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Tutorial Planning



Tutorial Planning

 Hints

 Feedback

 Scenario 
adaptations

 Embedded 
assessments

 Remedial 
instruction
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Research Question

How can we leverage simulated students to 
generate synthetic data for training generalized 
tutorial planners in GIFT?
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Reinforcement Learning

 Problem: Devise 
software agent that 
learns how to behave in 
order to maximize 
numerical reward

 No external supervision

 Delayed rewards

Adapted from Sutton & Barto (1998)





Arbitration 

Procedure

M1

M2

MN

. . .

state

st

action

at

reward

rt

Agent

Environment



Arbitration 

Procedure

M1

M2

MN

. . .

state

st

action

at

action

state

reward

rt

Learner

AgentEnvironment

Tutorial Planner

Virtual Training 

Environment



Arbitration 

Procedure

M1

M2

MN

. . .

state

st

action

at

action

state

reward

rt

Simulated 

Learner

AgentEnvironment

Tutorial Planner

Virtual Training 

Environment



Arbitration 

Procedure

M1

M2

MN

. . .

state

st

action

at

reward

rt

Simulated 

Learner

AgentEnvironment

Tutorial Planner



Markov Decision Processes

 Reinforcement learning problems are often modeled 
as Markov decision processes (MDP)

 Defined by a tuple
• Environment state set 
• Action set
• State transition model 
• Reward model

 Solution is optimal policy



Policy Learning

 Online learning
• Interleave data collection and model operation

• Temporal-difference methods

• Works well with simulation-generated training data

 Offline learning
• Separate data collection and model operation

• Certainty equivalent learning (Kaelbling, Littman & 
Moore 1996)

• Approximate state-transition model and reward 
model using collected corpus
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Related Work

 AIED Workshop Series on Simulated Learners 
(AIED-2013, AIED-2015)

 SimStudent (Matsuda, Cohen, & Koedinger, 2014)

 Simulated students in RL-based tutoring systems 
(Beck, Woolf, & Beal, 2000; Folsom-Kovarik, Sukthankar, & Schatz, 2013; Wang et 
al., 2017)

 Simulated users in spoken dialogue systems (Schatzmann, 

Weilhammer, & Young, 2006; Young et al., 2013)
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Representational Granularity

 Varying levels of temporal 
granularity

 Fine-grained representation

SimStudent (Matsuda, Cohen, 

& Koedinger, 2014)

 Coarse-grained 
representation

SimGrad (LeLei & McCalla, 

2015)

(Matsuda, Cohen, & Koedinger, 2014)
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Computational Framework

 Expert systems

 Closed-form expressions
• Weighted sum (Frost & 

McCalla, 2015)

• Item response theory 
(Hernando, Guzman, & Conejo, 
2013)

 Machine learned models
• Linear regression (Beck, 

Woolf, & Beal, 2000)

• Hidden Markov models 
(Pardos & Yudelson, 2013)

• LSTM neural networks 
(Wang et al., 2017)
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Model Complexity

 Number of parameters

 Linear vs non-linear functions

 Tabular vs algorithmic simulations (VanLehn, Ohlsson, 

& Nason, 1993)

• Tabular models are efficient and easily authored

• Algorithmic models generalize to novel situations

 Run-time efficiency
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Learning Process

 Cognitive simulations
• Problem-solving behavior 

(Matsuda, Cohen, & Koedinger, 
2014)

• Academic performance 
(LeLei & McCalla, 2015)

 Affective simulations
• Emotion regulation 

(Sabourin et al., 2013)

 Social simulations
• Peer-to-peer learning 

(Frost & McCalla, 2013)
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Model Validity

 Not all simulated students are validated

• Designer intuition

• Theoretically grounded

• Empirically derived

 Designer bias 

 Population-dependent aspects of learning are 
difficult to estimate



Outline

 Reinforcement Learning-Based Tutorial 
Planning

 Design Issues for Simulated Students

 Implementing Simulated Students for COIN 
Training

 Conclusions and Future Directions



Outline

 Reinforcement Learning-Based Tutorial 
Planning

 Design Issues for Simulated Students

 Implementing Simulated Students for COIN 
Training

 Conclusions and Future Directions



Tutorial Planning for 
Counterinsurgency Training

Adaptive Hypermedia Simulation-Based Training

UrbanSim
(McAlinden, Pynadath, & Hill, 2014)

UrbanSim Primer



COIN Training Testbed

UrbanSim Primer
 Adaptive hypermedia 

learning environment

 Range of doctrinal concepts 
of COIN

• Population support

• Clear-Hold-Build

• Intelligence gathering

 Preliminary instruction on 
UrbanSim usage



COIN Training Testbed

UrbanSim
 Simulation-based learning 

environment

 Role: Learner is battalion 
commander

 Objective: Maximize civilian 
support for host nation 
government

 PsychSim social simulation 
engine



Generalized Instructional 
Strategies for COIN Training

 High-level instructional strategies

• Single-topic coaching

• Multi-concept review

• Feedback on unproductive learning behaviors

 ICAP-inspired implementation strategies (Chi, 2009)

• Constructive

• Active

• Passive
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Toward Simulated Students for 
COIN Training

 Bipartite model of simulated students
• Student behavior
• Learning outcomes

 Tabular joint probability distribution
• Values estimated from pilot study data
• Data sparsity challenges

 Granularity
• UrbanSim Primer: One lesson
• UrbanSim: One turn of simulation



Toward Simulated Students for 
COIN Training

 Devise simulated student for each MDP

 Domain-independent state features

• Student knowledge & traits

• Task states

• Pedagogical history

 Model student responses to pedagogical actions

 Rewards model student learning gains

 Population of simulated students
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Conclusions

 Simulated students show promise for generating synthetic 
data to train data-driven tutorial planners

 Design of simulated students presents several questions: 

• Representational granularity

• Computational framework

• Model complexity

• Target learning process

• Model validity

 We are devising simulated students to support RL-based 
tutorial planning for COIN training in GIFT



Future Directions

 Conduct studies validating simulated students by comparing 
synthetic data with human student data

 Devise tools and workflows for incorporating tutorial planning 
policies induced from simulated students in GIFT

 Provide tools for non-expert users to work with simulated 
students, including creating, configuring, sharing, and refining 
simulated student models

 Conduct GIFT studies with Mechanical Turk populations to 
complement synthetic data from simulated students



Acknowledgments

Support provided by the U.S. Army Research Laboratory
under cooperative agreement W911NF-15-2-0030.

 NCSU Army ROTC Program

 Institute for Creative Technologies

 Vanderbilt University

 Dignitas Technologies




