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INTRODUCTION 

The Army faces an emerging adversary environment that is very competitive, dangerous, and cognitively 

intense. To address this challenge, Army soldiers must out-learn and out-train their adversaries and this 

training challenge must be met in a climate of austere or shrinking training budgets (Army, 2011a, 2011b). 

The gold standard in training is one-to-one human tutoring, which has been shown to be significantly more 

effective than the one-many method of instruction such as the traditional classroom setting or self-study 

using static training materials such as manuals and books (VanLehn K, 2011). The proliferation of computer 

based games including massively multiplayer online games (MMOG), low-cost simulations, and exciting 

virtual immersion technologies opens new doors in the training domain. Additionally, considerable progress 

has been made in areas that include training pedagogy, methods of instruction/feedback, artificial intelli-

gence, virtual humans, and trainee state assessment. Through a well-crafted learning concept roadmap, the 

Army plans to leverage those technological game changers to create systems that will allow self-paced, 

adaptive training capabilities that will enhance training effectiveness while at the same time be very cost 

effective. To address this challenge, the Army Research Lab has developed the Generalized Intelligent 

Framework for Tutoring, which is known as GIFT (Sottilare R, Sinatra A, & Boyce M, 2015). In our project, 

we are adding a component to GIFT that uses the Cognitive Assessment Tool Set (CATS) as a system to 

acquire the real-time operator state (Ellis K.E, 2014; T. Schnell, 2012; T. Schnell & Engler, 2013; T. 

Schnell, Melzer, & Robbins, 2009). This includes task technical performance, cognition (workload, en-

gagement), and attention (degree of focus), so that the training content can be adapted through GIFT to 

maximize training effectiveness. We selected a demonstration use case centered on self-study driving in-

struction training for military vehicles, particularly for the High Mobility Multipurpose Wheeled Vehicle 

(HMMWV). Initially, we are using the Virtual Battle Space (VBS3) as the driving simulation tool. In Year 

2 of this project, we will migrate the GIFT Framework into our instrumented Model 997 HMMWV Off-

Road Testbed for testing in a real-world off-road environment. 

                       

a. VBS 3 HMMWV Simulator        b. OPL’s Instrumented HMMWV/Simulator 

Figure 1. Physiological Based Adaptive Training using GIFT Framework for HMMWV  

The training scenarios in our adaptive training concept progress in difficulty from simple driving tasks on 

a flat and level tarmac to complex urban navigation and off road maneuvering assignments. This specific 



use case was developed after various training domains and application domains have been reviewed, alter-

natives were developed, and a down-selection was performed to arrive at the particular driver training use 

case which will form the basis of the testbed in this project. 

THE PROBLEM 

Current training tools do not usually have an ability to acquire trainee data beyond simple performance data 

(e.g. right and wrong answers). Therefore, current training systems are generally not able to associate 

trainee state to specific elements of instruction. In one-to-one human tutoring settings, the instructor ob-

serves the student’s performance and exterior performance indicators such as body language, facial expres-

sions, head position, and hand movements to make a determination if the trainee is on the right path to 

acquiring the skill. For example, an Instructor Pilot (IP) may carefully and unobtrusively observe his/her 

flight students during landings to see if they are referencing the correct instruments and perform the correct 

manual movements for this phase of flight. Through such exterior performance observations, the IP can 

assess trainee state in real time and take corrective action, if necessary. Such actions could include physical 

interventions (e.g. to prevent a crash), the provision of explanations, a decision to repeat the task, or a 

decision to abandon the task and allow the student to rest. Unfortunately, there are circumstances where it 

is impossible for an instructor to discriminate with external indicators alone, if a student has frozen up or if 

he/she is cool and in control but is not currently moving around. Additionally, instructors are a limited 

resource and it is not feasible to have one-on-one tutoring in all training settings. 

Therefore, the Army is looking for a data driven approach that will automatically and unobtrusively assim-

ilate trainee information and then reliably and automatically classify trainee state including performance, 

cognition (workload, engagement), attention (degree of focus), and affect (joy, confusion, frustration, bore-

dom, surprise, and anger) so that the training content can be adapted to maximize training effectiveness. 

PHYSIOLOGICAL BASED TRAINEE STATE MODULE 

In the project described in this paper, we are adding a component to GIFT that uses the Cognitive Assess-

ment Tool Set (CATS) (OPL, 2014) as a system to acquire the real-time cognitive workload of the trainee 

to close the loop, through GIFT, with the training application. This means that the workload experienced 

by the trainee affects the progression of the training application. We selected a demonstration use case 

centered on self-study driving instruction training for military vehicles, particularly for the HMMWV. We 

are using the Virtual Battle Space (VBS3) as the driving simulation tool. We call this combination of GIFT, 

CATS, and a training application, in the specific use case VBS3, the Unobtrusive Physiological Classifica-

tion and Adaptive Training (UPCAT) system. This specific use case was developed after various training 

domains and application domains have been reviewed, alternatives were developed, and a down-selection 

was performed to arrive at the particular use case which will form the basis of the testbed in this project. In 

Year 1 of this project (current year), we are integrating CATS and GIFT with the Virtual Battle Space (VBS 

3) simulation tool. This constellation will allow us to test the adaptive capabilities of GIFT instruction on 

the basis of a simulated driving task. In the following project year (Year 2), we will migrate the framework 

into our instrumented Model 997 HMMWV (see Figure 1). This vehicle can be used as an Automobile-In-

Loop (AIL) simulator and it can also be driven on and off-road as a human factors driving research testbed.  

Cognitive Assessment Tool Set (CATS) 

Understanding and monitoring the changes in the cognitive workload of trainees can offer critical quanti-

tative information about their progression and performance. Unfortunately, accurate real-time objective 

quantification of cognitive workload using physiological signals has, thus far, proven elusive and is often 



neglected in favor of subjective self-reports. In well over a decade of physiological based assessment work, 

we investigated many sensors and came away with the conclusion that the electrocardiogram (ECG) wave-

form is by far the best signal for workload assessment. Based on our extensive real-world data collection 

experience, we discourage the use of invasive sensors such as electroencephalogram (EEG) for operational 

training contexts. The test-retest validity of these EEG appliances is usually very poor, approaching chance 

probability of prediction. For our ECG based workload assessment, we are using a deterministically non-

linear dynamical classifier to assess cognitive workload with great success (Engler & Schnell, 2013; T 

Schnell & Engler, 2014). The research community has known for a number of years that human physiolog-

ical signals in general, and ECG specifically, are deterministically nonlinear (also known as chaotic) sys-

tems (Govindan, Narayanan, & Gopinathan, 1998; Kozma, 2002; Owis, Abou-Zied, Youssef, & Kadah, 

2002). Chaotic systems are often not well represented via the normal scalar time series. Instead, the dynam-

ics of the system are obfuscated in the single dimension whereas they become apparent when a transform 

of the data is made. This transform moves the data from the single dimensional scalar space into a multi-

dimensional embedded phase space (Richter & Schreiber, 1998). The transformation to phase space using 

the mutual information and false nearest neighbor techniques can be illustrated nicely with an ECG signal. 

The panel on the left of Figure 2 depicts a portion of an ECG signal from a subject in a recent study. After 

calculating the parameters as described above, the phase space can be generated with time delay τ = 8 and 

embedding dimension  d = 3. The panel in the middle of Figure 2 shows the phase space that is generated 

from the signal using the methods described above. The image of the phase space does not necessarily illicit 

new knowledge about the ECG signal in and of itself. However, the phase space can be coarse-grained 

(right panel in Figure 1) into a numerical array that represents a quantitative signature of operator state in 

ECG phase space and thus offers the possibility for accurate operator state characterization. We refer to this 

as the Chaotic Physiological Classifier (CPC) method. 

  

Figure 2. Example of a Scalar ECG (left) Transformed into Embedding Phase Space (middle) and then 

Coarse-Grained for Numerical Classification (right). 

The CATS backbone is a relational database which forms the repository of all data collected during a study. 

Data is collected via providers within CATS which form communications links between the relational da-

tabase and the sensing hardware. All data that is collected in CATS is time stamped at the source of the 

data with a globally synchronized time stamp. The relational database is then structured such that the time 

stamps form a candidate key for each table, thereby inherently synchronizing the data as it is recorded. 

Multiple tables exist within the relational database representing multiple signal sources such as vehicle 

state, environmental (simulator) state, eye tracking, and ECG. Each of these tables is linked through foreign 

keys indicating which subject, vehicle, and task to which each record is linked. This form of candidate and 

foreign keys forms a robust, indexable data backbone for the operator state classification effort. In addition 

to recording data, the CATS system calculates certain metrics in real-time. These metrics are then available 

to be shared, in real-time, with research partners through the previously mentioned communications portals. 

CATS uses a CPC model to produce the workload classification based upon the real-time input of ECG 

data.  



UPCAT System Architecture 

Figure 3 shows the architecture of UPCAT and its connectivity to the GIFT framework. As shown in this 

(greatly simplified) diagram, CATS receives data from the ECG sensor (Nexus 4 made by MindMedia) 

through its standard sensor provider that makes it manufacturer independent. Inside of CATS, the Chaotic 

Physiological Classification (CPC) (OPL, 2014; T Schnell & Engler, 2014) embeds the time-series ECG 

data in phase space and applies the ergodicity classification to it. In this context, it is easiest to think of 

CATS as a processor that translates full ECG waveforms to cognitive workload numbers. The real-time 

workload number is passed to a processor in CATS which aggregates the rapidly fluctuating number into a 

relatively stable score that indicates the degree of trainee engagement in the task. This score is transmitted 

to the Workload Condition in GIFT. The workload measured indicates a type of effort expenditure of the 

trainee. This expenditure yields a level of driving performance as a function of experience level. A novice 

driver may expend a significant effort to achieve a relatively low level of driving performance. As training 

iterations are performed at a certain difficulty level (as driven by the scenario), the effort expenditure should 

decrease and the driving performance should increase. At some point, both metrics may plateau and if 

driving performance and workload expenditures are considered satisfactory, the trainee is advanced to the 

next level of difficulty, either within the scenario or by switching to a more difficult scenario in VBS3. 

Driving performance is assessed through quantitative metrics that relate to automatically measurable out-

comes such as speed maintenance, lane control, steering wheel rotation entropy, etc.  

 

Figure 3. UPCAT System Architecture 

The VBS 3 training scenarios in UPCAT progress in increasing levels of difficulty, much like advancing 

through chapters of a book. At strategic points in the scenarios, the driving events are stopped (frozen) and 

the trainees fill out surveys provided by GIFT to indicate the level of self-rated performance and workload 

expenditure. After the surveys are completed, the responses are combined with the physiological based data 

and the driving performance results to make decisions on how the scenario should proceed. In GIFT, the 

following steps are needed to accomplish this: 1). Create the workload scoring filter, 2). Create the workload 

scoring condition, 3). Create the VBS3 scoring filter, 4). Create the VBS3 scoring condition, 5). Create the 

surveys per scenario, 6). Create the survey scoring condition, 7).  Create the real time difficulty changing 



interface (VBS 3 scenarios), 8). Combine the workload and VBS3 filters into a Domain Module, 9). Trans-

mit the information via a Learner Module into a Pedagogical Module so that we can act on these conditions 

as a group, 10). Create a Domain Knowledge File (DKF, a set of rules for performance) and author Triggers 

to change scenarios and trigger difficulty changes. GIFT has a VBS3 interface that allows transmission of 

commands to a running VBS3 instance. These commands include calling a script remotely and reading out 

the results of its execution. In our architecture, this facility is used to extract driving performance score 

calculations out of VBS3.  

The GIFT system is implemented as constellation of state machines in different states. The GIFT Intermis-

sion Stage (shown in Figure 4 a) handles the transitions between scenarios by analyzing the results of pre-

vious scenarios. This allows us to adaptively increase or decrease the difficulty of the scenarios as a whole 

unit. The GIFT Run Stage in (shown in Figure 4 b) adjusts the difficulty within the current scenario in real 

time as it is being run. These adaptive changes in difficulty will be smaller incremental changes than when 

the scenario difficulty is changed as a whole unit. Scripts inside of VBS 3 respond to changes in scenarios 

and difficulty according to the script state machine (shown in Figure 4 c) in response to the other GIFT 

stages.  
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Figure 4. State Machine Diagrams for GIFT Implementation in UPCAT 

UPCAT CONCEPT OF OPERATIONS (CONOPS) 

The following is the CONOPS narrative that describes what the UPCAT system, once completed and when 

applied for the HMMWV driving use case, should be able to do. This CONOPS has driven our architecture 

design and will help us to complete the UPCAT system in accordance with set requirements. The CONOPS 

is a narrative that describes how we want the finished UPCAT system to work. While the CONOPS is 

relatively detailed and thorough, we will focus the effort in this project on the physiological based adaptive 

training capability and only “rough in” some of the training environment capabilities described in this 

CONOPS. We developed a detailed visual storyboard that describes the graphical content of the UPCAT 

screens that the trainee would see. Some selected images from that storyboard are represented as figures 

hereinafter. 

The expected trainee is an army recruit who has a valid US driver license and about 3-4 years of on-road 

driving experience on normal US highways under 4 season day and night driving conditions. As a baseline, 



we assume that the trainee has no prior off-road driving experience and no driving experience in foreign 

countries. 

The trainee is assigned to an UPCAT workstation where he/she logs in and starts the enrollment process 

using an interactive screen to fill in information. The trainee enters pertinent information about his/her 

person to facilitate tracking of course credit. Additionally, the trainee enters information related to his/her 

driving experience such as number of years driven, area where driving was performed, urban vs rural driv-

ing, day vs nighttime, driving on snow, type of vehicle, etc. This is done to establish a baseline database of 

driving exposure. The UPCAT system then provides the trainee with an instructional video that illustrates 

how the UPCAT ECG sensor is to be applied. This shows attachment of the electrodes using a schematic 

view of a person’s torso to be sure the electrodes and leads are attached correctly. The video then stops to 

give the trainee a chance to set up the electrodes and go to the next screen. UPCAT then tells the trainee 

how to start CATS and verify ECG signal accuracy (Figure 5). Next, the trainee goes through a set of slides 

that introduce the HMMWV. This is basically a Computer Based Training (CBT) user manual review in-

troducing the HMMWV controls. Once the trainee completes the basic CBT, a quiz will be administered 

(Figure 6) to ensure the trainee is ready to progress to the first driving simulator module.  

  

Figure 5. UPCAT CBT and Sensor Application 

 

Figure 6. UPCAT Vehicle Familiarization 

The first driving simulator module (Level 1) is a simple drive on a very large parking lot or tarmac without 

obstacles. Using graphical interactive content (Figure 7, left) the trainee is told to drive around the parking 

lot perimeter in a clockwise direction, one car width away from the apron edge, at an appropriate speed, not 

to exceed 20 MPH. Performance are measured by UPCAT to ensure that the trainee has maintained the 

speed and positional assignment. CATS is used to assess workload to ensure that sufficient replications of 

the drive around the tarmac have been completed. The trainee is considered ready for the next level when 

workload has levelled off and driving-technical performance is within boundaries. A point score is then 

calculated from the performance metrics as credit similar to the score in a video game (Figure 7, right). 



  

Figure 7. UPCAT Simple Driving Task (Level 1) 

Upon completion of the first level, the point score and other statistics are shown. Feedback is provided by 

GIFT using trigger points such as a) great job, all is well, b) watch your speed, c) watch your lane control 

etc. These feedback points are illustrated with performance graphs and verbal narratives from canned AVIs 

playing an instructor (Gunny) chastising or praising the student (Figure 7, right). The trainee then proceeds 

to the next level and the process repeats for as many levels as needed by the particular use case. In our 

project, the progression of scenarios may look as follows: 

Level 2: Parking lot with obstacles placed to drive around. 

Level 3: Driving on an open, mostly straight highway in a foreign country with appropriate visuals and a 

simple navigational assignment. 

Level 4: Addition of curves and reasonable up and down grades. 

Level 5: Addition of urban areas. 

Level 6: Addition of roadway threats to avoid, requiring severe braking and swerving. 

Level 7: Addition of off-road, straight up and down grade. 

Level 8: Addition of off-road, along grade (slant), left and right. 

Level 9: Addition of driving at nighttime and in degraded visibility conditions. 

Level 10: Addition of IED detection and avoidance. 

Level 11: Addition of ambush event with backup retreat. 

Level 12: Capstone driving event that is assembled from all the parts that the trainee did not do well on. 

Provisions should be made so that a driving session can be interrupted and taken up again. We still will 

need to determine how feasible this is with regard to physiological based workload assessment without 

baseline. It may be necessary to repeat the level upon resuming after a long break (e.g. days). 

Once all levels on the driving simulator have been completed, the GIFT training record is forwarded to the 

driving instructor for review and scheduling of the first live driving lesson. The idea of the live drive is that 

UPCAT rides along, permitting the use of a safety observer who is not a qualified driving instructor but 

rated in the vehicle only. Therefore, staffing is easier because the safety observer does not need to have the 

qualities of an instructor as that job will be done by UPCAT. Instead, the safety observer simply monitors 

the drive with regard to safety. In the live drive, UPCAT receives vehicle state not from VBS3 but from the 

vehicle inertial system.  

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH 

The GIFT architecture facilitates the integration of external tools such as VBS 3 and CATS in a very effec-

tive fashion. CATS is an operational workload and performance assessment system that has been used by 

OPL in real-world driving and flight contexts for a number of years. CATS has been used many times to 

assess the performance of fighter pilots in OPL’s instrumented jet aircraft or in flight simulators at OPL 



and numerous government research facilities. In this project, we are using the workload assessment capa-

bility of CATS and integrate it with the GIFT framework using a Direct Link Library (DLL) methodology.  

At the time of writing this paper we are about 5 months into the first program year. We have finished the 

architecture design and implemented an initial prototype in accordance with Figure 3. In the remainder of 

Year 1, we will complete the initial UPCAT prototype and demonstrate the physiological based adaptive 

training scenario capability.  

For the Year 2 effort, we are planning to test and evaluate the UPCAT system using N=12  participants 

undergoing a full-mission training evolution as described in the CONOPS. There are several research ques-

tions that this experiment will seek to answer.  

1. Is the UPCAT workload assessment accurate (absolute) and precise (narrow distribution) when com-

pared to a known or self-assessed baseline workload scale? 

2. Is the UPCAT affect assessment accurate (absolute) and precise (narrow distribution) when com-

pared to a self-assessed baseline affect scale (e.g. joy, confusion, frustration, boredom, surprise, and 

anger)? 

3. Is the adaptive portion of the training more effective than its non-adaptive counterpart? 

4. Is the base program UPCATS/GIFT system acceptable for actual training in an Army context? 
 

Research questions 1-3 will be answered though experimental hypotheses resulting from a full factorial 

experiment with assessments performed using appropriate statistical tests. Research question 4 will be an-

swered through analysis of debriefing interviews and with the use of subjective preference rating question-

naires. The experimental hypotheses will be structured along the following lines in accordance with the 

research questions: 

1. Experimental hypothesis EH1:  

a. H0: workload assessment error is less than 10% of baseline 

b. H1: workload assessment is higher than 10% of baseline 

Independent variable: Workload driver (rest, low, medium, high, very high) 

2. Experimental hypothesis EH2:  

a. H0: affect assessment error per emotion is less than 10% of baseline 

b. H1: affect assessment error per emotion is higher than 10% of baseline 

Independent variable: Affect driver (story) at levels of joy, confusion, frustration, boredom, 

surprise, and anger 

3. Experimental hypothesis EH3:  

a. H0: adaptive training performance  = non-adaptive training performance   

b. H1: adaptive training performance > non-adaptive training performance   

Independent variable: without and with adaptive training 

 

In program Year 3 (Option, if funded) we intend to expand the use of UPCAT from individual performance 

assessment to team performance assessment. However, while there may be some simple cases of team 

training, we readily acknowledge the complexity of teamwork in general. Well-functioning teams must 

have a balanced workload with roles that mutually support each other. Unbalanced workload levels may be 

indicators of dysfunctionality between the team members. In crew resource management research, for ex-

ample, crew members should have balanced levels of workload and they should both function within their 

assigned roles rather than having to reach into the other team-member’s role. Ellis (Ellis K.E, 2014) meas-

ured workload in flight crews and then subjectively assessed each pilot’s view of the other’s workload. 

Discrepancies in actual workload and perception of the “other guy’s” workload were found to be strong 

indicators of a team dysfunction. With that in mind, a machine learning feature extraction engine could be 

added to automatically watch out for such discrepancies.  
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