investigating isolated questions is also prag-
matic because it raises the question of just how much information is needed to measure dialogic questions 
effectively. The human observers, situated in the classroom during live coding, have access to a consider-
able amount of contextual information, including spoken language, non-verbal communication, whether 
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the students are paying attention, etc. Although we assume that the bulk of the coding decisions are based 
on spoken language, it may be the case that these other sources of information have some role to play. 

Therefore, one of our first questions was whether a new set of trained human coders would code isolated 
questions as accurately as the original live coders. We randomly sampled 200 questions for authenticity 
and uptake (400 in all) from the approximately 25,000 questions in our archival data. The questions were 
evenly balanced such that half had the property in question, e.g., uptake, and the other half did not. Four 
trained human judges recoded these questions independently, with questions being presented in a random 
order. For comparison, though studies from CLASS 5.0 prehistory did not use chance-corrected agreement 
statistics like Cohen’s kappa, inter-rater agreement defined as percent agreement has been reported as 
81.7% for uptake and 78% for authenticity (See Nystrand & Gamoran, 1997, Chapter 2, Footnote 3). 

Inter-rater agreement for the authenticity and uptake samples is shown in Tables 1 and 2, respectively, 
which are elaborated versions previously published in Samei et al. (2014). Three patterns are apparent in 
these results. First, kappa between new raters (R1-R4) on the isolated questions ranges between 0.18 and 
0.46 for authenticity and between 0.31 and 0.51 for uptake. Although interrater reliability appears to be 
low, it corresponds to historical percent agreement on this task, given that 80% agreement on two evenly 
balanced classes would yield a kappa of about 0.35 (Bakeman, McArthur, Quera & Robinson, 1997). Thus, 
the agreement between new raters is reasonable except for the low 0.18 kappa between R3 and R4 for 
authenticity. Second, the kappa between the new coders and the original (O) live coders drops substantially 
and is equivalent to a 20–30% drop in percent agreement. It is noteworthy that while the original live coders 
presumably agreed with each other at the same level as the new coders, agreement between original and 
new coders is low. This indicates that different criteria are being used by original and new coders as the 
basis for their coding decisions. Third, the kappa between the J48 decision tree model (M) and the original 
live coders is substantially higher than the kappa between the original live and new coders. Indeed, the 
kappas between the model and the original live coders approaches what we would have expected to see 
between the original live coders themselves, if that data were available. 

Table 1. Kappa for authenticity on isolated questions. 

 
Rater R1 R2 R3 R4 M 
R2 0.44 - - - - 
R3 0.41 0.36 - - - 
R4 0.46 0.55 0.18 - - 
O 0.13 0.17 0.25 0.10 0.34 

Table 2. Kappa for uptake on isolated questions. 

Rater R1 R2 R3 R4 M 
R2 0.45 - - - - 
R3 0.31 0.46 - - - 
R4 0.51 0.47 0.36 - - 
O 0.22 0.25 0.30 0.23 0.46 

 
As further discussed in Samei et al. (2014), these results are somewhat tempered by the finding that when 
considering the entire data set (i.e., approximately 25,000 questions), the percent agreement between the 
model and the original coders is 64% for authenticity and 62% for uptake. Thus, it appears that our models 
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still need to account for 15–20% agreement to be on par with live coders, at least on this task where human 
transcripts of questions are classified without any context. 

Assessing Questions in Sequence 

We repeated the recoding task in various forms, incrementally including information such as who was 
speaking (useful since student questions are more likely to be authentic than teacher questions). In our latest 
evaluation, we think we uncovered the simplest combination of factors that can be used in a machine learn-
ing model. These include speaker identity and question transcript for all questions in each question/answer 
segment (assuming instructional segment boundary detection and classification). Two raters each with over 
10 years of experience in coding dialogic questions independently rated a sample of 102 questions. The 
questions were sampled at the segment level, meaning question/answer segments were first randomly sam-
pled, and then all questions from these segments were extracted in temporal order. The raters were presented 
with lists of questions with corresponding speaker identity (either teacher or student), question transcript, 
and segment boundaries. There were 14 segments in all, ranging from 1 to 24 questions in length. The 
prevalence of authenticity and uptake were representative of the entire dataset, with 48% of questions being 
authentic and 30% of questions having uptake. Unlike previous work, these properties were coded simul-
taneously for each question rather than having separate question sets for each. 

The inter-rater agreements in kappa are shown in Tables 3 and 4 for authenticity and uptake, respectively. 
It should be noted that one coder (R1) failed to code six questions coded by both R2 and the original live 
coder (O). Therefore, kappas involving R1 are only based on the 96 questions that were rated, but all other 
kappas are based on the full set of 102 questions. Given that the kappa between R1 and O, using only 96 
questions, is only 0.03 higher than the kappa between R2 and O, using all 102 questions, the exclusion of 
six questions appears to be contributing a very small bias in agreement, if any. Unlike the results for isolated 
questions in Tables 1 and 2, agreement between the new coders and the original live coder was quite high; 
in one case (R1 to O) the kappa of 0.61 is quite high for authenticity. In terms of percent agreement, these 
results range from 72% to 81% for authenticity and 71% to 77% for uptake. Although different coders 
achieved the highest agreements for authenticity (R2) and uptake (R1), the fact that they were able to do so 
with this restricted set of information suggests that it is possible for a machine learning approach to do 
equally well given the same information. This is remarkable considering that dialogic discourse is defined 
by the antecedents and consequents of questions, as only this context reveals the function, or effect, of a 
given question on the discourse. However, it appears to be the case that speaker, question transcript, and 
segment identification convey the same information or sufficiently correlated information to perform the 
coding task as well as a live coder with full access to the classroom context. Accordingly, building models 
with only this information is a focus of our current work. 

Table 3. Kappa for authenticity with identity and segment information. 

Rater R1 R2 
R2 0.48 - 
O 0.44 0.61 

Table 4. Kappa for uptake with identity and segment information. 

Rater R1 R2 
R2 0.31 - 
O 0.45 0.41 
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Assessing Questions without Bias 

Although accurate measurement of classroom discourse is of considerable importance, of equal importance 
is unbiased assessment with respect to various socio-economic factors. This is a growing concern in artifi-
cial intelligence research (Hardt, Price & Srebro, 2016) because data-driven models will naturally reflect 
the biases in that data. When the predictions of the model are heavily weighted in high-stakes decisions, 
such as teacher assessment for promotion or tenure, it is critically important to ensure that all teachers are 
treated fairly. To better understand how our models were affected by bias, or equivalently to demonstrate 
that they work equally well for various socio-economic groups, we undertook an analysis of our original 
work that measured the dialogic properties of question in isolation. Specifically, we subdivided the data for 
various groups, built models with those subsets, and tested those models against different subsets as well 
as the full data set (Samei et al., 2015). 

The distribution of schools in different geographic regions is shown in Table 5. Because the amount of data 
in some of these schools was rather small, we grouped them into Urban (Mid-size and Large Central City) 
and Non-urban groups (everything else). Furthermore, we were able to divide the data into groups who had 
received professional development training on dialogic instruction (Post-training) and those who had not 
but would later (Pre-training).  

Table 5. Distribution of schools by geographic area. 

School Category Schools Schools (%) 
Large central city 4 19 
Mid-size central city 7 33 
Urban fringe of mid-size city 7 33 
Small town 1 5 
Rural inside MSA* 1 5 
Rural outside MSA* 1 5 

* Metropolitan Statistical Area. 
 
The new groups we defined had different levels of uptake and authenticity, as shown in Table 6. Non-urban 
and Post-training groups had higher levels of authenticity and uptake than Urban and Pre-training groups. 
Also, the difference between Pre- and Post-training levels of authenticity and uptake was relatively large 
compared to the difference between Urban and Non-Urban levels. These different levels of authenticity and 
uptake across groups suggest the potential for bias if data from one group were used to build a model for 
another group.  

Table 6. Percentage of authenticity and uptake across groups. 

Group Authenticity (%) Uptake (%) 
Non-urban 54 23 
Urban 47 20 
Post-training 52 24 
Pre-training 39 15 
Full 50 21 

Note. Adapted from Samei et al. (2015). 
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To investigate the possibility of bias, we built two kinds of models for each group. In tenfold cross valida-
tion models, we used each group for both training and testing data. The second set of models trained on a 
group and tested on its dual, i.e., Pre-training vs. Post-training and Urban vs. Non-urban. The accuracies of 
these fitted models are shown in Table 7. For comparison, Table 7 also shows tenfold cross validation on 
the full model. 

Table 7. Accuracy of models for authenticity and uptake when trained and tested on different groups. 

Training Data Test  
Data 

Authenticity 
Accuracy (%) 

Uptake 
Accuracy (%) 

Non-urban Non-urban 61 59 
Urban Non-urban 62 62 
Non-urban Urban 60 63 
Urban Urban 62 60 
Post-training Post-training 63 61 
Pre-training Post-training 59 62 
Post-training Pre-training 60 64 
Pre-training Pre-training 64 61 
Full Full 64 62 

Note. Adapted from Samei et al. (2015). 
 
As shown in Table 7, training with Urban gives better results for authenticity than does training with Non-
urban regardless of which group is used as test data, while training with Non-urban gives better results for 
uptake in the case of testing with Urban only. Pre- and Post-training give best results for authenticity when 
trained and tested against themselves (using tenfold cross validation), but give best results for uptake when 
tested against the other. These inconsistent results suggest that using any one group to train will create bias 
of some kind when testing using another group.  

To investigate these inconsistent results, we analyzed the individual features used in each model using the 
Correlation-Based Feature Subset (CFS) algorithm. We found that different subgroups used different kinds 
of language to mark authenticity and uptake. For example, Urban groups used first and second person “be” 
verbs and judgmental words like “think,” “find,” and “thought” in authentic questions, but Non-urban 
groups did not. Likewise, Urban groups used second person pronouns and negation in questions with up-
take, but Non-urban groups did not. Post-training groups had a greater prevalence of “be” verbs for authen-
ticity, and a greater use of modal verbs like “would,” “can,” and “could,” than did Pre-training groups.  

For authenticity, training on the full data set led to the better or equal performance than training on any 
subset. We speculate this is because all subgroup-specific features were represented in the model and pre-
vented it from being biased toward or against dialogic classifications because of the absence of a diagnostic 
feature. For uptake, training with the full data set is slightly worse than training with Non-urban or Post-
training and testing on their duals. However, when tested on themselves (tenfold cross validation), both 
Non-urban and Post-training are worse than training and testing on the full data set.  

While the best possible scenario would be for there to be no difference between groups, the current result 
can be considered the second best: there are differences, but they can be modeled without explicitly defining 
the groups in the model. A worse scenario would be if different groups used language in opposite ways, 
i.e., a marker for authenticity in Urban subset was a marker for non-authenticity in Non-urban subset. If 
this were the case, then it would be necessary to infer which group was being measured to “select” the right 
markers for measurement. Fortunately, it appears that group identity can be ignored at the modeling stage 
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if the training data are sufficiently diverse to represent all groups. Diversity in the training data is critical 
for unbiased assessment in our models. 

Conclusions and Recommendations for Future Research 

We reviewed current work on classroom observation in the study of teacher effectiveness as well as our 
own work on measuring the dialogic properties of questions in classrooms. Previous research, including the 
MET project, has shown that though the year-to-year effects of high instructional quality relative to lower 
quality instruction are sometimes small, the cumulative effects across a student’s K–12 career can be con-
siderable. Moreover, classroom observations can be used to reliably identify effective instructional practice, 
and form the basis of professional development efforts and other approaches to school reform. Our work 
shows that automation holds much promise in scaling up classroom observations in a reliable and fair way.  

However, several questions raised by our work present a challenge to future researchers. Currently, we have 
compared automated coding to relatively fine-grained, question-level human coding, but much existing 
educational improvement efforts use even courser-grained, global rubrics. Thus, further research is needed 
comparing automated portraits of effective instruction to a greater array of human-coded approaches. Might 
the MET data constitute a promising existing resource for such analyses? One concern is that the quality of 
the audio in these recordings is challenging, and there is also a practical barrier because the MET videos 
can only be accessed via a remote interface that includes a video viewer, but nothing else. Nevertheless, the 
potential is great given the large numbers of videos and overall diversity of the MET sample.  

A second question for automation in future research concerns the connection between the dimensions of 
instruction that can be observed by discourse alone and achievement growth. In MET, the principal com-
ponent analysis did identify a component associated with discourse. Yet, further research is needed, build-
ing on the MET design, to understand the robustness and malleability of discourse effects in contrast to 
more generic domains of practice (e.g., that include writing assignments).  

Third, the archival data used in this study date to the early days of NCLB and, and it is possible that the 
prevalence of dialogic discourse and teacher-to-teacher variability in approaches to discourse have changed. 
On the one-hand, increased teacher accountability and other standards-based reforms may focus attention 
on test preparation activities and away from dialogic approaches. On the other hand, effective discourse 
practices, including dialogic practices, are an explicit component of common observational protocols used 
to evaluate teachers. Are current trends in education promoting teaching practices that are consistent with 
what research deems effective? Analyses of the MET and other new data may shed light on these questions.  

Another question, closely following our own work, is how to build models based on the finding that speaker 
identification, question transcript, and segment identification seem to be all that is needed to reach live 
human-coder levels of agreement for dialogic question properties. A related question pertains to whether 
model-coded dialogic question properties predict achievement gains as well as human codes. If successful, 
the CLASS 5.0 system can be used a tool for accurately coding classroom discourse, thereby providing 
valuable information to researchers, teachers, teacher educators, and professional development personnel. 

This work is relevant to GIFT in at least two ways. First, dialogic questions could be incorporated into 
intelligent tutoring systems (ITSs). The work reviewed in this chapter provides a foundation for the gener-
ation of such questions computationally. In some respects, this is trivial: asking the user what they think 
about a topic without some pre-scripted answer or weaving what the user says back into the conversation 
are common strategies used by chatbots. However, the simplicity of generating such questions is offset by 
the complexity in keeping the conversation going once they have been asked – in essence, understanding 
the student’s response well enough to generate new dialogue on the fly. This ability, currently lacking in 
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chatbots, is considered by some to be the ultimate proof of artificial intelligence, the so-called “Turing 
Test”.  

Thus, incorporating dialogic questions into ITSs may be beyond the current state of the art, but the existing 
work in GIFT supporting user personalization provides a starting point from which to build. For example, 
Sinatra (2015) proposes using a dialogue template approach where the user’s log in name is stored as a 
variable and then inserted into dialogue templates to create dialogue like, “Welcome to the tutorial, [name]” 
and also proposes a survey to elicit user interests so that they can likewise populate templates for instruc-
tional dialogue. These proposals are similar to what currently is done in chatbots using a variable/template 
approach, but they differ in terms of how the variables are assigned. In the case of GIFT, Sinatra’s proposal 
is to assign these variables outside of the dialogue. GIFT could benefit from variable assignment both out-
side and inside the dialogue to support dialogic instruction, as internal variable assignment taking place in 
dialogue would make it easier for an intelligent tutor to weave the student’s responses back into the con-
versation. 

The second way in which the work described in this chapter is relevant to GIFT is for hybrid instruction in 
which the human instructor and GIFT are members of the same instructional team but with different roles. 
For example, the human instructor may lead a face to face session with students and then pass the students 
off to GIFT for self-directed practice. In such a scenario, it is important for GIFT to understand what has 
taken place during the human-led portion of the instruction. Automated assessment of classroom discourse 
provides such a model of understanding. By using the techniques described in this chapter as well as the 
techniques by D’Mello and colleagues on instructional segment classification, GIFT could understand both 
coarse-grained classroom activities and fine-grained discussion, and use this knowledge to tailor its own 
instructional activities. For example, if the human instructor spent 20 minutes lecturing on a topic to provide 
an overview, GIFT could trim or eliminate that portion of its instruction. Similarly, highly dialogic discus-
sion during the human-led portion could be modeled and used by GIFT, e.g., in the user personalization 
scheme described previously, to keep students engaged and motivated. In summary, for GIFT to function 
in hybrid human/artificial intelligence instructional teams, an understanding of the human-led portion of 
the instruction is essential. 
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Introduction 

Collaborative problem solving (CPS) is one of the important 21st century skills that has attracted interest in 
international assessments, national assessments of middle and high school students, colleges, business, and 
the military (Griffin & Care, 2015; Hesse, Care, Buder, Sassenberg & Griffin, 2015; NRC, 2011; OECD, 
2013; Sottilare et al., 2015). CPS is an essential skill in the home, the workforce, and the community be-
cause much of the planning, problem solving, and decision making in the modern world is performed by 
teams. The success of a team can be threatened by a social loafer, an uncooperative unskilled member, or 
a counterproductive alliance, whereas it can be facilitated by a strong team member that draws out different 
perspectives, helps negotiate conflicts, assigns roles, promotes team communication, and guides the team 
to overcome troublesome obstacles (Fiore, Wiltshire, Oglesby, O’Keefe & Salas, 2014; Salas, Cooke & 
Rosen, 2008).  

CPS differs from individual problem solving (IPS) in ways that may have both positive and negative con-
sequences. CPS allegedly has advantages over IPS because 1) there is a more effective division of labor,  
2) the solutions incorporate information from multiple sources of knowledge, perspectives, and experiences, 
and 3) the quality of solutions is stimulated by ideas of other team members. There are also potential dis-
advantages of CPS to the extent that 1) team members waste time with irrelevant discussion, 2) there is 
diffusion of responsibility in completing tasks, and 3) disagreements among team members occur that par-
alyze progress in solving the problem.  

At the international level, CPS was selected by the Organisation for Economic Co-operation and Develop-
ment (OECD) as a new development for the Program for International Student Assessment (PISA) in the 
2015 international survey of student skills and knowledge (Graesser, Forsyth & Foltz, 2016; OECD, 2013, 
2015). Fifteen-year-old students from over three dozen countries completed this PISA CPS 2015 assess-
ment in addition to assessments of mathematics, science, literacy, and other proficiencies. One of the goals 
of this chapter is to describe how CPS was assessed in PISA CPS 2015. 

PISA used computer agents in the 2015 assessment. That is, a single human interacts with one, two, or three 
computer agents as team members rather than other humans. Conversation-based assessments with com-
puter agents are manifested by chat conversations as well as actions of team members (Zapata-Rivera, 
Jackson & Katz, 2015). Computer agents are believed to provide control over the social interaction so that 
important assessments can be made with consistency and control, two requirements that communicating 
with fellow humans could not provide. Agents also provide control over logistical and measurement prob-
lems that stem from 1) assembling groups of humans (via computer mediated conversation) in a timely 
manner, 2) the necessity of having multiple teams per student to obtain reliable assessments in different 
circumstances, and 3) extreme measurement error when particular students are paired with other humans 
who do not collaborate well. A second goal of this chapter is to describe how agents can be used to provide 
meaningful assessments of CPS.  

Although conversation-based assessments with agents can provide meaningful assessments of CPS, there 
is still an important goal of assessing interactions among humans. That requires an automated analysis of 
natural language and discourse in addition to identifying how particular problem-solving patterns map onto 
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important CPS proficiencies (e.g., establishing shared knowledge, taking initiative, communicating im-
portant information to the group). The third goal of this chapter is to identify some of the automated ap-
proaches that show promise in automated assessments of CPS among humans. These methods could be 
integrated with the Generalized Intelligent Framework for Tutoring (GIFT) in future developments by pig-
gybacking on and expanding existing applications of natural language processing in GIFT.  

Related Research 

There have been a number of theoretical frameworks for analyzing CPS. Some of the prominent ones in-
clude the Center for Research on Evaluation, Standards, and Student Testing's (CRESST) teamwork pro-
cessing model (O’Neil, Chuang & Baker, 2010), the teamwork models of Salas, Fiore, and colleagues (Fiore 
et al., 2010; Salas, Cooke & Rosen, 2008) and the Assessment and Teaching of 21st Century Skills 
(ATC21S; Griffin & Care, 2015; Hesse et al., 2015). All of these frameworks have both a cognitive dimen-
sion that includes problem solving and other cognitive processes and a collaborative dimension that in-
cludes communication and other social interaction processes. These approaches were incorporated in PISA 
CPS 2015 (Graesser et al., 2016; OECD), the framework under direct focus in this chapter. 

The problem-solving dimension in PISA CPS 2015 framework incorporated the same PISA 2012 problem 
solving framework that targeted individual problem solving (Funke, 2010; OECD, 2010; Greiff, Kretzsch-
mar, Müller, Spinath & Martin, 2014). There were four cognitive processes (or competencies) on the prob-
lem-solving dimension: 

1) Exploring and understanding. Interpreting the initial information about the problem and any 
information that is uncovered during the course of exploring and interacting with the problem. 

2) Representing and formulating. Identifying global approaches to solving the problem, rele-
vant strategies and procedures, and relevant artefacts (e.g., graphs, tables, formulae, symbolic 
representations) to assist in solving the problem.  

3) Planning and executing. Constructing and enacting goal structures, plans, steps, and actions 
to solve the problem. The actions can be physical, social, or verbal.  

4) Monitoring and reflecting. Tracking the steps in the plan to reach the goal states, marking 
progress, and reflecting on the quality of the progress or solutions. 

 
There were three processes on the collaborative dimension:  

1) Establishing and maintaining shared understanding. Keeping track of what each other 
knows about the problem (i.e., shared knowledge, common ground; Clark, 1996), the perspec-
tives of team members, and a shared vision of the problem states and activities (Cannon-Bow-
ers & Salas, 2001; Dillenbourg & Traum, 2006).  

2) Taking appropriate actions to solve the problem. Performing actions that follow the appro-
priate steps to achieve a solution. This includes physical actions and communication acts that 
advance the solution to the problem.  

3) Establishing and maintaining group organization. Helping organize the group to solve the 
problem by considering the talents and resources of group members during the assignment of 
roles; following the rules of engagement for one’s own roles as well as handing obstacles to 
tasks assigned to other team members.  

 
When the 4 problem-solving processes are crossed with the 3 collaboration processes, there are 12 skills in 
the resulting CPS assessment matrix. Table 1 shows this matrix that was adopted in the PISA CPS 2015 
framework. A satisfactory assessment of CPS would assess the skill levels of students for each of these 12 
cells and these would contribute to a student’s overall CPS proficiency measure.  
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Table 1. Copied from OECD (2013). PISA 2015 collaborative problem solving framework. 

 
  (1) Establishing and 

maintaining shared un-
derstanding  

(2) Taking appropriate 
action to solve the prob-
lem  

(3) Establishing and main-
taining team organization  

(A)  Exploring  and  
Understanding  

(A1) Discovering  
perspectives and abilities 
of team members  

(A2) Discovering the type 
of collaborative interaction 
to solve the problem, along 
with goals  

(A3) Understanding roles to 
solve problem  

(B) Representing 
and  
Formulating  

(B1) Building a shared 
representation and negoti-
ating the meaning of the 
problem (common ground)  

(B2) Identifying and de-
scribing tasks to be com-
pleted  

(B3) Describe roles and 
team organization (com-
munication protocol/rules 
of engagement)  

(C) Planning and  
Executing  

(C1) Communicating with 
team members about the 
actions to be/ being per-
formed  

(C2) Enacting plans  (C3) Following rules of en-
gagement, (e.g., prompting 
other team members to per-
form their tasks.)  

(D) Monitoring and  
Reflecting  

(D1) Monitoring and re-
pairing the shared under-
standing  

(D2) Monitoring results of 
actions and evaluating suc-
cess in solving the problem  

(D3) Monitoring, providing 
feedback and adapting the 
team organization and roles  

 

As mentioned, the PISA CPS 2015 assessment had students interact with computer agents rather than other 
humans. The following definition of CPS was articulated in the PISA CPS 2015 framework (OECD, 2013: 
Collaborative problem-solving competency is the capacity of an individual to effectively engage in a pro-
cess whereby two or more agents attempt to solve a problem by sharing the understanding and effort re-
quired to come to a solution and pooling their knowledge, skills and efforts to reach that solution. An agent 
could be either a human team member or a computer agent that interacts with the student. The final assess-
ment that was adopted had students interact with one to three computer agents instead of other humans. 
Therefore, the overall CPS proficiency measure assessed how well a single human interacted with computer 
agents during the course of problem solving. The computer agents were minimalist agents in a chat facility, 
without text-to-speech, animation, or visual depictions of what they looked like. This was necessary to 
eliminate biases of culture, personality, and emotions, which were beyond the scope of the PISA CPS as-
sessment. 

A central advantage of assessments with computer agents is the degree of control over the conversation. 
The discourse contributions of the two agents (A1, A2) and any associated digital media (M) can be coor-
dinated so that each [A1, A2, M] sequential display is functionally a single episodic unit (U) to which the 
human responds through language, action, or silence in a particular human turn (HT). Thus, there is an 
orchestrated finite-state transition network that alternates between episodic units (U) and human turns (HT), 
which is formally isomorphic to a dialogue. This is very different than a collaboration in which many people 
can speak simultaneously and overlap in time (Clark, 1996). Conditional branching can occur in the state-
transition network (STN) so that the computer’s generation of Un+1 at turn n+1 is contingent on the state of 
the human turn HTn at turn n. However, the degree of branching was limited to a small number of states 
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associated with each human turn (HTn) in PISA CPS 2015; there were 2–4 alternative multiple-choice op-
tions at each turn (i.e., either chat options or alternative actions to be performed). Consequently, the fan out 
of conditional branching was not complex and the turn-taking frequently converged at points of assessment 
rather than diverging in many directions. Only one score was associated with each episodic unit and each 
episodic unit was aligned with one and only one of the 12 cells in the CPS assessment matrix.  

The design of the PISA CPS 2015 assessment was compatible with the normal psychometric modeling in 
the world of assessment, where multiple-choice tests are ubiquitous. Traditional psychometric assessments 
routinely include a fixed set of items (i.e., episodic units) that all humans experience. Analogously, PISA 
CPS 2015 had a fixed sequence episodic units (U1, U2, … Um) that occurred at specific points as the problem 
was solved and the responses of the human were automatically recorded (as clicks on action options or chat 
options). The conversations were designed so that the conversations would naturally close shortly after the 
human responded to an episodic unit and the subsequent episodic unit was launched (e.g., “Thanks for your 
input, let’s go on”). Assessment scores were collected for each student for the M episodic units that collec-
tively covered each of the 12 cells in the CPS assessment matrix. These scores contributed to overall CPS 
proficiency measures that have not yet been finalized by OECD.  

Students encounter a diverse set of situations in PISA CPS 2015 in order to make sure that important con-
ditions are covered in the assessment. Students who respond randomly to the response options would obvi-
ously receive low values on CPS proficiency as well as the collaboration and problem solving dimensions. 
A student may be a good team player and be responsive, but not take the initiative when there are problems 
(e.g., an agent who is unresponsive, or a new obstacle in the problem occurs). A student may take some 
initiative when there are breakdowns, but not be able to handle very complex cognitive problems. A student 
who scores high in CPS proficiency takes the initiative in moving the team to achieve group goals during 
difficult times (conflicts, incorrect actions, unresponsive team members) and can also handle complex prob-
lems with many cognitive components that burden working memory and require reasoning. Episodic units 
for all of these situations are needed in order to have an adequate CPS assessment. In contrast, many of 
these situations might not arise when a student interacts with other humans so there would be missing scores 
for some of the 12 cells.  

Computer agents may be suitable for providing a summative assessment of CPS proficiency that is both 
reliable and valid. Available data have so far supported the validity of the PISA CPS 2015 framework. For 
example, a factor analysis has shown an extremely high correspondence between a human-agent CPS as-
sessment and a human-human assessment in a sample in Germany students (Greiff, personal communica-
tion). Kuo et al. (2016) conducted an assessment in Taiwan that adopted the PISA CPS 2015 assessment 
framework. The study developed an internet-based CPS assessment with conversational agents on five tasks 
to be completed in 100 minutes. There were over 50,000 ninth and tenth grade students who participated 
between October 2014 and February 2015. The problem-solving dimension in the PISA CPS 2015 assess-
ment showed a similar ordering of competencies for the four problem-solving components (A > B > C > 
D) as were found for the PISA 2012 assessments of individual problem solving. Although the complete 
data for PISA CPS 2015 is still being analyzed for over 400,000 students in three to four dozen different 
countries, the reliability of the data in field trials is encouraging.  

Discussion  

Although computer agents may be suitable for a summative assessment of CPS proficiency, there are major 
limitations with this approach for teams of humans and formative CPS assessment. Computer-based envi-
ronments for teams (whether they be collaborative learning, problem solving, or work) need automatic 
tracking and analysis of the language, actions, and social interactions of human team members. Computer-
based environments need to adaptively, intelligently, and immediately respond to the team members based 
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on the automated assessments of CPS proficiencies and many other cognitive and noncognitive character-
istics of team members. The agent-based assessment in PISA CPS 2015 does not offer any help in devel-
oping a computer environment for tracking and responding to teams of humans. The latter would be needed 
in GIFT (Sottilare et al, 2017).  

The remainder of this chapter identifies some promising ways of automatically tracking the language and 
discourse of humans in team chat interactions. Ideally, we would be able to map particular language and 
conversation patterns onto the cells of CPS assessment matrix. If these patterns could be detected automat-
ically, then there is a principled theoretical foundation for 1) a formative assessment of CPS skills of team 
members and 2) recommendations on how the computer environment should respond to unproductive teams 
or team members.   

A community of researchers in the learning sciences and computational linguistics have investigated con-
versations in small groups by analyzing the log files of computer-mediated interactions in chat and discus-
sion forums (Dowell, Graesser & Cai, in press; Foltz & Martin, 2008; Liu, Von Davier, Hao, Kyllonen & 
Zapata-Rivera, 2015; Mu, Stegmann, Mayfield, Rosé & Fischer, 2012; Shaffer, Collier & Ruis, in press; 
Tausczik & Pennebaker, 2013; Von Davier & Halpin, 2015). The conversations have been analyzed by a 
variety of automated text analysis tools, such as state-transition networks that track speech acts of team 
players (Morgan, Keshtkar, Duan & Graesser, 2012), latent semantic analysis (Foltz & Martin, 2008; Gor-
man et al., 2003), epistemic network analysis (Shaffer et al., 2009), Coh-Metrix (Graesser, McNamara, et 
al., 2014), and Linguistic Inquiry and Word Count (Pennebaker, Booth & Francis, 2007). These automated 
tools have been applied to conversations in their entirety, to subsets of the conversation at a particular 
window size (e.g., 5 turns in a row), to single conversational turns, to adjacent conversational turns, and to 
turns of specific team members. The conversation profile includes measures of team cohesion, percentage 
of on-topic versus off-topic contributions, amount of new information, characteristics of team members 
(e.g., driver, follower, social loafer), alliances between team members, and presence of specific conversa-
tion patterns. It is beyond the scope of this chapter to describe in detail these automated approaches (see 
Graesser, Dowell, Clewley & Shaffer, submitted), but we do highlight some examples to illustrate the pro-
spects of this approach.  

Matches to Expectations 

In many applications of team problem solving, there are a set of expectations that need to be covered to 
solve the problem. An expectation is a sentence, clause, proposition, or expression of comparable length, 
as discussed in reports on AutoTutor (Graesser, 2016; Cai, Graesser & Hu, 2015). A solution to a problem 
consists of a set of expectations that hopefully would be covered by the team. The team or team member 
received higher scores to the extent that more expectations are articulated during the chat conversation. 
Physical actions are also handled in this way: performance increases as more critical actions are performed.  

Advances in computational linguistics and semantics have made impressive gains in the accuracy of se-
mantic matches between one short text (i.e., a sentence or two) and another short text (Rus, Lintean, 
Graesser & McNamara, 2012; Rus & Ştefănescu, 2016). The accuracy is not always perfect, but it often 
is impressive and on par with human experts who judge the semantic similarity of pairs of short texts. The 
AutoTutor research team has evaluated many semantic matchers over the years in AutoTutor and other 
intelligent tutoring systems (ITSs) with conversational agents (Cai et al., 2011; Graesser, Penumatsa, Ven-
tura, Cai & Hu, 2007; Rus et al., 2012). The semantic matchers automatically compute the semantic simi-
larity between a student’s verbal contribution and an expectation, with a similarity score that varies from 
zero to one. These semantic match algorithms have included keyword overlap scores, word overlap scores 
that place higher weight on lower frequency words in the English language, scores that consider the order 
of words, latent semantic analysis cosine values, comparisons to regular expressions, and procedures that 
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compute semantic logical entailment. As an example, Cai et al. (2011) reported that the correlation of sim-
ilarity scores between AutoTutor and human expert judges was r = 0.667, about the same as between two 
trained judges (r = 0.686). Interestingly syntactic parsers did not prove useful in these analyses because a 
high percentage of the students’ contributions are vague, telegraphic, elliptical, and ungrammatical. At the 
time of this writing, the best automated semantic matcher is the Semantic Similarity (SEMILAR) system 
developed by Rus et al. (2013). SEMILAR won the semantic textual similarity competition at SemEval-
2015, the premier international forum for semantic evaluation.  

Matches to expectations are powerful in assessments of CPS to the extent that the solutions to a problem 
are known ahead of time, as in the case of PISA CPS 2015. Indeed, there could be a set of expectations 
associated with each of the 12 cells in the CPS assessment matrix and these could be scored for each team 
member over the course of the CPS interaction. Unfortunately, this approach does not work when there are 
no expectations in a CPS application. The subsequent approaches can be applied when a problem does not 
have a finite set of associated expectations. 

Automated Speech Act Classification and State Transition Networks 

The content of each turn is classified into speech acts and each speech act is assigned to a category (Liu et 
al., 2015; Morgan et al., 2012). For example, the speech act categories defined by Rus, Graesser, Moldovan, 
and Niraula (2012) were Statement, Question, Request, Reaction, MetaStatement, Expressive Evaluation, 
and Greeting. Automated speech act classification has achieved a moderate degree of accuracy compared 
with trained human annotators (Olney et al., 2003; Rus et al., 2012; Samei et al., 2014). A chat window of 
five turns appears to be an optimal chat length to analyze the context of particular turns in computer-medi-
ated chat during collaborative learning and CPS (Collier, Ruis & Shaffer, 2016; Samei et al., 2014). This 
amount of context has been explored to improve speech act classification accuracy and to detect multi-turn 
discourse patterns. Another approach is to construct a STN on adjacent speech acts (Morgan et al., 2012). 
An STN computes the probabilities of adjacency pairs in a corpus of chat sequences. Stated more formally, 
it is the transition probability between adjacent speech act categories (SAC) that are indexed by particular 
team participants: [P-SACn  P-SACn+1]?  

Some measures of CPS can theoretically be derived from the distribution P-SAC node categories and the 
transition probabilities between these node categories. Students who take initiative would have a high pro-
portion of Questions, Requests and Statements, whereas students who are responsive team members (but 
not leaders) would have a relatively high proportion of Reactions. A disruptive team member would have 
a high proportion of negative Expressive Evaluations, whereas a social loafer would have a low number of 
contributions compared with other team members. Regarding the state transitions, responsive team mem-
bers would have a relatively high transition probability between Questions/Requests of others and the par-
ticipant’s Reactions or Statements; these transition probabilities would be low for unresponsive team mem-
bers. Thus, these probabilistic metrics have relevance to many of the cells in the CPS assessment matrix. 
However, available studies have not empirically evaluated the mapping between these automated measures 
and the 12 cells in the CPS assessment matrix.  

Latent Semantic Analyses (LSA) and Semantic Comparisons 

LSA (Landauer, Foltz & Laham, 1998) is used to analyze the semantic content of the team members’ con-
tributions, a level of language that is not tapped in speech act analyzes. For example, LSA has been used to 
analyze the coherence of teams and characteristics of individual team members (Dowell, 2017; Foltz & 
Martin, 2008; Gorman et al., 2003). Text excerpts can be evaluated on semantic similarity through LSA as 
well as other semantic similarity evaluators that have been described.  
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Semantic comparison metrics, such as LSA and SEMILAR (Rus et al., 2013), provide an assessment of 
establishing a shared understanding and building on what each other knows, both of which are theoretically 
important in the process of establishing and maintaining shared understanding component of collaboration 
in PISA CPS 2015. The relevance (R) of a turn’s meaning to the problem being solved is used to compute 
the extent to which a turn is on versus off topic. This is measured as the semantic overlap between each 
turn and the semantic topics in the problem being solved. The givenness (G) and newness (N) of individual 
turns can be computed for individual team members and the team as a whole (Hempelmann et al., 2005; 
Hu et al., 2014). A productive collaborative team member contributes relevant information that is new and 
also builds on other team member’s topic-relevant ideas in a responsive fashion. Scores for R, G, and N 
can be automatically computed by LSA and other semantic evaluators such as SEMILAR, with values that 
vary from near zero to one. For example, a team member who productively leads the conversation would 
have a vector of RGN measures such as (0.9, 0.4, 0.6). Team members who echo ideas of others in a con-
versation would have a (0.9, 0.5, 0.0) vector if they stay on topic, but a (0.0, 0.5, 0.0) vector on off-topic 
talk. A team member with a (0.0, 0.0, 0.9) vector would be in their own irrelevant worlds and not helpful 
to collaboration. These profiles have been confirmed in a recent dissertation by Dowell (2017).  

There are many other measures of team members and teams that can be computed from these similarity-
based metrics and transitions between team members (Dowell, 2017). Participation is the relative propor-
tion of a participant’s contributions (turns) out of the total number of group contributions; physical actions 
can be computed in an analogous way to assess the second component of the collaborative dimension (tak-
ing appropriate actions to solve the problem) in PISA CPS 2015. Responsiveness (analogous to G for 
givenness) assesses how responsive a team member’s contributions are to all other group members’ previ-
ous contributions in the conversation. Social impact measures how turn contributions of a team member 
have a semantic similarity to other members’ contributions in future follow-up responses. Team member 
cohesion measures how semantically similar a team member’s contributions are to the same member’s 
previous conversational turns. That is, is a team member saying the same thing over and over? Communi-
cation density measures how much information in a turn is distinctive to the topic, compared with everyday 
topics of conversation. All of these metrics can be applied to individual team members as well as the team 
as a whole.  

Epistemic Network Analysis (ENA) 

ENA attempts to assess the complex thinking, discourse, reasoning, and topics addressed in professional 
disciplines and communities (Nash & Shaffer, 2011; Shaffer et al., 2009; Shaffer, Collier & Ruis, in press). 
There is a disciplinary style of thinking and talking that resonates with the expertise of the community of 
stakeholders. In scientific disciplines, for example, the discourse might involve claims with supporting em-
pirical evidence and causal analyses. That is a very different discourse from mathematicians or art histori-
ans.  

ENA’s analysis of chat in CPS begins by representing the content as a network structure of connections 
among critical knowledge, skills, values, and epistemic moves in a professional domain. It measures the 
strength of association among these cognitive elements and quantifies changes in the composition and 
strength of those connections over time for individual team members and the entire team. ENA constructs 
a metric space that enables comparison of individual or group networks through 1) difference graphs, which 
visualize the differences in weighted connections between two networks, and 2) summary statistics, which 
reflect the weighted structure of connections in the networks.  

It is beyond the scope of this chapter to precisely specify the algorithms that underlie ENA and the process 
of applying ENA to CPS data (Shaffer, Collier & Ruis, in press, for the ENA Toolkit). The initial step 
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consists of annotating chat turn sequences (i.e., stanzas, sliding turn windows of about length 5) on im-
portant cognitive categories (i.e., expressions of skills, knowledge, identity, values, and epistemic content), 
based on the words expressed in those turns. The next step computes a matrix of co-occurrences of these 
cognitive categories within these turn sequences and statistically reduces the resulting set of co-occurrence 
matrices to a small number of dimensions through singular value decomposition. When there are only two 
or three dimensions, it is possible to plot each cognitive category in a 2- or 3-D metric space; the size of the 
cognitive category in the space reflects its relative frequency, whereas the thickness of the links between 
the concept categories reflects the co-occurrence frequency. The resulting network patterns can be com-
pared for different team members, the team as a whole, different phases of CPS interactions, and different 
chat contexts associated with the profession. ENA has been applied to the land science chat corpora (Collier, 
Ruis & Shaffer, 2016) and medical engineering design in teams of 3–5 members along with a mentor. 

A discipline-oriented style of thinking and talking would of course be an important characteristic to detect 
and track in team-based ITSs integrated with GIFT. A team member or team as a whole would be regarded 
as having higher domain expertise to the extent that the chat exhibits higher disciplinary talk that can be 
automatically quantified from the qualitative input. There are also some links to the CPS assessment matrix 
of PISA CPS 2015. For example, the discipline thinking parameters are relevant to the problem-solving 
component D (monitoring and reflecting) and the identity concept categories are relevant to collaboration 
component 3 (establishing and maintaining team organization). At this point there has been no systematic 
evaluation of the use of ENA in the scoring of CPS based on the PISA 2015 framework. 

Recommendations and Future Research 

The most obvious recommendation is to add these automated measures of CPS to GIFT and team-based 
ITSs. The scores, competencies, and measurements at varying grain sizes would be automatically computed 
and stored in the Learner Record Store of GIFT. This chapter identifies some automated quantitative algo-
rithms for detecting and assessing many aspects of CPS from the content of the chat logs. These assessments 
apply to either the entire team or to individual team members as units of analysis. These content-based 
assessments are a generation beyond the traditional sociometric analyses that compute simple metrics, such 
as who talks most, who talks to whom, and how many words. Most of the assessments are also aligned with 
the theoretical framework of a large-scale international assessment, namely PISA CPS 2015. Although this 
is a promising start, the reliability and validity of these automated assessments await future research.  

A second major recommendation is to incorporate these CPS assessments in production rules that formulate 
what the adaptive, intelligent tutor does next. For example, the suite of applications in GIFT already has 
the AutoTutor agents that help individuals learn by holding a conversation in natural language (Graesser, 
2016; Cai et al., 2015). This could be expanded to include an automated AutoMentor in team contexts when 
GIFT takes on teams. Some simple production rules were proposed in Graesser et al. (submitted): 

1) If the team is stuck and not producing contributions on the relevant topic, then the agent says, 
“What’s the goal here?” or “Let’s get back on track.” 

2) If the team meanders from topic to topic without much coherence, then the agent says, “I’m lost!” 
or “What are we doing now?” 

3) If the team is saying pretty much the same thing over and over, then the agent says, “So what’s 
new?” or “Can we move on?” 

4) If a particular team member (Harry) is loafing, the agent says, “What do you think, Harry?” 
5) If a particular team member (Sally) is dominating the conversation excessively, the agent says, “I 

wonder what other people think about this?”  
6) If one or more team members express unprofessional language, the agent says, “Let’s get serious 

now. I don’t have all day.” 
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Important next steps are to identify a larger set of production rules for CPS, implement them in GIFT 
environments, and evaluate whether they improve collaborative problem-solving performance (Sottilare et 
al., 2017).  
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Introduction 

Computer-based intelligent tutoring systems (ITSs) rely on assessment of learner behavior, and indeed, 
ITSs cannot accurately function without an “understanding” of the specific learner. As a result, it is of 
critical importance to understand what can and cannot be assessed automatically, given various learning 
environments and learning objectives, as this will impact ITS functionality. Here, we define an assessment 
as the result of applying a formula to data (a measurement), and then comparing the score on the measure-
ment to an expert behavior (the assessment). Assessment is especially challenging in environments focused 
on collective tasks (i.e., those that require organized team or unit performance for accomplishment; Depart-
ment of the Army, 2012), in which many of the key behaviors of interest involve coordination and commu-
nication between human and/or synthetic actors (broadly referred to as collective skills here). 

Assessment in ITSs is primarily intended to capture the learner state in comparison to a desired state or an 
expert state. The learner state is often defined by an individual’s efficacy on relevant parameters (e.g., 
domain knowledge, skills or abilities, etc.). The assessment of the learner state results in a model of the 
learner and helps to drive adaptive support in the ITS. As assessments improve, more accurate learner 
models are possible (Sottilare, 2013).  

Defining the learner model and providing adaptive support is especially complicated when ITSs are applied 
to collective skills (Sottilare, Holden, Brawner & Goldberg, 2011). Not only are there technical challenges 
for creating a team ITS architecture (Gilbert, Winer, Holub, Richardson, Dorneich & Hoffman, 2015), but 
there are also challenges in assessing team performance to understand a collective “learner” state. Shared 
mental models may be one way to capture the learner model (Sottilare, Brawner, Goldberg & Holden, 
2012), but assessing and using shared mental models still presents challenges for ITSs (Fletcher & Sottilare, 
2013; Fletcher & Sottilare, 2017).  

Given the challenges associated with collective tasks and the critical role for assessment in supporting ITSs, 
this chapter presents lessons learned from an effort to develop automated assessments for Army Aviation 
collective task performance in attack-reconnaissance missions as conducted in a networked virtual environ-
ment. The findings illustrate gaps in assessment capabilities that will limit ITS functionality with respect to 
collective versus individual skills. Accordingly, these gaps suggest limits to role of ITSs and inform how 
ITSs might best support human instruction for collective skills, resulting in recommendations for future 
research. 

Related Research 

Issues of collective performance assessment are not unique to ITSs. Assessment is a key part of understand-
ing collaboration (Hmelo-Silver, Chernobilsky & Jordan, 2008), collaborative learning (Strijbos, 2011), 
teamwork (Salas, Sims & Burke, 2005), and simulation-based training (Siebert, Diedrich, Stewart, Bink & 
Zeidman, 2011). There are two issues in the assessment of teams: the level of assessment and the focus of 
assessment. As defined here, the level of assessment refers to the person(s) being assessed whereas the 
focus of assessment refers to the construct being assessed.  
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The level of assessment is either the individual or the team. Even though it is generally accepted that ag-
gregated individual performance is not equivalent to collective performance, it may be necessary to meas-
ure, assess, and model individual inputs in team ITSs (Fletcher & Sottilare, 2013). Measuring the individual 
learner states in team ITSs may be one way of understanding shared mental models. It may be the goal of 
some team ITSs to increase the efficacy of the individual in team contexts. If that were the case, then 
measuring and assessing individual performance and providing individual feedback would be necessary. 
By contrast, if the goal of team ITSs is to increase the efficacy of collective performance, then assessments 
of team processes and outcomes would be necessary. Measuring and assessing collective processes and 
outcomes are difficult because they result from the interactions of individuals over time (Marks, Mathieu 
& Zaccaro, 2001). As such, it is necessary to control interactions during ITS training to assure desired levels 
of both team and individual performance (Bonner, Slavina, MacAllister, Holub, Gilbert, Sinatra, Dorneich 
& Winer, 2016).  

The focus of assessment refers to either an outcome or a process being measured. Shared mental models 
may represent an example of an outcome insofar as shared mental models are knowledge structures that 
result from general and specific team interaction (Cannon-Bowers, Salas & Converse, 1993). That said, 
collective processes are important for collective outcomes. For example, shared mental models (outcome) 
cannot be constructed without sufficient levels of interaction (process). Some traditional ITS parameters 
may account for team processes, but more work is needed to map those processes to measurable actions or 
interactions (Burke, Feitosa & Salas, 2015). It is clear that both collective outcomes and collective processes 
need to be assessed in ITSs to sufficiently develop a learner model. The relative importance of each con-
struct in any given ITS application will be determined not only by the training objectives of the ITS but 
also by the technical characteristics of the ITS that allow for the measurement of collective processes and 
outcomes. 

Assessing collective processes (and collective outcomes) can be difficult in automated digital environments 
like ITSs (Seibert, et al. 2011). Most collective processes involve monitoring and interaction behaviors that 
are currently best captured by observer ratings (Marks et al., 2001). Assessing collective outcomes (e.g., 
responses) could be automated in ITSs, but effectively constructing collective-learner models would rely 
on an understanding of the processes that produced those outcomes as well. Using scripts to control and 
measure processes may facilitate automation in ITSs (Strijbos, 2011), but such an approach would limit the 
complexity of skills trained in ITSs. Thus, a significant challenge for collective ITSs is automating perfor-
mance measurement in the digital training environment.  

Discussion 

The objective of the work reviewed here was to assess collective skills in the context of Army aviation 
within a simulated environment, such that the level of assessment, focus of assessment, and nature of the 
environment interacted to determine what should be assessed and how it could be assessed. Since the goal 
was to create assessments to provide feedback to improve collective performance, the worked focused not 
only on mission outcomes, but also on the processes that supported realization of those outcomes. Complete 
details can be found in published research reports, including measure definitions, validation results, and 
design of associated assessment tools (e.g., Seibert, et al., 2011; Bink, Dean, Ayers, Zeidman, 2014). Here, 
the focus is on findings concerning what could and could not be assessed regarding processes and outcomes, 
and given that, implications for the Generalized Intelligent Framework for Tutoring (GIFT) and related ITS 
environments.  

More specifically, the work focused on improving learner feedback in the context of training exercises that 
were conducted in a networked virtual environment at the US Army Aviation Warfighting Simulation Cen-



 
 

289 

ter (AWSC) at Fort Rucker, AL. The AWSC consists of networked cockpit simulators that can be recon-
figured to represent various operational helicopters. The focus was on flight teams (teams of pilots coordi-
nating across multiple helicopters) performing typical missions that attack weapons teams (AWTs) and 
scout weapons teams (SWTs) train and experience in combat. These missions required coordination within 
flight teams as well as with tactical operations centers (TOCs) and ground commanders, along with the 
identification, detection and engagement of targets. Hence, the tasks addressed were collective and focused 
on teamwork in addition to individual skills. Of interest were the processes (e.g., coordination and commu-
nication) that supported the achievement of outcomes (e.g., prosecution of targets).  

Measures were developed using the Competency-Based Measures For Performance Assessment Systems 
(COMPASS) process (MacMillan, Entin, Morley & Bennett, 2013), which consisted of an iterative series 
of three workshops with subject-matter experts (SMEs) to develop and initially validate performance 
measures. First, a set of critical tasks was defined that were relevant for AWTs and SWTs. Next, descriptive 
indicators of high, average, and low performance on these tasks and underlying skills were created. Finally, 
measures were developed to quantify task performance to facilitate systematic learner feedback. Definitions 
included those for items to be captured manually via observers (observer-based) and automatically via sim-
ulator data streams (systems-based). SMEs who participated in the workshops were from diverse profes-
sional, civilian, and military backgrounds including military aviators, simulation training experts, and soft-
ware engineers. SMEs represented the US Army Aviation Center of Excellence: the Directorate of Simu-
lation (DOS), the Training and Doctrine Command Capability Manager (TCM) for Reconnaissance-Attack 
(RA), and the Aviation Captain’s Career Course.  

Overall, this process resulted in set of approximately 100 observable behaviors that captured collective 
performance during critical events. Based on these observable behaviors, a total of 115 observer-based 
measures that could discriminate high-performing from low-performing teams and that could be used to 
provide feedback were developed. In addition to the 115 observer-based measures developed in this effort, 
33 additional system-based measures were defined using simulator data available during ATX. The critical 
question is what made these various measures likely, or not likely, to be successfully measured from simu-
lator data feeds.  

To answer this question, it is first necessary to consider what is in the simulator data stream that can be 
used to assess behavior. In this case, we investigated distributed interactive simulation (DIS) data log files 
produced during exercises at the AWSC. The files were based on standards from the Institute of Electrical 
and Electronics Engineers Standards for DIS Application Protocols (Institute of Electrical and Electronics 
Engineers, 1996) and the Simulation Interoperability Standards Organization Enumeration and Bit Encoded 
Values for use with Protocols for DIS Applications (Simulation Interoperability Standards Organization, 
2006). The definitions for protocol data units (PDU) were also obtained, which are data messages that are 
exchanged on a network between simulation applications. Together, these items served as reference mate-
rials for the purpose of creating system-based measures that could be calculated automatically. In general, 
our analyses revealed that system-based data can be used to extract measures such as timing of events or 
success of an attack while observer-based data can better provide insights that are not easily obtained from 
system-based data alone. This distinction, therefore, poses limitations for automated tutoring systems fo-
cused on collective skills. The implication is that while some aspects of collective skills can be measured, 
including outcomes (e.g., success of an attack) and even aspects of process (e.g., sensor coordination when 
targeting – see the following example), some elements of process will be difficult to automatically measure 
(e.g., verbal, open-ended collaboration).  

In particular, data were widely available for actions taken directly interacting with the simulator such as 
those involving aircraft movement, sensors, and targeting systems. One such measure, for instance, ad-
dresses confirmation of a target with appropriate marking technique given unit standard operating proce-
dures. This measure reflects collective behavior because it is about coordination of the flight team with the 
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ground commander. In this case, the systems-based measure reflects key actions required for target confir-
mation that involve interaction with electronic systems, including indications of the position of the target 
and position of the laser designator (e.g., required data include “data from electromagnetic emission PDU; 
laser designator; position of target; position of laser designator”). This action can be assessed as correct or 
incorrect based on acceptable performance ranges, and hence, has the potential to be fully automated. How-
ever, it is important to note that this item alone does not reflect the full richness of the desired collective 
behavior. In this case, the complementary observer-based measure contrasted the simple action of “flight 
marks target” (acceptable performance) with the addition of a discussion about preferences concerning the 
marking strategy (superior performance defined as “flight discusses marking strategy with ground; marks 
target appropriately”). While the system data alone could provide evidence that a communication occurred, 
the quality of that exchange in context of a discussion regarding strategy was available only via observer. 
In this case, system data alone, and hence fully automated assessment, was insufficient.  

Building further upon this type of distinction, of the 33 systems-based measures that were defined, most 
were viewed as being possible to implement with relative ease based on the then available technologies 
given the content of the data streams and functionality of the simulators. As another example of a possible 
item, the measure of distance to the wingman was computable in an automatic and continuous fashion, 
again reflecting coordination across the team within a well-defined standard for assessment. However, it 
should be noted that of the 33 system-based measures defined, 7 of them were ultimately identified as being 
unlikely to be fully automated in the foreseeable future. In general, while these items were typically about 
communications that could be automatically recorded and identified as having occurred, they were also 
associated with more open-ended collaboration where quality was somewhat ill defined or format was more 
open as multiple individuals interacted. For instance, one measure addressed coordination within the flight 
team in a short and concise manner that addressed a variety of variables (e.g., loitering, threats, ap-
proaches…). Similarly, another measure addressed the quality of collaboration during mission briefing in 
terms of covering all elements sufficiently in a timely manner. In fact, of the 7 measures, 5 focused on 
open-ended coordination and communication. The remaining measures concerned data relating to aspects 
of performance standards that were not fully defined at the time, and another measure that reflected focus 
of attention to a data feed (level of attention vs. just having the feed active), which would require additional 
technology to fully measure.  

In summary, the primary limitation that resulted in this small set of fully implementable, automated items 
was the absence of key data in the available data stream that forced reliance on an observer. While data 
were widely available for actions taken directly interacting with the simulator such as those involving air-
craft movement, sensors, and targeting systems, some elements of communication and coordination were 
unable to be fully captured. In many respects, these data reflect that some domain-specific tactics, tech-
niques, and procedures may be more easily measured and assessed relative to more universal, qualitative 
collaboration oriented skills. Given this distinction, the strategy followed in the work reviewed was to di-
vide assessment between those items that could be assessed automatically versus those that required ob-
servers. Although the assessment package was not “instructorless,” the strategy did demand less from the 
instructor by automating where possible.  

Recommendations and Future Research 

What then, do these findings mean for the development of GIFT, or more generally, ITSs for collective 
skills? First, we believe these data suggest that a natural limit to what can be the focus of automated tutoring 
is the extent to which behavior can be assessed based on available data, and that this limit will be different 
for collective versus individual tasks (level of assessment). Second, even with data, within the context of 
collective skills, assessments will be hard to develop to fully support automated tutoring, in particular, those 
focused on aspects of process like open-ended collaboration (focus of assessment). Third, these limitations 
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suggest a strategy in that for collective skills, automated tutoring be focused on data-rich skills surrounding 
domain-specific tactics, techniques, and procedures, while focusing human instruction on more subtle as-
pects of open ended coordination and collaboration.  

Based on the research presented here, and other similar efforts across a range of applications (different 
aircraft, games, etc.), our first recommendation is to always consider the assessment needs for the training 
before and during the design and implementation of the training system to identify the basic data points that 
will be required to inform and feed the assessment tools and/or ITSs. In general, there is a need to advance 
the overall capability of assessment tools for team-level skills such as communication and coordination. 
However, these advances are less about the technology and more about the content and volume of data that 
is required to assess those skills. Historically, data that are published within a networked training environ-
ment are specifically designed to represent entities and how those entities impact the environment in which 
they are situated (e.g., a weapon fire and damage assessment). Yet, data that would inform team dynamics 
are most often not published and therefore not available to assessment tools that would collect and interpret 
their impact. Limits on bandwidth and processor speed are no longer a major concern, and so the focus 
should be placed on identifying and publishing a richer data set on which collective assessment may be 
made. In general, better ITSs will be possible with more complete and targeted assessment opportunities 
through sophisticated analyses as technologies evolve (e.g., natural language processing). 

Specifically, in the collective training arena that this research was undertaken, the combination of size of 
the training event (many interacting individuals in simulated aircraft, TOCs, etc.), the training objectives, 
and the data available within the environment placed limitations on what could be automatically assessed. 
For this reason, an ITS inside of the AWSC could only do so much good in the current and near-future 
configurations of the facilities. Our second recommendation therefore focuses on using automated meas-
urement and assessment to alert and guide human observers and trainers during the training sessions to 
critical and specific times and places to view and observe detailed interactions between trainees and teams 
(e.g., arrival of aircraft at a critical location immediately prior to check in with the ground commander). 
Capitalizing on the items that can be computed automatically from the training environment, a system could 
cue observers and trainers to the most important interactions that they should be watching and assessing for 
the key critical interactions (e.g., the discussion that would then take place after arrival). Especially in 
events at the AWSC like those noted previously, where there are hundreds of trainees and only a handful 
of observers, this type of tool would facilitate more targeted and accurate assessment of collective perfor-
mance and reduce the workload of the instructor/observers. These detailed assessments made by human 
observation could then be fed back into the training environment and used to trigger certain ITS behaviors, 
or be used to complement systems-based items on which the ITS acts. Combined, these elements could 
provide a rich set of ITS-fueled interventions.  

Our final recommendation revolves around advancing the research around measuring collective perfor-
mance, as well as the tools and strategies used to communicate that feedback to the team. As stated earlier, 
aggregated individual performance is not equivalent to collective performance. Therefore, we propose re-
search into software models that may learn, measure, and then predict the impact of individual tasks on the 
overall performance of the training objective. The models may be able to measure and then assess the 
impact that an individual had on the collective mission. That information could be used to tailor and target 
individual intervention during the training by an ITS, in addition to informing the After Action Review. 
The concept of how an individual impacts the overall assessment of the team leads to additional research 
areas around the presentation and delivery of feedback to a team. More research is needed into what type 
of feedback should be given to teams in the context of ITSs, when should it be delivered, and how individ-
uals within the team could then be provided with their own tailored evaluations.  
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CHAPTER 26 – Cognitive Assessment as Service in the 
Generalized Intelligent Framework for Tutoring (GIFT) 

Xiangen Hu1,3, Sheng Xu3, Robert Sottilare2, and Dietrich Albert4,5 
University of Memphis1, US Army Research Laboratory2, Central China Normal University3,  

Graz University of Technology4, University of Graz5 

Introduction 

One of the most common behaviors observed in various forms of intelligent tutoring system (ITS) imple-
mentations is similar to the typical stimulus-response (S-O-R) paradigm (https://www.quora.com/What-is-
the-S-O-R-model-about). In any sequence of ITS tutoring sessions, the ITS presents a stimulus (such as 
seed question or a scenario) to the learner. The learner’s response will then be a stimulus to the ITS. To 
further illustrate such a turn-alternating S-R behavior observed in an ITS, consider a typical ITS-learner 
interaction sequence: 

A. …,... 

B. The ITS presents a scenario to the learner. 

C. The learner tries to understand the scenarios (as stimulus) and responds to the scenarios (as re-
sponse). 

D. The ITS evaluates the learner response (as stimulus) and presents a follow-up scenario to the learner 
(as a response). 

E. …,... 

In this outlined sequence of micro-actions between the ITS and learner, the most important action for the 
learner is to understand the scenarios presented by the ITS. The most important action for the ITS is to 
evaluate the responses by the learner and respond to the learner’s contribution.  

In current and earlier volumes of the series, more detailed analyses of ITSs have been presented. In general, 
an ITS has been considered as an integrated collection of more complicated models and processes (Sottilare, 
Graesser, Hu & Holden, 2013; Sottilare, Graesser, Hu & Goldberg, 2014; Sottilare, Graesser, Hu & 
Brawner, 2015; Sottilare, Graesser, Hu, Olney, Nye & Sinatra, 2016). With the limited space and restricted 
focus of the current chapter, we focus only on the evaluative component of ITSs (step D of the outline 
sequence), especially, we consider such component in the context of the General Intelligent Framework for 
Tutoring (GIFT). For the purpose of illustration, we consider two types of learner’s responses: categorical 
responses (such as multiple choices) and natural language responses. For each of these two types of re-
sponse types, we present theory-based assessment models, implemented as standalone software service 
following the best practice of service-oriented architecture (SOA). We argue that such web services can be 
used to serve GIFT and as an example of cognitive assessment web service for GIFT. 

Related Research 

We first introduce two assessment frameworks for the two types of learner’s responses. The first is called 
Multinomial Processing Tree (MPT) models and second is called Semantic Representation and Analysis 
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(SRA). This chapter only addresses the two example frameworks at the conceptual level and does not go 
into the mathematical details. 

Multinomial Processing Tree (MPT) Models 

First, we introduce MPT models by considering an example of the typical Urn model (https://en.wikipe-
dia.org/wiki/Urn_problem) with two types of balls: r red (R) balls and b blue (B) balls (Figure 1). If one 
randomly draw two balls from the urn (in sequence, one ball at a time), What is the probability of that the 
first ball is blue (B) and second ball is red (R)? What would be the model to describe the expected proba-
bility for the outcomes? 

The probability of observing event (B, R) would be 𝑝𝑝(1 − 𝑞𝑞) where 𝑝𝑝 = 𝑏𝑏
𝑏𝑏+𝑟𝑟

 and the value q would be 
different depending on the drawing method: with or without replacement. If the drawing is without replace-
ment, then 𝑞𝑞 = 𝑏𝑏

𝑏𝑏+𝑟𝑟−1
; if the drawing is with replacement, then 𝑞𝑞 = 𝑏𝑏

𝑏𝑏+𝑟𝑟
. 

 

 

Figure 1. MPT for the Urn model. 
 

An MPT model for the urn example would be  

• 𝑝𝑝{(𝐵𝐵,𝐵𝐵} = 𝑝𝑝𝑞𝑞,  

• 𝑝𝑝{(𝐵𝐵,𝑅𝑅)} = 𝑝𝑝(1 − 𝑞𝑞),  

• 𝑝𝑝{(𝑅𝑅,𝐵𝐵)} = (1 − 𝑝𝑝)𝑠𝑠, and  

• 𝑝𝑝{(𝑅𝑅,𝑅𝑅)} = (1 − 𝑝𝑝)(1 − 𝑠𝑠)  

where q and s are different. If the drawing is with replacement, then (𝑞𝑞 = 𝑠𝑠 = 𝑏𝑏
𝑏𝑏+𝑟𝑟

); if the drawing is without 

replacement, then (𝑞𝑞 = 𝑏𝑏
𝑏𝑏+𝑟𝑟−1

, 𝑠𝑠 = 𝑏𝑏−1
𝑏𝑏+𝑟𝑟−1

). 
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The model described here is a typical MPT model. It is a multinomial model and there are special parame-
ters (such as p, q, and s) in the model that can be interpreted in the context of a “tree-like” structure. Mul-
tinomial models with these two properties are called MPT models. It has been shown that any multinomial 
model can be reparametrized into an MPT model (Hu & Batchelder, 1994).  

The intuitive and simplicity of MPT models makes it possible to apply in analyzing experiments in cogni-
tive psychology and other areas of research (Batchelder & Riefer, 1999). In the past 30 years, MPT model-
ing has been used as one of the formal approaches to measuring cognitive processes, such as the capacity 
to store and retrieve items in memory, make inferences and logical deductions, or discriminate and catego-
rize similar stimuli. While such processes are not directly observable, theoretically they can be assumed to 
interact in certain ways to determine observable behaviors. The goal of multinomial modeling is to identify 
which underlying factors are important in a cognitive task, explain how those processes combine to create 
observable behavior, and then use experimental data to estimate the relative contributions of the different 
cognitive factors. In this way, multinomial models can be used as tools to measure unobservable cognitive 
processes (Batchelder, Hu & Riefer, 2013).  

In the next section, we illustrate the utility of MPT models as an assessment tool by giving a relevant 
example in cognitive psychology. Especially, MPT models are used to analyze categorical responses to 
infer underlying unobservable cognitive capacities. We then describe how MPT modeling can be used as 
an assessment service for GIFT. 

Example 1: Application of MPT Modeling in Assessing Cognitive Ability 

From the perspective of mathematical statistics, multinomial models are developed for categorical data, 
where each participant’s response falls into one and only one of a finite set of observable data categories. 
When these data come from a cognitive experiment, each participant in an experimental group produces a 
categorical response to each of a series of items, for example, pictures are “recognized” or “not recognized” 
or letter strings are judged to be “words” or “non-words”. In the context of learning/assessment environ-
ments, learners are frequently asked to make multi-alternative forced choices, such as multiple choice (MC). 
Even in non-formal assessment/testing situations, learner’s learning behaviors can be classified into mutu-
ally distinctive behavior categories. All these data are suited for MPT models.  

Most data sets for multinomial modeling involve more than two response categories. There also may be 
more than one type of item, each with its own system of response categories. For example, in a source-
monitoring experiment, participants study a list of items from two sources, Source 1 or Source 2 (e.g., 
presented by a reliable vs. an unreliable learning source). Later, participants are given a recognition memory 
test consisting of three types of items, namely, the two types of old list items and new distracter items, and 
they must classify each tested item as Source 1, Source 2, or New. The resulting multinomial data structure 
consists of three category systems, each with three response categories. If the responses in different category 
systems are independent and category counts within a system follow a multinomial distribution, the proba-
bility of the data structure is given by the product of three multinomial distributions, one for each category 
system. The MPT model for the source-monitoring experiments is shown in Figure 2. 
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Figure 2. Model and data structure for the source-monitoring experiment (Batchelder & Riefer, 
1990), where i takes the value of 1 and 2 in the symbol Si, Ri, Di, and di. 

In this model, there are total of 7 parameters, D1, D2, d1, d2, b, a, and g. All the parameters are probabilities 
and used as measurement of underlying cognitive abilities:  

• D1 and D2 are for the detection of a test item as old item.  

• d1 and d2 are for the discrimination of test items given they are detected as old items. 

• b is the response bias for an item when failed to detect as old,  

• a is response bias to source 1 item when the item is detected as an old item. 

• g is response bias to source 1 item when the item is not detected as an old item.  

The mathematical form of the MPT model for source-monitoring is specified in terms of categorical prob-
abilities: 

• 𝑝𝑝{𝑅𝑅1/𝑆𝑆1} = 𝐷𝐷1𝑑𝑑1 + 𝐷𝐷1(1 − 𝑑𝑑1)𝑚𝑚 + (1 − 𝐷𝐷1)𝑏𝑏𝑏𝑏,  

• 𝑝𝑝{𝑅𝑅2/𝑆𝑆1} = 𝐷𝐷1(1− 𝑑𝑑1)(1 − 𝑚𝑚) + (1 − 𝐷𝐷1)𝑏𝑏(1 − 𝑏𝑏),  

• 𝑝𝑝{𝑁𝑁/𝑆𝑆1} = (1 − 𝐷𝐷1)(1 − 𝑏𝑏)  

• 𝑝𝑝{𝑅𝑅1/𝑆𝑆2} = 𝐷𝐷2(1− 𝑑𝑑2)(1 − 𝑚𝑚) + (1 − 𝐷𝐷2)𝑏𝑏(1 − 𝑏𝑏),  

• 𝑝𝑝{𝑅𝑅2/𝑆𝑆2} = 𝐷𝐷2𝑑𝑑2 + 𝐷𝐷2(1 − 𝑑𝑑2)(1 − 𝑚𝑚) + (1 − 𝐷𝐷2)𝑏𝑏(1 − 𝑏𝑏),  

• 𝑝𝑝{𝑁𝑁/𝑆𝑆2} = (1 − 𝐷𝐷2)(1 − 𝑏𝑏)  

• 𝑝𝑝{𝑅𝑅1/𝑁𝑁} = 𝑏𝑏𝑏𝑏,  

• 𝑝𝑝{𝑅𝑅2/𝑁𝑁} = 𝑏𝑏(1 − 𝑏𝑏),  
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• 𝑝𝑝{𝑅𝑅3/𝑁𝑁} = (1 − 𝑏𝑏)  

The construction of the model is intuitive both from the point of the tree structure and from analysis of the 
behavior of the response. For example, 𝑝𝑝{𝑅𝑅1/𝑆𝑆2} is the probability of given a source 2 item the participant 
responds incorrectly as source 1 item. The probability is the sum of two terms:  

• 𝐷𝐷2(1− 𝑑𝑑2)(1 − 𝑚𝑚): Detected as old item (𝐷𝐷2), but could not discriminate (1 − 𝑑𝑑2), but guess 
the item as Source S2 (1 − 𝑚𝑚).  

• (1 − 𝐷𝐷2)𝑏𝑏(1 − 𝑏𝑏): Fail to detect it (1 − 𝐷𝐷2), biased it to old (𝑏𝑏), and guess it as source S2 (1 −
𝑏𝑏). 

With this model, we can measure unobservable underlying capacities such as memories for content (D1, 
D2) and for context (source of information d1, d2). In addition, different types of responses (b: response 
bias at the level of content information; a, g: response bias at the level of context information) are also 
measured.  

In general, assuming in an event there are multiple observed behavior categories. An MPT model links the 
observed categorical probability Pr(Cj) and underlying capacities (in the form of probabilities) 𝜃𝜃𝑘𝑘𝑘𝑘 in the 
form of a general (non-linear) mathematical form ((Hu & Batchelder, 1994): 

Pr�𝐶𝐶𝑗𝑗� = �𝑐𝑐𝑖𝑖𝑗𝑗���𝜃𝜃𝑘𝑘𝑘𝑘
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆𝑖𝑖

𝑘𝑘=1

�
𝐾𝐾

𝑘𝑘=1

𝐼𝐼𝑖𝑖

𝑖𝑖=1

 

where ∑ 𝑄𝑄𝑃𝑃�𝐶𝐶𝑗𝑗� = 1,∑ 𝜃𝜃𝑘𝑘𝑘𝑘 = 1, 𝑐𝑐𝑖𝑖𝑗𝑗 ≥ 0,𝛼𝛼𝑖𝑖𝑗𝑗𝑘𝑘𝑘𝑘 ≥ 0, 𝑠𝑠 = 1, … , 𝑆𝑆,𝑘𝑘 = 1, … ,𝐾𝐾, 𝑖𝑖 = 1, … , 𝐼𝐼𝑗𝑗, 𝑗𝑗 =𝑆𝑆
𝑘𝑘=1

𝐽𝐽
𝑗𝑗=1

1 … , 𝐽𝐽. This general mathematical form provides a general assessment framework for assessing underlying 
cognitive capacities from observed categorical behavior responses. Next we provide an example where 
GPT model is used to analyze categorical responses from a typical multiple-choice question  

Example 2: Application of MPT Modeling in Analyzing Multiple-Choice Questions 

MPT models have been used to analyze responses in multiple-choice questions (Batchelder & Riefer, 1999). 
To illustrate how MPT model would be used, we consider the following example.  

Two metal balls are the same size but one weighs twice as much as the other. The balls are dropped from 
the roof of a single-story building at the same instant of time. The time it takes the balls to reach the ground 
below will be: 

A. About half as long for the heavier ball as for the lighter one. 

B. About half as long for the lighter ball as for the heavier one. 

C. About the same for both balls. 

D. Considerably less for the heavier ball, but not necessarily half as long. 

E. Considerably less for the lighter ball, but not necessarily half as long. 

When air resistance is not important, C is the right answer. But all other choices are wrong due to the 
following misconception: When air resistance is not important, objects of different masses fall at different 
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rates. An MPT model that models the relationship between response categories and the underlying miscon-
ceptions can be constructed as Figure 3. 

 

Figure. 3. MPT models for the selected sample Force Concept 
Inventory (FCI) question. 

 
In Figure 3, U is the probability of the students understand that “When air resistance is not important, 
objects of different masses fall at same rates”, M is the probability that students have the misconception 
“When air resistance is not important, objects of different masses fall at different rates”, and G is the prob-
ability that students know some property about gravity. 

With these notations and assume equal guessing rate, we have the following categorical probabilities: 

• 𝑄𝑄(𝑄𝑄) = 0.5(1− 𝑈𝑈)𝑀𝑀𝑀𝑀 + 0.2(1− 𝑈𝑈)(1 −𝑀𝑀) 

• 𝑄𝑄(𝐵𝐵) = 0.5(1 − 𝑈𝑈)𝑀𝑀(1 − 𝑀𝑀) + 0.2(1− 𝑈𝑈)(1 −𝑀𝑀) 

• 𝑄𝑄(𝐶𝐶) = 𝑈𝑈 + 0.2(1 − 𝑈𝑈)(1 −𝑀𝑀) 

• 𝑄𝑄(𝐷𝐷) = 0.5(1− 𝑈𝑈)𝑀𝑀𝑀𝑀 + 0.2(1 −𝑈𝑈)(1 −𝑀𝑀) 

• 𝑄𝑄(𝐸𝐸) = 0.5(1 − 𝑈𝑈)𝑀𝑀(1 − 𝑀𝑀) + 0.2(1 −𝑈𝑈)(1 −𝑀𝑀) 

This model has five observable categories (4 degrees of freedoms in the data) and three parameters. Good-
ness-of-fit can be tested with Chi-square (df=1).  

MPT Models as General Assessment Modeling 

Since the 1990s, MPT modeling has become an increasingly popular approach to cognitive modeling. Its 
use has been facilitated by several software packages that can perform parameter estimation and hypotheses 
testing. To date, there have been over a hundred examples of the application of MPT modeling. Most of 
these applications have been in the standard cognitive areas of memory, reasoning, and perception; addi-
tional applications can be found in clinical, social, and developmental psychology (Batchelder & Riefer, 
1999; Erdfelder, 2009). There are also research that explore the statistical properties of these models. For 
example, Hu and Batchelder (1994) formulated the MPT models into a general mathematical model. Klauer 
and his group created hierarchical MPT models to handle variation in parameter values due to individual 
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differences in the participants (Klauer, 2010). There are latent class MPT models that can be used to model 
subgroups of participants with different cognitive abilities (Matzke, et al 2015). 

Parallel to mathematical, statistical, and empirical studies of MPT models, one of the enabling factors that 
makes the MPT model an increasing analytical and assessment framework is the availability of software 
implementations. Since the very earliest versions of source.exe, mbt.exe, and gpt.exe (Hu & Phillips, 1999) 
there have been several new implementations of MPT modeling software. Moshagen (2010, Table 1) has 
listed and reviews a few landmark implementations of software packages. 

There has been increasing popularity of R in the research community. Consequently, there are two R-pack-
ages designed for MPT models:  

• MPTinR (https://cran.r-project.org/web/packages/MPTinR/index.html) and  

• mpt (https://cran.r-project.org/web/packages/mpt/index.html).  

We have developed a simple web service that interfaces with MPTinR (see Appendix A). Such web service 
accepts input model information in the form of JavaScript Object Notation (JSON). Next, we explore the 
possibility of using MPT modeling as an assessment framework for the Engine for Management of Adap-
tive Pedagogy (eMAP) 

MPT Modeling as Assessment Service for GIFT eMAP 

The Adaptive CourseFlow in GIFT uses a mechanism called eMAP to dynamically present learning re-
sources to the learner based on learner state attributes of cognitive knowledge, affective state, and cognitive 
skill. One of the most important phases in setting up Adaptive CourseFlow is Check on Learning. Check 
on Learning is most often achieved by assigning learners with multiple-choice questions. Assume MPT 
models can be created for the multiple-choice questions, similar to the example of Figure 3. An MPT web 
service (described in the Appendix A) would be used to analyze student’s answers.  

Semantic Representation and Analysis (SRA) Framework 

We next provide another example of assessment framework based early work of the authors on the SRA 
framework, which is an established service in GIFT (see Hu, Nye, Gao, Huang, Xie, Shubeck, 2014).  

Basic Assumptions of SRA 

SRA provides a general framework for conceptualizing and applying existing semantic extraction/encoding 
methods, such as Latent Semantic Analysis (LSA; Landauer & Dumais, 1997), Hyperspace Analogue to 
Language (HAL; Burgess, 1998), and bound encoding of the aggregate language environment (BEAGLE; 
Jones & Mewhort, 2007). The two key elements of SRA are the vector representation of the semantics of 
language entities (words, idioms, phrases, sentences, paragraphs, documents, etc.) and the numerical rela-
tions between language entities (such as similarity, relatedness, or semantic overlap). The basic require-
ments for SRA are that the representations must be language agnostic and computationally feasible. Hu, 
Cai, Graesser, and Ventura (2005) outlined SRA based on the following assumptions: 

1) Hierarchical Representation: Various levels of a language entity may have their semantics rep-
resented differently. The basic language entities are hierarchical such as words, phrases, sentences, 
paragraphs, and documents. 
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2) Algebraic Representation: The semantics of any level of language entities must be capable of 
being represented numerically or algebraically. A number of semantic extraction/encoding methods 
(e.g., LSA) have been used to numerically represent semantics for all levels of language entities 
through the creation of semantic spaces. Most of these examples have the same mathematic repre-
sentation for different levels of language entities, such as numerical vectors of a given dimension 
for word, sentence, or paragraph. This assumption allows them to be represented differently.  

3) Computational Aggregation: The semantics of a higher-level language entity are computed as a 
function of semantics for its lower level language entities. Also, at the lowest level of language 
entities, a numerical semantic comparison measure must exist between any two items (e.g., words). 
For example, if words are in the form of vectors, a, b, c…, a sentence can be in the form of a 
function ■ of the word vectors, such as (a■b■c,…), where ■ can be vector summation (as it is in 
the case of LSA, for example). 

These three assumptions are the foundation of a general framework underlying most existing semantic ex-
traction/encoding methods. The hierarchical assumption and the algebraic representative assumption work 
together to ensure that the language entities can be computed mathematically. This final assumption em-
phasizes the idea that comparisons occurring at the most basic level can be inputs for higher levels (e.g., 
the similarity of paragraphs can be computed from the similarity between their constituent sentences). It is 
important to note that the popular encoding/decoding methods such as LSA are special example of the SRA 
framework. Within the SRA framework, induced semantic structure (ISS) is obtained.  

Induced Semantic Structure (ISS) 

An important concept derived from the SRA framework is the ISS. ISS focuses on numeric relations be-
tween language entities while deemphasizing the encoding details (such as the vector representation) for 
the semantic spaces. ISS considers a target word and an ordered list of its top nearest neighbors in a semantic 
space (Hu et al., 2005). Introducing the concept of ISS in addition to the original semantic spaces made it 
possible for two features of SRA: first, any two semantic spaces with overlapping lexicons can be compared 
(Hu et al., 2005); and second, any set of texts (single term or a collection of terms) can be projected onto a 
customize set of domains. Relevant to the focus of the current chapter, we briefly describe the second fea-
ture. We call it semantic spectrum analysis (SSA). 

Semantic Spectrum Analysis (SSA) 

Spectrum analysis is a term borrowed from physics. Such analysis helps researchers to understand the basic 
elements in a physical entity such as piece of sound or a beam of light. SSA helps researchers to understand 
basic semantic elements contained in each piece of text. The necessary condition for SSA is to have an 
existing semantic representation and a set of pre-specified domains. For example, with a set of domains 
extracted from glossary.com (http://www.glossary.com), SSA can project the term “book” to each of the 
20 domains: 

environment: 2.33 
home and garden: 4.51 
local business: 3.41 
computers and internet: 3.37 
science and mathematics: 4.43  
beauty and style: 2.44 
news and events: 2.00 

games and recreation: 4.12 
health: 4.60 
social science: 4.34 
sports: 2.14 
society and culture: 4.21 
food and drink: 4.29  
consumer electronics: 2.90 

arts and humanities: 3.76 
pets: 2.69 
politics: 4.09 
family and relationships: 4.50 
cars and transportation: 1.56 
travel: 2.39 

http://www.glossary.com/
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The absolute numerical values associated with each of the categories are not directly interpretable without 
considering the specific semantic spaces used. In this example, the numerical values are the semantic asso-
ciations of the term “book” to each of the domains using the semantic space created by the Touchstone 
Applied Science Associates (TASA) corpus. For any given piece of text, when semantic associations of 
each term to each of the “domains” are computed, the semantic association of the entire piece of text with 
the domains can be computed by simple aggregation. Figure 4 is a graphic display of so called semantic 
decomposition. Semantic decomposition is one of the assessment service provided by The Domain Specific 
Semantic Processing Portal (DSSPP). DSSPP is the second example we use to demonstrate the cognitive 
assessment service for GIFT. 

 

Figure. 4. Graphic display of semantic decomposition of a paragraph. The domains (“social sciences”, 
“health”, etc.) are extracted from http://www.glossary.com. 

The Domain Specific Semantic Processing Portal (DSSPP) Assessment Service for GIFT 

DSSPP (http://dsspp.skoonline.org) is a proof of concept implementation of SRA. DSSPP is implemented 
as a cloud based web service currently in the form of Google App Engine and Amazon Elastic Compute 
Cloud. DSSPP provides four web services (for details, see Appendix B): 

http://dsspp.skoonline.org/
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1. ISS in the form of nearest neighbors for available semantic spaces. For any term (e.g., a word), 
DSSPP web service provides a list of associated terms with association strength and term weight 
(See Appendix B) 

2. Semantic relations (e.g., similarity) between any two pieces of texts within or between two seman-
tic spaces  

3. SSA for any piece of text  

4. Learner’s characteristics curves (LCCs) (details see Hu & Martindale, 2008) for sequence of stu-
dent’s response to any given question and answer key. These functionalities can be used for several 
applications, including versions of AutoTutor (Nye, Hu, Graesser & Cai, 2014).  

Of the four of the web services provided by DSSPP, 2–4 can be used as cognitive assessment service for 
GIFT.  

Discussion 

As we have pointed out at the start of the chapter, one of the most critical steps in ITSs is to evaluate 
students’ contributions. Students contributions can be in the form of categorical responses (such as standard 
survey/test, well-defined category of behaviors) or non-categorical (such as verbal/natural language re-
sponses or ratings). This chapter presents two assessment frameworks that are implemented in the form of 
web services. The MPT modeling assessment service can be used to evaluate any categorical behavior 
observed in a GIFT-enabled ITS learning environment. For example, for some well-constructed multiple-
choice GIFT survey/test question, a MPT model can be created (like the MPT model for the earlier physics 
example). After a group of responses from students, GIFT can send the model and data to an MPT assess-
ment portal (as it is demonstrated in Appendix A) to obtain measures of students’ capacity.  

The web service of DSSPP can be used to evaluate students’ verbal (NL) responses. For example, students 
NL input can be evaluated by comparing semantically with stored answers or comparing with previous 
inputs. Such evaluation can be achieved by a simple request DSSPP service to produce a single numerical 
value as semantic similarity (such as /comparetext, see Appendix B) or to produce a vector of numerical 
values (such as /ssa, see Appendix B). Such evaluations can be used as standalone web service to process 
single evaluation or integrated as part of sophisticated tutoring interactions such as AutoTutor’s. The LCCs 
web service ( /lcc, see Appendix B) can be used to created local student model to manage turn-by-turn 
interactions in GIFT-enabled ITS learning environment (Morrison, Nye & Hu, 2014).  

Recommendations and Future Research 

The assessment frameworks introduced in this chapter are only two of many potential assessment frame-
works. There are other well-known examples such as Bayesian knowledge tracing models (Corbett & An-
derson, 1995) can be used in the similar way. Most importantly, we propose to have cognitive assessment 
as service to GIFT as a functional module similar to other critical modules of GIFT, such as a pedagogical 
module or a domain module. An assessment module can be used to serve all assessment needs for GIFT. 
Having assessment service as a functional module makes it possible for GIFT to incorporate new research, 
development, and implementation of assessment methodology.  
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Current implementation of MPT assessment web service can only analyze aggregated frequency tables. 
There are extensions of MPT models that can analyze data from each response (Matzke, et al 2015). Suc-
cessful implementation of this method will make it possible to assess students’ contribution at the individual 
level.  

GIFT provides highly adaptive and individualized tutoring environments. Current DSSPP considers only 
domain-specific semantic processing. A true assessment service for GIFT will need also be individualized. 
The next step to implement SRA is to add individualization and context sensitive assessments 
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Appendix A: Implemented MPT Assessment Service based on MPTinR 

R is installed on a cloud server (currently located on http://www.auto-tutor.com/) and simple interface is 
built to use MPTinR (https://cran.r-project.org/web/packages/MPTinR/index.html). Such a web service ac-
cepts MPT models in the form of JSON and computed output is also in the form of JSON. As an example, 
the specified model input and output parameter estimation can be seen from the shortened URL http://ti-
nyurl.com/gq7kyc5, where both input and output are in the form of JSON and can be easily incorporated 
in GIFT programming environment.  

Appendix B: Implemented DSSPP Assessment Service Based on SRA 

DSSPP is currently implemented on a Google Cloud Server (http://dsspp.skoonline.org). The assessment 
portal provides the following services: 

1) Induced semantic structure in the form of nearest neighbors with term weights and association 
strength. For example, the end point of /base will return the nearest neighbor for any given term, 
if appropriate parameters are provided (permanent short link is here: https://goo.gl/XQ0hbo).  

2) Semantic relations (e.g., semantic similarity) between any two pieces of texts in a given semantic 
space is a number between 0 and 1, where 0 means no semantic relation and 1 means perfect 
semantic similarity. An example can be seen by using this link: https://goo.gl/DRFG2b.  

3) Semantic Spectrum Analysis (SSA) for any piece of text are in the form of a numerical vector 
where each elements of the vectors is the semantic association of the target text and a pre-defined 
domain, such as environment or health (example of SSA can be seen from this permanent short 
link: https://goo.gl/V3wQjG). 

4) Learner’s Characteristics Curves (LCC) for sequence of student’s response to any given question 
and answer key (Hu & Martindale, 2008). For given target text (as answer key), each student’s 
contribution (answer) is decomposed into six different components: current contribution (CC), 
total contribution (TC), relevant new (RN), irrelevant new (IR), relevant old (RO), and irrelevant 
old (IO). This can be tested by using a short link https://goo.gl/yoTqJ0.  

5) Definitions of the parameters in DSSPP web services.  

• text - the text to parse (for /base). 

http://tinyurl.com/gq7kyc5
http://tinyurl.com/gq7kyc5
http://dsspp.skoonline.org/
https://goo.gl/XQ0hbo
https://goo.gl/DRFG2b
https://goo.gl/V3wQjG
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• domains - the list is a space-separated domain (no domain has a space in it). 

• SS - the semantic space to use. 

• type - an integer for the grouping method to use 1-assn, 2-rankby, 3-weight. 

• guid, userGuid - a unique identifier for the account of the user (do not change). 

• text1, text2 are the texts to compare (for /comparetext). 

• minStrength is the lowest cosine to use (default 0.0). 

• minWeight is the lowest weight to use (default 0.0). 

• format is either xml or json (default “xml”). 

• id1, id2, and notes are used (for /comparetext). 

• sort_method is an integer 0-rankby, 1-cosine, 2- weight (default 0). 

• wc: weight criteria for input text (default=0). 

• etop: number of top nearest neighbors for each term (default=10). 

• ttop: number of top nearest neighbors for total terms combined (default=50). 

• notes: Any text user may use as notes. 

• target: target for to compare (as answer key, for /lcc). 

• current: current input of student (as student answer, for /lcc). 
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CHAPTER 27 – Assessment in AutoTutor 
Zhiqiang Cai1, Arthur C. Graesser1, Xiangen Hu1,3, and Bor-chen Kuo2  

University of Memphis1, National Taichung University of Education2, Central China Normal University3 

Introduction 

AutoTutor is a type of intelligent tutoring system (ITS) that uses natural language conversation to help 
students learn (Graesser, 2016; Graesser, Forsyth & Foltz, 2016; Graesser, Person, Harter & Tutoring Re-
search Group, 2001; Zapata-Rivera, Jackson & Katz, 2015). In a traditional classroom learning environ-
ment, a teacher delivers knowledge to a group of students in a linear way. That is, all students in the class 
follow the same learning path as the teacher plans. Computer tutoring makes it possible to allow each stu-
dent to go through one’s own learning path that maximizes learning and minimizes the cost. ITSs are de-
signed to meet these objectives (Sottilare, Graesser, Hu & Goldberg, 2014).  

ITSs are capable of adaptively selecting learning objects to deliver to an individual learner. The selection 
mechanism is basically a mapping from learning objects to learners’ profiles. In this chapter, learning ob-
jects refer to digital entities that may be used for learning, education, or training. They could be of very 
different grain sizes. A learning object could be as large as an entire knowledge domain, such as mathemat-
ics, psychology, music, science, etc. A learning object could be as small as a single step in the process of 
solving a problem. To match learning objects with learners’ profiles at a specific point of a learning process, 
there have to be computable measures that sufficiently characterize learning objects and learners.  

Knowledge is the core of a learning object. There are many aspects that need to be specified for a piece of 
knowledge. It is difficult to generate a universal list of all aspects because each tutoring system has its own 
specific considerations and the landscape is large. We name a few here that are common to many ITSs:  

• Prerequisites. Pieces of knowledge are not acquired independently. A learner usually needs 
enough prerequisites in order to understand any given particular piece of knowledge. Learning ob-
jects need to be well organized so that the prerequisites of a given object can be identified. 
Knowledge space theory (Falmagne, Albert, Doble, Eppstein & Hu, 2013; Falmagne & doignon, 
2011) offers a solid foundation for learning object organization.  

• Difficulty level. Theoretically, if a learner has mastered all prerequisites, the learning object is 
“learnable” by the learner. However, a learning object with higher difficulty level may need a 
longer time to learn. If the difficulty level is too high, the object could be too challenging to some 
learners.  

• Level of detail. A learning object with too much detail may look boring to high-ability learners 
whereas a learning object with too little detail may be too hard for a low-ability learner to compre-
hend. Adequate level of detail is important to maximize effectiveness, efficiency, and engagement. 

Forms of knowledge representation in a learning object are also important in learning object selection. The 
knowledge may be represented by a mixture of texts, pictures, diagrams, audios, videos, simulations and 
conversations. Texts need to match the learner’s reading comprehension level. Audios need to match lis-
tening comprehension level. Visual elements may pose different difficulty issues to different learners.  
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The pedagogical strategy embedded in a learning object is another important part. For example, in AutoTu-
tor conversational tutoring, vicarious learning is appropriate for low-knowledge learners, tutoring is appro-
priate for medium-knowledge learners, and a teachable agent is appropriate for high-knowledge learners 
(Cai, Graesser, Forsyth, Burkett, Millis, Wallace, Halpern, D. & Butler, 2011; Cai, Graesser & Hu, 2015).  

A learner’s knowledge, ability, and personality can only be assessed from the interactions between the 
learner and the learning objects. Different types of interactions capture different characteristics about learn-
ers. Multiple-choice questions are perhaps the most popular type of interactions in learning systems. They 
are used to assess how much a learner knows about a piece of knowledge. The obvious advantage of using 
multiple-choice questions in learning systems is that the performance can be quickly and objectively scored 
as either correct or incorrect. With enough items, the percentage of correct answers approximates the learn-
ers’ knowledge. There is no difficulty in automatically scoring answers to multiple-choice questions, but 
these questions can rarely capture information about the problem-solving process. In contrast, open-ended 
questions can capture much more information about learners’ knowledge, ability, behavior, and personality 
(Dowell, 2017; Dowell, Graesser & Cai, 2016). However, the use of open-ended questions is still limited 
in most ITSs because it is hard to score their answers automatically.  

In AutoTutor conversations, most natural language inputs from a learner are answers to open-ended ques-
tions. This chapter describes the detailed assessments at each conversation turn inside AutoTutor conver-
sations. The turn by turn measures help AutoTutor give adequate immediate feedback to learners and adap-
tively select the best conversation paths. This chapter also discusses the use of a knowledge space model 
and a knowledge component model that are outside of the scope of AutoTutor’s conversation mechanisms. 
The knowledge space model is used to organize AutoTutor knowledge objects, making sure that the 
knowledge objects cover a complete set of concepts representing a domain and that there is a path for a 
learner to learn new concepts one at a time. Knowledge space theory also helps select best learning path for 
a learner. The knowledge component model is used to trace learners’ learning changes over time. It helps 
researchers deeply understand the knowledge objects, the learners, and the learning process. Natural lan-
guage based assessment, knowledge space theory, and knowledge component model are recommended for 
the Generalized Intelligent Framework for Tutoring (GIFT).  

AutoTutor Conversation 

There are many conversational systems, such as ELIZA, Artificial Linguistic Internet Computer Entity 
(ALICE) Bot, Apple Siri, Amazon Echo, Google Home, etc. These systems provide interesting responses 
to a human’s questions and comments. However, they do not provide deep and coherent conversations 
about a specific topic as does AutoTutor. A typical AutoTutor conversation starts with a main question 
selected by the system. The answer to the main question usually contains 3 to 10 sentences. The following 
is an example main question and its ideal answer in AutoTutor Physics (Graesser, Lu, Jackson, Mitchell, 
Ventura, Olney, et al., 2004): 

• Main Question: When a car without headrests on the seats is struck from behind, the passengers 
often suffer neck injuries. Why do passengers get neck injuries in this situation? Explain.  

• Answer to Main Question: When a car is struck from behind the force of impact will cause a large 
forward acceleration in it. In order for the head to go along with the body it should have the same 
acceleration as the body. In the absence of a head support only the neck can exert this force on the 
head. In an attempt to produce the required large force, the neck gets stretched and may get injured 
damaging its muscles and ligaments.  



 
 

311 

With the main question and an expert answer, a simple and minimally adaptive tutoring conversation can 
be set up in the following way: 

1) AutoTutor asks the main question; 
2) the learner gives an answer; 
3) AutoTutor evaluates learner’s answer; 
4) AutoTutor gives a feedback; and 
5) AutoTutor gives the ideal answer. 

 
In terms of assessing a learner’s knowledge and helping a learner learn, this simple conversation is probably 
just as good as a homework a student normally does.  

Nevertheless, AutoTutor provides a much more complex conversation. The first step in constructing a com-
plex conversation is to break an ideal answer into a set of Expectations (Nye, Graesser & Hu, 2014). An 
expectation in AutoTutor is a part of an ideal answer, usually about one sentence long. The entire set of the 
expectations for an ideal answer is semantically equivalent to the ideal answer. Breaking one ideal answer 
into multiple expectations makes it possible to more accurately assess a learner’s knowledge and more 
deeply help learners learn. In the previous example, the ideal answer was broken into 4 expectations: 

1) When a car is struck from behind the force of impact will cause a large forward acceleration of the 
car. 

2) In order for the person’s head to go along with the person’s body they should both have the same 
acceleration. 

3) In the absence of a head support, the head is only accelerated in the neck. 
4) In an attempt to produce the required large force, the neck gets stretched and may get injured 

damaging its muscles and ligaments. 
 

In this example, the 4 expectations are almost the same as the original 4 sentences in the ideal answer. 
However, in general, the expectations could be different from the ideal answer sentences. The sentences in 
an ideal answer need to be coherently connected, whereas the expectations are relatively independent 
knowledge pieces. A sentence in an ideal answer may be split into multiple expectations if it is too complex. 
That is, the number of expectations may be different from the number of sentences in an ideal answer.  

AutoTutor assesses and helps a learner by asking questions around the expectations. There are two im-
portant types of questions AutoTutor often uses. One is called a “hint”. A hint question is a question to 
which the answer is expected to be a clause, proposition or sentence. For example, the question “How will 
the impact affect the car?”, the expected answer is “The force of the impact will cause the car to experience 
a large forward acceleration.” Another type of question is called a “prompt”. A prompt question targets a 
word or phrase answer. For example, for the question “The force of the impact will be directed _______?”, 
the answer is a word, “forward”. Table 1 shows the hints and prompts for expectation 1 in the previous 
example. 

AutoTutor helps learners to construct an answer that covers all expectations by asking hints and prompts. 
The conversation flow can be briefly described as follows: 

1) Agent asks main question; 
2) Student responds to main question; 
3) Evaluate student’s responses against the expectations associated with the main question and gives 

feedback; 
4) If student’s responses cover all expectation, go to 10); otherwise 
5) Select an expectation that the student has not covered; 
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6) Agent asks a hint/prompt for the selected expectation; 
7) Student responds to the hint/prompt; 
8) Evaluate student’s current response against current hint/prompt and gives feedback; 
9) If student’s responses cover the selected expectation or there is no more hint/prompt for the selected 

expectation, go to 4; otherwise go to 6; 
10) Agent gives a closing summary remark and stops. 

 
The maximum number of student turns in such a conversation is the number of questions (main question, 
hints and prompts). For the previous example, the domain experts prepared 11 hints and 17 prompts. That 
is, the conversation may go for as many as 29 student turns. Obviously, AutoTutor conversation provides 
more detailed help to students then does the simple conversation. Meanwhile, the conversation also pro-
vides more data for assessing a leaner’s knowledge.  

Table 1. Hints and prompts for the expectation “When a car is struck from behind the force of impact will 
cause a large forward acceleration of the car.” 

Type Question Answer 

Hint In terms of mechanics, what will happen when 
the car is struck from behind? 

The car will experience a force that will acceler-
ate the car. 

Hint How will the impact affect the car? The force of the impact will cause the car to expe-
rience a large forward acceleration. 

Hint In what direction will the car experience a force? The car will experience a force in the forward di-
rection. 

Prompt The car suddenly accelerates because it has been 
__________? because it has been struck. 

Prompt The force of the impact will result in the car’s 
forward __________? the car’s forward acceleration. 

Prompt The force of the impact will be directed 
__________? will be directed forward. 

Prompt The impact will result in a forward acceleration 
of the __________? car and everything in it. 

Knowledge Assessment Through AutoTutor Conversation  

The lowest level of assessment in AutoTutor conversation is at each question step. AutoTutor evaluates 
how well a learner answers a question. Because an AutoTutor conversation starts with a main question, in 
each hint/prompt step, it is expected that a learner may not only answer the current question but also cover 
other expectations. There is an empirical question of whether this actually occurs. Our AutoTutor Physics 
data gives us a positive answer. Consider the following example: 
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• Hint Question: Why will the head of the passenger need to be accelerated in the passenger’s neck? 

• Expert Answer: The head will be accelerated in the neck of the passenger because there is no 
headrest present. 

• Student Long Answer: “It must have the same acceleration as the body to have the same position 
as the body and if there is no headrest the force causes the head to move with a large force and 
then when it snaps back toward the body, there is no headrest to stop the motion.” 

The student answer in this example covers two expectations: 

• In order for the person head to go along with the person body they should both have the same 
acceleration. 

• In the absence of a head support, the head is only accelerated in the neck. 
 

In the AutoTutor Physics data logs, the average length of expert answers to 114 hint questions is 11 words. 
However, in 4,941 hint answers we collected from students, about 20% the answers contained more than 
12 words, 10% contained more than 17 words, and 5% more than 23 words (Figure 1.) Although the answers 
to prompt questions are expected to be 1–3 words, in the 2,643 student answers to prompt questions, there 
were still about 5% of the answers that contained more than 5 words and 1% more than 10 words. In short, 
a student answer may contain more information than the answer to the affiliated hint or prompt. Therefore, 
instead of comparing the semantic similarity between the expected answer of a hint/prompt and the student 
response, we need to consider the semantic “containment”, namely, the extent to which the student answers 
has a subset of information that contains the expected answer.  

 

Figure 1. The cumulative percent of 4,941 student answers to 114 hint questions of different lengths. 

Consider how this is worked out mathematically. Denote the main question as 𝑀𝑀𝑄𝑄, and the expectations as 
𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑛𝑛. Denote the questions asked in each step as 𝑄𝑄1,𝑄𝑄2, …, and the associated student responses as 
𝑅𝑅1,𝑅𝑅2, …, where 𝑅𝑅𝑖𝑖 is the response received after the question 𝑄𝑄𝑖𝑖. At the 𝑖𝑖𝑡𝑡ℎ step, we need to evaluate the 
following: 
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1) How much does 𝑅𝑅𝑖𝑖 contain the answer to 𝑄𝑄𝑖𝑖? 
2) How much does the “sum” of 𝑅𝑅1,𝑅𝑅2, …𝑅𝑅𝑖𝑖 contain 𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑛𝑛?  
3) How much does the “sum” of 𝑅𝑅1,𝑅𝑅2, …𝑅𝑅𝑖𝑖 contain the answer to 𝑀𝑀𝑄𝑄? 

 
A semantic “contain” function that can evaluate how much a text 𝑄𝑄 contains a text 𝐵𝐵 can be defined in 
different ways. The simplest one is keyword matching, which can be defined as the proportion of keywords 
in the text 𝐵𝐵 that appear in the text 𝑄𝑄. The keyword matching algorithm can be improved by replacing 
keywords with regular expressions. A regular expression defines a pattern of a character string. For exam-
ple, “\baccel” can match any word staring with “accel”(“\b” indicates “word boundary”). Using regular 
expressions can take care of minor misspelling and word derivatives. For example, if “acceleration” is a 
keyword, replacing it by regular expression “\baccel” will match misspelt word “accelaration” and deriv-
atives of “acceleration” such as “accelerate”, “accelerates”, “accelerating”, and “accelerated”. The key-
word matching can also be extended to allow matching synonyms. Each keyword can be expanded to a set 
of synonyms. For example, the word “car” may be expanded to a synonym set {“car”, “vehicle”, “auto-
mobile”}. A synonym set is matched if one of the words in the set is matched. The synonym sets can be 
further extended to regular expression sets. 

This discussion leads to a problem of finding “synonyms”. In fact, the so called “synonyms” are just alter-
native ways of expressing a given word or idea. It might be challenging for a domain expert to imagine all 
alternatives of a word or an idea at authoring time. Latent Semantic Analysis (LSA) can help (Foltz, Kintsch 
& Landauer, 1998; Foltz & Martin, 2008; Graesser, Penumatsa, Ventura, Cai & Hu, 2007; Gorman, Foltz, 
Kiekel, Martin & Cooke, 2003; Landauer, Foltz & Laham,1998; Olney, Louwerse, Mathews, Marineau, 
Hite-Mitchell & Graesser, 2003; Rus, Lintean, Graesser & McNamara, 2012). LSA represents words by 
vectors. The vector representations of words are obtained through singular value decomposition from a 
word-document matrix generated from a large corpus. It has been shown in many applications that the LSA 
vectors capture the semantics of words, in the sense that semantically similar words have similar vector 
representations. An LSA utility tool allows domain experts to choose synonyms from LSA nearest neigh-
bors (i.e., the words with high LSA cosine values to the target words).  

Based on LSA and RegEx, AutoTutor “contain” function can measure the quality of user’s inputs as good 
as human does (Cai, et al., 2011). The contain function gives stepwise performance assessment on the 
coverage of each expectation, as well as the answer to the main question. 

Immediate Feedback 

The stepwise assessment helps AutoTutor give immediate feedback, which is helpful to learners (O’Neil, 
Chuang & Baker, 2010; Tausczik & Pennebaker, 2013). The assessment of the amount of an expected 
answer that is articulated by a student is used to give different types of feedback. If the amount is high, 
AutoTutor gives a positive feedback, such as “Great job!”, “Excellent!”, etc. If the amount is medium, the 
response is treated as a partial answer and AutoTutor may give a neutral feedback, such as, “Not bad!”, 
“Good try!”, “OK.”, etc. If the amount is low, the response could be irrelevant to the answer, and AutoTutor 
may give irrelevance feedback, such as “That doesn’t answer the question”, “That doesn’t seem to be rele-
vant”, etc.  

One important category of feedback that is missing in this discussion is negative feedback, such as “No!”, 
“That is not right!” Unfortunately, the semantic contain function can only tell the student if a response 
contains expected parts of an answer. It cannot tell whether an answer is correct or wrong. To avoid using 
any time-consuming reasoning algorithms, AutoTutor prepares and collects typical “bad answers” to ques-
tions. Thus, if a bad answer is matched, a negative feedback can be triggered. Domain experts may prepare 
possible bad answers. However, it is not possible for an expert to think of all possible ways student may 
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make mistakes. Therefore, collecting typical bad answers from real students is helpful. There is a difference 
between “bad answers” and “irrelevant responses”. Bad answers are wrong answers but relevant to the 
topic. Fortunately, it is relatively easy to identify irrelevant answers from bad or good answers.  

One persistent challenge has been that bad answers often share keywords with good answers. It would be 
misleading to give a negative feedback to a learner when the response is not wrong. To be safe, negative 
feedback is considered only when a bad answer is matched and no good answer is matched.  

Behavior Assessment Through AutoTutor Conversation 

The rich conversation data from AutoTutor make it possible to assess learners’ behavior during the learning 
process. In each turn, it is possible to assess the following about the latest response: 

• How much is new and relevant to our topic? 
• How much is new but irrelevant to our topic? 
• How much is old though relevant? 
• How much is old and irrelevant? 

 
A good learner is supposed to give new and relevant information in each turn. When a learner starts to give 
old and relevant information, it is probably an indicator that the learner has exhausted their knowledge 
about the topic. A learner who starts to give irrelevant response is probably tired. A learner who always 
gives irrelevant information is usually a “gamer”, who is not really interested in learning. Hu et al. calls 
these four properties the learner’s characteristic curves (LCCs; Hu, Cai, Han, Craig, Wang & Graesser, 
2009; Hu, Nye, Gao, Huang, Xie & Shubeck, 2014). 

The previous four properties cannot be easily computed through the keyword based contain functions. For 
example, the new information is the part of the latest response that is not contained in the previous turns. 
Using the keyword-based contain function implies that we need to identify the keywords in the learners’ 
turns. Therefore, automatic keyword extraction is needed. Furthermore, if we want to use regular expres-
sions, then automatic regular expression generation is needed, which is hard to implement. 

There is an alternative way to compute these four measures using LSA (Hempelmann, Dufty, McCarthy, 
Graesser, Cai & McNamara, 2005). Learners’ previous responses can be represented by vectors in LSA 
space by adding up (usually weighted) the word vectors in each of the responses. The vectors of previous 
responses 𝑅𝑅1,𝑅𝑅2, …𝑅𝑅𝑖𝑖−1 span a subspace. The vector of the 𝑖𝑖𝑡𝑡ℎresponse 𝑅𝑅𝑖𝑖 can then be decomposed into 
the sum of two components, one lies in the subspace and the other is perpendicular to the subspace. The 
length of the component in the subspace can be used as the amount of old information and the length of the 
perpendicular component can be used as the new information. Similarly, the expectations 𝐸𝐸1,𝐸𝐸2, … ,𝐸𝐸𝑛𝑛 can 
form a subspace. The old information component and new information component can be further decom-
posed into old relevant, old irrelevant, new relevant and new irrelevant components. Over the turns, the 
length of the four components form the four LCCs. 

Assessment Outside AutoTutor 

In addition to drive the inside moves, the turn by turn assessment of AutoTutor conversations can be used 
outside AutoTutor. In this section, we briefly talk about two uses: 1) learning path selection in learning 
space theory (Falmagne, Albert, Doble, Eppstein & Hu, 2013; Falmagne & doignon, 2011) and 2) learning 
object and learning evaluation in knowledge component model (Koedinger, Baker, Cunningham, Skog-
sholm, Leber & Stamper, 2010).  
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In learning space theory, a learner’s knowledge state about a topic is represented by a set of problem the 
learner could successfully solve. A complete set of problems should cover every part of a domain. All 
subsets of the problem set form the “points” of the learning space. The starting point is an empty set, rep-
resenting the state of a learner who has no knowledge about the domain. The ending point is the whole 
problem set, representing a state of complete mastering of the domain. A learner learns by “walking” from 
the starting point to the ending point.  

With enough problems, a learning space may provide many possible paths for a learner to walk through. 
The question is, how could the shortest path be selected? To provide the best path to a learner, the learning 
objects need to be well organized and adequate prerequisites should be identified. One way to do this is to 
present problem pairs to human experts and let experts make judgement on the order of the problems in 
problem pairs and thus infer the partial order (Falmagne & doignon, 2011). However, it is usually tedious 
and inaccurate. AutoTutor has detailed assessment on each problem. The final coverage to the answer of a 
main question can be used to judge the success (or failure) of an attempt. Therefore, AutoTutor assessment 
data can be used to infer the underline partial order of a problem set.  

Knowledge component model associate problems with a relatively smaller set of knowledge components. 
Learners’ performance on solving problems is mapped to the failures or successes in knowledge compo-
nents. In solving a set of problems, a learner usually has multiple opportunities to work with each 
knowledge component. The success on a given component as a function of opportunities form a learning 
curve, which can be used to trace individual learner’s learning as well as evaluating a learning object’s 
difficulty level. An AutoTutor problem usually involves multiple knowledge components, which are dis-
tributed in the expectations. The assessment on expectation coverage provides success/failure information 
about knowledge components. Knowledge component model is implemented in Datashop and its new ex-
tension, LearnSphere (Veeramachaneni, Dernoncourt, Taylor, Pardos & O’Reilly, 2013; Stamper et al., 
2016).  

Recommendations and Future Research 

GIFT provides a powerful platform for researchers to integrate ITSs. All ITSs have assessment modules in 
different forms. It is the assessment through natural language that provides rich information about learners’ 
knowledge, ability, behavior, and personality. AutoTutor is currently an independent system in GIFT that 
is capable of assessing students through natural language; there are authoring tools to develop materials 
with AutoTutor. It is worthwhile for GIFT users to consider AutoTutor natural language conversation ser-
vices that can be used in ITSs that would benefit from natural language interactions. 

The natural language conversation metrics we discussed in this chapter will evolve to improved and new 
metrics. Continuous research and development on natural language conversation metrics is needed for 
GIFT. Rich assessment results are helpful for giving students immediate intelligent feedback and for se-
lecting the best next step inside a learning object. Outside a specific intelligent system, accumulated assess-
ment results are helpful in learning object selection. Learning space theory has a solid mathematical foun-
dation and has been very successfully used in the Assessment and Learning in Knowledge Spaces (ALEKS) 
(Hoelzle & Bergman, 2000). We strongly recommend integrating knowledge components and knowledge 
space theory into GIFT as a domain knowledge organization. 

Currently, AutoTutor data are saved in LearnSphere. Data saved in LearnSphere can be shared with many 
researchers and developers. We recommend saving other GIFT data to LearnSphere, so that more research-
ers and developers can benefit from data collected from GIFT. In return, new discoveries from researchers 
will facilitate further development of GIFT.  
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CHAPTER 28 – Assessment of Individual Learner Performance 
in Psychomotor Domains  

Jong W. Kim1, Robert A. Sottilare1, Gregory Goodwin1, and Xiangen Hu2 
US Army Research Laboratory1, University of Memphis2 

Introduction 

The goal of training is to support the learner to achieve the learning objectives, i.e., reducing the task com-
pletion time, reducing errors, and increasing accuracy. Performance characterized by such speed and accu-
racy can be evaluated by interpreting the learner behavior – that is, as one of the classic models, Fitts’ law 
provides a way to assess a regularity of a simple psychomotor task, such as tapping or pointing (Fitts, 1954). 
Based on the Fitts’ model, researchers have investigated the coordination of physical human movement and 
information processing. The model has been used and expanded to predict the time to position and move 
around a mouse cursor in the human-computer interaction area (e.g., MacKenzie, 1992).  

In this line of research, another popular classic model to assess the learner behavior is an engineering model 
of keystrokes (i.e., KLM-GOMS), which provides a prediction time of typing skill of an expert (Card, 
Moran & Newell, 1983). The model includes a physical operator and a mental operator so that it can de-
scribe the coordination of cognitive and physical functions within the learner to perform a task. The task 
used in that model is an interaction with a keyboard and mouse including keystrokes, mouse movements, 
and mouse clicks. These quantitative models have brought an important insight to assess psychomotor tasks. 
However, KLM-GOMS does not account for learning and performance change. It only predicts an expert’s 
performance. As a recent advance, a cognitive architecture (e.g., Adaptive Control of Thought—Rational 
[ACT-R]) appeared to start answering such questions of learning – i.e., how to model psychomotor perfor-
mance of keystrokes and how to predict human learning and performance, which has been also widely 
validated by cognitive and brain-imaging experiments (Anderson, 2007; Anderson et al., 2004).  

However, assessment is mostly limited to the desktop environment (e.g., interacting with a computer). Such 
models are unable to explain the process of achieving the learning objectives and predict performance from 
a novice to an expert beyond the desktop environment. In terms of domain definition and complexity, psy-
chomotor tasks can be classified into low and high complexity and ill- and well-defined domain (Sinatra & 
Sottilare, 2016). The aforementioned psychomotor tasks including tapping, pointing, and keystrokes can be 
considered as a task with low complexity in a well-defined domain. It is, thus, necessary to provide an 
advanced assessment method to better understand complex psychomotor tasks in sports, military, and med-
ical domains, i.e., minimally invasive surgery skills, cardiac life support (e.g., tracheal intubation), throwing 
a ball, driving a car, marksmanship, dancing, golfing, and archery.  

Behavioral assessment data are usually related to speed and accuracy, and are useful to identify psychomo-
tor ability of an individual to assess psychomotor performance. Psychomotor ability indicates processing 
speed and accuracy observed in human performance, which is usually represented in the speed of responses 
to stimuli with little or no demands on cognitive processing and is mostly independent of information pro-
cessing (e.g., Ackerman, 1988; Dosher, 1976; Wickelgren, 1981). Typically, psychomotor ability can be 
measured through simple reaction time (e.g., Seibel, 1963), the rate of movements (e.g., Fleishman, 1954), 
spatial orientation (Fleishman & Hempel Jr., 1955), two-hand coordination (e.g., Fleishman & Rich, 1963), 
and tapping (e.g., Fitts, 1954). Visuospatial and perceptual abilities may be also useful for assessment. That 
is, as the result of such assessments, the selection process of trainees for higher surgical training can help 
to determine which candidates are best suited to a certain surgery.  
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These prototypical measures would indirectly play a fundamental role to assess a complex psychomotor 
task (e.g., minimally invasive surgery, land navigation, etc.). A study shows that there is difference in the 
time to complete the task and errors by the skill level from a novice to an experienced doctor (Gallagher et 
al., 2001). However, we might encounter insufficiency of such assessment when we try to answer 1) how 
do we help the learner to develop expertise of surgical skill precision in terms of training efficiency?,  
2) why is a professional golfer’s putting performance in a time-pressured and stressful competition envi-
ronment different from the previous training performance; 3) is a critical psychomotor skill, that might be 
rarely used and decay over time, ready to respond an emergency?, and 4) what is the training strategy to 
deal with pre- and post-stress from psychomotor related performance? It is, therefore, necessary to pursue 
investigating such questions to better achieve the learning objectives of training. It is necessary to advance 
our understanding of the coordination of cognitive and physical activities with physiological changes (e.g., 
respiratory and heart rates), and generalize such factors with consideration of the taxonomy of tutoring 
domains (Sinatra & Sottilare, 2016), which helps us to devise an advanced intelligent training system.  

This approach can provide a much broader understanding of psychomotor performance and its assessment. 
For example, a golfer’s putting performance can be assessed and understood by attentional resources during 
the physical activity of hitting the ball (the coordination of cognitive and physical functions), and it is also 
possible to unobtrusively measure the variability of physiological factors (i.e., heart rate variability and 
respiratory activity) to assess psychomotor performance (Lagos et al., 2011; Neumann & Thomas, 2009, 
2011). A golfer would hold breath briefly when hitting the ball. A golfer’s performance would be affected 
by fatigue or sleep deprivation as well. Data related to motion capture of human performance in VR can be 
also used to assess psychomotor tasks as well. Thus, the approach from the physical, cognitive, and physi-
ological standpoints can make more sense of psychomotor performance data. In the next section, we de-
scribe psychomotor task performance with a functional relationship. 

Psychomotor Skill Learning and Performance 

We describe the process of the learner behavior by practice as a tool for psychomotor task assessment. The 
process toward achieving the learning objectives is generally summarized as a power law of learning (or 
practice). That is, learning behavior generally follows a regularity known as a power law of practice (e.g., 
Card, English & Burr, 1978; Delaney et al., 1998; Newell & Rosenbloom, 1981; Seibel, 1963). In addition, 
forgetting behavior is also known as a regularity of a power function or an exponential function (e.g., An-
derson, Fincham & Douglass, 1999; Pavlik & Anderson, 2005; Rubin & Wenzel, 1996). An understanding 
of learning (and forgetting) behavior in psychomotor tasks is an important way to assess the learner behav-
ior and provide adaptive instruction. For example, a learning (forgetting) curve of a psychomotor skill (i.e., 
hitting a golf ball) might be different from the one of a cognitive skill (i.e., solving a math problem). A 
study reports microgenetic analysis of subtasks, arguing that there exists different learning curves by dif-
ferent subtask skills (Kim & Ritter, 2016).  

A Theory for Psychomotor Skill Learning 

Based on the aforementioned Fitts’ experiment (i.e., a simple motor performance tapping, and pin trans-
fer)(Fitts, 1954), he asserted that there are stages of psychomotor skill learning (early, intermediate, and 
late stages), which is primarily continuous and is a kind of gradual shifts in the skill structure (Fitts, 1964). 
Starting from the Fitts’ argument, there has been a consensus understanding toward a three-stage of skill 
learning (see Anderson, 1982; Rasmussen, 1986; VanLehn, 1996). This learning behavior is an important 
feature to understand and assess psychomotor performance.  
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This consensus understanding is also computationally explained by a cognitive architecture ACT-R (An-
derson, 2007; Anderson et al., 2004). That is, the first stage is for acquiring declarative knowledge to per-
form the task, the second stage is for consolidating the acquired knowledge, and the third stage is for tuning 
the knowledge toward overlearning. Based on this consensus understanding, it is suggested that both skill 
learning and retention should be taken into consideration in this three-stage process (Kim & Ritter, 2015). 
Figure 1 shows the three stages of learning and retention, providing important insights about how learning 
and forgetting would be different at each stage. The main continuous line indicates continuous practice, 
which follows a regularity known as a power law of practice. Dashed lines indicate periods of no practice, 
with solid lines showing later training. 

 

Figure 1. A theory of skill learning and retention.  

The First Stage: Declarative. In the first stage, skill acquisition occurs and simple training focused on skill 
acquisition may be adequate. Task knowledge in declarative memory degrades with lack of use, perhaps 
catastrophically as indicated by X’s in Figure 1, leading to inability to perform the task. With lack of use, 
the strength of declarative memory declines. Decreased memory strength leads to response time increasing 
and accuracy decreasing. In addition, the ACT-R theory explains that increases in working memory load 
leads to decrements of retrieval performance from memory based on the activation mechanism (see Ander-
son, Reder & Lebiere, 1996). Increase in working memory load can impair performance with this level of 
knowledge.  

The Second Stage: Associative. In the second stage, task knowledge is represented with a mix of declarative 
and procedural memory. With lack of use, declarative knowledge can be degraded, leading to missed steps. 
Procedural memory, on the other hand, is basically immune to decay. In the first and second stage, cata-
strophic memory failure can occur because declarative knowledge is not fully activated. In this mixed stage, 
training should be provided to keep declarative knowledge active and also support further proceduraliza-
tion.  

The Third Stage: Procedural. In the third stage, task knowledge is available in both declarative and proce-
dural forms, but procedural knowledge predominantly drives performance. Practice will compile 
knowledge into procedural knowledge. We refer to this type of task knowledge as a proceduralized skill. 
With lack of use, declarative knowledge may be degraded. Nevertheless, learners can still perform the task 
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– if all the knowledge is proceduralized and thus not forgotten with time. Less well-known skills that are 
infrequently used, like recovery from unusual errors, may be degraded. This type of skill would require 
knowledge retrieval from declarative memory unless task knowledge is proceduralized.  

This learning and retention theory, based on ACT-R (Anderson, 2007; Anderson et al., 2004), describes 
human learning as a three-stage process with an emphasis on a distinctive classification of the types of task 
knowledge: declarative and procedural. Declarative knowledge is represented as a propositional network 
of facts consisting of chunks. Procedural knowledge, represented as production rules, refers to knowledge 
that is displayed in behavior such as steps and sequences of how to do a task. This knowledge classification 
would be useful to construct the ontological representation of task knowledge.  

As an example, supposed that learning a typing skill. Individuals first memorize the layout of the keyboard; 
this is the first stage, declarative stage; like where is the letter, “a”?, the letter, “a”, is next to the letter, “s”. 
Practice enables individuals to memorize the layout and type faster. Over time, practicing typing skill, 
declaratively learned knowledge, leads to procedural knowledge – that is, rather than retrieving the location 
of the letter “a”, individuals just imagine typing the letter and sees where their finger goes. This example 
illustrates how individuals use both declarative and procedural knowledge in memory, and execute such a 
perceptual-motor skill into an action.  

Attentional Resources and Pressure 

To provide a successful training regimen, it is crucial to understand what mechanisms are responsible for 
skill learning and performance under a real-world situation (e.g., under time pressure or other stress factors), 
and what functional relationships between cognitive (attentional resources) and physical functions in terms 
of the skill level represented in Figure 1. We believe such considerations will bridge the gap between train-
ing in simulated environments and performance in real-world situations.  

As the task skill is practiced, it can be assumed that attentional resources are reduced in executing the task 
skill, but spare working memory capacity may be required to transition between stages (e.g., Sweller, 1988). 
In the early stages, more attentional resources are required to execute the skill (i.e., high information access 
cost). On the other hand, in the later stage (i.e., the third stage), the task skill is executed without excessive 
effort as related to attentional resources (i.e., low information access cost).  

What governs this behavioral change and execution of a physical activity of the trainee? Is it because at-
tentional focus is shifted to task-irrelevant cues (e.g., Easterbrook, 1959; Wine, 1971)? Is it because there 
is increase in attention that is being paid to step-by-step execution of the task skill set rather than the pro-
ceduralized skill set in the later stage of learning (e.g., Baumeister, 1984; Lewis & Linder, 1997)? These 
arguments are grounded in two competing theories among researchers: distraction theories and explicit 
monitoring theories. As mentioned earlier, the three stages, where performance capacity changes occur, 
require different attentional resources. That is, in the earlier stage, if the task skill execution depends on 
retrieval of memory items in declarative memory, a stress factor would create the potential distraction to 
shift attentional focus to task-irrelevant cues such as worries, which is based on a process known as distrac-
tion theories. In the early stage, performance change by distraction theories can be represented as the 
strength (or probability) of retrieval in declarative memory. This is formalized as the activation mechanism 
in the subsymbolic level of the ACT-R architecture. In ACT-R, the base-level activation is dependent on 
how often (frequency) and how recently (recency) a chunk is used. Whenever a chunk is presented, the 
base-level activation increases, and then decreases as a power function of the time. The time to complete a 
task (e.g., latency) appears to decrease as a power function of the trial numbers of practice (see Anderson, 
Fincham & Douglass, 1999).  
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Another relevant theory applies to explicit monitoring of task skill execution. In the middle and later stages, 
task skills are proceduralized, indicating execution of task skill is largely unattended without the service of 
working memory, like expertise in typing (Posner, 1973) and baseball batting (Gray, 2004). This behavior 
can be represented as the knowledge compilation mechanism indicating two production rules are compiled 
to one, which leads to a faster process time (Anderson, 1982, 1987). In this explicit monitoring theory, a 
stress factor raises anxiety about performing correctly, which causes the reversion of attentional focus to 
step-by-step control of skill processes (e.g., Baumeister, 1984; Lewis & Linder, 1997). This theory can 
provide an explanatory account for performance failure in the later stage.  

Beilock et al. (2004; 2001) pointed out that the aforementioned theories have been seemingly considered 
to be mutually exclusive but should, in fact, be considered to be complementary. This complementary un-
derstanding is possible when we consider the three stages of the learner behavioral change, shown in Figure 
1. That is, under the distraction theory, task skills, in the early stage, rely more on the retrieval process of 
an individual declarative memory item. In this stage of skill learning and performance, individuals depend 
almost exclusively on declarative memory elements to perform the task; this first stage is cognitively in-
tensive and slow; information access cost is high. Information access cost is higher than in the later stage, 
and, task skills, in the later stages, rely on production rule learning (i.e., proceduralization). In the second 
stage, individuals begin to rely more on procedural memory elements but still rely on the declarative 
knowledge of the keyboard layout. Finally individuals progressively evolve into experts; they shift entirely 
(almost entirely) to using procedural memory; information access cost is low.  

Early experimental work by Posner (1973) showed that procedural memory is more robust. In Posner’s 
experiment, skilled typists were asked to label a diagram of a standard keyboard. He reported that the skilled 
typists had difficulty in recalling a visual location of a letter from the standard keyboard (declarative 
memory), whereas the typists could type the letters in a few seconds without errors. This example supports 
declarative knowledge of visual location can be degraded while procedural knowledge can remain robust 
against decay, suggesting that long-term retention can be possible when declarative knowledge turns into 
procedural knowledge. Theoretically, procedural form of knowledge is, therefore, the knowledge that we 
want in a real situation, which is more robust against stress and time pressure.  

As seen in the typing example, individuals acquire knowledge and skills, and store them into memory. 
Training and practice move the acquired knowledge and skill to a certain stage. Theoretically, performance 
change from novice to expert can be explained by differential information access cost with regard to the 
three stages. Thus, infrequent use of knowledge (e.g., infrequent training of emergency response skill) can 
cause performance decrements because information access cost is high, leading to forgetting or catastrophic 
memory failure.  

Breathing Properly or Choking Badly Under Pressure 

We sometimes observe that a professional athlete performs more poorly than expected. In cognitive psy-
chology, this phenomenon is called choking under pressure (Beckmann, Gröpel & Ehrlenspiel, 2013; 
DeCaro et al., 2011; Gray, 2004; Lewis & Linder, 1997). For example, in high stressful situations, a golfer 
who is endeavoring to make the cut for the PGA tour would perform more poorly than their skill level. The 
aforementioned distraction and explicit monitoring theories can partly account for the phenomenon, but it 
is curious that how the physiological factor is interrelated with attentional resources in terms of the three 
stages of learning (and retention). Physiological factors (e.g., heart rate [HR] variability [HRV] and respir-
atory activity) should be considered as other sources to assess psychomotor performance.  

Newmann and Thomas (2009, 2011) investigated measures of cardiac and respiratory activities when indi-
viduals at different levels of skill developments during the a golf putting task. Compared to a novice golfer, 
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the expert golfers showed a pronounced phasic deceleration in HR immediately prior to the putt, and greater 
HRV in the very low frequency band, and a greater tendency to show a respiratory pattern of exhaling 
immediately prior to the putt (Neumann & Thomas, 2009). In a follow-up investigation of Neumann and 
Thomas, participants performed the putting task to measure both cardiac and respiratory activity under with 
or without attentional focus instructions (Neumann & Thomas, 2011). The results show that the experienced 
and elite golfers showed better performance and reduced HR, greater HRV, pronounced HR deceleration 
prior to the putt, and a greater tendency to exhale prior to the putt, compared to novice golfers. This study 
shows a relationship between psychomotor performance, physiological factors, and the skill level.  

It is reported that a range of HRs are related to psychomotor skill performance – i.e., around 115 beats per 
minute (bpm), fine motor skills are beginning to deteriorate, and complex psychomotor skills are degraded 
around 145 bpm, and gross motor skills (e.g., running) start to break down above 175 bpm (Grossman & 
Christensen, 2008, pp. 31). As a training regimen, a tactical breathing method is used to address psycho-
motor performance under pressure (e.g., Grossman & Christensen, 2008), and, it is even reported that a 
breathing technique can lower blood pressure as well (Grossman et al., 2001). Furthermore, there is a report 
that psychological performance training including tactical breathing help to manage stress; i.e., tactical 
breathing and mental imagery can mitigate negative effects of stress for police officers (e.g., Page et al., 
2016), and stress management training with tactical breathing is effective in reducing stress in soldiers (e.g., 
Bouchard et al., 2012). As a technique to delink memory from a physiological arousal, soldiers are trained 
to do tactical breathing to lower HRs. 

In the study by Bouchard et al. (2012), one group of participants received a usual training with no session 
of supervised practice, and the other group received biofeedback informing the participants’ current level 
of arousal under an immersive 3-D simulation and training environment. Participants in the latter group 
trained tactical breathing as a tool to deal with stress. The main measure to assess the level of stress was 
the concentration of salivary. This study confirms the use of stress management training including tactical 
breathing is effective in reducing stress.  

Data for Psychomotor Performance Assessment 

Assessing psychomotor tasks, which generally involves the coordination of cognitive and physical func-
tions, pose significant challenges in capturing behavioral data (e.g., detecting physical movement) and as-
sessing the alignment of those behaviors with a model of expert behavior. Thus, it is necessary to unobtru-
sively sense physical movements and physiological measures to determine the state of the individual learner 
and how it varies from expert models to assess the rate of progress toward the learning objectives and the 
development of psychomotor skills. In this section, we describe recent advances in a less obtrusive way to 
sense physical activity and physiological changes.  

Sensing Physical Activity in the Wild 

Intelligent tutoring systems (ITSs) have shown greater impacts: to note a few, in procedural troubleshooting 
tasks (e.g., Lesgold et al., 1992) and mathematics problem-solving tasks (e.g., Anderson, Boyle & Reiser, 
1985). However, the tasks are not usually related to psychomotor tasks. It is, therefore, necessary to support 
a training paradigm beyond the desktop environment to support the psychomotor task training (e.g., using 
a Google glass to present content from an intelligent tutoring system, Sottilare, 2015; Sottilare & LaViola, 
2015). That is, a lecture type training based on PowerPoint slides would not be enough. One page summary 
of the putting instruction would be simple, but achieving expertise is another story. For example, a novice 
golfer needs to acquire a set of task knowledge to perform a putting task. A golfer sequentially executes a 
series of mechanical actions: 1) position the ball, 2) align shoulders, hips, knees, and feet, 3) check postures 
of grip, standing, arms, hands, and head, 4) check weight distribution, 5) stroke, and 6) keep appropriate 
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postures after stroke. To increase accuracy, a golfer would need to control breathing as well (e.g., tactical 
breathing) at the same time.  

Mobile phones are rapidly adopted and have been a medium to develop applications for an individual, a 
group, and a community scale sensing – i.e., the sensors include accelerometer, digital compass, gyroscope, 
GPS, microphone, camera, Wi-Fi, and Bluetooth (Lane et al., 2010). This smartphone-based sensing system 
can be a good medium to provide a user’s current activity and behavior, which is useful to assess the 
learner’s skill level and performance (e.g., Nguyen et al., 2015; Rai et al., 2012).  

For example, GPS, to locate where the phone is, can be used to a psychomotor task of land navigation. The 
accelerometer and gyroscope data are capable of characterizing physical movements, i.e., distinct patterns 
from the accelerometer data can be exploited to recognize different physical activities such as putting, 
swing, running, walking, and standing. A microphone and camera can also be used to sense ambient sound 
whether it is stressful or not. More sensors can be incorporated into the functionality of the smartphone. 
For example, a barometer, which measures atmospheric pressure, can be used with the accelerometer to 
identify whether the user performs physical activities of walking or climbing (ascending or descending).  

There are several frameworks that use mobile sensing data and provide user activity in a large-scale time 
series analysis. One of such platform is MobiSens (Wu, Zhu & Zhang, 2013) that can recognize a user’s 
various activities such as sitting, running, and walking. It also affords ground reporting information in battle 
fields, i.e., firefighting scenes and disaster responses with the user’s current position and activity. Sensing-
Kit (Katevas, Haddadi & Tokarchuk, 2014) is another mobile sensing framework that is open source and 
supports both iOS and Android-based smartphones. EmotionSense and Funf are more oriented to gather a 
user’s emotion and mood. Table 1 summarizes the current frameworks for mobile sensing of a large-scale 
user activity.  

Table 1. A list of mobile sensing frameworks  

 Data-Capturing Features Data-Extraction Format Platform Support 

MobiSens 
Accelerometer, magnetometer, GPS, 
light, sound recording, environment tem-
perature, Bluetooth, power consumption 

n/a Android 

SensingKit 

Motions: accelerometer, gyroscope, and 
magnetometer 
Location: GPS 
Proximity: Bluetooth Smart data 

JSON, CSV iOS, Android 

EmotionSense 
Self-reported mood, accelerometer, socia-
bility (calling and texting), GPS for loca-
tion 

JSON Android 

Funf 
GPS for location, accelerometer (for 
sleeping and waking patterns), phone us-
age, temperature 

SQLite file Android 

 

Sensing Physiological Changes 

Biofeedback, which refers to a technique to quantitatively and unobtrusively measure bodily functions in-
cluding heart rate, brain waves, skin temperature, blood pressure, muscle tension, and respiratory activity, 
can be useful to assess psychomotor performance as well. Based on the basic mobile sensing capability, it 
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is possible to measure cardiovascular and respiratory activities with an additional attachment (e.g., a pho-
toplethysmogram-based sensor that gathers volumetric measures).  

Respirator sensors, in general, use two types of techniques: 1) impedance pneumography and 2) inductive 
plethysmography. It is reported that the latter technique is a newer approach and provides a higher degree 
of accuracy (e.g., Zhang et al., 2010). When it comes to the measurement of HR, earphones can be used-sen-
sor (i.e., photoplethysmographic sensors) is integrated into earphones to collect HR measurements during 
psychomotor performance (e.g., Poh et al., 2009). The data from these sensors can be transmitted to a 
mobile device through Bluetooth that is a default functionality these days.  

A Novel Training Paradigm for Psychomotor Tasks 

Resources are invested to train soldiers, which is primarily intended to provide competency, preparedness, 
and readiness to effectively address a certain situation. To achieve that end, researchers investigate, de-
velop, and deploy intelligent systems for training, such as an adaptive tutoring system in an attempt to help 
soldiers practice knowledge and skills. This ITS seeks to provide advanced authoring and maintaining for 
individualized and self-paced training regimens. One of such systems is the Generalized Intelligent Frame-
work for Tutoring (GIFT), implemented and maintained by US Army. Such systems have been proved to 
improve training effectiveness and efficiency – an ITS is to help soldiers to get sufficiently trained and be 
ready for a certain mission in a special operational environment. The current manifestation of ITSs is, how-
ever, mostly restricted to a desktop environment. A real operational environment would be usually con-
strained by time or other stressors (e.g., time pressure, fear, and worry), which would limit both physical 
and cognitive performance.  

Soldiers need to train a wide range of psychomotor skills (i.e., coordination of both physical and cognitive 
performance), and execute them under time-critical and stressful situations. It is, particularly, necessary to 
focus on precision-required psychomotor skill training (e.g., shooting a moving target). From a theoretical 
perspective, it is important to move the skill set to the later stage where the robust knowledge and skill 
structure is to be formed; this skill set can be more resistant against stressors (e.g., time pressure). To effi-
ciently move the psychomotor skill set into the later stage, it is necessary to advance an intelligent tutoring 
framework using adaptive strategies by assessing the soldier’s learning and performance.  

To strengthen the current GIFT capability, we discussed theoretical accounts about assessment of learning 
and performance in this chapter. One of the identified needs is to support psychomotor skill training beyond 
the desktop environment so that it can minimize the performance gap between the conventional instruc-
tional environment and the real operational environment (Sottilare, 2015; Sottilare & LaViola, 2015). Thus, 
it is necessary to identify technical needs and research questions to minimize such gaps, and improve the 
current GIFT capability toward a better support for adaptive instructional strategies of the psychomotor 
task training. It is also necessary to identify the mechanisms of performance change (i.e., the skill level 
from a novice to an expert) toward acquisition of extreme expertise by looking at both attentional and 
physiological properties (i.e., focus of attention, breathing, heart rate variability) since it would be useful 
to providing a science-based adaptive instruction and feedback of a tactical breathing technique by extend-
ing the current GIFT framework.  

GIFT can be used to obtain a real-time feedback (assessment of psychomotor performance) from the mobile 
sensing device. The GIFT authoring tools (GAT) also provide a structure to develop adaptive instruction 
for psychomotor tasks (Goldberg, 2016; Sottilare, 2015; Sottilare & LaViola, 2015). As an extension of 
GIFT toward “adaptive tutoring on the run”, it is worth exploring the capability of the smartphone-based 
activity monitor in a training environment, such as 1) storing and analyzing the logged trainee performance, 
2) authoring individualized tutoring contents, 3) implementing and evaluating the effectiveness of skill 
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transfer, and 4) iterating the process of personalized instruction. A cognitive modeling approach should be 
also considered as well since this approach can support predictive performance that can be used by the tutor.  
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CHAPTER 29 – Motivating Individual Difference in an Intelligent 
Tutoring System  

Lauren Reinerman-Jones1, Elizabeth Lameier,2 Elizabeth Biddle3, and Michael Boyce4 
University of Central Florida1, Boeing Company2, US Army Research Laboratory3 

Introduction 

A key ingredient of achievement, engagement, and learning is motivation. Motivated trainees believe, 
value, focus on learning, manage a task or time more efficiently, and persist. The flip-side results in disen-
gagement, procrastination, anxiety, loss of control, negative thoughts, failure, or a complete shutdown. The 
benefits to properly assessing and individually motivating learners are saving lives, reducing cost, saving 
time, and increasing retention. The challenge is determining a goodness of fit for each individual that is 
measured by an increase in effort, attention, goal attainment, learning outcomes, and retention within an 
intelligent tutor. Traditionally, trainers develop relationships that paint a clear picture of the individual’s 
motivation, but class size restricts individualization. Intelligent tutors have the potential to assess in real 
time, plan, and implement individualized motivational strategies to a task lacking luster.  

Humans are hunters for the sensation of satisfaction. Boost motivation with targeted reinforcers, aimed at 
strengthening and magnifying the frequency of a desired response (operant conditioning; Skinner, 1938). 
Neuroscience notes that the sensation of satisfaction is rewarded with dopamine (DA) being released in the 
midbrain (ventral stratum). This perhaps begins reinforcement learning (Daw & Shohamy, 2008). Accord-
ing to neuroscience literature, reinforcers increase attention, response rate, ignoring distractors, speed of 
visual performance, and retention (Small et. al, 2005; Engleman et. al, 2005; Della Libera & Chelazzi, 
2009; Wolosin et al., 2012; Murayama & Kuhbander, 2011). Individualized motivation is the golden ticket 
sought by the Institute for Simulation and Training at the University of Central Florida (IST UCF) in col-
laboration with Boeing on an effort sponsored by the US Army Research Laboratory, Human Research and 
Engineering Directorate, Advanced Training and Simulation and Training Division (ARL-HRED-ATSD). 
One goal for this effort is to plan, develop, and implement a Motivator Assessment Tool to assess motiva-
tion for adult learners, matching reinforcers to individuals for increased rate of learning and retention. The 
Motivator Assessment Tool and reinforcers will then be integrated into the Generalized Intelligent Frame-
work for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, Sinatra & 
Johnston, 2017).  

Past Research 

Motivator Assessment Tool Planning  

The first step toward individualized motivation is planning a Motivator Assessment Tool. A valuable source 
of reinforcement learning emerges from special education. Applied Behavior Analysis (ABA) and Func-
tional Behavioral Assessments (FBAs) are the recommended intervention to individualize reinforcers that 
motivate and change behavior (Blood & Neel, 2007). A measureable goal is created and the problem with 
ineffective motivation is identified. Often the problem with proper motivation that the student is either 
avoiding or desiring attention or task completion (Taylor & Abernathy, 2016). Positive reinforcement adds 
something desired, whereas negative reinforcement (e.g., bad grade) removes something avoided to in-
crease a response. Reinforcers are currently determined for a learner by asking or observing the person (i.e., 
Premack principle, “If you do this, then this will happen”) or using a reinforcer or a preference inventory 
(e.g., Dunn-Rankin Reward Preference Inventory). Monitoring the effectiveness of the reinforcer notifies 
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when a modification is required from a declining trendline. Satiation can be avoided by using a selection 
of reinforcers, varying the pace, and only providing a reinforcer when the desired outcomes are met.  

Given that satiation is possible for a single reinforcer, it is important to have multiple reinforcers on-hand 
for a single learner. Therefore, taxonomies built from diverse contexts should be considered when assessing 
for reinforcers effective for a learner. Some individuals are motivated by opportunities to socialize, com-
pete, gain recognition, or collaborate in teams, others are motivated by tangibles or non-tangibles. Tangibles 
can be held by the individual, like badges, money, or gift cards. Non-tangibles are symbols of values, such 
as digital points or grades that increases a person’s attitude and performance (Bari et. al, 2013). Punishment 
(e.g., loss of point), when used in small portions, balances the expectation of positive reinforcement. In the 
brain, reinforcers release DA from unexpected rewards, anticipated rewards, and the expectation and value 
of the reinforcer held by the individual. DA decreases when the reinforcer is not provided or combined with 
punishment (Daw & Shohamy, 2008).The use of reinforcers provides change in a behavior or motivates the 
learner, but is hinged on other factors that influence a learner’s motivation (Table 1). 

Table 1. Factors that influence learner motivation. 

Definition Importance Assessment Example 

Intrinsic motivation: a person’s 
drive to learn is internal and satis-
fied by knowing, accomplishing, 
and being stimulated. 
 
Extrinsic: applied outside intrinsic 
motivation. 

Intrinsic grows with autonomy, challenge, 
and competency. Extrinsic motivation for 
some individuals is regarded as controlling 
and can be expressed through acceptance, 
impassiveness, resistance, resentment, and 
possibly reduces a person’s natural intrinsic 
motivation (Ryan & Deci, 2000). Not every 
task is intrinsically motivating to the indi-
vidual.  

Intrinsic Motivation Inventory 
(IMI; Deci & Ryan, 2007), 
Self-report Scale of Intrinsic 
versus extrinsic motivation 
(Harter, 1981), The Academic 
Motivational Scale (Vallerand 
et al., 1992) 

Values are belief, Schwartz value 
(1992): power, tradition, conform-
ity, achievement, hedonism, stimu-
lation, self-direction, universalism, 
benevolence, and security. 

The reinforcer needs to hold value to the 
person to be effective.  

The Short Schwartz’s value 
Survey (SSVS; Lindeman & 
Verkasalo, 2005) 

Self-efficacy (Bandura,1997) is a 
persons’ belief about their capabil-
ity to do a task. 

It is rooted in their past success and failures. 
A person who believes they are capable will 
maintain effort longer than a learner that 
does not believe in themselves based on the 
task.  

Motivated Strategies for 
Learning Questionnaire 
(MSLQ; Pintrich et al., 1993) 

Grit is a person’s ability to persist at 
lifetime or long-term goal despite 
adversities (Duckworth & Quinn, 
2009). 

Grit is viewed as an intrinsic motivational 
quality and therefore, less maintenance of a 
person is required to keep them motivated. 

Brief Grit Scale (Duckworth 
& Quinn, 2009) 

Reinforcement Sensitivity Theory 
(RST) proposes motivation is 
changed by a person’s sensitivity to 
rewards and punishments (Gray & 
McNaughton, 2000). 

Knowing a person’s sensitivities to reward 
or punishments will determine strategies 
used in the plan. For example, punishment 
may hinder motivation if a person is sensi-
tive to punishment.  

Gray-Wilson Personality 
Questionnaire (GWPQ; Wil-
son, Gray & Barnett, 1990), 
BIS/BAS Scales (Carver & 
White, 1994) 

Personality: The Big Five (Gold-
berg, 1990; Costa & McCrae, 1992) 
has five traits: extraversion, neuroti-
cism, agreeableness, openness, and 
conscientiousness. 

Different levels of motivation are needed 
based on the traits of an individuals’ person-
ality.  

Ten Item Personality Measure 
(TIPI; Gosling, Rentrow & 
Swann Jr., 2003) 
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In addition to those factors described in Table 1, content, procrastination, need for cognition, competence, 
reward, demographic and interest questionnaires are considered as potential factors in developing the Mo-
tivation Assessment Tool. The assessments described previously can be used to obtain an initial baseline 
of motivation type (intrinsic vs. extrinsic) and determine the types of reinforcers that the learner values. 
The results determine an initial selection of when and how to include reinforcers to support and encourage 
student motivation. Inclusion of multidimensional pieces of motivation fortifies the profile given to the 
intelligent tutor. The development of a new Motivational Assessment Tool to encompass various pieces 
aimed at strengthening the relationship with the learner and their requirements for learning is the next step. 

Proposed Implementation/Enhancement into GIFT 

Motivator Assessment Tool Development  

Development of the Motivator Assessment Tool began with listing the various reinforcers, taxonomies, and 
current assessments. This meaningful rudimentary step is the foundation for developing the Motivator As-
sessment Tool. A document was created that listed questions or statements from current motivational as-
sessments and that content was color-coded. Non-applicable questions or statements for an intelligent tutor 
were sorted into a discard section of the document. The remaining items were grouped by similarities. For 
example, related clusters were avoidance, effort, focus, and interest. Clustering the assessments by interre-
latedness, guided the streamlining of the new assessment by focusing on multifaceted pieces of motivation. 

The next step in developing the Motivator Assessment Tool was to incorporate the relevant factors that 
were touched on in the previous section. Research provides foundational links for personality with various 
factors of motivation. A framework was created based on the Big Five personality and includes various 
associations from grit, values, and RST. For example, a conscientious learner is committed, detailed, orga-
nized, linked to high academic success, and exerts effort on both task completion and performance. Grit is 
associated with conscientiousness because they are dutiful, self-discipline, and achievement striving. 
(Duckworth,2007). For values, conscientiousness correlates with achievement and security (Parks-Leduc, 
Feldman & Bardi, 2014). RST positively correlates conscientiousness with sensitivity to being punished 
(Mitchell & Kimbrel, 2007), and not sensitivity to reward (Mitchell & Kimbrel, 2007; Smits & Broeck, 
2006). These constructs and others can be further digested into components and attributes, which can then 
be connected to motivation and personality. Evaluations of this nature were completed to create a network 
of nodes captured. Figure 1 illustrates the framework that the intelligent tutor is provided to follow the 
learner based on personality. 
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Figure 1. ITS framework based on a learner’s personality. 

Node Generation Example  

For example, conscientious learners tend to be intrinsically motivated, focused, less impulsive, and persist 
despite obstacles. Conscientious learners care about achievements, compare themselves to others, value 
getting ahead in life, doing better than others, and being successful. Punishment should be avoided because 
of their sensitivity, and therefore, the negative effects to motivation. Instead, constructive, positive feedback 
is required to maintain motivation. The tutor must identify task interest in the learner to avoid suppressing 
intrinsic motivation. Allowing the learner to choose a more challenging goal and achieving a higher level 
of achievements suited toward their needs and competence. Rewards are provided, but less frequently be-
cause of their own internal drive and detailed nature. If intrinsically motivated, rewards are unexpected and 
provided at the end of the instructional session. From their detailed perfectionism nature, their stress level 
might be high and can monitored with physiological measures. The plan for the conscientious learner is 
significantly altered from a low conscientious learner. On the opposite spectrum, low conscientious 
learner’s characteristics are tied to procrastination, impulsiveness, careless, impatient, and distractible. An 
association from clustering the assessments finds connections to low conscientious. For example, they are 
becoming bored easier, give up easier, prone to failure, disposed to low competence/self-efficacy because 
of their impatient, careless, distractible nature, and low motivation – without adequate support from the 
ITS. Setting the goal, provide more support to maintain focus, engagement, and motivation for this type of 
learner. For example, when low motivation is detected, provide a brain break and play motivational music. 
Supportive continuous guidance through feedback is given to avoid them giving up. A higher level of stim-
ulation is necessary for engagement through pictures, videos, and visuals. This person may need chunked 
passages and a visual break to help with the amount of time spent focusing on one thing. More praise, more 
objectives to receive more reinforcers when working toward the goal. The plan to motivate this type of 
personality is a complete 180 from a person that is conscientious.  
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Creating the final taxonomy with reinforcers on individual differences is tied to the data collected from the 
Motivator Tool Assessment and individual differences. Reinforcer selection from the taxonomy finds link-
ing through introverted, extroverted, openness, and whether they are intrinsically motivated. Extrinsic per-
sonalities may link to social rewards, competitions, ranking, peer/authority approval, recognition, and help-
ing others. Introverted personalities are associated with independent downtimes, quiet recognition, and 
spending time with familiar people. Tangible reinforcers are the most difficult items to place because of 
their dependency on the context, interest, and availability. It is also an item that is used sparingly. Trainers 
will be responsible for selecting the reinforcers available and execution of the tangible reinforcers.  

To test the connections to personality and the new Motivational Assessment Tool, it will be distributed to 
UCF’s student population. The two assessments paired together will create links to individual differences 
to further validation on previous research and provide new linkage. The Motivator Assessment Tool is the 
foundation of the project. However, if strong relations are found between personality factors and specific 
classes of motivators, an additional motivator assessment will not be necessary.  

Implementation  

Based on phase one, verification of the Motivator taxonomy and/or the Motivator assessment for applica-
tion with a task in a learning/training environment is addressed in phase two. Presenting the learning ob-
jective for application identified jointly by stakeholders in the GIFT platform. This will test how personality 
and the Motivator taxonomy/assessment, affects the learning rate and retention of a learning objective. For 
example, if extraversion values the motivational tool of acknowledgement versus introverted preference of 
free time and relaxation. These factors would then be tied to a more sustained effort, as indicated by phys-
iological measures, such as a higher amount of oxygen produced for a longer sustained time. The goal for 
phase two is to identify the relations between classifications of motivational tools, different motivational 
strategies, and individual factors with the learning rate and retention, specifically the Long-Term Learner 
Model. There will be five scenarios implemented to gather effectiveness on the learner.  

Scenario One: Goals and Feedback  

Goals and feedback are effective reinforcers and do not interfere with intrinsic motivation (Renninger, 
2009). This will begin our baseline of motivation for scenario one. Implementation of goals and feedback 
will be included across all scenarios due to the recognized effectiveness. In order for feedback to remain 
effective, it needs be specific, for example, “You crushed moving the basket in a short period of time, 
awesome accuracy and speed!” Feedback such as knowledge of correct response and elaborated feedback 
(Timmers, Braber-van den Broek & van den Berg, 2013 ) have improved learning outcomes.  

Scenario Two: Reinforcers Based on Personality  

Building off the baseline, the next scenario is the evaluation of personalized reinforcers. In this scenario, 
individuals would receive the correct reinforcer and others would receive a reinforcer that is yoked with 
another. This yoking validates if personalization is more effective than any reinforcer provided to the 
learner. Due to the extensive amount of reinforcers available, validation is made for a select few. Providing 
insight to effectiveness of individualizing reinforcers based off personality and the effect on learners moti-
vational level.  

Scenario Three: Token, Progress, Achievement  

As often seen in games, another strategy to reinforce motivation that is a token/achievement economy. The 
value of the token/achievement economy’s efficiency is relatively unknown. This scenario will include a 
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progress bar, achievement badges with praise, and a token point system. Tokens or points based of achieve-
ments a recognizing progress toward meeting the goals and effort. Achievements will also be tied to praise 
and positive feedback or punishment based on requirements of the personality.  

Scenario Four: Intrinsic Motivation  

The last section takes in account of intrinsic choices. Participants will have a choice on the level of goal, 
feedback, and choices such as self-regulation strategies (complexity/visual/chunking). It will provide 
choice of the level of goal. The levels will be expected goal, above goal, and expert goal. Intrinsic motiva-
tion plan with self-regulation tools. Users will be able to adjust the complexity of the text through a tier 
system that is used in differentiated instruction in the classroom. There will be three levels (high, medium, 
and low) provided to the learner all lead the learner to accomplishing the expected goal. Complexity could 
be the vocabulary, amount, type, and examples provided to the learner. The learner can also regulate three 
levels of chunking on the page to help maintain focus and stress levels. The aim of this scenario is to see if 
intrinsic learning free from token economies or rewards is superior to retention and the learning rate.  

Scenario Five: Reinforcers Combined  

The last scenario will have all levels of previous scenarios combined. The first thing the scenario would 
find is if the learner is intrinsically interested in the task. Initial interest is found by asking a single question 
about their interest on the topic. The intrinsic learner still may decline in motivation so it would be necessary 
to ask the question in the middle of the task as well to adjust the plan accordingly based on their personality 
if a loss of interest has occurred. Even though learners will be provided choices, they will still have the 
features of a token economy and rewards based on personality. The complete motivational system will be 
inter connected. For example, if a learner chooses a higher goal the intelligent tutor will also use the token 
economy to yield a higher return in tokens. 

Structuring the scenarios this way, quantify a person’s motivation based on the reinforcers used. In theory, 
the more complete the reinforcer system the more motivational drive a person will have. On top of tailoring 
motivation specifically to personality and an individual’s needs (ex., intrinsic motivation) that enhances the 
tutor’s knowledge of the person and how to motivate them. Different factors may link better with certain 
types of personalities such as token/ achievement, intrinsic/ self-regulation, and reinforcers and will guide 
the machine in decisions to manipulate motivation in the learner.  

The learning rate will be calculated in the amount of time it took the learner to learn a particular piece of 
information and the completion of the entire task. Again, in theory, the more motivators provided the 
quicker the learning will ensue. As well as retention, the more motivation a person has and more release of 
dopamine, the memory will store the information as an important and place it as schema in the brain. The 
participants will come back and be assessed on their ability to retain the information from the different 
sections of reinforcers.  

Based on the results of phase 2, the Motivational Assessment Tool with the scenarios presented earlier, 
another experiment will be run with a different domain population, or scenario for Phase 3. The goal for 
phase 3 is to identify the validity of the results from the first experiment. Phases 1, 2, and 3 will be used to 
develop a framework for optimized learning to support the ARL GIFT Long-Term Learner Model Thrust. 
The results of phases 1, 2, and 3 will form the basis of the framework that will provide pedagogical recom-
mendations based on the evaluation of the student’s real-time data on motivation and personality factors 
into a specific learning intervention in specific GIFT sessions. 

Structuring the plan and process differences between different variables with motivation. Being able to see 
the differences each variable has on an individual versus the whole picture. If every motivational tool is 
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placed into the system at once, tailoring an individual’s needs will never be accomplished. The research 
may find that certain tools are more effective than others on learning rate and retention. Knowing that each 
motivational tool effects the learner is important and there hasn’t been solid research comparing the differ-
ent types of motivation on individuals as well as combining and layering factors known to effect motivation 
to find a good balance for the individual. Research is unclear on the different effects of types of motivation 
such as tokens/achievements, choices, self-regulation, and reinforcers based on personality. Finding the 
right amount of certain variables is key to tailoring to an individual. It simply cannot be done without 
seeking the link of pieces of motivational factors and the whole picture. The intelligent tutor will be able to 
make decisions on motivators the individual needs if it can predict the effectiveness of that motivational 
tool for the individual. A perfect fit will be attained with the more knowledge the computer acquires.  

Physiological Measures During Implementation  

The next step is to monitor and evaluate the effectiveness of the reinforcement strategy on improving and/or 
maintaining student motivation. This can be accomplished through real-time measures during the instruc-
tional session or upon the conclusion of the session. As students are going through the various sessions, 
they will also be monitored physiologically. Physiological measures can be used to infer affect along two 
dimensions (Frankenhaeuser, 1986), such as arousal (effort vs. no effort) and stress (euphoria vs. distress), 
or a discrete emotion, such as fear (Palomba , Sarlo, Angrilli, Mini & Stegagno, 2000). Specific physiolog-
ical measure used for the effort will be the electroencephalogram (EEG), eye tracking, skin conductance, 
and electrocardiogram (ECG) to gather baseline data, monitor effect of the reinforcers, and motivational 
levels throughout the task. Table 2 summarizes the information that can be gleaned from real-time physio-
logical measures during an instructional session. 

 Table 2. Physiological measure overview. 

Physiological Measure System Affect Type 
Skin Conductance SNS Arousal, Engagement, Boredom 

Heart Rate SNS 
PNS 

Arousal, Engagement, Fear 
Stress, Frustration, Anxiety 

EMG Somatic Stress, Frustration 
EEG CNS Workload, Engagement 

 

Regardless of the specific physiological measures used, the change in the physiological measure from base-
line to the provision of the motivational reinforcer should be evaluated to make specific interferences re-
garding the effectiveness of the reinforcer. Additionally, learning performance increase/decrease should 
also be part of the overall real-time or post-scenario evaluation. Further, physiological responses are also 
impacted by an individual’s personality traits. For instance, introverts tend to become aroused to lower 
levels of stimuli than extroverts, and individuals high in neuroticism tend to respond with distress to envi-
ronment events (Eysenck & Eysenck, 1985). The use of these types of measures to make inferences regard-
ing the effectiveness of a reinforcer requires comparing their responses while receiving the reinforcement 
to a baseline measure taken prior to the start of the instructional session. 

Conclusions and Recommendations for Future Research 

The next step with motivation on a smaller scale. Reinforcers hold different values to different individuals, 
while the above project will validate a limited amount of reinforcers, there is a huge list of possible rein-
forcers needing validation. Assigning a reinforcer an effective value would allow the intelligent tutor to 
calculate and select the reinforcer to use based on the learners gap in motivation. The gap is the distance 
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from the actual state to the desired state of motivation. Knowing the level of motivation allows the tutor to 
make informed decisions on the type of reinforcer needed to optimize the desired state of motivation. It is 
like a scale, on one end has the actual state and the other end has the desired motivational state. For example, 
if a person is extremely low on motivation then the machine can say, we need a reinforcer that is going to 
be powerful and hit with a bang, versus a reinforcer that represents a slight change. The scale may provide 
information on the amount of times an individual falls below the motivational line and develop a more 
accurate reinforcement schedule for the individual. Having real-time assessment allows the tutor to make 
decisions on the type of reinforcer needed to bring them closer to the desired motivational status. 

Currently, the intelligent tutoring system is set up with the learners being receivers of information based on 
their requirements or individual needs. This is a huge advancement to tailoring instruction to an individual; 
however, discussion with others through teaming and collaboration is also an invaluable source of learning 
and motivation. The next step for motivation is to allow individuals to discuss and hold powerful conver-
sations to expand their mind, see different perspectives, build prior background knowledge, and experi-
ences. A team established based off of complementary personalities for an effective motivated team should 
be the next steps in research for implementing into an intelligent tutor.  

Everyone is going to come to the table with varying levels of motivation based on the individual. To do 
nothing keeps a person in the actual state or in a declining state for motivation. Implementing motivational 
tools, pushes the student toward the desired outcome for motivation. The negative effects to do nothing are 
astronomical because of the detrimental effects of the emotional, attentional, achievement level it provides. 
Satisfying a trainee’s needs of satisfaction and choice drives them to become intrinsically motivated learn-
ers driven by enjoyment of learning. Maintenance of a person who has been motivated is less than a person 
who is bored, has failed, and has a low self-esteem due to negative thoughts when not motivated.  
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the Services by the Veterans Administration. Mr. Johnson received both his bachelor’s degree in computer 
science and master’s degree in education, communication, and technology from the University of Wiscon-
sin-Madison. 

Dr. Joan Johnston is a senior scientist with ARL-HRED in Orlando, FL. She is currently leading an Army 
Science and Technology Objective to develop methods, tools, and strategies for improving the effectiveness 
of Army simulation training technologies. Dr. Johnston is also the technical lead for a joint project team 
that is developing an integrated training approach to build resilience, decision making, and teamwork under 
stress in US Army and US Marine Corps squads. Prior to ARL, she was the Orlando Unit Chief for the 
Army Research Institute (ARI), leading a team of research psychologists to develop learning principles for 
employing adaptive training technologies, mobile platform learning environments, and persistent and im-
mersive learning environments. Until 2012, Dr. Johnston was a senior research psychologist and NAVAIR 
Fellow with the Naval Air Warfare Center Training Systems Division, Orlando, FL. For over two decades, 
she conducted research on training and decision support systems for tactical decision making under stress, 
team performance and team training technologies, embedded and distributed simulation-based training 
technologies, leadership and operational readiness in joint and multinational exercises, and cross-cultural 
competence. As a principal investigator (PI) and project manager for the ONR-sponsored Tactical Decision 
Making Under Stress (TADMUS) program, her contributions were rewarded with the ONR Dr. Arthur E. 
Bisson Prize for Naval Technology Achievement (2000), and the Society for Industrial and Organizational 
Psychology M. Scott Myers Award for Applied Research in the Workplace (2001). During her career, she 
has written and presented over 60 professional papers, peer-reviewed journal articles, and presentations.  

Dr. Irvin R. Katz is the Senior Research Director of the Cognitive, Accessibility, and Technology Sciences 
Center (CATS) at ETS. Dr. Katz received his bachelor’s degree in computer science from Rensselaer Pol-
ytechnic Institute and PhD in cognitive psychology from CMU. Throughout his 27-year career at ETS, he 
has conducted research at the intersection of cognitive psychology, psychometrics, and technology. His 
research involves developing methods for applying cognitive theory to the design of assessments, building 
cognitive models to guide interpretation of test-takers’ performance, and investigating the cognitive and 
psychometric implications of highly interactive digital performance assessments. Dr. Katz is also a HCI 
practitioner with more than 30 years of experience in designing, building, and evaluating software for re-
search, industry, and Government.  

Dr. Sean Kelly (PhD, sociology; University of Wisconsin-Madison) is associate professor and Director of 
PhD Studies in the Department of Administrative and Policy Studies at the University of Pittsburgh. He 
studies the social organization of schools, student engagement, and teacher effectiveness. Dr. Kelly’s work 
appears in the American Educational Research Journal, Educational Researcher, Teachers College Rec-
ord, Sociology of Education, Social Science Research, and elsewhere. He is the editor of Assessing Teacher 
Quality: Understanding Teacher Effects on Instruction and Achievement (Teachers College Press). In 2014 
he received the Exemplary Research in Teaching and Teacher Education award from the American Educa-
tional Research Association’s (AERA) Division K. He teaches courses in educational reform, leadership, 
the sociology of education, and statistics for the social and educational sciences. He is currently serving a 
2-year position as chair of AERA’s Sociology of Education Special Interest Groups. He also serves on the 
editorial boards of Educational Evaluation and Policy Analysis, Research in the Teaching of English, Ur-
ban Education, and the American Educational Research Journal. 

Dr. Jong Kim is a postdoctoral research fellow at ARL, Orlando, FL. In July 2016, Dr. Kim joined US 
Army’s Intelligent Tutoring Team with the fellowship of Oak Ridge Associated Universities (ORAU). Dr. 
Kim received his PhD degree in industrial engineering at The Pennsylvania State University, University 
Park, PA. His research interests lie in the area of cognitive science and engineering. Particularly, Dr. Kim 
is interested in theories of human learning (forgetting) for the development of intelligent systems. Recently, 
he developed a theory of skill learning and forgetting (Declarative to Procedural [D2P]) that is being applied 
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to implement a series of ITSs for the Navy in collaboration with The Pennsylvania State University  and 
Charles River Analytics.  

Dr. Bor-Chen Kuo received BS and MS degrees in mathematics education and educational statistics, re-
spectively, from National Taichung Teachers College, Taiwan, R.O.C., in 1993 and 1996, and a PhD degree 
in electrical and computer engineering from Purdue University, West Lafayette, IN, in 2001. He is currently 
a Distinguished Professor in the Graduate Institute of Educational Information and Measurement, and the 
Dean of College of Education, National Taichung University of Education, Taiwan. Dr. Kuo is the president 
of Chinese Association of Psychological Testing and the chief editor of the Journal of Educational Meas-
urement and Statistics, Taiwan. He also serves as guest editor in many international journals and an editorial 
board member of the Journal of Educational Measurement. Dr. Kuo received an Outstanding and Excel-
lence Research Award from the R.O.C Education and Research Society in 2009. His research interests 
include computerized adaptive testing, cognitive diagnostic modeling, machine learning, and AI in educa-
tion.  

Dr. Michelle LaMar is an associate research scientist in the Cognitive, Accessibility, and Technology 
Sciences Group at ETS. Her current research focuses on the development of psychometric models appro-
priate for use with complex assessment tasks such as simulations or games. She is particularly interested in 
modeling task-process data using dynamic cognitive models to enable valid inference about multiple layers 
of student cognition. Dr. LaMar received a Master’s in curriculum studies from Sonoma State University 
and a PhD in educational measurement from the University of California, Berkeley. Prior to her doctoral 
work, Dr. LaMar spent 18 years in software engineering, specializing in educational simulations, authoring 
tools, and natural language parsing. 

Elizabeth Lameier, MA, is a research associate in Prodigy at the UCF’s Institute for Simulation and Train-
ing. Her background stems from the field of education, teaching for almost 10 years in inner city and rural 
schools. She has a master’s in special education and bachelor’s in early childhood education. 

Dr. Chen-Huei Liao is a professor of special education at National Taichung University of Education in 
Taiwan. Dr. Liao received her BA from Utah State University, MEd from McGill University, and PhD from 
University of Alberta from the department of educational psychology in special education. Dr. Liao re-
search interests include the cognitive and non-cognitive factors that facilitate or impede reading acquisition 
in Chinese, the diagnosis and remediation of Chinese reading difficulties among elementary school chil-
dren, and the development and application of AutoTutor and Coh-Metrix in Chinese. 

Jaclyn Maass is a doctoral student in the psychology department at the UofM. She received her BA in 
psychology from the University of Tampa and a MSc in general psychology from UofM. Ms. Maass cur-
rently works as a research assistant under Dr. Philip I. Pavlik, Jr., in the IIS. Her research is currently 
focused on creating desirable difficulties during retrieval practice to aid in learning and transfer. Her re-
search interests also include learner modeling, effortful processing, spacing, and individual differences such 
as motivation and prior knowledge. 

Dr. Robert Mislevy is the Frederic M. Lord Chair in Measurement and Statistics at Educational Testing 
Service and is a professor emeritus at University of Maryland. His 1994 presidential address to the Psycho-
metric Society laid the groundwork for the use of graphical models in educational assessment. He along 
with co-authors Almond and Steinberg was the recipient of the 2000 National Council on Measurement in 
Education (NCME) award for Outstanding Technical Contribution to Educational Measurement. Among 
his honors and awards are the American Educational Research Association’s Raymond B. Cattell Early 
Career Award for Programmatic Research, the National Council of Measurement in Education’s Award for 
Technical Contributions to Educational Measurement (three times), the National Council of Measurement 
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in Education’s award for career contributions to educational measurement, the American Educational Re-
search Association’s Lindquist Award for contributions to educational measurement, the ETS Senior Re-
search Scientist Award, and the International Language Testing Association’s Samuel J. Messick Memorial 
Lecture Award. He is a co-author for book Bayesian Networks in Educational Assessment, and is co-author 
with Roy Levy of Bayesian Psychometric Modeling. 

Dr. Piotr Mitros is the Chief Scientist of edX, an MIT-Harvard educational technology initiative, and is 
the author of Open edX, an educational platform which has around 300 contributors, and 200 deploys, 
including ones from the Saudi Ministry of Labor, the Ministries of Education in France, and China, and the 
Queen Rania Foundation (the not-for-profit of the Queen of Jordan), Stanford, the World Economic Forum, 
as well as edx.org. As of this writing, it powers around 1,000 full, pure-online courses, has around 10 
million users, and forms the backbone of a new research ecosystem. Designed from the ground up for 
educational data collection, randomized control trials, and experimental pedagogies, at the most recent 
Learning@Scale conference, all but one of the best paper nominees (including the winner) were based on 
Open edX. He has been a co-founder or key early employee at three organizations, all of which have crossed 
the $100 million mark. Dr. Mitros is a frequent conference keynote speaker or panelist on disruption in 
education, assessment, learning analytics, EDM, open educational resources, and crowdsourcing in educa-
tion. He has served as an expert on educational policy for the National Academy in Education, the NSF 
Computing Research Association, and the European Union Commission. Dr. Mitros has taught in China, 
worked in India facilitated educational technology projects in Nigeria and Jordan, and developed experi-
mental educational formats at MIT. His observations of university systems around the world inspired him 
to find innovative ways to dramatically increase both the quality of and access to education. He holds a BS 
in math and electrical engineering, a Master’s of Engineering and a PhD in electrical engineering and com-
puter sciences, all from MIT.  

Vu Nguyen is a robotics education specialist at the Robotics Academy, a CMU educational outreach pro-
gram based at the National Robotics Engineering Center in Pittsburgh, PA. He works on the design of CS2N 
and co-leads the development of its badge system and curricular units. 

Dr. Benjamin D. Nye is the Director of Learning Sciences is a research institute at the at the University of 
Southern California Institute for Creative Technologies (USC-ICT). Dr. Nye’s major research interest is to 
identify best practices in advanced learning technology, particularly for frontiers such as distributed learn-
ing technologies (e.g., cloud-based, device-agnostic) and socially situated learning (e.g., face-to-face mo-
bile use). His research interests include modular ITS designs, modeling social learning and memes, cogni-
tive agents, and educational tools for the developing world and low-resource/low-income contexts. He re-
ceived his PhD in systems engineering from the University of Pennsylvania in 2011. In his recent work as 
a research professor at the UofM, Dr. Nye led work on the shareable knowledge objects (SKO) framework 
integrating ITS services such as AutoTutor for the ONR ITS Grand Challenge, helped data mine a corpus 
of 250k human-to-human online tutoring dialogs (part of the ADL PAL initiative), collaborated on ONR’s 
PAL3 tutoring architecture for supporting life-long learning, and is an advisor and book editor for the ARL 
GIFT advisory panel. Dr. Nye’s research tries to remove barriers development and adoption of ITSs so that 
they can reach larger numbers of learners, which has traditionally been a major roadblock for these highly 
effective interventions. He also believes that the future of learning science depends on large, sustainable 
platforms with many users, where efficient sampling techniques can be used to drive new designs for ex-
periments. Finally, he is interested in making the process of science more efficient, such as by advanced 
metadata and analysis for scholarly publications.  

Dr. Andrew Olney presently serves as associate professor in both the IIS and Department of Psychol-
ogy and as Director of the IIS at the UofM. Dr. Olney received a BA in linguistics with cognitive science 
from University College London in 1998, an MS in evolutionary and adaptive systems from the University 
of Sussex in 2001, and a PhD in computer science from the UofM in 2006. His primary research interests 

http://www.edx.org/
https://www.edx.org/press/saudi-arabia-edx-join-forces-bridge-gap
https://www.edx.org/press/edx-work-french-ministry-higher
http://blog.edx.org/deeper-partnership-xuetangx-increase
http://online.stanford.edu/courses/platform/stanford%20openedx
http://blog.edx.org/world-economic-forum-launches-forum
https://www.edx.org/
http://learningatscale.acm.org/las2016/
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are in natural language interfaces. Specific interests include vector space models, dialogue systems, unsu-
pervised grammar induction, robotics, and ITSs.  

Dr. Kara L. Orvis is the Director of the Performance Assessment and Augmentation Division at Aptima. 
She is also a principal scientist with over 18 years of experience in government research and development. 
Her expertise is in the areas of training, leadership, teams, culture, distributed work, and performance meas-
urement for which she has over 70 publications/presentations, including 1 edited book. At Aptima, she 
leads projects related to military assessment, formation, training, and development. Dr. Orvis holds an MA 
and PhD in industrial-organizational psychology from George Mason University and a BA in psychology 
from Ohio Wesleyan University. She is a member of the American Psychological Association and the So-
ciety for Industrial and Organizational Psychology. 

Dr. Scott Ososky is a postdoctoral research fellow at the Simulation & Training Technology Center 
(STTC) within ARL-HRED. His current research examines mental models of adaptive tutor authoring, 
including user experience issues related to development tools and interfaces within the adaptive tutor au-
thoring workflow. He has also published numerous conference papers and book chapters regarding human 
interaction with intelligent robotic teammates. Dr. Ososky received his PhD and MS in modeling and sim-
ulation, as well as a BS in management information systems, from the UCF. 

Dr. Philip I. Pavlik is an assistant professor and Director of the Optimal Learning Lab. One mission of the 
lab is to describe models of learning so that these models can be used by instructional software to sequence 
and schedule practice. Dr. Pavlik completed his dissertation research with John Anderson in CMU’s Psy-
chology Department and has worked with Ken Koedinger in CMU’s Human-Computer Interaction Insti-
tute. He is current working on multiple existing grants and has applied for funding from both the Depart-
ment of Education and NSF.  

Dr. Lauren Reinerman-Jones is the Director of Prodigy at the UCF’s Institute for Simulation and Train-
ing. Her lab focuses on assessment for understanding, improving, and predicting human performance and 
systems. She has over a hundred publications of interdisciplinary work and serves on a variety of Scientific 
Advisory Boards. 

Dr. Vasile Rus is a professor in the Department of Computer Science at UofM with a joint appointment in 
the IIS. Dr. Rus is also a systems testing research fellow of the FedEx Institute of Technology, a honor 
received for his pioneering work in the area of software systems testing. His research interests lie at the 
intersection of AI, machine learning, and computational linguistics with an emphasis on developing inter-
active intelligent systems based on strong theoretical findings to solve critical challenges that would change 
the educational and HCI landscape. Dr. Rus has been involved in research and development projects in the 
areas of computational linguistics and information retrieval for more than 15 years and in open-ended stu-
dent answer assessment and ITSs for more than 10 years. He has been involved in the development of the 
following ITSs: DeepTutor (PI), Writing Pal (co-PI), MetaTutor (co-PI), and AutoMentor (co-PI). Dr. Rus 
has served in various roles on research projects funded by NSF, DOD, and Department of Education, and 
private companies; has won the first two Question Answering competition organized by the National Insti-
tute for Science and Technology (NIST); recently his team won the English Semantic Similarity challenge 
organized by the leading forum on semantic evaluations – SemEval; has received 4 Best Paper Awards; 
produced more than 100 peer-reviewed publications; and currently serves as an associate editor of the In-
ternational Journal on Tools with Artificial Intelligence and Program Committee member of the Interna-
tional Conference on Artificial Intelligence in Education (AIED 2015). He is member of the PI Millionaire 
club at UofM for his successful efforts to attract multi-million funds from federal agencies as PI.  

Christian Schunn is a senior scientist at the Learning Research and Development Center and a Professor 
of Psychology, Learning Sciences and Policy, and Intelligent Systems at the University of Pittsburgh. He 
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directs a number of research projects in science, mathematics, and engineering education. This work in-
cludes studying expert engineering and science teams, building innovative technology-supported science, 
technology, engineering, and math (STEM) curricula, and studying cognitive and affective factors that in-
fluence student and teacher learning. 

Dr. David Williamson Shaffer is the Vilas Distinguished Professor of Learning Sciences at the University 
of Wisconsin-Madison in the Department of Educational Psychology and a game scientist at the Wisconsin 
Center for Education Research. Before coming to the University of Wisconsin, Dr. Shaffer taught grades 
4–12 in the United States and abroad, including 2 years working with the Asian Development Bank and US 
Peace Corps in Nepal. His MS and PhD are from the Media Laboratory at MIT, and he taught in the Tech-
nology and Education Program at the Harvard Graduate School of Education. Dr. Shaffer was a 2008–2009 
European Union Marie Curie Fellow. He studies how new technologies change the way people think and 
learn, and his most recent book is How Computer Games Help Children Learn. 

Dr. Anne M. Sinatra is an adaptive training scientist at ARL-HRED-ATSD. She works on the GIFT pro-
ject and is the lead for the Team Modeling for Adaptive Training and Education research vector. Her re-
search interests are focused on cognitive and human factors psychology. She has specific interest in how 
information relating to the self and about those that one is familiar with can aid in memory, recall, and 
tutoring. Her dissertation research evaluated the impact of using degraded speech and a familiar story on 
attention/recall in a dichotic listening task. Her work has been published in the Journal of Interaction Stud-
ies, and in proceedings including the Human Computer Interaction International (HCII) Conference and 
Human Factors and Ergonomics Society (HFES) Conference. She has a combination of over 30 publica-
tions and conference papers. Prior to becoming an ARL scientist, Dr. Sinatra was an ARL post-doctoral 
fellow and graduate research associate with UCF’s Applied Cognition and Technology (ACAT) Lab, and 
taught a variety of undergraduate psychology courses. Dr. Sinatra received her PhD and MA in applied 
experimental and human factors psychology, as well as her BS in psychology from the UCF. 

Dr. Eric Snow is an education researcher in the Center for Technology in Learning at SRI Education. Dr. 
Snow’s current research focuses on the design, development and validation of assessments, particularly 
performance-based measures of hard-to-assess computational thinking constructs. He has conducted vali-
dation studies and developed validation frameworks for performance-based measures of computational 
thinking, information and communication technology literacy, and teacher candidate’s readiness for class-
room practice. He has also both led and supported evaluation projects focused on the integration of tech-
nology into K–12 contexts, informal science education in after-school contexts and teacher reform. Dr. 
Snow is currently co-leading a suite of computer science education studies focusing on assessments of 
learning for secondary school students and on the implementation of a new secondary computer science 
curriculum as it scales throughout the United States. Dr. Snow earned his PhD in research and evaluation 
methodology – measurement from the University of Colorado, Boulder, and his BA in anthropology (edu-
cation studies) from the University of Oregon. 

Dr. Erica Snow is a Learning Analytics lead scientist in the Center for Technology in Learning at SRI 
International. Dr. Snow completed her PhD in cognitive psychology at ASU. Her research explores how 
data from adaptive technologies can be leveraged to better understand students’ cognitive and learning 
processes.  

Dr. Randall D. Spain is a research psychologist with 10 years of experience conducting behavioral science 
research in both applied and basic research settings. He currently serves as a research psychologist in RTI 
International’s Education and Workforce Development division where he conducts human factors, training, 
and human performance research for the DOD, Department of Homeland Security (DHS), and Department 
of Education. His areas of expertise include: human factors and engineering psychology, training design 
and evaluation, learning and memory, human-automation interaction, and human performance assessment. 
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Prior to joining RTI, Dr. Spain served as a research psychologist for the US ARI in Orlando, FL, where he 
designed and validated emerging mobile, virtual, and game-based training capabilities for the US Army. 
Prior to that he worked as a graduate assistant for ARL where he conducted human factors research with 
military planning and decision support systems. He received his doctorate in human factors psychology 
from Old Dominion University. He has received recognition for his work in human factors psychology 
from the Human Factors and Ergonomics Society and the National Training and Simulation Association. 

Dr. Grace Teo is currently a research associate at the IST at UCF. She completed her PhD in applied 
experimental and human factors psychology from UCF. Her research include assessing workload to inform 
human-robot teaming, designing vigilance training, understanding decision making, and investigating the 
effects of individual differences. Before pursuing her PhD, Dr. Teo worked in the civil service and a military 
research institute in Singapore. Her work in the civil service involved the application of psychometrics and 
assessment principles in selection and assessment of personnel, as well as in organizational development. 
At the research institute, her research had more of a human factors focus and included evaluating the effects 
of new technology on performance, and understanding decision-making processes related to cyber behav-
iors. From her work in industrial-organizational psychology and human factors psychology, Dr. Teo has 
extensive experience with a wide range of assessment methods and instruments that extend to the use of 
various physiological measures. She has published and presented her research in a number of conferences 
such as the HFES conference, AHFE conference, and the HCII conference. She also has experience teach-
ing both undergraduate and a graduate courses to students of diverse backgrounds. 

Dr. Alina von Davier is the Vice President of ACTNext, the ACT, Inc., Research, Development, and 
Business Innovation Division, as well as an adjunct professor at Fordham University. She earned her PhD 
in mathematics from the Otto von Guericke University of Magdeburg, Germany, and her MS in mathemat-
ics from the University of Bucharest, Romania. At ACT, Dr. von Davier and her team of experts are re-
sponsible for developing prototypes of research-based solutions and creating a research agenda to support 
the next generation for learning and assessment systems (LASs). She pioneers the development and appli-
cation of computational psychometrics and conducts research on blending machine learning algorithms 
with the psychometric theory. Prior to her employment with ACT, Dr. von Davier was a Senior Research 
Director at ETS, where she led the Computational Psychometrics Research Center. Previously, she led the 
Center for Psychometrics for International Tests, where she managed a large group of psychometricians, 
and was responsible for both the psychometrics in support of international tests, TOEFL® and TOEIC®, and 
the scores reported to millions of test-takers annually. Two of her volumes, a co-edited volume on Com-
puterized Multistage Testing, and an edited volume on test equating, Statistical Models for Test Equating, 
Scaling, and Linking, were selected, respectively, as the 2016 and 2013 winners of the AERA Division D 
Significant Contribution to Educational Measurement and Research Methodology award. In addition, she 
wrote or co-edited five other books and volumes on statistic and psychometric topics. Her current research 
interests involve developing and adapting methodologies in support of virtual and collaborative learning 
and assessment systems. Machine learning and data-mining techniques, Bayesian inference methods, and 
stochastic processes are the key set of tools employed in her current research. She serves as an associate 
editor for Psychometrika and the Journal of Educational Measurement. Prior to joining ETS, she worked 
in Germany at the Universities of Trier, Magdeburg, Kiel, and Jena, and at the ZUMA in Mannheim, and 
in Romania, at the Institute of Psychology of the Romanian Academy.  

Dr. Duanli Yan is a manager of data analysis and computational research for Automated Scoring group in 
the Research and Development Division at ETS. She is also an adjunct professor at Rutgers University. She 
has been working on Bayesian inference networks, Bayesian analysis with Markov Chain Monte Carlo and 
evidence-centered design in educational assessment. Some of her work can be found in Bayes Nets in Ed-
ucational Assessment: Where the numbers come from? (Mislevy, Almond and Yan, 2000). She received 
many awards including 2011 ETS Presidential Award, 2013 NCME Brenda Loyd award, and 2015 IACAT 
Early Career Award. She is a co-author for book Bayesian Networks in Educational Assessment. She is also 
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a co-editor for volume Computerized Multistage Testing: Theory and Applications. She has been an invited 
symposium organizer and presenter at many conferences including NCME, International Association for 
Computerized Adaptive Testing (IACAT), and International Psychometrics Society (IMPS). 

Dr. Louise Yarnall, an education researcher, is a senior social science researcher at SRI International, 
Menlo Park, CA; she specializes in STEM workforce training and assessment design, adult learning and 
motivation, and designing innovative technologies for lifelong learning. She conducts learning science lit-
erature reviews, cognitive task analyses, and performance assessment design and implementation on vari-
ous DOD education and training initiatives. She holds a PhD in education from the University of California, 
Los Angeles. 

Dr. Diego Zapata-Rivera is a senior research scientist in the CATS Center at ETS in Princeton, NJ. He 
earned a PhD in computer science (with a focus on AI in education) from the University of Saskatchewan 
in 2003. His research at ETS has focused on the areas of innovations in score reporting and technology-
enhanced assessment including work on adaptive learning and assessment environments, and conversation-
based and game-based assessments. His research interests also include Bayesian student modeling, open 
student models, virtual communities, authoring tools, and program evaluation. Dr. Zapata-Rivera has pro-
duced over 100 publications including journal articles, book chapters, and technical papers. He has served 
as a reviewer for several international conferences and journals. He has been a committee member and 
organizer of international conferences and workshops in his research areas. He is a member of the editorial 
board of User Modeling and User-Adapted Interaction and an associate editor of the IEEE Transactions on 
Learning Technologies Journal. Most recently, Dr. Zapata-Rivera has been invited to contribute his exper-
tise to projects sponsored by the National Research Council, the NSF, and NASA. 
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