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Preface 

This workshop provides the AIED community with an in-depth exploration of the 

Army Research Laboratory’s effort to develop tools, methods and standards for Intel-

ligent Tutoring Systems (ITS) as part of their Generalized Intelligent Framework for 

Tutoring (GIFT) research project.  GIFT is a modular, service-oriented architecture 

developed to address authoring, instructional strategies, and analysis constraints cur-

rently limiting the use and reuse of ITS today.  Such constraints include high devel-

opment costs; lack of standards; and inadequate adaptability to support tailored needs 

of the learner.   GIFT’s three primary objectives are to provide: (1) authoring tools for 

developing new ITS, ITS components (e.g., learner models, pedagogical models, user 

interfaces, sensor interfaces), tools, and methods based on authoring standards that 

support reuse and leverage external training environments; (2) an instructional man-

ager that encompasses best tutoring principles, strategies, and tactics for use in ITS; 

and (3) an experimental testbed for analyzing the effect of ITS components, tools, and 

methods.  GIFT is based on a learner-centric approach with the goal of improving 

linkages in the adaptive tutoring learning effect chain in Figure 1. 

 
Figure 1: Adaptive Tutoring Learning Effect Chain 

The goal of GIFT is to make ITS affordable, effective, usable by the masses, and   

provide equivalent (or better) instruction than expert human tutors in one-to-one and 

one-to-many educational and training domains. GIFT’s modular design and standard 

messaging provides a largely domain-independent approach to tutoring where do-

main-dependent information is concentrated in the one module making most of its 

components, tools and methods reusable across training domains. More information 

about GIFT can be found at www.GIFTtutoring.org.    

The workshop is divided into five themes: (1) Fundamentals of GIFT (includes a 

tutorial on GIFT and a detailed demonstration of the latest release); (2) Authoring ITS 

using the GIFT Authoring Construct; (3) Adapting Instructional Strategies and Tac-

tics using GIFT; (4) Analyzing Effect using GIFT; and (5) Learner Modeling.  Themes 

include presentations from GIFT users regarding their experiences within the respec-

tive areas and their recommendations of design enhancements for future GIFT releas-

es.  Theme 5 is dedicated to discussing the outcomes of the learner modeling advisory 

board meeting conducted at the University of Memphis Meeting in September 2012. 
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Motivations for a Generalized Intelligent Framework for 

Tutoring (GIFT) for Authoring, Instruction and Analysis 

Robert A. Sottilare, Ph.D. and Heather K. Holden, Ph.D. 

U.S. Army Research Laboratory – Human Research and Engineering Directorate 

{robert.sottilare, heather.k.holden}@us.army.mil 

Abstract. Intelligent Tutoring Systems (ITS) have been shown to be effec-

tive tools for one-to-one tutoring in a variety of well-defined domains (e.g., 

mathematics, physics) and offer distinct advantages over traditional classroom 

teaching/training. In examining the barriers to the widespread use of ITS, the 

time and cost for designing and author-ing ITS have been widely cited as the 

primary obstacles.  Contributing factors to time and cost include a lack of 

standards and minimal opportunities for reuse.  This paper explores motivations 

for the development of a Generalized Intelligent Framework for Tutoring 

(GIFT).  GIFT was conceived to meet challenges to: author ITS and ITS com-

ponents, offer best instructional practices across a variety of training tasks (e.g., 

cognitive, affective, and psychomotor), and provide a testbed for analyzing the 

effect of tutoring technologies (tools and methods). 

1 Introduction 

GIFT [1] is a modular, service-oriented architecture developed to address authoring, 

instructional strategies, and analysis constraints currently limiting the use and reuse of 

ITS today.  Such constraints include high development costs; lack of standards; and 

inadequate adaptability to support tailored needs of the learner.   GIFT’s three prima-

ry objectives are to develop: (1) authoring tools to develop new ITS, ITS components 

(e.g., learner models, pedagogical models, user interfaces, sensor interfaces), tools, 

and methods, and develop authoring standards to support reuse and leveraging exter-

nal training environments; (2) provide an instructional manager that encompasses best 

tutoring principles, strategies, and tactics for use in ITS; and (3) an experimental 

testbed to analyze the effect of ITS components, tools, and methods.  GIFT is based 

on a learner-centric approach with the goal of improving linkages in the adaptive 

tutoring learning effect chain in Figure 1. 

 

 
Figure 1: Adaptive Tutoring Learning Effect Chain [2] 
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GIFT’s modular design and standard messaging provides a largely domain-

independent approach to tutoring where domain-dependent information is concentrat-

ed in the domain module making most of its components, tools and methods reusable 

across tutoring scenarios. 

2 Motivations for authoring tools, standards and best practices 

The primary goal of GIFT is to make ITS affordable, usable by the masses, and 

equivalent (or better) than an expert human tutors in one-to-one and one-to-many 

educational and training scenarios for both well-defined and ill-defined domains.  As 

ITS seek to become more adaptive to provide tailored tutoring experiences for each 

learner, the amount of content (e.g., interactive multimedia and feedback) required to 

support additional adaptive learning paths grows exponentially.  More authoring re-

quirements generally means longer development timelines and increased development 

costs.  If ITS are to be ubiquitous, affordable, and holistically learner-centric, it is 

essential to for ITS designers and developers to develop methods to rapidly author 

content or reuse existing content.  Overcoming barriers to reuse means developing 

standards.  In this context, the idea for GIFT was born. 

2.1 GIFT Authoring Goals 

Adapted from Murray [3] [4] and Sottilare and Gilbert [5], the authoring goals dis-

cussed below identify several motivating factors for the development of authoring 

methods and standards.  First and foremost, the idea of a GIFT is founded on decreas-

ing the effort (time, cost, and/or other resources) required to author and analyze the 

effect of ITS, ITS components, instructional methods, learner models, and domain 

content.  ITS must become affordable and easy to build so we should strive to de-

crease the skill threshold by tailoring tools for specific disciplines to author, analyze 

and employ ITS.   

In this context, we should provide tools to aid designers, authors, train-

ers/teachers, and researchers organize their knowledge for retrieval and application at 

a later time.  Automation should be used to the maximum extent possible to data mine 

rich repositories of information to create expert models, misconception libraries, and 

hierarchical path plans for course concepts. 

A GIFT should support (structure, recommend, or enforce) good design princi-

ples in its pedagogy, its user interface, etc.  It should enable rapid prototyping of ITS 

to allow for rapid design/evaluation cycles of prototype capabilities.  To support reuse, 

a GIFT should employ standards to support rapid integration of external train-

ing/tutoring environments (e.g., serious games) to leverage their engaging context and 

avoid authoring altogether. 

2.2 Serious Games and ITS 

Serious games, which are computer-based games aimed at training and education 

rather than pure entertainment, are one option for reuse if they can easily be integrated 

with tutoring architectures like GIFT.  Serious games offer high-level interactive mul-
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ti-media instructional (IMI) content that is engaging and is capable of supporting a 

variety of scenarios with the same basic content.  While most serious games offer 

prescriptive feedback based on learner task performance, the integration of serious 

games with ITS opens up the possibility of more adaptive feedback based on a more 

comprehensive learner model.   

In order to facilitate the use of serious games in a tutoring context (game-based 

tutoring), standards are needed to support the linkage of game actions to learning 

objectives in the tutor.  To this end, Sottilare and Gilbert [5] recommend the devel-

opment of two standard interface layers, one layer for the game and one for the tutor.  

The game interface layer captures entity state data (e.g., behavioral data represented 

in the game), game state data (physical environment data), and interaction data, and 

passes this information to the tutor interface layer.  The tutor interface layer passes 

data from the game to the instructional engine which develops strategies and tactics 

(e.g., feedback and scenario changes) which are passed back to the game to initiate 

actions (e.g., non-player character provides feedback or challenge level of scenario is 

increased). 

Additional options for reuse should be explored to minimize/eliminate the 

amount of authoring required by ITS designers and developers.  The ability to struc-

ture approaches for configuring a variety of tutoring experiences and experiments is 

discussed next.     

2.3 Configuring tutoring experiences and experiments 

Another element of authoring is the ability to easily configure the sequence of instruc-

tion by reusing standard components in a script.  This is accomplished in GIFT 

though a set of XML configuration tools used to sequence tutoring and/or experi-

ments.  Standard tools include, but are not limited to functional user modeling, learner 

modeling, sensor configuration, domain knowledge file authoring, and survey author-

ing which are discussed below.  

While not yet implemented in GIFT, functional user models are standard struc-

tures and graphical user interfaces used to facilitate tasks and access to information 

that is specific to the type of user (e.g., learners, subject matter experts, instructional 

system designers, system developers, trainers/instructors/teachers, and scien-

tists/researchers). 

Learner models are a subset of function user models used to define what the ITS 

needs to know about the learner in order to inform sound pedagogical decisions per 

the adaptive tutoring learning effect model.  The learner configuration authoring tool 

provides a simple tree structure driven by XML schema which prevents learner model 

authoring errors by validating inputs against the learner model XML schema.  This 

configuration tool also provides ability to validate the learner model using GIFT 

source without having to launch the entire GIFT architecture.  Inputs to the learner 

modeling configuration include translators, classifiers, and clustering methods which 

use learner data to inform learner states (e.g., cognitive and affective). 

The sensor configuration authoring tool allows the user to determine which sen-

sors will be used during a given session and which translators, classifiers, and cluster-

ing methods the sensor data will feed.  Again, this is an XML-based tool which allows 

the user to select a combination of behavioral and physiological sensor to support 
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their tutoring session or experiment.  Several commercial sensors have been integrat-

ed into GIFT through plug-ins. 

Survey authoring is accomplished through the GIFT survey authoring system 

(SAS) which allows the generation and retrieval of questions in various formats (e.g., 

true/false, multiple choice, Likert scales) to support assessments and surveys to sup-

port tailoring decisions within GIFT.   Through this tool, questions can be associated 

with assessments/surveys and these in turn can be associated with a specific tutoring 

event or experiment. 

Domain authoring is accomplished through the domain knowledge file authoring 

tool.  This tool allows an instructional designer to sequence events (e.g., scenarios, 

surveys, content presentation).  GIFT currently support various tutoring environments 

expand the flexibility of course construction.  These include Microsoft PowerPoint for 

content presentation, surveys and assessments from the GIFT SAS, serious games 

(e.g., VMedic and Virtual BattleSpace (VBS) 2).  More environments are needed to 

support the variety of tasks that might be trained using GIFT.  

3 Motivations for expert instruction 

Significant research has been conducted to model expert human tutors and to apply 

these models to ITS to make them more adaptive to the needs of the learner without 

the intervention of a human instructor.  The INSPIRE model [6] [7] is noteworthy 

based on the extensive scope of this studies that led to this model.  Person and others 

[8] [9] seek to compare and contrast how human tutors and ITS might most effective-

ly tailor tutoring experiences. 

For its initial instructional model a strategy-tactic ontology, the engine for Mac-

ro-Adaptive Pedagogy (eMAP), was developed based on Merrill’s Component Dis-

play Theory [10], the literature, and variables that included the type of task (e.g., cog-

nitive, affective) and instruction (e.g., individual, small group instruction).  Instruc-

tional strategies are defined as domain-independent policies that are implemented by 

the pedagogical engine based on input about the learner’s state (e.g., cognitive, affec-

tive, domain-independent progress assessment (at expectation, below expectation, or 

above expectation)).  Strategies are recommendations to the domain module in GIFT 

which selects a domain-dependent tactic (action) based on the strategy type (e.g., 

prompt, hint, question, remediation) and specific instructional context, where the 

learner is in the instructional content. 

A goal for GIFT is for it to be a nexus for capturing best practices from tutoring 

research in a single place where scientists can compare the learning effect of each 

model and then evolve new models based on the best attributes of each model ana-

lyzed.   To support this evolution, GIFT includes a testbed methodology called the 

analysis construct which is discussed below.  

4 Motivations for an effect analysis testbed 

As noted in the previous section, GIFT includes an analysis construct which is not 

only intended to evolve the development of expert instructional models, but is also 
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available to analyze other aspects of ITS including learner modeling, expert modeling, 

and domain modeling.  The notion of a GIFT analysis construct shown in Figure 2 

was adapted from Hanks, Pollack, and Cohen’s testbed methodology [11].        

 

 

 
Figure 2: GIFT analysis construct  

 

A great benefit of GIFT’s analysis construct it is ability to conduct comparisons 

of whole tutoring systems as well as specific components (either entire models or 

specific model elements).  To date, ITS research has been limited in its ability to con-

duct such comparative analyses due to the high costs associated with redesign and 

experimentation.  This construct can be leveraged to assess the impact and interplay 

of both learner characteristics directly contributing to the learning process (i.e., abili-

ties, cognition, affect, learning preferences, etc.) and those that are external and indi-

rectly  effect the learning process (i.e., perceptions of technology,  the ITS interface, 

and learning with technology, etc.).  Similarly, GIFT can provide formative and 

summative assessments to identify the influence of various instructional strategies and 

tactics; based on these assessments, GIFT is able to better improve and guide instruc-

tion dynamically and more effectively. 

Across all levels of education and training populations, regardless of the mode of 

instruction (i.e., live, virtual, or constructive), a paradigm shift in the learning process 

is occurring due to the evolution of technology and the increase in ubiquitous compu-

ting.  This notion has become noticeably apparent over the last few years.  Even 

Bloom’s revised taxonomy has been recently updated to account for new actions, 

behaviors, processes, and learning opportunities brought forth by web-based technol-

ogy advancements [12].  Moreover, with the increasing recognition of the importance 

of individual learning differences in instruction, GIFT can ultimately be able to sup-

port the educational framework and principles of the universal design for learning 

(UDL) [13, 14].  This framework highlights the need for multiple means of represen-
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tation, expression, and engagement to reduce barriers of learning and provide fruitful 

learning experiences for all types of learners.  While this concept has evolved over the 

past decade, practicality and experimentation to progress this notion to true reality has 

been limited.  However, GIFT’s analysis construct can be used to access the effec-

tiveness of UDL principles in an empirically-driven fashion. 

5 Expanding the horizons of ITS through future GIFT 

capabilities 

The potential of GIFT is dependent on two primary objectives: 1) focus research and 

best practices into authoring, instructional, and analysis tools and methods within 

GIFT to enhance its value to the ITS community and 2) expanding the horizons of 

traditional ITS outside the bounds of traditional ITS.  This section concentrates on 

examining areas for future development which will expand the current state-of-

practice for ITS including tutoring domains, interaction modes, and automation pro-

cesses for authoring.  

The application of ITS technologies has largely been limited to one-to-one, well-

defined tutoring domains where information, concepts, and problems are presented to 

the learner and the learner’s response is expected to correspond to a single correct 

answer.  This works well for mathematics, physics and other procedurally-driven 

domains (e.g., first aid), but not as well for ill-defined domains (e.g., exercises in 

moral judgment) where there might be more than one correct answer and these an-

swers vary only by their level of effectiveness.  It should be a goal of the ITS com-

munity to develop an ontology for use developing and analyzing tutors for ill-defined 

domains.  

Traditional tutors have also been generally limited to static interaction modes 

where a single learner is seated in front of a computer workstation and interaction is 

through a keyboard, mouse, or voice interface.  Methods to increase the learner’s 

interaction and range of motion are needed to move ITS from cognitive and affective 

domains to psychomotor and social interaction domains.  It should be a goal of the 

ITS community to develop additional interaction modes to support increasingly natu-

ral training environments for both individuals and teams as shown in Table 1.  
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Table 1. ITS interaction modes 

 

Automation processes should be developed to support authoring of expert models, 

domain models, and classification models for various learner states (cognitive, affec-

tive, and physical).  Data mining techniques should be optimized to define not only 

expert performance, but also levels of proficiency and expectations based on a persis-

tent (long-term) learner model.  Again, data mining techniques are needed to reduce 

the time and cost to author domain models including automated path planning for 

courses based on the hierarchical relationship of concepts, the development of mis-

conception libraries based on course profiles, feedback libraries (e.g., questions, 

prompts) based on readily available documentation on the internet and from other 

sources .   
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Unwrapping GIFT 

A Primer on Developing with the Generalized Intelligent 

Framework for Tutoring 

 Charles Ragusa, Michael Hoffman, and Jon Leonard 

Dignitas Technologies, LLC, Orlando, Florida, USA 

{cragusa,mhoffman,jleonard}@dignitastechnologies.com 

Abstract. The Generalized Intelligent Framework for Tutoring (GIFT) is an 

open-source, modular, service-oriented framework which provides tools, meth-

ods and services designed to augment third-party training applications for the 

purpose of creating intelligent and adaptive tutoring systems. In this paper we 

provide a high-level overview of GIFT from the technical perspective, and de-

scribe the key tasks required to integrate a new training application. The paper 

will be most helpful for software developers using GIFT, but may also be of in-

terest to instructional designers, and others involved in course development. 

Keywords: Adaptive Tutoring, Intelligent Tutoring, Framework, Pedagogy 

1 Introduction 

The Generalized Intelligent Framework for Tutoring (GIFT) is a framework and tool 

set for the creation of intelligent and adaptive tutoring systems[1-3]. In its current 

form GIFT is largely an R&D tool designed to provide a flexible experimentation 

platform for researchers in the intelligent and adaptive tutoring field. However, as 

GIFT matures, it moves ever closer to becoming a production quality framework suit-

able for use in fielded training systems.  

Generally speaking, GIFT is domain and training application agnostic. And, 

while it can present generic content such as documents, multi-media content, etc.; 

specialized content is typically presented via an external software system, which we 

will refer to as a training application (TA). GIFT provides a standardized way to inte-

grate training applications and includes many tools and services required to transform 

the TA into an intelligent and/or adaptive tutoring system. Services and standards 

include: 

 Standard approach for interfacing training applications  

 Domain knowledge representation (including authoring tool) 

 Performance assessment 

 Course flow (including authoring tool) 

 Pedagogical model including micro and macro adaptation 

 Learner modeling 

mailto:cragusa@dignitastechnologies.com
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 Survey support (with authoring tools) 

 Learning management system 

 Standardized approach for integrating physiological (and other) sensors 

Another key aspect of GIFT is that it is an open source project
1
. Baseline develop-

ment is currently performed by Dignitas Technologies; however, where appropriate, 

community developed capabilities will be rolled back into the baseline. In addition, 

results from current and upcoming experiments, such as pedagogical models, learner 

models, etc. may eventually be incorporated into future releases. Thus, GIFT is an 

evolving and ever-improving system, where individual contributions are re-integrated 

into the baseline for the mutual benefit of all users in the community. 

2 Architecture 

The GIFT runtime environment uses a service-oriented architecture and consists of 

several loosely coupled modules, communicating via asynchronous message passing 

across a shared message bus. Key modules and their primary functions are: 

 Gateway Module: Connects GIFT to third-party training applications. 

 Sensor Module: Connects GIFT to physiological sensors in a standardized way. 

 Learner Module: Models the cognitive, affective, and performance state of the 

learner [4]. 

 Pedagogical Module: Responsible for making domain-independent pedagogical 

decisions, using an internal pedagogical model based on learner state. 

 Domain Module: Performs performance assessment, based on domain-expert 

authored rules, carries out domain specific implementations of pedagogical ac-

tions based on domain-independent pedagogical requests, and (together with the 

pedagogical module) orchestrates course flow. 

 Tutor Module: Presents the user interface for tasks such as presentation of sur-

veys, providing feedback, engaging in two-way dialogues, etc. 

 Learning Management System (LMS) Module: GIFT connection to an exter-

nal learning management system, for the storage and maintenance of learner 

records, biographical data, course material etc. 

 User Management System (UMS) Module: Manages users of the GIFT sys-

tem, manages surveys and survey data, and provides logging functions. 

 Monitor Module: Non-critical module, used as control panel for starting and 

stopping other GIFT modules, and monitoring the state of active GIFT sessions. 

                                                           
1
  GIFT users are encouraged to register on the GIFT portal at 

http://gifttutoring.org.  The site provides access to the latest builds, source code, doc-

umentation, and supports active forums for general discussion and trouble-shooting. 
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3 Getting Started with the GIFT Framework 

3.1 GIFT Messages 

Message Classes. GIFT messages are the sole means of communication between 

GIFT modules. The Message class hierarchy consists of three classes. The Message 

base class includes all boiler-plate message fields such as the time stamp, the payload 

type, an object reference for the optional payload, identification of the source and 

destination modules, etc. Two subclasses add additional fields appropriate for the 

GIFT context, such as User Session ID and Domain Session ID.  

Message Payloads. Many message types transport data in the optional payload. 
To support inter-process communication (IPC), the messages and their payloads must 

comply with an agreed upon encoding and decoding scheme. In GIFT 3.0 the default 

scheme is Java Script Object Notation (JSON). 

 

Message Types. Every GIFT message has an associated type. The various message 

types are enumerated in the class mil.arl.gift.common.enums.MessageTypeEnum.  

3.2 Interfacing a Training Application using the GIFT Gateway Module 

Training Application Considerations. There are two basic requirements that a TA 

must meet for a satisfactory integration with GIFT. The first is a means to transmit 

game state from the TA to GIFT. The second is a way for GIFT to exercise some 

degree of control over the TA. Basic controls such as launching the TA, loading spe-

cific content, and shutting down the TA, are very helpful in making a seamless train-

ing solution, even though they are not strictly required.  

The requirement to communicate game state is immediately met if the TA in-

cludes a facility for communicating via a standardized network protocol such as Dis-

tributed Interactive Simulation (DIS) protocol. In the absence of such a capability, the 

TA must be augmented either by leveraging an existing API or by modifying the 

TA’s source code to allow communication of the game state to GIFT via IPC. 

Control of the TA by GIFT follows a similar pattern. If an existing protocol exists, 

it should be used. If not, then custom development will be required. In addition to 

basic start, load, stop-type control messages, some use cases may require more ad-

vanced interactions, discussion of which is beyond the scope of this document. 

 

 

Creating the Gateway Module Plugin. The process of adapting a TA to the GIFT 

gateway module involves creating a gateway module plugin. When faced with inte-

grating a new TA, a developer should first ask if one of the existing plugins is suitable 

for reuse. GIFT 3.0 includes plugins for: DIS, Power Point, TC3Sim, and VBS2.  

Even if a new plugin is required, these will serve as excellent references. 

When developing a new plugin, the primary objective is to implement a concrete 

subclass of mil.arl.gift.gateway.interop.AbstractInteropInterface. The essential re-

quirements of a new subclass are minimal, but by providing concrete implementations 

for each of the abstract methods, the plugin will seamlessly operate within the gate-
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way module context. Beyond that, the plugin should implement whatever additional 

functionality it requires, such as receiving game state messages from the TA and con-

verting them to GIFT messages, and/or receiving GIFT messages (e.g. SIMAN mes-

sages) and passing them on to the TA in a way that the TA will understand.  

 

 

GIFT Messaging. To complete the integration of the TA with the gateway module, at 

least one GIFT message payload class is needed to represent the game state of the TA.  

Existing message payload classes that have been used with previously integrated TA’s 

include: TC3GameStateJSON, EntityStateJSON, and PowerPointJSON. If any of 

these satisfactorily represents the game state from the new TA, then reusing the exist-

ing message is advised. However, if none of them are suitable, then a new message 

will be required. Any new message payload types should be added to the 

mil.arl.gift.common.enums.MessageTypeEnum class and the appropriate payload 

class(es) added to the mil.arl.gift.net.api.message.codec.json package. 

3.3 Domain Module Modifications and Programming 

 

Overview. At the appropriate time(s) during the execution of a GIFT course, the do-

main module loads a domain-specific file called the domain knowledge file (DKF). 

This XML input file contains the domain specific information required by the domain 

module to carry out several of its key tasks during the learner’s interaction with the 

TA. The first is assessments of the learner’s performance on various training tasks 

encountered during the TA session. It also includes micro-pedagogical mappings of 

learner state (affective, cognitive, and performance) transitions to named instructional 

strategies as well as implementation details of those strategies. 

Integration of any new TA, or even developing a new training course using a pre-

viously integrated TA, will typically require DKF authoring as a primary task. In 

some cases, new custom java coding may also be required, as discussed below. 

 

 

Domain Knowledge File Authoring. Given that DKF files are XML, they can be 

edited with any number of text or XML editors, but the preferred method is to use the 

GIFT-supplied DKF authoring tool (DAT). Using the DAT will enforce the DKF 

schema as well as perform other validation such as checks against external references. 

Before creating a new DKF the user should become familiar with the DKF file 

format, which is described in the file GIFTDomainKnowledgeFile.htm
2
. In addition, a 

GIFT release may include one or more test documents (spreadsheets), one of which 

will contain a step-by-step procedure for authoring a DKF from scratch.  

 

Performance Assessment Authoring. Performance assessment authoring is done with-

in the assessment tag of the DKF file. The basic structure is a task/concept/condition 

                                                           
2
 This and many other documents are contained in the GIFT/docs folder within the 

GIFT source distribution,  which is available for download at 

http://gifttutoring.org 

http://gifttutoring.org/
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hierarchy. Tasks have start and end triggers and a set of concepts. Each concept, in 

turn, will have a set of conditions
3
. It is at the condition level that computation takes 

place. In fact, you’ll notice that each condition tag will contain a conditionImpl tag 

that refers to a java class responsible for carrying out the performance computation 

based upon game state received from the TA and inputs encoded in the DKF. Current-

ly, performance values are limited to: unknown, below expectation, at expectation, 

and above expectation. Beyond the runtime performance assessment, each condition 

also supports a set of authorable scoring rules and evaluators that together determine 

the final score for that condition. When scoring rules are present, learners are present-

ed with an after-action review of their performance at appropriate times and scores are 

written to the LMS. 

 

State Transition Authoring. State transition authoring is performed within the actions 

tag of the DKF. The basic structure is a list of state transitions, each of which repre-

sent a state change in the learner, to which the tutor should react, along with a list of 

strategy choices (options) that may be used when that particular state change is en-

countered. In cases where state transitions refer to the learner’s performance state, the 

state transition will have a reference back to a performance node in the assessment 

section of the DKF.   

 

Instructional Strategy Authoring. Instructional strategy (IS) authoring is also per-

formed within the actions tag of the DKF. Implemented strategies currently include 

learner feedback, scenario adaptations (changes to the currently executing TA scenar-

io), and request for performance assessment by the domain module. Each strategy 

entry references a StrategyHandler, which is a specification of the java class responsi-

ble for handling authored input contained in the DKF file. The linkage to java code 

allows substantial flexibility as will be discussed in the next section. 

 

 

Custom Programming. As described above, the domain module supports a built-in 

scheme for extending its capabilities for both performance assessment and for instruc-

tional strategies. To augment the performance assessment capabilities, a developer 

codes an implementation of the AbstractCondition interface and then references the 

implementation class in the appropriate section of the DKF. The key abstract method 

to be implemented is the handleSimulationMessage
4 

method, which takes in a Mes-

sage as the sole argument, and returns an AssessmentLevelEnum. The message argu-

ment is, of course, a representation of the game state that originates in the TA. Devel-

opers of new condition implementations should strive to make their code as abstract 

as possible to allow for the broadest possible reuse
5
.  

                                                           
3
 This is a simplified description for the sake of readability. In actuality, concepts 

support arbitrarily deep nesting of other concepts (i.e., sub-concepts). 
4
 The method name reflects GIFT’s early development focus on integration with 

simulations such as VBS2. In future releases the name will be likely be changed 

to something more generic, such as, “handleGameStateMessage”. 
5
 Reuse across different TA’s, scenarios, domains, etc. 
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Implementing new instructional strategies is done similarly. Developers provide a 

concrete implementation of the StrategyHandlerInterface and then reference the im-

plementation class within the DKF. A good example of this is seen with providing 

feedback to a learner. In the DefaultStrategyHandler, feedback is presented to the 

learner using the GIFT Tutor User Interface (TUI). However, in a recent experiment, 

alternative presentations of feedback were required. To satisfy this requirement the 

TC3StrategyHandler was developed, which allowed feedback strings to be communi-

cated back to TC3Sim for presentation to the learner directly by TC3Sim. 

3.4 Surveys and Survey Authoring 

GIFT uses the term “survey” to refer generically to any number of interrogative forms 

presented to the learner via the TUI. GIFT supports survey authoring through its Sur-

vey Authoring System (SAS) web application as well as runtime presentation and 

processing of surveys during execution of a GIFT course.  GIFT surveys can be used 

for a variety of purposes including pre, mid, and post lesson competency assessment; 

acquiring biographical and demographic information; psychological and learner pro-

filing; and even for user satisfaction surveys. A variety of useful question and re-

sponse types are supported. Further discussion of the SAS is beyond the scope of this 

document, but interested readers can consult the 

GIFTSurveyAuthoringSystemInstructions.htm for additional information. 

3.5 Course Authoring 

Currently in GIFT, the top-level unit of instruction that learners interact with is a 

called a course, the specification of which is contained in a dedicated course.xml file. 

Prior to GIFT 3.0 a course specified a fixed linear flow through a series of course 

elements; however, with GIFT 3.0 we have introduced support for dynamic flow 

through course elements, based on macroadaptation strategies. 

The primary course elements are surveys, lesson material, and TA sessions. Sur-

vey elements administer GIFT surveys that have been previously authored using the 

SAS. Lesson material elements present browser compatible instructional content such 

as PDF documents, html pages, or other media files. TA sessions support interactive 

sessions with a TA such as VBS2, PowerPoint, or other specialized software systems. 

A fourth course element called “Guidance”, which presents textual messages to the 

learner, exists to support making user-friendly transitions between other course ele-

ments. For example at the conclusion of a survey a guidance element might be used to 

introduce an upcoming TA session.  

Course.xml files are authored using the Course Authoring Tool (CAT). For linear 

flow, the author uses the CAT to specify the various elements of the course along 

with any necessary inputs. For dynamic flow, authoring involves selecting when in 

the course flow a branch point is appropriate. The branch point specifies that the mac-

ro pedagogical model should gather a list of metadata attributes based on the current 

learner state when deemed necessary. This collection of metadata attributes is then 

provided to the domain module as search criteria over the domain content resources 

for the current course. As the search discovers domain content matching the metadata 
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attributes of interest, paradata files are used to drill down the list of possible content 

to display based on usage data. The end result is that the domain module is able to 

present content based on the learner state and pedagogy recommendations. 

3.6 Learner Module 

The Learner Module is responsible for managing learner state, which can include 

short term and predicted measures of cognitive and affective state as well as other 

long term traits. Inputs used to compute state can originate from multiple sources 

including TA performance assessments sent from the domain module, sensor data 

from the sensor module, survey responses, and long term traits stored in the LMS. 

To date, the GIFT team has focused on computing learner state from sensor data 

received from the sensor module. The processing framework employs a pipeline ar-

chitecture which allows the developer to chain concrete implementations of abstract 

data translators, classifiers, and predictors. Customized pipelines can be created for 

each sensor type and/or groups of sensors.  

Creation of pipelines using existing java implementation classes is performed us-

ing the Learner Configuration Authoring Tool, which is launched using scripts/ 

launchLCAT.bat. Currently defined pipelines can be found in 

GIFT/config/learner/LearnerConfiguration.xml.  

Developers requiring customized implementation classes are referred to the API 

docs and source code in the mil.arl.gift.learner package.  Key abstract classes include 

AbstractClassifier, AbstractBasePredictor, and AbstractSensorTranslator. 

Measurement, representation, and application of learner state are areas of active 

research and future version of the GIFT learner module will incorporate relevant re-

search outcomes to enhance its capabilities. 

3.7 Pedagogical Module 

The pedagogical module is responsible for making pedagogical decisions based on 

learner performance and state. Its primary objective is to reason on the available in-

formation, and then influence the training environment to maximize the learning ef-

fectiveness for each individual learner using the system. The rules, algorithms, and 

heuristics that provide the basis for making pedagogical decisions in a domain-

independent way are generally referred to as the pedagogical model. One near term 

goal of GIFT is to provide a framework upon which intelligent tutoring researchers 

can easily integrate, test and validate a variety of pedagogical models. 

In GIFT 3.0, there are two pedagogical models in place: a micro and a macro 

model. The micro model uses the state transitions information authored in the DKFs 

as described in previous sections. The macro model is based on research gathered by 

IST on macro adaptive pedagogy findings [5] which has been encoded as an XML file 

in GIFT. This XML file is used to configure the macro adaptive pedagogical model 

when the pedagogical module is started. The information contains a tree-like structure 

specifying useful metadata for different types of learner state characteristics. This 

model will continue to be developed after GIFT 3.0.  
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3.8 Learning Management System (LMS) Module 

The GIFT LMS module is a surrogate for an external LMS. In the future, a commer-

cial grade LMS system may be integrated to maintain a variety of data, including 

student records, course material, and other learning resources. However, in the current 

version of GIFT, the LMS implementation is an SQL database, designed simply to 

store and maintain learner records for GIFT courses that have been completed. Aside 

from developers engaged in integration of GIFT with a production LMS system, very 

few developers will have a need to modify the LMS module.  

3.9  User Management System (UMS) Module 

The UMS module is supports three major functions: management of users; storage 

and maintenance of the surveys, survey questions and learner responses to surveys; 

and message logging. None of these functions are likely targets for development for 

new GIFT users; however, the logging feature is very important for researchers. 

The UMS-managed log files contain every message sent between the various 

modules during each GIFT session. Using the GIFT Event Reporting Tool (ERT) 

researchers can apply filters to the log files to isolate messages of interest and perform 

analysis and data mining that can be used to construct new models. 

3.10 Tutor Module: User Interface Considerations 

Users interact with GIFT via the TUI, which is a web application that connects to 

GIFT on the back end. As of GIFT 3.0, Internet Explorer 9.0 is the browser of choice, 

in accordance with the current U.S. Army mandate [6]. Learner interactions with the 

TUI include: user login, surveys, feedback, after-action review, interactive dialogues, 

learning material presentation, etc. 

3.11 Monitor Module 

As of GIFT 3.0 the monitor module is largely a tool used to launch various GIFT 

modules and serve as a monitor of a running GIFT session. It is an unlikely develop-

ment target for new GIFT users. Use of the Monitor Module is described in 

GIFTMonitor(IOS-EOS)Instructions.htm. 

3.12 Sensor Module and Sensor Configuration 

The Sensor Module provides a standardized approach to acquiring data from sensors 

measuring some aspect of Learner State. Currently integrated sensors include: EEG 

(Emotiv), Electro Dermal Activity (QSensor), Palm temperature and humidity (via 

instrumented mouse), Zephyr-Technology BioHarness, Inertial Labs Weapon Orienta-

tion Module (WOM), USC/ICT Multisense, and Microsoft Kinect. 

Sensor data are sent to the learner module to become part of the learner state and 

potentially used by the pedagogical module. Time-stamped sensor data are also writ-

ten to log files making them available for post-run analysis by researchers. 
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The sensor module is configured pre-runtime by editing the SensorConfig.xml 

file using the Sensor Configuration Authoring Tool (SCAT). The SensorConfig.xml 

file specifies which sensors should be activated by the sensor module, which plugin 

(java class) to load to access the sensor hardware, as well as any specialized configu-

ration data. In addition, the SensorConfig.xml includes specification of Filters and 

Writers, which control the filtering of raw sensor data and writing of sensor data to 

log files. Users can specify which sensor configuration file is used by editing the 

GIFT/config/sensor/sensor.properties file. 

 Developers using one of the previously integrated sensors can, in most cases, 

limit their focus to editing of the SensorConfig.xml file using the SCAT. Developers 

integrating new sensors will need to write java code. The key coding task for required 

for creating a new sensor plugin is to implement a concrete subclass of 

AbstractSensor. Developers may also want to subclass AbstractSensorFilter and/or 

AbstractFileWriter, though there are default implementations of these classes that will 

suffice for many applications. 

4 Conclusion 

GIFT is a highly configurable and extensible open-source framework designed to 

support a wide range of intelligent and adaptive tutoring applications.  Its modularity 

and configurability make it well suited for a variety of research efforts. 

Configuration and customization opportunities are available at a number of levels 

ranging from minor editing of text-based configuration files to creation of new java 

classes. Basic module settings are configurable in dedicated java properties files lo-

cated in GIFT/config subfolders.  More sophisticated configurations reside in XML 

files, which, depending on the purpose, may reside in a GIFT/config subfolder (e.g. 

SensorConfig.xml) or alongside the domain content (e.g., course.xml and dkf.xml).  

GIFT includes specialized editors/authoring tools for many of these files.  

As an open-source project, users also have the ability to extend GIFT by modify-

ing source code. In key areas where user extensions are anticipated, GIFT uses appro-

priate object oriented abstractions.  Developers are then able to create their own cus-

tomized implementation classes, and specify their use at runtime by edits made to the 

corresponding XML file. 

Interested parties are encouraged to register on the GIFT Portal at 

(http://gifttutoring.org).   
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Abstract. This paper describes the use of the Generalized Intelligent Frame-

work for Tutoring (GIFT) to transition research and findings into use beyond 

publication.  A proposal is submitted to use GIFT as a research platform for 

community development, with examples of how it provides transition opportu-

nities for individual researchers.  Several projects which have already transi-

tioned are discussed, while two projects by the author are specifically shown as 

examples. 

 

Keywords. Intelligent Tutoring Systems, Research Transition 

1 Current Transition Path for Research in the ITS Community 

The Generalized Intelligent Framework for Tutoring (GIFT) development is currently 

performed under contract for the Army Research Laboratory.  There any many rea-

sons why the military is interested in training technology in general, and adaptive 

intelligent training technologies in specific [1].  Fundamentally, the end result of re-

search conducted at ARL is technological advancements which are usable by soldiers, 

or, succinctly, “Technology Driven.  Warfighter Focused”. 

Technology transition is defined as the process of transferring skills, knowledge, 

or ability from research (typically performed at university or Government labs) to 

users who can further develop or exploit these items into products, processes, applica-

tions, or services.  There are many ways for research projects to transition from re-

search to development, to new product, to lifecycle support.  While this innovative 

diffusion may occur solely through technological ‘push’ of publishing or the ‘pull’ 

user adoption, these typically do not occur without a transition partner [2].  Part of the 

purpose of ARL is to function as a transition partner: leveraging technology advances 

made in academic laboratories, developing them into usable products, and transition-

ing them to developmental support roles.  

ITS research has historically transitioned directly to the user, which bypasses the 

developmental and exploitive portions of a traditional transition.  One example of this 

is a project such as the Cognitive Tutor, which bypassed the “external development” 

phase through marketing to local school districts.  Another example includes the 

Crystal Island program, which has also transitioned through collaboration with the 

mailto:Keith.W.Brawner@us.army.mil
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local school districts, rather than an industrial base.  Further examples include 

AutoTutor transition of Operation ARIES through the facilitating intermediary of 

Pearson Education, or GnuTutor through open source software release. 

Researchers generally face competing desires for their project.  As a research 

goal, they desire to perform research, create findings, publish results, and solve inter-

esting problems.  A researcher may have a related goal, which competes for their 

time: the desire for their technology to be useful to a population of users.  Given finite 

resources, the individual or organization must compromise one of these goals to fa-

cilitate the other.  A two-way facilitating transition partner would allow the researcher 

to see their creation used and obtain meaningful feedback while maintaining research 

pursuits. 

ARL in general, and the GIFT project in specific, have a goal of facilitating this 

research transition.  This goal is not empty talk, as the repackaging and transition of 

several research projects has already occurred programmatically.  In addition to being 

an ARL researcher, the author is anticipated to obtain a doctorate at the University of 

Central Florida in August 2013.  Research done at ARL and UCF alike are both tran-

sitioning to the field through the GIFT, and will be described in this paper.  The au-

thor will outline how you can use GIFT to transition your research, give examples of 

projects which have done so, and describe the benefits of this approach. 

2 Proposal for a Community Research Platform 

GIFT is intended to be both a community platform and growing standard [3, 4].  This 

fundamentally offers several advantages, a short selection of which is described be-

low: 

 Like any open source software approach, a researcher or developer is able to 

build upon the work of others.  This magnifies the ability of an individual devel-

oper to contribute. 

 Like any community project, a developer is able to quickly see the use of their 

work.  An individual developer/researcher is able to quickly access a population 

of users of their research, which magnifies their individual impact. 

 ITS technology can be leveraged against a broad amount of training content, 

while keeping the same core functionality.  This magnifies the use of the product. 

 The ITS technology can improve through various software versions, which im-

proves learning while costing little or nothing for implementation.  Content is 

used in a more useful fashion, making the use of an incrementally updated project 

attractive. 

 A researcher or developer can use standardized tools to create, modify, or adjust 

individual items for the purpose of experimentation, evaluation, and validation. 

 Experimental comparisons can be conducted fairly at multiple locations, with 

multiple populations.  This allows the research conducted within the framework 

to be fairly compared. 

 A researcher can leverage tools which make the interpretation of data easier.  A 

shared set tools has been of aid to other researchers in Educational Data Mining 

[5]. 
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3 Re-GIFT-ing: models of transition 

There are several models of transition which can be used with varying levels of re-

searcher interaction and levels of opportunity.  Transition into GIFT may be through a 

tool, a compatible software or hardware product, a plug-in, a releasable item, or a 

piece of software integrated into an official baseline.  These differing modes of transi-

tion are summarized in Error! Reference source not found. alongside the required 

user interaction, an example of a project which has followed this transition path, and 

the potential impact that it has to the field. 

The first project to discuss is the tool created by the Personalized Assistant for 

Learning (PAL) for data analysis [6].  During the course of a PAL experiment with 

GIFT, the developers found it helpful to have a tool to parse through GIFT data.  Af-

ter developing this tool, they provided this it back to the community through simply 

posting it on the http://www.gifttutoring.org forums.  An author following this transi-

tion path may host a “GIFT tool” on their own site, make it available to only their lab, 

or other method.  To the author’s knowledge, no one has used or modified this tool 

outside of their laboratory.  However, others have the opportunity to use this tool and 

improve on it, and its functionality has directed the development of a more thorough 

tool available within the GIFT Release: the Event Reporting Tool (ERT). 

The next project, and method of transition, to discuss is the eMotive EEG library.  

The eMotive EEG was found helpful in other research conducted by the author [7], 

and was incorporated into GIFT as a software library interface.  The purchase of an 

eMotive EEG headset gives the developer access to the library.  The fact the GIFT 

supports easy integration of the sensor makes it so that each GIFT user is a potential 

eMotive customer, which benefits eMotive.  Transition of research as a “GIFT com-

patible” product involved little interaction with the developers, but may be unsup-

ported in future releases.  While developer involvement is low, the potential impact is 

similarly low. 

Continuing to use sensors as an example, the next project to discuss is the Q-

Sensor project, which transitioned in a way which is different from the previous ver-

sions.  All software required to integrate an Affectiva Q-Sensor is provided freely to 

the GIFT community, as part of a “GIFT plugin”.  Changes made to the Q-Sensor 

are supported in future versions of GIFT and the plugin is released in the current 

GIFT 3.0 version.  To date, this type of transition has resulted in the use of Q-Sensor 

technology in a minimum of two different experiments, with three pilot trials.  This 

has occurred with little interaction from the Q-Sensor developers. 

There are now several complete programmed packages which are released with 

the GIFT version.  One of these is the medical instruction and assessment game 

“vMedic“, which contains several scenarios which have GIFT tutoring.  Another ex-

ample is the Human Affect Recording Tool (HART), developed by Ryan Baker [8], 

which enables affective coding of behavior.  Both of these programs have reached a 

wider audience through leveraging “GIFT releasable” transition, with some work 

required by the developer.  The developer of each of these programs targeted use 

within GIFT as part of the model of development.  Each of these programs is provid-

ed back to the community as downloadable software packages on 

www.gifttutoring.org.  In this fashion, the vMedic program has reached a significantly 

wider audience and the HART app has seen distribution and citation. 

http://www.gifttutoring.org/
http://www.gifttutoring.org/
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Lastly, one can transition source code directly into the GIFT baseline via a 

“GIFT integration”, in anticipation of the next release.  The work required to inte-

grate into the GIFT framework is done by the developer, before giving it back to 

www.gifttutoring.org.  While this requires more work, it is able to reach a wider audi-

ence, and is automatically carried forward into each future release.  This is the only 

release path which is thoroughly tested and vetted prior to each version.  This allows 

for the broadest application of the developed technology. 

Table 2. Examples of various GIFT transitions, projects which used this transition method, and 

levels of interaction provided 

Type of 

Transition 

Example of 

project 

User 

interaction 

Potential 

Impact 

GIFT tool PAL Tool None Low 

GIFT compatible eMotive EEG None Low 

GIFT plug-in Q-Sensor Low Medium 

GIFT releasable HART, 

vMedic 

Medium Medium 

GIFT integration GSR filtering, 

MultiSense 

High High 

 

4 Two Research Transition Stories: GSR Filtering, realtime 

modeling 

In this section, the author will tell two stories research transition where first-hand 

experience was obtained.  The first of these stories involves the transition of a new 

GSR sensor filtering method, available in GIFT 2.0, while the second focuses on a 

larger piece of work which has intended availability in GIFT 4.0.  The aim of this 

section is to give an example of how an idea becomes a deliverable. 

 

4.1 GSR Filtering 

The first project idea is that a realtime sensor filter may be able to collect meaningful 

measures of affective/cognitive state in realtime.  The idea behind this project is that 

the author was unaware of relevant feature extraction techniques, or implementations, 

for several datastreams of interest.  A dataset was used which collected both ECG and 

GSR measures while participants experienced various training events [7].  It was hy-

pothesized that meaningful measures of cognition and affect could be extracted from 

these sensor datastreams. 

It was found that meaningful measures of cognition and affect could be extracted, 

including statistical measures and signal power measures, borrowing from the field of 

digital signal processing.  It is possible that these techniques could be leveraged into 

an intelligent tutoring system.  These results were then published [9]. 

Just because a method has been published to be useful does not mean that indus-

trial or academic partners and collaborators will take it upon themselves to read an 

http://www.gifttutoring.org/


 24 

academic paper, implement the algorithm, and put it in their system.  The more that 

an individual developer can do to help this process, the quicker transition of the re-

search will be [2].  One way to do this is to merge the work of a researcher with a 

project which is already transitioning to industry.  GIFT represents this possibility. 

The idea, project, and paper on GSR filtering has transitioned into GIFT via the 

“GIFT integration” route.  Every researcher which downloads GIFT (which is com-

patible with a GSR sensor) is able to implement the developed feature extraction, do 

their own experiment and draw their own conclusions.  Furthermore, any ITS con-

structed from the GIFT framework and tools already has this implementation, and the 

development of a student model which uses this information progresses a significant 

step towards reality.  The ECG filtering from the same paper is intended to be re-

leased GIFT 4.0. 

To date, GSR filtering algorithms have now been provided to over 100 research-

ers and developers.  The author hopes that his work will be found valuable.  In either 

case, the developed research has been placed in the hands of numerous users, which is 

more valuable than publication alone.  If the work is not found valuable, the author 

would hope that the other researchers are able to improve on the technique, and feed 

the results to other researchers through a similar transition path. 

 

4.2 Realtime modeling 

The second project idea is that individualized models of learner affect/cognition may 

be able to be created in realtime.  The idea behind the second project is that general-

ized models of affect and cognition are difficult to create.  Individualized models can 

be made, but their quality is known to degrade over time [10].  Realtime modeling 

and adaptive algorithms may present a solution to the problem. 

The realtime modeling project used two datasets [11] and constructed seven total 

classifiers.  The approach used four different types of classification techniques, in-

cluding neural gasses, resonance theory, clustering, and online linear regression.  

Each of these techniques was developed with three different schemes for labeling 

data, including unsupervised, semi-supervised, and fully-supervised. 

It was found that semi-supervision had significant contribution to the overall ac-

curacy of the problem.  It was also found that realtime affective models could be cre-

ated with reasonable quality, and that realtime cognitive models are a more difficult 

problem that requires alternate means in conjunction with the methods presented.  

These results will be published as a doctoral dissertation later in the year. 

Realtime student state assessment is anticipated to be available within GIFT 4.0.  

Targeting GIFT as a research transition allows industry and academia to benefit from 

the research, and targets a larger and different audience than publication.  Once again, 

transition of research through GIFT allows larger access, experimentation, citation, 

and overall exposure. 

5 Conclusion/Recommendations 

GIFT is a functional Intelligent Tutoring System which has been used as part of sev-

eral experiments.  Research which transitions into GIFT has the potential to be used 
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by a population of learners, instructional designers, and experimenters.  Each of these 

user groups is anticipated to have their own user interface, which can make use of the 

research transitioned into GIFT, in whichever fashion is implemented. 

In addition, GIFT is intended as a research platform, and Army Research Labora-

tory has plans for development out to 2017.  A research transition into GIFT, in any 

fashion, should be able to reach a community of users for the next four years, at a 

minimum.  The project has potential longevity beyond 2017, with funding from the 

Army, DoD, or others.  Even if not supported by the Army, it will remain in the pub-

lic domain, able to be improved by anyone in the community.  Using GIFT as an exit 

vector for research ideas has more potential than simple publication, or of hosting an 

open source project. 

Furthermore, the licensing agreement on GIFT does not hinder the individual re-

searcher from capitalizing on their ideas.  Two for-profit companies have targeted 

GIFT as a technology which can support the ability to commercialize their ideas, 

while others have been in conversation.  Other research organizations have proposed 

or used GIFT to widen their audience and to focus their expertise. 

This paper has discussed how some research technology has already transitioned 

to the field using the GIFT entry vector, and how other portions are intended.  The 

concept which the author presents in this workshop paper and presentation is that it is 

possible to use GIFT as a platform to transition research results into the field of use, 

while minimizing the effort required by the researcher. 
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Abstract. Computer-Based Tutoring Systems (CBTS) are grounded in instruc-

tional theory, utilizing tailored pedagogical approaches at the individual level to 

assist in learning and retention of associated materials. As a result, the effec-

tiveness of such systems is dependent on the application of sound instructional 

tactics that take into account the strengths and weaknesses of a given learner. 

Researchers continue to investigate this challenge by identifying factors associ-

ated with content and guidance as it pertains to the learning process and the lev-

el of understanding an individual has for a particular domain. In terms of exper-

imentation, a major goal is to identify specific tactics that impact an individu-

al’s performance and the information that manages their implementation. The 

Generalized Intelligent Framework for Tutoring (GIFT) is a valuable tool for 

this avenue of research, as it is a modular, domain-independent framework that 

enables the authoring of congruent systems that vary in terms of the research 

questions being addressed. This paper will present GIFT’s design considera-

tions for use as an experimental testbed, followed by the description of a use 

case applied to examine the modality effect of feedback during game-based 

training events. 

Keywords: generalized intelligent framework for tutoring, instructional strate-

gies, testbed, feedback, experimentation 

1 Introduction 

The overarching goal of Computer-Based Tutoring Systems (CBTSs) is to enable 

computer-based training applications to better serve a leaner’s needs by tailoring and 

personalizing instruction [1]. Specifically, the goal is to achieve performance benefits 

within computer-based instruction as seen in Bloom’s 1984 study “the 2-Sigma Prob-

lem”. Though there is recent debate on the validity of these results [2], this classic 

experiment showed that individuals receiving one-on-one instruction with an expert 

tutor outperformed their fellow classmates in a traditional one-to-many condition by 

an average of two standard deviations. The success of this interaction is in the ability 

mailto:%7bbenjamin.s.goldberg@us.army.mil%7d
mailto:%7bjcannonb@health.usf.edu%7d
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of the instructor to tailor the learning experience to the needs of the individual. Inter-

action is based on the knowledge level of the learner as well as their performance and 

reaction (i.e., cognitive and affective response) to subsequent problems and commu-

nications [3]. 

With the recent development of the Generalized Intelligent Framework for Tutor-

ing (GIFT; see Figure 1), a fundamental goal is to develop a domain-independent 

pedagogical model that applies broad instructional strategies identified in the litera-

ture.  This framework would then be used to author adaptive environments across 

learning tasks to produce benefits accrued through one-on-one instruction. At the core 

of GIFT is pedagogical modeling, which is associated with the application of learning 

theory based on variables empirically proven to influence performance outcomes [4]. 

According to Beal and Lee [5] the role of a pedagogical model is to balance the level 

of guidance and challenge during a learning event so as to maintain engagement and 

motivation. The notion for GIFT is to identify generalized strategies on both a macro- 

and micro-adaptive level that can be used to author specific instructional tactics for 

execution in a managed ITS application. The pedagogical model uses data on ‘Who’ 

is being instructed, ‘What’ is being instructed, and the ‘Content’ available from which 

to instruct. In an ideal case, GIFT can identify recommended strategies based on this 

information, and also provide tools to convert those strategies into specific instruc-

tional tactics for implementation.  

 

 

Fig. 3. Generalized Intelligent Framework for Tutoring (GIFT) 

Before this conceptual approach of GIFT can be realized, a great deal work needs 

to be done to identify strategies found to consistently affect learning across multiple 

domains (codified in the pedagogical model) and the variables that influence the se-

lection of these strategies (expressed in the learner model). In the remainder of this 

paper, we describe GIFT’s functional application as an experimental testbed for con-

ducting empirical research, followed by a descriptive use case of a recent instructional 

strategy-based experiment examining the effect varying modalities of feedback deliv-

ery have on learner performance and engagement within a game-based environment.  
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1.1 GIFT’s Testbed Functionality 

For GIFT to be effective across all facets of learning, there are a number of research 

questions that need to be addressed. These include, but are not limited to: (1) How can 

GIFT be used to manage the sequence, pace, and difficulty of instructional content 

before a learning session begins, as well as how to adapt instruction in real-time based 

on learner model metrics?; (2) What information is required in the learner model to 

make informed decisions on instructional strategy selection?; (3) How can GIFT best 

manage guidance and feedback during a learning session based on competency and 

individual differences?; and (4) What is the optimal approach for delivering GIFT 

communications to a learner during system interaction?  

While GIFT provides the tools necessary to author and deliver adaptive learning 

applications, an additional function of the framework is to operate as a testbed for the 

purpose of running empirical evaluations on research questions that will influence 

future developmental efforts. Empirically evaluating developed models and tech-

niques is essential to ensuring the efficacy of GIFT as a sound instructional tool. To 

accommodate this requirement, while maintaining domain-independency, GIFT’s 

design is completely modular. This allows for the swapping of specific parts within 

the framework without affecting other components or models. Modularity enables 

easy development of comparative systems designed to inform research questions 

above. The framework is structured to support a variety of experimental design ap-

proaches, including ablative tutor studies, tutor vs. traditional classroom training 

comparisons, intervention vs. non-intervention comparisons, and affect modeling and 

diagnosis research [6]. The descriptive use case illustrated next is based on an inter-

vention comparison approach.    

2 GIFT Experimental Use Case 

In this section, we describe in detail the process of using GIFT to design and run a 

study to evaluate varying methods for communicating information to a learner while 

they interact with a game-based environment. This experiment was designed to exam-

ine varying modality approaches for feedback information delivery during a game-

based learning event that is not implicit within the virtual environment (i.e., feedback 

in the scenario as a result of a player/entity or environmental change). This is influ-

enced by available features present in the GIFT architecture and the benefits associat-

ed with research surrounding learning and social cognitive theory [10-11]. The notion 

is to identify optimal approaches for providing social agent functions to deliver feed-

back content that is cost effective and not technically intensive to implement. As a 

result, research questions were generated around the various communication modali-

ties GIFT provides for relaying information back to the learner. 

A functional component unique to GIFT is the Tutor-User Interface (TUI). The 

TUI is a browser-based user-interface designed for collecting inputs (e.g. survey and 

assessment responses) and for relaying relevant information back to the user (e.g. 

performance feedback). In terms of providing real-time guided instruction, the TUI 

can be used as a tool for delivering explicit feedback content (i.e., guidance delivered 
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outside the context of a task that relays information linking scenario performance to 

training objectives) based on requests generated from the pedagogical model. Because 

the TUI operates in an internet browser window, it supports multimedia applications 

and the presence of virtual entities acting as defined tutors. As a potential driver for 

interfacing with a learner, research is required to evaluate feedback delivery in the 

TUI and assess its effectiveness in relation to other source modality variations. The 

overarching purpose of the described research is to determine how Non-Player Char-

acters (NPCs) can be utilized as guidance functions while learning in a virtual world 

environment and to identify tradeoffs among the varying techniques.  

Research questions were generated around the limitation associated with using 

the TUI during game-based instruction. For a virtual human to be present in the TUI, 

it requires a windowed display of the interfacing game so the browser can be viewed 

in addition to the game environment, which may take away from the level of immer-

sion users feel during interaction; thus removing a major benefit with utilizing a 

game-based approach in education. Specifically, this study will assess whether explic-

it feedback delivered by NPCs embedded in a scenario environment has a significant 

effect on identified dependent variables (e.g., knowledge and skill performance, and 

subjective ratings of flow, workload, and agent perception) when compared to exter-

nal NPC feedback sources present in the TUI. In terms of serious games, the current 

research is designed to address how the TUI can be utilized during game-based inter-

actions and determine its effectiveness versus more labor intensive approaches to 

embedding explicit feedback directly in the game world.  

This experiment was the first implemented use of GIFT functioning as a testbed 

for empirical evaluation. During the process of its development, many components 

had to be hand authored to accommodate the investigation of the associated research 

questions. This involved integration with multiple external platforms (e.g., serious 

game TC3Sim, the Student Information Models for Intelligent Learning Environ-

ments (SIMILE) program, and Media Semantics); development of scenarios, training 

objectives, assessments, and feedback; exploration of available avenues to communi-

cate information; and representing these relationships in the GIFT schema. In the 

following subsections, we will review the process associated with each phase listed 

above.  

2.1 Testbed Development 

GIFT provides the ability to interface with existing learning platforms that don’t have 

intelligent tutoring functions built within. In these games, learners are dependent on 

implicit information channels to gauge progress towards objectives. Integrating the 

game with GIFT offers new real-time assessment capabilities that can be used to pro-

vide learner guidance based on actions taken within the environment that map to as-

sociated performance objectives.  

For the instance of this described use case, the serious game TC3Sim was select-

ed as the learning environment to assess the effect of differing feedback modality 

approaches. TC3Sim is designed to teach and reinforce the tactics, techniques, and 

procedures required to successfully perform as an Army Combat Medic and Combat 

Lifesaver [7]. The game incorporates story-driven scenarios designed within a game-
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engine based simulation and uses short, goal-oriented exercises to provide a means to 

train a closely grouped set of related tasks as they fit within the context of a mission 

[8]. Tasks simulated within TC3Sim include assessing casualties, performing triage, 

providing initial treatments, and preparing a casualty for evacuation under conditions 

of conflict (ECS, 2012). For the purpose of the experiment, GIFT had to be embedded 

within TC3Sim for the function of monitoring performance to trigger feedback that 

would ultimately influence data associated with the dependent variables of interest.  

This required pairing of the two systems so that GIFT could consume game state 

messages from TC3Sim for assessment on defined objectives, and for TC3Sim to 

consume and act upon pedagogical requests coming out of GIFT. For this to happen, a 

Gateway Module had to be authored that serves as a translation layer between the two 

disparate systems. The Gateway Module was also modified to handle feedback re-

quests that were to be delivered by programs external to the game. This included inte-

gration with MediaSemantics, desktop and server software that provides character-

based applications and facilitated the presence of a virtual human in the TUI that 

would act as the tutor entity. Following, enhancements to the Communication Mod-

ule/TUI had to be employed to support the variations in feedback modalities.  

 

 

Fig. 4. Feedback Communication Modes 

Communication Development. The functional component of GIFT primarily as-

sessed in this research is the Communication Module/TUI, and focused on interfacing 

approaches for delivering feedback communications during a game-based learning 

event. For this purpose the major variations associated with the framework took place 

in GIFT’s TUI, as well as identifying approaches for GIFT to manage agent actions 

within a virtual environment. This required two GIFT/TC3Sim versions with modifi-

cations to how the game was visually represented (see Figure 2). With a windowed 

version of the game, the MediaSemantics character was embedded into the TUI 

browser and was programmed to respond to feedback requests coming out of the do-

main module. Furthermore, two additional control conditions were authored to assess 

whether feedback delivered as audio alone made a difference and a condition with 

zero feedback to determine whether the guidance had any effect on performance. All 
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participants interacted with the same scenarios, with two conditions including an EPA 

present in the virtual environment as an NPC. The remaining conditions will receive 

feedback from external sources to the game. With the functional modifications in 

place, the next step was designing scenarios, assessments, and feedback scripts.  

 

Scenario Development. With the ability to apply varying techniques of feedback 

delivery during a game-based learning event, the next step was to design a scenario in 

TC3Sim to test the effects of all approaches. This requires multiple steps to ensure 

scenario elements are appropriate so that they lend to accurate inference based on the 

associated data captured during game interaction. This involved the definition of 

learning objectives the scenario would entail, associated assessments to gauge per-

formance on objectives, and feedback to apply when performance was deemed poor.  

Objectives were informed by competencies identified in ARL-STTC’s Medical 

Training Evaluation Review System (MeTERS) program, which decomposed applied 

and technical skills for Combat Medics and Combat Lifesavers into their associated 

tasks, conditions, and standards for assessment purposes (Weible, n.d.). In develop-

ment of the TC3Sim, the identified competencies were further decomposed into spe-

cific learning objectives in terms of enabling learning objectives and terminal learning 

objectives for each role and task simulated in the game environment. With guiding 

specifications, a scenario was developed that incorporated decision points for treating 

a hemorrhage in a combat environment. The scenario was designed to be difficult 

enough that participants would struggle, resulting in triggered feedback, while not 

being too difficult that successfully completing the task was impossible.  

However, before explicit feedback linked to performance can be delivered in 

game-based environment, methods for accurately assessing game actions as they re-

late to objectives is required. The first step to achieve this is properly representing the 

domain’s objectives within GIFT’s Domain Knowledge File (DKF) schema by struc-

turing them within the domain and learner model ontology. This creates a domain 

representation GIFT can make sense of, and results in a hierarchy of concepts that 

require assessments for determining competency. This association enables the system 

to track individual enabling objectives based on defined assessments, giving the diag-

nosis required to provide relevant explicit feedback based on specific actions taken. 

Following, methods for assessing the defined concepts must be applied that provide 

information for determining whether an objective has been satisfactorily met. For this 

purpose, ECS’s Student Information Models for Intelligent Learning Environments 

(SIMILE) was integrated within GIFT.  

 

Student Information Models for Intelligent Learning Environments (SIMILE). An 

innovative tool used in conjunction with TC3Sim for the purpose standardized as-

sessment is SIMILE (ECS, 2012). In the context of this use case, SIMILE is a rule-

engine based application used to monitor participant interaction in game environ-

ments and is used to trigger explicit feedback interventions as deemed by GIFT’s 

learner and pedagogical models. In essence, SIMILE established rule-based assess-

ment models built around TC3Sim game-state messages to generate real-time perfor-

mance metric communication to GIFT. SIMILE monitors game message traffic (i.e., 

ActiveMQ messaging for this instance) and compares user interaction to pre-

established domain expertise defined by procedural rules. As user data from gameplay 



 33 

is collected in SIMILE, specific message types pair with an associated rule authored 

and look for evidence determining if the rule has been satisfied; that information is 

then communicated to GIFT, which establishes if there was a transition in perfor-

mance. Next, that performance state is passed to the learner model. GIFT interprets 

SIMILE performance metrics for the purpose of tracking progress as it relates to ob-

jectives. When errors in performance are detected, causal information is communicat-

ed by SIMILE in to GIFT, which then determines the feedback string to deliver.  

 

Feedback Development. Following the completion of linking GIFT’s domain repre-

sentation with SIMILE-based assessments, specific feedback scripts had to be au-

thored that would be presented when the pedagogical model made a ‘feedback re-

quest’. In the design phase of these prompts, it was recognized that GIFT is dependent 

on a transition in performance before the pedagogical model can make any decision 

on what to do next. In the case of the TC3Sim scenario, this requires the player to 

perform certain actions that denote competency on a concept, but a question is, what 

information is available to determine they were ignoring steps linked to an objective?  

From this perspective, it was recognized that time and entity locations are major 

performance variables in such dynamic operational environments. Outcomes in hos-

tile environments are context specific, and time to act and location of entities are criti-

cal metrics that require monitoring. From there, if a participant had not performed an 

action in the game or violated a rule that maps to an associated concept, GIFT could 

provide reflective prompts to assist the individual on what action to perform next. An 

example applied in the experiment is ‘Maintain Cover’. This requires staying out of 

the streets while walking through a hostile urban environment. For assessment, the 

player’s distance from the street center was monitored, with a defined threshold des-

ignating if they maintained appropriate cover. For each concept, rules based on time 

and locations were identified, and reflective prompts were authored for each concept. 

Following, audio for each feedback prompt was recorded. This was the final step 

before the system could be fully developed.  

3 Data Collection and Analysis Prep 

Data collection was conducted over a five-day period at the United States Military 

Academy (USMA) at West Point, NY where a total of 131 subjects participated. This 

resulted in 22 participants for each experimental condition minus the control, which 

totaled at 21 subjects. The lab space was arranged for running six subjects at a time, 

with two experimental proctors administering informed consents and handling any 

technical issues that arose during each session. Once a subject logged in, GIFT man-

aged all experimental procedures and sequencing, allowing the proctors to maintain 

an experimenter’s log for all six machines. This feature shows the true benefit of 

GIFT in an experimental setting. Once properly configured, GIFT administers all 

surveys/tests and opens/closes all training applications linked to the procedure, thus 

reducing the workload on the experimental proctor and enabling multiple data ses-

sions to be administered at a single time. GIFT offers the Course Authoring Tool 

(CAT) to create the transitions described above. A researcher can author the sequence 
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of materials a participant will interact with, including transition screens presented in 

the TUI that assist a user in navigating through the materials.  

Following the experimental sessions, data must be extracted from associated log 

files and prepped for analysis. A tool built into GIFT to assist with this process in the 

Event Reporting Tool (ERT). The ERT enables a researcher to pull out specific pieces 

of data that are of interest, along with options on how the data is represented (i.e., user 

can determine if they would like to observe data in relation to time within a learning 

event or to observe data between users for comparison). The result is a .CSV file con-

taining the selected information, leaving minimal work to prepare for analysis. In this 

use case, the majority of analysis was conducted in IBM’s SPSS statistical software, 

with the ERT playing a major role in the creation of the master file consumed by the 

program. This drastically reduced the time required to prep data for analysis, as it 

removed the need to input instrument responses for all subjects, it structured the data 

in a format necessary for SPSS consumption (i.e., each row of data represents an indi-

vidual participant), and produced variable naming conventions listed on the top row.  

4 The Way Ahead 

GIFT provides a potent testbed in which studies of instructional techniques can be 

evaluated. Specifically, it allows researchers to investigate how best to implement 

tenants of intelligent tutoring, including optimal mechanisms for tracking perfor-

mance, providing feedback and improving outcomes. At the current moment, GIFT 

provides limited feedback mechanisms that are generally used as formative prompts 

for correcting errors and reaffirming appropriate actions. New feedback approaches 

must be explored, such as natural language dialog, to expand the available options for 

relaying information in game environments. As well, research needs to identify ap-

proaches for using environmental cues in the game world to act as feedback functions 

informed by GIFT. In terms of GIFT as a testbed, advancements need to be applied to 

the ERT in terms of how data is exported to ease the required post-processing leading 

to analysis. This includes the ability to segment data in log files based around defined 

events in the environment that are of interest in analysis. Future research can build on 

the use case presented and/or conceptualize other investigations that benefit from 

GIFT. 
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Abstract. In an effort to bring intelligent tutoring system (ITS) authoring tools 

closer to content authoring tools, the authors are working to integrate GIFT with 

the Unity game engine and editor. The paper begins by describing challenges 

faced by modern intelligent tutors and the motivation behind the integration ef-

fort, with special consideration given to how this work will better meet the 

needs of future serious games. The next three sections expand on these major 

hurdles more thoroughly, followed by proposed design enhancements that 

would allow GIFT to overcome these issues. Finally, an overview is given of 

the authors’ cur- rent progress towards implementing the proposed design. The 

key contribution of this work is an abstraction of the interface between intelli-

gent tutoring systems and serious games, thus enabling ITS authors to imple-

ment more complex training behaviors. 

Keywords: intelligent tutoring, serious games, virtual environments, game en-

gines 

1 Introduction 
 

Experience with the Generalized Intelligent Framework for Tutoring (GIFT) has 

shown that authoring new courses, domain knowledge, and learner configurations 

requires little-to-no programming experience. A basic understanding of XML and 

how the modules of GIFT interact is sufficient to design and configure a course for 

one of the supported training applications. When it comes to extending the framework 

to support new training applications, however, each interface module must be hand-

crafted. Reducing the amount of effort required to author a tutor and its content is a 

desirable quality of future authoring tools [1], therefore the task of integrating new 

training applications should be made as seamless as possible. 

Serious games are one example of training applications that are well-suited for 

integration with ITSs; two such games are already supported by GIFT: Virtual 

Battlespace 2 (VBS2) and TC3 vMedic. These games encompass a only a subset of 

the training material that is possible with serious games, however. There are certain 

aspects of this genre of game are common across all individual applications, meaning 

that it may be possible to create a single abstraction layer capable of decoupling GIFT 

from the training application. This approach is recommended by Sottilare and Gilbert, 

mailto:gilbert%7d@iastate.edu
http://www.iastate.edu/
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who suggest that such an abstraction layer might be able to translate learning objec-

tives into meaningful objects actions in the game world, and vice versa [2]. 

In addition to adapting data about the game state to a format that the ITS expects, 

it is also desirable for the ITS to have a finer degree of control over the scenario itself.  

These so-called “branching” or “conditional” scenarios [2] are difficult to achieve if 

the serious game and its plugin API are not designed with such functionality in mind. 

Therefore, it may also be necessary to “standardize” the ability to branch scenarios in 

the design of serious games. 

To these ends, our proposed solution is to bring the ITS authoring tools closer to 

the content authoring tools used to create a given serious game. In the case of this 

paper, we have chosen to work with the popular Unity game engine. In the following 

sections we will show how integration with Unity and other serious game authoring 

tools can achieve the functionality that is currently desired in a modern ITS authoring 

suite. 

2 Current Authoring Capabilities 
 

As stated by Sottilare et. al, authoring new intelligent tutors is one of the three prima-

ry functions of GIFT [3]. To this end, the framework already contains authoring tools 

that enable users to create and configure the essential elements of an intelligent tutor-

ing program. The following list gives a brief overview of the current authoring capa-

bilities supported by GIFT: 

 Authoring learner models through the Learner Configuration Authoring Tool 

(LCAT) 

 Configuring sensors through the Sensor Configuration Authoring Tool (SCAT) 

 Authoring Domain Knowledge Files (DKFs) through the DKF Authoring Tool 

(DAT) 

 Creating and presenting surveys through the Survey Authoring Tool (SAT) 

 

By using good design principles, the authors of GIFT have been able to effective-

ly decouple the authoring of individual tutor components from one another. The de-

coupling of different program elements is important for improving the maintainability 

and extensibility of large pieces of software such as GIFT. One area of the framework 

design that suffers from tight coupling is the integration of third-party training appli-

cations, e.g. VBS2, vMedic, etc.  

The development of these authoring tools is guided by several design goals, one 

of which is to “Employ standards to support rapid integration of external train-

ing/tutoring environments.” [3] In this regard, the current GIFT authoring construct 

can benefit from design enhancements that standardize this process across a range of 

training applications. Through the work outlined in this paper, we aim to generalize 

the process of integrating serious games with GIFT by creating an abstraction layer 

between GIFT and the game engine itself. 
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3 Related Work 
 

Prior work in integrating serious games and intelligent tutors has demonstrated that 

ITS authoring tools can be easily adapted to work with individual games. Research 

conducted by Gilbert et al. demonstrated interoperation between the Extensible Prob-

lem-Specific Tutor (xPST) and a scenario created in the Torque game engine [4].  

Devasani et al. built upon this work and demonstrated how an authoring tool for 

interpreting game state and player actions might be designed [5]. For their work, 

xPST was integrated with a VBS2 scenario. An important revelation made by the 

authors was that the author of the tutor need not define a complete state machine with 

transitions, since these transitions are implicit when the game engine changes state 

each frame.  

Another of the GIFT design goals is to “Develop interfaces/gateways to widely 

used commercial and academic tools.” [2] As previously mentioned, the current GIFT 

release has support for two serious games, one of which is VBS2, and the other being 

vMedic. This work and the previous two examples highlight the usefulness of inte-

grating intelligent tutors with serious games, as well as the need for a standardized 

interface for authoring relationships between the game objects and tutor concepts.  

There are currently no concrete examples of a standard for quickly integrating serious 

games and intelligent tutors, although Sottilare and Gilbert make recommendations on 

how this problem might be approached [2]. 

4 Design Enhancements 
 

As noted by previous authors [2, 4], one of the key challenges of tutoring in a virtual 

environment is mapping relevant game states to subgoals defined by the training cur-

riculum. If the learner's goal is to move to a specific location, for example, the tutor 

author may not be interested in how the learner reached that state (e.g., driving, walk-

ing, or running). Thus, the tutor would have to know to filter out information from the 

game engine about modality of movement, and attend only to the location. If, howev-

er, the trainer wants to focus on exactly how best to move to that location (e.g., 

stealthily), then the tutor does need to monitor movement information. Using this 

example, we see that the context of the pedagogical goal influences the type of and 

granularity of tutor monitoring. From here on, we will refer to this challenge as the 

“observation granularity challenge.” 

In the process of reaching each pedagogical goal, the learner will build up a histo-

ry of actions. Similar to the concept of a context attached to goals, there can also be 

context attached to patterns of actions over time. As an example, there may be cases 

where a tutor would permit errors in subgoals within a larger pattern of actions that it 

would still deem “successful.” This history is essentially a recording of the virtual 

environment state over the course of the training. The amount and diversity of data in 

this history stream is potentially massive, creating a major challenge when attempting 

to recognize patterns. The problem of recognizing these patterns is crucial for identi-

fying the learner's progress. From here on, we will refer to this challenge as the “his-

tory challenge.” 
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In addition, because game environments afford interaction among multiple simul-

taneous entities, the tutor's reaction to actions and other new game states may be de-

pendent on the actor. This context dependence suggests that it would be a valuable to 

add game entity attributes to state updates, and for GIFT to be able to process logic 

such as, “If the gunshot action came from an entity that is unknown or hostile, then 

take action X.  If the gunshot came from a friend entity, take action Y.” The addition-

al layer of entity attributes adds complexity to authoring, but will be necessary for 

modeling team and social interactions. Devasani et al. describes a possible state-based 

architecture that could be the basis for such an approach, and it could be incorporated 

into GIFT [4]. From here on, we will refer to this challenge as the “actor-context chal-

lenge.” 

4.1 Abstraction Layer 

 

A core aspect of the design principles behind GIFT is its generalizability to new train-

ing applications and scenarios. For this reason it is critical that the representations of 

data in GIFT and in the training application be allowed to remain independent. It is 

infeasible to force training applications to adapt to the interfaces that GIFT provides.  

However, a layer of abstraction that adapts messages from a sender into a form that 

can be consumed by a receiver is similar to the classic Adapter design pattern in soft-

ware engineering. This design pattern has the useful property of enabling two other-

wise incompatible interfaces to communicate, in addition to decreasing the coupling 

between them. In the case of GIFT, the abstraction layer would handle the mapping of 

objects from one service into a representation that makes sense to the other. As an 

example, this module might receive a message from the game engine containing the  

new location of the learner in the virtual environment which might then be interpreted  

for the tutor as “the learner reached the checkpoint.” 

In addition to mapping game engine concepts to tutor concepts, the abstraction 

layer can act as a filter in order to solve the observation granularity and history chal-

lenges. The scripting language achieves this by affording “do not care” conditions that 

would then trigger the abstraction layer to interpret only the relevant messages and 

discard everything else. 

One proposed method for implementing this mapping is a scripting language and 

engine that allows the author to define the mapping themselves. Although it is far 

from being an automated solution, a scripting language would allow the ITS and con-

tent authors to hook into more complex behaviors with very little learning overhead. 

Scripting languages can be more user-friendly than XML by virtue of their syntactical 

similarities to written English. Furthermore, within the context of the Unity develop-

ment environment we can expect users to have familiarity with scripting languages 

such as JavaScript and Boo (similar to Python). For these reasons, a scripting lan-

guage is a natural choice for abstracting communication between GIFT and Unity. It 

is important for the simplicity of tutor authoring that this messaging abstraction layer 

have the tutor-side representation use language that a trainer would naturally use. If 

this is the case, the trainer can more easily author feedback and adaptive scenarios. 

Although JavaScript and Boo are well-suited as tools to implement complex be-

haviors for game objects, they overcomplicate the task of describing interactions be-

tween the game world and the tutor. Instead of complex behaviors, we seek to enable 
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the tutor author to quickly declare relationships between objects in the game, domain 

knowledge, and pedagogical goals.  

In order to avoid burdening the author with the challenge of authoring different 

components in different languages, it may be advantageous to use XML for authoring 

abstraction layer rules. The declarative nature of XML makes it ideal for this role, 

although as mentioned previously, it suffers from poor readability. An alternative to 

XML is TutorScript, a scripting language developed for use in ITSs [6]. The design of 

TutorScript centers around the sequences of goals or contexts called a predicate tree. 

TutorScript’s primary advantage over the previously mentioned alternatives is that it 

was designed with the goal of relating domain knowledge to learner actions in the 

training application. Additionally, TutorScript takes inspiration from Apple script in 

regards to syntax, allowing non-programmers to write scripts that read like English. 

For our work, TutorScript would allow us to hook into objects in both GIFT and Uni-

ty, where we can then create interactions using simple language. 

4.2 Unity Editor 

 

One of the main benefits of the Unity editor is that it is extensible to support  user-

created tools for custom workflows, or to fill in functionality lacked by the default 

editor. Some examples of editor plugins authored by users have added advanced level 

building tools, cut-scene editors, and even node-based visual scripting interfaces. The 

ultimate goal of this project is to completely integrate GIFT's authoring tools with the 

Unity ecosystem. This entails creating editor plugins for the entire suite of GIFT au-

thoring tools, thereby enabling content authors to generate serious game and tutor 

content side-by-side using a single development environment. 

An added benefit of integration with the Unity editor is its powerful rapid-

prototyping abilities. Scenarios in Unity are organized into “Scenes” which can be 

loaded individually, played, and paused within Unity's built-in player. Current work 

to develop a proof-of-concept has demonstrated that it is possible to interact with the 

tutor within this player, thereby enabling the author to perform debugging on the 

training scenario to an extent. 

It is considered good practice when authoring Unity games to “tag” game objects 

with names that encode the meaningful behavior that the game object performs. As-

suming that the author adheres to this practice, the tagging mechanism combined with 

the abstraction layer will solve the actor-context challenge. Tags can be transmitted 

with game state updates that pass through the abstraction layer, which will then inter-

pret the tags into context that is meaningful to the tutor. Since the abstraction layer is 

scripted by the author, it is essential for the abstraction layer script editor to be in-

cluded in Unity's authoring suite. Making these tools easily accessible from one or the 

other allows the author to update changes to the scripts as soon as he or she makes 

changes to game object tags and other metadata. 

As stated previously, the scripting languages provided by Unity may not be ideal-

ly suited to the task of communicating between the game engine and the tutor. Addi-

tional modifications will need to be made to MonoDevelop, the highly extensible IDE 

distributed as part of Unity, in order to support TutorScript or a variant of it. 

MonoDevelop greatly simplifies the creation of helpful programming tools such as 

syntax-highlighting and auto-completion that assist users with no prior programming 
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background. Developing a MonoDevelop add-on for TutorScript also allows the au-

thor to more easily manage large or complex scripts needed to address the history and 

actor-context challenges via the built-in code organization features such as collapsing 

scopes. Taken together, Unity and MonoDevelop can be used as a suite of tools for 

authoring not only serious game content, but also advanced tutor behaviors, curricu-

lum, and domain knowledge that will drive the training scenarios. 

5 Recommendations 
 

We project that the design enhancements recommended in this paper will assist in 

improving time savings and reducing cost involved with authoring an intelligent tutor. 

Specifically, we are aiming to reduce the time required to integrate GIFT with a new 

serious game by instead integrating it with the game engine itself. Our reasoning is 

that there are relatively few game engines that would need to be integrated, compared 

to the number of games with potential for enhancement through tutoring. Additionally, 

code reuse is facilitated by employing a standard format for describing relationships 

between game and tutor objects. If successful, this work will introduce a new abstrac-

tion layer between GIFT and the game engines that drive serious serious games, ena-

bling a single tutor configuration to be deployed across a wide range of scenarios. For 

your convenience, the recommendations have been consolidated and figured in the 

table below. 

Table 3. GIFT Design Enhancement Recommendations 

Improve decoupling of potential learner actions and other game-specific data from the 

gateway and other GIFT modules. 

Define a new XML schema for constructing game-tutor object relationships. 

Develop a new authoring tool capable of authoring and validating these relationships. 

Integrate new and existing authoring tools with the Unity editor. 

6 Current Work 
 

At this point we have successfully developed a proof-of-concept plugin that demon-

strates basic communication between GIFT and Unity-driven games, similar to the 

interoperation module developed for VBS2. The extent of this functionality encom-

passes connecting to the Unity plugin from GIFT and then issuing playback com-

mands such as pause and resume to the Unity player. This work has helped to increase 

our understanding of the inner workings of GIFT with regard to the augmentation 

required to communicate with our abstraction layer. In particular, the extent to which 

GIFT is tailored to each training application became apparent. In addition, we were 

able to leverage support for C# .NET 2.0 in Unity to move a great deal of the support-

ing code into components attached to game objects. This design allows the three ser-

vices (Unity, Abstraction Layer, and GIFT) to remain isolated from one another dur-

ing development, encouraging loose coupling across service boundaries and portabil-

ity to other serious game authoring tools. 
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Before any work on the abstraction layer can begin, the language used to define 

object relationships must first be well-defined. Once this step is completed, we can 

begin abstracting away the elements of third-party application integration in GIFT 

that are currently hard-coded. Ultimately, these elements will be encapsulated by the 

proposed abstraction layer. 

7 Conclusion 
 

In this paper we proposed a handful of major design enhancements to GIFT with the 

overarching goal of bringing the ITS authoring workflow into the game content crea-

tion pipeline. The first task in realizing this vision is to create an abstraction layer 

comprised of a scripting engine tailored for ITSs. The second and final task is to inte-

grate the GIFT authoring tools into Unity, in order to encourage side-by-side devel-

opment of game and tutor content. The Unity game engine has been chosen for this 

work due to its ease of use, cross-platform support, and high extensibility. It is our 

hope that such a comprehensive suite of tools will help to drive a new generation of 

high-quality serious games. 
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Abstract. The main idea of generalized intelligent tutoring system (ITS) devel-

opment tools like Generalized Intelligent Framework for Tutoring (GIFT) is to 

provide authors with high-level standards and a readily reusable structure within 

different domains. Hence, adapting such a tool could be the best way to boost 

an underdeveloped tutor. In this paper we propose the design for a new GIFT-

based tutor for undergraduate thermodynamics. An existing Thermodynamics 

Cycle Tutor has been designed that is meant to facilitate problem framing for 

undergraduate students. We describe the advantages of integrating this tutor 

with GIFT to add student models. Also an approach for evaluating the pedagog-

ical performance of the GIFT-enhanced tutor is described.      

Keywords: GIFT, intelligent tutoring system, thermodynamics cycle 

1 Introduction 

One of the most important challenges for engineering students is problem solving.  

Complex engineering problems typically contain multiple constraints, require multi-

ple ideas, and may not have clear criteria for deciding the best solution. Beginning 

students struggle with engineering problem solving, and it has been observed that the 

initial stage (i.e., framing the problem) often causes the most difficulty. Students find 

it difficult to frame a complex problem, identify the core components, and brainstorm 

a possible solution path. These difficulties triggered the idea of building a tutor that 

can help undergraduate engineering students with their problem framing.  

Thermodynamics cycles were our choices of topic to start with. In a National 

Science Foundation (NSF) funded project, a web-based software was developed to 

give students the ability to draw some initial sketches of the problem. Their drawing 

will be evaluated with regard to the expert model provided by the instructor and re-

spectively they will be provided with different types and categories of feedback and 

instructions.  
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Regardless of how much effort is devoted to a project, there is always room for 

improvement. Key advantages of a generalized approach to ITS development (and 

GIFT in particular) are their standards and their high potential for reuse across educa-

tional and training domains. Other advantages that drive efficiency and affordability 

are GIFT’s modular design and standard messaging; its largely domain-independent 

components; and its reuse of interfaces, methods, and tools for authoring, instruction, 

and analysis. Given these GIFT characteristics, there are many ways that the tutor 

could be enhanced being incorporating into GIFT. This will also provide us with an 

invaluable testbed to examine a GIFT-enhanced tutor with the existing one.   

In the following sections, first a brief description of the tutor will be given and 

then an overview of the ways that the existing tutor can be enhanced by GIFT will be 

demonstrated. Finally a testing opportunity for the software will be described.  

2 Current tutor 

We would like to describe our current intelligent thermodynamics cycle tutor for en-

gineering undergraduate courses. For the purpose of conceptualization and design, an 

ITS is often thought as consisting of several interdependent components: domain 

model, learner model, expert model, pedagogical module, interface and training me-

dia (Beck, Stern & Haugsjaa, 1996; Sottilare & Gilbert, 2011; Sottilare & Proctor, 

2012).    

2.1 Domain model 

The domain is about thermodynamics cycle problems. The goal is to understand how 

changes in pressure, temperature, specific volume and entropy interact with some 

commonly-used components, such as pump, compressor, turbine, expansion value, 

evaporator, heat exchanger, liquid-gas separator and mixing chamber. Based on the 

physical and chemical properties, a rule is associated with each component. For ex-

ample, when an object goes through a pump, the pressure will increase, while the 

temperature and specific volume will increase slightly. In the final version, the author 

will have the option to modify the rules (e.g. to assume constant specific volume, or 

to test a student with a component that doesn’t make physical sense). The table below 

shows the rules associated with other components. The domain model contains these 

rules. 
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Table 4. Rules for several components 

Component Pressure Temperature 

Specific  

Volume Entropy 

expansion valve decease decrease Increase Increase 

evaporator Same same, increase Increase Increase 

compressor increase Increase decrease same, increase 

mixing chamber same between between between 

condenser same decrease, same decrease decrease 

Liquid -gas sepa-

rator same same between between 

2.2 Interface 

 

Fig. 5. A screenshot of Thermodynamics Cycle Tutor. The student reads the problem at left and 

solves it by constructing a vapor dome diagram at right. 

Thermodynamics Cycle Tutor has been developed as part of a problem framing re-

search project funded by the National Science Foundation. The tutor basically con-

tains two parts. On the left side, it contains system/component diagram, problem de-

scription and questions. The right side uses a web-based drawing interface, XDraw, 

developed internally by author Jackman using the Microsoft Silverlight framework. 

XDraw supports basic drawing objects such as vapor dome, point, line, rectangle and 

vector as well as freehand drawing. It also provides facilities to allow students to label 

the states and insert text on the drawing. A backend database saves students’ dia-

grams. XDraw communicates with tutor server via a TCP socket. Several message 
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types are defined in order to differentiate what information would be checked and the 

next action should be taken.  

When it starts, the left side shows the system diagram and problem description. 

Students can start problem framing by drawing a vapor dome (T-V diagram in this 

case) and use lines and points to represent pressure curve and state, respectively, and 

apply labels according to the system diagram. After clicking submit button, the dia-

gram is sent to the tutor server, which checks a specific part based on the query mes-

sage. The tutor then sends back the evaluation result and instruction for the next ac-

tion as a returned message. Students may be directed to another interface based on 

their performance in the current stage. We will talk about the detailed sequences in 

the expert model. 

2.3 Expert model 

The expert model sets standards and compares learner actions to determine the pro-

gress. In the thermodynamics cycle domain, the expert model contains the following: 

1. Check vapor dome present. 

2. Check number of pressures. 

3. Check number of states. 

4. Check Pressure and Temperature relations in each of the components. 

After the student submits the drawing, the tutor will check if the drawing contains 

the vapor dome. If so, it will continue to the next check: number of pressures. If it is 

wrong, the students will be asked questions like, “How many pressures are there in 

the system?” showing on the left panel. If the student’s answer is wrong, the tutor will 

go through all the components, and ask the pressure change within each of them. 

Some tutorial videos and illustrations will be provided to help them better understand 

the concept.  

The content on the left panel will be changed based on the student’s activity in a 

particular problem.  For example, in the drawing, the student draws state 4 to the right 

of state 3.  A compressor pushes the gas molecules closer together, so specific volume 

should decrease. The left panel will show a compressor’s diagram, along with some 

questions, such as “How does the specific volume change in a compressor?” It con-

tains several choices that students can select. If the student chooses the correct an-

swer, it will ask the student to correct it in the diagram. If the student gets the wrong 

answer, it will direct the student to some tutorial video files and ask again.  

2.4 Training media 

In order to help students correct their misconceptions, the tutor provides some video 

files that include class lectures and illustration videos at a certain stage of the activity. 

The video files will be loaded automatically to ask students to watch when their an-

swer is wrong. Generally speaking, the training media is domain-dependent and re-

quires the instructor to prepare and pre-define what stage it should appear.  
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2.5 Learner model 

Currently there is no learner model in our Thermodynamics Cycle Tutor. We think it 

is a good idea to monitor and keep track of students’ current progress, save students’ 

previous performances, and perform surveys. An example could be when student 

starts a new problem, the tutor should be able to select an appropriate problem from 

the learner model and predict how successful the student will be based on his/her 

historical data. Also, in the survey part, the tutor could receive feedback on the learn-

er’s background knowledge and quality of the pedagogical process. We believe GIFT 

could allow us to build a learner model easily, and we would like to explore how it 

may benefit our tutor. 

2.6 Pedagogy 

As a pedagogical learning tool, the tutor also needs to set up learning goals and pace 

for the students, so the student can learn each component’s P, T, and V behavior one 

at a time (starting with the easiest one, and increasing difficulty as easier ones are 

mastered). The ideal tutor would be able to connect with other thermodynamic 

understanding, using ideas such as rate of heat transfer and rate of work (power) to 

connect with P, T and V relationships. For students with different performance levels, 

the problem difficulty should vary. The tutor’s feedback has to inspire their thinking, 

not give them answers directly. The pedagogy module requires much flexibility and 

should vary based on different problem sets and instructor-student needs.  

3 GIFT-enhanced tutor 

The existing tutor is expected to demonstrate an acceptable functionality; however, 

there are limitations in its domain independence and reusability, and it also lacks 

some desirable features such as a learner model. Mitigating these limitations will 

require a considerable amount of time and programming effort. GIFT offers many 

features that can attenuate the level of programming skill and time required. Also, 

providing standards and well-defined domain independent structures facilitates the 

tool enhancement. The main benefits of GIFT for our tutor are explained below.   

3.1 Learner model 

A highly desired feature for intelligent tutors is to provide learners with personalized 

education (Woolf, 2010). In other words, if we could know the exact skills that learn-

ers do and do not have, then we could provide them with the exact resources they 

need. Learner model is a module that has been developed for this reason. Learner 

model keeps record of many aspects of the learner, such as the learner’s progress 

toward objectives, actions taken in the interface and historical data (e.g., previous 

performance) (Sottilare, 2012). There is also a need to define some skill levels with 

respect to the learner’s patterns.  Having this valuable information about the learner 
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and their skill, the tutor will be able to provide him or her with specific problems, 

feedback, instructional content, etc. 

In our current tutor there are many data streams that are monitored (e.g., the mis-

takes or feedback types, instructional content provided, etc.). Also, by handing out 

surveys, some information about knowledge background is available. The problem is 

they are stored in separate databases and it is hard to put them together. Putting these 

data together can help us build the student model. GIFT provides the ability to store 

this data in a well-structured way, as it has the option for sensor data storing. In addi-

tion, we can benefit the GIFT survey authoring tool, to conduct our surveys in the 

same program and store them easily in the proper place. In this way, by defining the 

skill levels we will be able to build our learner models based on the data we have 

collected from them. 

Another important feature is data reporting. Having collected a considerable 

amount of data on the learner, an easy-to-access way to extract knowledge out of it is 

necessary. The GIFT event report tool provides a proper interface to easily let users 

(instructors) access the data they desire.  

For any further research, we might want to use different types of sensors to eval-

uate a learner’s cognitive load or status or stress. GIFT provides the ability to readily 

acquire that data as well.  

3.2 Multiple scenarios  

Once skill levels have been assigned to learners, appropriate content must be provided 

based on those skills. To handle various types of problems and instructional material 

(i.e., Domain Knowledge Files), a precise structure is needed to store them. For this, 

GIFT Domain Authoring Tool (DAT) will be used. Since this tool can be used with-

out having to launch the entire GIFT architecture, it enables us to benefit from it ear-

lier in the development process.  

In addition, different instructors have different pedagogical strategies and instruc-

tional content. Thus, they may want students to go through a different scenario or visit 

different content. Two of our co-authors, for example, have different pedagogical 

preferences for teaching the thermodynamic cycle. Based on their preferences, GIFT 

could enable us to create multiple scenarios appropriately. Without having a perfect 

match between the knowledge database and the tutor, accommodating multiple ap-

proaches would not be possible. However, GIFT has already provided the structured 

database, so making the linkage between the tutor and GIFT DAT will be helpful.  

3.3 Expansion to other domains 

The domain-independent structure of GIFT will enable us to simply customize our 

tool for different fields. Currently, statics problems, e.g., free body diagrams, can also 

be tutored via our tool, but using the Domain Authoring Tool that will facilitate the 

deployment of instructional material. The entire process of student model and learner- 

specific instructions could be implemented with this approach as well. 
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4 Proposed evaluation experiment  

In the Fall 2013 semester, a thermodynamics class will be offered for undergraduate 

mechanical engineering students in Iowa State University. Early in the semester they 

will be divided into three groups. One group will work with the GIFT-enhanced tutor, 

another group with the existing tutor (without student model), and the last group will 

just join the class and have no tutor. Keeping records of the three groups’ perfor-

mances during the semester with periodic quizzes, as well as gathering data on their 

skills and solution time, will provide us with a valuable data to evaluate the perfor-

mance of an intelligent tutor with the student model (GIFT-enhanced). It will also 

help us examine the effectiveness of the existing tutor.     

5 Conclusion 

After analyzing the features of our existing tutor and GIFT, they seem to complement 

each other perfectly and provide a comprehensive ITS. Using GIFT’s standards for 

structuring the tutor, as well as data and file storing, will attenuate the requisite pro-

gramming skill and effort to accomplish the same objectives. Also, its high domain-

independence will create opportunities to expand the tutor to different learning do-

mains. The GIFT-enhanced tutor will be compared with the existing tutor and with 

traditional class training during the 2013 Fall semester. The results could provide a 

documented comparison between two different methods of ITS development.   
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Abstract. AutoTutor and the Generalized Intelligent Framework for Tutoring 

(GIFT) are two separate projects that have independently recognized the need 

for greater interoperability and modularity between intelligent tutoring systems. 

To this end, both projects are moving toward service-oriented delivery of tutor-

ing. A project is currently underway to integrate AutoTutor and GIFT. This pa-

per describes the Sharable Knowledge Object (SKO) framework, a service-

oriented, publish and subscribe architecture for natural language tutoring. First, 

the rationale for breaking an established tutoring system into separate services is 

discussed. Secondly, a short history of AutoTutor’s software design is reviewed. 

Next, the design principles of the new SKO framework for tutoring are de-

scribed. Finally, the plans and progress for integration with the GIFT architec-

ture are presented. 

Keywords: Intelligent Tutoring Systems, Service Oriented Architectures,  

Message Passing, Design Patterns, Systems Integration 

1 Introduction 

Intelligent tutoring systems (ITS), despite effectiveness as instructional technology, 

have historically suffered from monolithic design patterns (Murray, 2003). Roschelle 

and Kaput (1996) referred to tutoring systems as “application islands” for their lack of 

interoperability. A recent systematic literature review by the author of this paper 

found little evidence of newer tutoring systems sharing components or working to-

ward a common base of components (Nye, 2013). This lack of modular ITS services 

reduces the availability of ITS software by preventing sharing of ITS components 

between systems. This problem increases the cost of ITS development and imposes a 

high barrier to entry for new systems.  

An improvement over this design would be a component-based and service-

oriented architecture, allowing composability of ITS components. Composability 

would greatly benefit ITS research, due to the high interdisciplinary skill-set needed 

to build a full tutoring system. Service oriented design would allow specialists to 

focus on individual components, while sharing common components. It would also 

mailto:benjamin.nye@gmail.com
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greatly reduce the waste of reimplementing components that could be shared by ITS. 

However, this concept is not new. Roschelle and Kaput (1996) suggested component-

based design over a decade ago, but little meaningful progress has been made toward 

that end. Part of the problem was the relative novelty of tutoring systems: fewer estab-

lished examples existed and there was less consensus about the definition and func-

tionality of an ITS.  

More recently, central researchers have noted that different ITS tools share many 

of the same high-level behaviors (VanLehn, 2006; Woolf, 2009). This consensus 

implies a common ontology for describing the high level functions of ITS compo-

nents and the meaning of information passed between them. While literature consen-

sus does not constitute a formal ontology, it indicates the possibility of a grammar for 

talking about the types of information communicated between different parts of an 

ITS. An argument against the feasibility of this approach might be the disconnected 

nature of many subfields of ITS research, which come from different theoretical 

backgrounds that are not easily integrated (Pavlik and Toth, 2010). With that said, 

regardless of the underlying theory, the external behaviors (e.g., giving a hint) and 

core assessments (e.g., learning gains) are quite similar. The need to maintain theoret-

ical coherence does not mean that a common ontology is infeasible, but simply indi-

cates that there are limits to its useful granularity. For example, does a user-interface 

care how a hint is generated? If not, the user interface should be able to display hints 

from any system capable of generating hints. By taking advantage of the distinct roles 

and functions within a tutoring system, breaking down an individual tutoring system 

into distinct, sharable components is possible. Moreover, a significant number of 

components of the tutoring system are secondary to the tutor’s theoretical concerns 

but pivotal to their operation. Machine learning algorithms, data storage interfaces, 

facial recognition software, speech synthesis, linguistic analysis, graphical interfaces, 

and tutoring API hooks for 3D worlds are enabling technologies for tutoring systems 

(Pavlik et al., 2012; Nye et al., 2013). 

AutoTutor and the Generalized Intelligent Framework for Tutoring (GIFT) are 

two separate tutoring frameworks that have independently recognized the importance 

of modularity and interoperability in tutoring design. AutoTutor is a highly-effective 

natural language tutoring system where learners talk through domain concepts with an 

animated agent (Graesser et al., 2004a). Learning gains for AutoTutor average 0.8σ 

over reading static text materials on the same topic (Graesser et al., 2012). GIFT is a 

service-oriented framework for integrating tutoring capabilities into static material, 

such as a PowerPoint, and interactive environments, such as a simulation or a serious 

game (Sottilare et al., 2012). This paper describes the process of moving AutoTutor 

toward a service-oriented paradigm and the progress toward integrating AutoTutor 

with GIFT. 

 

2 Prior AutoTutor Design Patterns 

The original AutoTutor design was implemented as a standalone desktop application 

to teach computer literacy, which also relied on platform-dependent elements such as 

the Microsoft Agent (Peter Wiemer-Hastings et al., 1998). Since an installed applica-
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tion made AutoTutor harder to deliver, a subsequent version reimplemented the tutor-

ing system as a web-based application (Graesser et al., 2004a). Since that time, vari-

ous tutoring systems that followed in AutoTutor’s footsteps have used a mixture of 

desktop and web-based designs. While many of these systems share conceptual prin-

ciples and some share authoring tools, reuse of components and services between 

these different tutoring projects has been limited. So then, while Roschelle and Kaput 

(1996) spoke of “application islands,” AutoTutor and related systems have evolved as 

a sort of “application archipelago” of related but independent tutoring systems. While 

the principles of AutoTutor have been influential, code reuse has been limited, even in 

projects that explicitly extend AutoTutor, such as AutoTutor Lite (Hu et al., 2009).  

AutoTutor’s package that handles linguistic analysis is a counter-example to this 

pattern. Coh-Metrix provides a suite of linguistic analysis tools, such as latent seman-

tic analysis, regular expression matching, and domain corpora (Graesser et al., 2004b). 

While this tool started development nearly a decade ago, it remains under active de-

velopment and is used regularly by AutoTutor and other projects. This longevity may 

be attributed to its focused scope and purpose as a toolbox for linguistic analysis. 

Additionally, Coh-Metrix has the advantage that it is primarily algorithmic and algo-

rithms do not tend to change much.  

By comparison, the landscape of educational computing has changed greatly over 

that period: web-based applications replaced many desktop applications, then full-

featured Java web applications were replaced by lighter JavaScript and Flash clients 

with server-side code written in languages such as Python and C#. AutoTutor designs 

have mirrored these trends fairly closely, with the original AutoTutor written as a 

desktop application (Peter Wiemer-Hastings et al., 1998), the next iteration being a 

Java-based web application (Graesser et al., 2004a), and systems such as AutoTutor 

Lite relying on Flash, JavaScript, and Python (Hu et al., 2009). In the process of 

changing platforms and programming languages, a great deal of development work 

has been lost to a cycle of re-implementation to match the needs of a changing tech-

nology landscape.  

Based on this history, how could design patterns be improved to encourage reuse 

and interoperability? The first principle, demonstrated by Coh-Metrix, is embodied by 

the Unix philosophy: “Do one thing and do it well” (Raymond, 2003). This is funda-

mental to service-oriented design, where boundaries between components are strict. 

The second principle is that delivery platforms may evolve rapidly. Just as AutoTutor 

has adapted to web delivery for desktops, mobile applications are becoming an im-

portant platform. Tutoring systems need to minimize platform-dependence. Finally, 

the best programming languages for different platforms vary. Moreover, existing 

tutoring systems have large investments in their code base. Components need to 

communicate using language-agnostic standards for different tutoring systems to in-

teroperate. Service-oriented designs, while not yet common in tutoring systems, offer 

significant advantages for the next generation of ITS.  

3 Sharable Knowledge Objects 

AutoTutor is moving in this direction with Sharable Knowledge Objects (SKO), 

which allow creating tutoring modules by composing a mixture of components: local 
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static media, remote static media, local components, and web services. These compo-

nents are categorized in terms of two questions: 1. Is the component local? and 2. Is 

the component static or interactive? While the current focus of this work is on ser-

vice-oriented web delivery, the design is also intended to support communication 

between components in the same process. By using a uniform messaging pattern, 

components can be developed without consideration of whether they will be used on a 

local device or accessed as a remote service.  

In design pattern terms, SKO’s are being developed to follow the service compo-

sition principle. In service composition, a composition of multiple services can be 

considered a single service when creating a new composition of services. Service-

oriented design is largely the same concept as component-based design, except with 

the added complexity that the components may be distributed across time and space 

as part of a distributed network. So then, what is a SKO? A SKO declares a composi-

tion of services intended to deliver knowledge to a user, with the expected use case 

being tutoring in natural language. In this context, the SKO framework is not a re-

implementation of AutoTutor but a framework for breaking AutoTutor down into 

minimal components that can be composed to create tutoring modules that may or 

may not rely on the traditional AutoTutor modules. These minimal components are 

intended to be used as part of a service-oriented design.  

Figure 1 shows an overview of the new SKO framework. The core of the new 

SKO framework relies on a publish-and-subscribe architecture based entirely on pass-

ing messages that convey semantically-tagged information. These patterns significant-

ly improve the flexibility of service composition for tutoring. Publish and subscribe 

frees individual components from explicit knowledge of any other services. The com-

ponent knows only its own state, the messages that it has received, and the messages 

that it has transmitted. SKO is viewed as a way to split AutoTutor into separate, easi-

ly-reusable components. Secondly, SKO is intended to unify components from differ-

ent systems that have evolved from AutoTutor along divergent paths by adding their 

unique functionality as services.  

Exploring the details of each of these services is outside the scope of this paper. 

Instead, this section will focus on how different users would interact with and benefit 

from a SKO. While certain features of SKO are still under development, these exam-

ples describe how different users will interact with the completed SKO framework. 

To the learner, a SKO acts as a single module of instructional content focusing on a 

single lesson (e.g., learning how to complete a given math problem). For AutoTutor 

Lite, a web page loads a talking head and a user-input box, often with a button to 

begin a tutoring session. The SKO module does not specify any rules or functions. 

Instead, it relies on components to send messages. So then, user input triggers on the 

tutoring button generates a message from the user interface component. The tutoring 

engine reads that message and selects tutoring dialog, which is sent off as a new mes-

sage. The animated agent and text-to-speech services read this message and cause the 

talking head to speak the message to the learner. By sharing a student model in a 

learning management system, multiple SKO can be combined into larger lesson units.  
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Fig. 6. Sharable Knowledge Object Framework for AutoTutor 

To an advanced developer, a SKO is a collection of services. Advanced de-

velopers design new services and create SKO templates that can be filled in by in-

structors. These designers can create a SKO template using an advanced interface, 

where they would define the set of services within a SKO template and how these tie 

into the user interface. However, the advanced developer is not expected to add any 

domain content. Instead, they merely specify placeholders for content that is required 

or allowed. Based on these placeholders, a form-based authoring wizard would be 

created to allow instructors and domain experts to create specific SKO based on the 

template.  

To an instructor, a SKO is a series of forms where they enter their expert data and 

produce working tutoring modules that they can test immediately. For example, an 

advanced developer could make a SKO template for guiding a student through solv-

ing an Algebra problem. From this, a form would be generated to allow an instructor 

to specify solution steps and tutoring dialogs associated with each step. An instructor 

could complete this form multiple times to enter content for different problems. This 

development is intended to be collaborative. By storing SKO in cloud hosts, different 

authors can edit or test each module. This also greatly facilitates SKO delivery, as a 

web-based SKO can be directly tested after creation.  

4 Integration with GIFT 

As part of the project to integrate AutoTutor with GIFT, AutoTutor Lite is being bro-

ken down into distinct services to fit into the SKO framework. Rather than focus on 

the low-level details of how AutoTutor and GIFT are integrating, the high-level pro-

cess will be outlined. There is no canonical set of services that a given tutoring system 

should be broken down into so that it can be integrated into GIFT. However, the gen-

eral integration process followed by AutoTutor might serve as a model for other sys-
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tems considering GIFT integration. This integration has five phases: 1. identifying 

complementary functionality, 2. determining distinct “parts” of the AutoTutor Lite 

system, 3. specifying the functionality, inputs, and outputs of each part, 4. building 

web services, and 5. working with GIFT developers to add these to the GIFT distribu-

tion.  

In the first phase, to identify complementary functionality between GIFT and 

AutoTutor, a large table of various key features for each system was created. This 

table helped identify the tools that GIFT had already implemented and those that 

AutoTutor Lite could contribute. This process identified that AutoTutor’s main con-

tributions were conversational pedagogical agents, interactive tutoring, improved 

student modeling, and semantic analysis tools to compare sentence similarity. In the 

second phase, the full AutoTutor Lite system was examined to find distinct parts: sets 

of functionality that could be meaningfully split into distinct components. GIFT is 

meant to be a generalized system, so re-usable components offer more value to the 

system. To find these divisions, we looked for parts that only needed and returned 

small, well-formed information from other parts (e.g., the semantic service can com-

pare any two sets of words and return a similarity value). In the next phase, the func-

tions, inputs, and outputs of each part were determined. After that, we started building 

web services for each part. Web services were used because they follow communica-

tion standards that mean that AutoTutor code does not need to be in the same lan-

guage as the GIFT code, nor does it need to run on the same computer. Finally, as 

versions of these web services have been completed, they have been provided to 

GIFT for integration into the system. This is an important part of the process, as test-

ing with GIFT has helped uncover hurdles about the scalability and limitations of 

these new services. As these services are completed, they are being integrated into 

releases of GIFT.  

Overall, integration with GIFT dovetails with a larger movement of AutoTutor 

toward a service-oriented architecture. This redesign will not only help integration 

with GIFT, but also with other systems in the future. Figure 2 shows how AutoTutor 

services are expected to integrate into the GIFT framework. AutoTutor services are 

shown on the right side of the diagram and include the semantic analysis service (for 

analyzing user input), learner’s characteristic curve (LCC) service (a simple type of 

student model), tutoring service for AutoTutor Lite, a service for text-to-speech, and 

an animated agent service. Some of these components are already available as web 

services. Once these services are available, GIFT will be able to incorporate basic 

AutoTutor Lite tutoring as part of its framework. The message-passing SKO frame-

work will then standardize how AutoTutor communicates with GIFT. Additional 

services not displayed are also anticipated, such as a persistent student model, authen-

tication service, and services for wrapping assessments such as multiple choice tests.  
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Fig. 7. Integration of AutoTutor and GIFT 

5 Limitations and Future Directions 

The SKO framework is intended to separate components based on the knowledge 

transferred between them, represented as semantic messages. This process will greatly 

improve modularity, enable AutoTutor to be implemented using a service-oriented 

design, and support interoperability with GIFT. However, modularity is limited by the 

information each component must share. Certain functions of the tutoring system are 

more easily separated into distinct components than others. For interoperating with 

additional tutoring systems, agreeing on a common set of messages may also be a 

challenge.  

Currently, the publish-and-subscribe version Sharable Knowledge Object frame-

work is under active development. In parallel with this work, AutoTutor Lite is being 

broken down into services and consumed by GIFT using traditional API’s. Work in 

this area is focused on converting the semantic analysis services and AutoTutor Lite 

tutoring interpreter into services. Message-passing interfaces will then be incorpo-

rated into each service and they will be composed using the publish-and-subscribe 

SKO framework.  
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Abstract. Generalized frameworks for constructing intelligent tutors, such as 
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1 Introduction 

Intelligent Tutoring System (ITS) have been shown to enhance learning effectiveness 

in a wide variety of academic domains [1].  The ITS field has long drawn inspiration 

from studying strategies employed by human tutors in one-on-one engagement with 

students [2]. Success has spurred the research community to extend its aspirations into 

more complex, ill-defined domains. Ill-defined domains are those that lack clearly 

defined procedures to determine the correctness of proposed solutions to specific 

problems [3]. Our interest lies in exploratory training simulations of those domains. 

To address the difficulty of guiding effective learning in these complex environ-

ments, it seems useful to develop and leverage generalized techniques. The GIFT 

architecture represents a comprehensive approach to facilitate reuse of common tools 

and methods for building ITS. Although much of the initial focus of GIFT has been 

directed toward well-defined domains, it we would like to consider how it could be 

extended to ill-defined domains as well [4], especially those rendered through explor-

atory simulations. 

The authors’ motivating example is a system we are building called "Master 

Trainer – Individualized" (MT-I).  The goal for this system is to intelligently guide 

new military squad leaders in simulations that combine intercultural communication 

and negotiation skills with tactical challenges.  This system integrates stand-off as-

sessments of student affect to modulate the intensity of the simulation to optimize 

student challenge.  One of the questions we are investigating is how to drive the rela-

mailto:jim.thomas@soartech.com
mailto:saad.khan%7d@sri.com


 63 

tionship between the student and a simulated human to achieve pedagogically useful 

levels of anger, conflict or cooperation.  We are interested in applying what we are 

learning toward the generation of useful domain-independent strategies that could be 

incorporated into GIFT. 

2 Motivations for GIFT 

Although the field of ITS research is imbued with a strong collaborative spirit, the 

field lacks common computational infrastructure.  GIFT is a particularly promising 

approach toward a general reusable framework for intelligent tutoring could benefit 

the entire field. 

Scientific research largely presumes the capability to make apples-to-apples 

comparisons of competing theories. Although they share some common concepts and 

goals, the majority of ITS research systems share little common architecture or code 

[1]. To make broad contributions to this field often requires a fairly full-featured ITS 

on which to perform analyses, yet bespoke software development is both time con-

suming and expensive. Shared platforms and plug-ins amortize development costs and 

grow communities of professionals who can more effectively collaborate and relocate 

between projects and organizations, accelerating the productivity of the field as a 

whole [5]. 

GIFT proposes common frameworks for alternative implementations of a broad 

set of ITS capabilities.  Built on solid design principles and a comprehensive under-

standing of the work of the ITS community, GIFT promises to serve an increasingly 

useful role in accelerating the scientific and commercial success of the field.  Three 

common challenges faced by the field: authoring, instructional management, and 

analysis form the core constructs of GIFT.  Successful evolution of these constructs 

promises to accelerate scientific progress by sharing common evaluation methodolo-

gies, reducing the time and expense for reused software components, and promoting a 

more tightly integrated and collaborative community.   

GIFT may help accelerate commercialization of scientific progress by facilitating 

the production of a common currency of evidence of learning effectiveness that can 

be used to sell the benefits of implemented systems.  It can help provide a platform 

for rapid prototyping to more quickly cycle through alternative approaches to find 

those that work best. Much as Eclipse™ has accelerated software development [5], 

and Unity3D™ has democratized high fidelity game development [6], GIFT has the 

potential to grow into a common workbench that builds-in the ability to package and 

deploy new work to a full breadth of possible platforms.                                    

3 Characteristics of Ill-Defined Domains 

The current GIFT vision accommodates a wide range of ITS capabilities.  However, 

ill-defined domains have not been a primary component of that vision [4].  This sec-

tion begins with an irony-free definition of ill-defined domains, describes some of the 

challenges encountered by human tutors in a subset of these domains, and then con-
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siders issues and opportunities they present for ITS designers working with immersive 

simulation environments. 

 

3.1 Defining Ill-Defined Domains 

Much of the historical grounding of ITS research is focused on guiding students 

through well-structured discrete learning tasks, to impart deeply decomposable 

knowledge [5] from well-defined domains.  Fournier-Viger et al. [8] declare ill-

defined domains to be those “where traditional approaches for building tutoring sys-

tems are not applicable or do not work well”.   Lynch and Pinkus [9] characterize 

problems in ill-defined domains as lacking definitive answers, having answers heavily 

dependent upon the problem’s conception, and requiring students to both retrieve 

relevant concepts and map them to the task at hand.  Mitrovic [10] underscores the 

important distinction between ill-defined domains and ill-defined tasks, anticipating 

Sottilare’s [4] observation that ITS authoring in ill-defined domains is complicated by 

the multiplicity of “paths to success” compared to the more well-defined domains in 

which of ITS research has been situated.   

 

3.2 Tutoring Challenges Posed by Ill-Defined Domains 

Human tutors have served as both an inspiration for ITS behavior and benchmark and 

a benchmark for ITS performance [1].  Because no one has yet made a comprehensive 

study comparing human tutor behaviors in traditional domains with those in ill-

defined domains to identify the most necessary extensions to tutorial reasoning, our 

work on the MT-I system is inspired by specific analogues of human tutors in the 

domains of live military training for tactics and intercultural effectiveness.  

Live training in environments that combine military tactics and interpersonal 

challenges often spans many hours or days, ranges through confined indoor and ex-

pansive outdoor spaces, and requires dozens or hundreds of live role players.  Interac-

tions with these role players are often guided by scripted prompts, but involve a lot of 

improvisation as well.  Examples include resolving disputes between armed civilians, 

negotiating with civic or spiritual leaders, as well neutralizing threats posed by snipers 

or potential ambushes.  Trainers are usually embedded within the environment and 

have the ability to provide guidance to students during the simulation.  

When comparing the behavior of the trainers/tutors in these exercises to that of 

academic tutors, a striking contrast is immediately evident.  Feedback is often de-

ferred over much longer intervals than what one would typically see in one-on-one 

tutoring in well-defined academic domains. Because is often unsafe or impossible to 

suspend exercises involving moving/flying vehicles and timed explosions, most in-

corporate extensive after-action review (AAR) as the primary conduit for feedback 

and guidance.  To some extent, the tutors may elect to integrate feedback within the 

broader context of a scheduled AAR.  In other cases, immediate feedback cannot be 

given on an individual student action choice because multiple student actions are 

required before a judgment can be made.  Some of this deferral is linked to the inter-

play between student and role players, as it is difficult to guide the student without 

impacting the on-going social exchange. Finally, unlike many academic tasks, it is 

difficult to reset the problem state after an incorrect student action, as the training is 
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situated in a narrative context with a fixed rate of flow to coordinate the many moving 

parts.   

The immediate feedback tutors do provide in these simulations is often con-

strained to ensuring that the student is engaged and taking actions that move the im-

plicit narrative forward.  The deferred feedback is often a holistic reflection involving 

multiple learning objectives, student affect and metacognitive guidance on productive 

application of the feedback to future performance. 

 

3.3 Tutoring in Computer Simulations of  Ill-Defined Domains  

Many of the challenges encountered by humans in ill-defined domains carry over into 

computer-based tutoring. The assessment granularity sometimes spans multiple ac-

tions, can sometimes be entwined in social interactions, and can sometimes be en-

twined in narrative.  Each of these specific constraints can be viewed more generally. 

What we commonly describe as narrative in simulation environments is more 

generally described as a meaningful continuity of state over time.  Narrative-centered 

learning environments [11, 12] can vary in the extent to which they support alterna-

tive branches toward "success" or even emergent run-time generation.  Yet they share 

the constraint that the continuity associated with the progression of states cannot be 

broken or the reversed without consequence, which in turn places limitations on the 

action choices available to both student and tutor.   

Similarly, what we commonly perceive as social interaction between students and 

non-player characters (NPCs) in simulations is one particular case of an addition of 

simulation-based elements to tutorial state.  In this case, it is the game-state data asso-

ciated with the NPCs attitudes toward the student that persistent over sequences of 

tutorial actions.  Other examples of game/simulation state variables that influence 

tutorial state include consumable or non-replenishable resources in the simulation 

which may affect the span of future tutorial choices.   

Finally, the dependency on multiple student actions for student assessment is a 

specific manifestation of the well-recognized and more general problem of assessing 

student correctness at all in ill-defined domain.  Yet while these challenges compli-

cate the job of intelligent tutoring, they also introduce new tools.  Narrative continuity 

can be exploited both to scaffold instruction and provide context for interpretation of 

actions.  NPCs and other simulation based entities can be manipulated for pedagogical 

purposes, providing implicit guidance or challenge to the student.  The complexity of 

interpretation of student action affords the intelligent tutor the opportunity for more 

nuanced and complex forms of guidance that may have more profound and lasting 

effects on learning. 
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Fig. 8. Model of Tutoring Dynamic in Simulated Ill-Defined Domains 

To best confront the challenges and make use of the opportunities of learning 

based in simulation environments over ill-defined domains, we need models that un-

derstand the tutoring dynamic as more than a one-on-one exchange.  Rather, the mod-

el must recognize that the persistent state, continuity constraints, and assessment am-

biguity of the simulation environment continually shape the interactions between tutor 

and student. Figure 1 is a depiction of such a model.  At any point in time, the state of 

an ITS can be described as a combination of the state data associated with the student, 

the tutor and the simulation environment.  Arrows depict the flow of state-changing 

actions between these three components.  Note that some of these actions may pro-

ceed in parallel and may last for human-perceptible durations; perhaps with sufficient 

frequency that the overall state of the system may be more often in flux than it is qui-

escent.   

This expanded interaction model complicates the prescription of the “learning ef-

fect chain” [4].  Because any change to student, tutor, or environment is represented 

as a new state, the progression toward learning gains involves navigating through a 

broad space of potential alternative paths.  As shown in the rightmost half of Figure 1, 

one particular progression (the sequence of colored tutorial state snapshots depicted 

against white backgrounds) is merely one path through a rapidly expanding profusion 

of alternatives. 

This tableau of interwoven learning progressions and alternatives gives an ambi-

tious tutorial agent a lot to think about.  Sufficiently inspired agents may perform 

plan-based reasoning to map the possibilities and nudge the learning experience in the 

most fruitful directions.  In fact, tutorial agents have been constructed that mine the 

space of alternative actions sequences [12] to devise remediation strategies. Advanced 

agents might even consider choreographing multiple sessions, altering emphasis and 

tactics as it varies the pedagogical purpose of each session.    

Alternatively, the profusion of possibilities can influence time-sensitive develop-

ers to move in the other direction, building “knowledge-lean” [13tutorial agents.  As a 

consequence, ITS developers in these environments often eschew deep knowledge-

tracing expert models in favor of less precise, but more easily authored constraint-

based approaches [8].  This suggests that a generalized intelligent framework, such as 
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GIFT, should consider supporting a variety of modeling approaches.  In fact, our cur-

rent implementation of MT-I, which features ill-defined tasks within overlapping ill-

defined domains, we have found it useful to author constraint-based models to charac-

terize the correctness of individual student tasks in a wide range of potential contexts, 

where that model feeds a higher-level knowledge tracing model of higher-level, more 

abstract learning objectives that operates over longer time spans. 

4 Enhanced Knowledge Representations and Reasoning  

Not surprisingly, some of the challenges posed by ill-defined domains in simulated 

environments can be addressed by providing tools to create better definitions.  Flexi-

ble and knowledge representations (KR) can serve as the definitional “handles” that 

tutorial agents can use to enhance reasoning about the state of the student and simula-

tion.  That reasoning can be converted to action if the simulation is instrumented with 

“levers”, software hooks that cause pedagogically useful changes expressed through 

those handles.  This section proposes three levers that use non-traditional extensions 

to tutorial knowledge representations to provide enhance tutorial reasoning and more 

effective student guidance. 

Lever #1: Enriched Definitions of Learning Objectives. Trainers in the sophis-

ticated simulations involving role players discussed earlier are often trying to steer 

their students toward states of mind that go beyond a prescribed set of factual 

knowledge to include social, narrative and affective dimensions, as shown in Figures 

1 and 2.  To achieve similar results in simulated environments, tutorial agents must 

reason about those dimensions of learning objectives as well. The KR should be able 

to qualify, for example, not only that the trainee know how to greet respectfully a 

village leader, but that the student can perform that greeting is accomplished while in 

a highly agitated state.    

Lever #2: Enriched Definitions of Tutorial Purpose.  Sophisticated simula-

tions can be used in a broader set of pedagogical contexts that traditional systems, 

ranging from direct instruction of material to which the student has not previously 

been exposed, to consolidation of previously taught material, to transfer of knowledge 

to new domains, to assessment of knowledge and performance, to building confidence, 

teamwork or skills that apply acquired knowledge.  Thus, the purpose of a given tuto-

rial session can vary more widely than in traditional instruction, which demands that 

tutorial strategies and tactics be labeled according to their relevance for these various 

purposes.  For example, a particular tutorial action may have a stronger positive effect 

on student self-efficacy that an alternative which may have a stronger positive effect 

on didactic specificity.  An enhanced KR enables the tutorial agent to choose between 

these alternatives based on whether the purpose of the current session is to build con-

fidence or impart knowledge.  

Lever #3: Persistently-labeled Learner Data. To maximally leverage the op-

portunities of sophisticated learning environments, in which multiple learning ses-

sions for varying learning purposes may span arbitrary time periods, individual stu-

dent data must be persistent and pervasive: accessible and publishable  at any level by 

any component of the tutorial framework. This allows tutorial agents running at vari-

ous levels with various time horizons to tie together data collected on individual stu-
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dents across multiple sessions.  For example, it could prove useful to know how quick 

a student is to anger, or which immediately reachable emotional states are most con-

ducive to learning for a particular student, where that data may have been collected 

and stored in an earlier tutorial session by an agent using the same generalize frame 

work. All student model data should be tagged with its expected lifespan: step, task, 

session, application, or beyond.  This enhances the ability of any particular tutorial 

agent to perform macro-level adaptation [14] to evolve learning across multiple do-

mains that enhance domain-independent competencies. 

5 Conclusions 

A generalized framework like GIFT holds significant promise for accelerating scien-

tific and commercial success of ITS.  Yet one of the areas in which that acceleration is 

most desperately needed, ill-defined domains in simulated environments, are not ad-

dressed in depth by the current approach to GIFT.  We suggest that a first step in this 

direction would to explore several extensions to the knowledge representations in 

GIFT to meet the demands of those environments. 
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Abstract. We are starting to integrate Carnegie Learning’s Cognitive Tutor 

(CT) into the Army Research Laboratory’s Generalized Intelligent Framework 

for Tutoring (GIFT), with the aim of extending the tutoring systems to under-

stand the impact of integrating non-cognitive factors into our tutoring.  As part 

of this integration, we focus on ways in which non-cognitive factors can be as-

sessed, measured, and/or “detected.”  This research provides the groundwork 

for an Office of the Secretary of Defense (OSD) Advanced Distributed Learn-

ing (ADL)-funded project on developing a “Hyper-Personalized” Intelligent 

Tutor (HPIT).  We discuss the integration of the HPIT project with GIFT, high-

lighting several important questions that such integration raises for the GIFT ar-

chitecture and explore several possible resolutions. 

Keywords: Cognitive Tutors, intelligent tutoring systems, student modeling, af-

fect, personalization, non-cognitive factors, gaming the system, off-task behav-

ior, Generalized Intelligent Framework for Tutoring, GIFT 

1 Introduction 

Our goal in developing a “Hyper-Personalized” Intelligent Tutor (HPIT) is to bring 

learning systems to the next level of user/student adaptation. In addition to traditional 

features of systems like Carnegie Learning’s Cognitive Tutor (CT), HPIT includes 

non-cognitive factors to provide a more personalized experience for users of the sys-

tem. In this paper, we discuss features of HPIT and situate the work in the context of 

the Generalized Intelligent Framework for Tutoring (GIFT) architecture. 
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1.1 Cognitive Tutors 

Carnegie Learning’s Cognitive Tutor (CT) [1] is an adaptive, computer-based tutoring 

system (CBTS) or intelligent tutoring system (ITS) based on the Adaptive Control of 

Thought—Rational (ACT-R) theory of cognition [2] used every year by hundreds of 

thousands of learners, from middle school students through college undergraduates.  

To date, Carnegie Learning’s development of the CT has focused primarily on math-

ematics. 

1.2 Generalized Intelligent Framework for Tutoring (GIFT) 

The Army Research Laboratory (ARL) is working to develop the Generalized Intelli-

gent Framework for Tutoring (GIFT). The GIFT project aims to provide a “modular 

CBTS framework and standards [that] could enhance reuse, support authoring and 

optimization of CBTS strategies for learning, and lower the cost and skillset needed 

for users to adopt CBTS solutions for military training and education” [3].  Given 

substantial efforts in both academia and industry to develop ITSs, integrating aspects 

of this work with ARL’s GIFT is important for future development.  We briefly pro-

vide an overview of GIFT before describing a particular project that will integrate 

architecture for “hyper-personalized” versions of ITSs, like Carnegie Learning’s CT, 

with GIFT. 

GIFT provides a modular framework to achieve and support three goals or “con-

structs” [3]: (1) affordable, easy authoring of CBTS components, (2) instructional 

management for integrating pedagogical best practices, and (3) experimental analysis 

of effectiveness. 

GIFT’s service-oriented architecture (SOA) currently provides four modules, 

among other functional elements, around which CBTSs can be implemented and into 

which existing ITSs can be integrated.  Three modules are domain-independent: the 

Sensor Module, User Module, and Pedagogical Module. The Domain Module con-

tains all domain-specific content, including problems sets, hints, misconceptions, etc.  

One functional element outside of “local tutoring processes” in the GIFT archi-

tecture is important for the present discussion: Persistent Learner Models.  These 

models are intended to “maintain a long term view of the learner’s states, traits, de-

mographics, preference, and historical data (e.g., survey results, performance, compe-

tencies)” [3]. As we review several key, non-cognitive factors upon which we seek to 

base a “hyper-personalized” CT, the importance of data intended to be tracked by 

Persistent Learner Models will be clear.  However, the notion of “persistence” for this 

data becomes less clear. 

2 Non-Cognitive Factors 

While the CT and other ITSs adapt content presented to students based on cognitive 

factors such as skill mastery, there are many other (cognitive and non-cognitive) fac-

tors for which the student learning experience might be adapted and personalized.  

We present several examples of recent research focusing on the impact of non-

cognitive factors on student learning in ITSs.   
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2.1 Gaming the System and Off-Task Behavior 

A wide variety of behaviors in an ITS or CBTS like CT may be associated with learn-

ing.  Two specific behaviors that have been widely studied in the recent literature 

include “gaming the system” behavior and off-task behavior [4] [5].  This research 

has not only studied the association of these behaviors with learning but has also led 

to the development of software “detectors” of such behavior from ITS log data. 

Sometimes students attempt to advance through material in ITSs like the CT 

without actually learning the content and developing mastery of appropriate skills.  

Such behavior is generally referred to as “gaming the system.”  Examples of such 

behavior include rapid or systematic guessing and “hint-abuse.”  “Hint-abuse” refers 

to repeated student hint requests, sometimes until a final or “bottom-out” hint (essen-

tially) provides the answer to a problem or problem step [10]. 

Software “detectors” of gaming the system behavior have been developed (e.g., 

[7]) and correlated with field-observations of student behavior.  Such software detec-

tors rely on various features that are “distilled” from CT log files [8]. Studies find an 

association [4] [9] [10] and evidence for a causal link [11] [12] between gaming the 

system behavior and decreased student learning.  Similar software has also been de-

veloped, and validated via field-observations, to detect off-task behavior [5]. 

Other types of behavior, of course, may also be important for learning in CBTSs 

and ITSs.  While some behaviors may be “sensed” via physical, tactile, and/or physio-

logical sensors, we emphasize that state-of-the-art research attempts to detect different 

types of behavior from logs generated by CBTSs and ITSs. 

2.2 Affect 

Building on success in developing detectors of student behavior, current research 

seeks to detect student affect (e.g., boredom, engaged concentration, frustration, etc.) 

without sensors (i.e., without physical, tactile, and/or physiological sensors) [13]. 

Such detectors have also been validated by field-observations of students using ITS in 

the classroom.  Further, these detectors have been successfully deployed to predict 

student learning via standardized test scores [14].   

While student affect and behavior might also be physically “sensed”, inferred, or 

measured via survey instruments (e.g., mood via survey [15]), data-driven detection 

of student affect and behavior is a promising approach to achieve the GIFT design 

goal of supporting “low-cost, unobtrusive (passive) methods… to inform models to 

classify (in near real-time) the learner’s states (e.g., cognitive and affective)” [3]. 

2.3 Preferences 

Carnegie Learning’s middle school mathematics CT product, MATHia, allows stu-

dents to set preferences for various interest areas (e.g., sports, art) and probabilistical-

ly tailors problem presentation based on those preferences.  On-going research aims to 

determine if and how presenting students with problems related to their preference 

areas is associated with engagement and benefits student learning (e.g., [16-17]). Oth-
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er student preferences might be ascertained via surveys, configuration settings, or 

inferred from data, at different levels of granularity and time scales. 

2.4 Personality and Other Learner Characteristics 

Other characteristics of learners may prove important for learning.  We consider two 

prominent examples that are being considered as we develop HPIT.  Investigating 

other learner characteristics is also a topic for future research. 

 

Grit. 

Grit [18-19] is defined as the tendency to persist in tasks over the long term, when 

reaching the goal is far off in the future. Duckworth et al. [18] found that grit, meas-

ured by a survey instrument [19], predicted retention among cadets at the United 

States Military Academy at West Point, educational attainment among adults, and 

advancement to the final round among contestants in the Scripps National Spelling 

Bee.  

Educational environments like CT are able to adjust the rate at which difficulty of 

activities increases. Students high in grit may, for example, benefit more from rapid 

increases in the difficulty of course material compared to students low in grit, regard-

less of knowledge-levels. 

 

Motivation and Goals.  

Students’ motivation and goals are likely to be important for learner adaptation.  Re-

cent research [20] considers fine-grained assessment, via frequent surveys (occurring 

every few minutes) embedded within CT, of student motivation and goal orientation 

to better understand models self-regulated learning.  Elliot’s framework for achieve-

ment goals provides for two dimensions, definition (mastery vs. performance) and 

valence (approach vs. avoidance), along which goals are oriented [20-22].   

Particular problems or hints (or ways of providing hints) might, for example, be 

best suited to students with a mastery avoidance goal orientation that seek to avoid 

failure, and so on.  In addition to ascertaining the influence of goals and motivation on 

learning, determining whether students’ motivation and goals (at various levels of 

granularity) are relatively static or dynamic through a course, and possibly influenced 

by students’ experience in a course, remains a topic of active research [20].  

3 Hyper-Personalizing Cognitive Tutors 

One particularly important aspect of CTs from an architectural perspective is that they 

are driven by user inputs (called “transactions” [23]). From a system perspective, an 

update to the learner model happens only when the student takes some action within 

the system (e.g., attempting to answer a question or asking for a hint).  Other student-

initiated inputs might include, for example, student ratings of whether particular prob-

lems are interesting (e.g., an ever-present 5-star ranking system attached to each prob-

lem).  Student-initiated inputs range in time from the nearly continuous to being sepa-

rated by significant amounts of time.  
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In a more general system like GIFT, updates to the student model happen, not on-

ly at different timescales, but can also be initiated by actors (or factors) other than the 

learner. Examples include: acquiring data to update the student model through sur-

veys given to the student at times determined by the system (e.g., only at course-

beginning and end vs. periodically between problems or units), through real-time 

sensors (e.g., an eye-tracker), through student-determined inputs, etc.  Furthermore, in 

some learning environments, the student model might be updated by factors linked to 

the passage of time (e.g., inferring that a skill has been “forgotten” because the stu-

dent does not use a tutor for a substantial amount of time or updating students’ 

knowledge state after a chemical reaction occurs following some time-lapse in a 

simulation-based chemistry tutor). The mode and frequency of data collection, in part, 

determine the kinds of pedagogical moves that the ITS can take. 

The ADL-funded Hyper-Personalized Intelligent Tutor (HPIT) project seeks to 

develop a modular, plug-in-like architecture using various data collection and pro-

cessing elements to inform CT’s provision of problems, feedback, hints, etc.  Each 

factor (whether cognitive or non-cognitive) may contribute to varying degrees to the 

decision-making process, as data are collected and inferences drawn about learner 

“state.” A plug-in architecture allows for “voting” schemes to drive the personaliza-

tion process (e.g., perhaps two non-cognitive factors and one cognitive factor are all 

equally weighted, or not).  Methods will be developed to resolve conflicts (i.e., break 

“ties”) when multiple recommendations are appropriate given a student’s “state.” 

While cognitive factors are crucial for adapting educational content for disparate 

users, HPIT’s primary innovation is the creation of a platform and framework for 

adapting content based on non-cognitive factors.  To do so, HPIT will draw on data 

from software detectors, surveys, and possibly physical sensors.   Perhaps more im-

portant from an architectural perspective, however, is the fact that the measurement, 

inference, or assessment of various cognitive and non-cognitive factors may occur on 

different time scales and at different levels of granularity.  

For example, if a student is both bored (as, for example, inferred from a software 

detector applied to real-time log data) and uninterested in material currently being 

presented (as inferred from survey results), material similar in difficulty, but provid-

ing examples better suited to student preferences, might be presented.  However, a 

different strategy might be required if we lack data about their interests. Adapting 

pedagogical strategies based on data that is currently available is a virtue of the flexi-

bility of the HPIT architecture we are developing.     

4 Implications for GIFT Architecture 

The GIFT architecture and recent research (e.g., [15]) focuses on using physical sen-

sors and surveys to gather information about a learner’s non-cognitive state.  The 

HPIT framework builds on work to infer/measure student state with surveys and 

software detectors that use data from tutor logs.  These software detectors rely on data 

generated by the ITS following student-initiated input to the ITS.  We discuss several 

implications for the GIFT architecture and the integration of existing ITSs into GIFT. 
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4.1 Surveys 

In GIFT, Persistent Learner Models store survey results and communicate with the 

User/Learner Module via the SOA.  However, HPIT requires that surveys be deploy-

able at nearly any point in the learning experience, rather than simply before and after 

a “chunk” (e.g., unit) of course material.  Furthermore, surveys/polls might be con-

ducted that assess momentary characteristics of the student experience, rather than the 

persistent state of a student
6
.   

Some survey-like elements may be deployed nearly continuously.  Thus, it might 

be initially attractive to conceptualize surveys are as a particular type of sensor.  

However, the processing of the type of survey data we have in mind seems fundamen-

tally different than processing sensor data (e.g., an eye-tracker).  Consider, for exam-

ple, the previously noted five-star rating system for problems.  While the rating sys-

tem may be deployed for near-continuous collection of data, frequently students may 

not choose to rate many problems.  Perhaps we find that a student who rates problems 

infrequently assigns two particular problems a 1-star (low) rating.  Given the lack of 

input from this student, these data may be especially salient and require special con-

sideration compared to a student who frequently rates problems, and with high varia-

bility.  Such possibilities seem to suggest that we treat discrete survey data (even with 

high-polling rates) differently than sensors that continuously provide data.   

4.2 (Sensor-Free) Detectors in the GIFT Architecture 

For purposes of software implementation, detectors are essentially sensors (i.e., both 

process, filter, and/or aggregate streams of data to make inferences about student 

state); “detector processing” would be nearly identical to “sensor processing” within 

the Sensor Module.  However, the input characteristics of software detectors are much 

different than those of sensors in the GIFT architecture, as the notion of a sensor with-

in GIFT, to date, focuses on physical sensors.    Detectors generally rely on stu-

dent/user-initiated input mediated by the learning environment, but detectors might 

also be developed that do not rely on user-initiated input (e.g., a detector of “forget-

ting” based on time-lapse in usage of the ITS).  

One possible resolution would have the Domain Module (and/or the Tutor-User 

Interface) as input to the Sensors element, so that software-based detectors that rely 

on tutor log data are also conceptualized as Sensors. This proposal may stretch the 

notion of Sensors too far.  In response, one might include a new type of Detec-

tor/Analysis Module that would take Domain Module (and possibly Pedagogical 

Module or Tutor-User Interface) data as input and provide information to the User 

Module about learners’ affective and cognitive states via software detectors.  This 

achieves the goal of keeping the relatively domain-independent detectors outside of 

the Domain Module. This requires that Domain Module output is sufficiently rich for 

use by detectors; as currently conceptualized, this is not clear. 

                                                           
6
 The HPIT architecture maintains such flexibility so that the investigator is free 

to make (or not make) distinctions about persistent versus non-persistent student char-

acteristics (and concomitant timing decisions about assessment, measurement, or 

detection). 
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5 Discussion 

Overall, we suggest that the GIFT architecture is well-served by considering the con-

sequences of integrating a broader range of input and output relationships among its 

component modules (or possibly new types of modules) and other functional elements, 

including considerations of the presence, timing, granularity, and content of data 

passed between components. 

Current research provides for data-driven means to use CT (and other CBTS) 

logs to classify and “detect” student behavior and affect without physical sensors, 

whether transactions and inputs are student-initiated or system-initiated.  Integrating 

capabilities necessary for HPIT will be a fruitful extension of GIFT. 

Furthermore, detectors rely on data from the ITS to determine whether students 

are off-task, gaming, bored, frustrated, etc. Such detectors require relatively rich log 

data and would not be served by the impoverished (i.e., abstract) assessment catego-

ries of “above standard,” “below standard,” etc., provided by the Domain Module. 

This suggests that detectors are a part of the Domain Module, but they are also (rela-

tively) domain independent. Thus, it is not clear that they should be included in the 

Domain Module.  Requiring detectors be a part of the Domain Module would also 

incur costs in terms of reusability and modularity.  Alternatively, richer data might be 

provided to an enhanced Learner Module that subsumes (aspects of) the Sensor Mod-

ule and our proposed detectors (i.e., the Detector/Analysis Module) to better infer 

characteristics of a learner’s state.  Further, other open questions remain as to the 

proper placement of other components of CTs within the GIFT architecture.  
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Abstract. A study is reported in which participants gained experience with de-

ductive reasoning and learned how to complete logic grid puzzles through a 

computerized tutorial. The names included in the clues and content of the puz-

zle varied by condition. The names present throughout the learning experience 

were either the participant’s own name, and the names of two friends; the 

names of characters from a popular movie/book series (Harry Potter); or names 

that were expected to have no relationship to the individual participant (which 

served as a baseline). The experiment was administered using the Generalized 

Intelligent Framework for Tutoring (GIFT). GIFT was used to provide surveys, 

open the experimental programs in PowerPoint, open external web-sites, syn-

chronize a Q-sensor, and extract experimental data. The current paper details 

the study that was conducted, discusses the benefits of using GIFT, and offers 

recommendations for future improvements to GIFT. 

 

1 Introduction 

The Generalized Intelligent Framework for Tutoring (GIFT) provides an efficient and 

cost effective way to run a study (Sottilare, Brawner, Goldberg, & Holden, 2012). In 

Psychology research, in-person experiments usually require the effort of research 

assistants who engage in opening and closing computer windows and guiding partici-

pants through the experimental session. GIFT provides an opportunity to automate 

this process, and requires a minimal knowledge of programming, which makes it an 

ideal tool for students and researchers in the field of Psychology. GIFT was utilized in 

the current pilot study, which is investigating the impact of the self-reference effect 

on learning to use deductive reasoning to solve logic grid puzzles.  

1.1 The Self-Reference Effect and Tutoring 

Thinking of the self in relation to a topic can have a positive impact on learning and 

retention. This finding has been consistently found in Cognitive Psychology research, 

and is known as the self-reference effect (Symons & Johnson, 1997). In addition, 

research has suggested that linking information to a popular fictional character (e.g., 

mailto:anne.m.sinatra.ctr@us.army.mil
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Harry Potter) can also draw an individual’s attention when they are engaged in a 

difficult task, and can result in similar benefits to the self-reference effect (Lombardo, 

Barnes, Wheelwright, & Baron-Cohen, 2007; Sinatra, Sims, Najle, & Chin, 2011).  

The self-reference effect could potentially be utilized to provide benefits in tutoring 

and learning. Moreno and Mayer (2000) examined the impact of a participant being 

taught science lessons in a manner consistent with first person speech (self-reference), 

or in the third person. No difference was found in regard to knowledge gained from 

the lessons, however, when asked to apply the knowledge in a new and creative way, 

those that received the first person instruction demonstrated better performance. This 

suggests that relating information to the self may result in a “deeper” learning or un-

derstanding, which allows the individual to easily apply the information in new situa-

tions.  

It has been suggested that deep learning should be a goal in current instruction 

(Chow, 2010). This is consistent with findings that including topics of interest (e.g., 

familiar foods, names of friends) when teaching math can have a positive impact on 

learning outcomes (Anand & Ross, 1987; Ku & Sullivan, 2002). Many of the domains 

(e.g., math, science) that have been examined in the literature are “well-defined” and 

do not transfer skills to additional tasks. There has not been a focus on deductive rea-

soning or teaching logic, which is a highly transferable skill. Logic grid puzzles are 

useful learning tools because they allow an individual to practice deductive reasoning 

by solving the puzzle. In these puzzles, individuals are provided with clues, a grid, 

and a story. The story sets up the puzzle, the clues provide information that assists the 

individual in narrowing down or deducing the correct answers and the grid provides a 

work space to figure out the puzzle. It has been suggested that these puzzles can be 

helpful in instruction, as they require the individual to think deeply about the clues 

and have a full understanding of them in order to solve the puzzle (McDonald, 2007). 

After practicing deductive reasoning with these puzzles, the skill can then potentially 

be transferred and applied in many other domains and subject areas. 

1.2 The Current Study 

The current study sets out to examine the self-reference effect in the domain of deduc-

tive reasoning, by teaching individuals how to complete logic grid puzzles. It is a pilot 

study, which will later be developed into a large scale study. During the learning 

phase of the study, there were three different conditions: Self-Reference, Popular 

Culture, and Generic. The study was administered on a computer using GIFT 2.5.  

The interactive logic puzzle tutorial was developed using Microsoft PowerPoint 2007 

and Visual Basic for Applications (VBA). In the Self-Reference condition, partici-

pants entered their own name and the names of two of their close friends into the 

program, in the Popular Culture condition, the participant was instructed to enter 

names from the Harry Potter series (“Harry”, “Ron”, and “Hermione”) into the pro-

gram, in the Generic condition, participants were instructed to enter names which 

were not expected to be their own (“Colby”, “Russell”, and “Denise”) into the pro-

gram. The program then used the entered names throughout the tutorial as part of the 

clues and the puzzle with which the participants were being taught. Therefore, the 



 82 

participants were actively working with the names throughout their time learning the 

skill. 

After completing the tutorial, participants were asked to recall anything that they 

could about the content of the puzzle, answer multiple-choice questions about what 

they learned, answer applied clue questions in which they were asked to draw conclu-

sions based on a story and an individual clue, and complete two additional logic puz-

zles (one at the same difficulty level as the one in the tutorial, and one more difficult). 

These different assessments allowed for measures of retention of the learned content, 

ability to apply the knowledge, and ability to transfer/apply the knowledge in a new 

situation. 

It was hypothesized that there would be a pattern of results such that individuals 

in the Self-Reference condition would perform better on all assessments than that in 

the Popular Culture and Generic conditions, and that the Popular Culture condition 

would perform better on all assessments than the Generic condition. It was also ex-

pected that ratings of self-efficacy and logic grid puzzle experience would increase 

after the tutorial. 

1.3 GIFT and the Current Study 

The current study required participants to use a computer, and answer survey ques-

tions before and after PowerPoint Tutorials and PowerPoint logic grid puzzles. Due to 

the capabilities of GIFT 2.5 to provide survey authoring and administering, it was an 

ideal choice for the development of the study. As GIFT has the capability of opening 

and closing programs (such as PowerPoint), and presenting surveys and instructions 

in specific orders, it is a highly efficient way to guide participants through a learning 

environment and a study, without much effort from research assistants. 

In Psychology research there are often many different surveys that are adminis-

tered to participants. An advantage of GIFT is that the Survey Authoring System pro-

vides a free and easy to use tool in which to create surveys. A further advantage is 

that it does not require the individual to be online when answering the survey. 

2 Method 

2.1 Participants 

In the current pilot study, there were 18 participants recruited from a research organi-

zation, and a University. Participants did not receive any compensation for their par-

ticipation. The sample was 55.6% male (10 participants) and 44.4% female (8 partici-

pants). Reported participant ages ranged between 18 years and 51 years (M = 28.8 

years, SD = 9.2 years). As there were 3 conditions, there were 6 participants in each 

condition. 
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2.2 Design 

The current study employed a between subjects design. The independent variable was 

the types of names included in the tutorial during the learning phase of the study. 

There were three conditions: Self-Reference, Popular Culture, and Generic. The de-

pendent variables were ratings of self-efficacy before and after the tutorial, ratings of 

logic grid puzzle experience after the tutorial, performance on a multiple-choice quiz 

about the content of the tutorial, performance on applied logic puzzle questions 

(which asked the participants to apply the skill they learned in a new situation), per-

formance on a logic puzzle of the same difficulty as the tutorial, and on one that was 

more difficult.  

2.3 Apparatus 

Laptop and GIFT. The study was conducted on a laptop that was on a docking sta-

tion, and connected to a monitor. GIFT 2.5 and PowerPoint 2007 were installed on the 

laptop, and a GIFT course was created for each condition of the experiment.  

 

Q-sensor. Participants wore a Q-sensor on their left wrists. It is a small band approx-

imately the size of a watch, which measures electrodermal activity (EDA). 

2.4 Procedure 

Upon arriving, participants were given an informed consent form, and the opportunity 

to ask questions. For this pilot study, participation occurred individually. After sign-

ing the form, participants were randomly assigned to a condition. The experimenter 

launched ActiveMQ and the GIFT Monitor on the computer. Participants were then 

fitted with the Q-sensor on their left wrists. The experimenter clicked “Launch all 

Modules” and then proceeded to synchronize the Q-sensor with the computer. If syn-

chronization was unsuccessful after three tries, the experimenter edited the GIFT 

sensor configuration file and changed the sensor to the Self Assessment Monitor as a 

placeholder (the data from it was not used). Next, the “Launch Tutor Window” button 

was clicked, and the experiment was launched in Google Chrome. The experimenter 

created a new UserID for the participant, and then logged in. The correct condition 

was then selected from the available courses. The participants were then instructed 

that they should interact with the computer and let the experimenter know if they had 

any questions. 

Participants were first asked to answer a few brief demographics questions (e.g., 

age/gender) and filled out Compeau and Higgins’ (1995) Self Efficacy Questionnaire 

(SEQ) with regard to their beliefs in their ability to solve a logic grid puzzle in a com-

puter program and rated their logic grid puzzle experience. They then began the Tuto-

rial. Depending on the condition they were in, they received different instructions in 

regard to the names to enter (their own name and the name of friends, Harry Potter 

related names, or General names). They then worked through the tutorial that walked 

them through completing a logic grid puzzle and explained the different types of clues. 
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After completing the tutorial, they filled in the SEQ again, rated their experience 

again, and were asked to report any information they remembered from the content of 

the puzzle. Next, they answered 20 multiple choice questions about the material they 

learned about in the tutorial. Then, they answered 12 applied clue questions, which 

provided a story and an individual clue, then asked the participants to select all of the 

conclusions that could be drawn from that clue. Next, participants had 5 minutes in 

which to complete an interactive PowerPoint logic grid puzzle at the same level of 

difficulty as the one that they worked through in the tutorial, and 10 minutes to com-

plete a more difficult puzzle. Finally, they were directed to an external web-site to 

complete a personality test. They wrote their scores on a piece of paper, and entered 

them back into GIFT. Afterward, they were given a debriefing form and the study was 

explained to them. 

2.5 GIFT and the Procedure 

The Survey Authoring System in GIFT was used to collect survey answers from the 

participants. While it was a fairly easy to use tool to enter the questions initially, there 

was some difficulty in the export function. Instead of exporting all the entered ques-

tions, there appeared to also be previously deleted questions within the files that were 

exported. This made it impossible to simply import the questions into an instance of 

GIFT on an additional computer (in order to have an identical experiment on more 

than one computer). As a work around, the questions had to be manually typed in and 

added to each additional computer that was used for the study.  

A course file was generated using the Course Authoring Tool. The tool was also 

fairly easy to use. It provided the ability to author messages that the participant would 

see between surveys and training applications, determine the specific surveys and 

PowerPoint applications that would be run, and the order in which they would run. 

Further, it could send participants to an external web-site; however, while the partici-

pants were on the site there was no ability to keep instructions on the screen. Partici-

pants only saw a “Continue” button at the bottom of the screen – which may have led 

to some participants in the current study clicking “Continue” before filling out the 

surveys they needed to on the web-site. A solution to this was employed by creating a 

PowerPoint to explain what the participants would be doing on the web-site. However, 

having the ability to author comments that are seen by the participant while they are 

on the external web-site would be beneficial. 

3 Results 

3.1 Pilot Study Results 

Performance Results. A series of One Way ANOVAs were run for the percentages 

correct on the multiple choice questions [F(2,15) = .389, p = .684], applied clue ques-

tions [F(2,15) = 2.061, p = .162], the easier assessment logic puzzle [F(2,15) = 3.424, 

p = .060] and the more difficult logic puzzle [F(2,15) = 1.080, p = .365]. However, 
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there were no significant differences found between conditions for any of the assess-

ments. See Table 1 for the means and standard deviations for each condition and DV. 

 Self-Reference Popular Culture Generic 

Multiple Choice M = 96.67%,  

SD = 2.58% 

M = 95.83%,  

SD = 6.65% 

M = 94.17%,  

SD = 4.92% 

Applied Clue M = 80.55%,  

SD = 16.38% 

M = 87.50%, 

SD = 11.48% 

M = 69.44%,  

SD = 18.00% 

Easy Logic Puzzle M = 51.95%,  

SD = 37.47% 

M = 93.21%,  

SD = 16.63% 

M = 74.07%,  

SD = 23.89% 

Difficult Logic 

Puzzle 

M = 69.78%,  

SD = 24.61% 

M = 76.89%,  

SD = 16.49% 

M = 86.89%,  

SD = 19.31% 
Table 5. Means and Standard Deviations for Performance Variables for each condition 

 

Logic Grid Puzzle Experience. A 3 (Condition) x 2 (Time of Logic Puzzle Experi-

ence) Mixed ANOVA was run comparing the conditions and participant’s self rating 

of their logic grid puzzle experience. Overall, participants indicated that they had 

significantly higher logic grid puzzle experience after the tutorial (M = 3.78, SD = 

1.215) than before (M = 2.00, SD = 1.085), F(1,15) = 28.764, p<.001. However, there 

was no significant interaction between condition and logic grid puzzle experience 

ratings, F(2, 15) = .365, p = .700. 

 

Self Efficacy Questionnaire. A 3 (Condition) x 2 (Time of SEQ score) Mixed 

ANOVA was run comparing the conditions and the scores on the logic grid puzzle 

self-efficacy questionnaire. There were significantly higher scores of self-efficacy 

after tutoring regardless of condition (M = 5.583, SD = .6564) than before tutoring (M 

= 5.117, SD = .7618), F(1,15) = 9.037, p = .009. However, the condition did not seem 

to matter, as there was not a significant interaction between condition and time of 

SEQ score, F(2,15) = .661, p = .531.  

3.2 Using GIFT to extract the information and results 

The Event Reporting Tool was used to export survey data from GIFT. However, in 

the initial GIFT 2.5 version, data from only one participant would export at a time. 

These files were manually copied and pasted together into one Excel file for analysis. 

An updated version of GIFT 2.5 offered the ability to export multiple participant files 

at once. However, if using multiple instances of GIFT on separate computers, it is 

important to name the questions identically. Combining the outputs of questions that 

have different names in the survey system may result in the data for those columns 

not being reported for certain participants.  
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4 Discussion 

4.1 Pilot Results Discussion  

The results indicate that the tutorial was successful in teaching participants the skill of 

completing logic grid puzzles, and made them feel more confident in their abilities 

than before tutoring. However, the manipulation of the names present in the puzzle 

during tutoring did not impact performance. As this is a small pilot study, it likely did 

not have enough power to find results. Currently there are only 6 participants in each 

condition. The full study is expected to have at least 40 participants in each condition. 

Individual differences in the ability of individuals to solve the puzzles and the wide 

variety of ages may also have played a role in the results. Based on the experience 

with this pilot study, some changes have been made to the full-scale study. First, a 

pre-test of applied clue questions will be given. Secondly, as not all the participants 

were able to finish the easier logic puzzle in 5 minutes, the amount of time given for 

this task will be increased. It is also possible that the current “tests” are not sensitive 

enough to differences. Further, the sample population for the pilot is different than the 

intended population for the full-scale study (college students), therefore, those with 

less research and logic training may show different results.  

4.2 GIFT Discussion and Recommendations 

GIFT was extremely useful in the current study. During this pilot, participants were 

able to easily understand and interact with the courses developed with GIFT. All of 

the survey data was recorded and able to be cleaned up for analysis. One improve-

ment that could be made would be to change the UserID system. Currently, it is set up 

such that UserIDs are created one by one and in order. It would be beneficial to be 

able to assign a specific participant number as the User ID in order to reduce confu-

sion when exporting the results (e.g. “P10” rather than “1”). Further, improvements 

could be made to the ability to launch an external web-site. Currently, there is no 

ability to provide on-screen directions to individuals while they are on the page. 

While the Survey Authoring System is useful, it could be greatly improved by having 

a more reliable import/export option for questions and entire surveys. By doing so, it 

would be easier to set up identical instances of GIFT on multiple computers. 

Overall, GIFT is a useful, cost effective tool which is an asset in running a study. 

It has a wide variety of helpful functions, and with each release the improvements will 

likely make it even more valuable to researchers who adopt it. 
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Abstract. Developing intelligent tutoring systems that respond effectively to 

trainee or student affect is a key part of education, particularly in domains 

where learning to regulate one’s emotion is key. Effective affect response relies 

upon effective affect detection. This paper discusses an upcoming cooperative 

study between the Army Research Laboratory, Teachers College, Columbia 

University, and North Carolina State University, with the goal of developing 

automated detectors that can infer trainee affect as trainees learn by interacting 

with the vMedic system, which trains learners in combat medicine. In this pro-

ject, trainee interactions with vMedic will be synchronized with observations of 

engagement and affect; and physical sensor data on learners, obtained through 

GIFT’s Sensor Module. The result will be models of trainee affect, ready for in-

tegration into the GIFT platform, which can leverage sensor information when 

available, but which can make reasonably accurate inference even without sen-

sor data.  

Keywords: GIFT, vMedic, affect, tutoring, intelligent tutoring systems, learn-

ing, automated detectors, game-based training  

1  Introduction 

 
In recent years, there has been increasing interest in modeling affect within intelligent 

tutoring systems [7, 11] and using these models to drive affect-sensitive interventions 

[2]. In this paper, we describe an ongoing collaborative project between the Army 

Research Laboratory, Teachers College Columbia University, and North Carolina 

State University, which has the goal of developing automated detection of trainee 

affect that can leverage sensors when they are available, but which can function ro-

bustly even when sensors are not available. 

Within this research, trainee affect will be studied in the context of the vMedic, 

(a.k.a. TC3Sim), a game developed for the U.S. Army by Engineering and Computer 

Simulations (ECS) in Orlando, Florida, to train combat medics and combat lifesavers 

on providing care under fire and tactical field care. Trainees will also complete mate-

rial on hemorrhage control within the auspices of the GIFT framework [12], the Army 

Research Laboratory’s modular framework for Computer-Based Training Systems, 

with the goal of integrating eventual affect detection into the GIFT framework’s User 

mailto:jad2234@tc.columbia.edu
mailto:%7bbaker2@exchange.tc.columbia.edu
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Module (realized as necessary within the Sensor Module). In turn, the affect detectors 

will be built into the pedagogies realized through the GIFT Framework’s Pedagogical 

Module, for instance to realize interventions through the embedded instructor and 

other non-player characters.  

In this fashion, this project will contribute not just to the assessment of affect 

within vMedic, but also to the GIFT framework’s broader goal of integrating a range 

of types of models and detectors into the GIFT framework. By serving as a test case 

for incorporating two types of detection into GIFT (sensor-free affect detection, and 

sensor-based affect detection), this project will assist in understanding how GIFT 

needs to be enhanced to incorporate the full range of models currently being devel-

oped by this research community.  

Using these detectors, further work will be conducted to study student affective 

trajectories within vMedic, which affective and engagement states influence learning 

of the key material within vMedic, and how trainee affect can best be supported based 

on the results of affect detection. The work to study the relationship between affect, 

engagement, and outcome variables will provide important evidence on which affec-

tive states and engagement variables need to be responded to in a suite of optimally 

effective computer-based tutoring systems for Army use.  Also, integrating automated 

detectors and interventions into vMedic through GIFT’s Trainee Module and Peda-

gogical Module will provide a valuable example of how to respond to trainees’ nega-

tive affect and disengagement, a valuable contribution in improving vMedic and simi-

lar training systems used by the U.S. Army.  

2  Previous Research: Theoretical Grounding 

Affect influences learning in at least three ways: memory, attention, and strategy 

use [16, 18]. Overly strong affect can contribute to cognitive load in working memory, 

reducing the cognitive resources available to students in learning tasks [13]. Beyond 

this, negative affective states such as frustration and anxiety can draw cognitive re-

sources away from the task at hand to focus on the source of the emotion [20]. These 

high-intensity negative affective states can be particularly important for trainees learn-

ing content that is emotionally affecting or relevant to their future goals. Combat med-

icine training for soldiers has each of these components; it is relevant to future situa-

tions where they or their fellow soldiers may be in physical danger, and the training in 

vMedic is designed to be realistic and to involve scenarios where soldiers scream in 

pain, for example. 

However, boredom and disengagement are also relevant to trainees engaging in a 

task that is not immediately relevant, even if it is relevant to a trainee’s longer-term 

goals. Boredom results in several disengaged behaviors, including off-task behavior 

[8] and gaming the system [5], when a student intentionally misuses the learning 

software’s help or feedback in order to complete materials without learning. Both 

gaming the system and off-task behavior have been found to be associated with poor-

er learning in online learning environments [cf. 4].  

However, automated systems that infer and respond to differences in student af-

fect can have a positive impact on students, both in terms of improved affect and im-
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proved learning [2, 13]. Similarly, automated interventions based on engagement 

detection can improve both engagement and learning [2]. 

A key aspect of automated intervention is the need to detect differences in student 

affect and engagement, in order to intervene effectively. Recent work has detected 

these constructs, both using sensors [15], and solely from the student’s interactions 

with the learning system [5, 7, 8].  In recent years, sensor-free models have been de-

veloped of a range of behaviors associated with engagement or disengagement: gam-

ing the system [3, 4], off-task behavior [3], self-explanation – an engaged behavior [6], 

carelessness [18], and WTF (“without thinking fastidiously”) behavior, actions within 

a learning system not targeted towards learning or successful performance [24, 34], 

among other constructs.  

Similarly, automated detectors have been developed that can infer affect solely 

from student interactions with educational software [7, 10, 11]. However, better per-

formance has typically been achieved by systems that infer affect not only from stu-

dent interactions, but also from information obtained by physiological sensors. These 

recognition models use a broad range of physical cues ensuing from affective change. 

Observable physical cues include body and head posture, facial expressions, and pos-

ture, and changes in physiological signals such as heart rate, skin conductivity, tem-

perature, and respiration [1]. In particular, galvanic skin response (GSR) has been 

correlated with cognitive load and stresses [15], frustration [9], and detecting multiple 

user emotions in an educational game [10].  

3  Project Design 

The first step towards developing automated detectors of student affect is to ob-

tain “ground truth” training labels of student affect and engagement. Two approaches 

are typically chosen to obtain these labels: expert human coding, and self-report [11]. 

In this project, we rely upon expert human coding, as self-report can be intrusive to 

the processes we want to study, and self-presentation and demand effects are also 

likely to be of concern with the population being studied (military cadets are unlikely 

to want to report that they are frustrated or anxious).  

These training labels will be collected in a study to be conducted at West Point, 

the United States Military Academy. Each trainee will use vMedic for one hour in a 

computer laboratory, in groups of ten at a time. The following sources of student data 

will be collected: field observations of trainee affect and engagement; the Immersive 

Tendencies Questionnaire (ITQ), an instrument to gauge an individual's propensity to 

experience presence in mediated environments a priori to system interaction; the 

Sense of Presence questionnaire, a 44-item questionnaire that rates subjective levels 

of presence on four separate factors: (1) Sense of Physical Space (19 items); (2) En-

gagement (13 items); (3) Ecological Validity/Naturalness (5 items); and (4) Negative 

Effects (6 items) [19];, a pre-and post test on hemorrhage control (a total of 12 ques-

tions, same questions used in pre-and post-test, though ordered differently), and phys-

ical sensor data for students as they play the game.  The following physical sensors 

will be used: Q-sensors, and Kinect depth sensors. Q-sensors track skin conductance 

data, a measure of arousal, while Kinect depth sensors record depth-map images to 

support recognition of postural positions.  
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Within this study, expert codes of trainee affect and engagement will be collected 

by a trained coder (the first author) using the BROMP 1.0 field observation protocol 

[16]. The field observations will be conducted in a pre-chosen order to balance obser-

vation across trainees and avoid bias towards more noteworthy behaviors or affect.  

Observations will be conducted using quick side glances in order to make it less clear 

when a specific trainee is being observed.  Coding includes recording the first behav-

ior and affect displayed by the trainee within 20 seconds of the observation, choosing 

from a predetermined coding scheme. The affect to be coded includes: frustration, 

confusion, engaged concentration [5], boredom, anxiety, and surprise.  Affect will be 

coded according to a holistic coding scheme. Behavior coding includes: on-task be-

havior, off-task behavior, gaming the system, “psychopath” behavior (friendly fire, 

killing bystanders), and WTF (“without thinking fastidiously”) behavior, where the 

trainee’s actions have no relation to the scenario [17].  In order to be BROMP-

certified, a coder must achieve inter-rater reliability of 0.6 or higher to another 

BROMP-certified coder; two coders are currently trained at Teachers College, and are 

available for the project. 

Field observation coding will be conducted within a handheld Android app, 

HART, designed for this purpose [7]. The field observations will be synchronized to 

the other data sources, based on use of an internet time server. Synchronization will 

be with reference to several data sources, including trainee interactions with vMedic, 

provided through the GIFT framework’s Trainee Module, and physical sensor data on 

learners, obtained through GIFT’s Sensor Module. We anticipate synchronization to 

involve a skew of 1-2 seconds, based on the time required to enter observations.  The 

GIFT platform includes a synchronization library, which connects to an Internet time-

server so that a precise time-stamp can be added to the logs of trainee interactions 

with vMedic, and the corresponding sensor data. By connecting to the exact same 

timeserver, the interactions with vMedic, field observations of engagement and affect, 

and physical sensor data on learners, three data sources can be precisely synchronized. 

Automated detectors will be developed using the interaction logs alone, for use 

when physiological sensors are not available, and using the sensors as well, for situa-

tions where they are. A standard approach of conducting feature engineering and then 

developing classifiers, and validating the classifiers using student-level cross-

validation, will be used.  

4  Conclusion 

The current project has the goal of enhancing the GIFT framework through the crea-

tion of models that can infer trainee engagement and affect. This project is expected to 

both enhance the capacities of the vMedic software, and to provide a model for how 

this type of detection can be integrated into the GIFT framework more generally. As 

such, this project is just one small component of the larger efforts that are currently 

being pursued by the Army Research Lab, to make the GIFT framework a general and 

extensible platform to achieve the US Army’s overall objective of applying learning 

theory and state-of-the-art learning technology to achieve superior training results for 

warfighters [14]. We anticipate that this collaborative effort will provide useful in-

formation on the future enhancement of the GIFT platform; as such, this project rep-
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resents a step towards the vision of adaptable and scalable Computer-Based Training 

Systems helping to enhance the training of U.S. Army military personnel and prepare 

U.S. soldiers for the conflicts of the future.  
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Abstract. Affective computing holds significant promise for fostering engag-

ing educational interactions that produce significant learning gains.  Serious 

games are particularly well suited to promoting engagement and creating au-

thentic contexts for learning scenarios. This paper describes an ongoing collabo-

rative project between the Army Research Lab (ARL), Teachers College Co-

lumbia University, and North Carolina State University to investigate general-

ized run-time affect detection models in a serious game for tactical combat cas-

ualty care, vMedic. These models are being developed and integrated with 

ARL’s Generalized Intelligent Framework for Tutoring (GIFT). Drawing upon 

our experience with GIFT, we outline opportunities for enhancing GIFT’s sup-

port for developing and studying run-time affect modeling, including extensions 

that enhance affective survey administration, leverage mathematical models for 

formative assessment, and streamline affect data processing and analysis. 

Keywords: Affect Detection, GIFT, Serious Games. 

1   Introduction 

The past decade has witnessed major advances in research on computational models 

of affect, endowing software systems with affect-sensitivity and yielding new insights 

into artificial and human intelligence [1]. Education and training have served as key 

application areas for computational models of affect, producing intelligent tutoring 

systems (ITSs) that can model students’ affective states [2], model virtual agents’ 

affective states [3], and detect student motivation and engagement [4]. Education-

focused work on affective computing has sought to increase the fidelity with which 

affective and motivational processes are understood and utilized in ITSs in an effort to 

increase the effectiveness of tutorial interactions and, ultimately, learning.  

The rise of affective computing has coincided with growing interest in digital 

games for learning. Serious games have emerged as an effective vehicle for learning 

and training experiences [5]. The education community has developed a broad range 

of serious games that combine pedagogy and interactive problem solving with the 

salient properties of games (e.g., feedback, challenge, rewards) to foster motivation 

and engagement [6–8]. Efforts to design serious games for training have also been the 

subject of increasing interest in the defense community [6, 9]. 

A notable property of serious games is their potential to serve as virtual laborato-

ries for studying affect in learning and training applications. Serious games are well 
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suited to promoting high levels of learner engagement and providing immersive train-

ing experiences. These features can have significant impacts on learners’ affective 

trajectories, as well as the relationships between learners’ affect and performance. For 

example, in training tasks that evoke considerable stress or anxiety it is plausible that 

serious games may foster affective experiences that differ considerably from non-

mission-critical domains, significantly impacting learners’ abilities to successfully 

demonstrate their knowledge. Salient features such as these raise questions about how 

to most effectively study and model learner affect during interactions with serious 

games, as well as questions about how these methods and models can be generalized 

to other training environments and domains. 

In this paper we describe a collaborative project with Teacher’s College Colum-

bia University (TC) and the Army Research Lab (ARL) that uses the Generalized 

Intelligent Framework for Tutoring (GIFT) to investigate run-time affect modeling in 

a serious game for tactical combat casualty care. The project draws on recent advanc-

es in five areas: minimally-obtrusive and synchronize-able field observations of 

learner affect [10], empirical studies of serious games [7], educational data mining of 

affect logs [11–12], hardware sensor-based measurements of affect [13], and general-

ized intelligent tutoring frameworks [14]. The project’s objectives are two fold: 1) 

create modular intelligent tutor components for run-time affect modeling that general-

ize across multiple training environments and scale to alternate hardware configura-

tions, and 2) develop tools and procedures to facilitate future research on affective 

computing in learning technologies. This paper focuses on North Carolina State Uni-

versity’s component of the project, which emphasizes sensor-based affect detection, 

and it outlines recommendations for future enhancements to GIFT in support of run-

time affect modeling. Specifically, we outline several opportunities for extending 

GIFT, which include incorporating support for temporal models of affect such as 

affect transitions; expanding GIFT’s survey tools to serve as a centralized repository 

of validated instruments with an integrated web-based infrastructure for administering 

surveys; taking advantage of item response theory techniques to conduct stealth, 

formative assessment of trainee attitudes during learning interactions; and incorporat-

ing features to streamline affect data post-processing.  

2   Investigating Affect in a Serious Game for Tactical Combat 

Casualty Care  

The goal of our collaboration with ARL and TC is to model trainee affect in a serious 

game for combat medic training, vMedic, using GIFT. The research team will utilize 

machine-learning techniques to induce models for detecting trainee’s affective states 

and levels of engagement during interactions with the vMedic software. Affect and 

engagement significantly influence learning, and we hypothesize that this will be 

especially true for the vMedic training environment due to the time-sensitive, life-or- 
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death decisions inherent in tactical combat casualty care. In combination with field 

observations of trainee affect and trace data from the vMedic serious game, the North 

Carolina State University team will investigate data streams produced by a Microsoft 

Kinect sensor and Affectiva Q-Sensor to develop and validate affect detection models. 

The research team seeks to produce models that 1) integrate trace data logs, sensor 

data, and field observations of trainee emotions; 2) predict emotions accurately 

and efficiently when hardware sensors are available; and 3) scale gracefully to set-

tings where hardware sensors are unavailable. The models will be developed and 

utilized to improve trainee engagement and affect when using vMedic, and they will 

be integrated with interaction-based models devised by colleagues at TC. 

The curriculum for the study focuses on a subset of skills for tactical combat cas-

ualty care: care under fire, hemorrhage control, and tactical field care. The study ma-

terials, including pre-tests, training exercises, and post-tests, are managed entirely by 

GIFT, which supports inter-module communication through its service-oriented archi-

tecture. At the onset of training, learners are presented with direct instruction about 

tactical combat casualty care in the form of a PowerPoint presentation. After complet-

ing the PowerPoint, participants play through a series of scenarios in the vMedic seri-

ous game. vMedic presents combat medic scenarios from a first-person perspective 

(Fig. 1). The learner adopts the role of a combat medic faced with a situation where 

one (or several) of his fellow soldiers has been seriously injured. The learner is re-

sponsible for properly treating and evacuating the casualty. The scenarios include the 

following elements: a tutorial level for trainees to learn the controls and game me-

chanics of vMedic; a scenario focusing on a lower leg amputation; a vignette about a 

patrol that leads to several casualties; and the “Kobayashi Maru” scenario where the 

trainee cannot save the casualty’s life regardless of her course of medical treatment. 

vMedic is currently being used at scale by the U.S. Army for combat medic training, 

and it has been integrated with GIFT by ARL.  

The focus of North Carolina State University’s part of the project is leveraging 

hardware sensor data from a Microsoft Kinect for Windows and Affectiva Q-Sensor 

to generate affect detection models. Both hardware sensors are integrated with GIFT, 

Fig. 9. vMedic serious game for tactical combat casualty care. 



 98 

enabling the sensor data to be automatically synchronized with vMedic and Power-

Point interaction logs. This architecture removes the need to directly integrate hard-

ware sensors with individual learning environments. Whenever a new training envi-

ronment is integrated with GIFT, no additional work is required to use the hardware 

sensors with the new environment. 

The Microsoft Kinect provides four data channels: skeleton tracking, face track-

ing, RGB (i.e., color), and depth. The first two channels leverage built-in tracking 

algorithms (which are included with the Microsoft Kinect for Windows SDK) for 

recognizing a user’s skeleton, represented as a graph with vertices as joints, and a 

user’s face, represented as a three-dimensional polygonal mesh. The skeleton and face 

models can move, rotate, and deform based on the user’s head movements and facial 

expressions. The RGB channel is a 640x480 color image stream comparable to a 

standard web camera. The depth channel is a 640x480 IR-based image stream depict-

ing distances between objects and the sensor. The latter two channels produce large 

quantities of uncompressed image data, so configuration options have been added to 

GIFT to adjust the sample rate (default is 30 Hz), sample resolution, and compression 

technique. RGB and depth data can be stored in an uncompressed format, in PNG 

format with zlib compression, or in PNG format with lz4 compression. We intend to 

utilize data from the Microsoft Kinect to detect user posture, hand gestures, and facial 

expression. The Affectiva Q-Sensor is a wearable arm bracelet that measures partici-

pants’ electrodermal activity (i.e., skin conductance), skin temperature, and its orien-

tation through a built-in 3-axis accelerometer. The wireless sensor collects data at 

32Hz, and will primarily be used for real-time arousal detection. 

Since all technology components in the planned study are managed by GIFT, we 

have leveraged GIFT’s built-in authoring tools to specify the study questionnaires and 

curriculum tests for assessing trainee knowledge and engagement before and after the 

learning intervention. We have utilized GIFT’s Survey Authoring Tool to rapidly 

integrate standard presence and intrinsic motivation questionnaires. Additionally, we 

have used GIFT’s sizable repository of reusable content assessment items to create a 

curriculum test for measuring learning gains across the training sequence.  

After specifying the required measures, we used GIFT’s Course Authoring Tool 

to encode the sequence of training and assessment materials that will be presented by 

GIFT. The Course Authoring Tool includes support for authoring web-based messag-

es that provide instructions to participants, specifying the presentation order of pre- 

and post-intervention questionnaires and content tests, and specifying the sequence of 

PowerPoint and vMedic learning activities that occur during the study. When partici-

pants take the course, each of these steps is automatically triggered, monitored, and 

logged by GIFT. It should be noted that authored courses and questionnaires can be 

easily exported and shared between groups, consistent with GIFT’s objective of fos-

tering reusable components.  

Currently, our team has established the initial data collection’s study procedure, 

we have tested the integrated hardware sensors, and ensured the reliability of the 

study’s technology setup. In addition to pilot testing field observation tools from TC 

with GIFT, we are in the process of planning a study at the U.S. Military Academy to 

investigate cadets’ affective experiences during interactions with vMedic. 
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3    Extending GIFT’s Capabilities for Run-Time Affect Modeling 

GIFT consists of a suite of software tools, standards, and resources for creating, de-

ploying, and studying modular intelligent tutoring systems with re-usable components. 

GIFT provides three primary functions: authoring capabilities for constructing learn-

ing technologies, instruction that integrates tutorial principles and strategies, and sup-

port for evaluating educational tools and frameworks. These capabilities provide the 

foundation for our investigation of generalizable run-time affect models. This section 

discusses several areas for which extensions to GIFT could support research and de-

velopment of generalized affect models in ITSs. 

3.1 Detecting and Understanding Learner Affect 

While considerable work remains to identify the precise cognitive and affective 

mechanisms underlying learning, significant progress has been made in identifying 

the emotions that students commonly experience and how these affect the learning 

process.  For instance, both D’Mello et al. [15] and Baker et al. [16] have shown that 

students are most likely to remain in the same emotion state over time and that certain 

emotional transitions are more likely than others. Students who are experiencing 

boredom are much more likely to experience frustration immediately following the 

state of boredom than they are to enter into positive learning states such as flow  [15–

16]. In this way affect transition analyses reveal underlying relationships between 

affect and learning, which occur generally across intelligent tutoring systems.  

Since existing research has suggested that affect transition analysis is both a use-

ful and generalizable tool for investigating learner emotions, incorporating affect 

transition models within GIFT is a natural direction for future research and develop-

ment. This will likely raise questions about how to effectively, and generally, inte-

grate affect transition modeling capabilities with each tutor module in the GIFT archi-

tecture: the sensor module, learner module, pedagogical module, and domain module. 

When designing these components, one must consider how these components com-

municate with one another, and how the system should be configured to support cases 

where affect-sensitive components are missing. For example, physiological sensors 

are highly beneficial for affect recognition, but may not be available in all cases. Con-

sequently, a learner model relying on output from such a sensor would need to be 

adapted, or gracefully deactivated, in a manner that minimizes negative impacts on 

other modules. Similarly, different genres of serious games have distinct capabilities 

and affordances. For example, serious games with believable virtual agents may pre-

sent different opportunities for affective feedback than serious games without virtual 

agents. Pedagogical modules should possess mechanisms for handling cases where 

alternate learning environments support different types of interventions.  

3.2 Advances in Survey Administration using GIFT 

In the educational research community there is a persistent need for streamlined in-

strument access, validation, and administration. GIFT currently provides a rich collec-

tion of content test items and questionnaires that can be re-used across studies and 

training environments. This survey repository could be expanded to serve the broader 
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research community by systematically adding validated assessment measures and 

questionnaires used by the education community. GIFT could serve as a searchable, 

centralized repository of validated instruments, with an integrated web-based infra-

structure for administering surveys before and after learning interventions. The in-

struments could be submitted and listed by category with their important item infor-

mation such as validity and reliability, links to published papers that describe how the 

instruments have been used in prior studies, and specific instructions regarding their 

appropriate use. This type of integrated resource for obtaining, evaluating, and admin-

istering questionnaires, content tests, and surveys could help streamline the communi-

ty’s affective computing research efforts, and serve as an entry point for researchers 

to begin using GIFT. Researchers commonly spend significant effort trying to locate 

information about study instruments, and GIFT could serve as a tool to facilitate the 

survey development and selection process. While other domain specific instrument 

collections are freely available (e.g., www.IPIPori.org [17]), they do not include fea-

tures for integrating instruments into surveys, or administering surveys to users. GIFT 

could also reduce the time allocated to integrating surveys with systems such as 

SurveyMonkey or Qualtrics while encouraging the use of high quality validated in-

struments. 

3.3 Leveraging Mathematical Models for Formative Assessment in GIFT 

Building on the availability of this instrument database, there are opportunities to take 

advantage of item response theory techniques to conduct stealth, formative assess-

ment during learning interactions. Item response theory (IRT) is a mathematical 

framework for performing measurement in which the variable is continuous in nature 

while allowing for an individual person and item to be mapped on the same latent trait 

continuum [18]. An ideal point response process is an IRT approach based on the idea 

that an individual only endorses an item if he or she is located close to the item on a 

latent continuum [19]. In other words, if an item is too extreme in either direction, the 

individual will respond negatively to the item. It can be used with both dichotomous 

(e.g., content knowledge test) and polytomous data (e.g., Likert-type attitudes or per-

sonality [19]). GIFT is well positioned to integrate ideal point methods within user 

experiences for stealth and ongoing assessment. To date, little research has investigat-

ed embedding adaptive, formative assessment within serious games using intermittent 

item presentation through ideal point methods with a rich database of instruments 

from which to select.  

GIFT offers the opportunity for assessment of both knowledge and attitudinal 

(e.g., affective states) variables within immersive training experiences. Using GIFT’s 

capabilities, single items can be “transmitted” as part of the story line within a game 

experience to the participant. GIFT can run mathematical models in the background to 

determine the best item to present at the next natural point. Conceptually this ap-

proach is similar to computerized adaptive tests designed by major test development 

companies. For example, if the participant responds negatively to the question “I want 

to repeat this activity over and over,” he or she can be presented with an item lower 

on the latent trait continuum (e.g., “This activity is interesting for now”). GIFT, hav-

ing access to all of the item information for each potential question, can strategically 

present a series of them. By the end of the serious game experience, rich data regard-

http://www.ipipori.org/
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ing the individuals’ location on a latent trait continuum (e.g., engagement) would be 

available. 

3.4 Streamlined Data Processing and Analysis with GIFT 

Another opportunity for GIFT to address practical challenges in affective computing 

research is in post-processing data. Better solutions are needed for merging files and 

cases and quickly ascertaining basic information from data sets. GIFT could potential-

ly mitigate some of these challenges by introducing standards for data collected dur-

ing different stages of research; typically data from different stages is encoded in a 

variety of formats, and a considerable amount of labor is dedicated to data integration 

after a study has been completed. GIFT could provide a service that automatically 

links pre, during, and post data for individual participants, thereby reducing labor in 

data cleaning and transformation steps. GIFT could also be extended to offer quick 

summary statistics and perform simple operations such as summarizing demographics, 

computing composite scores for instruments, and providing general summary results. 

These tools would be especially helpful with affective instruments that often require 

reverse scoring and other manipulations prior to analysis. 

4   Conclusion 

This paper has described a collaborative project between the Army Research Lab, 

Teachers College Columbia University, and North Carolina State University that aims 

to investigate run-time affect modeling in a serious game for combat medic training, 

vMedic. In addition to describing this project, we have outlined a number of ways to 

extend GIFT’s capabilities to improve affective computing research for educational 

applications. We anticipate that these opportunities could increase GIFT’s future im-

pact and usage as a tool for ITS researchers. 
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Abstract The U.S. Army’s Generalized Intelligent Framework for Tutoring 

(GIFT) is an important step on the path toward a loosely coupled, service-

oriented system that would promote shareable modules and could underpin 

multiagent architectures. However, the current version of the system may be 

“heavier” than it needs to be and not ideal for new or veteran ITS developers. 

We begin our critique with a discussion of general principles of multiagent ar-

chitecture and provide a simple example. We then look at the needs of ITS de-

velopers and consider features of a general-purpose framework which would 

encourage message-driven, multiagent designs, sharing of services, and porting 

of modules across systems. Next, we discuss features of the GIFT framework 

that we believe might encourage or discourage adoption by the growing ITS 

community. We end by offering three recommendations for improvement.  

1 Introduction 

 

As the term is used in a seminal paper on the subject, “Is it an agent, or just a pro-

gram?” (Franklin & Graesser, 1997), an autonomous agent is 

 ..a system situated within and a part of an environment that senses that envi-

ronment and acts on it, over time, in pursuit of its own agenda and so as to affect 

what it senses in the future. (p. 25) 

Because a human is also an agent according to this definition, in a sense any in-

telligent tutoring system may be considered a multiagent system (MAS), designed to 

support interactions between two agents—the user and the intelligent tutor.  However, 

recent years have seen an increasing interest in the development of systems with 

multiagent architectures in the more interesting sense that functionality is decentral-

ized across different software agents. In this paradigm, each agent has its own 

knowledge base (set of beliefs), and carries out different tasks, either autonomously or 

at the request of other agents. Agent-oriented services build on component-based 

approaches by giving each component distinct goals that it works to fulfill. As a result, 

the intelligent behavior of the system as a whole emerges from the collective behavior 

of the individual agents—including, of course, the human user—allowing for what 
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has been called “autonomous cooperation” (Hülsmann, Scholz-Reiter, Freitag, 

Wucisk, & De Beer, 2006; Windt, Böse, & Philipp, 2005). For recent examples of 

ITSs that employ multiagent architectures, see Bittencourt et al., 2007; Chen & 

Mizoguchi, 2004; El Mokhtar En-Naimi, Amami, Boukachour, Person, & Bertelle, 

2012; Lavendelis & Grundspenkis, 2009; and Zouhair et al., 2012). Although these 

are for the most part prototypes, they serve as useful demonstrations of the general 

approach.  

Multiagent architectures depend on a shared agent communication language 

(ACL) such as Knowledge Query and Manipulation Language (Finin, Fritzson, 

McKay, & McEntire, 1994), FIPA-ACL (O'Brien & Nicol, 1998), or JADE 

(Bellifemine, Caire, Poggi, & Rimassa, 2008), all of which are based on speech act 

theory (Austin, 1965; Searle, 1969). The ACL, combined with a shared ontology (se-

mantic concepts, relationships and constraints), allows the agents to exchange infor-

mation, to request the performance of a task, and, in certain cases—such as when one 

agent requests access to restricted data—to deny such requests (Chaib-draa & Dignum, 

2002; Kone, Shimazu, & Nakajima, 2000). A multiagent architecture therefore con-

sists of a distributed “society” of agents (Bittencourt et al., 2007), each with its own 

agenda, semantically-organized knowledge base, and ability to send and receive mes-

sages. The messages take the form of speech acts, including requests, directives, as-

sertions, and so forth. Here is an example: 

request 

:receiver pedagogical agent 

:sender NLP agent 

:ontology electronics 

:content (define, capacitor) 

where the message is clearly identified as a request, the receiver is a pedagogical 

agent, and the sender is a natural language processing (NLP) agent that translates 

utterances from human language into messages the pedagogical agent can understand. 

In this case the pedagogical agent can fulfill the request because it has access to an 

ontology in the domain of electronics, and “knows” how to extract a definition from 

it, by following an algorithm or production rule.  Here’s another example: 

tell 

:receiver pedagogical agent 

:sender emotion sensor 

:ontology learner affect 

:content (learner, confused) 

where the receiver is again a pedagogical agent, but in this case the sender is an emo-

tion sensing agent reporting its belief that the learner is currently confused. Again, the 

pedagogical agent can process the contents of the message because it has access to a 

“learner affect” ontology. As a final example, consider the following: 

tell 

:receiver LMS agent 

:sender pedagogical agent 



 107 

:ontology learningExperiences 

:content (learner, “passed”, “helicopter simulation training”) 

where in this case the pedagogical agent is the sender, and the receiver is an LMS 

agent, which is being told that a certain learner has passed a training course.  

These simple examples illustrate several important principles regarding the nature 

and behavior of multiagent systems. First, note that all three of the software agents are 

capable of autonomous action, in accordance with their own agendas, and without the 

need for supervision. The pedagogical agent need not ask the emotion sensor to report 

its estimate of the learner’s affective state. Rather, the emotion sensor reports its be-

liefs automatically and autonomously, as it does for any agent that has subscribed to 

its services. Similarly, when it has judged that a learner has passed a course, the peda-

gogical agent informs the LMS agent, again without having to be asked, simply be-

cause the LMS agent has subscribed to its services. 

These agents are “lightweight” in the sense that their power lies in their ability to 

exchange messages with other agents, and to process the contents of these messages 

based on ontologies that are shared with the agents they exchange messages with, but 

not necessarily by all of the agents in the system. For example, the NLP agent and 

pedagogical agent must both have access to the electronics ontology, and the LMS 

agent and pedagogical agent must both share the ontology of learner experiences, but 

neither the emotion sensing agent nor the LMS agent need to know anything about 

electronics. 

Note also that, assuming that the agents’ messages are sent over the Internet, all 

four agents (including the learner) can be at different, arbitrary locations, whether on 

servers or local devices. Also, any agent can be replaced by any other agent that per-

forms the same function and uses a compatible ACL and associated ontology. If an 

emotion-sensing agent comes along that does a better job than the original, then, so 

long as it reads and writes the same kinds of messages and has a compatible ontology 

(e.g., terms can be translated meaningfully from one ontology to the other), the other 

agents don’t need to be reconfigured in any way. Most importantly, the functionality 

and value of membership in the society for all participants can increase incrementally, 

perhaps even dramatically, by registering new agents with new capabilities, or by 

upgrading the capabilities of the existing members.  

Transforming a monolithic ITS legacy system into one with a distributed, 

multiagent architecture requires two steps: breaking apart existing components into 

agents and developing ACLs with ITS-tailored ontologies. By encouraging ITS de-

velopers to reorganize their systems as services, the Generalized Framework for Intel-

ligent Tutoring (GIFT) provides strong support for this process (Sottilare, Goldberg, 

Brawner, & Holden, 2012).   

2 Criteria for a MAS ITS Framework 

Before discussing GIFT specifically, general criteria required for an effective multi-

agent ITS framework will be discussed.  To understand the criteria for a development 

framework, one must understand something about the stakeholders involved. In this 

case, as we are focusing on the software development practices of an ITS, these 

stakeholders are the research groups that develop these systems. So then, what do 
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such groups look like? A recently completed systematic literature review of papers 

including the terms “intelligent tutoring system” or “intelligent tutoring systems” 

found that the majority of ITS research was split between two types: major ITS fami-

lies (those with 10 or more papers in a 4-year period) and single-publication projects 

(Nye, 2013). Together, these account for over 70% of ITS research with each ac-

counting for a fairly equal share. This means two things. First, any generalized 

framework should be able to accommodate major ITS projects that have a large prior 

investment in tools. Second, it means that such a framework should also embrace 

contributions from new developers who are often focused heavily on only a single 

ITS component (e.g., linguistic analysis, assessment of learning, haptic interfaces). So 

then, an ideal framework would facilitate breaking down legacy architectures into 

multiagent systems and would also make it easy for one-off developers to add or re-

place a single component.  The framework should also not be locked-in to a single 

template for the components included in the system: not all systems can be easily 

broken down into the same components.  However, this walks a fine line: too much 

structure hinders innovative designs, while too little structure offers little advantage 

over a generic architecture (e.g., off-the-shelf service-composition frameworks).  

Accommodating these different ends of the spectrum requires a lightweight and 

flexible architecture. However, what do we mean by “lightweight?” There are multi-

ple meanings for a “lightweight framework” and most of them are favorable in this 

context. The following features can be either lightweight or heavy: (1) hardware re-

quirements, (2) software expertise to design services, (3) software expertise to use 

existing services, (4) software expertise to stand up the message-passing layer be-

tween agents, and (5) minimal working message ontology. The first requirement is 

that the no special hardware or excessive computational overhead should be required 

to use the framework. The computational requirements should be light, rather than 

imposing heavy overhead or unnecessary inter-process or remote service calls.   

Components requiring significant setup or maintenance (e.g., databases, web-servers) 

should be optional or, at a minimum, streamlined with default setups that work out of 

the box. 

Assuming self-interest, for both types of developers (veterans and newcomers), 

the cost of designing or redesigning for the framework would need to be exceeded by 

the benefits. This means minimizing development overhead to create new services or 

refit old services for the framework. The generalized framework would need to allow 

easy wrapping or replacement of existing designs, rather than forcing developers to 

maintain two parallel versions of their ITS. Researchers and developers are unlikely 

to develop for a framework that requires extensive additional work to integrate with. 

This means that new developers should need to know only the minimal amount of 

information about the framework in order to integrate with it. There should be little to 

no work to create a simple service that can interoperate with the framework and de-

fault wrappers should exist for multiple programming languages to parse raw messag-

es into native objects. Such wrappers or premade interfaces would allow even rela-

tively “heavy” communication between agents, while keeping developers from need-

ing to know these protocols. 

The framework must also make it easy to take advantage of services that others 

have implemented, such as through a repository of publically-available services. At 
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minimum, it should be significantly easier to use existing services than it is to add a 

module to the system. This means that the minimal use case (e.g., the “Hello world” 

case) for the system should be very simple. For example, a single installed package 

should make it possible to author (or copy) a single text file configuring the system to 

create a basic ITS test system. Anything required to run a basic example beyond these 

requirements indicates a “heavier” setup requirement to begin using the framework. If 

this part of the framework is heavy, first-time ITS authors would be unlikely to use 

the framework. Moreover, without such ease-of-use, established ITS developers 

would be unlikely to rework their code to fit such a framework unless they were com-

pensated for these efforts. In the long term, the success and survival of a general 

framework for tutoring relies on its ability to contribute back to the ITS community. If 

researchers and developers benefit by reusing services in the system, they will use it. 

Otherwise, it will fall into obscurity. 

Standing up message passing coordination must be lightweight as well. This 

means that developers should need to expend minimal effort to invoke a layer capable 

of exchanging messages between services. As such, this layer should have a strong set 

of defaults to handle common cases and should work out of the box. Additionally, it 

should be possible to invoke this layer as part of a standalone application (message 

passing in a single process) or as a remote web service.  Consideration must also be 

given to mobile devices, as mobile applications have specific limitations with respect 

to their installation, sandboxing (access to other applications), and data transmission. 

Finally, agent communication relies on specific messaging languages codified 

explicitly or implicitly. Three major paradigms are possible to control this communi-

cation. The oldest and most traditional paradigm defines API function interfaces for 

various types of agents or agent functionality, where “messages” are technically func-

tion calls on agents. This approach, however, is fragile and better-suited for synchro-

nous local communication than for asynchronous distributed agents. The second para-

digm is to define a centrally-defined ontology of messages, which each having an 

agreed-upon meaning. The main advantage of this system is that it imposes consisten-

cy: all agents can communicate using this predefined ontology. However, agreeing 

upon a specific ontology of messages is an extremely hard task in practice. This ap-

proach is “heavy” from the perspective of learning and being constrained by the on-

tology. The ultimate goal of a shared and stable ontology for ITS is valuable, but of-

fers formidable pragmatic challenges.  The third paradigm allows ad-hoc ontologies 

of messages. At face value, this approach seems flimsy: the ontology of messages is 

not defined by the agent communication language and services can define their own 

messages that may not be meaningful to other services as a result. However, this ap-

proach is actually fairly popular in research on agent communication languages (Li & 

Kokar, 2013) and in recent standards bodies, such as the Tin Can API associated with 

SCORM (Poltrack, Hruska, Johnson, & Haag, 2012). These approaches standardize 

the format of messages (e.g., how they are structured) but not the content.  Instead, 

certain recommendations for tags and messages are presented but not required. This 

approach is lightweight: only a small ontology is required and developers are free to 

extend it.  

Lightweight ad-hoc message ontologies show the most promise for an ITS 

framework using agent message passing. By standardizing the message format, any 

two services can syntactically understand any message passed to it. However, it al-
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lows developers to choose any set of messages for their agent communication lan-

guage. While in theory this could lead to a Babylon of disjointed ontologies, in prac-

tice developers will typically attempt to use established formats for messages first, if 

they are available. Much like the original design of a computer keyboard or choice of 

which side of the road to drive on, the starting ontology for a framework can provide 

a powerful self-reinforcing norm that guides influences work. As such, it is possible 

to define a core set of suggested messages that are used by the initial set of agents 

designed for the framework. Additional messages could then be added to the “com-

mon core ontology” of messages when they became common practice among new 

agents added to the service. 

3 The GIFT Framework as a MAS ITS 

Given these five characteristics, we now look at how well the GIFT architecture 

matches them in its current form. First, it must be noted that the intentions of the 

GIFT project are both ambitious and admirable: without the general shift toward ser-

vice-oriented design for ITSs there would be little value in discussing multiagent ITSs 

that build upon service-oriented principles. However, this analysis finds that the cur-

rent implementation of GIFT appears heavier than would be ideal for the needs and 

practices of ITS developers. This does not mean that GIFT is a bad architecture, simp-

ly that it is an architecture that is geared toward the needs of stakeholders other than 

existing ITS developers (e.g., end-users, sponsors, etc). A great deal of emphasis is 

placed on reliability and stability, which is more reflective of enterprise use rather 

than rapid development.  The current GIFT implementation implies a “consume and 

curate” service model rather than a “collaborative repository” service model.  With 

help from GIFT experts, it is certainly possible to integrate tutoring services with 

GIFT and deliver this tutoring effectively using the architecture. However, the archi-

tecture does not seem light enough to allow researchers to build it into their own 

toolchain. This section first examines the strengths of GIFT as a generalized frame-

work for developing tutoring systems and then considers limitations that might be 

addressed by future releases.  

By far, the primary advantage over existing systems is its dedication to service-

oriented principles and modular design. GIFT is the first serious attempt to develop a 

platform intended to inject a common suite of tutoring services into a variety of appli-

cations, including web applications and 3D games (Sottilare, Goldberg, Brawner, & 

Holden, 2012). GIFT also has a strong commitment to standards-based communica-

tion protocols, supporting the Java Messaging Service (JMS) for service communica-

tion. Finally, GIFT was developed in Java so it can be efficiently interpreted on web 

servers and has strong cross-platform capabilities. The hardware requirements for the 

core GIFT system are also light. Modern systems should have no trouble running the 

GIFT services and communication layer. Overall, GIFT appears to be well-optimized 

for efficient delivery and hosting of tutoring web services. 

However, the current GIFT implementation has significant limitations as a devel-

opment framework for tutoring systems. First, the current implementation does not 

offer an easy road for standing up a minimal working example using the GIFT 
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framework. Installing and setting up the core framework for use is a multi-step pro-

cess with multiple stages and some third-party dependencies. Running the framework 

also requires setting up a dedicated database, which could never be considered a light 

feature. While some GIFT ITS may benefit from such a database (e.g., those hosting 

surveys), many prototype ITS might make do with simpler triple-stores, serial data 

(e.g., delimited text files), or even no persistent data storage.  Additionally, setting up 

the GIFT framework does not differentiate between the core architecture meant to 

handle communication between services versus the services that are bundled with the 

architecture.  A barebones version might remedy this limitation. Services also com-

municate using a classical API paradigm, which does not offer much flexibility com-

pared to a more explicit message-passing approach. This means that a developer 

would need to inspect individual service interfaces to figure out the appropriate 

accessors. Effectively, this locks developers into an ontology of how services should 

act (i.e., remote API requests) rather than what they should know (e.g., generic beliefs 

or knowledge).   While this may seem like a subtle difference, a service that only 

needs to broadcast its knowledge can sidestep designing who receives that infor-

mation and how it should be used.  Finally, GIFT lacks service stubs or wrappers in 

common languages (e.g., Java, Python, C#) that would make it easy to develop a ser-

vice that conforms to the framework.  

Overall, deploying the GIFT architecture and attempting to develop a new service 

for the system are both heavy tasks rather than lightweight ones. Without support 

from the GIFT project, this would make developing for the framework quite costly. 

The software expertise to design services is heavy, since there are few tools to make 

this process easier. Despite using a service-oriented paradigm, the system does not 

offer a suite of example services or stub service in common programming languages. 

Unless developers have expertise in Java and can carefully inspect the available API, 

they would not be able to integrate a new service into GIFT. The software expertise to 

use existing services is also heavy. The minimal use-case example currently installs 

all GIFT services and requires a database. Services are not handled using a repository 

or package manager approach, but are simply installed with no streamlined method to 

manage them. Since there is no way to install the service communication layer as a 

standalone system, the software expertise to stand up any message-passing layer be-

tween agents is also heavy. Finally, no message ontology is available because the 

system messages are invoked to carry API calls between services. While ontologies 

for GIFT have been discussed, these ontologies are focused on the types of services in 

the system rather than the types of messages employed (Sottilare, 2012). This forces 

communication between services to revolve around the API of services rather than on 

the information they are passing. 

In its current form, the GIFT framework would not be well-suited for a 

multiagent system ITS. It also does not support many of the aspects of such a frame-

work that would aid either of the major classes of ITS developers to base their pro-

jects on GIFT. A one-off innovation, such as a PhD candidate’s thesis project, would 

likely be significantly burdened by the effort to stand up the system without help and 

would need to learn the API for existing services before they could be useful. A large 

group focusing on an established ITS architecture would be limited by these factors 

and also by the lack of interfaces and supporting tools for the programming languages 

used by their legacy projects. Most importantly, since services do not communicate 



 112 

using a more general agent communication language, significant effort will likely be 

required to tailor communication to the specific API function interfaces. Without the 

ability to specify a common message ontology for the agent communication language, 

it would be impractical to develop a multiagent tutoring system using GIFT. Tradi-

tional API’s based on interfaces are not well-suited to this task, as they conflate pro-

cess names with the meanings of the data they produce. Traditional API functions are 

also poorly suited for dynamic function binding and other advanced patterns that 

could be used by message-passing agents. 

4 Discussion and Recommendations 

This analysis has explored the potential benefits and requirements related to building 

an intelligent tutoring system based on multiagent architecture principles and an agent 

communication language. These requirements were then compared with the GIFT 

framework’s current capabilities. Our finding is that the current implementation of 

GIFT is not currently well-suited to these advanced design patterns. While hardware 

requirements are low, software expertise to design new GIFT services and to use the 

existing GIFT services is fairly high.  Additionally, message system of GIFT current-

ly reflects an API pattern with heavy reliance on knowing the other services in the 

framework.  This is unfortunate, as lighter publish-and-subscribe patterns have be-

come increasingly popular in the industry due to their adaptability (Jokela, 

Zahemszky, Rothenberg, Arianfar, & Nikander, 2009). This said, GIFT represents a 

project that is far closer to these patterns than any prior ITS project. GIFT has also 

spurred discussion on patterns for service-oriented tutoring that were not previously at 

the forefront of ITS design. 

Based on this analysis of GIFT, some design recommendations are indicated for 

future iterations. From the perspective of developing tutoring agents, the first major 

recommendation is to center communication of services around explicit message 

passing where agents publish their knowledge using speech acts. To support this goal, 

feedback should be gathered from major ITS research groups to propose messages for 

an initial ontology of recommended messages that determine the information passed 

between components of the system. To add services to the GIFT framework, develop-

ers should only need to know this ontology of messages so they can use it or extend it 

accordingly. Services should not need to know who their messages are received by, 

only what messages they receive, what messages they produce, and when they wish to 

produce a message. 

The second major recommendation is the need to separate the GIFT services 

from the GIFT communication layer. If GIFT is truly a general framework, it must 

ultimately provide a specialized communication layer as its core. Other services 

should be treated as plug-ins that can be installed or removed using a package-

management approach. This includes the core GIFT services that are bundled with the 

system. Separating the services from the core architecture would greatly simply the 

ability to provide a minimal working example and would make the system more flex-

ible overall. As the system itself appears to be designed with such boundaries in mind, 

this should primarily be a matter of how setup packages are structured and installed.  
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Related to this issue, a very basic installation that works “out of the box” must be 

available for developers to start working with GIFT. 

The third major recommendation is that GIFT should provide small suites of 

utilities, wrappers, and stubs to help develop services using a variety of common lan-

guages. A generalized system must not assume that developers will convert their code 

to Java or build their own communication wrappers for their native language. While 

the use of remote procedure API calls has sidestepped this issue slightly, it has not 

completely removed it. Additionally, a more flexible message-passing paradigm 

would require such supporting tools to an even greater extent. 

Finally, in the present analysis we have focused only on issues of system archi-

tecture, as is proper given that GIFT intends to serve as a general purpose framework, 

not a stand-alone ITS. However, in so doing we have arguably paid insufficient atten-

tion to other important issues that GIFT approaches, such as the need for shareable 

domain models, learner models, and instructional modules. As the developers of 

GIFT have pointed out, legacy ITSs tend to be built as “unique, one-of-a-kind, largely 

domain-dependent solutions focused on a single pedagogical strategy” (Sottilare, 

Brawner, Goldberg & Holden, 2012:1). After some four decades of independent effort, 

a case can be made that the time has come for a much greater degree of collaboration 

and sharing among members of the ITS community, including both veterans and new-

comers. This means not just the sharing of ideas, but of working software objects and 

structures. The development of a lightweight, multiagent architecture that supports 

“autonomous cooperation” among communities of distributed software agents united 

by an emergent common language offers a first step in the process, but it is by no 

means the last. 
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Abstract. We present in this paper the design of DeepTutor, the first dialogue-

based intelligent tutoring system based on Learning Progressions, and its 

implications for developing the Generalized Framework for Intelligent 

Tutoring. We also present the design of SEMILAR, a semantic similarity 

toolkit, that helps researchers investigate and author semantic similarity models 

for evaluating natural language student inputs in conversatioanl ITSs. 

DeepTutor has been developed as a web service while SEMILAR is a Java 

library. Based on our experience with developing DeepTutor and SEMILAR, 

we contrast three different models for developing a standardized architecture 

for intelligent tutoring systems: (1) a single-entry web service coupled with 

XML protocols for queries and data, (2) a bundle of web services, and (3) 

library-API. Based on the analysis of the three models, recommendations are 

provided. 

Keywords: intelligent tutoring systems, computer based tutors, dialogue 

systems 

1 Introduction 

The General Framework for Intelligent Tutoring (GIFT; Sottilare et al, 2012) aims at 

creating a modular ITS/CBTS (intelligent tutoring systems/computer-based tutoring 

systems) framework and standards to foster “reuse, support authoring and optimiza-

tion of CBTS strategies for learning, and lower the cost and skillset needed for users 

to adopt CBTS solutions for military training and education.” GIFT has three primary 

functions: (1) to help with developing components for CBTS and whole tutoring sys-

tems; (2) to provide an instructional manager that integrates effective and exploratory 

tutoring principles and strategies for use in CBTS; and (3) to provide an experimental 

test bed to analyze the effectiveness and impact of CBTS components, tools, and 

methods. That is, GIFT is both a software environment and standardization effort. The 

availability of a GIFT software package suggests that for now the software environ-
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ment has been given priority to standardization efforts. This paper intends to help 

make progress towards a GIFT standardization. 

To that end, we present the design of DeepTutor (www.deeptutor.org; Rus et al., 

to appear), the first CBTS based on the emerging framework of Learning Progressions 

proposed by the science education research community (LPs; Corcoran, Mosher, & 

Rogat, 2009). LPs can be viewed as incrementally more sophisticated ways to think 

about an idea that emerge naturally while students move toward expert-level under-

standing of the idea (Duschl et al., 2007). That is, LPs capture the natural sequence of 

mental models and mental model shifts students go through while mastering a topic. It 

is this learner-centric view that differentiates LPs from previous attempts to reform 

science education. The LPs framework provides a promising way to organize and 

align content, instruction, and assessment strategies in order to give students the op-

portunity to develop deep and integrated understanding of science ideas. 

DeepTutor is developed as a web service and a first prototype is fully accessible 

through a browser from any Internet-connected device, including regular desktop 

computers and mobile devices such as tablets. As of this writing, DeepTutor is de-

signed as a bundle of two web services: (1) the tutoring service itself accessed by 

learners, and (2) the support service which includes everything else: authoring and 

content management, experiment management, user management, and instruction 

management. The latter service is viewed as a single service because there is a single-

entry point to access all these functions. The tutoring service exports its functionality 

through an XML-based protocol. Third party developers can use their own develop-

ment environments to design custom DeepTutor clients and integrate them with the 

DeepTutor tutoring service; all they need is to understand and generate an XML-like 

protocol, which is a query-language for accessing DeepTutor functionality. 

We contrast the DeepTutor design with the design of another software environ-

ment, SEMILAR (www.semanticsimilarity.org; Rus et al., 2013). SEMILAR can be 

used to author semantic similarity methods for semantic processing tasks such as the 

task of assessing students’ natural language inputs in dialogue-based CBTSs. 

SEMILAR, a SEMantic simILARity toolkit, has been designed as a Java library. Ac-

cess to SEMILAR functionality is already available through a Java API (Application 

Programming Interface). Users can use the semantic similarity methods in SEMILAR 

as long as they link the SEMILAR library to their own Java programs. If a developer 

were to use SEMILAR from non-Java applications, a solution would be for the 

SEMILAR library to export its functionality through an XML-like protocol which is 

easily readable from any programming language. This latter integration solution is 

basically the export of functionality approach available in the DeepTutor tutoring 

service. SEMILAR has not been developed as a web service because it was initially 

developed for our own internal use. We have plans to make it available as a web ser-

vice in the future. A GUI-based Java application has been developed and is currently 

tested to offer non-programmers easy access to the SEMILAR functionality. 

The two designs, DeepTutor and SEMILAR, will help us discuss concretely three 

models for standardizing and implementing CBTS functionality to meet GIFT’s 

goals: (1) a single-entry web service, e.g. the two DeepTutor services can be collated 

into one service (a one-stop-shop model); (2) a bundle of web services – the current 

DeepTutor design in which different functionality is accessed through different ser-

vice points, and (3) a library of components accessed through an API. The three mod-

http://www.deeptutor.org/
http://www.semanticsimilarity.org/
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els share the common requirement of standardizing the communication between a 

client/user and provider of tutoring components/functions. While all three models 

have advantages and disadvantages, we favor the web services models for a General-

ized Framework for Intelligent Tutoring as these models better suit the emerging 

world of mobile computing in which users access services in the cloud over the net-

work as opposed to downloading full applications on their local, energy-sensitive 

mobile devices. Furthermore, the combination of a tutoring service and XML-based 

protocols for data and commands/queries fits very well with recent standards for rep-

resenting knowledge proposed by the Semantic Web community, standards for au-

thoring behavior of dialogue systems (see the FLORENCE dialogue manager frame-

work; Fabbrizio & Lewis, 2004), or previous work in the intelligent tutoring commu-

nity (see CircSim’s mark-up language; Freedman et al., 1998).  

The rest of the paper is organized as in the followings. The next section provides 

an overview of the DeepTutor web service. Then, we describe the design of the 

SEMILAR library. We conclude the paper with Discussion and Conclusions in which 

we make recommendations for GIFT based on the three models we discussed. 

2 The Intelligent Tutoring Web Service DeepTutor 

DeepTutor is a conversational ITS that is intended to increase the effectiveness of 

conversational ITSs beyond the interactivity plateau (VanLehn, 2011) by promoting 

deep learning of complex science topics through a combination of advanced domain 

modeling methods (based on LPs), deep language and discourse processing algo-

rithms, and advanced tutorial strategies. DeepTutor currently targets the domain of 

conceptual Newtonian Physics but it is designed with scalability in mind (cross-topic, 

cross-domain). 

DeepTutor is a problem solving coaching tutor. DeepTutor challenges students to 

solve problems, called tasks, and scaffolds their deep understanding of complex scien-

tific topics through constructivist dialogue and other elements, e.g. multimedia items. 

DeepTutor uses the framework of Learning Progressions (LPs) to drive its scaffolding 

at macro- and micro-level (Rus et al, to appear). There is an interesting interplay 

among assessment, LPs, instructional tasks, and advanced tutoring strategies that is 

finely orchestrated by DeepTutor. The LPs are aligned with an initial, pre-tutoring 

assessment instrument (i.e., pretest) which students must complete before interacting 

with the system. Based on this first summative assessment, an initial map of students’ 

knowledge level with respect to a topic LP is generated. The LPs encode both 

knowledge about the domain and knowledge about students’ thinking in the form of 

models that students use to reason about the domain. The student models vary from 

naïve to weak to strong/mastery models. For each level of understanding in the LP a 

set of instructional tasks are triggered that are deemed to best help students make 

progress towards mastery, which coincides with the highest level of understanding 

modeled by the LP.  

The task representation is completely separated from the executable code and 

therefore DeepTutor is compliant with the principles adopted by GIFT from Patil and 

Abraham (2010). Also, in accordance with GIFT principles (Sottilare et al., 2012), 

DeepTutor’s pedagogical module interacts with the learner module (the Student) and 
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adapts the scaffolding tasks and dialogue according to the learner’s level of 

knowledge. 

DeepTutor is an ongoing project. As of this writing, different modules are at dif-

ferent stages of maturity. For instance, our LP has been empirically validated based 

on data collected from 444 high-school student responses. Other components, e.g. the 

general knowledge module that can handle tasks related to general knowledge such as 

answering definitional questions (“What does articulate mean?”), is still in the works. 

The system as a whole will be fully validated in the next 6-12 months. 

As already mentioned, DeepTutor has been designed as a web service accessible 

via HTML5-compatible clients, typically web browsers. The familiarity of users with 

web browsers and eliminating the need to install software packages (except the web 

browser) on each user’s own computer environment makes it extremely convenient 

for users to access DeepTutor from any Internet-connected device and at the same 

time opens up unprecedented economies of scale for tutoring research. For instance, 

during Spring 2013 DeepTutor has been successfully used by more than 300 high-

school students
7
 from their Internet-device of choice (outside of traditional classroom 

instruction or experimental lab): home computer, tablet, mobile phones, or library 

computer.  

All communication between the client and the DeepTutor server is handled 

through an XML-like protocol. The protocol specifies both commands and data that 

both client and server can interpret. The client communicates user actions and data to 

the server and the server replies with appropriate responses. Currently, the responses 

are in the form of display commands and values for various tutoring elements that are 

visible to the user on screen. That is, the client simply uses the information to update 

the corresponding interface elements, e.g. the client needs to update the dialogue his-

tory box with the most recent DeepTutor feedback response. The protocol contains 

sufficient information for learner software clients to display the elements of the stand-

ard DeepTutor interface. At the same time, the client uses the XML protocol to send 

the DeepTutor server important information about the user, e.g. user actions such as 

turning the talking head off, typed responses, time stamps, etc. 

There are two major phases for learner clients to connect to the full DeepTutor 

system: the user authentication and initialization phase and the tutoring phase. In the 

authentication and initialization phase the user authenticates herself. A set of initiali-

zation parameters are sent to the DeepTutor system as well. Currently, the initializa-

tion parameters are set from the instructor view of the system, e.g. the research-

er/experimenter or instructor/teacher can set a particular instructional strategy to be 

used by the system for a particular user or groups of learners. We can imagine in the 

future that these parameters are set dynamically based on the student model retrieved 

from a persistent database of learner information. 

                                                           
7
 This group of students is different from the 444 student group used for validat-

ing the LP. 
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Figure 10. Three DeepTutor clients showing three different renderings of the learner-view of the DeepTutor 

Service: the currently official learner view in DeepTutor (top),  an under-development Android app (bottom 
left) and a client developed for a Masters project (bottom right). 

 

Client applications that access the full DeepTutor tutoring system (not individual 

components) can be designed quite easily. The main reason is the relatively simple 

but efficient current interface that allows the learner to focus on the interactive tutorial 

dialogue. Figure 1 bottom shows on the left-hand side an Android-based app client for 

DeepTutor designed by a small team of 5 Computer Science undergraduate students 

as a semester-long class project. The app has an interface design for a vertical versus 

horizontal positioning of the mobile device. The right-hand side of Figure 1 includes 

another DeepTutor client designed by a Masters student in Computer Science as his 

Masters project on Human-Computer Interaction.  

It should be noted that more complex learner views are in the plans for 

DeepTutor. For instance, we plan to add several supplemental instructional aids and 

monitoring and informing elements such as how many tasks are left to cover in the 

current session or game-like features such as showing what percentage of a learner’s 
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peers successfully finished the current task. The current interface of DeepTutor is as 

simple as it can be and it was intentionally kept this way. The goal was to reduce the 

number of on-screen distractors in order for the learner to focus on the tutorial dia-

logue. Adding more elements would make the interface richer which could distract 

the learners from the main tutorial interaction. It would be an interesting topic to in-

vestigate though. 

We imagine that other users, e.g. developer of tutoring systems, may need to ac-

cess specific functionality/components of DeepTutor according to the GIFT goals. As 

an example, we can imagine someone willing to access the output of the assessment 

module. As of this writing, the client-server protocol does not allow export of specific 

functionality. To allow export of functionality at a finer-grain level the current 

DeepTutor XML protocol must be extended such that the server provides develop-

ers/researcher clients output from specific modules, e.g. the assessment module. The 

exact format of the query and response must be clearly defined. 

We believe that efforts to standardize access to GIFT-defined CBTS modules us-

ing XML protocols are best. The specification of these protocols needs to be done at 

different levels of abstractness such that the protocol is general enough to be applica-

ble to all types of tutoring systems (at higher, more general levels of specification) 

and detailed enough for specific types of tutoring systems to be readily implementable 

by various groups. For instance, a general specification for querying the assessment 

module would include a general query element that indicates that an user input is 

needed together with a context variable which may contain other useful information 

for best assessing the student input (the context variable could be as simple as an user 

identifier and a session identifier or much more complex including a comprehensive 

list of factors that might impact assessment) and the format of the response from the 

assessment component of the tutoring service. This general specification can be fur-

ther specified for benchmark-based tutoring systems (AutoTutor – Graesser et al., 

2005, Guru – Olney et al. 2012; DeepTutor – Rus et al., to appear) as well as for rea-

soning-based tutoring systems (Why-Atlas; VanLehn et al., 2007). We use this broad 

categorization of tutoring systems to help us illustrate the need for further specifying 

general query formats. A benchmark-tutoring system is one that requires an expert-

generated or benchmark response against which the student response is assessed 

(DeepTutor is such a system; Rus et al., to appear). For benchmark-tutoring systems 

the assessment query will need to pass (a pointer to) the benchmark response as one 

of the input parameters. Reasoning-based systems are able to infer the correct re-

sponse automatically (Why-Atlas; VanLehn et al., 2007). For reasoning-based sys-

tems the benchmark response may not be needed but instead (a pointer to) a 

knowledge base. 

In summary, a web service together with XML-based protocols may offer the 

best option for moving forward in GIFT. The advantage of using a web service solu-

tion with an XML-based protocol has the advantage of being easily extendable (new 

functionality can be added by simple adding new tags in the XML protocol). Another 

advantage is the decoupling the logical view from the actual implementation. The 

decoupling of functionality from actual implementation can be very useful. For ex-

ample, the XML protocol can offer a GIFT-like view of the system with components 

so defined to meet GIFT standards while the actual, back-end implementation can be 

so designed to best fit particular types of ITSs. Sometimes refactoring and exporting 
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functionality is conceptually challenging as for some tutoring systems there is a tight 

connection between components that GIFT suggest be separate. For instance, in LP-

based ITSs such as DeepTutor, there is a tight relationship between learner models 

and the domain model because the domain is organized from a learner perspective 

(Rus et al., in press). Separating the learner model from the domain model is concep-

tually challenging and probably not recommended. The decoupling of functionality 

allows keeping the best implementation while offering differing views recommended 

by standards. 

The combination of web service/XML protocol is also more advantageous when 

it comes to updates and extensions. There is no need to download and recompile a 

client application with the latest version of a component or the whole tutoring system. 

We conclude this section by noting that the service model can further be refined 

into two types of service-based models: single service versus bundle of services. The 

current DeepTutor system is a bundle of services. In this model, the functionality of 

the various modules would be available as separate web services, e.g. the assessment 

module could be a separate web service. There are some interesting aspects of the 

bundle of services model. For instance, in DeepTutor some functionality is offered 

through a combination of the two DeepTutor services: debugging capabilities are 

offered through a combination of the tutoring and support services. That is, a devel-

oper polishing various components has to use both services. 

All services can eventually be bundled together in a single, deep service (contain-

ing many subservices) in which case we have a single-entry service model. This 

model implements the concept of a one-stop-shop meaning users will use on access 

point for the components or the whole tutoring system. 

3 The SEMILAR Library For Assessing Natural Language 

Student Inputs 

Our SEMILAR (SEMantic similarity) toolkit, includes implementations and exten-

sions of a number of algorithms proposed over the last decade to address the general 

problem of semantic similarity. SEMILAR includes algorithms based on Latent Se-

mantic Analysis (LSA; Landauer et al., 2007), Latent Dirichlet Allocation (Blei, Ng, 

& Jordan, 2003), and lexico-syntactic optimization methods with negation handling 

(Rus & Lintean, 2012a; Rus et al., 2012b); Rus et al, in press). Due to space reasons, 

we do not present the set of methods available but rather discuss the design of 

SEMILAR as a Java library and its implications for using an akin design for GIFT. 

The Java library design for SEMILAR has the advantage of being easily integrat-

ed as compiled code into Java applications which, at least in theory, should be plat-

form independent. However, users have to download the whole package, install it, and 

then compile it with their tutoring systems. If these systems or components are written 

in a programming language different from Java, extra effort will be needed for inte-

gration. We call this the library-API model for a GIFT framework. Indeed, a GIFT 

framework based on the library-API model will require downloading and installing 

large software packages on various platforms by users of various technical back-

grounds which may make the whole effort more challenging. For instance, the 

SEMILAR library and application is 300MB large (it includes large models for syn-



 123 

tactic parsing among other things). SEMILAR can be regarded as a tutoring compo-

nent for assessing students’ natural language inputs. If ITS developers were to use 

SEMILAR as a library they have to download it and integrate it in their products. 

They have to install and update the API when updates become available. In fact, this 

is how SEMILAR is currently integrated in DeepTutor. Changes in implementation, 

e.g. bug fixes, would require a new download and reintegration of the systems that 

rely on the library. When SEMILAR will be available as a web service, all is needed 

is understanding the API, in the form of an XML-based communication protocol, and 

connect to the tutoring service. The need for a network connection are a potential risk 

for the service model in the form of network congestion which may make the service 

inaccessible or slow at times. 

4 Discussion and Conclusions 

We presented three models based on our experience with implementing a set of 

coherent functionalities related to intelligent tutoring systems and semantic processing. 

Each of the models has its own advantages and disadvantages. Ideally, all three mod-

els should be adopted by GIFT. However, if it were to choose we believe that the 

service-based models are the best solution for an emerging world of mobile devices in 

which accessing software services in the cloud is becoming the norm. The library-API 

and web service solutions are functionally equivalent with the former presenting more 

technical challenges for users with diverse backgrounds and computing environments 

and also being less suitable for a mobile computing world.   

One apparent downside of the web service model is that potential developers 

cannot alter the code themselves in order to conduct research. This is just an apparent 

downside as a quick fix would be for each component to offer enough parameters, in 

the form of a switchboard, to allow potential users to alter behavior without the need 

to change the code. In fact, this solution should be preferred as users would not need 

to spend time to understand and alter the code, a tedious and error-prone activity. 

Standardization efforts for XML-based protocols may start with previous efforts 

where available. For instance, the dialogue processing community has made attempts 

to standardize dialogue acts/speech acts, a major component in dialogue-based ITSs, 

for more than a decade. The resulting Dialogue Act Mark-Up in Several Layers 

(DAMSL) XML schema can be used as a start to standardize speech acts in dialogue 

ITSs. 

In summary, we favor a one-stop-shop service model with switchboard-like fa-

cilities for implementing GIFT. Table 1 below illustrates the pros and cons of the 

three models discussed in this paper. 
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Table 6. Comparison of the three proposed model: single-entry service, bundle of services, and library. 

 One-Stop-

Shop/Single-Entry 

Service 

Bundle of Ser-

vices 

Library 

Programming 

Language Inde-

pendent 

YES YES NO 

Install and update 

on local machine/ 

environment 

NO NO YES 

Fit for emerging 

mobile and cloud-

computing fitness 

EXCELLENT EXCELLENT POOR 

Customization VERY GOOD VERY GOOD EXCELLENT 

Cost of Customi-

zation 

LOW MEDIUM HIGH (error prone 

and time to work 

with someone else’ 

code) 

Extendible EXCELLENT EXCELLENT GOOD 
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Abstract. The time is ripe for a new look at the affordances of semantic net-

works as backbone structures for knowledge representation in intelligent tutor-

ing systems (ITSs). While the semantic space approach has undeniable value, 

and will likely continue to be an essential part of solutions to the problem of 

computer-based dialogue with humans, technical advances such the automatic 

extraction of ontologies from text corpora, now encourage a vision in which in-

telligent tutoring agents have access to forms of knowledge representation that 

allow them to more fully “understand” something of what they are talking about 

with learners. These developments have important implications for key ITS 

components including the structure of expert domain models, learner models, 

instructional modules, and dialogue strategies, particularly in respect to issues 

of transportability across systems. As such, they in turn have important implica-

tions for the design of a general-purpose framework such as the U.S. Army’s 

Generalized Intelligent Framework for Tutoring (GIFT). 

Keywords: Intelligent tutoring, semantic networks, semantic spaces, ontology 

extraction. 

1 Introduction 

The idea that a computer might be programmed to carry on an intelligent conversation 

with a human emerged in the early days of artificial intelligence, possibly as early as 

the 1940s, but was articulated most fully in computer pioneer Alan Turing’s famous 

“Turing test” [40] in which a human is invited to carry on a typed conversation with 

both a hidden human and a machine, and has to decide which is which. A computer 

program that passes the Turing test is considered to be intelligent. Early programs that 

were claimed to have passed the test included ELIZA [43], which employed the ping-

pong conversational strategies of a Rogerian psychotherapist, thus, allowing ELIZA 

to be “free to assume the pose of knowing almost nothing of the real world” [p. 42], 

and PARRY, which was designed to mimic the behavior of a paranoid schizophrenic, 

and reportedly fooled about half the psychologists who interacted with it [11].  
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SHRDLU [44] was similar to  ELIZA and PARRY in that it was capable of en-

gaging humans in something like natural language dialog, but distinctly different in 

one important respect; it actually “understood” something about what it was talking 

about, albeit within a highly restricted domain, a virtual world consisting of a set of 

wooden blocks of different shapes and colors. SHRDLU could be instructed to pick 

up a block, put it on top of another block, and would remember which block was now 

on top.  

SCHOLAR [9, 10, 17] is thought to have been the first program to demonstrate 

the use of mixed-initiative, natural-language conversation for the specific purpose of 

instruction, and as such is widely considered the first intelligent tutoring system [e.g., 

29,14]. The program was intended to demonstrate what Carbonell, a computer scien-

tist at Bolt, Beranek and Newman (BBN), termed an “information-structure-oriented” 

(ISO) tutorial system. In contrast to “ad hoc-frame oriented” (AFO) systems of the 

time, which were organized around “frames” of specific text strings, questions, and 

answers written by a human author, SCHOLAR drew its questions and answers di-

rectly from its own knowledge base, which, in the examples referenced here, consisted 

of a set of simple facts about the geography of South America.
8
  The following tran-

script, reported by Freedman [17], gives some sense of how these interactions went: 

 
SCHOLAR: The capital of Chile is Santiago. Correct or incorrect? 

STUDENT: Correct. 

SCHOLAR: That’s right. Approximately what is the area of Brazil? 

STUDENT: 2,500,000 square miles. 

SCHOLAR: Wrong. Please indicate if the following statement is correct or incorrect:  

       The area of Paraguay is approx. 47432 square miles. 

 

While it seems unlikely that SCHOLAR fooled anyone, the program was arguably 

ahead of its time in one important respect. SCHOLAR’s knowledge of the world was 

stored in a semantic network, a data structure that featured in the work of Carbonell’s 

colleagues at BBN, Ross Quillian and Allan Collins [32, 12, 13]. Semantic networks 

do not, in themselves, provide easy solutions to the problem of machine understand-

ing of human language; however, for reasons explained below, there is good reason to 

take a second look at the various affordances they may offer to designers of general-

purpose intelligent tutoring systems (ITSs), including general-purpose frameworks 

such as GIFT. 

2 Affordances of Semantic Networks for Intelligent Tutoring 

Systems 

Researchers in artificial intelligence have explored a range of solutions to the prob-

lem of representation of conceptual knowledge, from symbolic representations to 

purely statistical ones [25,19]. Semantic networks of the type employed by 

SCHOLAR, where concepts and their relationships are represented as nodes and edg-

                                                           
8
  Carbonell was born in Uruguay. A second database was developed to pro-

vide tutoring for an online text editing system. 
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es, are arguably closest to symbolic natural language in that noun-predicate-object 

clusters (semantic triples) are incorporated and preserved. In “semantic space” mod-

els, on the other hand, relationships among concepts are represented mathematically. 

Methods include Latent Semantic Analysis (LSA) [24], Hyperspace Analogue to 

Language (HAL) [26], Latent Dirichlet Allocation (LDA) [5], Non-Latent Similarity 

(NLS) [8]; Word Association Space (WAS) [39], and Pointwise Mutual Information 

(PMI) [33].  

In general terms, these semantic space models identify the meaning of a word 

through “the company it keeps” [15:11], that is, by examining the co-occurrence of 

words across large numbers of documents and using this data to calculate statistical 

measures of semantic similarity. This approach has been used successfully in a variety 

of applications where measures of document similarity are useful, such as in text re-

trieval and automatic scoring of student essays [25]. In intelligent tutoring applica-

tions, probabilistic semantic space engines allow for the automatic creation of domain 

models as “bags of words” [20]. For example, AutoTutor employs LSA measures of 

text similarity to evaluate the extent to which a learner’s answers to its questions cor-

respond to scripted correct answers consisting of unordered sets of expected words 

and phrases [42]. 

When applied to the problem of knowledge representation in intelligent learning 

systems, the selection of one approach over another results in important trade-offs. 

Although the choice of probabilistic semantic models in intelligent tutoring systems 

avoids the time-consuming tasks involved in  creating more granular, linguistically 

encoded models of domain knowledge, it also imposes significant constraints on the 

functionality of the system, including limits on its ability to engage in true dialog with 

a human learner, which in turn constrains both its ability to represent what is in the 

learner’s head and  the nature and quality of the apparent (virtual) social relationship 

between the agent and the learner. 

Most importantly, an agent that relies exclusively on a probabilistic semantic mod-

el cannot generate substantive questions of its own, nor can it respond to a learner’s 

questions. Rather, because its knowledge is enclosed in a “black box” [1] it is limited 

to asking scripted questions with scripted answers, then evaluating the extent to which 

the learner’s answers conform. As a result, it naturally assumes the role of a tradition-

al pedagogue, a teacher who looks only for correct answers to questions.  

2.1 Some Recent Developments 

In spite of these limitations, in recent years the use of probabilistic, black box seman-

tic models has been favored over semantic network representations, owing, as noted 

above, largely to the difficulties inherent in laborious manual authoring of useful do-

main models based on semantic networks [35]. However, over the past decade or so 

this situation has begun to change in important ways. While the extraction of proposi-

tions (semantic triples) from connected text—the building blocks of semantic network 

solutions—remains as one of the hardest problems in artificial intelligence and ma-

chine learning [35,19], considerable progress has been made [e.g., 2, 31, 30, 6, 4].  
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For example, Berland & Charniak [2] developed an algorithm which, given a 

seed word such as car, and a large corpus of text to mine, identified the following as 

possible fillers for the slot ___ is-part-of ____[car]: headlight, windshield, ignition, 

shifter, dashboard, radiator, brake, tailpipe, etc. Similarly, Pantel & Ravichandran 

[31] describe an algorithm for automatically discovering semantic classes in large 

databases, labeling them, then relating instances to classes in the form X is-a Y. For 

example, for the instances Olympia Snowe, Susan Collins, and James Jeffords, the 

algorithm settled on republican, senator, chairman, supporter, and conservative as 

possible labels, meaning that it could form the basis for assertions such “Olympia 

Snowe is a republican.”   

Other relevant work includes the corpus of annotated propositional representa-

tions in PropBank [30], and AutoProp [6] a tool that has been designed to 

“propositionalize” texts that have already been reduced to clauses. More recently, 

members of the DBpedia project [4] have been working to extract semantic triples 

from Wikipedia itself. As of September 2011, the DBpedia dataset described more 

than 3.64 million “things,” with consistent ontologies for some 416,000 persons, 

526,000 places, 106,000 music albums, 60,000 films, 17,500 video games, 169,000 

organizations, 183,000 species and 5,400 diseases. A similar project, Freebase, allows 

users to edit ontologies extracted from Wikipedia [27], while YAGO2 [21] is a 

knowledge base of similar size (nearly 10 million entities and events, as well as 80 

million facts representing general world knowledge) that includes the dimensions of 

space and time in its ontologies. All of these projects employ a form of semantic net-

work to represent conceptual knowledge. 

Given the labor required in building formal representations of procedural 

knowledge by hand, it is natural to consider the possibility of automatic extraction of 

production rules from text corpora, using machine learning (data mining) methods 

similar to those for extracting declarative knowledge. As it turns out, work on this 

problem is already producing promising results. For example, Schumacher, Minor, 

Walter, & Bergmann [36] have compared two methods of extracting formal “work-

flow representations” of cooking recipes from the Web, finding that the frame-based 

SUNDANCE system [34] gives superior results, as rated by human experts. Song et al. 

[37] have tested a method for extracting procedural knowledge from PubMed ab-

stracts. Jung, Ryu, Kim, & Myaeng [23] describe an approach to automatically con-

structing what they call “situation ontologies” by mining sets of how-to instructions 

from the large-scale web resources eHow (www.eHow.com) and wikiHow 

(www.wikihow.com). 

While the implications of this work for the development of intelligent learning 

systems remain unclear, the possibilities inherent in semantic data mining of both 

declarative and procedural knowledge clearly deserve attention. It seems the most 

likely scenario is that future systems will employ different knowledge representations 

for different purposes. For example, Rus [35] describes the use of a hybrid solution, 

Latent Semantic Logic Form (LS-LF), for use in the extraction of expert knowledge 

bases from corpora such as textbooks. Also, while the use of semantic networks in 

particular domains may allow an agent to engage in something approaching intelligent 

conversation regarding these domains, the agent may still need a way of coping with 

user utterances that it cannot handle in any other way, much as humans make educat-

ed, intuitive guesses about the meaning of ambiguous or confusing utterances. For 
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example, Hu & Martindale [22] discuss the use of a semantic vector model as a means 

of evaluating the relevance and novelty of a given utterance in a series of discourse 

moves, which is clearly useful in the event that an agent has no other way of evaluat-

ing a user’s utterance.  

2.2 Implications for General-purpose Tutoring Systems 

The field of intelligent tutoring has come a long way in the four decades that separate 

us from the time of SCHOLAR. A recent estimate [28], identified some 370 ITS “ar-

chitecture families,” or which 12 were considered “major architectures,” defined as 

those with at least ten scholarly papers published between the years 2009-2012. How-

ever, in spite of these efforts (representing investments of untold millions of taxpayer 

dollars), the field has not yet had much of an impact on educational practice. The 

study cited above, for example, estimated less than 1 million users worldwide. To put 

this in perspective, a recent estimate puts the number of school-age children in the 

U.S. at 70 million, and in the world at over 1 billion [7].  

Important barriers to more widespread adoption and impact of ITSs include two im-

portant and related problems. One is the high cost of authoring domain-specific sys-

tems, recently estimated to require between 24 and 220 hours of development time for 

one hour of instruction, with a mean of around 100 hours [16]. A second problem is 

that ITSs tend to be constructed as “unique, one-of-a-kind, largely domain-dependent 

solutions focused on a single pedagogical strategy” [38]. Among other things, because 

components are not shareable, this means that returns on investment in particular 

systems is limited to whatever impact those particular systems might on their own, 

like stones tossed into a pond that make no ripples. 

The use of semantic networks to represent expert domain knowledge might go far to 

reduce authoring costs and could also lead to portable expert models, and, by exten-

sion, learner models. As we have seen, a considerable amount of work is already go-

ing on in the semi-automatic (i.e., supervised) extraction of domain ontologies from 

text corpora. What this means, conceptually, is that the ontology of a particular do-

main becomes not just a single person (or team’s) unique description of the domain of 

interest, but a structure that emerges from the way the domain is represented linguisti-

cally in some very large number of texts, written by different authors. While it is true 

that supervised extraction introduces and reflected the biases of the human supervi-

sors, ontologies constructed in this way arguably have much more in common than 

those constructed entirely from scratch for specific purposes. The ability to extract 

domain models directly from text corpora also, of course, speeds the development 

process, and, to the extent that expert models  constructed in this way are architecture-

independent, they are more likely to acquire general currency than dedicated models 

developed for the particular purposes of specific systems. Finally, to the extent that 

learner models, or at least some portion of them, are seen as overlays of expert models 

(i.e., flawed or incomplete versions of expert maps), these may also become trans-

portable across systems, and because these models can be expressed mathematically, 

as graphs, it becomes possible to estimate differences between learner models and 

expert models computationally.  
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3 Conclusion 

While the specific affordances of semantic networks in respect to problems of 

knowledge representation, learner modeling, and conversational fluency of intelligent 

agents have yet to be fully explored, and while such structures do not by any means 

solve fundamental problems, the future is indeed promising. As argued here, the 

movement to structure the vast store of human knowledge on the Web in the form of 

explicit ontologies, as evidenced in the Semantic Web project and its many associated 

technologies, is well underway, and has undeniable momentum. The future of human 

knowledge representation almost certainly lies in this direction, with some obvious 

potential benefits to ITS developers. For example, to the extent that expert domain 

models are conceived as populated ontologies, then it becomes easier to conceive of 

portable domain models, and, to the extent that a learner models are also conceived of 

as populated ontologies, then learner models can also be portable across systems. 

Interestingly, the underpinnings of the Semantic Web originated in the work of Ross 

Quillian, the same work that SCHOLAR, the ancestor of modern ITSs, was based on. 

Now that the technology is beginning to catch up with that initial vision, the time has 

arguably come to take another look at the affordances of semantic networks. In par-

ticular, the designers of systems such as GIFT, which seek to provide a general-

purpose framework for development of ITS systems of the future, are advised to look 

carefully at the specific implications of the reemergence and increasing importance of 

semantic networks as general-purpose structures for representing the knowledge of 

both experts and learners, and as the basis for bringing these structures into alignment 

through natural processes of teaching and learning. 
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Abstract. Embodied conversational agents are virtual characters that engage 

users in conversation with appropriate speech, gesture, and facial expression. 

The high cost of developing embodied conversational agents has led to a recent 

increase in open source agent platforms. In this paper, we present XNAgent, an 

open source platform for embodied conversational agents based on the XNA 

Framework. By leveraging the high-level class structure of the XNA Frame-

work, XNAgent provides a compact implementation that is suitable both as a 

starting point for the development of a more advanced system and as a teaching 

tool for AI curricula. In this paper we describe how we created an embodied 

conversational agent in XNA using skeletal and morph animation, motion cap-

ture, and event-driven animation and how this process can facilitate the use of 

embodied conversational agents in the Generalized Intelligent Framework for 

Tutoring. 

Keywords: XNA, ECA, GIFT, agent, HCI, conversation, interface, tutoring 

1 Introduction 

It is well known that we unconsciously and automatically interact with computers 

using social norms [1]. Embodied conversational agents (ECAs) capitalize on this 

phenomena as characters with human-like communicative capabilities. By doing so, 

ECAs leverage pointing, gestures, facial expressions, and voice to create a richer hu-

man-computer interface. As a result ECAs have been used in diverse AI applications, 

including education [2], where they form an important part of the tutor-user interface. 

ECAs combine research in discourse, computer animation, speech synthesis, and 

emotion. Consequently ECA systems tend to be costly to build [3] As a result, in the 

past decade, a great deal of tutoring research has used closed-source platforms such as 

Microsoft Agent [4], adapted commercial/open source game engines [5], or low-level 

libraries like OpenGL [6]. These approaches present different types of challenges. 

Game engines usually have support for basic character animation but lack native lip-

sync and fine animation control, and game engines come with a complex API with 
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many features that may not be relevant for education research, e.g. bullet/explosion 

physics or first-person shooter perspective. Conversely low-level libraries have no 

similar irrelevant complexity but require designing the AI from the ground up. Given 

the challenges of both the game-engine and low-level routes, recent researchers have 

released open source platforms for ECA development [7, 8, 9, 10] based on either 

game engines or low-level libraries. 

The design and development challenges described above for ECAs are manifest 

in the development of computer-based training environments and have recently been 

addressed by the Generalized Intelligent Framework for Tutoring Framework [11]. 

One of the design goals of the Generalized Intelligent Framework for Tutoring 

(GIFT) is to provide authoring capability for the creation of computer-based training 

components. One such component is the tutor-user interface, which in modern intelli-

gent tutoring systems often uses an ECA. Accordingly, in this paper we present an 

open source solution to ECA development that meets the design goals of the GIFT 

Framework. Rather than use a game engine with its inherent complexities or a low-

level library that requires a large investment of initial development, we present an 

ECA platform that combines the best of these using Microsoft’s XNA framework [12]. 

By providing high-level libraries, a runtime environment for managed code (C#), free 

development tools, and extensive support in the form of code samples, official forums, 

and commercially available books at all levels, the XNA framework provides a solid 

foundation for ECA development. In this the following sections we describe how we 

implement the face and body of XNAgent using skeletal and morph animation via 

vertex shaders, motion capture, and event-driven animation. At each step the content 

creation pipeline is outlined to illustrate how XNAgent may be adapted to new AI 

contexts. We conclude by considering the design goals of the GIFT Framework and 

how they are addressed by XNAgent. 

2 Face 

The face of an ECA can be considered independently of the body in terms of speech, 

emotions, and facial expressions. The classic reference for facial expression is the 

Facial Action Coding System, which uses the anatomy of the face, primarily in terms 

of muscle groups, to define facial action units [13]. While it is certainly possible to 

create “virtual muscles” and animate with them, a number of other real-time ap-

proaches exist which give satisfactory results [14]. Perhaps the most well-known and 

widely used facial animation approach is morph target animation. 

In morph target animation, a version of the head is created for each desired ex-

pression. For example, one version for smiling, frowning, or a “w” lip shape. Each of 

these shapes becomes a target for interpolation, a morph target. If two morph channels 

exist, e.g. a neutral face and a smiling face, the interpolation between them can be 

described by the distance between matching vertices across the two faces. In practice, 

this distance is often normalized as a weight such that a weight of 1 would push the 

neutral face all the way to happy. The advantage to using morph target animations is 

that each morph target can be carefully crafted to the correct expression, and then 

mixtures of morph targets can be used to create huge number of intermediate expres-

sions, e.g. smiling while talking and blinking.  
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FaceGen Modeler, by Singular Inversions, is a popular software package for cre-

ating 3D faces that has been used in psychological research on gaze, facial expression, 

and attractiveness [15]. FaceGen Modeler contains a statistical model of the human 

face with approximately one hundred and fifty parameters to vary face shape and 

texture. Using FaceGen Modeler, a virtual infinite variety of human faces can be cre-

ated by manipulating these parameters, and for a given custom face FaceGen Modeler 

can output thirty-nine morph targets including seven emotions and sixteen visemes 

(the visual correlates of phonemes used for lip-sync). XNAgent uses FaceGen Model-

er output, so a correspondingly large variety of faces can be implemented in XNAgent. 

Since XNA does not provide native support for morph targets, we have imple-

mented them using vertex shaders. A shader is a program that runs directly on the 

graphics card. In XNA, shaders are written in High Level Shader Language that re-

sembles the C programming language, and the shaders compile side by side with C#. 

To implement morph target animation, XNAgent’s vertex shaders operate on each 

vertex on face and perform bilinear interpolation (interpolation on two axes). Thus 

there are three versions of the XNAgent head loaded at any particular time: a neutral 

head that was skinned with the body (see Section 3), a viseme head for the current 

viseme, and an emotion/expression head for the current emotion. It is possible to have 

more channels for additional morphing, and these are easily added if necessary. 

XNAgent utilizes a dynamic, event-driven animation system for facial expres-

sions. Three categories of facial animation are currently supported, including blinking, 

lip-sync via visemes, and facial expressions. Blinking is implemented using a model 

of blinking behavior in humans [16] in its own thread. Because the most salient fea-

ture of blinking is perhaps that the eyelids cover the eyes, XNAgent imitates blinking 

through texture animation rather than morph target animation. In texture animation 

the texture of the face is switched quickly with another version of the face. In the case 

of blinking the two textures are nearly identical except the blink texture’s eyes are 

colored to match the surrounding skin, thus simulating closed eyes. 

Lip-syncing through morph target animation is controlled by the agent’s voice, i.e. 

a text-to-speech synthesizer. Some speech synthesizers generate lip-sync information 

during synthesis by producing visemes, the visual correlates of phonemes. Each 

viseme unit typically includes the current viseme and the viseme’s duration. In a 

viseme event handler, XNAgent sets the current viseme morph target and its duration 

using these values. In the Update() loop, the viseme’s time left is decremented by the 

elapsed time. In the Draw() loop, the viseme morph is expressed with a weight based 

on the remaining time left. Thus the lip sync remains true independently of the 

framerate speed of the computer running XNAgent and linearly interpolates between 

visemes. 

Morphing expressions like emotions require a more flexible approach than 

viseme animations. For example, a smile can be a slow smile that peaks at a medium 

value, or a rapid smile that peaks at an extreme value. To capture these intuitions, our 

expression morph animation has parameters for rise, sustain, and decay times, with a 

maximum weight parameters that specifies what the maximal morph will be during 

the sustain phase. Currently these three phases are interpolated linearly. 
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3 Body 

Non-facial movements, or gestures, appear to greatly differ from the face greatly in 

terms of communicative complexity, forming sign language in the extreme case. Our 

approach is therefore to model the entire body as a collection of joints, such that ma-

nipulating the values of these joints will cause the body to move. This common ap-

proach to animation is often called skeletal, or skinned animation [17]. 

In skinned animation a character “shell” is first created that represents a static 

character. An underlying skeletal structure is created for the shell with appropriate 

placement of joints and placed inside the shell. The shell and skeleton are then bound 

together such that a transformation on the underlying skeleton is mirrored in the shell; 

this result is known as a rigged model. Once a model is rigged, it may be animated by 

manipulating the skeleton and saving the resulting joint position data. Every saved 

movement creates a keyframe, and when these keyframes are played back at a rapid 

rate (e.g. 30 fps) the rigged model will carry out the animated action. Alternatively 

motion capture technologies can extrapolate joint position data from naturalistic hu-

man movement. In this case the resulting animation is still a keyframe animation. 

In order to create a body for XNAgent, we used several software packages to 

form what is commonly known as a 3D authoring pipeline. At each stage of the pipe-

line there are multiple available techniques and software packages, making navigating 

this space a complex process. In brief, there are three major phases to creating a body 

with gestures, namely model creation, rigging, and animation. Model creation can be 

extremely difficult for non-artists without initial materials to work from. To facilitate 

the process of body creation, we used the face model generated by FaceGen Modeler 

together with the FaceGen Exporter to export the face model to the Daz Studio soft-

ware package. This process seamlessly combines the face and body models and auto-

rigs the body with a skeleton. Daz Studio allows for comparable customizations of the 

body (gender, size, shape) as FaceGen does for the face. In addition, Daz Studio 

comes with a variety clothing and accessory packs that can be applied to the body in a 

drag and drop manner. In effect, several hundred hours of 3D authoring can be ac-

complished by a novice in less than an hour. 

In order to create realistic animations, we primarily used the low-cost iPi Desktop 

Motion Capture system from iPi Soft. The simplest camera configuration for this 

system uses the Microsoft Kinect camera. Once the motion capture has been recorded 

by iPi, it can be merged and edited using AutoDesk 3DS Max, where ultimately it is 

exported for XNA using the kw X-port plugin. A complete description of this process 

is beyond the space limitations of the current discussion, but a full tutorial, including 

software installer and step by step slides, is available from the corresponding author’s 

website
9
. 

In order to achieve similar functionality to interpolating visemes, skinned anima-

tion clips require mechanisms for blending and mixing. Simply put, blending is end to 

end interpolation, like a DJ fading from one song to the next. Mixing breaks the ani-

mation into components and plays them simultaneously, like a DJ taking the beat 

from one song, vocals from another, and playing them together. Blending and mixing 

can be done simultaneously if clips are playing in different regions of the skeleton 

                                                           
9
  http://andrewmolney.name 
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while being blended with other clips in those same regions. XNAgent uses the Com-

munist Animation Library [18] to perform blending and mixing. Currently in 

XNAgent the skeleton is divided into center, left side, right side, and head regions. 

These regions are used to represent the following tracks: idle, both arms, left arm, 

right arm, and head. Animations are assigned to tracks at design time and then played 

with weights according to what other animations are currently playing in their track. 

For example, the idle animation consists of motion capture of a person standing and 

slightly swaying. Some degree of the idle animation is always playing in all the tracks, 

but when other animations are played in those tracks they are played with a higher 

weight. Thus lower priority animations like idle will be superseded by higher priority 

animations in a relatively simple manner. 

Animations are triggered in XNAgent by inserting animation tags into the text to 

speak, either dynamically or manually. When the TTS encounters the tag, it schedules 

the animation immediately. The mixing properties of the animation are specified in 

the tag to create new versions of animations, similar to morphing. For example, since 

the idle animation is always playing, it can be given more weight relative to an arm 

gesture to create a “beat” gesture [19]. Thus a normal full arm extension animation 

can be dampened arbitrarily using weighting, bringing the arm closer to the body with 

increasing weight. In addition, the speed of the animation clip can be modulated to 

control for the appropriate speed of the beat gesture, since beat gestures are often 

quick and fluid. 

Although XNA has some level of built in support for skinned animations, com-

bining skinned animations with morph target animations requires a custom vertex 

shader. In XNAgent there are two vertex shaders that operate separately on the head 

and body of the agent. The head shader applies morphing to calculate a new vertex 

position and then applies the transformation defined by skinning. This allows the head 

to be applying morph targets (e.g. speaking) while also nodding or shaking. The se-

cond vertex shader focuses strictly on the body and so does not require morphing. 

4  Working with XNAgent 

One of the most important aspects of any ECA is its ability to integrate into an AI 

application. Game engines typically don’t support integration well and rather present 

a fullscreen interface for the game, as does XNA. Although text input and other user 

interface functions can be carried out inside XNA, they are difficult because XNA 

doesn’t provide the native support commonly expected by GUI designers. For exam-

ple, key presses in XNA are interpreted based on the framerate of the game, meaning 

that a normal keystroke will produce a double or triple production of letters or num-

bers. To address the integration issue, XNAgent provides an XNA environment inside 

a Windows form control. That means that adding XNAgent to an interface is as sim-

ple as selecting the XNAgent control from the Visual Studio toolbox and dropping it 

on a form. The primary method to call on the control is Speak(), which processes both 

text to speech and animation tags as described in previous sections. In summary, the 

process for using XNAgent is (1) create a 3D model using the authoring pipeline de-

scribed above (2) import the model to XNAgent (3) call XNAgent from your applica-

tion using the Speak() method. We have previously integrated XNAgent into the Guru 
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intelligent tutoring system shown in Figure 1 and conducted a number of experiments 

[20]. 

 

 

Figure 1: XNAgent running in the Guru intelligent tutoring system. 

 

We argue that XNAgent fulfills many if not all of the design goals for GIFT au-

thoring components [11]. XNAgent decreases the effort of authoring ECAs through 

its 3D authoring pipeline. Similarly it decreases the skills required for authoring 

ECAs by making authoring a drag-and-drop process, rather than a pixel-by-pixel pro-

cess. XNAgent’s animation framework allows authors to organize their knowledge 

about pedagogical animations and helps structure pedagogical animations. Perhaps 

most importantly in a research environment, XNAgent supports rapid prototyping of 

ECAs with different properties (gender, size, or clothing) for different pedagogical 

roles (teacher, mentor, or peer). XNAgent supports standards for easy integration with 

other software as a Windows form control. By cleanly separating domain-independent 

code from specific 3D model and animation content, XNAgent promotes reuse. Final-

ly XNAgent leverages open source solutions. Not only is XNAgent open source, but 

every element in its 3D authoring pipeline either has a freeware version or is free for 

academic use. Moreover, the recent version of MonoGame, an open source imple-

mentation of XNA, promises to make XNAgent cross platform to desktop and mobile 

devices beyond the Windows desktop. 
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5 Conclusion 

In this paper we have described the XNAgent platform for developing embodied con-

versational agents. Unlike existing ECA platforms that require either low level 

graphics programming or the use of complex game engines, XNAgent is written using 

a high level framework (XNA). Our contribution to this research area is in showing 

how to implement appropriate speech, gesture, and facial expression using skeletal 

and morph animation via vertex shaders, motion capture, and event-driven animation. 

We argue that the XNAgent platform fulfills most of the authoring design goals for 

GIFT with respect to authoring ECAs. It is our hope that XNAgent will be used by 

adopters of GIFT to facilitate creation of dialogue based tutoring systems that use 

ECAs. 
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