

AIED 2013 Workshops Proceedings

Volume 7

Recommendations for Authoring,

Instructional Strategies and Analysis for

Intelligent Tutoring Systems (ITS):

Towards the Development of a

Generalized Intelligent Framework for

Tutoring (GIFT)

Workshop Co-Chairs:

Robert A. Sottilare & Heather K. Holden

 Army Research Laboratory, Human Research and Engineering

Directorate, Orlando, Florida, USA

https://gifttutoring.org/news/14

https://gifttutoring.org/news/14

 ii

Preface

This workshop provides the AIED community with an in-depth exploration of the

Army Research Laboratory’s effort to develop tools, methods and standards for Intel-

ligent Tutoring Systems (ITS) as part of their Generalized Intelligent Framework for

Tutoring (GIFT) research project. GIFT is a modular, service-oriented architecture

developed to address authoring, instructional strategies, and analysis constraints cur-

rently limiting the use and reuse of ITS today. Such constraints include high devel-

opment costs; lack of standards; and inadequate adaptability to support tailored needs

of the learner. GIFT’s three primary objectives are to provide: (1) authoring tools for

developing new ITS, ITS components (e.g., learner models, pedagogical models, user

interfaces, sensor interfaces), tools, and methods based on authoring standards that

support reuse and leverage external training environments; (2) an instructional man-

ager that encompasses best tutoring principles, strategies, and tactics for use in ITS;

and (3) an experimental testbed for analyzing the effect of ITS components, tools, and

methods. GIFT is based on a learner-centric approach with the goal of improving

linkages in the adaptive tutoring learning effect chain in Figure 1.

Figure 1: Adaptive Tutoring Learning Effect Chain

The goal of GIFT is to make ITS affordable, effective, usable by the masses, and

provide equivalent (or better) instruction than expert human tutors in one-to-one and

one-to-many educational and training domains. GIFT’s modular design and standard

messaging provides a largely domain-independent approach to tutoring where do-

main-dependent information is concentrated in the one module making most of its

components, tools and methods reusable across training domains. More information

about GIFT can be found at www.GIFTtutoring.org.

The workshop is divided into five themes: (1) Fundamentals of GIFT (includes a

tutorial on GIFT and a detailed demonstration of the latest release); (2) Authoring ITS

using the GIFT Authoring Construct; (3) Adapting Instructional Strategies and Tac-

tics using GIFT; (4) Analyzing Effect using GIFT; and (5) Learner Modeling. Themes

include presentations from GIFT users regarding their experiences within the respec-

tive areas and their recommendations of design enhancements for future GIFT releas-

es. Theme 5 is dedicated to discussing the outcomes of the learner modeling advisory

board meeting conducted at the University of Memphis Meeting in September 2012.

July, 2013

Robert Sottilare, Heather Holden.

http://www.gifttutoring.org/

 iii

Program Committee

Co-Chair: Robert Sottilare, Army Research Laboratory, Orlando, FL, USA

(robert.a.sottilare@us.army.mil)

Co-Chair: Heather Holden, Army Research Laboratory, Orlando, FL, USA

(heather.k.holden@us.army.mil)

Arthur Graesser, University of Memphis

Xiangen Hu, University of Memphis

James Lester, North Carolina State University

Ryan Baker, Columbia University

mailto:robert.a.sottilare@us.army.mil
mailto:heather.k.holden@us.army.mil

 iv

Table of Contents

Motivations for a Generalized Intelligent Framework for Tutoring (GIFT) 1

for Authoring, Instruction and Analysis

Robert Sottilare and Heather Holden.

Unwrapping GIFT: A Primer on Developing with the Generalized Intelligent 10

Framework for Tutoring

Charles Ragusa, Michael Hoffman, and Jon Leonard

GIFT Research Transition: An Outline of Options: How transition in 21

GIFT moves through phases of idea, project, paper, and to real-world use.

Keith Brawner

Experimentation with the Generalized Intelligent Framework for Tutoring 27

(GIFT): A Testbed Use Case

Benjamin Goldberg and Jan Cannon-Bowers

Bringing Authoring Tools for Intelligent Tutoring Systems and Serious Games 37

Closer Together: Integrating GIFT with the Unity Game Engine

Colin Ray and Stephen Gilbert

Authoring a Thermodynamics Cycle Tutor Using GIFT 45

Mostafa Amin-Naseri, Enruo Guo, Stephen Gilbert, John Jackman,

Mathew Hagge, Gloria Starns, and LeAnn Faidly

Integrating GIFT and AutoTutor with Sharable Knowledge Objects (SKOs 54

Benjamin Nye

Leveraging a Generalized Tutoring Framework in Exploratory Simulations 62

Of Ill-Defined Domains

James Thomas, Ajay Divakaran, and Saad Khan

Toward “Hyper-Personalized” Cognitive Tutors: Non-Cognitive Personalization 71

in the Generalized Intelligent Framework for Tutoring

Stephen Fancsali, Steven Ritter, John Stamper, and Tristan Nixon

Using GIFT to Support an Empirical Study on the Impact of the Self-Reference 80

Effect on Learning

Anne Sinatra

Detection and Transition Analysis of Engagement and Affect in a Simulation- 88

Based Combat Medic Training Environment

Jeanine DeFalco and Ryan Baker

 v

Run-Time Affect Modeling in a Serious Game with the Generalized Intelligent 95

Framework for Tutoring

Jonathan Rowe, Eleni Lobene, Jennifer Sabourin, Bradford Mott, and James Lester

Towards a Generalized Framework for Intelligent Teaching and Learning 105

Systems: The Argument for a Lightweight Multiagent Architecture

Benjamin Nye and Donald Morrison

Recommendations for the Generalized Intelligent Framework for Tutoring 116

Based on the Development of the Deep Tutor Service

Vasile Rus, Nobal Niraula, Mihai Lintean, Rajendra Banjade, Dan Stefanescu,

and William Baggett

The SCHOLAR Legacy: A New Look at the Affordances of Semantic Networks 128

for Conversational Agents in Intelligent Tutoring Systems

Donald Morrison and Vasile Rus

XNAgent: Authoring Embodied Conversational Agents for Tutor-User Interfaces 137

Andrew Onley

 1

Motivations for a Generalized Intelligent Framework for

Tutoring (GIFT) for Authoring, Instruction and Analysis

Robert A. Sottilare, Ph.D. and Heather K. Holden, Ph.D.

U.S. Army Research Laboratory – Human Research and Engineering Directorate

{robert.sottilare, heather.k.holden}@us.army.mil

Abstract. Intelligent Tutoring Systems (ITS) have been shown to be effec-

tive tools for one-to-one tutoring in a variety of well-defined domains (e.g.,

mathematics, physics) and offer distinct advantages over traditional classroom

teaching/training. In examining the barriers to the widespread use of ITS, the

time and cost for designing and author-ing ITS have been widely cited as the

primary obstacles. Contributing factors to time and cost include a lack of

standards and minimal opportunities for reuse. This paper explores motivations

for the development of a Generalized Intelligent Framework for Tutoring

(GIFT). GIFT was conceived to meet challenges to: author ITS and ITS com-

ponents, offer best instructional practices across a variety of training tasks (e.g.,

cognitive, affective, and psychomotor), and provide a testbed for analyzing the

effect of tutoring technologies (tools and methods).

1 Introduction

GIFT [1] is a modular, service-oriented architecture developed to address authoring,

instructional strategies, and analysis constraints currently limiting the use and reuse of

ITS today. Such constraints include high development costs; lack of standards; and

inadequate adaptability to support tailored needs of the learner. GIFT’s three prima-

ry objectives are to develop: (1) authoring tools to develop new ITS, ITS components

(e.g., learner models, pedagogical models, user interfaces, sensor interfaces), tools,

and methods, and develop authoring standards to support reuse and leveraging exter-

nal training environments; (2) provide an instructional manager that encompasses best

tutoring principles, strategies, and tactics for use in ITS; and (3) an experimental

testbed to analyze the effect of ITS components, tools, and methods. GIFT is based

on a learner-centric approach with the goal of improving linkages in the adaptive

tutoring learning effect chain in Figure 1.

Figure 1: Adaptive Tutoring Learning Effect Chain [2]

 2

GIFT’s modular design and standard messaging provides a largely domain-

independent approach to tutoring where domain-dependent information is concentrat-

ed in the domain module making most of its components, tools and methods reusable

across tutoring scenarios.

2 Motivations for authoring tools, standards and best practices

The primary goal of GIFT is to make ITS affordable, usable by the masses, and

equivalent (or better) than an expert human tutors in one-to-one and one-to-many

educational and training scenarios for both well-defined and ill-defined domains. As

ITS seek to become more adaptive to provide tailored tutoring experiences for each

learner, the amount of content (e.g., interactive multimedia and feedback) required to

support additional adaptive learning paths grows exponentially. More authoring re-

quirements generally means longer development timelines and increased development

costs. If ITS are to be ubiquitous, affordable, and holistically learner-centric, it is

essential to for ITS designers and developers to develop methods to rapidly author

content or reuse existing content. Overcoming barriers to reuse means developing

standards. In this context, the idea for GIFT was born.

2.1 GIFT Authoring Goals

Adapted from Murray [3] [4] and Sottilare and Gilbert [5], the authoring goals dis-

cussed below identify several motivating factors for the development of authoring

methods and standards. First and foremost, the idea of a GIFT is founded on decreas-

ing the effort (time, cost, and/or other resources) required to author and analyze the

effect of ITS, ITS components, instructional methods, learner models, and domain

content. ITS must become affordable and easy to build so we should strive to de-

crease the skill threshold by tailoring tools for specific disciplines to author, analyze

and employ ITS.

In this context, we should provide tools to aid designers, authors, train-

ers/teachers, and researchers organize their knowledge for retrieval and application at

a later time. Automation should be used to the maximum extent possible to data mine

rich repositories of information to create expert models, misconception libraries, and

hierarchical path plans for course concepts.

A GIFT should support (structure, recommend, or enforce) good design princi-

ples in its pedagogy, its user interface, etc. It should enable rapid prototyping of ITS

to allow for rapid design/evaluation cycles of prototype capabilities. To support reuse,

a GIFT should employ standards to support rapid integration of external train-

ing/tutoring environments (e.g., serious games) to leverage their engaging context and

avoid authoring altogether.

2.2 Serious Games and ITS

Serious games, which are computer-based games aimed at training and education

rather than pure entertainment, are one option for reuse if they can easily be integrated

with tutoring architectures like GIFT. Serious games offer high-level interactive mul-

 3

ti-media instructional (IMI) content that is engaging and is capable of supporting a

variety of scenarios with the same basic content. While most serious games offer

prescriptive feedback based on learner task performance, the integration of serious

games with ITS opens up the possibility of more adaptive feedback based on a more

comprehensive learner model.

In order to facilitate the use of serious games in a tutoring context (game-based

tutoring), standards are needed to support the linkage of game actions to learning

objectives in the tutor. To this end, Sottilare and Gilbert [5] recommend the devel-

opment of two standard interface layers, one layer for the game and one for the tutor.

The game interface layer captures entity state data (e.g., behavioral data represented

in the game), game state data (physical environment data), and interaction data, and

passes this information to the tutor interface layer. The tutor interface layer passes

data from the game to the instructional engine which develops strategies and tactics

(e.g., feedback and scenario changes) which are passed back to the game to initiate

actions (e.g., non-player character provides feedback or challenge level of scenario is

increased).

Additional options for reuse should be explored to minimize/eliminate the

amount of authoring required by ITS designers and developers. The ability to struc-

ture approaches for configuring a variety of tutoring experiences and experiments is

discussed next.

2.3 Configuring tutoring experiences and experiments

Another element of authoring is the ability to easily configure the sequence of instruc-

tion by reusing standard components in a script. This is accomplished in GIFT

though a set of XML configuration tools used to sequence tutoring and/or experi-

ments. Standard tools include, but are not limited to functional user modeling, learner

modeling, sensor configuration, domain knowledge file authoring, and survey author-

ing which are discussed below.

While not yet implemented in GIFT, functional user models are standard struc-

tures and graphical user interfaces used to facilitate tasks and access to information

that is specific to the type of user (e.g., learners, subject matter experts, instructional

system designers, system developers, trainers/instructors/teachers, and scien-

tists/researchers).

Learner models are a subset of function user models used to define what the ITS

needs to know about the learner in order to inform sound pedagogical decisions per

the adaptive tutoring learning effect model. The learner configuration authoring tool

provides a simple tree structure driven by XML schema which prevents learner model

authoring errors by validating inputs against the learner model XML schema. This

configuration tool also provides ability to validate the learner model using GIFT

source without having to launch the entire GIFT architecture. Inputs to the learner

modeling configuration include translators, classifiers, and clustering methods which

use learner data to inform learner states (e.g., cognitive and affective).

The sensor configuration authoring tool allows the user to determine which sen-

sors will be used during a given session and which translators, classifiers, and cluster-

ing methods the sensor data will feed. Again, this is an XML-based tool which allows

the user to select a combination of behavioral and physiological sensor to support

 4

their tutoring session or experiment. Several commercial sensors have been integrat-

ed into GIFT through plug-ins.

Survey authoring is accomplished through the GIFT survey authoring system

(SAS) which allows the generation and retrieval of questions in various formats (e.g.,

true/false, multiple choice, Likert scales) to support assessments and surveys to sup-

port tailoring decisions within GIFT. Through this tool, questions can be associated

with assessments/surveys and these in turn can be associated with a specific tutoring

event or experiment.

Domain authoring is accomplished through the domain knowledge file authoring

tool. This tool allows an instructional designer to sequence events (e.g., scenarios,

surveys, content presentation). GIFT currently support various tutoring environments

expand the flexibility of course construction. These include Microsoft PowerPoint for

content presentation, surveys and assessments from the GIFT SAS, serious games

(e.g., VMedic and Virtual BattleSpace (VBS) 2). More environments are needed to

support the variety of tasks that might be trained using GIFT.

3 Motivations for expert instruction

Significant research has been conducted to model expert human tutors and to apply

these models to ITS to make them more adaptive to the needs of the learner without

the intervention of a human instructor. The INSPIRE model [6] [7] is noteworthy

based on the extensive scope of this studies that led to this model. Person and others

[8] [9] seek to compare and contrast how human tutors and ITS might most effective-

ly tailor tutoring experiences.

For its initial instructional model a strategy-tactic ontology, the engine for Mac-

ro-Adaptive Pedagogy (eMAP), was developed based on Merrill’s Component Dis-

play Theory [10], the literature, and variables that included the type of task (e.g., cog-

nitive, affective) and instruction (e.g., individual, small group instruction). Instruc-

tional strategies are defined as domain-independent policies that are implemented by

the pedagogical engine based on input about the learner’s state (e.g., cognitive, affec-

tive, domain-independent progress assessment (at expectation, below expectation, or

above expectation)). Strategies are recommendations to the domain module in GIFT

which selects a domain-dependent tactic (action) based on the strategy type (e.g.,

prompt, hint, question, remediation) and specific instructional context, where the

learner is in the instructional content.

A goal for GIFT is for it to be a nexus for capturing best practices from tutoring

research in a single place where scientists can compare the learning effect of each

model and then evolve new models based on the best attributes of each model ana-

lyzed. To support this evolution, GIFT includes a testbed methodology called the

analysis construct which is discussed below.

4 Motivations for an effect analysis testbed

As noted in the previous section, GIFT includes an analysis construct which is not

only intended to evolve the development of expert instructional models, but is also

 5

available to analyze other aspects of ITS including learner modeling, expert modeling,

and domain modeling. The notion of a GIFT analysis construct shown in Figure 2

was adapted from Hanks, Pollack, and Cohen’s testbed methodology [11].

Figure 2: GIFT analysis construct

A great benefit of GIFT’s analysis construct it is ability to conduct comparisons

of whole tutoring systems as well as specific components (either entire models or

specific model elements). To date, ITS research has been limited in its ability to con-

duct such comparative analyses due to the high costs associated with redesign and

experimentation. This construct can be leveraged to assess the impact and interplay

of both learner characteristics directly contributing to the learning process (i.e., abili-

ties, cognition, affect, learning preferences, etc.) and those that are external and indi-

rectly effect the learning process (i.e., perceptions of technology, the ITS interface,

and learning with technology, etc.). Similarly, GIFT can provide formative and

summative assessments to identify the influence of various instructional strategies and

tactics; based on these assessments, GIFT is able to better improve and guide instruc-

tion dynamically and more effectively.

Across all levels of education and training populations, regardless of the mode of

instruction (i.e., live, virtual, or constructive), a paradigm shift in the learning process

is occurring due to the evolution of technology and the increase in ubiquitous compu-

ting. This notion has become noticeably apparent over the last few years. Even

Bloom’s revised taxonomy has been recently updated to account for new actions,

behaviors, processes, and learning opportunities brought forth by web-based technol-

ogy advancements [12]. Moreover, with the increasing recognition of the importance

of individual learning differences in instruction, GIFT can ultimately be able to sup-

port the educational framework and principles of the universal design for learning

(UDL) [13, 14]. This framework highlights the need for multiple means of represen-

 6

tation, expression, and engagement to reduce barriers of learning and provide fruitful

learning experiences for all types of learners. While this concept has evolved over the

past decade, practicality and experimentation to progress this notion to true reality has

been limited. However, GIFT’s analysis construct can be used to access the effec-

tiveness of UDL principles in an empirically-driven fashion.

5 Expanding the horizons of ITS through future GIFT

capabilities

The potential of GIFT is dependent on two primary objectives: 1) focus research and

best practices into authoring, instructional, and analysis tools and methods within

GIFT to enhance its value to the ITS community and 2) expanding the horizons of

traditional ITS outside the bounds of traditional ITS. This section concentrates on

examining areas for future development which will expand the current state-of-

practice for ITS including tutoring domains, interaction modes, and automation pro-

cesses for authoring.

The application of ITS technologies has largely been limited to one-to-one, well-

defined tutoring domains where information, concepts, and problems are presented to

the learner and the learner’s response is expected to correspond to a single correct

answer. This works well for mathematics, physics and other procedurally-driven

domains (e.g., first aid), but not as well for ill-defined domains (e.g., exercises in

moral judgment) where there might be more than one correct answer and these an-

swers vary only by their level of effectiveness. It should be a goal of the ITS com-

munity to develop an ontology for use developing and analyzing tutors for ill-defined

domains.

Traditional tutors have also been generally limited to static interaction modes

where a single learner is seated in front of a computer workstation and interaction is

through a keyboard, mouse, or voice interface. Methods to increase the learner’s

interaction and range of motion are needed to move ITS from cognitive and affective

domains to psychomotor and social interaction domains. It should be a goal of the

ITS community to develop additional interaction modes to support increasingly natu-

ral training environments for both individuals and teams as shown in Table 1.

 7

Table 1. ITS interaction modes

Automation processes should be developed to support authoring of expert models,

domain models, and classification models for various learner states (cognitive, affec-

tive, and physical). Data mining techniques should be optimized to define not only

expert performance, but also levels of proficiency and expectations based on a persis-

tent (long-term) learner model. Again, data mining techniques are needed to reduce

the time and cost to author domain models including automated path planning for

courses based on the hierarchical relationship of concepts, the development of mis-

conception libraries based on course profiles, feedback libraries (e.g., questions,

prompts) based on readily available documentation on the internet and from other

sources .

6 References

1. Sottilare, R.A., Brawner, K.W., Goldberg, B.S., & and Holden, H.K. (2012). The General-

ized Intelligent Framework for Tutoring (GIFT). Orlando, FL: U.S. Army Research La-

boratory – Human Research & Engineering Directorate (ARL-HRED).

2. Sottilare, R. (2012). Considerations in the development of an ontology for a Generalized

Intelligent Framework for Tutoring. International Defense & Homeland Security Simula-

tion Workshop in Proceedings of the I3M Conference. Vienna, Austria, September 2012.

3. Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the

art. International Journal of Artificial Intelligence in Education, 10(1):98–129.

 8

4. Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated

analysis of the state of the art. Authoring tools for advanced technology learning environ-

ments. 2003, 491-545.

5. Sottilare, R., & and Gilbert, S. (2011). Considerations for tutoring, cognitive modeling, au-

thoring and interaction design in serious games. Authoring Simulation and Game-based

Intelligent Tutoring workshop at the Artificial Intelligence in Education Conference

(AIED) 2011, Auckland, New Zealand, June 2011.

6. Lepper, M. R., Drake, M., & O'Donnell-Johnson, T. M. (1997). Scaffolding techniques of

expert human tutors. In K. Hogan & M. Pressley (Eds), Scaffolding student learning: In-

structional approaches and issues (pp. 108-144). New York: Brookline Books.

7. Lepper, M. and Woolverton, M. (2002). The Wisdom of Practice: Lessons Learned from

the Study of Highly Effective Tutors. In J. Aronson (Ed.), Improving academic achieve-

ment: impact of psychological factors on education (pp. 135-158). New York: Academic

Press.

8. Person, N. K., & Graesser, A. C., & The Tutoring Research Group (2003). Fourteen facts

about human tutoring: Food for thought for ITS developers. Artificial Intelligence in Edu-

cation 2003 Workshop Proceedings on Tutorial Dialogue Systems: With a View Toward

the Classroom (pp. 335-344). Sydney, Australia.

9. Person, N. K., Kreuz, R. J., Zwaan, R. A., & Graesser, A. C. (1995). Pragmatics and peda-

gogy: Conversational rules and politeness strategies may inhibit effective tutoring. Cogni-

tion and Instruction, 13(2), 161–188.

10. Merrill, M. D. (1983). Component Display Theory. In C. M. Reigeluth (Ed). Instructional-

design theories and models: An overview of their current status, pp.279-333. Hillsdale, NJ:

Lawrence Erlbaum Associates.

11. Hanks, S., Pollack, M.E. and Cohen, P.R. (1993). Benchmarks, Test Beds, Controlled Ex-

perimentation, and the Design of Agent Architectures. AI Magazine, Volume 14 Number

4.

12. Churches, A. 2009. Retrieved April 29, 2013 from

http://edorigami.wikispaces.com/Bloom's+Digital+Taxonomy.

13. King-Sears, M. (2009). Universal Design for Learning: Technology and Pedagogy, Learn-

ing Disability Quarterly, 32(4), 199-201.

14. Rose, D.H. and Meyer, Anne. (2002). Teaching Every Student in the Digital Age: Univer-

sal Design for Learning. Association for Supervision and Curriculum Development,

ISBN-0-87120-599-8.

7 Acknowledgment

Research was sponsored and conducted by the Army Research Laboratory. The

views and conclusions contained in this document are those of the author and should

not be interpreted as representing the official policies, either expressed or implied, of

the Army Research Laboratory or the U.S. Government. The U.S. Government is

authorized to reproduce and distribute reprints for Government purposes notwith-

standing any copyright notation herein. Addition information about GIFT can be

found at www.GIFTtutoring.org.

http://edorigami.wikispaces.com/Bloom's+Digital+Taxonomy
http://www.gifttutoring.org/

 9

Authors

Robert A. Sottilare, PhD serves as the Chief Technology Officer (CTO) of the Simulation &

Training Technology Center (STTC) within the Army Research Laboratory’s Human Research

and Engineering Directorate (ARL-HRED). He also leads adaptive tutoring research within

ARL’s Learning in Intelligent Tutoring Environments (LITE) Laboratory where the focus of his

research is in automated authoring, instructional management, and analysis tools and methods

for intelligent tutoring systems. His work is widely published and includes recent articles in the

Cognitive Technology and the Educational Technology Journals. Dr. Sottilare is a co-creator of

the Generalized Intelligent Framework for Tutoring (GIFT). He received his doctorate in Mod-

eling & Simulation from the University of Central Florida with a focus in intelligent systems.

In January 2012, he was honored as the inaugural recipient of the U.S. Army Research Devel-

opment & Engineering Command’s Modeling & Simulation Lifetime Achievement Award.

Heather K. Holden, Ph.D. is a researcher in the Learning in Intelligent Tutoring Environments

(LITE) Lab within the U.S. Army Research Laboratory – Human Research and Engineering

Directorate (ARL-HRED). The focus of her research is in artificial intelligence and its applica-

tion to education and training; technology acceptance and Human-Computer Interaction. Dr.

Holden’s doctoral research evaluated the relationship between teachers' technology acceptance

and usage behaviors to better understand the perceived usability and utilization of job-related

technologies. Her work has been published in the Journal of Research on Technology in Educa-

tion, the International Journal of Mobile Learning and Organization, the Interactive Technology

and Smart Education Journal, and several relevant conference proceedings. Her PhD and MS

were earned in Information Systems from the University of Maryland, Baltimore County. Dr.

Holden also possesses a BS in Computer Science from the University of Maryland, Eastern

Shore.

 10

Unwrapping GIFT

A Primer on Developing with the Generalized Intelligent

Framework for Tutoring

 Charles Ragusa, Michael Hoffman, and Jon Leonard

Dignitas Technologies, LLC, Orlando, Florida, USA

{cragusa,mhoffman,jleonard}@dignitastechnologies.com

Abstract. The Generalized Intelligent Framework for Tutoring (GIFT) is an

open-source, modular, service-oriented framework which provides tools, meth-

ods and services designed to augment third-party training applications for the

purpose of creating intelligent and adaptive tutoring systems. In this paper we

provide a high-level overview of GIFT from the technical perspective, and de-

scribe the key tasks required to integrate a new training application. The paper

will be most helpful for software developers using GIFT, but may also be of in-

terest to instructional designers, and others involved in course development.

Keywords: Adaptive Tutoring, Intelligent Tutoring, Framework, Pedagogy

1 Introduction

The Generalized Intelligent Framework for Tutoring (GIFT) is a framework and tool

set for the creation of intelligent and adaptive tutoring systems[1-3]. In its current

form GIFT is largely an R&D tool designed to provide a flexible experimentation

platform for researchers in the intelligent and adaptive tutoring field. However, as

GIFT matures, it moves ever closer to becoming a production quality framework suit-

able for use in fielded training systems.

Generally speaking, GIFT is domain and training application agnostic. And,

while it can present generic content such as documents, multi-media content, etc.;

specialized content is typically presented via an external software system, which we

will refer to as a training application (TA). GIFT provides a standardized way to inte-

grate training applications and includes many tools and services required to transform

the TA into an intelligent and/or adaptive tutoring system. Services and standards

include:

 Standard approach for interfacing training applications

 Domain knowledge representation (including authoring tool)

 Performance assessment

 Course flow (including authoring tool)

 Pedagogical model including micro and macro adaptation

 Learner modeling

mailto:cragusa@dignitastechnologies.com

 11

 Survey support (with authoring tools)

 Learning management system

 Standardized approach for integrating physiological (and other) sensors

Another key aspect of GIFT is that it is an open source project
1
. Baseline develop-

ment is currently performed by Dignitas Technologies; however, where appropriate,

community developed capabilities will be rolled back into the baseline. In addition,

results from current and upcoming experiments, such as pedagogical models, learner

models, etc. may eventually be incorporated into future releases. Thus, GIFT is an

evolving and ever-improving system, where individual contributions are re-integrated

into the baseline for the mutual benefit of all users in the community.

2 Architecture

The GIFT runtime environment uses a service-oriented architecture and consists of

several loosely coupled modules, communicating via asynchronous message passing

across a shared message bus. Key modules and their primary functions are:

 Gateway Module: Connects GIFT to third-party training applications.

 Sensor Module: Connects GIFT to physiological sensors in a standardized way.

 Learner Module: Models the cognitive, affective, and performance state of the

learner [4].

 Pedagogical Module: Responsible for making domain-independent pedagogical

decisions, using an internal pedagogical model based on learner state.

 Domain Module: Performs performance assessment, based on domain-expert

authored rules, carries out domain specific implementations of pedagogical ac-

tions based on domain-independent pedagogical requests, and (together with the

pedagogical module) orchestrates course flow.

 Tutor Module: Presents the user interface for tasks such as presentation of sur-

veys, providing feedback, engaging in two-way dialogues, etc.

 Learning Management System (LMS) Module: GIFT connection to an exter-

nal learning management system, for the storage and maintenance of learner

records, biographical data, course material etc.

 User Management System (UMS) Module: Manages users of the GIFT sys-

tem, manages surveys and survey data, and provides logging functions.

 Monitor Module: Non-critical module, used as control panel for starting and

stopping other GIFT modules, and monitoring the state of active GIFT sessions.

1
 GIFT users are encouraged to register on the GIFT portal at

http://gifttutoring.org. The site provides access to the latest builds, source code, doc-

umentation, and supports active forums for general discussion and trouble-shooting.

 12

3 Getting Started with the GIFT Framework

3.1 GIFT Messages

Message Classes. GIFT messages are the sole means of communication between

GIFT modules. The Message class hierarchy consists of three classes. The Message

base class includes all boiler-plate message fields such as the time stamp, the payload

type, an object reference for the optional payload, identification of the source and

destination modules, etc. Two subclasses add additional fields appropriate for the

GIFT context, such as User Session ID and Domain Session ID.

Message Payloads. Many message types transport data in the optional payload.
To support inter-process communication (IPC), the messages and their payloads must

comply with an agreed upon encoding and decoding scheme. In GIFT 3.0 the default

scheme is Java Script Object Notation (JSON).

Message Types. Every GIFT message has an associated type. The various message

types are enumerated in the class mil.arl.gift.common.enums.MessageTypeEnum.

3.2 Interfacing a Training Application using the GIFT Gateway Module

Training Application Considerations. There are two basic requirements that a TA

must meet for a satisfactory integration with GIFT. The first is a means to transmit

game state from the TA to GIFT. The second is a way for GIFT to exercise some

degree of control over the TA. Basic controls such as launching the TA, loading spe-

cific content, and shutting down the TA, are very helpful in making a seamless train-

ing solution, even though they are not strictly required.

The requirement to communicate game state is immediately met if the TA in-

cludes a facility for communicating via a standardized network protocol such as Dis-

tributed Interactive Simulation (DIS) protocol. In the absence of such a capability, the

TA must be augmented either by leveraging an existing API or by modifying the

TA’s source code to allow communication of the game state to GIFT via IPC.

Control of the TA by GIFT follows a similar pattern. If an existing protocol exists,

it should be used. If not, then custom development will be required. In addition to

basic start, load, stop-type control messages, some use cases may require more ad-

vanced interactions, discussion of which is beyond the scope of this document.

Creating the Gateway Module Plugin. The process of adapting a TA to the GIFT

gateway module involves creating a gateway module plugin. When faced with inte-

grating a new TA, a developer should first ask if one of the existing plugins is suitable

for reuse. GIFT 3.0 includes plugins for: DIS, Power Point, TC3Sim, and VBS2.

Even if a new plugin is required, these will serve as excellent references.

When developing a new plugin, the primary objective is to implement a concrete

subclass of mil.arl.gift.gateway.interop.AbstractInteropInterface. The essential re-

quirements of a new subclass are minimal, but by providing concrete implementations

for each of the abstract methods, the plugin will seamlessly operate within the gate-

 13

way module context. Beyond that, the plugin should implement whatever additional

functionality it requires, such as receiving game state messages from the TA and con-

verting them to GIFT messages, and/or receiving GIFT messages (e.g. SIMAN mes-

sages) and passing them on to the TA in a way that the TA will understand.

GIFT Messaging. To complete the integration of the TA with the gateway module, at

least one GIFT message payload class is needed to represent the game state of the TA.

Existing message payload classes that have been used with previously integrated TA’s

include: TC3GameStateJSON, EntityStateJSON, and PowerPointJSON. If any of

these satisfactorily represents the game state from the new TA, then reusing the exist-

ing message is advised. However, if none of them are suitable, then a new message

will be required. Any new message payload types should be added to the

mil.arl.gift.common.enums.MessageTypeEnum class and the appropriate payload

class(es) added to the mil.arl.gift.net.api.message.codec.json package.

3.3 Domain Module Modifications and Programming

Overview. At the appropriate time(s) during the execution of a GIFT course, the do-

main module loads a domain-specific file called the domain knowledge file (DKF).

This XML input file contains the domain specific information required by the domain

module to carry out several of its key tasks during the learner’s interaction with the

TA. The first is assessments of the learner’s performance on various training tasks

encountered during the TA session. It also includes micro-pedagogical mappings of

learner state (affective, cognitive, and performance) transitions to named instructional

strategies as well as implementation details of those strategies.

Integration of any new TA, or even developing a new training course using a pre-

viously integrated TA, will typically require DKF authoring as a primary task. In

some cases, new custom java coding may also be required, as discussed below.

Domain Knowledge File Authoring. Given that DKF files are XML, they can be

edited with any number of text or XML editors, but the preferred method is to use the

GIFT-supplied DKF authoring tool (DAT). Using the DAT will enforce the DKF

schema as well as perform other validation such as checks against external references.

Before creating a new DKF the user should become familiar with the DKF file

format, which is described in the file GIFTDomainKnowledgeFile.htm
2
. In addition, a

GIFT release may include one or more test documents (spreadsheets), one of which

will contain a step-by-step procedure for authoring a DKF from scratch.

Performance Assessment Authoring. Performance assessment authoring is done with-

in the assessment tag of the DKF file. The basic structure is a task/concept/condition

2
 This and many other documents are contained in the GIFT/docs folder within the

GIFT source distribution, which is available for download at

http://gifttutoring.org

http://gifttutoring.org/

 14

hierarchy. Tasks have start and end triggers and a set of concepts. Each concept, in

turn, will have a set of conditions
3
. It is at the condition level that computation takes

place. In fact, you’ll notice that each condition tag will contain a conditionImpl tag

that refers to a java class responsible for carrying out the performance computation

based upon game state received from the TA and inputs encoded in the DKF. Current-

ly, performance values are limited to: unknown, below expectation, at expectation,

and above expectation. Beyond the runtime performance assessment, each condition

also supports a set of authorable scoring rules and evaluators that together determine

the final score for that condition. When scoring rules are present, learners are present-

ed with an after-action review of their performance at appropriate times and scores are

written to the LMS.

State Transition Authoring. State transition authoring is performed within the actions

tag of the DKF. The basic structure is a list of state transitions, each of which repre-

sent a state change in the learner, to which the tutor should react, along with a list of

strategy choices (options) that may be used when that particular state change is en-

countered. In cases where state transitions refer to the learner’s performance state, the

state transition will have a reference back to a performance node in the assessment

section of the DKF.

Instructional Strategy Authoring. Instructional strategy (IS) authoring is also per-

formed within the actions tag of the DKF. Implemented strategies currently include

learner feedback, scenario adaptations (changes to the currently executing TA scenar-

io), and request for performance assessment by the domain module. Each strategy

entry references a StrategyHandler, which is a specification of the java class responsi-

ble for handling authored input contained in the DKF file. The linkage to java code

allows substantial flexibility as will be discussed in the next section.

Custom Programming. As described above, the domain module supports a built-in

scheme for extending its capabilities for both performance assessment and for instruc-

tional strategies. To augment the performance assessment capabilities, a developer

codes an implementation of the AbstractCondition interface and then references the

implementation class in the appropriate section of the DKF. The key abstract method

to be implemented is the handleSimulationMessage
4

method, which takes in a Mes-

sage as the sole argument, and returns an AssessmentLevelEnum. The message argu-

ment is, of course, a representation of the game state that originates in the TA. Devel-

opers of new condition implementations should strive to make their code as abstract

as possible to allow for the broadest possible reuse
5
.

3
 This is a simplified description for the sake of readability. In actuality, concepts

support arbitrarily deep nesting of other concepts (i.e., sub-concepts).
4
 The method name reflects GIFT’s early development focus on integration with

simulations such as VBS2. In future releases the name will be likely be changed

to something more generic, such as, “handleGameStateMessage”.
5
 Reuse across different TA’s, scenarios, domains, etc.

 15

Implementing new instructional strategies is done similarly. Developers provide a

concrete implementation of the StrategyHandlerInterface and then reference the im-

plementation class within the DKF. A good example of this is seen with providing

feedback to a learner. In the DefaultStrategyHandler, feedback is presented to the

learner using the GIFT Tutor User Interface (TUI). However, in a recent experiment,

alternative presentations of feedback were required. To satisfy this requirement the

TC3StrategyHandler was developed, which allowed feedback strings to be communi-

cated back to TC3Sim for presentation to the learner directly by TC3Sim.

3.4 Surveys and Survey Authoring

GIFT uses the term “survey” to refer generically to any number of interrogative forms

presented to the learner via the TUI. GIFT supports survey authoring through its Sur-

vey Authoring System (SAS) web application as well as runtime presentation and

processing of surveys during execution of a GIFT course. GIFT surveys can be used

for a variety of purposes including pre, mid, and post lesson competency assessment;

acquiring biographical and demographic information; psychological and learner pro-

filing; and even for user satisfaction surveys. A variety of useful question and re-

sponse types are supported. Further discussion of the SAS is beyond the scope of this

document, but interested readers can consult the

GIFTSurveyAuthoringSystemInstructions.htm for additional information.

3.5 Course Authoring

Currently in GIFT, the top-level unit of instruction that learners interact with is a

called a course, the specification of which is contained in a dedicated course.xml file.

Prior to GIFT 3.0 a course specified a fixed linear flow through a series of course

elements; however, with GIFT 3.0 we have introduced support for dynamic flow

through course elements, based on macroadaptation strategies.

The primary course elements are surveys, lesson material, and TA sessions. Sur-

vey elements administer GIFT surveys that have been previously authored using the

SAS. Lesson material elements present browser compatible instructional content such

as PDF documents, html pages, or other media files. TA sessions support interactive

sessions with a TA such as VBS2, PowerPoint, or other specialized software systems.

A fourth course element called “Guidance”, which presents textual messages to the

learner, exists to support making user-friendly transitions between other course ele-

ments. For example at the conclusion of a survey a guidance element might be used to

introduce an upcoming TA session.

Course.xml files are authored using the Course Authoring Tool (CAT). For linear

flow, the author uses the CAT to specify the various elements of the course along

with any necessary inputs. For dynamic flow, authoring involves selecting when in

the course flow a branch point is appropriate. The branch point specifies that the mac-

ro pedagogical model should gather a list of metadata attributes based on the current

learner state when deemed necessary. This collection of metadata attributes is then

provided to the domain module as search criteria over the domain content resources

for the current course. As the search discovers domain content matching the metadata

 16

attributes of interest, paradata files are used to drill down the list of possible content

to display based on usage data. The end result is that the domain module is able to

present content based on the learner state and pedagogy recommendations.

3.6 Learner Module

The Learner Module is responsible for managing learner state, which can include

short term and predicted measures of cognitive and affective state as well as other

long term traits. Inputs used to compute state can originate from multiple sources

including TA performance assessments sent from the domain module, sensor data

from the sensor module, survey responses, and long term traits stored in the LMS.

To date, the GIFT team has focused on computing learner state from sensor data

received from the sensor module. The processing framework employs a pipeline ar-

chitecture which allows the developer to chain concrete implementations of abstract

data translators, classifiers, and predictors. Customized pipelines can be created for

each sensor type and/or groups of sensors.

Creation of pipelines using existing java implementation classes is performed us-

ing the Learner Configuration Authoring Tool, which is launched using scripts/

launchLCAT.bat. Currently defined pipelines can be found in

GIFT/config/learner/LearnerConfiguration.xml.

Developers requiring customized implementation classes are referred to the API

docs and source code in the mil.arl.gift.learner package. Key abstract classes include

AbstractClassifier, AbstractBasePredictor, and AbstractSensorTranslator.

Measurement, representation, and application of learner state are areas of active

research and future version of the GIFT learner module will incorporate relevant re-

search outcomes to enhance its capabilities.

3.7 Pedagogical Module

The pedagogical module is responsible for making pedagogical decisions based on

learner performance and state. Its primary objective is to reason on the available in-

formation, and then influence the training environment to maximize the learning ef-

fectiveness for each individual learner using the system. The rules, algorithms, and

heuristics that provide the basis for making pedagogical decisions in a domain-

independent way are generally referred to as the pedagogical model. One near term

goal of GIFT is to provide a framework upon which intelligent tutoring researchers

can easily integrate, test and validate a variety of pedagogical models.

In GIFT 3.0, there are two pedagogical models in place: a micro and a macro

model. The micro model uses the state transitions information authored in the DKFs

as described in previous sections. The macro model is based on research gathered by

IST on macro adaptive pedagogy findings [5] which has been encoded as an XML file

in GIFT. This XML file is used to configure the macro adaptive pedagogical model

when the pedagogical module is started. The information contains a tree-like structure

specifying useful metadata for different types of learner state characteristics. This

model will continue to be developed after GIFT 3.0.

 17

3.8 Learning Management System (LMS) Module

The GIFT LMS module is a surrogate for an external LMS. In the future, a commer-

cial grade LMS system may be integrated to maintain a variety of data, including

student records, course material, and other learning resources. However, in the current

version of GIFT, the LMS implementation is an SQL database, designed simply to

store and maintain learner records for GIFT courses that have been completed. Aside

from developers engaged in integration of GIFT with a production LMS system, very

few developers will have a need to modify the LMS module.

3.9 User Management System (UMS) Module

The UMS module is supports three major functions: management of users; storage

and maintenance of the surveys, survey questions and learner responses to surveys;

and message logging. None of these functions are likely targets for development for

new GIFT users; however, the logging feature is very important for researchers.

The UMS-managed log files contain every message sent between the various

modules during each GIFT session. Using the GIFT Event Reporting Tool (ERT)

researchers can apply filters to the log files to isolate messages of interest and perform

analysis and data mining that can be used to construct new models.

3.10 Tutor Module: User Interface Considerations

Users interact with GIFT via the TUI, which is a web application that connects to

GIFT on the back end. As of GIFT 3.0, Internet Explorer 9.0 is the browser of choice,

in accordance with the current U.S. Army mandate [6]. Learner interactions with the

TUI include: user login, surveys, feedback, after-action review, interactive dialogues,

learning material presentation, etc.

3.11 Monitor Module

As of GIFT 3.0 the monitor module is largely a tool used to launch various GIFT

modules and serve as a monitor of a running GIFT session. It is an unlikely develop-

ment target for new GIFT users. Use of the Monitor Module is described in

GIFTMonitor(IOS-EOS)Instructions.htm.

3.12 Sensor Module and Sensor Configuration

The Sensor Module provides a standardized approach to acquiring data from sensors

measuring some aspect of Learner State. Currently integrated sensors include: EEG

(Emotiv), Electro Dermal Activity (QSensor), Palm temperature and humidity (via

instrumented mouse), Zephyr-Technology BioHarness, Inertial Labs Weapon Orienta-

tion Module (WOM), USC/ICT Multisense, and Microsoft Kinect.

Sensor data are sent to the learner module to become part of the learner state and

potentially used by the pedagogical module. Time-stamped sensor data are also writ-

ten to log files making them available for post-run analysis by researchers.

 18

The sensor module is configured pre-runtime by editing the SensorConfig.xml

file using the Sensor Configuration Authoring Tool (SCAT). The SensorConfig.xml

file specifies which sensors should be activated by the sensor module, which plugin

(java class) to load to access the sensor hardware, as well as any specialized configu-

ration data. In addition, the SensorConfig.xml includes specification of Filters and

Writers, which control the filtering of raw sensor data and writing of sensor data to

log files. Users can specify which sensor configuration file is used by editing the

GIFT/config/sensor/sensor.properties file.

 Developers using one of the previously integrated sensors can, in most cases,

limit their focus to editing of the SensorConfig.xml file using the SCAT. Developers

integrating new sensors will need to write java code. The key coding task for required

for creating a new sensor plugin is to implement a concrete subclass of

AbstractSensor. Developers may also want to subclass AbstractSensorFilter and/or

AbstractFileWriter, though there are default implementations of these classes that will

suffice for many applications.

4 Conclusion

GIFT is a highly configurable and extensible open-source framework designed to

support a wide range of intelligent and adaptive tutoring applications. Its modularity

and configurability make it well suited for a variety of research efforts.

Configuration and customization opportunities are available at a number of levels

ranging from minor editing of text-based configuration files to creation of new java

classes. Basic module settings are configurable in dedicated java properties files lo-

cated in GIFT/config subfolders. More sophisticated configurations reside in XML

files, which, depending on the purpose, may reside in a GIFT/config subfolder (e.g.

SensorConfig.xml) or alongside the domain content (e.g., course.xml and dkf.xml).

GIFT includes specialized editors/authoring tools for many of these files.

As an open-source project, users also have the ability to extend GIFT by modify-

ing source code. In key areas where user extensions are anticipated, GIFT uses appro-

priate object oriented abstractions. Developers are then able to create their own cus-

tomized implementation classes, and specify their use at runtime by edits made to the

corresponding XML file.

Interested parties are encouraged to register on the GIFT Portal at

(http://gifttutoring.org).

5 References

1. Sottilare, R. A., Brawner, K. W., Goldberg, B. S., & Holden, H. K. (2012). The Generalized

Intelligent Framework for Tutoring (GIFT).

2. Brawner, K., Holden, H., Goldberg, B., & Sottilare, R. (2012). Recommendations for Mod-

ern Tools to Author Tutoring Systems. In The Interservice/Industry Training, Simulation &

Education Conference (I/ITSEC)(Vol. 2012, No. 1). National Training Systems Association.

3. Sottilare, R. A., Goldberg, B. S., Brawner, K. W., & Holden, H. K. (2012). A Modular

Framework to Support the Authoring and Assessment of Adaptive Computer-Based Tutor-

http://gifttutoring.org/

 19

ing Systems (CBTS). In The Interservice/Industry Training, Simulation & Education Con-

ference (I/ITSEC)(Vol. 2012, No. 1). National Training Systems Association.

4. Holden, H. K., Sottilare, R. A., Goldberg, B. S., & Brawner, K. W. (2012). Effective Learn-

er Modeling for Computer-Based Tutoring of Cognitive and Affective Tasks. In The

Interservice/Industry Training, Simulation & Education Conference (I/ITSEC) (Vol. 2012,

No. 1). National Training Systems Association.

5. Goldberg, B., Brawner, K., Sottilare, R., Tarr, R., Billings, D. R., & Malone, N. (2012). Use

of Evidence-based Strategies to Enhance the Extensibility of Adaptive Tutoring Technolo-

gies. In The Interservice/Industry Training, Simulation & Education Conference

(I/ITSEC) (Vol. 2012, No. 1). National Training Systems Association.

6. Information Assurance Vulnerability Alert 2012-A-0198 ARMY IAVA - Revised-2013-

A-5001 {Release Jan 11 2013}.

Authors

Charles Ragusa is a senior software engineer at Dignitas Technologies with over thirteen years

of software development experience. After graduating from University of Central Florida with

a B.S. in computer science, Mr. Ragusa spent several years at SAIC working on a variety of

R&D projects in roles ranging from software engineer and technical/integration lead to project

manager. Noteworthy projects include the 2006 DARPA Grand Challenge as an embedded

engineer with the Carnegie Mellon Red Team, program manager of the SAIC CDT/MRAP

IR&D project, and lead engineer for Psychosocial Performance Factors in Space Dwelling

Groups. Since joining Dignitas Technologies in 2009, he has held technical leadership roles on

multiple projects, including his current role as the principal investigator for the GIFT project.

Michael Hoffman is a software engineer at Dignitas Technologies with over seven years of

experience in software development. Upon graduating from the University of Central Florida

with a B.S. in Computer Science, he spent a majority of his time on various OneSAF develop-

ment activities for SAIC. He worked on the DARPA Urban Challenge, where he provided a

training environment for the robot by simulating AI traffic and the various sensors located on

Georgia Tech's Porsche Cayenne in a OneSAF environment. Soon after earning a Master of

Science degree from the University of Central Florida, Michael found himself working at

Dignitas. Both at Dignitas and on his own time, Michael has created several iPhone applica-

tions. One application, called the Tactical Terrain Analysis app, provides mobile situation

awareness and can be used as a training tool for various real world scenarios. More recently he

has worked to determine if unobtrusive sensors can be used to detect an individual’s mood

during a series of computer interactions. Michael excels in integrating both software and hard-

ware systems such as third party simulations and sensors. Michael has been the lead software
engineer on GIFT since its inception over two years ago.

Jon Leonard is a junior software engineer at Dignitas Technologies. He graduated from the

University of Central Florida with a B.S. in Computer Science where he gained experience in

concepts such as computer learning and computer graphics by developing an augmented reality

Android video game. At Dignitas, among several other projects, he has worked on a simulation

environment for M1A1 Abrams and Bradley tank gunnery training. His personal efforts include

working on open source procedural content generation algorithms and mobile applications.

Jon's interest is in solving interesting problems. Jon has been a developer for GIFT since its
inception.

 20

GIFT Research Transition: An Outline of Options

How transition in GIFT moves through phases of idea, project, and

paper, and to real-world use.

Keith W. Brawner
1

1Army Research Laboratory

Keith.W.Brawner@us.army.mil

Abstract. This paper describes the use of the Generalized Intelligent Frame-

work for Tutoring (GIFT) to transition research and findings into use beyond

publication. A proposal is submitted to use GIFT as a research platform for

community development, with examples of how it provides transition opportu-

nities for individual researchers. Several projects which have already transi-

tioned are discussed, while two projects by the author are specifically shown as

examples.

Keywords. Intelligent Tutoring Systems, Research Transition

1 Current Transition Path for Research in the ITS Community

The Generalized Intelligent Framework for Tutoring (GIFT) development is currently

performed under contract for the Army Research Laboratory. There any many rea-

sons why the military is interested in training technology in general, and adaptive

intelligent training technologies in specific [1]. Fundamentally, the end result of re-

search conducted at ARL is technological advancements which are usable by soldiers,

or, succinctly, “Technology Driven. Warfighter Focused”.

Technology transition is defined as the process of transferring skills, knowledge,

or ability from research (typically performed at university or Government labs) to

users who can further develop or exploit these items into products, processes, applica-

tions, or services. There are many ways for research projects to transition from re-

search to development, to new product, to lifecycle support. While this innovative

diffusion may occur solely through technological ‘push’ of publishing or the ‘pull’

user adoption, these typically do not occur without a transition partner [2]. Part of the

purpose of ARL is to function as a transition partner: leveraging technology advances

made in academic laboratories, developing them into usable products, and transition-

ing them to developmental support roles.

ITS research has historically transitioned directly to the user, which bypasses the

developmental and exploitive portions of a traditional transition. One example of this

is a project such as the Cognitive Tutor, which bypassed the “external development”

phase through marketing to local school districts. Another example includes the

Crystal Island program, which has also transitioned through collaboration with the

mailto:Keith.W.Brawner@us.army.mil

 21

local school districts, rather than an industrial base. Further examples include

AutoTutor transition of Operation ARIES through the facilitating intermediary of

Pearson Education, or GnuTutor through open source software release.

Researchers generally face competing desires for their project. As a research

goal, they desire to perform research, create findings, publish results, and solve inter-

esting problems. A researcher may have a related goal, which competes for their

time: the desire for their technology to be useful to a population of users. Given finite

resources, the individual or organization must compromise one of these goals to fa-

cilitate the other. A two-way facilitating transition partner would allow the researcher

to see their creation used and obtain meaningful feedback while maintaining research

pursuits.

ARL in general, and the GIFT project in specific, have a goal of facilitating this

research transition. This goal is not empty talk, as the repackaging and transition of

several research projects has already occurred programmatically. In addition to being

an ARL researcher, the author is anticipated to obtain a doctorate at the University of

Central Florida in August 2013. Research done at ARL and UCF alike are both tran-

sitioning to the field through the GIFT, and will be described in this paper. The au-

thor will outline how you can use GIFT to transition your research, give examples of

projects which have done so, and describe the benefits of this approach.

2 Proposal for a Community Research Platform

GIFT is intended to be both a community platform and growing standard [3, 4]. This

fundamentally offers several advantages, a short selection of which is described be-

low:

 Like any open source software approach, a researcher or developer is able to

build upon the work of others. This magnifies the ability of an individual devel-

oper to contribute.

 Like any community project, a developer is able to quickly see the use of their

work. An individual developer/researcher is able to quickly access a population

of users of their research, which magnifies their individual impact.

 ITS technology can be leveraged against a broad amount of training content,

while keeping the same core functionality. This magnifies the use of the product.

 The ITS technology can improve through various software versions, which im-

proves learning while costing little or nothing for implementation. Content is

used in a more useful fashion, making the use of an incrementally updated project

attractive.

 A researcher or developer can use standardized tools to create, modify, or adjust

individual items for the purpose of experimentation, evaluation, and validation.

 Experimental comparisons can be conducted fairly at multiple locations, with

multiple populations. This allows the research conducted within the framework

to be fairly compared.

 A researcher can leverage tools which make the interpretation of data easier. A

shared set tools has been of aid to other researchers in Educational Data Mining

[5].

 22

3 Re-GIFT-ing: models of transition

There are several models of transition which can be used with varying levels of re-

searcher interaction and levels of opportunity. Transition into GIFT may be through a

tool, a compatible software or hardware product, a plug-in, a releasable item, or a

piece of software integrated into an official baseline. These differing modes of transi-

tion are summarized in Error! Reference source not found. alongside the required

user interaction, an example of a project which has followed this transition path, and

the potential impact that it has to the field.

The first project to discuss is the tool created by the Personalized Assistant for

Learning (PAL) for data analysis [6]. During the course of a PAL experiment with

GIFT, the developers found it helpful to have a tool to parse through GIFT data. Af-

ter developing this tool, they provided this it back to the community through simply

posting it on the http://www.gifttutoring.org forums. An author following this transi-

tion path may host a “GIFT tool” on their own site, make it available to only their lab,

or other method. To the author’s knowledge, no one has used or modified this tool

outside of their laboratory. However, others have the opportunity to use this tool and

improve on it, and its functionality has directed the development of a more thorough

tool available within the GIFT Release: the Event Reporting Tool (ERT).

The next project, and method of transition, to discuss is the eMotive EEG library.

The eMotive EEG was found helpful in other research conducted by the author [7],

and was incorporated into GIFT as a software library interface. The purchase of an

eMotive EEG headset gives the developer access to the library. The fact the GIFT

supports easy integration of the sensor makes it so that each GIFT user is a potential

eMotive customer, which benefits eMotive. Transition of research as a “GIFT com-

patible” product involved little interaction with the developers, but may be unsup-

ported in future releases. While developer involvement is low, the potential impact is

similarly low.

Continuing to use sensors as an example, the next project to discuss is the Q-

Sensor project, which transitioned in a way which is different from the previous ver-

sions. All software required to integrate an Affectiva Q-Sensor is provided freely to

the GIFT community, as part of a “GIFT plugin”. Changes made to the Q-Sensor

are supported in future versions of GIFT and the plugin is released in the current

GIFT 3.0 version. To date, this type of transition has resulted in the use of Q-Sensor

technology in a minimum of two different experiments, with three pilot trials. This

has occurred with little interaction from the Q-Sensor developers.

There are now several complete programmed packages which are released with

the GIFT version. One of these is the medical instruction and assessment game

“vMedic“, which contains several scenarios which have GIFT tutoring. Another ex-

ample is the Human Affect Recording Tool (HART), developed by Ryan Baker [8],

which enables affective coding of behavior. Both of these programs have reached a

wider audience through leveraging “GIFT releasable” transition, with some work

required by the developer. The developer of each of these programs targeted use

within GIFT as part of the model of development. Each of these programs is provid-

ed back to the community as downloadable software packages on

www.gifttutoring.org. In this fashion, the vMedic program has reached a significantly

wider audience and the HART app has seen distribution and citation.

http://www.gifttutoring.org/
http://www.gifttutoring.org/

 23

Lastly, one can transition source code directly into the GIFT baseline via a

“GIFT integration”, in anticipation of the next release. The work required to inte-

grate into the GIFT framework is done by the developer, before giving it back to

www.gifttutoring.org. While this requires more work, it is able to reach a wider audi-

ence, and is automatically carried forward into each future release. This is the only

release path which is thoroughly tested and vetted prior to each version. This allows

for the broadest application of the developed technology.

Table 2. Examples of various GIFT transitions, projects which used this transition method, and

levels of interaction provided

Type of

Transition

Example of

project

User

interaction

Potential

Impact

GIFT tool PAL Tool None Low

GIFT compatible eMotive EEG None Low

GIFT plug-in Q-Sensor Low Medium

GIFT releasable HART,

vMedic

Medium Medium

GIFT integration GSR filtering,

MultiSense

High High

4 Two Research Transition Stories: GSR Filtering, realtime

modeling

In this section, the author will tell two stories research transition where first-hand

experience was obtained. The first of these stories involves the transition of a new

GSR sensor filtering method, available in GIFT 2.0, while the second focuses on a

larger piece of work which has intended availability in GIFT 4.0. The aim of this

section is to give an example of how an idea becomes a deliverable.

4.1 GSR Filtering

The first project idea is that a realtime sensor filter may be able to collect meaningful

measures of affective/cognitive state in realtime. The idea behind this project is that

the author was unaware of relevant feature extraction techniques, or implementations,

for several datastreams of interest. A dataset was used which collected both ECG and

GSR measures while participants experienced various training events [7]. It was hy-

pothesized that meaningful measures of cognition and affect could be extracted from

these sensor datastreams.

It was found that meaningful measures of cognition and affect could be extracted,

including statistical measures and signal power measures, borrowing from the field of

digital signal processing. It is possible that these techniques could be leveraged into

an intelligent tutoring system. These results were then published [9].

Just because a method has been published to be useful does not mean that indus-

trial or academic partners and collaborators will take it upon themselves to read an

http://www.gifttutoring.org/

 24

academic paper, implement the algorithm, and put it in their system. The more that

an individual developer can do to help this process, the quicker transition of the re-

search will be [2]. One way to do this is to merge the work of a researcher with a

project which is already transitioning to industry. GIFT represents this possibility.

The idea, project, and paper on GSR filtering has transitioned into GIFT via the

“GIFT integration” route. Every researcher which downloads GIFT (which is com-

patible with a GSR sensor) is able to implement the developed feature extraction, do

their own experiment and draw their own conclusions. Furthermore, any ITS con-

structed from the GIFT framework and tools already has this implementation, and the

development of a student model which uses this information progresses a significant

step towards reality. The ECG filtering from the same paper is intended to be re-

leased GIFT 4.0.

To date, GSR filtering algorithms have now been provided to over 100 research-

ers and developers. The author hopes that his work will be found valuable. In either

case, the developed research has been placed in the hands of numerous users, which is

more valuable than publication alone. If the work is not found valuable, the author

would hope that the other researchers are able to improve on the technique, and feed

the results to other researchers through a similar transition path.

4.2 Realtime modeling

The second project idea is that individualized models of learner affect/cognition may

be able to be created in realtime. The idea behind the second project is that general-

ized models of affect and cognition are difficult to create. Individualized models can

be made, but their quality is known to degrade over time [10]. Realtime modeling

and adaptive algorithms may present a solution to the problem.

The realtime modeling project used two datasets [11] and constructed seven total

classifiers. The approach used four different types of classification techniques, in-

cluding neural gasses, resonance theory, clustering, and online linear regression.

Each of these techniques was developed with three different schemes for labeling

data, including unsupervised, semi-supervised, and fully-supervised.

It was found that semi-supervision had significant contribution to the overall ac-

curacy of the problem. It was also found that realtime affective models could be cre-

ated with reasonable quality, and that realtime cognitive models are a more difficult

problem that requires alternate means in conjunction with the methods presented.

These results will be published as a doctoral dissertation later in the year.

Realtime student state assessment is anticipated to be available within GIFT 4.0.

Targeting GIFT as a research transition allows industry and academia to benefit from

the research, and targets a larger and different audience than publication. Once again,

transition of research through GIFT allows larger access, experimentation, citation,

and overall exposure.

5 Conclusion/Recommendations

GIFT is a functional Intelligent Tutoring System which has been used as part of sev-

eral experiments. Research which transitions into GIFT has the potential to be used

 25

by a population of learners, instructional designers, and experimenters. Each of these

user groups is anticipated to have their own user interface, which can make use of the

research transitioned into GIFT, in whichever fashion is implemented.

In addition, GIFT is intended as a research platform, and Army Research Labora-

tory has plans for development out to 2017. A research transition into GIFT, in any

fashion, should be able to reach a community of users for the next four years, at a

minimum. The project has potential longevity beyond 2017, with funding from the

Army, DoD, or others. Even if not supported by the Army, it will remain in the pub-

lic domain, able to be improved by anyone in the community. Using GIFT as an exit

vector for research ideas has more potential than simple publication, or of hosting an

open source project.

Furthermore, the licensing agreement on GIFT does not hinder the individual re-

searcher from capitalizing on their ideas. Two for-profit companies have targeted

GIFT as a technology which can support the ability to commercialize their ideas,

while others have been in conversation. Other research organizations have proposed

or used GIFT to widen their audience and to focus their expertise.

This paper has discussed how some research technology has already transitioned

to the field using the GIFT entry vector, and how other portions are intended. The

concept which the author presents in this workshop paper and presentation is that it is

possible to use GIFT as a platform to transition research results into the field of use,

while minimizing the effort required by the researcher.

6 References

1. Army, D.o.t., The U.S. Army Learning Concept for 2015, 2011: TRADOC.

2. Fowler, P. and L. Levine, A conceptual framework for software technology

transition, 1993, DTIC Document.

3. Sottilare, R.A., et al. A Modular Framework to Support the Authoring and

Assessment of Adaptive Computer-Based Tutoring Systems (CBTS). in The

Interservice/Industry Training, Simulation & Education Conference (I/ITSEC).

2012. NTSA.

4. Sottilare, R.A., et al., The Generalized Intelligent Framework for Tutoring

(GIFT). 2012.

5. Koedinger, K.R., et al., A data repository for the EDM community: The PSLC

DataShop. Handbook of Educational Data Mining, 2010: p. 43-55.

6. Regan, D., E.M. Raybourn, and P. Durlach, Learning modeling consideration for

a personalized assistant for learning (PAL), in Design Recommendations for

Adaptive Intelligent Tutoring Systems: Learner Modeling (Volume 1).2013.

7. Goldberg, B.S., et al., Predicting Learner Engagement during Well-Defined and

Ill-Defined Computer-Based Intercultural Interactions, in Proceedings of the 4th

International Conference on Affective Computing and Intelligent Interaction

(ACII 2011), LNCS, S.D. Mello, et al., Editors. 2011, Springer-Verlag: Berlin

Heidelberg. p. 538-547.

8. Baker, R.S., et al. Towards Sensor-Free Affect Detection in Cognitive Tutor

Algebra. in Proceedings of the 5th International Conference on Educational

Data Mining. 2012.

 26

9. Brawner, K. and B. Goldberg. Real-Time Monitoring of ECG and GSR Signals

during Computer-Based Training. 2012. Springer.

10. AlZoubi, O., R. Calvo, and R. Stevens, Classification of EEG for Affect

Recognition: An Adaptive Approach. AI 2009: Advances in Artificial Intelligence,

2009: p. 52-61.

11. Carroll, M., et al., Modeling Trainee Affective and Cognitive State Using Low

Cost Sensors, in Proceedings of the Interservice/Industry Training, Simulation,

and Education Conference (I/ITSEC)2011: Orlando, FL.

Authors

Keith W. Brawner is a researcher for the Learning in Intelligent Tutoring Environ-

ments (LITE) Lab within the U. S. Army Research Laboratory’s Human Research &

Engineering Directorate (ARL-HRED). He has 7 years of experience within U.S.

Army and Navy acquisition, development, and research agencies. He holds a Masters

degree in Computer Engineering with a focus on Intelligent Systems and Machine

Learning from the University of Central Florida, and will obtain a doctoral degree in

the same field in Summer 2013. The focus of his current research is in machine learn-

ing, active learning, realtime processing, datastream mining, adaptive training, affec-

tive computing, and semi/fully automated user tools for adaptive training content.

 27

Experimentation with the Generalized Intelligent

Framework for Tutoring (GIFT): A Testbed Use Case

Benjamin Goldberg
1
 and Jan Cannon-Bowers

2

1United States Army Research Laboratory-Human Research & Engineering Directorate-

Simulation and Training Technology Center, Orlando, FL 32826

{benjamin.s.goldberg@us.army.mil}
2Center for Advanced Medical Learning and Simulation (CAMLS) at the University of South

Florida, Tampa, FL 33602

{jcannonb@health.usf.edu}

Abstract. Computer-Based Tutoring Systems (CBTS) are grounded in instruc-

tional theory, utilizing tailored pedagogical approaches at the individual level to

assist in learning and retention of associated materials. As a result, the effec-

tiveness of such systems is dependent on the application of sound instructional

tactics that take into account the strengths and weaknesses of a given learner.

Researchers continue to investigate this challenge by identifying factors associ-

ated with content and guidance as it pertains to the learning process and the lev-

el of understanding an individual has for a particular domain. In terms of exper-

imentation, a major goal is to identify specific tactics that impact an individu-

al’s performance and the information that manages their implementation. The

Generalized Intelligent Framework for Tutoring (GIFT) is a valuable tool for

this avenue of research, as it is a modular, domain-independent framework that

enables the authoring of congruent systems that vary in terms of the research

questions being addressed. This paper will present GIFT’s design considera-

tions for use as an experimental testbed, followed by the description of a use

case applied to examine the modality effect of feedback during game-based

training events.

Keywords: generalized intelligent framework for tutoring, instructional strate-

gies, testbed, feedback, experimentation

1 Introduction

The overarching goal of Computer-Based Tutoring Systems (CBTSs) is to enable

computer-based training applications to better serve a leaner’s needs by tailoring and

personalizing instruction [1]. Specifically, the goal is to achieve performance benefits

within computer-based instruction as seen in Bloom’s 1984 study “the 2-Sigma Prob-

lem”. Though there is recent debate on the validity of these results [2], this classic

experiment showed that individuals receiving one-on-one instruction with an expert

tutor outperformed their fellow classmates in a traditional one-to-many condition by

an average of two standard deviations. The success of this interaction is in the ability

mailto:%7bbenjamin.s.goldberg@us.army.mil%7d
mailto:%7bjcannonb@health.usf.edu%7d

 28

of the instructor to tailor the learning experience to the needs of the individual. Inter-

action is based on the knowledge level of the learner as well as their performance and

reaction (i.e., cognitive and affective response) to subsequent problems and commu-

nications [3].

With the recent development of the Generalized Intelligent Framework for Tutor-

ing (GIFT; see Figure 1), a fundamental goal is to develop a domain-independent

pedagogical model that applies broad instructional strategies identified in the litera-

ture. This framework would then be used to author adaptive environments across

learning tasks to produce benefits accrued through one-on-one instruction. At the core

of GIFT is pedagogical modeling, which is associated with the application of learning

theory based on variables empirically proven to influence performance outcomes [4].

According to Beal and Lee [5] the role of a pedagogical model is to balance the level

of guidance and challenge during a learning event so as to maintain engagement and

motivation. The notion for GIFT is to identify generalized strategies on both a macro-

and micro-adaptive level that can be used to author specific instructional tactics for

execution in a managed ITS application. The pedagogical model uses data on ‘Who’

is being instructed, ‘What’ is being instructed, and the ‘Content’ available from which

to instruct. In an ideal case, GIFT can identify recommended strategies based on this

information, and also provide tools to convert those strategies into specific instruc-

tional tactics for implementation.

Fig. 3. Generalized Intelligent Framework for Tutoring (GIFT)

Before this conceptual approach of GIFT can be realized, a great deal work needs

to be done to identify strategies found to consistently affect learning across multiple

domains (codified in the pedagogical model) and the variables that influence the se-

lection of these strategies (expressed in the learner model). In the remainder of this

paper, we describe GIFT’s functional application as an experimental testbed for con-

ducting empirical research, followed by a descriptive use case of a recent instructional

strategy-based experiment examining the effect varying modalities of feedback deliv-

ery have on learner performance and engagement within a game-based environment.

 29

1.1 GIFT’s Testbed Functionality

For GIFT to be effective across all facets of learning, there are a number of research

questions that need to be addressed. These include, but are not limited to: (1) How can

GIFT be used to manage the sequence, pace, and difficulty of instructional content

before a learning session begins, as well as how to adapt instruction in real-time based

on learner model metrics?; (2) What information is required in the learner model to

make informed decisions on instructional strategy selection?; (3) How can GIFT best

manage guidance and feedback during a learning session based on competency and

individual differences?; and (4) What is the optimal approach for delivering GIFT

communications to a learner during system interaction?

While GIFT provides the tools necessary to author and deliver adaptive learning

applications, an additional function of the framework is to operate as a testbed for the

purpose of running empirical evaluations on research questions that will influence

future developmental efforts. Empirically evaluating developed models and tech-

niques is essential to ensuring the efficacy of GIFT as a sound instructional tool. To

accommodate this requirement, while maintaining domain-independency, GIFT’s

design is completely modular. This allows for the swapping of specific parts within

the framework without affecting other components or models. Modularity enables

easy development of comparative systems designed to inform research questions

above. The framework is structured to support a variety of experimental design ap-

proaches, including ablative tutor studies, tutor vs. traditional classroom training

comparisons, intervention vs. non-intervention comparisons, and affect modeling and

diagnosis research [6]. The descriptive use case illustrated next is based on an inter-

vention comparison approach.

2 GIFT Experimental Use Case

In this section, we describe in detail the process of using GIFT to design and run a

study to evaluate varying methods for communicating information to a learner while

they interact with a game-based environment. This experiment was designed to exam-

ine varying modality approaches for feedback information delivery during a game-

based learning event that is not implicit within the virtual environment (i.e., feedback

in the scenario as a result of a player/entity or environmental change). This is influ-

enced by available features present in the GIFT architecture and the benefits associat-

ed with research surrounding learning and social cognitive theory [10-11]. The notion

is to identify optimal approaches for providing social agent functions to deliver feed-

back content that is cost effective and not technically intensive to implement. As a

result, research questions were generated around the various communication modali-

ties GIFT provides for relaying information back to the learner.

A functional component unique to GIFT is the Tutor-User Interface (TUI). The

TUI is a browser-based user-interface designed for collecting inputs (e.g. survey and

assessment responses) and for relaying relevant information back to the user (e.g.

performance feedback). In terms of providing real-time guided instruction, the TUI

can be used as a tool for delivering explicit feedback content (i.e., guidance delivered

 30

outside the context of a task that relays information linking scenario performance to

training objectives) based on requests generated from the pedagogical model. Because

the TUI operates in an internet browser window, it supports multimedia applications

and the presence of virtual entities acting as defined tutors. As a potential driver for

interfacing with a learner, research is required to evaluate feedback delivery in the

TUI and assess its effectiveness in relation to other source modality variations. The

overarching purpose of the described research is to determine how Non-Player Char-

acters (NPCs) can be utilized as guidance functions while learning in a virtual world

environment and to identify tradeoffs among the varying techniques.

Research questions were generated around the limitation associated with using

the TUI during game-based instruction. For a virtual human to be present in the TUI,

it requires a windowed display of the interfacing game so the browser can be viewed

in addition to the game environment, which may take away from the level of immer-

sion users feel during interaction; thus removing a major benefit with utilizing a

game-based approach in education. Specifically, this study will assess whether explic-

it feedback delivered by NPCs embedded in a scenario environment has a significant

effect on identified dependent variables (e.g., knowledge and skill performance, and

subjective ratings of flow, workload, and agent perception) when compared to exter-

nal NPC feedback sources present in the TUI. In terms of serious games, the current

research is designed to address how the TUI can be utilized during game-based inter-

actions and determine its effectiveness versus more labor intensive approaches to

embedding explicit feedback directly in the game world.

This experiment was the first implemented use of GIFT functioning as a testbed

for empirical evaluation. During the process of its development, many components

had to be hand authored to accommodate the investigation of the associated research

questions. This involved integration with multiple external platforms (e.g., serious

game TC3Sim, the Student Information Models for Intelligent Learning Environ-

ments (SIMILE) program, and Media Semantics); development of scenarios, training

objectives, assessments, and feedback; exploration of available avenues to communi-

cate information; and representing these relationships in the GIFT schema. In the

following subsections, we will review the process associated with each phase listed

above.

2.1 Testbed Development

GIFT provides the ability to interface with existing learning platforms that don’t have

intelligent tutoring functions built within. In these games, learners are dependent on

implicit information channels to gauge progress towards objectives. Integrating the

game with GIFT offers new real-time assessment capabilities that can be used to pro-

vide learner guidance based on actions taken within the environment that map to as-

sociated performance objectives.

For the instance of this described use case, the serious game TC3Sim was select-

ed as the learning environment to assess the effect of differing feedback modality

approaches. TC3Sim is designed to teach and reinforce the tactics, techniques, and

procedures required to successfully perform as an Army Combat Medic and Combat

Lifesaver [7]. The game incorporates story-driven scenarios designed within a game-

 31

engine based simulation and uses short, goal-oriented exercises to provide a means to

train a closely grouped set of related tasks as they fit within the context of a mission

[8]. Tasks simulated within TC3Sim include assessing casualties, performing triage,

providing initial treatments, and preparing a casualty for evacuation under conditions

of conflict (ECS, 2012). For the purpose of the experiment, GIFT had to be embedded

within TC3Sim for the function of monitoring performance to trigger feedback that

would ultimately influence data associated with the dependent variables of interest.

This required pairing of the two systems so that GIFT could consume game state

messages from TC3Sim for assessment on defined objectives, and for TC3Sim to

consume and act upon pedagogical requests coming out of GIFT. For this to happen, a

Gateway Module had to be authored that serves as a translation layer between the two

disparate systems. The Gateway Module was also modified to handle feedback re-

quests that were to be delivered by programs external to the game. This included inte-

gration with MediaSemantics, desktop and server software that provides character-

based applications and facilitated the presence of a virtual human in the TUI that

would act as the tutor entity. Following, enhancements to the Communication Mod-

ule/TUI had to be employed to support the variations in feedback modalities.

Fig. 4. Feedback Communication Modes

Communication Development. The functional component of GIFT primarily as-

sessed in this research is the Communication Module/TUI, and focused on interfacing

approaches for delivering feedback communications during a game-based learning

event. For this purpose the major variations associated with the framework took place

in GIFT’s TUI, as well as identifying approaches for GIFT to manage agent actions

within a virtual environment. This required two GIFT/TC3Sim versions with modifi-

cations to how the game was visually represented (see Figure 2). With a windowed

version of the game, the MediaSemantics character was embedded into the TUI

browser and was programmed to respond to feedback requests coming out of the do-

main module. Furthermore, two additional control conditions were authored to assess

whether feedback delivered as audio alone made a difference and a condition with

zero feedback to determine whether the guidance had any effect on performance. All

 32

participants interacted with the same scenarios, with two conditions including an EPA

present in the virtual environment as an NPC. The remaining conditions will receive

feedback from external sources to the game. With the functional modifications in

place, the next step was designing scenarios, assessments, and feedback scripts.

Scenario Development. With the ability to apply varying techniques of feedback

delivery during a game-based learning event, the next step was to design a scenario in

TC3Sim to test the effects of all approaches. This requires multiple steps to ensure

scenario elements are appropriate so that they lend to accurate inference based on the

associated data captured during game interaction. This involved the definition of

learning objectives the scenario would entail, associated assessments to gauge per-

formance on objectives, and feedback to apply when performance was deemed poor.

Objectives were informed by competencies identified in ARL-STTC’s Medical

Training Evaluation Review System (MeTERS) program, which decomposed applied

and technical skills for Combat Medics and Combat Lifesavers into their associated

tasks, conditions, and standards for assessment purposes (Weible, n.d.). In develop-

ment of the TC3Sim, the identified competencies were further decomposed into spe-

cific learning objectives in terms of enabling learning objectives and terminal learning

objectives for each role and task simulated in the game environment. With guiding

specifications, a scenario was developed that incorporated decision points for treating

a hemorrhage in a combat environment. The scenario was designed to be difficult

enough that participants would struggle, resulting in triggered feedback, while not

being too difficult that successfully completing the task was impossible.

However, before explicit feedback linked to performance can be delivered in

game-based environment, methods for accurately assessing game actions as they re-

late to objectives is required. The first step to achieve this is properly representing the

domain’s objectives within GIFT’s Domain Knowledge File (DKF) schema by struc-

turing them within the domain and learner model ontology. This creates a domain

representation GIFT can make sense of, and results in a hierarchy of concepts that

require assessments for determining competency. This association enables the system

to track individual enabling objectives based on defined assessments, giving the diag-

nosis required to provide relevant explicit feedback based on specific actions taken.

Following, methods for assessing the defined concepts must be applied that provide

information for determining whether an objective has been satisfactorily met. For this

purpose, ECS’s Student Information Models for Intelligent Learning Environments

(SIMILE) was integrated within GIFT.

Student Information Models for Intelligent Learning Environments (SIMILE). An

innovative tool used in conjunction with TC3Sim for the purpose standardized as-

sessment is SIMILE (ECS, 2012). In the context of this use case, SIMILE is a rule-

engine based application used to monitor participant interaction in game environ-

ments and is used to trigger explicit feedback interventions as deemed by GIFT’s

learner and pedagogical models. In essence, SIMILE established rule-based assess-

ment models built around TC3Sim game-state messages to generate real-time perfor-

mance metric communication to GIFT. SIMILE monitors game message traffic (i.e.,

ActiveMQ messaging for this instance) and compares user interaction to pre-

established domain expertise defined by procedural rules. As user data from gameplay

 33

is collected in SIMILE, specific message types pair with an associated rule authored

and look for evidence determining if the rule has been satisfied; that information is

then communicated to GIFT, which establishes if there was a transition in perfor-

mance. Next, that performance state is passed to the learner model. GIFT interprets

SIMILE performance metrics for the purpose of tracking progress as it relates to ob-

jectives. When errors in performance are detected, causal information is communicat-

ed by SIMILE in to GIFT, which then determines the feedback string to deliver.

Feedback Development. Following the completion of linking GIFT’s domain repre-

sentation with SIMILE-based assessments, specific feedback scripts had to be au-

thored that would be presented when the pedagogical model made a ‘feedback re-

quest’. In the design phase of these prompts, it was recognized that GIFT is dependent

on a transition in performance before the pedagogical model can make any decision

on what to do next. In the case of the TC3Sim scenario, this requires the player to

perform certain actions that denote competency on a concept, but a question is, what

information is available to determine they were ignoring steps linked to an objective?

From this perspective, it was recognized that time and entity locations are major

performance variables in such dynamic operational environments. Outcomes in hos-

tile environments are context specific, and time to act and location of entities are criti-

cal metrics that require monitoring. From there, if a participant had not performed an

action in the game or violated a rule that maps to an associated concept, GIFT could

provide reflective prompts to assist the individual on what action to perform next. An

example applied in the experiment is ‘Maintain Cover’. This requires staying out of

the streets while walking through a hostile urban environment. For assessment, the

player’s distance from the street center was monitored, with a defined threshold des-

ignating if they maintained appropriate cover. For each concept, rules based on time

and locations were identified, and reflective prompts were authored for each concept.

Following, audio for each feedback prompt was recorded. This was the final step

before the system could be fully developed.

3 Data Collection and Analysis Prep

Data collection was conducted over a five-day period at the United States Military

Academy (USMA) at West Point, NY where a total of 131 subjects participated. This

resulted in 22 participants for each experimental condition minus the control, which

totaled at 21 subjects. The lab space was arranged for running six subjects at a time,

with two experimental proctors administering informed consents and handling any

technical issues that arose during each session. Once a subject logged in, GIFT man-

aged all experimental procedures and sequencing, allowing the proctors to maintain

an experimenter’s log for all six machines. This feature shows the true benefit of

GIFT in an experimental setting. Once properly configured, GIFT administers all

surveys/tests and opens/closes all training applications linked to the procedure, thus

reducing the workload on the experimental proctor and enabling multiple data ses-

sions to be administered at a single time. GIFT offers the Course Authoring Tool

(CAT) to create the transitions described above. A researcher can author the sequence

 34

of materials a participant will interact with, including transition screens presented in

the TUI that assist a user in navigating through the materials.

Following the experimental sessions, data must be extracted from associated log

files and prepped for analysis. A tool built into GIFT to assist with this process in the

Event Reporting Tool (ERT). The ERT enables a researcher to pull out specific pieces

of data that are of interest, along with options on how the data is represented (i.e., user

can determine if they would like to observe data in relation to time within a learning

event or to observe data between users for comparison). The result is a .CSV file con-

taining the selected information, leaving minimal work to prepare for analysis. In this

use case, the majority of analysis was conducted in IBM’s SPSS statistical software,

with the ERT playing a major role in the creation of the master file consumed by the

program. This drastically reduced the time required to prep data for analysis, as it

removed the need to input instrument responses for all subjects, it structured the data

in a format necessary for SPSS consumption (i.e., each row of data represents an indi-

vidual participant), and produced variable naming conventions listed on the top row.

4 The Way Ahead

GIFT provides a potent testbed in which studies of instructional techniques can be

evaluated. Specifically, it allows researchers to investigate how best to implement

tenants of intelligent tutoring, including optimal mechanisms for tracking perfor-

mance, providing feedback and improving outcomes. At the current moment, GIFT

provides limited feedback mechanisms that are generally used as formative prompts

for correcting errors and reaffirming appropriate actions. New feedback approaches

must be explored, such as natural language dialog, to expand the available options for

relaying information in game environments. As well, research needs to identify ap-

proaches for using environmental cues in the game world to act as feedback functions

informed by GIFT. In terms of GIFT as a testbed, advancements need to be applied to

the ERT in terms of how data is exported to ease the required post-processing leading

to analysis. This includes the ability to segment data in log files based around defined

events in the environment that are of interest in analysis. Future research can build on

the use case presented and/or conceptualize other investigations that benefit from

GIFT.

5 References

1. Heylen, D., Nijholt, A., R., o. d. A., Vissers, M.: Socially Intelligent Tutor Agents. In: T.

Rist, R. Aylett, D. Ballin & J. Rickel (Eds.), Proceedings of Intelligent Virtual Agents

(IVA 2003), Lecture Notes in Computer Science, 2792: 341-347. Berlin: Springer (2008)

2. VanLehn, K.: The Relative Effectiveness of Human Tutoring, Intelligent Tutoring

Systems, and Other Tutoring Systems. Educational Psychologist, 46(4): 197-221 (2011).

3. Porayska-Pomsta, K., Mavrikis, M., Pain, H.: Diagnosing and acting on student affect: the

tutor’s perspective. User Modeling and User-Adapted Interaction, 18(1): 125-173 (2008).

4. Mayes, T., Freitas, S. d.: Review of e-learning frameworks, models and theories. JISC e-

Learning Models Desk Study, from http://www.jisc.ac.uk/epedagogy/ (2004).

http://www.jisc.ac.uk/epedagogy/

 35

5. Beal, C., Lee, H.: Creating a pedagogical model that uses student self reports of motivation

and mood to adapt ITS instruction. In: Workshop on Motivation and Affect in Educational

Software in conjuctions with the 12th International Conference on Artificial Intelligence in

Education (2005).

6. Sottilare, R., Goldberg, B., Brawner, K., Holden, H.: Modular Framework to Support the

Authoring and Assessment of Adaptive Computer-Based Tutoring Systems. In: Proceed-

ings of the Inteservice/Industry Training, Simulation, and Education Conference, (2012).

7. S: vMedic. Retrieved from http://www.ecsorl.com/products/vmedic (2012).

8. Fowler, S., Smith, B., & Litteral, C.: A TC3 game-based simulation for combat medic

training (2005).

9. Weible, J.: Preparing soldiers to respond knowledgeably to battlefield injuries. MSTC U.S.

Army. (n.d.).

10. Bandura, A.: Social Cognitive Theory: An Agentic Perspective. Annual Review of

Psychology, 52: 1-26. (2011).

11. Vygotsky, L.: Zone of Proximal Development. Mind in Society: The Development of

Higher Psychological Processes: 52-91. (1987).

Authors

Benjamin Goldberg: is a member of the Learning in Intelligent Tutoring Environ-

ments (LITE) Lab at the U.S. Army Research Laboratory’s (ARL) Simulation and

Training Technology Center (STTC) in Orlando, FL. He has been conducting re-

search in the Modeling and Simulation community for the past five years with a focus

on adaptive learning and how to leverage Artificial Intelligence tools and methods for

adaptive computer-based instruction. Currently, he is the LITE Lab’s lead scientist on

instructional strategy research within adaptive training environments. Mr. Goldberg is

a Ph.D. Candidate at the University of Central Florida and holds an M.S. in Modeling

& Simulation. Prior to employment with ARL, he held a Graduate Research Assistant

position for two years in the Applied Cognition and Training in Immersive Virtual

Environments (ACTIVE) Lab at the Institute for Simulation and Training. Mr. Gold-

berg’s work has been published across several well-known conferences, with recent

contributions to both the Human Factors and Ergonomics Society (HFES) and Intelli-

gent Tutoring Systems (ITS) proceedings.

Jan Cannon-Bowers: is Director of Research at the Center for Advanced Medical

Learning and Simulation (CAMLS) at the University of South Florida (USF) in Tam-

pa, FL. She holds MA and Ph.D. degrees in Industrial/ Organizational Psychology

from USF. She served as Assistant Director of Simulation-Based Surgical Education

for the Department of Education at the American College of Surgeons from 2009 -

2011. Previously, Dr. Cannon-Bowers served as the U.S. Navy’s Senior Scientist for

Training Systems where she was involved in a number of large-scale R&D projects

directed toward improving performance in complex environments. In this capacity she

earned a reputation as an international leader in the area of simulation and game-

based training, team training, training evaluation, human systems integration and

applying the science of learning to real-world problems. Since joining academia, Dr.

Cannon-Bowers has continued her work in technology-enabled learning and synthetic

learning environments by applying principles from the science of learning to the de-

http://www.ecsorl.com/products/vmedic

 36

sign of instructional systems in education, healthcare, the military, and other high

performance environments. She has been an active researcher, with over 150 publica-

tions in scholarly journals, books and technical reports, and numerous professional

presentations.

 37

Bringing Authoring Tools for Intelligent Tutoring

Systems and Serious Games Closer Together: Integrating

GIFT with the Unity Game Engine

Colin Ray, Stephen Gilbert

Iowa State University, Ames, IA, USA

{rcray, gilbert}@iastate.edu

http://www.iastate.edu

Abstract. In an effort to bring intelligent tutoring system (ITS) authoring tools

closer to content authoring tools, the authors are working to integrate GIFT with

the Unity game engine and editor. The paper begins by describing challenges

faced by modern intelligent tutors and the motivation behind the integration ef-

fort, with special consideration given to how this work will better meet the

needs of future serious games. The next three sections expand on these major

hurdles more thoroughly, followed by proposed design enhancements that

would allow GIFT to overcome these issues. Finally, an overview is given of

the authors’ cur- rent progress towards implementing the proposed design. The

key contribution of this work is an abstraction of the interface between intelli-

gent tutoring systems and serious games, thus enabling ITS authors to imple-

ment more complex training behaviors.

Keywords: intelligent tutoring, serious games, virtual environments, game en-

gines

1 Introduction

Experience with the Generalized Intelligent Framework for Tutoring (GIFT) has

shown that authoring new courses, domain knowledge, and learner configurations

requires little-to-no programming experience. A basic understanding of XML and

how the modules of GIFT interact is sufficient to design and configure a course for

one of the supported training applications. When it comes to extending the framework

to support new training applications, however, each interface module must be hand-

crafted. Reducing the amount of effort required to author a tutor and its content is a

desirable quality of future authoring tools [1], therefore the task of integrating new

training applications should be made as seamless as possible.

Serious games are one example of training applications that are well-suited for

integration with ITSs; two such games are already supported by GIFT: Virtual

Battlespace 2 (VBS2) and TC3 vMedic. These games encompass a only a subset of

the training material that is possible with serious games, however. There are certain

aspects of this genre of game are common across all individual applications, meaning

that it may be possible to create a single abstraction layer capable of decoupling GIFT

from the training application. This approach is recommended by Sottilare and Gilbert,

mailto:gilbert%7d@iastate.edu
http://www.iastate.edu/

 38

who suggest that such an abstraction layer might be able to translate learning objec-

tives into meaningful objects actions in the game world, and vice versa [2].

In addition to adapting data about the game state to a format that the ITS expects,

it is also desirable for the ITS to have a finer degree of control over the scenario itself.

These so-called “branching” or “conditional” scenarios [2] are difficult to achieve if

the serious game and its plugin API are not designed with such functionality in mind.

Therefore, it may also be necessary to “standardize” the ability to branch scenarios in

the design of serious games.

To these ends, our proposed solution is to bring the ITS authoring tools closer to

the content authoring tools used to create a given serious game. In the case of this

paper, we have chosen to work with the popular Unity game engine. In the following

sections we will show how integration with Unity and other serious game authoring

tools can achieve the functionality that is currently desired in a modern ITS authoring

suite.

2 Current Authoring Capabilities

As stated by Sottilare et. al, authoring new intelligent tutors is one of the three prima-

ry functions of GIFT [3]. To this end, the framework already contains authoring tools

that enable users to create and configure the essential elements of an intelligent tutor-

ing program. The following list gives a brief overview of the current authoring capa-

bilities supported by GIFT:

 Authoring learner models through the Learner Configuration Authoring Tool

(LCAT)

 Configuring sensors through the Sensor Configuration Authoring Tool (SCAT)

 Authoring Domain Knowledge Files (DKFs) through the DKF Authoring Tool

(DAT)

 Creating and presenting surveys through the Survey Authoring Tool (SAT)

By using good design principles, the authors of GIFT have been able to effective-

ly decouple the authoring of individual tutor components from one another. The de-

coupling of different program elements is important for improving the maintainability

and extensibility of large pieces of software such as GIFT. One area of the framework

design that suffers from tight coupling is the integration of third-party training appli-

cations, e.g. VBS2, vMedic, etc.

The development of these authoring tools is guided by several design goals, one

of which is to “Employ standards to support rapid integration of external train-

ing/tutoring environments.” [3] In this regard, the current GIFT authoring construct

can benefit from design enhancements that standardize this process across a range of

training applications. Through the work outlined in this paper, we aim to generalize

the process of integrating serious games with GIFT by creating an abstraction layer

between GIFT and the game engine itself.

 39

3 Related Work

Prior work in integrating serious games and intelligent tutors has demonstrated that

ITS authoring tools can be easily adapted to work with individual games. Research

conducted by Gilbert et al. demonstrated interoperation between the Extensible Prob-

lem-Specific Tutor (xPST) and a scenario created in the Torque game engine [4].

Devasani et al. built upon this work and demonstrated how an authoring tool for

interpreting game state and player actions might be designed [5]. For their work,

xPST was integrated with a VBS2 scenario. An important revelation made by the

authors was that the author of the tutor need not define a complete state machine with

transitions, since these transitions are implicit when the game engine changes state

each frame.

Another of the GIFT design goals is to “Develop interfaces/gateways to widely

used commercial and academic tools.” [2] As previously mentioned, the current GIFT

release has support for two serious games, one of which is VBS2, and the other being

vMedic. This work and the previous two examples highlight the usefulness of inte-

grating intelligent tutors with serious games, as well as the need for a standardized

interface for authoring relationships between the game objects and tutor concepts.

There are currently no concrete examples of a standard for quickly integrating serious

games and intelligent tutors, although Sottilare and Gilbert make recommendations on

how this problem might be approached [2].

4 Design Enhancements

As noted by previous authors [2, 4], one of the key challenges of tutoring in a virtual

environment is mapping relevant game states to subgoals defined by the training cur-

riculum. If the learner's goal is to move to a specific location, for example, the tutor

author may not be interested in how the learner reached that state (e.g., driving, walk-

ing, or running). Thus, the tutor would have to know to filter out information from the

game engine about modality of movement, and attend only to the location. If, howev-

er, the trainer wants to focus on exactly how best to move to that location (e.g.,

stealthily), then the tutor does need to monitor movement information. Using this

example, we see that the context of the pedagogical goal influences the type of and

granularity of tutor monitoring. From here on, we will refer to this challenge as the

“observation granularity challenge.”

In the process of reaching each pedagogical goal, the learner will build up a histo-

ry of actions. Similar to the concept of a context attached to goals, there can also be

context attached to patterns of actions over time. As an example, there may be cases

where a tutor would permit errors in subgoals within a larger pattern of actions that it

would still deem “successful.” This history is essentially a recording of the virtual

environment state over the course of the training. The amount and diversity of data in

this history stream is potentially massive, creating a major challenge when attempting

to recognize patterns. The problem of recognizing these patterns is crucial for identi-

fying the learner's progress. From here on, we will refer to this challenge as the “his-

tory challenge.”

 40

In addition, because game environments afford interaction among multiple simul-

taneous entities, the tutor's reaction to actions and other new game states may be de-

pendent on the actor. This context dependence suggests that it would be a valuable to

add game entity attributes to state updates, and for GIFT to be able to process logic

such as, “If the gunshot action came from an entity that is unknown or hostile, then

take action X. If the gunshot came from a friend entity, take action Y.” The addition-

al layer of entity attributes adds complexity to authoring, but will be necessary for

modeling team and social interactions. Devasani et al. describes a possible state-based

architecture that could be the basis for such an approach, and it could be incorporated

into GIFT [4]. From here on, we will refer to this challenge as the “actor-context chal-

lenge.”

4.1 Abstraction Layer

A core aspect of the design principles behind GIFT is its generalizability to new train-

ing applications and scenarios. For this reason it is critical that the representations of

data in GIFT and in the training application be allowed to remain independent. It is

infeasible to force training applications to adapt to the interfaces that GIFT provides.

However, a layer of abstraction that adapts messages from a sender into a form that

can be consumed by a receiver is similar to the classic Adapter design pattern in soft-

ware engineering. This design pattern has the useful property of enabling two other-

wise incompatible interfaces to communicate, in addition to decreasing the coupling

between them. In the case of GIFT, the abstraction layer would handle the mapping of

objects from one service into a representation that makes sense to the other. As an

example, this module might receive a message from the game engine containing the

new location of the learner in the virtual environment which might then be interpreted

for the tutor as “the learner reached the checkpoint.”

In addition to mapping game engine concepts to tutor concepts, the abstraction

layer can act as a filter in order to solve the observation granularity and history chal-

lenges. The scripting language achieves this by affording “do not care” conditions that

would then trigger the abstraction layer to interpret only the relevant messages and

discard everything else.

One proposed method for implementing this mapping is a scripting language and

engine that allows the author to define the mapping themselves. Although it is far

from being an automated solution, a scripting language would allow the ITS and con-

tent authors to hook into more complex behaviors with very little learning overhead.

Scripting languages can be more user-friendly than XML by virtue of their syntactical

similarities to written English. Furthermore, within the context of the Unity develop-

ment environment we can expect users to have familiarity with scripting languages

such as JavaScript and Boo (similar to Python). For these reasons, a scripting lan-

guage is a natural choice for abstracting communication between GIFT and Unity. It

is important for the simplicity of tutor authoring that this messaging abstraction layer

have the tutor-side representation use language that a trainer would naturally use. If

this is the case, the trainer can more easily author feedback and adaptive scenarios.

Although JavaScript and Boo are well-suited as tools to implement complex be-

haviors for game objects, they overcomplicate the task of describing interactions be-

tween the game world and the tutor. Instead of complex behaviors, we seek to enable

 41

the tutor author to quickly declare relationships between objects in the game, domain

knowledge, and pedagogical goals.

In order to avoid burdening the author with the challenge of authoring different

components in different languages, it may be advantageous to use XML for authoring

abstraction layer rules. The declarative nature of XML makes it ideal for this role,

although as mentioned previously, it suffers from poor readability. An alternative to

XML is TutorScript, a scripting language developed for use in ITSs [6]. The design of

TutorScript centers around the sequences of goals or contexts called a predicate tree.

TutorScript’s primary advantage over the previously mentioned alternatives is that it

was designed with the goal of relating domain knowledge to learner actions in the

training application. Additionally, TutorScript takes inspiration from Apple script in

regards to syntax, allowing non-programmers to write scripts that read like English.

For our work, TutorScript would allow us to hook into objects in both GIFT and Uni-

ty, where we can then create interactions using simple language.

4.2 Unity Editor

One of the main benefits of the Unity editor is that it is extensible to support user-

created tools for custom workflows, or to fill in functionality lacked by the default

editor. Some examples of editor plugins authored by users have added advanced level

building tools, cut-scene editors, and even node-based visual scripting interfaces. The

ultimate goal of this project is to completely integrate GIFT's authoring tools with the

Unity ecosystem. This entails creating editor plugins for the entire suite of GIFT au-

thoring tools, thereby enabling content authors to generate serious game and tutor

content side-by-side using a single development environment.

An added benefit of integration with the Unity editor is its powerful rapid-

prototyping abilities. Scenarios in Unity are organized into “Scenes” which can be

loaded individually, played, and paused within Unity's built-in player. Current work

to develop a proof-of-concept has demonstrated that it is possible to interact with the

tutor within this player, thereby enabling the author to perform debugging on the

training scenario to an extent.

It is considered good practice when authoring Unity games to “tag” game objects

with names that encode the meaningful behavior that the game object performs. As-

suming that the author adheres to this practice, the tagging mechanism combined with

the abstraction layer will solve the actor-context challenge. Tags can be transmitted

with game state updates that pass through the abstraction layer, which will then inter-

pret the tags into context that is meaningful to the tutor. Since the abstraction layer is

scripted by the author, it is essential for the abstraction layer script editor to be in-

cluded in Unity's authoring suite. Making these tools easily accessible from one or the

other allows the author to update changes to the scripts as soon as he or she makes

changes to game object tags and other metadata.

As stated previously, the scripting languages provided by Unity may not be ideal-

ly suited to the task of communicating between the game engine and the tutor. Addi-

tional modifications will need to be made to MonoDevelop, the highly extensible IDE

distributed as part of Unity, in order to support TutorScript or a variant of it.

MonoDevelop greatly simplifies the creation of helpful programming tools such as

syntax-highlighting and auto-completion that assist users with no prior programming

 42

background. Developing a MonoDevelop add-on for TutorScript also allows the au-

thor to more easily manage large or complex scripts needed to address the history and

actor-context challenges via the built-in code organization features such as collapsing

scopes. Taken together, Unity and MonoDevelop can be used as a suite of tools for

authoring not only serious game content, but also advanced tutor behaviors, curricu-

lum, and domain knowledge that will drive the training scenarios.

5 Recommendations

We project that the design enhancements recommended in this paper will assist in

improving time savings and reducing cost involved with authoring an intelligent tutor.

Specifically, we are aiming to reduce the time required to integrate GIFT with a new

serious game by instead integrating it with the game engine itself. Our reasoning is

that there are relatively few game engines that would need to be integrated, compared

to the number of games with potential for enhancement through tutoring. Additionally,

code reuse is facilitated by employing a standard format for describing relationships

between game and tutor objects. If successful, this work will introduce a new abstrac-

tion layer between GIFT and the game engines that drive serious serious games, ena-

bling a single tutor configuration to be deployed across a wide range of scenarios. For

your convenience, the recommendations have been consolidated and figured in the

table below.

Table 3. GIFT Design Enhancement Recommendations

Improve decoupling of potential learner actions and other game-specific data from the

gateway and other GIFT modules.

Define a new XML schema for constructing game-tutor object relationships.

Develop a new authoring tool capable of authoring and validating these relationships.

Integrate new and existing authoring tools with the Unity editor.

6 Current Work

At this point we have successfully developed a proof-of-concept plugin that demon-

strates basic communication between GIFT and Unity-driven games, similar to the

interoperation module developed for VBS2. The extent of this functionality encom-

passes connecting to the Unity plugin from GIFT and then issuing playback com-

mands such as pause and resume to the Unity player. This work has helped to increase

our understanding of the inner workings of GIFT with regard to the augmentation

required to communicate with our abstraction layer. In particular, the extent to which

GIFT is tailored to each training application became apparent. In addition, we were

able to leverage support for C# .NET 2.0 in Unity to move a great deal of the support-

ing code into components attached to game objects. This design allows the three ser-

vices (Unity, Abstraction Layer, and GIFT) to remain isolated from one another dur-

ing development, encouraging loose coupling across service boundaries and portabil-

ity to other serious game authoring tools.

 43

Before any work on the abstraction layer can begin, the language used to define

object relationships must first be well-defined. Once this step is completed, we can

begin abstracting away the elements of third-party application integration in GIFT

that are currently hard-coded. Ultimately, these elements will be encapsulated by the

proposed abstraction layer.

7 Conclusion

In this paper we proposed a handful of major design enhancements to GIFT with the

overarching goal of bringing the ITS authoring workflow into the game content crea-

tion pipeline. The first task in realizing this vision is to create an abstraction layer

comprised of a scripting engine tailored for ITSs. The second and final task is to inte-

grate the GIFT authoring tools into Unity, in order to encourage side-by-side devel-

opment of game and tutor content. The Unity game engine has been chosen for this

work due to its ease of use, cross-platform support, and high extensibility. It is our

hope that such a comprehensive suite of tools will help to drive a new generation of

high-quality serious games.

8 References

1. Brawner, K., Holden, H., Goldberg, B., Sottilare, R.: Recommendations for Modern Tools

to Author Tutoring Systems. (2012)

2. Sottilare, R.A., Gilbert, S.: Considerations for adaptive tutoring within serious games: au-

thoring cognitive models and game interfaces. (2011)

3. Sottilare, R.A., Brawner, K.W., Goldberg, B.S., Holden, H.K.,: The Generalized Intelligent

Framework for Tutoring (GIFT). Technical report (2013)

4. Gilbert, S., Devasani, S., Kodavali, S., Blessing, S.: Easy Authoring of Intelligent Tutoring

Systems for Synthetic Environments. (2011)

5. Devasani, S., Gilbert, S. B., Shetty, S., Ramaswamy, N., Blessing, S.: Authoring Intelli-

gent Tutoring Systems for 3D Game Environments. (2011)

6. Blessing, S.B., Gilbert, S., Ritter, S.: Developing an authoring system for cognitive models

within commercial-quality ITSs. (2006) 497–502

Authors:

Colin Ray is a graduate student at Iowa State University, where he is pursuing an M.S. in Hu-

man Computer Interaction and Computer Science under the guidance of Stephen Gilbert, Ph.D.

He possesses a B.S., also from Iowa State University, in the field of Electrical Engineering. His

current research is focused on integrating intelligent tutoring systems with entertainment tech-

nology. In addition to ITS research, he is also conducting research and development in the areas

of wireless video streaming and mobile surveillance to develop a platform for studying 360-

degree video interfaces.

Stephen Gilbert, Ph. D., is the associate director of the virtual reality applications center

(VRAC) and human computer interaction (HCI) graduate program at Iowa State University. He

is also assistant professor of industrial and manufacturing systems engineering in the human

factors division. His research focuses on intelligent tutoring systems. While he has built tutors

for engineering education and more traditional classroom environments, his particular interest

 44

is their use in whole-body real-world tasks such as training for soldiers and first responders or

for machine maintenance. He has supported research integrating four virtual and three live

environments in a simultaneous capability demonstration for the Air Force Office of Scientific

Research. He is currently leading an effort to develop a next-generation mixed-reality virtual

and constructive training environment for the U.S. Army. This environment will allow 20-

minute reconfiguration of walls, building textures, and displays in a fully tracked environment

to produce radically different scenarios for warfighter training. Dr. Gilbert has over 15 years of

experience working with emerging technologies for training and education.

 45

Authoring a Thermodynamics Cycle Tutor Using GIFT

Mostafa Amin-Naseri
1
, Enruo Guo

2
, Stephen Gilbert

1
, John Jackman

1
, Mathew

Hagge
3
, Gloria Starns

3
, LeAnn Faidly

4

1 Department of Industrial & Manufacturing Systems Engineering
2 Department of Computer Science

3 Department of Mechanical Engineering

Iowa State University, Ames, IA, 50011 USA

4 Department of Mechanical Engineering

Wartburg College, Waverly, IA 50677 USA

{aminnas, enruoguo, gilbert, jkj, fforty, gkstarns}@iastate.edu,

leann.faidley@wartburg.edu

Abstract. The main idea of generalized intelligent tutoring system (ITS) devel-

opment tools like Generalized Intelligent Framework for Tutoring (GIFT) is to

provide authors with high-level standards and a readily reusable structure within

different domains. Hence, adapting such a tool could be the best way to boost

an underdeveloped tutor. In this paper we propose the design for a new GIFT-

based tutor for undergraduate thermodynamics. An existing Thermodynamics

Cycle Tutor has been designed that is meant to facilitate problem framing for

undergraduate students. We describe the advantages of integrating this tutor

with GIFT to add student models. Also an approach for evaluating the pedagog-

ical performance of the GIFT-enhanced tutor is described.

Keywords: GIFT, intelligent tutoring system, thermodynamics cycle

1 Introduction

One of the most important challenges for engineering students is problem solving.

Complex engineering problems typically contain multiple constraints, require multi-

ple ideas, and may not have clear criteria for deciding the best solution. Beginning

students struggle with engineering problem solving, and it has been observed that the

initial stage (i.e., framing the problem) often causes the most difficulty. Students find

it difficult to frame a complex problem, identify the core components, and brainstorm

a possible solution path. These difficulties triggered the idea of building a tutor that

can help undergraduate engineering students with their problem framing.

Thermodynamics cycles were our choices of topic to start with. In a National

Science Foundation (NSF) funded project, a web-based software was developed to

give students the ability to draw some initial sketches of the problem. Their drawing

will be evaluated with regard to the expert model provided by the instructor and re-

spectively they will be provided with different types and categories of feedback and

instructions.

 46

Regardless of how much effort is devoted to a project, there is always room for

improvement. Key advantages of a generalized approach to ITS development (and

GIFT in particular) are their standards and their high potential for reuse across educa-

tional and training domains. Other advantages that drive efficiency and affordability

are GIFT’s modular design and standard messaging; its largely domain-independent

components; and its reuse of interfaces, methods, and tools for authoring, instruction,

and analysis. Given these GIFT characteristics, there are many ways that the tutor

could be enhanced being incorporating into GIFT. This will also provide us with an

invaluable testbed to examine a GIFT-enhanced tutor with the existing one.

In the following sections, first a brief description of the tutor will be given and

then an overview of the ways that the existing tutor can be enhanced by GIFT will be

demonstrated. Finally a testing opportunity for the software will be described.

2 Current tutor

We would like to describe our current intelligent thermodynamics cycle tutor for en-

gineering undergraduate courses. For the purpose of conceptualization and design, an

ITS is often thought as consisting of several interdependent components: domain

model, learner model, expert model, pedagogical module, interface and training me-

dia (Beck, Stern & Haugsjaa, 1996; Sottilare & Gilbert, 2011; Sottilare & Proctor,

2012).

2.1 Domain model

The domain is about thermodynamics cycle problems. The goal is to understand how

changes in pressure, temperature, specific volume and entropy interact with some

commonly-used components, such as pump, compressor, turbine, expansion value,

evaporator, heat exchanger, liquid-gas separator and mixing chamber. Based on the

physical and chemical properties, a rule is associated with each component. For ex-

ample, when an object goes through a pump, the pressure will increase, while the

temperature and specific volume will increase slightly. In the final version, the author

will have the option to modify the rules (e.g. to assume constant specific volume, or

to test a student with a component that doesn’t make physical sense). The table below

shows the rules associated with other components. The domain model contains these

rules.

 47

Table 4. Rules for several components

Component Pressure Temperature

Specific

Volume Entropy

expansion valve decease decrease Increase Increase

evaporator Same same, increase Increase Increase

compressor increase Increase decrease same, increase

mixing chamber same between between between

condenser same decrease, same decrease decrease

Liquid -gas sepa-

rator same same between between

2.2 Interface

Fig. 5. A screenshot of Thermodynamics Cycle Tutor. The student reads the problem at left and

solves it by constructing a vapor dome diagram at right.

Thermodynamics Cycle Tutor has been developed as part of a problem framing re-

search project funded by the National Science Foundation. The tutor basically con-

tains two parts. On the left side, it contains system/component diagram, problem de-

scription and questions. The right side uses a web-based drawing interface, XDraw,

developed internally by author Jackman using the Microsoft Silverlight framework.

XDraw supports basic drawing objects such as vapor dome, point, line, rectangle and

vector as well as freehand drawing. It also provides facilities to allow students to label

the states and insert text on the drawing. A backend database saves students’ dia-

grams. XDraw communicates with tutor server via a TCP socket. Several message

 48

types are defined in order to differentiate what information would be checked and the

next action should be taken.

When it starts, the left side shows the system diagram and problem description.

Students can start problem framing by drawing a vapor dome (T-V diagram in this

case) and use lines and points to represent pressure curve and state, respectively, and

apply labels according to the system diagram. After clicking submit button, the dia-

gram is sent to the tutor server, which checks a specific part based on the query mes-

sage. The tutor then sends back the evaluation result and instruction for the next ac-

tion as a returned message. Students may be directed to another interface based on

their performance in the current stage. We will talk about the detailed sequences in

the expert model.

2.3 Expert model

The expert model sets standards and compares learner actions to determine the pro-

gress. In the thermodynamics cycle domain, the expert model contains the following:

1. Check vapor dome present.

2. Check number of pressures.

3. Check number of states.

4. Check Pressure and Temperature relations in each of the components.

After the student submits the drawing, the tutor will check if the drawing contains

the vapor dome. If so, it will continue to the next check: number of pressures. If it is

wrong, the students will be asked questions like, “How many pressures are there in

the system?” showing on the left panel. If the student’s answer is wrong, the tutor will

go through all the components, and ask the pressure change within each of them.

Some tutorial videos and illustrations will be provided to help them better understand

the concept.

The content on the left panel will be changed based on the student’s activity in a

particular problem. For example, in the drawing, the student draws state 4 to the right

of state 3. A compressor pushes the gas molecules closer together, so specific volume

should decrease. The left panel will show a compressor’s diagram, along with some

questions, such as “How does the specific volume change in a compressor?” It con-

tains several choices that students can select. If the student chooses the correct an-

swer, it will ask the student to correct it in the diagram. If the student gets the wrong

answer, it will direct the student to some tutorial video files and ask again.

2.4 Training media

In order to help students correct their misconceptions, the tutor provides some video

files that include class lectures and illustration videos at a certain stage of the activity.

The video files will be loaded automatically to ask students to watch when their an-

swer is wrong. Generally speaking, the training media is domain-dependent and re-

quires the instructor to prepare and pre-define what stage it should appear.

 49

2.5 Learner model

Currently there is no learner model in our Thermodynamics Cycle Tutor. We think it

is a good idea to monitor and keep track of students’ current progress, save students’

previous performances, and perform surveys. An example could be when student

starts a new problem, the tutor should be able to select an appropriate problem from

the learner model and predict how successful the student will be based on his/her

historical data. Also, in the survey part, the tutor could receive feedback on the learn-

er’s background knowledge and quality of the pedagogical process. We believe GIFT

could allow us to build a learner model easily, and we would like to explore how it

may benefit our tutor.

2.6 Pedagogy

As a pedagogical learning tool, the tutor also needs to set up learning goals and pace

for the students, so the student can learn each component’s P, T, and V behavior one

at a time (starting with the easiest one, and increasing difficulty as easier ones are

mastered). The ideal tutor would be able to connect with other thermodynamic

understanding, using ideas such as rate of heat transfer and rate of work (power) to

connect with P, T and V relationships. For students with different performance levels,

the problem difficulty should vary. The tutor’s feedback has to inspire their thinking,

not give them answers directly. The pedagogy module requires much flexibility and

should vary based on different problem sets and instructor-student needs.

3 GIFT-enhanced tutor

The existing tutor is expected to demonstrate an acceptable functionality; however,

there are limitations in its domain independence and reusability, and it also lacks

some desirable features such as a learner model. Mitigating these limitations will

require a considerable amount of time and programming effort. GIFT offers many

features that can attenuate the level of programming skill and time required. Also,

providing standards and well-defined domain independent structures facilitates the

tool enhancement. The main benefits of GIFT for our tutor are explained below.

3.1 Learner model

A highly desired feature for intelligent tutors is to provide learners with personalized

education (Woolf, 2010). In other words, if we could know the exact skills that learn-

ers do and do not have, then we could provide them with the exact resources they

need. Learner model is a module that has been developed for this reason. Learner

model keeps record of many aspects of the learner, such as the learner’s progress

toward objectives, actions taken in the interface and historical data (e.g., previous

performance) (Sottilare, 2012). There is also a need to define some skill levels with

respect to the learner’s patterns. Having this valuable information about the learner

 50

and their skill, the tutor will be able to provide him or her with specific problems,

feedback, instructional content, etc.

In our current tutor there are many data streams that are monitored (e.g., the mis-

takes or feedback types, instructional content provided, etc.). Also, by handing out

surveys, some information about knowledge background is available. The problem is

they are stored in separate databases and it is hard to put them together. Putting these

data together can help us build the student model. GIFT provides the ability to store

this data in a well-structured way, as it has the option for sensor data storing. In addi-

tion, we can benefit the GIFT survey authoring tool, to conduct our surveys in the

same program and store them easily in the proper place. In this way, by defining the

skill levels we will be able to build our learner models based on the data we have

collected from them.

Another important feature is data reporting. Having collected a considerable

amount of data on the learner, an easy-to-access way to extract knowledge out of it is

necessary. The GIFT event report tool provides a proper interface to easily let users

(instructors) access the data they desire.

For any further research, we might want to use different types of sensors to eval-

uate a learner’s cognitive load or status or stress. GIFT provides the ability to readily

acquire that data as well.

3.2 Multiple scenarios

Once skill levels have been assigned to learners, appropriate content must be provided

based on those skills. To handle various types of problems and instructional material

(i.e., Domain Knowledge Files), a precise structure is needed to store them. For this,

GIFT Domain Authoring Tool (DAT) will be used. Since this tool can be used with-

out having to launch the entire GIFT architecture, it enables us to benefit from it ear-

lier in the development process.

In addition, different instructors have different pedagogical strategies and instruc-

tional content. Thus, they may want students to go through a different scenario or visit

different content. Two of our co-authors, for example, have different pedagogical

preferences for teaching the thermodynamic cycle. Based on their preferences, GIFT

could enable us to create multiple scenarios appropriately. Without having a perfect

match between the knowledge database and the tutor, accommodating multiple ap-

proaches would not be possible. However, GIFT has already provided the structured

database, so making the linkage between the tutor and GIFT DAT will be helpful.

3.3 Expansion to other domains

The domain-independent structure of GIFT will enable us to simply customize our

tool for different fields. Currently, statics problems, e.g., free body diagrams, can also

be tutored via our tool, but using the Domain Authoring Tool that will facilitate the

deployment of instructional material. The entire process of student model and learner-

specific instructions could be implemented with this approach as well.

 51

4 Proposed evaluation experiment

In the Fall 2013 semester, a thermodynamics class will be offered for undergraduate

mechanical engineering students in Iowa State University. Early in the semester they

will be divided into three groups. One group will work with the GIFT-enhanced tutor,

another group with the existing tutor (without student model), and the last group will

just join the class and have no tutor. Keeping records of the three groups’ perfor-

mances during the semester with periodic quizzes, as well as gathering data on their

skills and solution time, will provide us with a valuable data to evaluate the perfor-

mance of an intelligent tutor with the student model (GIFT-enhanced). It will also

help us examine the effectiveness of the existing tutor.

5 Conclusion

After analyzing the features of our existing tutor and GIFT, they seem to complement

each other perfectly and provide a comprehensive ITS. Using GIFT’s standards for

structuring the tutor, as well as data and file storing, will attenuate the requisite pro-

gramming skill and effort to accomplish the same objectives. Also, its high domain-

independence will create opportunities to expand the tutor to different learning do-

mains. The GIFT-enhanced tutor will be compared with the existing tutor and with

traditional class training during the 2013 Fall semester. The results could provide a

documented comparison between two different methods of ITS development.

6 References

1. Beck, J., Stern, M., and Haugsjaa, E. (1996). Applications of AI in Education, ACM

Crossroads.

2. Woolf, B. P. (2010). A Roadmap for Education Technology. National Science Foundation.
3. Sottilare, R. (2012), Adaptive Tutoring & the Generalized Intelligent Framework for Tu-

toring (GIFT), Retrieved from:

http://www.ist.ucf.edu/grad/forms/2012_10_Sottilare_UCF_GIFT%20brief.pdf.

4. Sottilare, R. and Gilbert, S. (2011). Considerations for tutoring, cognitive modeling, au-

thoring and interaction design in serious games. Authoring Simulation and Game-based In-

telligent Tutoring workshop at the Artificial Intelligence in Education Conference (AIED)

2011, Christchurch, New Zealand, June 2011.

5. Sottilare, R. and Proctor, M. (2012). Passively classifying student mood and performance

within intelligent tutoring systems (ITS). Educational Technology Journal & Society. Vol-

ume 15, Issue 2.

Authors

Mostafa Amin-Naseri: is a Master of Science student in Industrial and Manufactur-

ing Systems Engineering in Iowa State University. His BS was in industrial engineer-

ing with a major in systems engineering. Having had an experience in tutoring high

http://www.ist.ucf.edu/grad/forms/2012_10_Sottilare_UCF_GIFT%20brief.pdf

 52

school and undergraduate students he got familiar with common mistakes and issues

that students usually face when solving problems and also the necessity for personal-

ized instructional material. This background led him to start working on Intelligent

Tutoring Systems (ITS). He is currently working with a team on an ITS that helps

undergraduate engineering students with problem framing in Statics and Thermody-

namics. Applying statistical analysis and data mining techniques to learners’ historical

data in order to come up with learner models, evaluate skill levels and to offer cus-

tomized instructional material and feedback, is one of his fields of interest. Finally,

with a systems engineering background, he is also interested in analyzing and simulat-

ing the learning process using System Dynamics models.

Enruo Guo: a Ph.D. student in Computer Science co-majoring in Human Computer

Interaction in Iowa State University. She got her Master’s degree in Computer Sci-

ence from Iowa State in 2012. She also had a background in pedagogy and psycholo-

gy in her undergraduate study in Beijing Normal University, which is best-known for

training school teachers in China. Her philosophy is to use computers to simplify

human’s learning process and make everything as simple as possible. She has broad

interests in intelligent tutoring system, artificial intelligence, computer vision and

virtual reality. She has strong enthusiasm in developing real-world applications to

assist undergraduate teaching and administration. She develops Thermodynamics

Cycle Tutor and now is working on Free-Body Diagram Tutor for engineering under-

graduates. Furthermore, in order to reduce the workload of human inspector of De-

partment of Chemistry, she develops Intelligent Safety Goggle Detector which can

automatically detect if a lab user wears safety goggle at the entrance of the lab.

Stephen Gilbert, Ph.D., is the associate director of the virtual reality applications

center (VRAC) and human computer interaction (HCI) graduate program at Iowa

State University. He is also assistant professor of industrial and manufacturing sys-

tems engineering in the human factors division. His research focuses on intelligent

tutoring systems. While he has built tutors for engineering education and more tradi-

tional classroom environments, his particular interest is their use in whole-body real-

world tasks such as training for soldiers and first responders or for machine mainte-

nance. He has supported research integrating four virtual and three live environments

in a simultaneous capability demonstration for the Air Force Office of Scientific Re-

search. He is currently leading an effort to develop a next-generation mixed-reality

virtual and constructive training environment for the U.S. Army. This environment

will allow 20-minute reconfiguration of walls, building textures, and displays in a

fully tracked environment to produce radically different scenarios for warfighter train-

ing. Dr. Gilbert has over 15 years experience working with emerging technologies for

training and education

Dr. John Jackman: an Associate Professor, Industrial and Manufacturing Systems

Engineering at Iowa State University, conducts research in manufacturing and engi-

neering education. In manufacturing, he is currently working on wind turbine blade

inspection techniques that characterize the variability in blade geometry and detect

 53

surface flaws. Dr. Jackman has extensive experience in computer simulation, web-

based immersive learning environments, and data acquisition and control. His work in

engineering problem solving has appeared in the Journal of Engineering Education

and the International Journal of Engineering Education. He is currently investigating

how to improve students' problem framing skills using formative assessment.

Dr.Mathew Hagge: has built a teaching style for thermodynamics that simplifies the

course into a small set of ideas and skills, and asks students to develop and apply

these same ideas to novel situations. The same set of ideas and skills are used for

every problem. No equation sheets or similar problems are used. Memorization is not

needed, and will actually decrease student performance. Students are asked to make

as many decisions as possible, subject to their level of understanding. As student

knowledge and expertise increases, so does the problem complexity. Less than a doz-

en problems will be needed, but each new problem will push the student’s under-

standing. By the end of the course, successful students have the skills to solve any

problem in a traditional textbook, and to correctly solve problems much more com-

plex than a traditional textbook. When students need help, Dr. Hagge has developed a

set of questions that can identify the specific misunderstanding, and then provide an

activity or discussion that will eliminate the misunderstanding.

Dr Hagge’s teaching method is ideally suited for implementation with a tutor that

focuses on student understanding. The tutor can measure specific skills/understanding

and provide feedback unique to that student.

Dr Gloria Starns: received her Ph.D. in Mechanical Engineering from Iowa State

University in 1996 and began instructing engineering students as a graduate student at

Iowa State in 1990. Dr. Starns’ interest in working with a personal tutoring system is

related to her past work with concept based learning, as well as understanding the role

that use of active and constructive learning has in enabling students to retain and use

acquired knowledge; her role in this project has been to provide the research team

problems of varying complexity for purposes of collecting data from the tutor as it

continues to evolve.

Dr.LeAnn Faidley: is an Assistant Professor of Engineering Science at Wartburg

College in Waverly, IA. She has a BS in Engineering Science and Physics from Iowa

State University, an MS in Engineering Mechanics, and a MS and PhD in Mechanical

Engineering from The Ohio State University. At Wartburg, Dr. Faidley teaches the

freshman labs, the Engineering Mechanics sequence, the Design sequence, and Engi-

neering Materials. She is interested in improving student engagement with engineer-

ing subjects through active learning, relevant projects, and interactive online tools.

 54

Integrating GIFT and AutoTutor with Sharable

Knowledge Objects (SKO)

Benjamin D. Nye

Institute for Intelligent Systems

University of Memphis, Memphis, TN 38111

benjamin.nye@gmail.com

Abstract. AutoTutor and the Generalized Intelligent Framework for Tutoring

(GIFT) are two separate projects that have independently recognized the need

for greater interoperability and modularity between intelligent tutoring systems.

To this end, both projects are moving toward service-oriented delivery of tutor-

ing. A project is currently underway to integrate AutoTutor and GIFT. This pa-

per describes the Sharable Knowledge Object (SKO) framework, a service-

oriented, publish and subscribe architecture for natural language tutoring. First,

the rationale for breaking an established tutoring system into separate services is

discussed. Secondly, a short history of AutoTutor’s software design is reviewed.

Next, the design principles of the new SKO framework for tutoring are de-

scribed. Finally, the plans and progress for integration with the GIFT architec-

ture are presented.

Keywords: Intelligent Tutoring Systems, Service Oriented Architectures,

Message Passing, Design Patterns, Systems Integration

1 Introduction

Intelligent tutoring systems (ITS), despite effectiveness as instructional technology,

have historically suffered from monolithic design patterns (Murray, 2003). Roschelle

and Kaput (1996) referred to tutoring systems as “application islands” for their lack of

interoperability. A recent systematic literature review by the author of this paper

found little evidence of newer tutoring systems sharing components or working to-

ward a common base of components (Nye, 2013). This lack of modular ITS services

reduces the availability of ITS software by preventing sharing of ITS components

between systems. This problem increases the cost of ITS development and imposes a

high barrier to entry for new systems.

An improvement over this design would be a component-based and service-

oriented architecture, allowing composability of ITS components. Composability

would greatly benefit ITS research, due to the high interdisciplinary skill-set needed

to build a full tutoring system. Service oriented design would allow specialists to

focus on individual components, while sharing common components. It would also

mailto:benjamin.nye@gmail.com

 55

greatly reduce the waste of reimplementing components that could be shared by ITS.

However, this concept is not new. Roschelle and Kaput (1996) suggested component-

based design over a decade ago, but little meaningful progress has been made toward

that end. Part of the problem was the relative novelty of tutoring systems: fewer estab-

lished examples existed and there was less consensus about the definition and func-

tionality of an ITS.

More recently, central researchers have noted that different ITS tools share many

of the same high-level behaviors (VanLehn, 2006; Woolf, 2009). This consensus

implies a common ontology for describing the high level functions of ITS compo-

nents and the meaning of information passed between them. While literature consen-

sus does not constitute a formal ontology, it indicates the possibility of a grammar for

talking about the types of information communicated between different parts of an

ITS. An argument against the feasibility of this approach might be the disconnected

nature of many subfields of ITS research, which come from different theoretical

backgrounds that are not easily integrated (Pavlik and Toth, 2010). With that said,

regardless of the underlying theory, the external behaviors (e.g., giving a hint) and

core assessments (e.g., learning gains) are quite similar. The need to maintain theoret-

ical coherence does not mean that a common ontology is infeasible, but simply indi-

cates that there are limits to its useful granularity. For example, does a user-interface

care how a hint is generated? If not, the user interface should be able to display hints

from any system capable of generating hints. By taking advantage of the distinct roles

and functions within a tutoring system, breaking down an individual tutoring system

into distinct, sharable components is possible. Moreover, a significant number of

components of the tutoring system are secondary to the tutor’s theoretical concerns

but pivotal to their operation. Machine learning algorithms, data storage interfaces,

facial recognition software, speech synthesis, linguistic analysis, graphical interfaces,

and tutoring API hooks for 3D worlds are enabling technologies for tutoring systems

(Pavlik et al., 2012; Nye et al., 2013).

AutoTutor and the Generalized Intelligent Framework for Tutoring (GIFT) are

two separate tutoring frameworks that have independently recognized the importance

of modularity and interoperability in tutoring design. AutoTutor is a highly-effective

natural language tutoring system where learners talk through domain concepts with an

animated agent (Graesser et al., 2004a). Learning gains for AutoTutor average 0.8σ

over reading static text materials on the same topic (Graesser et al., 2012). GIFT is a

service-oriented framework for integrating tutoring capabilities into static material,

such as a PowerPoint, and interactive environments, such as a simulation or a serious

game (Sottilare et al., 2012). This paper describes the process of moving AutoTutor

toward a service-oriented paradigm and the progress toward integrating AutoTutor

with GIFT.

2 Prior AutoTutor Design Patterns

The original AutoTutor design was implemented as a standalone desktop application

to teach computer literacy, which also relied on platform-dependent elements such as

the Microsoft Agent (Peter Wiemer-Hastings et al., 1998). Since an installed applica-

 56

tion made AutoTutor harder to deliver, a subsequent version reimplemented the tutor-

ing system as a web-based application (Graesser et al., 2004a). Since that time, vari-

ous tutoring systems that followed in AutoTutor’s footsteps have used a mixture of

desktop and web-based designs. While many of these systems share conceptual prin-

ciples and some share authoring tools, reuse of components and services between

these different tutoring projects has been limited. So then, while Roschelle and Kaput

(1996) spoke of “application islands,” AutoTutor and related systems have evolved as

a sort of “application archipelago” of related but independent tutoring systems. While

the principles of AutoTutor have been influential, code reuse has been limited, even in

projects that explicitly extend AutoTutor, such as AutoTutor Lite (Hu et al., 2009).

AutoTutor’s package that handles linguistic analysis is a counter-example to this

pattern. Coh-Metrix provides a suite of linguistic analysis tools, such as latent seman-

tic analysis, regular expression matching, and domain corpora (Graesser et al., 2004b).

While this tool started development nearly a decade ago, it remains under active de-

velopment and is used regularly by AutoTutor and other projects. This longevity may

be attributed to its focused scope and purpose as a toolbox for linguistic analysis.

Additionally, Coh-Metrix has the advantage that it is primarily algorithmic and algo-

rithms do not tend to change much.

By comparison, the landscape of educational computing has changed greatly over

that period: web-based applications replaced many desktop applications, then full-

featured Java web applications were replaced by lighter JavaScript and Flash clients

with server-side code written in languages such as Python and C#. AutoTutor designs

have mirrored these trends fairly closely, with the original AutoTutor written as a

desktop application (Peter Wiemer-Hastings et al., 1998), the next iteration being a

Java-based web application (Graesser et al., 2004a), and systems such as AutoTutor

Lite relying on Flash, JavaScript, and Python (Hu et al., 2009). In the process of

changing platforms and programming languages, a great deal of development work

has been lost to a cycle of re-implementation to match the needs of a changing tech-

nology landscape.

Based on this history, how could design patterns be improved to encourage reuse

and interoperability? The first principle, demonstrated by Coh-Metrix, is embodied by

the Unix philosophy: “Do one thing and do it well” (Raymond, 2003). This is funda-

mental to service-oriented design, where boundaries between components are strict.

The second principle is that delivery platforms may evolve rapidly. Just as AutoTutor

has adapted to web delivery for desktops, mobile applications are becoming an im-

portant platform. Tutoring systems need to minimize platform-dependence. Finally,

the best programming languages for different platforms vary. Moreover, existing

tutoring systems have large investments in their code base. Components need to

communicate using language-agnostic standards for different tutoring systems to in-

teroperate. Service-oriented designs, while not yet common in tutoring systems, offer

significant advantages for the next generation of ITS.

3 Sharable Knowledge Objects

AutoTutor is moving in this direction with Sharable Knowledge Objects (SKO),

which allow creating tutoring modules by composing a mixture of components: local

 57

static media, remote static media, local components, and web services. These compo-

nents are categorized in terms of two questions: 1. Is the component local? and 2. Is

the component static or interactive? While the current focus of this work is on ser-

vice-oriented web delivery, the design is also intended to support communication

between components in the same process. By using a uniform messaging pattern,

components can be developed without consideration of whether they will be used on a

local device or accessed as a remote service.

In design pattern terms, SKO’s are being developed to follow the service compo-

sition principle. In service composition, a composition of multiple services can be

considered a single service when creating a new composition of services. Service-

oriented design is largely the same concept as component-based design, except with

the added complexity that the components may be distributed across time and space

as part of a distributed network. So then, what is a SKO? A SKO declares a composi-

tion of services intended to deliver knowledge to a user, with the expected use case

being tutoring in natural language. In this context, the SKO framework is not a re-

implementation of AutoTutor but a framework for breaking AutoTutor down into

minimal components that can be composed to create tutoring modules that may or

may not rely on the traditional AutoTutor modules. These minimal components are

intended to be used as part of a service-oriented design.

Figure 1 shows an overview of the new SKO framework. The core of the new

SKO framework relies on a publish-and-subscribe architecture based entirely on pass-

ing messages that convey semantically-tagged information. These patterns significant-

ly improve the flexibility of service composition for tutoring. Publish and subscribe

frees individual components from explicit knowledge of any other services. The com-

ponent knows only its own state, the messages that it has received, and the messages

that it has transmitted. SKO is viewed as a way to split AutoTutor into separate, easi-

ly-reusable components. Secondly, SKO is intended to unify components from differ-

ent systems that have evolved from AutoTutor along divergent paths by adding their

unique functionality as services.

Exploring the details of each of these services is outside the scope of this paper.

Instead, this section will focus on how different users would interact with and benefit

from a SKO. While certain features of SKO are still under development, these exam-

ples describe how different users will interact with the completed SKO framework.

To the learner, a SKO acts as a single module of instructional content focusing on a

single lesson (e.g., learning how to complete a given math problem). For AutoTutor

Lite, a web page loads a talking head and a user-input box, often with a button to

begin a tutoring session. The SKO module does not specify any rules or functions.

Instead, it relies on components to send messages. So then, user input triggers on the

tutoring button generates a message from the user interface component. The tutoring

engine reads that message and selects tutoring dialog, which is sent off as a new mes-

sage. The animated agent and text-to-speech services read this message and cause the

talking head to speak the message to the learner. By sharing a student model in a

learning management system, multiple SKO can be combined into larger lesson units.

 58

Fig. 6. Sharable Knowledge Object Framework for AutoTutor

To an advanced developer, a SKO is a collection of services. Advanced de-

velopers design new services and create SKO templates that can be filled in by in-

structors. These designers can create a SKO template using an advanced interface,

where they would define the set of services within a SKO template and how these tie

into the user interface. However, the advanced developer is not expected to add any

domain content. Instead, they merely specify placeholders for content that is required

or allowed. Based on these placeholders, a form-based authoring wizard would be

created to allow instructors and domain experts to create specific SKO based on the

template.

To an instructor, a SKO is a series of forms where they enter their expert data and

produce working tutoring modules that they can test immediately. For example, an

advanced developer could make a SKO template for guiding a student through solv-

ing an Algebra problem. From this, a form would be generated to allow an instructor

to specify solution steps and tutoring dialogs associated with each step. An instructor

could complete this form multiple times to enter content for different problems. This

development is intended to be collaborative. By storing SKO in cloud hosts, different

authors can edit or test each module. This also greatly facilitates SKO delivery, as a

web-based SKO can be directly tested after creation.

4 Integration with GIFT

As part of the project to integrate AutoTutor with GIFT, AutoTutor Lite is being bro-

ken down into distinct services to fit into the SKO framework. Rather than focus on

the low-level details of how AutoTutor and GIFT are integrating, the high-level pro-

cess will be outlined. There is no canonical set of services that a given tutoring system

should be broken down into so that it can be integrated into GIFT. However, the gen-

eral integration process followed by AutoTutor might serve as a model for other sys-

 59

tems considering GIFT integration. This integration has five phases: 1. identifying

complementary functionality, 2. determining distinct “parts” of the AutoTutor Lite

system, 3. specifying the functionality, inputs, and outputs of each part, 4. building

web services, and 5. working with GIFT developers to add these to the GIFT distribu-

tion.

In the first phase, to identify complementary functionality between GIFT and

AutoTutor, a large table of various key features for each system was created. This

table helped identify the tools that GIFT had already implemented and those that

AutoTutor Lite could contribute. This process identified that AutoTutor’s main con-

tributions were conversational pedagogical agents, interactive tutoring, improved

student modeling, and semantic analysis tools to compare sentence similarity. In the

second phase, the full AutoTutor Lite system was examined to find distinct parts: sets

of functionality that could be meaningfully split into distinct components. GIFT is

meant to be a generalized system, so re-usable components offer more value to the

system. To find these divisions, we looked for parts that only needed and returned

small, well-formed information from other parts (e.g., the semantic service can com-

pare any two sets of words and return a similarity value). In the next phase, the func-

tions, inputs, and outputs of each part were determined. After that, we started building

web services for each part. Web services were used because they follow communica-

tion standards that mean that AutoTutor code does not need to be in the same lan-

guage as the GIFT code, nor does it need to run on the same computer. Finally, as

versions of these web services have been completed, they have been provided to

GIFT for integration into the system. This is an important part of the process, as test-

ing with GIFT has helped uncover hurdles about the scalability and limitations of

these new services. As these services are completed, they are being integrated into

releases of GIFT.

Overall, integration with GIFT dovetails with a larger movement of AutoTutor

toward a service-oriented architecture. This redesign will not only help integration

with GIFT, but also with other systems in the future. Figure 2 shows how AutoTutor

services are expected to integrate into the GIFT framework. AutoTutor services are

shown on the right side of the diagram and include the semantic analysis service (for

analyzing user input), learner’s characteristic curve (LCC) service (a simple type of

student model), tutoring service for AutoTutor Lite, a service for text-to-speech, and

an animated agent service. Some of these components are already available as web

services. Once these services are available, GIFT will be able to incorporate basic

AutoTutor Lite tutoring as part of its framework. The message-passing SKO frame-

work will then standardize how AutoTutor communicates with GIFT. Additional

services not displayed are also anticipated, such as a persistent student model, authen-

tication service, and services for wrapping assessments such as multiple choice tests.

 60

Fig. 7. Integration of AutoTutor and GIFT

5 Limitations and Future Directions

The SKO framework is intended to separate components based on the knowledge

transferred between them, represented as semantic messages. This process will greatly

improve modularity, enable AutoTutor to be implemented using a service-oriented

design, and support interoperability with GIFT. However, modularity is limited by the

information each component must share. Certain functions of the tutoring system are

more easily separated into distinct components than others. For interoperating with

additional tutoring systems, agreeing on a common set of messages may also be a

challenge.

Currently, the publish-and-subscribe version Sharable Knowledge Object frame-

work is under active development. In parallel with this work, AutoTutor Lite is being

broken down into services and consumed by GIFT using traditional API’s. Work in

this area is focused on converting the semantic analysis services and AutoTutor Lite

tutoring interpreter into services. Message-passing interfaces will then be incorpo-

rated into each service and they will be composed using the publish-and-subscribe

SKO framework.

Acknowledgements The core SKO architecture is sponsored by the Office of

Naval Research STEM Grand Challenge. Integration of AutoTutor Lite services

with GIFT is sponsored by the Army Research Lab.

 61

6 References

1. Graesser, A.C., Conley, M.W., Olney, A.: Intelligent tutoring systems. In: Harris, K.R.,

Graham, S., Urdan, T., Bus, A.G., Major, S., Swanson, H.L. (eds.) APA Educational psy-

chology handbook, Vol 3: Application to learning and teaching, pp. 451–473. APA, Wash-

ington, DC (2012)

2. Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H.H., Ventura, M., Olney, A., Louwerse,

M.M.: AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods,

Instruments, and Computers 36(2), 180–192 (2004a)

3. Graesser, A.C., McNamara, D.S., Louwerse, M.M., Cai, Z.: Coh-Metrix: Analysis of text

on cohesion and language. Behavior Research Methods, Instruments, and Computers

36(2), 193–202 (May 2004b)

4. Hu, X., Cai, Z., Han, L., Craig, S.D., Wang, T., Graesser, A.C.: AutoTutor Lite. In: AIED

2009. IOS Press, Amsterdam, The Netherlands (2009)

5. Murray, T.: An overview of intelligent tutoring system authoring tools. In: Authoring

Tools for Advanced Technology Learning Environments, pp. 493– 546 (2003)

6. Nye, B.D.: ITS and the digital divide: Trends, challenges, and opportunities. In: AIED

2013 (2013)

7. Nye, B.D., Graesser, A.C., Hu, X.: Multimedia learning in intelligent tutoring systems. In:

Mayer, R.E. (ed.) Multimedia Learning (3rd Ed.). Cambridge University Press (2013)

8. Pavlik, P.I., Maass, J., Rus, V., Olney, A.M.: Facilitating co-adaptation of technology and

education through the creation of an open-source repository of interoperable code. In: ITS

2012. pp. 677–678. Springer, Berlin (2012)

9. Pavlik, P.I., Toth, J.: How to build bridges between intelligent tutoring system subfields of

research. In: Aleven, V and Kay, J and Mostow, J. (ed.) ITS 2010. LNCS, vol. 6095, pp.

103–112 (2010)

10. Peter Wiemer-Hastings, Arthur C. Graesser, Derek Harter: The foundations and architec-

ture of AutoTutor. In: Goettl, B.P., Halff, H.M., Redfield, C.L., Shute, V.J. (eds.) ITS

1998. LNCS, vol. 1452, pp. 334–343. Springer, Berlin (Sep 1998)

11. Raymond, E.S.: The Art of UNIX Programming. Addison-Wesley (2003)

12. Roschelle, J., Kaput, J.: Educational software architecture and systemic impact: The prom-

ise of component software. Journal of Educational Computing Research 14(3), 217–228

(1996)

13. Sottilare, R.A., Goldberg, B.S., Brawner, K.W., Holden, H.K.: A modular framework to

support the authoring and assessment of adaptive computer-based tutoring systems

(CBTS). In: I/ITSEC (2012)

14. VanLehn, K.: The behavior of tutoring systems. International Journal of Artificial Intelli-

gence in Education 16(3), 227–265 (2006)

15. Woolf, B.: Building intelligent interactive tutors: Student-centered strategies for revolu-

tionizing e-learning (2009)

Authors:

Benjamin D. Nye is a post-doctoral fellow at the University of Memphis, working on

tutoring systems architectures as part of the ONR STEM Grand Challenge. Ben re-

ceived his Ph.D. from the University of Pennsylvania and is interested in ITS archi-

tectures, educational technology for development, and cognitive agents.

 62

Leveraging a Generalized Tutoring Framework in

Exploratory Simulations of Ill-Defined Domains

James M. Thomas
1
, Ajay Divakaran

2
, Saad Khan

2

1Soar Technology, Inc., Ann Arbor, MI

jim.thomas@soartech.com

2SRI International Sarnoff, Princeton NJ

{ajay.divakaran, saad.khan}@sri.com

Abstract. Generalized frameworks for constructing intelligent tutors, such as

GIFT promise many benefits. These benefits should be extended to systems

that work in ill-defined domains, especially in simulation environments. This

paper presents ideas for understanding how ill-defined domains change the tu-

toring dynamic in simulated environments and proposes some initial extensions

to GIFT that accommodate these challenges.

Keywords. Intelligent Tutoring Systems, Computer-Based Tutoring Systems,

framework, GIFT, ITS, CBTS, student models, learner models, task models, ill-

defined domains, simulated environments, exploratory learning.

1 Introduction

Intelligent Tutoring System (ITS) have been shown to enhance learning effectiveness

in a wide variety of academic domains [1]. The ITS field has long drawn inspiration

from studying strategies employed by human tutors in one-on-one engagement with

students [2]. Success has spurred the research community to extend its aspirations into

more complex, ill-defined domains. Ill-defined domains are those that lack clearly

defined procedures to determine the correctness of proposed solutions to specific

problems [3]. Our interest lies in exploratory training simulations of those domains.

To address the difficulty of guiding effective learning in these complex environ-

ments, it seems useful to develop and leverage generalized techniques. The GIFT

architecture represents a comprehensive approach to facilitate reuse of common tools

and methods for building ITS. Although much of the initial focus of GIFT has been

directed toward well-defined domains, it we would like to consider how it could be

extended to ill-defined domains as well [4], especially those rendered through explor-

atory simulations.

The authors’ motivating example is a system we are building called "Master

Trainer – Individualized" (MT-I). The goal for this system is to intelligently guide

new military squad leaders in simulations that combine intercultural communication

and negotiation skills with tactical challenges. This system integrates stand-off as-

sessments of student affect to modulate the intensity of the simulation to optimize

student challenge. One of the questions we are investigating is how to drive the rela-

mailto:jim.thomas@soartech.com
mailto:saad.khan%7d@sri.com

 63

tionship between the student and a simulated human to achieve pedagogically useful

levels of anger, conflict or cooperation. We are interested in applying what we are

learning toward the generation of useful domain-independent strategies that could be

incorporated into GIFT.

2 Motivations for GIFT

Although the field of ITS research is imbued with a strong collaborative spirit, the

field lacks common computational infrastructure. GIFT is a particularly promising

approach toward a general reusable framework for intelligent tutoring could benefit

the entire field.

Scientific research largely presumes the capability to make apples-to-apples

comparisons of competing theories. Although they share some common concepts and

goals, the majority of ITS research systems share little common architecture or code

[1]. To make broad contributions to this field often requires a fairly full-featured ITS

on which to perform analyses, yet bespoke software development is both time con-

suming and expensive. Shared platforms and plug-ins amortize development costs and

grow communities of professionals who can more effectively collaborate and relocate

between projects and organizations, accelerating the productivity of the field as a

whole [5].

GIFT proposes common frameworks for alternative implementations of a broad

set of ITS capabilities. Built on solid design principles and a comprehensive under-

standing of the work of the ITS community, GIFT promises to serve an increasingly

useful role in accelerating the scientific and commercial success of the field. Three

common challenges faced by the field: authoring, instructional management, and

analysis form the core constructs of GIFT. Successful evolution of these constructs

promises to accelerate scientific progress by sharing common evaluation methodolo-

gies, reducing the time and expense for reused software components, and promoting a

more tightly integrated and collaborative community.

GIFT may help accelerate commercialization of scientific progress by facilitating

the production of a common currency of evidence of learning effectiveness that can

be used to sell the benefits of implemented systems. It can help provide a platform

for rapid prototyping to more quickly cycle through alternative approaches to find

those that work best. Much as Eclipse™ has accelerated software development [5],

and Unity3D™ has democratized high fidelity game development [6], GIFT has the

potential to grow into a common workbench that builds-in the ability to package and

deploy new work to a full breadth of possible platforms.

3 Characteristics of Ill-Defined Domains

The current GIFT vision accommodates a wide range of ITS capabilities. However,

ill-defined domains have not been a primary component of that vision [4]. This sec-

tion begins with an irony-free definition of ill-defined domains, describes some of the

challenges encountered by human tutors in a subset of these domains, and then con-

 64

siders issues and opportunities they present for ITS designers working with immersive

simulation environments.

3.1 Defining Ill-Defined Domains

Much of the historical grounding of ITS research is focused on guiding students

through well-structured discrete learning tasks, to impart deeply decomposable

knowledge [5] from well-defined domains. Fournier-Viger et al. [8] declare ill-

defined domains to be those “where traditional approaches for building tutoring sys-

tems are not applicable or do not work well”. Lynch and Pinkus [9] characterize

problems in ill-defined domains as lacking definitive answers, having answers heavily

dependent upon the problem’s conception, and requiring students to both retrieve

relevant concepts and map them to the task at hand. Mitrovic [10] underscores the

important distinction between ill-defined domains and ill-defined tasks, anticipating

Sottilare’s [4] observation that ITS authoring in ill-defined domains is complicated by

the multiplicity of “paths to success” compared to the more well-defined domains in

which of ITS research has been situated.

3.2 Tutoring Challenges Posed by Ill-Defined Domains

Human tutors have served as both an inspiration for ITS behavior and benchmark and

a benchmark for ITS performance [1]. Because no one has yet made a comprehensive

study comparing human tutor behaviors in traditional domains with those in ill-

defined domains to identify the most necessary extensions to tutorial reasoning, our

work on the MT-I system is inspired by specific analogues of human tutors in the

domains of live military training for tactics and intercultural effectiveness.

Live training in environments that combine military tactics and interpersonal

challenges often spans many hours or days, ranges through confined indoor and ex-

pansive outdoor spaces, and requires dozens or hundreds of live role players. Interac-

tions with these role players are often guided by scripted prompts, but involve a lot of

improvisation as well. Examples include resolving disputes between armed civilians,

negotiating with civic or spiritual leaders, as well neutralizing threats posed by snipers

or potential ambushes. Trainers are usually embedded within the environment and

have the ability to provide guidance to students during the simulation.

When comparing the behavior of the trainers/tutors in these exercises to that of

academic tutors, a striking contrast is immediately evident. Feedback is often de-

ferred over much longer intervals than what one would typically see in one-on-one

tutoring in well-defined academic domains. Because is often unsafe or impossible to

suspend exercises involving moving/flying vehicles and timed explosions, most in-

corporate extensive after-action review (AAR) as the primary conduit for feedback

and guidance. To some extent, the tutors may elect to integrate feedback within the

broader context of a scheduled AAR. In other cases, immediate feedback cannot be

given on an individual student action choice because multiple student actions are

required before a judgment can be made. Some of this deferral is linked to the inter-

play between student and role players, as it is difficult to guide the student without

impacting the on-going social exchange. Finally, unlike many academic tasks, it is

difficult to reset the problem state after an incorrect student action, as the training is

 65

situated in a narrative context with a fixed rate of flow to coordinate the many moving

parts.

The immediate feedback tutors do provide in these simulations is often con-

strained to ensuring that the student is engaged and taking actions that move the im-

plicit narrative forward. The deferred feedback is often a holistic reflection involving

multiple learning objectives, student affect and metacognitive guidance on productive

application of the feedback to future performance.

3.3 Tutoring in Computer Simulations of Ill-Defined Domains

Many of the challenges encountered by humans in ill-defined domains carry over into

computer-based tutoring. The assessment granularity sometimes spans multiple ac-

tions, can sometimes be entwined in social interactions, and can sometimes be en-

twined in narrative. Each of these specific constraints can be viewed more generally.

What we commonly describe as narrative in simulation environments is more

generally described as a meaningful continuity of state over time. Narrative-centered

learning environments [11, 12] can vary in the extent to which they support alterna-

tive branches toward "success" or even emergent run-time generation. Yet they share

the constraint that the continuity associated with the progression of states cannot be

broken or the reversed without consequence, which in turn places limitations on the

action choices available to both student and tutor.

Similarly, what we commonly perceive as social interaction between students and

non-player characters (NPCs) in simulations is one particular case of an addition of

simulation-based elements to tutorial state. In this case, it is the game-state data asso-

ciated with the NPCs attitudes toward the student that persistent over sequences of

tutorial actions. Other examples of game/simulation state variables that influence

tutorial state include consumable or non-replenishable resources in the simulation

which may affect the span of future tutorial choices.

Finally, the dependency on multiple student actions for student assessment is a

specific manifestation of the well-recognized and more general problem of assessing

student correctness at all in ill-defined domain. Yet while these challenges compli-

cate the job of intelligent tutoring, they also introduce new tools. Narrative continuity

can be exploited both to scaffold instruction and provide context for interpretation of

actions. NPCs and other simulation based entities can be manipulated for pedagogical

purposes, providing implicit guidance or challenge to the student. The complexity of

interpretation of student action affords the intelligent tutor the opportunity for more

nuanced and complex forms of guidance that may have more profound and lasting

effects on learning.

 66

Fig. 8. Model of Tutoring Dynamic in Simulated Ill-Defined Domains

To best confront the challenges and make use of the opportunities of learning

based in simulation environments over ill-defined domains, we need models that un-

derstand the tutoring dynamic as more than a one-on-one exchange. Rather, the mod-

el must recognize that the persistent state, continuity constraints, and assessment am-

biguity of the simulation environment continually shape the interactions between tutor

and student. Figure 1 is a depiction of such a model. At any point in time, the state of

an ITS can be described as a combination of the state data associated with the student,

the tutor and the simulation environment. Arrows depict the flow of state-changing

actions between these three components. Note that some of these actions may pro-

ceed in parallel and may last for human-perceptible durations; perhaps with sufficient

frequency that the overall state of the system may be more often in flux than it is qui-

escent.

This expanded interaction model complicates the prescription of the “learning ef-

fect chain” [4]. Because any change to student, tutor, or environment is represented

as a new state, the progression toward learning gains involves navigating through a

broad space of potential alternative paths. As shown in the rightmost half of Figure 1,

one particular progression (the sequence of colored tutorial state snapshots depicted

against white backgrounds) is merely one path through a rapidly expanding profusion

of alternatives.

This tableau of interwoven learning progressions and alternatives gives an ambi-

tious tutorial agent a lot to think about. Sufficiently inspired agents may perform

plan-based reasoning to map the possibilities and nudge the learning experience in the

most fruitful directions. In fact, tutorial agents have been constructed that mine the

space of alternative actions sequences [12] to devise remediation strategies. Advanced

agents might even consider choreographing multiple sessions, altering emphasis and

tactics as it varies the pedagogical purpose of each session.

Alternatively, the profusion of possibilities can influence time-sensitive develop-

ers to move in the other direction, building “knowledge-lean” [13tutorial agents. As a

consequence, ITS developers in these environments often eschew deep knowledge-

tracing expert models in favor of less precise, but more easily authored constraint-

based approaches [8]. This suggests that a generalized intelligent framework, such as

 67

GIFT, should consider supporting a variety of modeling approaches. In fact, our cur-

rent implementation of MT-I, which features ill-defined tasks within overlapping ill-

defined domains, we have found it useful to author constraint-based models to charac-

terize the correctness of individual student tasks in a wide range of potential contexts,

where that model feeds a higher-level knowledge tracing model of higher-level, more

abstract learning objectives that operates over longer time spans.

4 Enhanced Knowledge Representations and Reasoning

Not surprisingly, some of the challenges posed by ill-defined domains in simulated

environments can be addressed by providing tools to create better definitions. Flexi-

ble and knowledge representations (KR) can serve as the definitional “handles” that

tutorial agents can use to enhance reasoning about the state of the student and simula-

tion. That reasoning can be converted to action if the simulation is instrumented with

“levers”, software hooks that cause pedagogically useful changes expressed through

those handles. This section proposes three levers that use non-traditional extensions

to tutorial knowledge representations to provide enhance tutorial reasoning and more

effective student guidance.

Lever #1: Enriched Definitions of Learning Objectives. Trainers in the sophis-

ticated simulations involving role players discussed earlier are often trying to steer

their students toward states of mind that go beyond a prescribed set of factual

knowledge to include social, narrative and affective dimensions, as shown in Figures

1 and 2. To achieve similar results in simulated environments, tutorial agents must

reason about those dimensions of learning objectives as well. The KR should be able

to qualify, for example, not only that the trainee know how to greet respectfully a

village leader, but that the student can perform that greeting is accomplished while in

a highly agitated state.

Lever #2: Enriched Definitions of Tutorial Purpose. Sophisticated simula-

tions can be used in a broader set of pedagogical contexts that traditional systems,

ranging from direct instruction of material to which the student has not previously

been exposed, to consolidation of previously taught material, to transfer of knowledge

to new domains, to assessment of knowledge and performance, to building confidence,

teamwork or skills that apply acquired knowledge. Thus, the purpose of a given tuto-

rial session can vary more widely than in traditional instruction, which demands that

tutorial strategies and tactics be labeled according to their relevance for these various

purposes. For example, a particular tutorial action may have a stronger positive effect

on student self-efficacy that an alternative which may have a stronger positive effect

on didactic specificity. An enhanced KR enables the tutorial agent to choose between

these alternatives based on whether the purpose of the current session is to build con-

fidence or impart knowledge.

Lever #3: Persistently-labeled Learner Data. To maximally leverage the op-

portunities of sophisticated learning environments, in which multiple learning ses-

sions for varying learning purposes may span arbitrary time periods, individual stu-

dent data must be persistent and pervasive: accessible and publishable at any level by

any component of the tutorial framework. This allows tutorial agents running at vari-

ous levels with various time horizons to tie together data collected on individual stu-

 68

dents across multiple sessions. For example, it could prove useful to know how quick

a student is to anger, or which immediately reachable emotional states are most con-

ducive to learning for a particular student, where that data may have been collected

and stored in an earlier tutorial session by an agent using the same generalize frame

work. All student model data should be tagged with its expected lifespan: step, task,

session, application, or beyond. This enhances the ability of any particular tutorial

agent to perform macro-level adaptation [14] to evolve learning across multiple do-

mains that enhance domain-independent competencies.

5 Conclusions

A generalized framework like GIFT holds significant promise for accelerating scien-

tific and commercial success of ITS. Yet one of the areas in which that acceleration is

most desperately needed, ill-defined domains in simulated environments, are not ad-

dressed in depth by the current approach to GIFT. We suggest that a first step in this

direction would to explore several extensions to the knowledge representations in

GIFT to meet the demands of those environments.

6 Acknowledgements

This research effort was supported in part by contract W911QX-12-C-0149 from the

US Army Research Laboratory. We gratefully acknowledge the interest and encour-

agement from Dr. Bob Sottilare at ARL. In addition, Scott Flanagan of Sophia Speira,

LLC, has provided invaluable understanding of military training practices and do-

mains.

7 References

1. VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring sys-

tems, and other tutoring systems. Educational Psychologist, 46(4), 197-221.

2. Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solv-

ing*. Journal of child psychology and psychiatry, 17(2), 89-100.
3. Minsky, M. (1995). Steps to artificial intelligence. In Luger, G. F., editor, Computation

and Intelligence, Collected Readings, chapter 3, pages 47–90. AAAI, Menlo Park CA,

and MIT Press.

4. Sottilare, B. (2012). Considerations in the development of ontology for a generalized intel-

ligent framework for tutoring. Proceedings of the International Defense and Homeland Se-

curity Simulation Workshop.

5. Kidane, Yared H., and Peter A. Gloor. "Correlating temporal communication patterns of

the Eclipse open source community with performance and creativity." Computational and

mathematical organization theory 13.1 (2007): 17-27.
6. Torrente, Javier, et al. "Game-like simulations for online adaptive learning: A case

study." Learning by Playing. Game-based Education System Design and Development.

Springer Berlin Heidelberg, 2009. 162-173.VanLehn, K. (1990). Mind bugs: the origins of

procedural misconception. MIT press.

 69

7. VanLehn, K. (1990). Mind bugs: the origins of procedural misconception. MIT press.

8. Fournier-Viger, P., Nkambou, R., & Nguifo, E. M. (2010). Building Intelligent Tutoring

Systems for Ill-Defined Domains. In Advances in Intelligent Tutoring Systems (pp. 81-

101). Springer Berlin Heidelberg.

9. Lynch, C., Ashley, K., Aleven, V., & Pinkwart, N. (2006). Defining ill-defined domains; a

literature survey. In Proceedings of the Workshop on Intelligent Tutoring Systems for Ill-

Defined Domains at the 8th International Conference on Intelligent Tutoring Systems (pp.

1-10).

10. Mitrovic, A., & Weerasinghe, A. (2009). Revisiting Ill-Definedness and the Consequences

for ITSs. Artificial Intelligence in Education: Building Learning Systems That Care: from

Knowledge Representation to Affective Modelling, 200, 375.

11. Mott, B., McQuiggan, S., Lee, S., Lee, S. Y., & Lester, J. C. (2006). Narrative-centered

environments for guided exploratory learning. In Proceedings of the AAMAS 2006 Work-

shop on Agent-Based Systems for Human Learning (pp. 22-28).

12. Thomas, J. M., & Young, R. M. (2009, July). Using Task-Based Modeling to Generate

Scaffolding in Narrative-Guided Exploratory Learning Environments. In Proceeding of the

2009 conference on Artificial Intelligence in Education: Building Learning Systems that

Care: From Knowledge Representation to Affective Modeling (pp. 107-114).

13. Lane, H. C., Core, M. G., Gomboc, D., Karnavat, A., & Rosenberg, M. (2007, January).

Intelligent tutoring for interpersonal and intercultural skills. In The Interservice/Industry

Training, Simulation & Education Conference (I/ITSEC)(Vol. 2007, No. 1). National

Training Systems Association.

14. Sottilare, R. A., Goldberg, B. S., Brawner, K. W., & Holden, H. K. (2012, January). A

Modular Framework to Support the Authoring and Assessment of Adaptive Computer-

Based Tutoring Systems (CBTS). In The Interservice/Industry Training, Simulation & Ed-

ucation Conference (I/ITSEC)(Vol. 2012, No. 1). National Training Systems Association.

Authors

James M. Thomas: James M. (Jim) Thomas is a Research Scientist at Soar Technology. His

current work includes intelligent training and assessment systems that aid children on the au-

tism spectrum and guide soldiers to integrate socio-cultural and tactical skills. He received his

Ph.D.degree in Computer Science from North Carolina State University in 2011. His disserta-

tion entitled “Automated Scaffolding of Task-Based Learning in Non-Linear Game Environ-

ments”, explored general mechanisms to generate intelligent tutorial planning within explorato-

ry learning environments. Jim has authored more than a dozen papers in the area of intelligent

tutoring systems, automated planning, and computer games. His graduate studies were sup-

ported by a National Science Foundation Graduate Research Fellowship in Artificial Intelli-

gence. Concurrent with his doctoral studies, Jim developed game-based learning systems de-

signed to improve children’s social skills at the 3-C Institute for Social Development, including

work which was published in the journal Child Development. Jim also benefits from 15 years

of experience in the computer and telecommunications industries, including software develop-

ment, management, and senior marketing management with IBM, BNR and Nortel Networks.

Ajay Divakaran: Ajay Divakaran, PhD is a Technical Manager at SRI International Sarnoff.

He has developed several innovative technologies for multimodal systems for both commercial

and government programs over the past 16 years. He currently leads SRI Sarnoff’s projects on

Modeling and Analysis of Human Behavior for the DARPA SSIM project, ONR Stress Resili-

 70

ency project, Army "Master Trainer" Intelligent Tutoring project among others. He worked at

Mitsubishi Electric Research Labs for ten years where he was the lead inventor of the world’s

first sports highlights playback enabled DVR, as well as a manager overseeing a wide variety of

product applications of machine learning. He was elevated to Fellow of the IEEE in 2011 for

his contributions to multimedia content analysis. He established a sound experimental and

theoretical framework for human perception of action in video sequences, as lead-inventor of

the MPEG-7 video standard motion activity descriptor. He serves on TPC’s of key multimedia

conferences and served as an associate editor of the IEEE transactions on Multimedia from

2007 to 2011 and has two books and over 100 publications to his credit as well as over 40 is-

sued patents. He received his Ph.D. degree in Electrical Engineering from Rensselaer Polytech-
nic Institute in 1993.

Saad Khan: Saad Khan is a Senior Computer Scientist at SRI International with 10 years of

experience developing computer vision algorithms. He has led the design and development of

advanced military training systems that can adapt to both training scenarios and learners’ be-

havior. He serves as PI/ Co-PI and technical lead on programs in multimodal sensing algo-

rithms for immersive training for DARPA, ONR and PMTRASYS. He led the development and

transition of APELL (Automated Performance Evaluation and Lessons Learned) training sys-

tem. APELL is an immersive, interactive, Mixed Reality training system that has been success-

fully deployed at the Marines Camp Pendleton training facility. Prior to joining SRI Sarnoff, Dr.

Khan conducted research on 3D model based object tracking and human activity analysis in the

IARPA VACE program. His work in automated image based localization earned an Honorable

Mention award at the International Conference of Computer Vision 2005. He has authored over

20 papers and has 2 issued patents. His work on multiple view human tracking is one of the

most highly cited works in recent tracking literature. He received his PhD in Computer Science

from University of Central Florida in 2008.

 71

Toward “Hyper-Personalized” Cognitive Tutors

Non-Cognitive Personalization in the Generalized Intelligent

Framework for Tutoring

Stephen E. Fancsali
1
, Steven Ritter

1
, John Stamper

2
, Tristan Nixon

1

1Carnegie Learning, Inc.

437 Grant Street, Suite 918

Pittsburgh, PA 15219, USA

{sfancsali, sritter, tnixon}@carnegielearning.com

2Human-Computer Interaction Institute

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213, USA

john@stamper.org

Abstract. We are starting to integrate Carnegie Learning’s Cognitive Tutor

(CT) into the Army Research Laboratory’s Generalized Intelligent Framework

for Tutoring (GIFT), with the aim of extending the tutoring systems to under-

stand the impact of integrating non-cognitive factors into our tutoring. As part

of this integration, we focus on ways in which non-cognitive factors can be as-

sessed, measured, and/or “detected.” This research provides the groundwork

for an Office of the Secretary of Defense (OSD) Advanced Distributed Learn-

ing (ADL)-funded project on developing a “Hyper-Personalized” Intelligent

Tutor (HPIT). We discuss the integration of the HPIT project with GIFT, high-

lighting several important questions that such integration raises for the GIFT ar-

chitecture and explore several possible resolutions.

Keywords: Cognitive Tutors, intelligent tutoring systems, student modeling, af-

fect, personalization, non-cognitive factors, gaming the system, off-task behav-

ior, Generalized Intelligent Framework for Tutoring, GIFT

1 Introduction

Our goal in developing a “Hyper-Personalized” Intelligent Tutor (HPIT) is to bring

learning systems to the next level of user/student adaptation. In addition to traditional

features of systems like Carnegie Learning’s Cognitive Tutor (CT), HPIT includes

non-cognitive factors to provide a more personalized experience for users of the sys-

tem. In this paper, we discuss features of HPIT and situate the work in the context of

the Generalized Intelligent Framework for Tutoring (GIFT) architecture.

 72

1.1 Cognitive Tutors

Carnegie Learning’s Cognitive Tutor (CT) [1] is an adaptive, computer-based tutoring

system (CBTS) or intelligent tutoring system (ITS) based on the Adaptive Control of

Thought—Rational (ACT-R) theory of cognition [2] used every year by hundreds of

thousands of learners, from middle school students through college undergraduates.

To date, Carnegie Learning’s development of the CT has focused primarily on math-

ematics.

1.2 Generalized Intelligent Framework for Tutoring (GIFT)

The Army Research Laboratory (ARL) is working to develop the Generalized Intelli-

gent Framework for Tutoring (GIFT). The GIFT project aims to provide a “modular

CBTS framework and standards [that] could enhance reuse, support authoring and

optimization of CBTS strategies for learning, and lower the cost and skillset needed

for users to adopt CBTS solutions for military training and education” [3]. Given

substantial efforts in both academia and industry to develop ITSs, integrating aspects

of this work with ARL’s GIFT is important for future development. We briefly pro-

vide an overview of GIFT before describing a particular project that will integrate

architecture for “hyper-personalized” versions of ITSs, like Carnegie Learning’s CT,

with GIFT.

GIFT provides a modular framework to achieve and support three goals or “con-

structs” [3]: (1) affordable, easy authoring of CBTS components, (2) instructional

management for integrating pedagogical best practices, and (3) experimental analysis

of effectiveness.

GIFT’s service-oriented architecture (SOA) currently provides four modules,

among other functional elements, around which CBTSs can be implemented and into

which existing ITSs can be integrated. Three modules are domain-independent: the

Sensor Module, User Module, and Pedagogical Module. The Domain Module con-

tains all domain-specific content, including problems sets, hints, misconceptions, etc.

One functional element outside of “local tutoring processes” in the GIFT archi-

tecture is important for the present discussion: Persistent Learner Models. These

models are intended to “maintain a long term view of the learner’s states, traits, de-

mographics, preference, and historical data (e.g., survey results, performance, compe-

tencies)” [3]. As we review several key, non-cognitive factors upon which we seek to

base a “hyper-personalized” CT, the importance of data intended to be tracked by

Persistent Learner Models will be clear. However, the notion of “persistence” for this

data becomes less clear.

2 Non-Cognitive Factors

While the CT and other ITSs adapt content presented to students based on cognitive

factors such as skill mastery, there are many other (cognitive and non-cognitive) fac-

tors for which the student learning experience might be adapted and personalized.

We present several examples of recent research focusing on the impact of non-

cognitive factors on student learning in ITSs.

 73

2.1 Gaming the System and Off-Task Behavior

A wide variety of behaviors in an ITS or CBTS like CT may be associated with learn-

ing. Two specific behaviors that have been widely studied in the recent literature

include “gaming the system” behavior and off-task behavior [4] [5]. This research

has not only studied the association of these behaviors with learning but has also led

to the development of software “detectors” of such behavior from ITS log data.

Sometimes students attempt to advance through material in ITSs like the CT

without actually learning the content and developing mastery of appropriate skills.

Such behavior is generally referred to as “gaming the system.” Examples of such

behavior include rapid or systematic guessing and “hint-abuse.” “Hint-abuse” refers

to repeated student hint requests, sometimes until a final or “bottom-out” hint (essen-

tially) provides the answer to a problem or problem step [10].

Software “detectors” of gaming the system behavior have been developed (e.g.,

[7]) and correlated with field-observations of student behavior. Such software detec-

tors rely on various features that are “distilled” from CT log files [8]. Studies find an

association [4] [9] [10] and evidence for a causal link [11] [12] between gaming the

system behavior and decreased student learning. Similar software has also been de-

veloped, and validated via field-observations, to detect off-task behavior [5].

Other types of behavior, of course, may also be important for learning in CBTSs

and ITSs. While some behaviors may be “sensed” via physical, tactile, and/or physio-

logical sensors, we emphasize that state-of-the-art research attempts to detect different

types of behavior from logs generated by CBTSs and ITSs.

2.2 Affect

Building on success in developing detectors of student behavior, current research

seeks to detect student affect (e.g., boredom, engaged concentration, frustration, etc.)

without sensors (i.e., without physical, tactile, and/or physiological sensors) [13].

Such detectors have also been validated by field-observations of students using ITS in

the classroom. Further, these detectors have been successfully deployed to predict

student learning via standardized test scores [14].

While student affect and behavior might also be physically “sensed”, inferred, or

measured via survey instruments (e.g., mood via survey [15]), data-driven detection

of student affect and behavior is a promising approach to achieve the GIFT design

goal of supporting “low-cost, unobtrusive (passive) methods… to inform models to

classify (in near real-time) the learner’s states (e.g., cognitive and affective)” [3].

2.3 Preferences

Carnegie Learning’s middle school mathematics CT product, MATHia, allows stu-

dents to set preferences for various interest areas (e.g., sports, art) and probabilistical-

ly tailors problem presentation based on those preferences. On-going research aims to

determine if and how presenting students with problems related to their preference

areas is associated with engagement and benefits student learning (e.g., [16-17]). Oth-

 74

er student preferences might be ascertained via surveys, configuration settings, or

inferred from data, at different levels of granularity and time scales.

2.4 Personality and Other Learner Characteristics

Other characteristics of learners may prove important for learning. We consider two

prominent examples that are being considered as we develop HPIT. Investigating

other learner characteristics is also a topic for future research.

Grit.

Grit [18-19] is defined as the tendency to persist in tasks over the long term, when

reaching the goal is far off in the future. Duckworth et al. [18] found that grit, meas-

ured by a survey instrument [19], predicted retention among cadets at the United

States Military Academy at West Point, educational attainment among adults, and

advancement to the final round among contestants in the Scripps National Spelling

Bee.

Educational environments like CT are able to adjust the rate at which difficulty of

activities increases. Students high in grit may, for example, benefit more from rapid

increases in the difficulty of course material compared to students low in grit, regard-

less of knowledge-levels.

Motivation and Goals.

Students’ motivation and goals are likely to be important for learner adaptation. Re-

cent research [20] considers fine-grained assessment, via frequent surveys (occurring

every few minutes) embedded within CT, of student motivation and goal orientation

to better understand models self-regulated learning. Elliot’s framework for achieve-

ment goals provides for two dimensions, definition (mastery vs. performance) and

valence (approach vs. avoidance), along which goals are oriented [20-22].

Particular problems or hints (or ways of providing hints) might, for example, be

best suited to students with a mastery avoidance goal orientation that seek to avoid

failure, and so on. In addition to ascertaining the influence of goals and motivation on

learning, determining whether students’ motivation and goals (at various levels of

granularity) are relatively static or dynamic through a course, and possibly influenced

by students’ experience in a course, remains a topic of active research [20].

3 Hyper-Personalizing Cognitive Tutors

One particularly important aspect of CTs from an architectural perspective is that they

are driven by user inputs (called “transactions” [23]). From a system perspective, an

update to the learner model happens only when the student takes some action within

the system (e.g., attempting to answer a question or asking for a hint). Other student-

initiated inputs might include, for example, student ratings of whether particular prob-

lems are interesting (e.g., an ever-present 5-star ranking system attached to each prob-

lem). Student-initiated inputs range in time from the nearly continuous to being sepa-

rated by significant amounts of time.

 75

In a more general system like GIFT, updates to the student model happen, not on-

ly at different timescales, but can also be initiated by actors (or factors) other than the

learner. Examples include: acquiring data to update the student model through sur-

veys given to the student at times determined by the system (e.g., only at course-

beginning and end vs. periodically between problems or units), through real-time

sensors (e.g., an eye-tracker), through student-determined inputs, etc. Furthermore, in

some learning environments, the student model might be updated by factors linked to

the passage of time (e.g., inferring that a skill has been “forgotten” because the stu-

dent does not use a tutor for a substantial amount of time or updating students’

knowledge state after a chemical reaction occurs following some time-lapse in a

simulation-based chemistry tutor). The mode and frequency of data collection, in part,

determine the kinds of pedagogical moves that the ITS can take.

The ADL-funded Hyper-Personalized Intelligent Tutor (HPIT) project seeks to

develop a modular, plug-in-like architecture using various data collection and pro-

cessing elements to inform CT’s provision of problems, feedback, hints, etc. Each

factor (whether cognitive or non-cognitive) may contribute to varying degrees to the

decision-making process, as data are collected and inferences drawn about learner

“state.” A plug-in architecture allows for “voting” schemes to drive the personaliza-

tion process (e.g., perhaps two non-cognitive factors and one cognitive factor are all

equally weighted, or not). Methods will be developed to resolve conflicts (i.e., break

“ties”) when multiple recommendations are appropriate given a student’s “state.”

While cognitive factors are crucial for adapting educational content for disparate

users, HPIT’s primary innovation is the creation of a platform and framework for

adapting content based on non-cognitive factors. To do so, HPIT will draw on data

from software detectors, surveys, and possibly physical sensors. Perhaps more im-

portant from an architectural perspective, however, is the fact that the measurement,

inference, or assessment of various cognitive and non-cognitive factors may occur on

different time scales and at different levels of granularity.

For example, if a student is both bored (as, for example, inferred from a software

detector applied to real-time log data) and uninterested in material currently being

presented (as inferred from survey results), material similar in difficulty, but provid-

ing examples better suited to student preferences, might be presented. However, a

different strategy might be required if we lack data about their interests. Adapting

pedagogical strategies based on data that is currently available is a virtue of the flexi-

bility of the HPIT architecture we are developing.

4 Implications for GIFT Architecture

The GIFT architecture and recent research (e.g., [15]) focuses on using physical sen-

sors and surveys to gather information about a learner’s non-cognitive state. The

HPIT framework builds on work to infer/measure student state with surveys and

software detectors that use data from tutor logs. These software detectors rely on data

generated by the ITS following student-initiated input to the ITS. We discuss several

implications for the GIFT architecture and the integration of existing ITSs into GIFT.

 76

4.1 Surveys

In GIFT, Persistent Learner Models store survey results and communicate with the

User/Learner Module via the SOA. However, HPIT requires that surveys be deploy-

able at nearly any point in the learning experience, rather than simply before and after

a “chunk” (e.g., unit) of course material. Furthermore, surveys/polls might be con-

ducted that assess momentary characteristics of the student experience, rather than the

persistent state of a student
6
.

Some survey-like elements may be deployed nearly continuously. Thus, it might

be initially attractive to conceptualize surveys are as a particular type of sensor.

However, the processing of the type of survey data we have in mind seems fundamen-

tally different than processing sensor data (e.g., an eye-tracker). Consider, for exam-

ple, the previously noted five-star rating system for problems. While the rating sys-

tem may be deployed for near-continuous collection of data, frequently students may

not choose to rate many problems. Perhaps we find that a student who rates problems

infrequently assigns two particular problems a 1-star (low) rating. Given the lack of

input from this student, these data may be especially salient and require special con-

sideration compared to a student who frequently rates problems, and with high varia-

bility. Such possibilities seem to suggest that we treat discrete survey data (even with

high-polling rates) differently than sensors that continuously provide data.

4.2 (Sensor-Free) Detectors in the GIFT Architecture

For purposes of software implementation, detectors are essentially sensors (i.e., both

process, filter, and/or aggregate streams of data to make inferences about student

state); “detector processing” would be nearly identical to “sensor processing” within

the Sensor Module. However, the input characteristics of software detectors are much

different than those of sensors in the GIFT architecture, as the notion of a sensor with-

in GIFT, to date, focuses on physical sensors. Detectors generally rely on stu-

dent/user-initiated input mediated by the learning environment, but detectors might

also be developed that do not rely on user-initiated input (e.g., a detector of “forget-

ting” based on time-lapse in usage of the ITS).

One possible resolution would have the Domain Module (and/or the Tutor-User

Interface) as input to the Sensors element, so that software-based detectors that rely

on tutor log data are also conceptualized as Sensors. This proposal may stretch the

notion of Sensors too far. In response, one might include a new type of Detec-

tor/Analysis Module that would take Domain Module (and possibly Pedagogical

Module or Tutor-User Interface) data as input and provide information to the User

Module about learners’ affective and cognitive states via software detectors. This

achieves the goal of keeping the relatively domain-independent detectors outside of

the Domain Module. This requires that Domain Module output is sufficiently rich for

use by detectors; as currently conceptualized, this is not clear.

6
 The HPIT architecture maintains such flexibility so that the investigator is free

to make (or not make) distinctions about persistent versus non-persistent student char-

acteristics (and concomitant timing decisions about assessment, measurement, or

detection).

 77

5 Discussion

Overall, we suggest that the GIFT architecture is well-served by considering the con-

sequences of integrating a broader range of input and output relationships among its

component modules (or possibly new types of modules) and other functional elements,

including considerations of the presence, timing, granularity, and content of data

passed between components.

Current research provides for data-driven means to use CT (and other CBTS)

logs to classify and “detect” student behavior and affect without physical sensors,

whether transactions and inputs are student-initiated or system-initiated. Integrating

capabilities necessary for HPIT will be a fruitful extension of GIFT.

Furthermore, detectors rely on data from the ITS to determine whether students

are off-task, gaming, bored, frustrated, etc. Such detectors require relatively rich log

data and would not be served by the impoverished (i.e., abstract) assessment catego-

ries of “above standard,” “below standard,” etc., provided by the Domain Module.

This suggests that detectors are a part of the Domain Module, but they are also (rela-

tively) domain independent. Thus, it is not clear that they should be included in the

Domain Module. Requiring detectors be a part of the Domain Module would also

incur costs in terms of reusability and modularity. Alternatively, richer data might be

provided to an enhanced Learner Module that subsumes (aspects of) the Sensor Mod-

ule and our proposed detectors (i.e., the Detector/Analysis Module) to better infer

characteristics of a learner’s state. Further, other open questions remain as to the

proper placement of other components of CTs within the GIFT architecture.

6 References

1. Ritter, S., Anderson, J.R., Koedinger, K.R., Corbett, A.T.: Cognitive Tutor: Applied Re-

search in Mathematics Education. Psychonomic Bulleting & Review 14, 249-255 (2007)
2. Anderson, J.R.: Rules of the Mind. Erlbaum, Hillsdale, NJ (1993)
3. Sottilare, R.A., Brawner, K.W., Goldberg, B.S., Holden, H.K.: The Generalized Intelligent

Framework for Tutoring (GIFT). (2012), http://www.gifttutoring.org/

4. Baker, R. S., Corbett, A. T., Koedinger, K .R., & Wagner, A. Z.: Off-Task Behavior in the

Cognitive Tutor Classroom: When Students “Game the System”. In: Proceedings of ACM

CHI 2004: Computer-Human Interaction, pp. 383-390 (2004)

5. Baker, R.S.J.d.: Modeling and Understanding Students’ Off- Task Behavior in Intelligent

Tutoring Systems. In: Proceedings of the 2007 Conference on Human Factors in Compu-

ting Systems, pp. 1059-1068 (2007)

6. Aleven, V., & Koedinger, K. R.: Limitations of Student Control: Do Students Know When

They Need Help? In: Proceedings of the 5th International Conference on Intelligent Tutor-

ing Systems, pp. 292-303 (2000)

7. Baker, R.S.J.d., de Carvalho, A. M. J. A.: Labeling Student Behavior Faster and More Pre-

cisely with Text Replays. In: Proceedings of the 1st International Conference on Educa-

tional Data Mining, pp. 38-47 (2008)
8. Baker, R.S.J.d., Corbett, A.T., Roll, I., Koedinger, K.R.: Developing a Generalizable De-

tector of When Students Game the System. User Modeling & User-Adapted Interaction 18,

287-314 (2008)

 78

9. Walonoski, J.A., Heffernan, N.T.: Detection and Analysis of Off-Task Behavior in Intelli-

gent Tutoring Systems. In: Proceedings of the 8th International Conference on Intelligent

Tutoring Systems, pp. 382-391 (2006)

10. Cocea, M., Hershkovitz, A., Baker, R.S.J.d.: The Impact of Off-Task and Gaming Behav-

ior on Learning: Immediate or Aggregate? In: Proceedings of the 14th International Con-

ference on Artificial Intelligence in Education, pp. 507-514 (2009)

11. Fancsali, S.E.: Variable Construction and Causal Discovery for Cognitive Tutor Log Data:

Initial Results. In: Proceedings of the Fifth International Conference on Educational Data

Mining, pp. 238-239 (2012)
12. Fancsali, S.E.: Constructing Variables that Support Causal Inference. Ph.D. Thesis, De-

partment of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA (2013)

13. Baker, R.S.J.d., Gowda, S.M., Wixon, M., Kalka, J., Wagner, A.Z., Salvi, A., Aleven, V.,

Kusbit, G., Ocumpaugh, J., Rossi, L.: Sensor-free Automated Detection of Affect in a

Cognitive Tutor for Algebra. In: Proceedings of the 5th International Conference on Edu-

cational Data Mining, pp. 126-133 (2012)
14. Pardos, Z.A., Baker, R.S.J.d., San Pedro, M.O.C.Z., Gowda, S.M., Gowda, S.M.: Affective

States and State Tests: Investigating How Affect Throughout the School Year Predicts End

of Year Learning Outcomes. In: Proceedings of the 3rd International Conference on Learn-

ing Analytics and Knowledge (2013)
15. Sottilare, R., Proctor, M.: Passively Classifying Student Mood and Performance within In-

telligent Tutors. Educational Technology & Society 15, 101-114 (2012)

16. Walkington, C., Sherman, M.: Using Adaptive Learning Technologies to Personalize In-

struction: The Impact of Interest-Based Scenarios on Performance in Algebra. In: Proceed-

ings of the 10th International Conference of the Learning Sciences, pp. 80-87 (2012)
17. Walkington, C.: Using Learning Technologies to Personalize Instruction to Student Inter-

ests: The Impact of Relevant Contexts on Performance and Learning Outcomes. Journal of

Educational Psychology (forthcoming)

18. Duckworth, A.L., Peterson, C., Matthews, M.D., Kelly, D.R.: Grit: Perseverance and Pas-

sion for Long-Term Goals. Journal of Personality and Social Psychology 92, 1087-1101

(2007)

19. Duckworth, A.L., Quinn, P.D.: Development and Validation of the Short Grit Scales (Grit-

S). Journal of Personality Assessment 91, 166-174 (2009)

20. Bernacki, M. L., Nokes-Malach, T.J., Aleven, V.: Fine-Grained Assessment of Motivation

Over Long Periods of Learning with an Intelligent Tutoring System: Methodology, Ad-

vantages, and Preliminary Results. In: Azevedo, R., Aleven, V. (eds.) International Hand-

book of Metacognition and Learning Technologies. Berlin: Springer (forthcoming)
21. Elliot, A. J., & McGregor, H. A.: A 2 X 2 Achievement Goal Framework. Journal of Per-

sonality and Social Psychology 80, 501-519 (2001)

22. Elliot, A. J., & Murayama, K.: On the Measurement of Achievement Goals: Critique, Illus-

tration, and Application. Journal of Educational Psychology 100, 613-628 (2008)
23. Koedinger, K.R., Baker, R.S.J.d., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.:

A Data Repository for the EDM Community: The PSLC DataShop. In: Romero, C., Ven-

tura, S., Pechenizkiy, M., Baker, R.S.J.d. (eds.) Handbook of Educational Data Mining, pp.
43-55 Boca Raton, FL: CRC Press (2011)

 79

Authors

Stephen E. Fancsali is a Research Scientist at Carnegie Learning, Inc. He received a Ph.D. in

Logic, Computation, and Methodology from the Philosophy Department at Carnegie Mellon

University in May 2013. His doctoral research centered on the construction of variables from

fine-grained data (e.g., intelligent tutoring system log files) to support causal inference and

discovery from observational data sets. At Carnegie Learning, he focuses on a variety of issues

in educational data mining, including student modeling, providing interpretable ways to quanti-

fy improvements in cognitive models and other tutoring system components, and statistical and

causal modeling of student affect, behavior, and other phenomena as they relate to learning and
other education outcomes, especially in intelligent tutoring systems.

Steven Ritter is Co-Founder and Chief Scientist at Carnegie Learning, Inc. He received a Ph.D.
in Psychology from Carnegie Mellon University.

John Stamper is Technical Director of the Pittsburgh Science of Learning Center (PSLC) and a

faculty member at the Human-Computer Interaction Institute at Carnegie Mellon University.

He received a Ph.D. in Information Technology from the University of North Carolina at Char-

lotte.

Tristan Nixon is a Research Programmer at Carnegie Learning, Inc. He earned a B.S. in Com-
puter Science from the University of Toronto.

 80

Using GIFT to Support an Empirical Study on the

Impact of the Self-Reference Effect on Learning

Anne M. Sinatra, Ph.D.

Army Research Laboratory/Oak Ridge Associated Universities

anne.m.sinatra.ctr@us.army.mil

Abstract. A study is reported in which participants gained experience with de-

ductive reasoning and learned how to complete logic grid puzzles through a

computerized tutorial. The names included in the clues and content of the puz-

zle varied by condition. The names present throughout the learning experience

were either the participant’s own name, and the names of two friends; the

names of characters from a popular movie/book series (Harry Potter); or names

that were expected to have no relationship to the individual participant (which

served as a baseline). The experiment was administered using the Generalized

Intelligent Framework for Tutoring (GIFT). GIFT was used to provide surveys,

open the experimental programs in PowerPoint, open external web-sites, syn-

chronize a Q-sensor, and extract experimental data. The current paper details

the study that was conducted, discusses the benefits of using GIFT, and offers

recommendations for future improvements to GIFT.

1 Introduction

The Generalized Intelligent Framework for Tutoring (GIFT) provides an efficient and

cost effective way to run a study (Sottilare, Brawner, Goldberg, & Holden, 2012). In

Psychology research, in-person experiments usually require the effort of research

assistants who engage in opening and closing computer windows and guiding partici-

pants through the experimental session. GIFT provides an opportunity to automate

this process, and requires a minimal knowledge of programming, which makes it an

ideal tool for students and researchers in the field of Psychology. GIFT was utilized in

the current pilot study, which is investigating the impact of the self-reference effect

on learning to use deductive reasoning to solve logic grid puzzles.

1.1 The Self-Reference Effect and Tutoring

Thinking of the self in relation to a topic can have a positive impact on learning and

retention. This finding has been consistently found in Cognitive Psychology research,

and is known as the self-reference effect (Symons & Johnson, 1997). In addition,

research has suggested that linking information to a popular fictional character (e.g.,

mailto:anne.m.sinatra.ctr@us.army.mil

 81

Harry Potter) can also draw an individual’s attention when they are engaged in a

difficult task, and can result in similar benefits to the self-reference effect (Lombardo,

Barnes, Wheelwright, & Baron-Cohen, 2007; Sinatra, Sims, Najle, & Chin, 2011).

The self-reference effect could potentially be utilized to provide benefits in tutoring

and learning. Moreno and Mayer (2000) examined the impact of a participant being

taught science lessons in a manner consistent with first person speech (self-reference),

or in the third person. No difference was found in regard to knowledge gained from

the lessons, however, when asked to apply the knowledge in a new and creative way,

those that received the first person instruction demonstrated better performance. This

suggests that relating information to the self may result in a “deeper” learning or un-

derstanding, which allows the individual to easily apply the information in new situa-

tions.

It has been suggested that deep learning should be a goal in current instruction

(Chow, 2010). This is consistent with findings that including topics of interest (e.g.,

familiar foods, names of friends) when teaching math can have a positive impact on

learning outcomes (Anand & Ross, 1987; Ku & Sullivan, 2002). Many of the domains

(e.g., math, science) that have been examined in the literature are “well-defined” and

do not transfer skills to additional tasks. There has not been a focus on deductive rea-

soning or teaching logic, which is a highly transferable skill. Logic grid puzzles are

useful learning tools because they allow an individual to practice deductive reasoning

by solving the puzzle. In these puzzles, individuals are provided with clues, a grid,

and a story. The story sets up the puzzle, the clues provide information that assists the

individual in narrowing down or deducing the correct answers and the grid provides a

work space to figure out the puzzle. It has been suggested that these puzzles can be

helpful in instruction, as they require the individual to think deeply about the clues

and have a full understanding of them in order to solve the puzzle (McDonald, 2007).

After practicing deductive reasoning with these puzzles, the skill can then potentially

be transferred and applied in many other domains and subject areas.

1.2 The Current Study

The current study sets out to examine the self-reference effect in the domain of deduc-

tive reasoning, by teaching individuals how to complete logic grid puzzles. It is a pilot

study, which will later be developed into a large scale study. During the learning

phase of the study, there were three different conditions: Self-Reference, Popular

Culture, and Generic. The study was administered on a computer using GIFT 2.5.

The interactive logic puzzle tutorial was developed using Microsoft PowerPoint 2007

and Visual Basic for Applications (VBA). In the Self-Reference condition, partici-

pants entered their own name and the names of two of their close friends into the

program, in the Popular Culture condition, the participant was instructed to enter

names from the Harry Potter series (“Harry”, “Ron”, and “Hermione”) into the pro-

gram, in the Generic condition, participants were instructed to enter names which

were not expected to be their own (“Colby”, “Russell”, and “Denise”) into the pro-

gram. The program then used the entered names throughout the tutorial as part of the

clues and the puzzle with which the participants were being taught. Therefore, the

 82

participants were actively working with the names throughout their time learning the

skill.

After completing the tutorial, participants were asked to recall anything that they

could about the content of the puzzle, answer multiple-choice questions about what

they learned, answer applied clue questions in which they were asked to draw conclu-

sions based on a story and an individual clue, and complete two additional logic puz-

zles (one at the same difficulty level as the one in the tutorial, and one more difficult).

These different assessments allowed for measures of retention of the learned content,

ability to apply the knowledge, and ability to transfer/apply the knowledge in a new

situation.

It was hypothesized that there would be a pattern of results such that individuals

in the Self-Reference condition would perform better on all assessments than that in

the Popular Culture and Generic conditions, and that the Popular Culture condition

would perform better on all assessments than the Generic condition. It was also ex-

pected that ratings of self-efficacy and logic grid puzzle experience would increase

after the tutorial.

1.3 GIFT and the Current Study

The current study required participants to use a computer, and answer survey ques-

tions before and after PowerPoint Tutorials and PowerPoint logic grid puzzles. Due to

the capabilities of GIFT 2.5 to provide survey authoring and administering, it was an

ideal choice for the development of the study. As GIFT has the capability of opening

and closing programs (such as PowerPoint), and presenting surveys and instructions

in specific orders, it is a highly efficient way to guide participants through a learning

environment and a study, without much effort from research assistants.

In Psychology research there are often many different surveys that are adminis-

tered to participants. An advantage of GIFT is that the Survey Authoring System pro-

vides a free and easy to use tool in which to create surveys. A further advantage is

that it does not require the individual to be online when answering the survey.

2 Method

2.1 Participants

In the current pilot study, there were 18 participants recruited from a research organi-

zation, and a University. Participants did not receive any compensation for their par-

ticipation. The sample was 55.6% male (10 participants) and 44.4% female (8 partici-

pants). Reported participant ages ranged between 18 years and 51 years (M = 28.8

years, SD = 9.2 years). As there were 3 conditions, there were 6 participants in each

condition.

 83

2.2 Design

The current study employed a between subjects design. The independent variable was

the types of names included in the tutorial during the learning phase of the study.

There were three conditions: Self-Reference, Popular Culture, and Generic. The de-

pendent variables were ratings of self-efficacy before and after the tutorial, ratings of

logic grid puzzle experience after the tutorial, performance on a multiple-choice quiz

about the content of the tutorial, performance on applied logic puzzle questions

(which asked the participants to apply the skill they learned in a new situation), per-

formance on a logic puzzle of the same difficulty as the tutorial, and on one that was

more difficult.

2.3 Apparatus

Laptop and GIFT. The study was conducted on a laptop that was on a docking sta-

tion, and connected to a monitor. GIFT 2.5 and PowerPoint 2007 were installed on the

laptop, and a GIFT course was created for each condition of the experiment.

Q-sensor. Participants wore a Q-sensor on their left wrists. It is a small band approx-

imately the size of a watch, which measures electrodermal activity (EDA).

2.4 Procedure

Upon arriving, participants were given an informed consent form, and the opportunity

to ask questions. For this pilot study, participation occurred individually. After sign-

ing the form, participants were randomly assigned to a condition. The experimenter

launched ActiveMQ and the GIFT Monitor on the computer. Participants were then

fitted with the Q-sensor on their left wrists. The experimenter clicked “Launch all

Modules” and then proceeded to synchronize the Q-sensor with the computer. If syn-

chronization was unsuccessful after three tries, the experimenter edited the GIFT

sensor configuration file and changed the sensor to the Self Assessment Monitor as a

placeholder (the data from it was not used). Next, the “Launch Tutor Window” button

was clicked, and the experiment was launched in Google Chrome. The experimenter

created a new UserID for the participant, and then logged in. The correct condition

was then selected from the available courses. The participants were then instructed

that they should interact with the computer and let the experimenter know if they had

any questions.

Participants were first asked to answer a few brief demographics questions (e.g.,

age/gender) and filled out Compeau and Higgins’ (1995) Self Efficacy Questionnaire

(SEQ) with regard to their beliefs in their ability to solve a logic grid puzzle in a com-

puter program and rated their logic grid puzzle experience. They then began the Tuto-

rial. Depending on the condition they were in, they received different instructions in

regard to the names to enter (their own name and the name of friends, Harry Potter

related names, or General names). They then worked through the tutorial that walked

them through completing a logic grid puzzle and explained the different types of clues.

 84

After completing the tutorial, they filled in the SEQ again, rated their experience

again, and were asked to report any information they remembered from the content of

the puzzle. Next, they answered 20 multiple choice questions about the material they

learned about in the tutorial. Then, they answered 12 applied clue questions, which

provided a story and an individual clue, then asked the participants to select all of the

conclusions that could be drawn from that clue. Next, participants had 5 minutes in

which to complete an interactive PowerPoint logic grid puzzle at the same level of

difficulty as the one that they worked through in the tutorial, and 10 minutes to com-

plete a more difficult puzzle. Finally, they were directed to an external web-site to

complete a personality test. They wrote their scores on a piece of paper, and entered

them back into GIFT. Afterward, they were given a debriefing form and the study was

explained to them.

2.5 GIFT and the Procedure

The Survey Authoring System in GIFT was used to collect survey answers from the

participants. While it was a fairly easy to use tool to enter the questions initially, there

was some difficulty in the export function. Instead of exporting all the entered ques-

tions, there appeared to also be previously deleted questions within the files that were

exported. This made it impossible to simply import the questions into an instance of

GIFT on an additional computer (in order to have an identical experiment on more

than one computer). As a work around, the questions had to be manually typed in and

added to each additional computer that was used for the study.

A course file was generated using the Course Authoring Tool. The tool was also

fairly easy to use. It provided the ability to author messages that the participant would

see between surveys and training applications, determine the specific surveys and

PowerPoint applications that would be run, and the order in which they would run.

Further, it could send participants to an external web-site; however, while the partici-

pants were on the site there was no ability to keep instructions on the screen. Partici-

pants only saw a “Continue” button at the bottom of the screen – which may have led

to some participants in the current study clicking “Continue” before filling out the

surveys they needed to on the web-site. A solution to this was employed by creating a

PowerPoint to explain what the participants would be doing on the web-site. However,

having the ability to author comments that are seen by the participant while they are

on the external web-site would be beneficial.

3 Results

3.1 Pilot Study Results

Performance Results. A series of One Way ANOVAs were run for the percentages

correct on the multiple choice questions [F(2,15) = .389, p = .684], applied clue ques-

tions [F(2,15) = 2.061, p = .162], the easier assessment logic puzzle [F(2,15) = 3.424,

p = .060] and the more difficult logic puzzle [F(2,15) = 1.080, p = .365]. However,

 85

there were no significant differences found between conditions for any of the assess-

ments. See Table 1 for the means and standard deviations for each condition and DV.

 Self-Reference Popular Culture Generic

Multiple Choice M = 96.67%,

SD = 2.58%

M = 95.83%,

SD = 6.65%

M = 94.17%,

SD = 4.92%

Applied Clue M = 80.55%,

SD = 16.38%

M = 87.50%,

SD = 11.48%

M = 69.44%,

SD = 18.00%

Easy Logic Puzzle M = 51.95%,

SD = 37.47%

M = 93.21%,

SD = 16.63%

M = 74.07%,

SD = 23.89%

Difficult Logic

Puzzle

M = 69.78%,

SD = 24.61%

M = 76.89%,

SD = 16.49%

M = 86.89%,

SD = 19.31%
Table 5. Means and Standard Deviations for Performance Variables for each condition

Logic Grid Puzzle Experience. A 3 (Condition) x 2 (Time of Logic Puzzle Experi-

ence) Mixed ANOVA was run comparing the conditions and participant’s self rating

of their logic grid puzzle experience. Overall, participants indicated that they had

significantly higher logic grid puzzle experience after the tutorial (M = 3.78, SD =

1.215) than before (M = 2.00, SD = 1.085), F(1,15) = 28.764, p<.001. However, there

was no significant interaction between condition and logic grid puzzle experience

ratings, F(2, 15) = .365, p = .700.

Self Efficacy Questionnaire. A 3 (Condition) x 2 (Time of SEQ score) Mixed

ANOVA was run comparing the conditions and the scores on the logic grid puzzle

self-efficacy questionnaire. There were significantly higher scores of self-efficacy

after tutoring regardless of condition (M = 5.583, SD = .6564) than before tutoring (M

= 5.117, SD = .7618), F(1,15) = 9.037, p = .009. However, the condition did not seem

to matter, as there was not a significant interaction between condition and time of

SEQ score, F(2,15) = .661, p = .531.

3.2 Using GIFT to extract the information and results

The Event Reporting Tool was used to export survey data from GIFT. However, in

the initial GIFT 2.5 version, data from only one participant would export at a time.

These files were manually copied and pasted together into one Excel file for analysis.

An updated version of GIFT 2.5 offered the ability to export multiple participant files

at once. However, if using multiple instances of GIFT on separate computers, it is

important to name the questions identically. Combining the outputs of questions that

have different names in the survey system may result in the data for those columns

not being reported for certain participants.

 86

4 Discussion

4.1 Pilot Results Discussion

The results indicate that the tutorial was successful in teaching participants the skill of

completing logic grid puzzles, and made them feel more confident in their abilities

than before tutoring. However, the manipulation of the names present in the puzzle

during tutoring did not impact performance. As this is a small pilot study, it likely did

not have enough power to find results. Currently there are only 6 participants in each

condition. The full study is expected to have at least 40 participants in each condition.

Individual differences in the ability of individuals to solve the puzzles and the wide

variety of ages may also have played a role in the results. Based on the experience

with this pilot study, some changes have been made to the full-scale study. First, a

pre-test of applied clue questions will be given. Secondly, as not all the participants

were able to finish the easier logic puzzle in 5 minutes, the amount of time given for

this task will be increased. It is also possible that the current “tests” are not sensitive

enough to differences. Further, the sample population for the pilot is different than the

intended population for the full-scale study (college students), therefore, those with

less research and logic training may show different results.

4.2 GIFT Discussion and Recommendations

GIFT was extremely useful in the current study. During this pilot, participants were

able to easily understand and interact with the courses developed with GIFT. All of

the survey data was recorded and able to be cleaned up for analysis. One improve-

ment that could be made would be to change the UserID system. Currently, it is set up

such that UserIDs are created one by one and in order. It would be beneficial to be

able to assign a specific participant number as the User ID in order to reduce confu-

sion when exporting the results (e.g. “P10” rather than “1”). Further, improvements

could be made to the ability to launch an external web-site. Currently, there is no

ability to provide on-screen directions to individuals while they are on the page.

While the Survey Authoring System is useful, it could be greatly improved by having

a more reliable import/export option for questions and entire surveys. By doing so, it

would be easier to set up identical instances of GIFT on multiple computers.

Overall, GIFT is a useful, cost effective tool which is an asset in running a study.

It has a wide variety of helpful functions, and with each release the improvements will

likely make it even more valuable to researchers who adopt it.

5 References

1. Anand, P.G., & Ross, S.M. (1987). Using computer-assisted instruction to personalize

arithmetic for elementary school children. Journal of Educational Psychology, 79 (1), 72 –

78.

2. Compeau, D.R., & Higgins, C.A. (1995). Computer self-efficacy: Development of a meas-

ure and initial test. MIS Quarterly, 19 (2), 189 – 211.

 87

3. Chow B. (October 6th, 2010). The quest for deeper learning. Education Week, Retrieved

from http://www.hewlett.org/newsroom/quest-deeper-learning

4. Ku, H-Y, & Sullivan, H.J. (2002). Student performance and attitudes using personalized

mathematics instruction. ETR&D, 50 (1), 21 – 34.

5. Lombardo, M.V., Barnes, J.L., Wheelwright, S.J., & Baron-Cohen, S. (2007). Self-

referential cognition and empathy in autism. PLOS one, 2 (9), e883.

6. McDonald, K. (2007). Teaching L2 vocabulary through logic puzzles. Estudios de

Linguistica Inglesa Aplicada, 7, 149 – 163.

7. Moreno, R., & Mayer, R.E. (2000). Engaging students in active learning: The case for per-

sonalized multimedia messages: Journal of Educational Psychology, 92 (4), 724 – 733.

8. Sinatra, A.M., Sims, V.K., Najle, M.B., & Chin, M.G. (2011, September). An examination

of the impact of synthetic speech on unattended recall in a dichotic listening task. Proceed-

ings of the Human Factors and Ergonomics Society, 55, 1245 – 1249.

9. Sottilare, R.A., Brawner, K.W., Goldberg, B.S., & Holden, H.K. (2012). The Generalized

Intelligent Framework for Tutoring (GIFT). Orlando, FL: U.S Army Research Laboratory

– Human Research & Engineering Directorate (ARL-HRED).

10. Symons, C.S., & Johnson, B.T. (1997). The self-reference effect in memory: A meta-

analysis. Psychological Bulletin, 121 (3), 371 – 394.

6 Acknowledgment

Research was sponsored by the Army Research Laboratory and was accomplished

under Cooperative Agreement Number W911NF-12-2-0019. The views and conclu-

sions contained in this document are those of the author and should not be interpreted

as representing the official policies, either expressed or implied, of the Army Re-

search Laboratory or the U.S. Government. The U.S. Government is authorized to

reproduce and distribute reprints for Government purposes notwithstanding any copy-

right notation herein.

Authors

Anne M. Sinatra: Anne M. Sinatra, Ph.D. is an Oak Ridge Associated Universities Post Doc-

toral Fellow in the Learning in Intelligent Tutoring Environments (LITE) Lab at the U.S. Army

Research Laboratory’s (ARL) Simulation and Training Technology Center (STTC) in Orlando,

FL. The focus of her research is in cognitive and human factors psychology. She has specific

interest in how information relating to the self and about those that one is familiar with can aid

in memory, recall, and tutoring. Her dissertation research evaluated the impact of using degrad-

ed speech and a familiar story on attention/recall in a dichotic listening task. Prior to becoming

a Post Doc, Dr. Sinatra was a Graduate Research Associate with the University of Central Flor-

ida’s Applied Cognition and Technology (ACAT) Lab, and taught a variety of undergraduate

Psychology courses. Dr. Sinatra received her Ph.D. and M.A. in Applied Experimental and

Human Factors Psychology, as well as her B.S. in Psychology from the University of Central

Florida.

http://www.hewlett.org/newsroom/quest-deeper-learning

 88

Detection and Transition Analysis of Engagement and

Affect in a Simulation-based Combat Medic Training

Environment

Jeanine A. DeFalco
1
, Ryan S.J.d.Baker

1

1Teachers College, Columbia University, New York, NY

jad2234@tc.columbia.edu, baker2@exchange.tc.columbia.edu

Abstract. Developing intelligent tutoring systems that respond effectively to

trainee or student affect is a key part of education, particularly in domains

where learning to regulate one’s emotion is key. Effective affect response relies

upon effective affect detection. This paper discusses an upcoming cooperative

study between the Army Research Laboratory, Teachers College, Columbia

University, and North Carolina State University, with the goal of developing

automated detectors that can infer trainee affect as trainees learn by interacting

with the vMedic system, which trains learners in combat medicine. In this pro-

ject, trainee interactions with vMedic will be synchronized with observations of

engagement and affect; and physical sensor data on learners, obtained through

GIFT’s Sensor Module. The result will be models of trainee affect, ready for in-

tegration into the GIFT platform, which can leverage sensor information when

available, but which can make reasonably accurate inference even without sen-

sor data.

Keywords: GIFT, vMedic, affect, tutoring, intelligent tutoring systems, learn-

ing, automated detectors, game-based training

1 Introduction

In recent years, there has been increasing interest in modeling affect within intelligent

tutoring systems [7, 11] and using these models to drive affect-sensitive interventions

[2]. In this paper, we describe an ongoing collaborative project between the Army

Research Laboratory, Teachers College Columbia University, and North Carolina

State University, which has the goal of developing automated detection of trainee

affect that can leverage sensors when they are available, but which can function ro-

bustly even when sensors are not available.

Within this research, trainee affect will be studied in the context of the vMedic,

(a.k.a. TC3Sim), a game developed for the U.S. Army by Engineering and Computer

Simulations (ECS) in Orlando, Florida, to train combat medics and combat lifesavers

on providing care under fire and tactical field care. Trainees will also complete mate-

rial on hemorrhage control within the auspices of the GIFT framework [12], the Army

Research Laboratory’s modular framework for Computer-Based Training Systems,

with the goal of integrating eventual affect detection into the GIFT framework’s User

mailto:jad2234@tc.columbia.edu
mailto:%7bbaker2@exchange.tc.columbia.edu

 89

Module (realized as necessary within the Sensor Module). In turn, the affect detectors

will be built into the pedagogies realized through the GIFT Framework’s Pedagogical

Module, for instance to realize interventions through the embedded instructor and

other non-player characters.

In this fashion, this project will contribute not just to the assessment of affect

within vMedic, but also to the GIFT framework’s broader goal of integrating a range

of types of models and detectors into the GIFT framework. By serving as a test case

for incorporating two types of detection into GIFT (sensor-free affect detection, and

sensor-based affect detection), this project will assist in understanding how GIFT

needs to be enhanced to incorporate the full range of models currently being devel-

oped by this research community.

Using these detectors, further work will be conducted to study student affective

trajectories within vMedic, which affective and engagement states influence learning

of the key material within vMedic, and how trainee affect can best be supported based

on the results of affect detection. The work to study the relationship between affect,

engagement, and outcome variables will provide important evidence on which affec-

tive states and engagement variables need to be responded to in a suite of optimally

effective computer-based tutoring systems for Army use. Also, integrating automated

detectors and interventions into vMedic through GIFT’s Trainee Module and Peda-

gogical Module will provide a valuable example of how to respond to trainees’ nega-

tive affect and disengagement, a valuable contribution in improving vMedic and simi-

lar training systems used by the U.S. Army.

2 Previous Research: Theoretical Grounding

Affect influences learning in at least three ways: memory, attention, and strategy

use [16, 18]. Overly strong affect can contribute to cognitive load in working memory,

reducing the cognitive resources available to students in learning tasks [13]. Beyond

this, negative affective states such as frustration and anxiety can draw cognitive re-

sources away from the task at hand to focus on the source of the emotion [20]. These

high-intensity negative affective states can be particularly important for trainees learn-

ing content that is emotionally affecting or relevant to their future goals. Combat med-

icine training for soldiers has each of these components; it is relevant to future situa-

tions where they or their fellow soldiers may be in physical danger, and the training in

vMedic is designed to be realistic and to involve scenarios where soldiers scream in

pain, for example.

However, boredom and disengagement are also relevant to trainees engaging in a

task that is not immediately relevant, even if it is relevant to a trainee’s longer-term

goals. Boredom results in several disengaged behaviors, including off-task behavior

[8] and gaming the system [5], when a student intentionally misuses the learning

software’s help or feedback in order to complete materials without learning. Both

gaming the system and off-task behavior have been found to be associated with poor-

er learning in online learning environments [cf. 4].

However, automated systems that infer and respond to differences in student af-

fect can have a positive impact on students, both in terms of improved affect and im-

 90

proved learning [2, 13]. Similarly, automated interventions based on engagement

detection can improve both engagement and learning [2].

A key aspect of automated intervention is the need to detect differences in student

affect and engagement, in order to intervene effectively. Recent work has detected

these constructs, both using sensors [15], and solely from the student’s interactions

with the learning system [5, 7, 8]. In recent years, sensor-free models have been de-

veloped of a range of behaviors associated with engagement or disengagement: gam-

ing the system [3, 4], off-task behavior [3], self-explanation – an engaged behavior [6],

carelessness [18], and WTF (“without thinking fastidiously”) behavior, actions within

a learning system not targeted towards learning or successful performance [24, 34],

among other constructs.

Similarly, automated detectors have been developed that can infer affect solely

from student interactions with educational software [7, 10, 11]. However, better per-

formance has typically been achieved by systems that infer affect not only from stu-

dent interactions, but also from information obtained by physiological sensors. These

recognition models use a broad range of physical cues ensuing from affective change.

Observable physical cues include body and head posture, facial expressions, and pos-

ture, and changes in physiological signals such as heart rate, skin conductivity, tem-

perature, and respiration [1]. In particular, galvanic skin response (GSR) has been

correlated with cognitive load and stresses [15], frustration [9], and detecting multiple

user emotions in an educational game [10].

3 Project Design

The first step towards developing automated detectors of student affect is to ob-

tain “ground truth” training labels of student affect and engagement. Two approaches

are typically chosen to obtain these labels: expert human coding, and self-report [11].

In this project, we rely upon expert human coding, as self-report can be intrusive to

the processes we want to study, and self-presentation and demand effects are also

likely to be of concern with the population being studied (military cadets are unlikely

to want to report that they are frustrated or anxious).

These training labels will be collected in a study to be conducted at West Point,

the United States Military Academy. Each trainee will use vMedic for one hour in a

computer laboratory, in groups of ten at a time. The following sources of student data

will be collected: field observations of trainee affect and engagement; the Immersive

Tendencies Questionnaire (ITQ), an instrument to gauge an individual's propensity to

experience presence in mediated environments a priori to system interaction; the

Sense of Presence questionnaire, a 44-item questionnaire that rates subjective levels

of presence on four separate factors: (1) Sense of Physical Space (19 items); (2) En-

gagement (13 items); (3) Ecological Validity/Naturalness (5 items); and (4) Negative

Effects (6 items) [19];, a pre-and post test on hemorrhage control (a total of 12 ques-

tions, same questions used in pre-and post-test, though ordered differently), and phys-

ical sensor data for students as they play the game. The following physical sensors

will be used: Q-sensors, and Kinect depth sensors. Q-sensors track skin conductance

data, a measure of arousal, while Kinect depth sensors record depth-map images to

support recognition of postural positions.

 91

Within this study, expert codes of trainee affect and engagement will be collected

by a trained coder (the first author) using the BROMP 1.0 field observation protocol

[16]. The field observations will be conducted in a pre-chosen order to balance obser-

vation across trainees and avoid bias towards more noteworthy behaviors or affect.

Observations will be conducted using quick side glances in order to make it less clear

when a specific trainee is being observed. Coding includes recording the first behav-

ior and affect displayed by the trainee within 20 seconds of the observation, choosing

from a predetermined coding scheme. The affect to be coded includes: frustration,

confusion, engaged concentration [5], boredom, anxiety, and surprise. Affect will be

coded according to a holistic coding scheme. Behavior coding includes: on-task be-

havior, off-task behavior, gaming the system, “psychopath” behavior (friendly fire,

killing bystanders), and WTF (“without thinking fastidiously”) behavior, where the

trainee’s actions have no relation to the scenario [17]. In order to be BROMP-

certified, a coder must achieve inter-rater reliability of 0.6 or higher to another

BROMP-certified coder; two coders are currently trained at Teachers College, and are

available for the project.

Field observation coding will be conducted within a handheld Android app,

HART, designed for this purpose [7]. The field observations will be synchronized to

the other data sources, based on use of an internet time server. Synchronization will

be with reference to several data sources, including trainee interactions with vMedic,

provided through the GIFT framework’s Trainee Module, and physical sensor data on

learners, obtained through GIFT’s Sensor Module. We anticipate synchronization to

involve a skew of 1-2 seconds, based on the time required to enter observations. The

GIFT platform includes a synchronization library, which connects to an Internet time-

server so that a precise time-stamp can be added to the logs of trainee interactions

with vMedic, and the corresponding sensor data. By connecting to the exact same

timeserver, the interactions with vMedic, field observations of engagement and affect,

and physical sensor data on learners, three data sources can be precisely synchronized.

Automated detectors will be developed using the interaction logs alone, for use

when physiological sensors are not available, and using the sensors as well, for situa-

tions where they are. A standard approach of conducting feature engineering and then

developing classifiers, and validating the classifiers using student-level cross-

validation, will be used.

4 Conclusion

The current project has the goal of enhancing the GIFT framework through the crea-

tion of models that can infer trainee engagement and affect. This project is expected to

both enhance the capacities of the vMedic software, and to provide a model for how

this type of detection can be integrated into the GIFT framework more generally. As

such, this project is just one small component of the larger efforts that are currently

being pursued by the Army Research Lab, to make the GIFT framework a general and

extensible platform to achieve the US Army’s overall objective of applying learning

theory and state-of-the-art learning technology to achieve superior training results for

warfighters [14]. We anticipate that this collaborative effort will provide useful in-

formation on the future enhancement of the GIFT platform; as such, this project rep-

 92

resents a step towards the vision of adaptable and scalable Computer-Based Training

Systems helping to enhance the training of U.S. Army military personnel and prepare

U.S. soldiers for the conflicts of the future.

Acknowledgments. We thank our research colleagues at the Army Research Lab,

Dr. Robert Sottilare, Benjamin Goldberg and Keith Brawner, as well as at North

Carolina State University, Dr. James Lester, Dr. Bradford Mott, and Jonathan Rowe.

This research is supported by a grant by the Army Research Lab. Any opinions, find-

ings, and conclusions expressed in this paper are those of the authors and do not nec-

essarily reflect the views of ARL or NCSU.

5 References

1. Allanson, J., Fairclough, S. H. A research agenda for physiological computing. In Interacting

with Computers, 16 (2004), 857–878.

2. Arroyo, I., Ferguson, K., Johns, J., Dragon, T., Meheranian, H., Fisher, D., Barto, A.,

Mahadevan, S.,Woolf. B. Preparing disengagement with non-invasive interventions. In Pro-

ceedings of the 13th International Conference on Artificial Intelligence in Education,.(2007)

195–202.

3. Baker, R.S.J.d. Is Gaming the System State-or-Trait? Educational Data Mining Through the

Multi-Contextual Application of a Validated Behavioral Model. In Proceedings of the Work-

shop on Data Mining for User Modeling at the 11th International Conference on User Model-

ing 2007, 76-80.

4. Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z. Off-Task Behavior in the Cogni-

tive Tutor Classroom: When Students "Game The System." In Proceedings of ACM CHI

2004: Computer-Human Interaction 2004, 383-390.

5. Baker, R.S.J.d., D'Mello, S.K., Rodrigo, .M.T., Graesser, A.C. Better to Be Frustrated than

Bored: The Incidence, Persistence, and Impact of Learners' Cognitive-Affective States during

Interactions with Three Different Computer-Based Learning Environments. In International

Journal of Human-Computer Studies, 48 (2010), 223-241.

6. Baker, R.S.J.d., Gowda, S.M., Corbett, A.T. Automatically Detecting a Student's Preparation

for Future Learning: Help Use is Key. In Proceedings of the 4th International Conference on

Educational Data Mining 2011, 9-188.

7. Baker, R.S.J.d., Gowda, S.M., Wixon, M., Kalka, J., Wagner, A.Z., Salvi, A., Aleven, V.,

Kusbit, G., Ocumpaugh, J., Rossi, L. Sensor-free automated detection of affect in a Cognitive

Tutor for Algebra. In Proceedings of the 5th International Conference on Educational Data

Mining 2012, 126-133.

8. Baker, R.S.J.d., Moore, G., Wagner, A., Kalka, J., Karabinos, M., Ashe, C., Yaron, D. The

Dynamics Between Student Affect and Behavior Occuring Outside of Educational Software.

In Proceedings of the 4th bi-annual International Conference on Affective Computing and

Intelligent Interaction 2011.

9. Burleson, W. Affective learning companions: strategies for empathic agents with real-time

multimodal affect sensing to foster meta-cognitive and meta-affective approaches to learning,

motivation, and perseverance. In unpublished Doctoral Dissertation. Cambridge, MA: Massa-

chusetts Institute of Technology (2006).

10. Conati, C. Probabilistic Assessment of User’s Emotions in Educational Games. In Journal of

Applied Artificial Intelligence, 16 (2002), 555-575.

 93

11. D’Mello, S.K., Craig, S.D., Witherspoon, A. W., McDaniel, B. T., Graesser, A. C. Automatic

Detection of Learner’s Affect from Conversational Cues. In User Modeling and User Adapted

Interaction, 18 (2008), 45-80.

12. Goldberg, B., Brawner, K., Sottilare, R, Tarr, R., Billings, D., & Malone, N. Use of Evidence-

based Strategies to Enhance the Extensibility of Adaptive Tutoring Technologies. In

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012.

13. Linnenbrink, E.A., Pintrich, P.R. Multiple Pathways to Learning and Achievement: The Role

of Goal Orientation in Fostering Adaptive Motivation, Affect, and Cognition. In Intrinsic and

Extrinsic Motivation: The Search for Optimal Motivation and Performance, C. Sansone &

J.M. Harackiewicz, Eds. Academic Press, San Diego, 2000, 195-227.

14. McQuiggan, S., Rowe, J., Lee, S., Lester, J. Story-based Learning: The Impact of Narrative

on Learning Experiences and Outcomes. In Proceedings of the Ninth International Conference

on Intelligent Tutoring Systems (2008), 530-539.

15. Mohammad, Y., & Nishida, T. Using physiological signals to detect natural interactive behav-

ior. In Spring Science & Business Media, 33(2010) 79-92.

16. Ocumpaugh, J., Baker, R.S.J.d., Rodrigo, M.M.T. Baker-Rodrigo Observation Method Proto-

col (BROMP) 1.0. Training Manual version 1.0. Technical Report. EdLab: New York, NY,

Manila, Philippines: Ateneo Laboratory for the Learning Sciences (2012).

17. Sabourin, J., Rowe, J., Mott, B., and Lester, J. When Off-Task in On-Task: The Affective

Role of Off-Task Behavior in Narrative-Centered Learning Environments. Proceedings of the

15th International Conference on Artificial Intelligence in Education, pp. 534-536, 2011.

18. San Pedro, M.O.C., Rodrigo, M.M., Baker, R.S.J.d. The Relationship between Carelessness

and Affect in a Cognitive Tutor. In Proceedings of the 4th bi-annual International Conference

on Affective Computing and Intelligent Interaction 2011.

19. Witmer, B.G. & Singer, M.J. Measuring presence in virtual environments: A presence ques-

tionnaire. In Presence, 7 (1998), 225-240.

20. Zeidner, M. Test Anxiety: The State of the Art. Springer, Berlin, 1998.

Authors

Jeanine A. DeFalco is a Doctoral Research Fellow in Cognitive Studies at Teachers College,

Columbia University. Jeanine’s research interests include embodied cognition and role-play as

a methodology for improving analogic reasoning and creative problem solving in both live and

simulated learning platforms. A member of Kappa Delta Pi, the international honors society for

education, Jeanine has a Masters in Educational Theatre, Colleges and Communities, from the

Steinhardt School, New York University, and a Masters in Drama Studies from The Johns

Hopkins University. Jeanine’s paper, “Cognition, O’Neill, and the Common Core Standards,”

has an expected publication in the Eugene O’Neill Journal for Fall 2013, and she will be pre-

senting this same paper at the July 2013 American Alliance for Theatre and Education confer-

ence in Bethesda, MD. Other conference presentations include “Drama as an epistemology for

pre-service teachers” forW the 2012 National Communication Association conference in Or-

lando, FL, and “Teaching O’Neill” at the 8th International Eugene O’Neill Conference, 2011, in

New York, NY.

Ryan S.J.d. Baker is the Julius and Rosa Sachs Distinguished Lecturer at Teachers College,

Columbia University. He earned his Ph.D. in Human-Computer Interaction from Carnegie

Mellon University. Baker was previously Assistant Professor of Psychology and the Learning

Sciences at Worcester Polytechnic Institute, and he served as the first Technical Director of

the Pittsburgh Science of Learning Center DataShop, the largest public repository for data on

the interaction between learners and educational software. He is currently serving as the found-

ing President of the International Educational Data Mining Society, and as Associate Editor of

 94

the Journal of Educational Data Mining. His research combines educational data mining and

quantitative field observation methods in order to better understand how students respond to

educational software, and how these responses impact their learning. He studies these issues

within intelligent tutors, simulations, multi-user virtual environments, and educational games.

 95

Run-Time Affect Modeling in a Serious Game with the

Generalized Intelligent Framework for Tutoring

Jonathan P. Rowe, Eleni V. Lobene, Jennifer L. Sabourin,

Bradford W. Mott, and James C. Lester

 Department of Computer Science, North Carolina State University, Raleigh, NC 27695

{jprowe, eleni.lobene, jlrobiso, bwmott, lester}@ncsu.edu

Abstract. Affective computing holds significant promise for fostering engag-

ing educational interactions that produce significant learning gains. Serious

games are particularly well suited to promoting engagement and creating au-

thentic contexts for learning scenarios. This paper describes an ongoing collabo-

rative project between the Army Research Lab (ARL), Teachers College Co-

lumbia University, and North Carolina State University to investigate general-

ized run-time affect detection models in a serious game for tactical combat cas-

ualty care, vMedic. These models are being developed and integrated with

ARL’s Generalized Intelligent Framework for Tutoring (GIFT). Drawing upon

our experience with GIFT, we outline opportunities for enhancing GIFT’s sup-

port for developing and studying run-time affect modeling, including extensions

that enhance affective survey administration, leverage mathematical models for

formative assessment, and streamline affect data processing and analysis.

Keywords: Affect Detection, GIFT, Serious Games.

1 Introduction

The past decade has witnessed major advances in research on computational models

of affect, endowing software systems with affect-sensitivity and yielding new insights

into artificial and human intelligence [1]. Education and training have served as key

application areas for computational models of affect, producing intelligent tutoring

systems (ITSs) that can model students’ affective states [2], model virtual agents’

affective states [3], and detect student motivation and engagement [4]. Education-

focused work on affective computing has sought to increase the fidelity with which

affective and motivational processes are understood and utilized in ITSs in an effort to

increase the effectiveness of tutorial interactions and, ultimately, learning.

The rise of affective computing has coincided with growing interest in digital

games for learning. Serious games have emerged as an effective vehicle for learning

and training experiences [5]. The education community has developed a broad range

of serious games that combine pedagogy and interactive problem solving with the

salient properties of games (e.g., feedback, challenge, rewards) to foster motivation

and engagement [6–8]. Efforts to design serious games for training have also been the

subject of increasing interest in the defense community [6, 9].

A notable property of serious games is their potential to serve as virtual laborato-

ries for studying affect in learning and training applications. Serious games are well

 96

suited to promoting high levels of learner engagement and providing immersive train-

ing experiences. These features can have significant impacts on learners’ affective

trajectories, as well as the relationships between learners’ affect and performance. For

example, in training tasks that evoke considerable stress or anxiety it is plausible that

serious games may foster affective experiences that differ considerably from non-

mission-critical domains, significantly impacting learners’ abilities to successfully

demonstrate their knowledge. Salient features such as these raise questions about how

to most effectively study and model learner affect during interactions with serious

games, as well as questions about how these methods and models can be generalized

to other training environments and domains.

In this paper we describe a collaborative project with Teacher’s College Colum-

bia University (TC) and the Army Research Lab (ARL) that uses the Generalized

Intelligent Framework for Tutoring (GIFT) to investigate run-time affect modeling in

a serious game for tactical combat casualty care. The project draws on recent advanc-

es in five areas: minimally-obtrusive and synchronize-able field observations of

learner affect [10], empirical studies of serious games [7], educational data mining of

affect logs [11–12], hardware sensor-based measurements of affect [13], and general-

ized intelligent tutoring frameworks [14]. The project’s objectives are two fold: 1)

create modular intelligent tutor components for run-time affect modeling that general-

ize across multiple training environments and scale to alternate hardware configura-

tions, and 2) develop tools and procedures to facilitate future research on affective

computing in learning technologies. This paper focuses on North Carolina State Uni-

versity’s component of the project, which emphasizes sensor-based affect detection,

and it outlines recommendations for future enhancements to GIFT in support of run-

time affect modeling. Specifically, we outline several opportunities for extending

GIFT, which include incorporating support for temporal models of affect such as

affect transitions; expanding GIFT’s survey tools to serve as a centralized repository

of validated instruments with an integrated web-based infrastructure for administering

surveys; taking advantage of item response theory techniques to conduct stealth,

formative assessment of trainee attitudes during learning interactions; and incorporat-

ing features to streamline affect data post-processing.

2 Investigating Affect in a Serious Game for Tactical Combat

Casualty Care

The goal of our collaboration with ARL and TC is to model trainee affect in a serious

game for combat medic training, vMedic, using GIFT. The research team will utilize

machine-learning techniques to induce models for detecting trainee’s affective states

and levels of engagement during interactions with the vMedic software. Affect and

engagement significantly influence learning, and we hypothesize that this will be

especially true for the vMedic training environment due to the time-sensitive, life-or-

 97

death decisions inherent in tactical combat casualty care. In combination with field

observations of trainee affect and trace data from the vMedic serious game, the North

Carolina State University team will investigate data streams produced by a Microsoft

Kinect sensor and Affectiva Q-Sensor to develop and validate affect detection models.

The research team seeks to produce models that 1) integrate trace data logs, sensor

data, and field observations of trainee emotions; 2) predict emotions accurately

and efficiently when hardware sensors are available; and 3) scale gracefully to set-

tings where hardware sensors are unavailable. The models will be developed and

utilized to improve trainee engagement and affect when using vMedic, and they will

be integrated with interaction-based models devised by colleagues at TC.

The curriculum for the study focuses on a subset of skills for tactical combat cas-

ualty care: care under fire, hemorrhage control, and tactical field care. The study ma-

terials, including pre-tests, training exercises, and post-tests, are managed entirely by

GIFT, which supports inter-module communication through its service-oriented archi-

tecture. At the onset of training, learners are presented with direct instruction about

tactical combat casualty care in the form of a PowerPoint presentation. After complet-

ing the PowerPoint, participants play through a series of scenarios in the vMedic seri-

ous game. vMedic presents combat medic scenarios from a first-person perspective

(Fig. 1). The learner adopts the role of a combat medic faced with a situation where

one (or several) of his fellow soldiers has been seriously injured. The learner is re-

sponsible for properly treating and evacuating the casualty. The scenarios include the

following elements: a tutorial level for trainees to learn the controls and game me-

chanics of vMedic; a scenario focusing on a lower leg amputation; a vignette about a

patrol that leads to several casualties; and the “Kobayashi Maru” scenario where the

trainee cannot save the casualty’s life regardless of her course of medical treatment.

vMedic is currently being used at scale by the U.S. Army for combat medic training,

and it has been integrated with GIFT by ARL.

The focus of North Carolina State University’s part of the project is leveraging

hardware sensor data from a Microsoft Kinect for Windows and Affectiva Q-Sensor

to generate affect detection models. Both hardware sensors are integrated with GIFT,

Fig. 9. vMedic serious game for tactical combat casualty care.

 98

enabling the sensor data to be automatically synchronized with vMedic and Power-

Point interaction logs. This architecture removes the need to directly integrate hard-

ware sensors with individual learning environments. Whenever a new training envi-

ronment is integrated with GIFT, no additional work is required to use the hardware

sensors with the new environment.

The Microsoft Kinect provides four data channels: skeleton tracking, face track-

ing, RGB (i.e., color), and depth. The first two channels leverage built-in tracking

algorithms (which are included with the Microsoft Kinect for Windows SDK) for

recognizing a user’s skeleton, represented as a graph with vertices as joints, and a

user’s face, represented as a three-dimensional polygonal mesh. The skeleton and face

models can move, rotate, and deform based on the user’s head movements and facial

expressions. The RGB channel is a 640x480 color image stream comparable to a

standard web camera. The depth channel is a 640x480 IR-based image stream depict-

ing distances between objects and the sensor. The latter two channels produce large

quantities of uncompressed image data, so configuration options have been added to

GIFT to adjust the sample rate (default is 30 Hz), sample resolution, and compression

technique. RGB and depth data can be stored in an uncompressed format, in PNG

format with zlib compression, or in PNG format with lz4 compression. We intend to

utilize data from the Microsoft Kinect to detect user posture, hand gestures, and facial

expression. The Affectiva Q-Sensor is a wearable arm bracelet that measures partici-

pants’ electrodermal activity (i.e., skin conductance), skin temperature, and its orien-

tation through a built-in 3-axis accelerometer. The wireless sensor collects data at

32Hz, and will primarily be used for real-time arousal detection.

Since all technology components in the planned study are managed by GIFT, we

have leveraged GIFT’s built-in authoring tools to specify the study questionnaires and

curriculum tests for assessing trainee knowledge and engagement before and after the

learning intervention. We have utilized GIFT’s Survey Authoring Tool to rapidly

integrate standard presence and intrinsic motivation questionnaires. Additionally, we

have used GIFT’s sizable repository of reusable content assessment items to create a

curriculum test for measuring learning gains across the training sequence.

After specifying the required measures, we used GIFT’s Course Authoring Tool

to encode the sequence of training and assessment materials that will be presented by

GIFT. The Course Authoring Tool includes support for authoring web-based messag-

es that provide instructions to participants, specifying the presentation order of pre-

and post-intervention questionnaires and content tests, and specifying the sequence of

PowerPoint and vMedic learning activities that occur during the study. When partici-

pants take the course, each of these steps is automatically triggered, monitored, and

logged by GIFT. It should be noted that authored courses and questionnaires can be

easily exported and shared between groups, consistent with GIFT’s objective of fos-

tering reusable components.

Currently, our team has established the initial data collection’s study procedure,

we have tested the integrated hardware sensors, and ensured the reliability of the

study’s technology setup. In addition to pilot testing field observation tools from TC

with GIFT, we are in the process of planning a study at the U.S. Military Academy to

investigate cadets’ affective experiences during interactions with vMedic.

 99

3 Extending GIFT’s Capabilities for Run-Time Affect Modeling

GIFT consists of a suite of software tools, standards, and resources for creating, de-

ploying, and studying modular intelligent tutoring systems with re-usable components.

GIFT provides three primary functions: authoring capabilities for constructing learn-

ing technologies, instruction that integrates tutorial principles and strategies, and sup-

port for evaluating educational tools and frameworks. These capabilities provide the

foundation for our investigation of generalizable run-time affect models. This section

discusses several areas for which extensions to GIFT could support research and de-

velopment of generalized affect models in ITSs.

3.1 Detecting and Understanding Learner Affect

While considerable work remains to identify the precise cognitive and affective

mechanisms underlying learning, significant progress has been made in identifying

the emotions that students commonly experience and how these affect the learning

process. For instance, both D’Mello et al. [15] and Baker et al. [16] have shown that

students are most likely to remain in the same emotion state over time and that certain

emotional transitions are more likely than others. Students who are experiencing

boredom are much more likely to experience frustration immediately following the

state of boredom than they are to enter into positive learning states such as flow [15–

16]. In this way affect transition analyses reveal underlying relationships between

affect and learning, which occur generally across intelligent tutoring systems.

Since existing research has suggested that affect transition analysis is both a use-

ful and generalizable tool for investigating learner emotions, incorporating affect

transition models within GIFT is a natural direction for future research and develop-

ment. This will likely raise questions about how to effectively, and generally, inte-

grate affect transition modeling capabilities with each tutor module in the GIFT archi-

tecture: the sensor module, learner module, pedagogical module, and domain module.

When designing these components, one must consider how these components com-

municate with one another, and how the system should be configured to support cases

where affect-sensitive components are missing. For example, physiological sensors

are highly beneficial for affect recognition, but may not be available in all cases. Con-

sequently, a learner model relying on output from such a sensor would need to be

adapted, or gracefully deactivated, in a manner that minimizes negative impacts on

other modules. Similarly, different genres of serious games have distinct capabilities

and affordances. For example, serious games with believable virtual agents may pre-

sent different opportunities for affective feedback than serious games without virtual

agents. Pedagogical modules should possess mechanisms for handling cases where

alternate learning environments support different types of interventions.

3.2 Advances in Survey Administration using GIFT

In the educational research community there is a persistent need for streamlined in-

strument access, validation, and administration. GIFT currently provides a rich collec-

tion of content test items and questionnaires that can be re-used across studies and

training environments. This survey repository could be expanded to serve the broader

 100

research community by systematically adding validated assessment measures and

questionnaires used by the education community. GIFT could serve as a searchable,

centralized repository of validated instruments, with an integrated web-based infra-

structure for administering surveys before and after learning interventions. The in-

struments could be submitted and listed by category with their important item infor-

mation such as validity and reliability, links to published papers that describe how the

instruments have been used in prior studies, and specific instructions regarding their

appropriate use. This type of integrated resource for obtaining, evaluating, and admin-

istering questionnaires, content tests, and surveys could help streamline the communi-

ty’s affective computing research efforts, and serve as an entry point for researchers

to begin using GIFT. Researchers commonly spend significant effort trying to locate

information about study instruments, and GIFT could serve as a tool to facilitate the

survey development and selection process. While other domain specific instrument

collections are freely available (e.g., www.IPIPori.org [17]), they do not include fea-

tures for integrating instruments into surveys, or administering surveys to users. GIFT

could also reduce the time allocated to integrating surveys with systems such as

SurveyMonkey or Qualtrics while encouraging the use of high quality validated in-

struments.

3.3 Leveraging Mathematical Models for Formative Assessment in GIFT

Building on the availability of this instrument database, there are opportunities to take

advantage of item response theory techniques to conduct stealth, formative assess-

ment during learning interactions. Item response theory (IRT) is a mathematical

framework for performing measurement in which the variable is continuous in nature

while allowing for an individual person and item to be mapped on the same latent trait

continuum [18]. An ideal point response process is an IRT approach based on the idea

that an individual only endorses an item if he or she is located close to the item on a

latent continuum [19]. In other words, if an item is too extreme in either direction, the

individual will respond negatively to the item. It can be used with both dichotomous

(e.g., content knowledge test) and polytomous data (e.g., Likert-type attitudes or per-

sonality [19]). GIFT is well positioned to integrate ideal point methods within user

experiences for stealth and ongoing assessment. To date, little research has investigat-

ed embedding adaptive, formative assessment within serious games using intermittent

item presentation through ideal point methods with a rich database of instruments

from which to select.

GIFT offers the opportunity for assessment of both knowledge and attitudinal

(e.g., affective states) variables within immersive training experiences. Using GIFT’s

capabilities, single items can be “transmitted” as part of the story line within a game

experience to the participant. GIFT can run mathematical models in the background to

determine the best item to present at the next natural point. Conceptually this ap-

proach is similar to computerized adaptive tests designed by major test development

companies. For example, if the participant responds negatively to the question “I want

to repeat this activity over and over,” he or she can be presented with an item lower

on the latent trait continuum (e.g., “This activity is interesting for now”). GIFT, hav-

ing access to all of the item information for each potential question, can strategically

present a series of them. By the end of the serious game experience, rich data regard-

http://www.ipipori.org/

 101

ing the individuals’ location on a latent trait continuum (e.g., engagement) would be

available.

3.4 Streamlined Data Processing and Analysis with GIFT

Another opportunity for GIFT to address practical challenges in affective computing

research is in post-processing data. Better solutions are needed for merging files and

cases and quickly ascertaining basic information from data sets. GIFT could potential-

ly mitigate some of these challenges by introducing standards for data collected dur-

ing different stages of research; typically data from different stages is encoded in a

variety of formats, and a considerable amount of labor is dedicated to data integration

after a study has been completed. GIFT could provide a service that automatically

links pre, during, and post data for individual participants, thereby reducing labor in

data cleaning and transformation steps. GIFT could also be extended to offer quick

summary statistics and perform simple operations such as summarizing demographics,

computing composite scores for instruments, and providing general summary results.

These tools would be especially helpful with affective instruments that often require

reverse scoring and other manipulations prior to analysis.

4 Conclusion

This paper has described a collaborative project between the Army Research Lab,

Teachers College Columbia University, and North Carolina State University that aims

to investigate run-time affect modeling in a serious game for combat medic training,

vMedic. In addition to describing this project, we have outlined a number of ways to

extend GIFT’s capabilities to improve affective computing research for educational

applications. We anticipate that these opportunities could increase GIFT’s future im-

pact and usage as a tool for ITS researchers.

Acknowledgments. The authors wish to thank the Army Research Lab for supporting

this research. Additionally, we wish to thank our collaborators, Ryan Baker and

Jeanine DeFalco at Teacher’s College Columbia University, and Bob Sottilare, Keith

Brawner, Benjamin Goldberg, and Heather Holden from ARL.

5 References

1. Calvo, R. A. & D’Mello, S.K.: Affect Detection: An Interdisciplinary Review of Models,

Methods, and their Applications. In: IEEE Transactions on Affective Computing, pp. 18–

37. (2010)

2. Conati, C., Maclaren, H.: Empirically Building and Evaluating a Probabilistic Model of

User Affect. User Modeling and User-Adapted Interaction. 19, 267–303 (2009)

3. Marsella, S.C., Gratch, J.: EMA: A Process Model of Appraisal Dynamics. Cognitive

Systems Research. 10, 70–90 (2009)

 102

4. Forbes-Riley, K., Litman, D.: When Does Disengagement Correlate with Performance in

Spoken Dialog Computer Tutoring? International Journal of Artificial Intelligence in Edu-

cation. (2013)

5. Wouters, P., Van Nimwegen, C., Van Oostendorp, H., & Van der Spek, E.D.: A Meta-

Analysis of the Cognitive and Motivational Effects of Serious Games. Journal of Educa-

tional Psychology. (2013)

6. Johnson, W.L.: Serious Use of a Serious Game for Language Learning. International Jour-

nal of Artificial Intelligence in Education. 20, 175–195 (2010)

7. Rowe, J P, Shores, L. R., Mott, B. W., & Lester, J.C.: Integrating Learning, Problem Solv-

ing, and Engagement in Narrative-Centered Learning Environments. International Journal

of Artificial Intelligence in Education. 21, 166–177 (2011)

8. Halpern, D., Millis, K., Graesser, A.: Operation ARA: A computerized learning game that

teaches critical thinking and scientific reasoning. Thinking Skills and Creativity. 7, 93–100

(2012)

9. Kim, J., Hill, R. W., Durlach, P. J., Lane, H. C., Forbell, E., Core, M., Marsella, S.C., et

al.: BiLAT: A game-based environment for practicing negotiation in a cultural context. In-

ternational Journal of Artificial Intelligence in Education. 19, 289–308 (2009)

10. Rodrigo, M.M.T., Baker, R.S.J.d., Agapito, J., Nabos, J., Repalam, M.C., Reyes, S.S., San

Pedro, M.C.Z.: The Effects of an Interactive Software Agent on Student Affective Dynam-

ics while Using an Intelligent Tutoring System. In: IEEE Transactions on Affective Com-

puting, pp. 224–236. (2012)

11. Pardos, Z.A., Baker, R.S.J.d., San Pedro, M.O.C.Z., Gowda, S.M., Gowda, S.M.: Affec-

tive states and state tests: Investigating how affect throughout the school year predicts end

of year learning outcomes. In: Proceedings of the 3rd International Conference on Learn-

ing Analytics and Knowledge, pp. 117–124. (2013)

12. Sabourin, J., Mott, B.W., Lester, J.C.: Modeling Learner Affect with Theoretically

Grounded Dynamic Bayesian Networks. In: Proceedings of the 4th International Confer-

ence on Affective Computing and Intelligent Interaction, pp. 286–295. (2011)

13. Grafsgaard, J.F., Boyer, K.E., Lester, J.C.: Predicting Facial Indicators of Confusion with

Hidden Markov Models. In: Proceedings of the 4th International Conference on Affective

Computing and Intelligent Interaction, pp. 97–106. (2011)

14. Sottilare, R. A., Goldberg, B. S., Brawner, K. W., & Holden, H.K.: A modular framework

to support the authoring and assessment of adaptive computer-based tutoring systems

(CBTS). In: Proceedings of the Interservice/Industry Training, Simulation, and Education

Conference, (2012)

15. D’Mello, S., Taylor, R.S., Graesser, A.C.: Monitoring Affective Trajectories during Com-

plex Learning. In: Proceedings of the 29th Annual Meeting of the Cognitive Science Soci-

ety, pp. 203–208. (2007)

16. Baker, R., Rodrigo, M., Xolocotzin, U.: The dynamics of affective transitions in simula-

tion problem-solving environments. In: Proceedings the 2nd International Conference on

Affective Computing and Intelligent Interactions, pp. 666–677. (2007)

17. Goldberg, L. R., Johnson, J. A., Eber, H. W., Hogan, R., Ashton, M. C., Cloninger, C. R.,

& Gough, H.C.: The International Personality Item Pool and the future of public-domain

personality measures. Journal of Research in Personality. 40, 84–96 (2006)

18. de Ayala, R.J.: The Theory and Practice of Item Response Theory. Guilford Press, New

York, NY (2009).

19. Stark, S., Chernyshenko, O.S., Drasgow, F., Williams, B.A.: Examining Assumptions

About Item Responding in Personality Assessment: Should Ideal Point Methods Be Con-

sidered for Scale Development and Scoring? Journal of Applied Psychology. 91, 25–39

(2006)

 103

Authors

Jonathan P. Rowe: Jonathan Rowe is a Research Scientist in the Department of Computer

Science at North Carolina State University. He received his Ph.D. in Computer Science from

North Carolina State University in 2013. His research is in the areas of artificial intelligence

and human-computer interaction for advanced learning technologies, with an emphasis on

game-based learning environments. He is particularly interested in intelligent tutoring systems,

user modeling, educational data mining, and computational models of interactive narrative.

Jonathan has led development efforts on several game-based learning projects, including Crys-

tal Island: Lost Investigation, which was nominated for Best Serious Game at the 2012 Unity

Awards and the 2012 I/ITSEC Serious Games Showcase and Challenge. His research has also

been recognized with several best paper awards, including best paper at the Seventh Interna-

tional Artificial Intelligence and Interactive Digital Entertainment Conference and best paper at

the Second International Conference on Intelligent Technologies for Interactive Entertainment.

Eleni V. Lobene: Eleni Lobene is a Research Psychologist in the Center for Educational Infor-

matics at North Carolina State University. She received her Ph.D. in Industrial/Organizational

Psychology from North Carolina State University in 2011, where her research focused on K-12

teacher motivations and perceptions. With a background in psychometrics, including classical

test theory and item response theory, Dr. Lobene is interested in study design, instrument vali-

dation, assessment, and K-16 education. Prior to joining the IntelliMedia group, she worked as

a research assistant at the Friday Institute for Educational Innovation, assisting in the assess-

ment of game-based learning environment effectiveness. She has also served as a primary in-

structor for undergraduate courses in the Department of Psychology at North Carolina State

University and provided consulting services to local and global organizations focusing on im-

proving organizational efficiency and implementing data-based change.

Jennifer L. Sabourin: Jennifer Sabourin is currently a Ph.D. student at North Carolina State

University in the Department of Computer Science. She received her B.S. (2008) and M.S.

(2012) in Computer Science from North Carolina State University where she graduated as

Valedictorian. She is a recipient of the National Science Foundation Graduate Research Fel-

lowship award. Since 2007 she has been engaged in research examining affective and metacog-

nitive issues associated with intelligent learning technologies. Her research efforts have resulted

in over 30 published journal articles, book chapters, and refereed conference proceedings. Her

work has been recognized with a Best Student Paper Award at the International Conference on

Affective Computing and Intelligent Interaction and several additional nominations. In addition

to her research on intelligent technologies for education, Sabourin has played an active role in

efforts to broaden participation in computing and STEM fields through informal learning activi-

ties. She developed and led a year-long middle school program for introducing young students

to computing principles. This program has served over 250 middle school students in the last

six years and has been successfully disseminated to other schools and districts.

Bradford W. Mott: Bradford Mott is a Senior Research Scientist at the Center for Educational

Informatics in the College of Engineering at North Carolina State University. He received his

Ph.D. in Computer Science from North Carolina State University in 2006, where his research

focused on computational models of interactive narrative. His research interests in-

clude intelligent game-based learning environments, computer games, and intelligent tutoring

systems. Prior to joining North Carolina State University, he worked in the game indus-

try developing cross-platform middleware solutions for the PlayStation 3, Wii, and Xbox 360.

In 2000, he co-founded and was VP of Technology at LiveWire Logic where he led develop-

ment efforts on the RealDialog™ product suite, an automated natural language customer ser-

vice solution leveraging corpus-based computational linguistics.

 104

James C. Lester: James Lester is Distinguished Professor of Computer Science at North Caro-

lina State University. His research focuses on transforming education with technology-rich

learning environments. Utilizing AI, game technologies, and computational linguistics, he

designs, develops, fields, and evaluates next-generation learning technologies for K-12 science,

literacy, and computer science education. His work on personalized learning ranges from game-

based learning environments and intelligent tutoring systems to affective computing, computa-

tional models of narrative, and natural language tutorial dialogue. He has served as Program

Chair for the International Conference on Intelligent Tutoring Systems, the International Con-

ference on Intelligent User Interfaces, and the International Conference on Foundations of

Digital Games, and as Editor-in-Chief of the International Journal of Artificial Intelligence in

Education. He has been recognized with a National Science Foundation CAREER Award and

several Best Paper Awards.

 105

Toward a Generalized Framework for Intelligent

Teaching and Learning Systems: The Argument for a

Lightweight Multiagent Architecture

Benjamin D. Nye and Donald M. Morrison

Institute for Intelligent Systems, The University of Memphis, Memphis, Tennessee
{bdnye and dmmrrson}@memphis.edu

Abstract The U.S. Army’s Generalized Intelligent Framework for Tutoring

(GIFT) is an important step on the path toward a loosely coupled, service-

oriented system that would promote shareable modules and could underpin

multiagent architectures. However, the current version of the system may be

“heavier” than it needs to be and not ideal for new or veteran ITS developers.

We begin our critique with a discussion of general principles of multiagent ar-

chitecture and provide a simple example. We then look at the needs of ITS de-

velopers and consider features of a general-purpose framework which would

encourage message-driven, multiagent designs, sharing of services, and porting

of modules across systems. Next, we discuss features of the GIFT framework

that we believe might encourage or discourage adoption by the growing ITS

community. We end by offering three recommendations for improvement.

1 Introduction

As the term is used in a seminal paper on the subject, “Is it an agent, or just a pro-

gram?” (Franklin & Graesser, 1997), an autonomous agent is

 ..a system situated within and a part of an environment that senses that envi-

ronment and acts on it, over time, in pursuit of its own agenda and so as to affect

what it senses in the future. (p. 25)

Because a human is also an agent according to this definition, in a sense any in-

telligent tutoring system may be considered a multiagent system (MAS), designed to

support interactions between two agents—the user and the intelligent tutor. However,

recent years have seen an increasing interest in the development of systems with

multiagent architectures in the more interesting sense that functionality is decentral-

ized across different software agents. In this paradigm, each agent has its own

knowledge base (set of beliefs), and carries out different tasks, either autonomously or

at the request of other agents. Agent-oriented services build on component-based

approaches by giving each component distinct goals that it works to fulfill. As a result,

the intelligent behavior of the system as a whole emerges from the collective behavior

of the individual agents—including, of course, the human user—allowing for what

 106

has been called “autonomous cooperation” (Hülsmann, Scholz-Reiter, Freitag,

Wucisk, & De Beer, 2006; Windt, Böse, & Philipp, 2005). For recent examples of

ITSs that employ multiagent architectures, see Bittencourt et al., 2007; Chen &

Mizoguchi, 2004; El Mokhtar En-Naimi, Amami, Boukachour, Person, & Bertelle,

2012; Lavendelis & Grundspenkis, 2009; and Zouhair et al., 2012). Although these

are for the most part prototypes, they serve as useful demonstrations of the general

approach.

Multiagent architectures depend on a shared agent communication language

(ACL) such as Knowledge Query and Manipulation Language (Finin, Fritzson,

McKay, & McEntire, 1994), FIPA-ACL (O'Brien & Nicol, 1998), or JADE

(Bellifemine, Caire, Poggi, & Rimassa, 2008), all of which are based on speech act

theory (Austin, 1965; Searle, 1969). The ACL, combined with a shared ontology (se-

mantic concepts, relationships and constraints), allows the agents to exchange infor-

mation, to request the performance of a task, and, in certain cases—such as when one

agent requests access to restricted data—to deny such requests (Chaib-draa & Dignum,

2002; Kone, Shimazu, & Nakajima, 2000). A multiagent architecture therefore con-

sists of a distributed “society” of agents (Bittencourt et al., 2007), each with its own

agenda, semantically-organized knowledge base, and ability to send and receive mes-

sages. The messages take the form of speech acts, including requests, directives, as-

sertions, and so forth. Here is an example:

request

:receiver pedagogical agent

:sender NLP agent

:ontology electronics

:content (define, capacitor)

where the message is clearly identified as a request, the receiver is a pedagogical

agent, and the sender is a natural language processing (NLP) agent that translates

utterances from human language into messages the pedagogical agent can understand.

In this case the pedagogical agent can fulfill the request because it has access to an

ontology in the domain of electronics, and “knows” how to extract a definition from

it, by following an algorithm or production rule. Here’s another example:

tell

:receiver pedagogical agent

:sender emotion sensor

:ontology learner affect

:content (learner, confused)

where the receiver is again a pedagogical agent, but in this case the sender is an emo-

tion sensing agent reporting its belief that the learner is currently confused. Again, the

pedagogical agent can process the contents of the message because it has access to a

“learner affect” ontology. As a final example, consider the following:

tell

:receiver LMS agent

:sender pedagogical agent

 107

:ontology learningExperiences

:content (learner, “passed”, “helicopter simulation training”)

where in this case the pedagogical agent is the sender, and the receiver is an LMS

agent, which is being told that a certain learner has passed a training course.

These simple examples illustrate several important principles regarding the nature

and behavior of multiagent systems. First, note that all three of the software agents are

capable of autonomous action, in accordance with their own agendas, and without the

need for supervision. The pedagogical agent need not ask the emotion sensor to report

its estimate of the learner’s affective state. Rather, the emotion sensor reports its be-

liefs automatically and autonomously, as it does for any agent that has subscribed to

its services. Similarly, when it has judged that a learner has passed a course, the peda-

gogical agent informs the LMS agent, again without having to be asked, simply be-

cause the LMS agent has subscribed to its services.

These agents are “lightweight” in the sense that their power lies in their ability to

exchange messages with other agents, and to process the contents of these messages

based on ontologies that are shared with the agents they exchange messages with, but

not necessarily by all of the agents in the system. For example, the NLP agent and

pedagogical agent must both have access to the electronics ontology, and the LMS

agent and pedagogical agent must both share the ontology of learner experiences, but

neither the emotion sensing agent nor the LMS agent need to know anything about

electronics.

Note also that, assuming that the agents’ messages are sent over the Internet, all

four agents (including the learner) can be at different, arbitrary locations, whether on

servers or local devices. Also, any agent can be replaced by any other agent that per-

forms the same function and uses a compatible ACL and associated ontology. If an

emotion-sensing agent comes along that does a better job than the original, then, so

long as it reads and writes the same kinds of messages and has a compatible ontology

(e.g., terms can be translated meaningfully from one ontology to the other), the other

agents don’t need to be reconfigured in any way. Most importantly, the functionality

and value of membership in the society for all participants can increase incrementally,

perhaps even dramatically, by registering new agents with new capabilities, or by

upgrading the capabilities of the existing members.

Transforming a monolithic ITS legacy system into one with a distributed,

multiagent architecture requires two steps: breaking apart existing components into

agents and developing ACLs with ITS-tailored ontologies. By encouraging ITS de-

velopers to reorganize their systems as services, the Generalized Framework for Intel-

ligent Tutoring (GIFT) provides strong support for this process (Sottilare, Goldberg,

Brawner, & Holden, 2012).

2 Criteria for a MAS ITS Framework

Before discussing GIFT specifically, general criteria required for an effective multi-

agent ITS framework will be discussed. To understand the criteria for a development

framework, one must understand something about the stakeholders involved. In this

case, as we are focusing on the software development practices of an ITS, these

stakeholders are the research groups that develop these systems. So then, what do

 108

such groups look like? A recently completed systematic literature review of papers

including the terms “intelligent tutoring system” or “intelligent tutoring systems”

found that the majority of ITS research was split between two types: major ITS fami-

lies (those with 10 or more papers in a 4-year period) and single-publication projects

(Nye, 2013). Together, these account for over 70% of ITS research with each ac-

counting for a fairly equal share. This means two things. First, any generalized

framework should be able to accommodate major ITS projects that have a large prior

investment in tools. Second, it means that such a framework should also embrace

contributions from new developers who are often focused heavily on only a single

ITS component (e.g., linguistic analysis, assessment of learning, haptic interfaces). So

then, an ideal framework would facilitate breaking down legacy architectures into

multiagent systems and would also make it easy for one-off developers to add or re-

place a single component. The framework should also not be locked-in to a single

template for the components included in the system: not all systems can be easily

broken down into the same components. However, this walks a fine line: too much

structure hinders innovative designs, while too little structure offers little advantage

over a generic architecture (e.g., off-the-shelf service-composition frameworks).

Accommodating these different ends of the spectrum requires a lightweight and

flexible architecture. However, what do we mean by “lightweight?” There are multi-

ple meanings for a “lightweight framework” and most of them are favorable in this

context. The following features can be either lightweight or heavy: (1) hardware re-

quirements, (2) software expertise to design services, (3) software expertise to use

existing services, (4) software expertise to stand up the message-passing layer be-

tween agents, and (5) minimal working message ontology. The first requirement is

that the no special hardware or excessive computational overhead should be required

to use the framework. The computational requirements should be light, rather than

imposing heavy overhead or unnecessary inter-process or remote service calls.

Components requiring significant setup or maintenance (e.g., databases, web-servers)

should be optional or, at a minimum, streamlined with default setups that work out of

the box.

Assuming self-interest, for both types of developers (veterans and newcomers),

the cost of designing or redesigning for the framework would need to be exceeded by

the benefits. This means minimizing development overhead to create new services or

refit old services for the framework. The generalized framework would need to allow

easy wrapping or replacement of existing designs, rather than forcing developers to

maintain two parallel versions of their ITS. Researchers and developers are unlikely

to develop for a framework that requires extensive additional work to integrate with.

This means that new developers should need to know only the minimal amount of

information about the framework in order to integrate with it. There should be little to

no work to create a simple service that can interoperate with the framework and de-

fault wrappers should exist for multiple programming languages to parse raw messag-

es into native objects. Such wrappers or premade interfaces would allow even rela-

tively “heavy” communication between agents, while keeping developers from need-

ing to know these protocols.

The framework must also make it easy to take advantage of services that others

have implemented, such as through a repository of publically-available services. At

 109

minimum, it should be significantly easier to use existing services than it is to add a

module to the system. This means that the minimal use case (e.g., the “Hello world”

case) for the system should be very simple. For example, a single installed package

should make it possible to author (or copy) a single text file configuring the system to

create a basic ITS test system. Anything required to run a basic example beyond these

requirements indicates a “heavier” setup requirement to begin using the framework. If

this part of the framework is heavy, first-time ITS authors would be unlikely to use

the framework. Moreover, without such ease-of-use, established ITS developers

would be unlikely to rework their code to fit such a framework unless they were com-

pensated for these efforts. In the long term, the success and survival of a general

framework for tutoring relies on its ability to contribute back to the ITS community. If

researchers and developers benefit by reusing services in the system, they will use it.

Otherwise, it will fall into obscurity.

Standing up message passing coordination must be lightweight as well. This

means that developers should need to expend minimal effort to invoke a layer capable

of exchanging messages between services. As such, this layer should have a strong set

of defaults to handle common cases and should work out of the box. Additionally, it

should be possible to invoke this layer as part of a standalone application (message

passing in a single process) or as a remote web service. Consideration must also be

given to mobile devices, as mobile applications have specific limitations with respect

to their installation, sandboxing (access to other applications), and data transmission.

Finally, agent communication relies on specific messaging languages codified

explicitly or implicitly. Three major paradigms are possible to control this communi-

cation. The oldest and most traditional paradigm defines API function interfaces for

various types of agents or agent functionality, where “messages” are technically func-

tion calls on agents. This approach, however, is fragile and better-suited for synchro-

nous local communication than for asynchronous distributed agents. The second para-

digm is to define a centrally-defined ontology of messages, which each having an

agreed-upon meaning. The main advantage of this system is that it imposes consisten-

cy: all agents can communicate using this predefined ontology. However, agreeing

upon a specific ontology of messages is an extremely hard task in practice. This ap-

proach is “heavy” from the perspective of learning and being constrained by the on-

tology. The ultimate goal of a shared and stable ontology for ITS is valuable, but of-

fers formidable pragmatic challenges. The third paradigm allows ad-hoc ontologies

of messages. At face value, this approach seems flimsy: the ontology of messages is

not defined by the agent communication language and services can define their own

messages that may not be meaningful to other services as a result. However, this ap-

proach is actually fairly popular in research on agent communication languages (Li &

Kokar, 2013) and in recent standards bodies, such as the Tin Can API associated with

SCORM (Poltrack, Hruska, Johnson, & Haag, 2012). These approaches standardize

the format of messages (e.g., how they are structured) but not the content. Instead,

certain recommendations for tags and messages are presented but not required. This

approach is lightweight: only a small ontology is required and developers are free to

extend it.

Lightweight ad-hoc message ontologies show the most promise for an ITS

framework using agent message passing. By standardizing the message format, any

two services can syntactically understand any message passed to it. However, it al-

 110

lows developers to choose any set of messages for their agent communication lan-

guage. While in theory this could lead to a Babylon of disjointed ontologies, in prac-

tice developers will typically attempt to use established formats for messages first, if

they are available. Much like the original design of a computer keyboard or choice of

which side of the road to drive on, the starting ontology for a framework can provide

a powerful self-reinforcing norm that guides influences work. As such, it is possible

to define a core set of suggested messages that are used by the initial set of agents

designed for the framework. Additional messages could then be added to the “com-

mon core ontology” of messages when they became common practice among new

agents added to the service.

3 The GIFT Framework as a MAS ITS

Given these five characteristics, we now look at how well the GIFT architecture

matches them in its current form. First, it must be noted that the intentions of the

GIFT project are both ambitious and admirable: without the general shift toward ser-

vice-oriented design for ITSs there would be little value in discussing multiagent ITSs

that build upon service-oriented principles. However, this analysis finds that the cur-

rent implementation of GIFT appears heavier than would be ideal for the needs and

practices of ITS developers. This does not mean that GIFT is a bad architecture, simp-

ly that it is an architecture that is geared toward the needs of stakeholders other than

existing ITS developers (e.g., end-users, sponsors, etc). A great deal of emphasis is

placed on reliability and stability, which is more reflective of enterprise use rather

than rapid development. The current GIFT implementation implies a “consume and

curate” service model rather than a “collaborative repository” service model. With

help from GIFT experts, it is certainly possible to integrate tutoring services with

GIFT and deliver this tutoring effectively using the architecture. However, the archi-

tecture does not seem light enough to allow researchers to build it into their own

toolchain. This section first examines the strengths of GIFT as a generalized frame-

work for developing tutoring systems and then considers limitations that might be

addressed by future releases.

By far, the primary advantage over existing systems is its dedication to service-

oriented principles and modular design. GIFT is the first serious attempt to develop a

platform intended to inject a common suite of tutoring services into a variety of appli-

cations, including web applications and 3D games (Sottilare, Goldberg, Brawner, &

Holden, 2012). GIFT also has a strong commitment to standards-based communica-

tion protocols, supporting the Java Messaging Service (JMS) for service communica-

tion. Finally, GIFT was developed in Java so it can be efficiently interpreted on web

servers and has strong cross-platform capabilities. The hardware requirements for the

core GIFT system are also light. Modern systems should have no trouble running the

GIFT services and communication layer. Overall, GIFT appears to be well-optimized

for efficient delivery and hosting of tutoring web services.

However, the current GIFT implementation has significant limitations as a devel-

opment framework for tutoring systems. First, the current implementation does not

offer an easy road for standing up a minimal working example using the GIFT

 111

framework. Installing and setting up the core framework for use is a multi-step pro-

cess with multiple stages and some third-party dependencies. Running the framework

also requires setting up a dedicated database, which could never be considered a light

feature. While some GIFT ITS may benefit from such a database (e.g., those hosting

surveys), many prototype ITS might make do with simpler triple-stores, serial data

(e.g., delimited text files), or even no persistent data storage. Additionally, setting up

the GIFT framework does not differentiate between the core architecture meant to

handle communication between services versus the services that are bundled with the

architecture. A barebones version might remedy this limitation. Services also com-

municate using a classical API paradigm, which does not offer much flexibility com-

pared to a more explicit message-passing approach. This means that a developer

would need to inspect individual service interfaces to figure out the appropriate

accessors. Effectively, this locks developers into an ontology of how services should

act (i.e., remote API requests) rather than what they should know (e.g., generic beliefs

or knowledge). While this may seem like a subtle difference, a service that only

needs to broadcast its knowledge can sidestep designing who receives that infor-

mation and how it should be used. Finally, GIFT lacks service stubs or wrappers in

common languages (e.g., Java, Python, C#) that would make it easy to develop a ser-

vice that conforms to the framework.

Overall, deploying the GIFT architecture and attempting to develop a new service

for the system are both heavy tasks rather than lightweight ones. Without support

from the GIFT project, this would make developing for the framework quite costly.

The software expertise to design services is heavy, since there are few tools to make

this process easier. Despite using a service-oriented paradigm, the system does not

offer a suite of example services or stub service in common programming languages.

Unless developers have expertise in Java and can carefully inspect the available API,

they would not be able to integrate a new service into GIFT. The software expertise to

use existing services is also heavy. The minimal use-case example currently installs

all GIFT services and requires a database. Services are not handled using a repository

or package manager approach, but are simply installed with no streamlined method to

manage them. Since there is no way to install the service communication layer as a

standalone system, the software expertise to stand up any message-passing layer be-

tween agents is also heavy. Finally, no message ontology is available because the

system messages are invoked to carry API calls between services. While ontologies

for GIFT have been discussed, these ontologies are focused on the types of services in

the system rather than the types of messages employed (Sottilare, 2012). This forces

communication between services to revolve around the API of services rather than on

the information they are passing.

In its current form, the GIFT framework would not be well-suited for a

multiagent system ITS. It also does not support many of the aspects of such a frame-

work that would aid either of the major classes of ITS developers to base their pro-

jects on GIFT. A one-off innovation, such as a PhD candidate’s thesis project, would

likely be significantly burdened by the effort to stand up the system without help and

would need to learn the API for existing services before they could be useful. A large

group focusing on an established ITS architecture would be limited by these factors

and also by the lack of interfaces and supporting tools for the programming languages

used by their legacy projects. Most importantly, since services do not communicate

 112

using a more general agent communication language, significant effort will likely be

required to tailor communication to the specific API function interfaces. Without the

ability to specify a common message ontology for the agent communication language,

it would be impractical to develop a multiagent tutoring system using GIFT. Tradi-

tional API’s based on interfaces are not well-suited to this task, as they conflate pro-

cess names with the meanings of the data they produce. Traditional API functions are

also poorly suited for dynamic function binding and other advanced patterns that

could be used by message-passing agents.

4 Discussion and Recommendations

This analysis has explored the potential benefits and requirements related to building

an intelligent tutoring system based on multiagent architecture principles and an agent

communication language. These requirements were then compared with the GIFT

framework’s current capabilities. Our finding is that the current implementation of

GIFT is not currently well-suited to these advanced design patterns. While hardware

requirements are low, software expertise to design new GIFT services and to use the

existing GIFT services is fairly high. Additionally, message system of GIFT current-

ly reflects an API pattern with heavy reliance on knowing the other services in the

framework. This is unfortunate, as lighter publish-and-subscribe patterns have be-

come increasingly popular in the industry due to their adaptability (Jokela,

Zahemszky, Rothenberg, Arianfar, & Nikander, 2009). This said, GIFT represents a

project that is far closer to these patterns than any prior ITS project. GIFT has also

spurred discussion on patterns for service-oriented tutoring that were not previously at

the forefront of ITS design.

Based on this analysis of GIFT, some design recommendations are indicated for

future iterations. From the perspective of developing tutoring agents, the first major

recommendation is to center communication of services around explicit message

passing where agents publish their knowledge using speech acts. To support this goal,

feedback should be gathered from major ITS research groups to propose messages for

an initial ontology of recommended messages that determine the information passed

between components of the system. To add services to the GIFT framework, develop-

ers should only need to know this ontology of messages so they can use it or extend it

accordingly. Services should not need to know who their messages are received by,

only what messages they receive, what messages they produce, and when they wish to

produce a message.

The second major recommendation is the need to separate the GIFT services

from the GIFT communication layer. If GIFT is truly a general framework, it must

ultimately provide a specialized communication layer as its core. Other services

should be treated as plug-ins that can be installed or removed using a package-

management approach. This includes the core GIFT services that are bundled with the

system. Separating the services from the core architecture would greatly simply the

ability to provide a minimal working example and would make the system more flex-

ible overall. As the system itself appears to be designed with such boundaries in mind,

this should primarily be a matter of how setup packages are structured and installed.

 113

Related to this issue, a very basic installation that works “out of the box” must be

available for developers to start working with GIFT.

The third major recommendation is that GIFT should provide small suites of

utilities, wrappers, and stubs to help develop services using a variety of common lan-

guages. A generalized system must not assume that developers will convert their code

to Java or build their own communication wrappers for their native language. While

the use of remote procedure API calls has sidestepped this issue slightly, it has not

completely removed it. Additionally, a more flexible message-passing paradigm

would require such supporting tools to an even greater extent.

Finally, in the present analysis we have focused only on issues of system archi-

tecture, as is proper given that GIFT intends to serve as a general purpose framework,

not a stand-alone ITS. However, in so doing we have arguably paid insufficient atten-

tion to other important issues that GIFT approaches, such as the need for shareable

domain models, learner models, and instructional modules. As the developers of

GIFT have pointed out, legacy ITSs tend to be built as “unique, one-of-a-kind, largely

domain-dependent solutions focused on a single pedagogical strategy” (Sottilare,

Brawner, Goldberg & Holden, 2012:1). After some four decades of independent effort,

a case can be made that the time has come for a much greater degree of collaboration

and sharing among members of the ITS community, including both veterans and new-

comers. This means not just the sharing of ideas, but of working software objects and

structures. The development of a lightweight, multiagent architecture that supports

“autonomous cooperation” among communities of distributed software agents united

by an emergent common language offers a first step in the process, but it is by no

means the last.

5 References

1. Austin, J. L.: How to do things with words. Oxford University Press, New York (1965)

2. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE: A software framework for devel-

oping multi-agent applications. Lessons learned, Information and Software Technology,

50(1), 10–21 (2008)

3. Bittencourt, I. I., de Barros Costa, E., Almeida, H. D., Fonseca, B., Maia, G., Calado, I., Sil-

va, A. D.: Towards an ontology-based framework for building multiagent intelligent tutoring

systems. In: Simpósio Brasileiro de Engenharia De Software. Workshop on Software Engi-

neering for Agent-oriented Systems, III, João Pessoa, 2007. Proceedings of the Porto

Alegre, SBC, pp. 53–64 (2007)

4. Chaib-draa, B., Dignum, F.: Trends in agent communication language. Computational Intel-

ligence, 18(2), 89–101 (2002)

5. Chen, W., Mizoguchi, R.: Learner model ontology and learner model agent. Cognitive Sup-

port for Learning-Imagining the Unknown, 189–200 (2004)

6. El Mokhtar En-Naimi, A. Z., Amami, B., Boukachour, H., Person, P., Bertelle, C.: Intelli-

gent Tutoring Systems Based on the Multi-Agent Systems (ITS-MAS): The Dynamic and

Incremental Case-Based Reasoning (DICBR) Paradigm. IJCSI International Journal of

Computer Science Issues 9(6), 112–121 (2012)

 114

7. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication lan-

guage. In: Proceedings of the third international conference on Information and knowledge

management, pp. 456–463. ACM (1994, November)

8. Franklin, S., Graesser, A.: Is it an Agent, or just a Program?: A Taxonomy for Autonomous

Agents. In: Intelligent agents III agent theories, architectures, and languages, pp. 21–35.

Springer Berlin Heidelberg (1997)

9. Hülsmann, M., Scholz-Reiter, B., Freitag, M., Wucisk, C., De Beer, C.: Autonomous coop-

eration as a method to cope with complexity and dynamics?–A simulation based analyses

and measurement concept approach. In: Y. Bar-Yam (ed.), Proceedings of the International

Conference on Complex Systems (ICCS 2006), vol. 2006. Boston, MA, USA (2006)

10. Jokela, P., Zahemszky, A., Rothenberg, C., Arianfar, S., Nikander, P.: LIPSIN: Line speed

publish/subscribe inter-networking. In: ACM SIGCOMM Computer Communication Re-

view, 39(4), pp. 195–206. ACM Press (2009, August)

11. Kone, M. T., Shimazu, A., Nakajima, T.: The state of the art in agent communication lan-

guages. Knowledge and Information Systems, 2(3), 259–284 (2000)

12. Lavendelis, E., Grundspenkis, J.: Design of multi-agent based intelligent tutoring systems.

Scientific Journal of Riga Technical University. Computer Sciences, 38(38), 48–59 (2009)

13. Li, S., Kokar, M. M.: Agent Communication Language. In: Flexible Adaptation in Cognitive

Radios, pp. 37–44. Springer New York (2013)

14. Nye, B. D.: ITS and the Digital Divide: Trends, Challenges, and Opportunities. In: Artificial

Intelligence in Education (In Press).

15. O'Brien, P. D., Nicol, R. C.: FIPA–towards a standard for software agents. BT Technology

Journal, 16(3), 51–59 (1998)

16. Poltrack, J., Hruska, N., Johnson, A., Haag, J.: The Next Generation of SCORM: Innovation

for the Global Force. In: The Interservice/Industry Training, Simulation & Education Con-

ference (I/ITSEC), vol. 2012, no. 1. National Training Systems Association (2012, January)

17. Searle, J. R.: Speech acts: An essay in the philosophy of language. Cambridge University

Press (1969)

18. Sottilare, R. A.: Making a case for machine perception of trainee affect to aid learning and

performance in embedded virtual simulations. In: Proceedings of the NATO HFM-169 Re-

search Workshop on the Human Dimensions of Embedded Virtual Simulation. Orlando,

Florida (2009, October)

19. Sottilare, R. A.: Considerations in the development of an ontology for a generalized intelli-

gent framework for tutoring. In: Proceedings of the International Defense and Homeland Se-

curity Simulation Workshop (2012)

20. Sottilare, R. A., Goldberg, B. S., Brawner, K. W., Holden, H. K.: A Modular Framework to

Support the Authoring and Assessment of Adaptive Computer-Based Tutoring Systems

(CBTS). In: The Interservice/Industry Training, Simulation & Education Conference

(I/ITSEC), vol. 2012, no. 1. National Training Systems Association (2012, January)

21. Windt, K., Böse, F., Philipp, T.: Criteria and application of autonomous cooperating logistic

processes. In: Gao, J.X., Baxter, D.I., Sackett, P.J. (eds.) Proceedings of the 3rd Internation-

al Conference on Manufacturing Research. Advances in Manufacturing Technology and

Management (2005)

22. Zouhair, A., En-Naimi, E. M., Amami, B., Boukachour, H., Person, P., Bertelle, C.: Intelli-

gent tutoring systems founded on the multi-agent incremental dynamic case based reason-

ing. In: Information Science and Technology (CIST), 2012 Colloquium, pp. 74–79. IEEE

(2012, October)

 115

Authors

Benjamin D. Nye is a post-doctoral fellow at the University of Memphis, working on

tutoring systems architectures as part of the ONR STEM Grand Challenge. Ben re-

ceived his Ph.D. from the University of Pennsylvania and is interested in ITS archi-

tectures, educational technology for development, and cognitive agents.

Dr. Chip Morrison is a Faculty Affiliate at IIS. A graduate of Dartmouth, Dr. Mor-

rison holds an M.A. from the University of Hong Kong and an Ed.D. from Harvard.

His current research interests include models of human cognition and learning, and

the application of these models to conversation-based intelligent learning systems.

 116

Recommendations For The Generalized Intelligent

Framework for Tutoring Based On The Development Of

The DeepTutor Tutoring Service

VASILE RUS, NOBAL NIRAULA, MIHAI LINTEAN, RAJENDRA BANJADE, DAN

STEFANESCU, WILLIAM BAGGETT

The University of Memphis

Department of Computer Science/Institute for Intelligent Systems

Memphis, TN 38138

vrus@memphis.edu

Abstract. We present in this paper the design of DeepTutor, the first dialogue-

based intelligent tutoring system based on Learning Progressions, and its

implications for developing the Generalized Framework for Intelligent

Tutoring. We also present the design of SEMILAR, a semantic similarity

toolkit, that helps researchers investigate and author semantic similarity models

for evaluating natural language student inputs in conversatioanl ITSs.

DeepTutor has been developed as a web service while SEMILAR is a Java

library. Based on our experience with developing DeepTutor and SEMILAR,

we contrast three different models for developing a standardized architecture

for intelligent tutoring systems: (1) a single-entry web service coupled with

XML protocols for queries and data, (2) a bundle of web services, and (3)

library-API. Based on the analysis of the three models, recommendations are

provided.

Keywords: intelligent tutoring systems, computer based tutors, dialogue

systems

1 Introduction

The General Framework for Intelligent Tutoring (GIFT; Sottilare et al, 2012) aims at

creating a modular ITS/CBTS (intelligent tutoring systems/computer-based tutoring

systems) framework and standards to foster “reuse, support authoring and optimiza-

tion of CBTS strategies for learning, and lower the cost and skillset needed for users

to adopt CBTS solutions for military training and education.” GIFT has three primary

functions: (1) to help with developing components for CBTS and whole tutoring sys-

tems; (2) to provide an instructional manager that integrates effective and exploratory

tutoring principles and strategies for use in CBTS; and (3) to provide an experimental

test bed to analyze the effectiveness and impact of CBTS components, tools, and

methods. That is, GIFT is both a software environment and standardization effort. The

availability of a GIFT software package suggests that for now the software environ-

 117

ment has been given priority to standardization efforts. This paper intends to help

make progress towards a GIFT standardization.

To that end, we present the design of DeepTutor (www.deeptutor.org; Rus et al.,

to appear), the first CBTS based on the emerging framework of Learning Progressions

proposed by the science education research community (LPs; Corcoran, Mosher, &

Rogat, 2009). LPs can be viewed as incrementally more sophisticated ways to think

about an idea that emerge naturally while students move toward expert-level under-

standing of the idea (Duschl et al., 2007). That is, LPs capture the natural sequence of

mental models and mental model shifts students go through while mastering a topic. It

is this learner-centric view that differentiates LPs from previous attempts to reform

science education. The LPs framework provides a promising way to organize and

align content, instruction, and assessment strategies in order to give students the op-

portunity to develop deep and integrated understanding of science ideas.

DeepTutor is developed as a web service and a first prototype is fully accessible

through a browser from any Internet-connected device, including regular desktop

computers and mobile devices such as tablets. As of this writing, DeepTutor is de-

signed as a bundle of two web services: (1) the tutoring service itself accessed by

learners, and (2) the support service which includes everything else: authoring and

content management, experiment management, user management, and instruction

management. The latter service is viewed as a single service because there is a single-

entry point to access all these functions. The tutoring service exports its functionality

through an XML-based protocol. Third party developers can use their own develop-

ment environments to design custom DeepTutor clients and integrate them with the

DeepTutor tutoring service; all they need is to understand and generate an XML-like

protocol, which is a query-language for accessing DeepTutor functionality.

We contrast the DeepTutor design with the design of another software environ-

ment, SEMILAR (www.semanticsimilarity.org; Rus et al., 2013). SEMILAR can be

used to author semantic similarity methods for semantic processing tasks such as the

task of assessing students’ natural language inputs in dialogue-based CBTSs.

SEMILAR, a SEMantic simILARity toolkit, has been designed as a Java library. Ac-

cess to SEMILAR functionality is already available through a Java API (Application

Programming Interface). Users can use the semantic similarity methods in SEMILAR

as long as they link the SEMILAR library to their own Java programs. If a developer

were to use SEMILAR from non-Java applications, a solution would be for the

SEMILAR library to export its functionality through an XML-like protocol which is

easily readable from any programming language. This latter integration solution is

basically the export of functionality approach available in the DeepTutor tutoring

service. SEMILAR has not been developed as a web service because it was initially

developed for our own internal use. We have plans to make it available as a web ser-

vice in the future. A GUI-based Java application has been developed and is currently

tested to offer non-programmers easy access to the SEMILAR functionality.

The two designs, DeepTutor and SEMILAR, will help us discuss concretely three

models for standardizing and implementing CBTS functionality to meet GIFT’s

goals: (1) a single-entry web service, e.g. the two DeepTutor services can be collated

into one service (a one-stop-shop model); (2) a bundle of web services – the current

DeepTutor design in which different functionality is accessed through different ser-

vice points, and (3) a library of components accessed through an API. The three mod-

http://www.deeptutor.org/
http://www.semanticsimilarity.org/

 118

els share the common requirement of standardizing the communication between a

client/user and provider of tutoring components/functions. While all three models

have advantages and disadvantages, we favor the web services models for a General-

ized Framework for Intelligent Tutoring as these models better suit the emerging

world of mobile computing in which users access services in the cloud over the net-

work as opposed to downloading full applications on their local, energy-sensitive

mobile devices. Furthermore, the combination of a tutoring service and XML-based

protocols for data and commands/queries fits very well with recent standards for rep-

resenting knowledge proposed by the Semantic Web community, standards for au-

thoring behavior of dialogue systems (see the FLORENCE dialogue manager frame-

work; Fabbrizio & Lewis, 2004), or previous work in the intelligent tutoring commu-

nity (see CircSim’s mark-up language; Freedman et al., 1998).

The rest of the paper is organized as in the followings. The next section provides

an overview of the DeepTutor web service. Then, we describe the design of the

SEMILAR library. We conclude the paper with Discussion and Conclusions in which

we make recommendations for GIFT based on the three models we discussed.

2 The Intelligent Tutoring Web Service DeepTutor

DeepTutor is a conversational ITS that is intended to increase the effectiveness of

conversational ITSs beyond the interactivity plateau (VanLehn, 2011) by promoting

deep learning of complex science topics through a combination of advanced domain

modeling methods (based on LPs), deep language and discourse processing algo-

rithms, and advanced tutorial strategies. DeepTutor currently targets the domain of

conceptual Newtonian Physics but it is designed with scalability in mind (cross-topic,

cross-domain).

DeepTutor is a problem solving coaching tutor. DeepTutor challenges students to

solve problems, called tasks, and scaffolds their deep understanding of complex scien-

tific topics through constructivist dialogue and other elements, e.g. multimedia items.

DeepTutor uses the framework of Learning Progressions (LPs) to drive its scaffolding

at macro- and micro-level (Rus et al, to appear). There is an interesting interplay

among assessment, LPs, instructional tasks, and advanced tutoring strategies that is

finely orchestrated by DeepTutor. The LPs are aligned with an initial, pre-tutoring

assessment instrument (i.e., pretest) which students must complete before interacting

with the system. Based on this first summative assessment, an initial map of students’

knowledge level with respect to a topic LP is generated. The LPs encode both

knowledge about the domain and knowledge about students’ thinking in the form of

models that students use to reason about the domain. The student models vary from

naïve to weak to strong/mastery models. For each level of understanding in the LP a

set of instructional tasks are triggered that are deemed to best help students make

progress towards mastery, which coincides with the highest level of understanding

modeled by the LP.

The task representation is completely separated from the executable code and

therefore DeepTutor is compliant with the principles adopted by GIFT from Patil and

Abraham (2010). Also, in accordance with GIFT principles (Sottilare et al., 2012),

DeepTutor’s pedagogical module interacts with the learner module (the Student) and

 119

adapts the scaffolding tasks and dialogue according to the learner’s level of

knowledge.

DeepTutor is an ongoing project. As of this writing, different modules are at dif-

ferent stages of maturity. For instance, our LP has been empirically validated based

on data collected from 444 high-school student responses. Other components, e.g. the

general knowledge module that can handle tasks related to general knowledge such as

answering definitional questions (“What does articulate mean?”), is still in the works.

The system as a whole will be fully validated in the next 6-12 months.

As already mentioned, DeepTutor has been designed as a web service accessible

via HTML5-compatible clients, typically web browsers. The familiarity of users with

web browsers and eliminating the need to install software packages (except the web

browser) on each user’s own computer environment makes it extremely convenient

for users to access DeepTutor from any Internet-connected device and at the same

time opens up unprecedented economies of scale for tutoring research. For instance,

during Spring 2013 DeepTutor has been successfully used by more than 300 high-

school students
7
 from their Internet-device of choice (outside of traditional classroom

instruction or experimental lab): home computer, tablet, mobile phones, or library

computer.

All communication between the client and the DeepTutor server is handled

through an XML-like protocol. The protocol specifies both commands and data that

both client and server can interpret. The client communicates user actions and data to

the server and the server replies with appropriate responses. Currently, the responses

are in the form of display commands and values for various tutoring elements that are

visible to the user on screen. That is, the client simply uses the information to update

the corresponding interface elements, e.g. the client needs to update the dialogue his-

tory box with the most recent DeepTutor feedback response. The protocol contains

sufficient information for learner software clients to display the elements of the stand-

ard DeepTutor interface. At the same time, the client uses the XML protocol to send

the DeepTutor server important information about the user, e.g. user actions such as

turning the talking head off, typed responses, time stamps, etc.

There are two major phases for learner clients to connect to the full DeepTutor

system: the user authentication and initialization phase and the tutoring phase. In the

authentication and initialization phase the user authenticates herself. A set of initiali-

zation parameters are sent to the DeepTutor system as well. Currently, the initializa-

tion parameters are set from the instructor view of the system, e.g. the research-

er/experimenter or instructor/teacher can set a particular instructional strategy to be

used by the system for a particular user or groups of learners. We can imagine in the

future that these parameters are set dynamically based on the student model retrieved

from a persistent database of learner information.

7
 This group of students is different from the 444 student group used for validat-

ing the LP.

 120

Figure 10. Three DeepTutor clients showing three different renderings of the learner-view of the DeepTutor

Service: the currently official learner view in DeepTutor (top), an under-development Android app (bottom
left) and a client developed for a Masters project (bottom right).

Client applications that access the full DeepTutor tutoring system (not individual

components) can be designed quite easily. The main reason is the relatively simple

but efficient current interface that allows the learner to focus on the interactive tutorial

dialogue. Figure 1 bottom shows on the left-hand side an Android-based app client for

DeepTutor designed by a small team of 5 Computer Science undergraduate students

as a semester-long class project. The app has an interface design for a vertical versus

horizontal positioning of the mobile device. The right-hand side of Figure 1 includes

another DeepTutor client designed by a Masters student in Computer Science as his

Masters project on Human-Computer Interaction.

It should be noted that more complex learner views are in the plans for

DeepTutor. For instance, we plan to add several supplemental instructional aids and

monitoring and informing elements such as how many tasks are left to cover in the

current session or game-like features such as showing what percentage of a learner’s

 121

peers successfully finished the current task. The current interface of DeepTutor is as

simple as it can be and it was intentionally kept this way. The goal was to reduce the

number of on-screen distractors in order for the learner to focus on the tutorial dia-

logue. Adding more elements would make the interface richer which could distract

the learners from the main tutorial interaction. It would be an interesting topic to in-

vestigate though.

We imagine that other users, e.g. developer of tutoring systems, may need to ac-

cess specific functionality/components of DeepTutor according to the GIFT goals. As

an example, we can imagine someone willing to access the output of the assessment

module. As of this writing, the client-server protocol does not allow export of specific

functionality. To allow export of functionality at a finer-grain level the current

DeepTutor XML protocol must be extended such that the server provides develop-

ers/researcher clients output from specific modules, e.g. the assessment module. The

exact format of the query and response must be clearly defined.

We believe that efforts to standardize access to GIFT-defined CBTS modules us-

ing XML protocols are best. The specification of these protocols needs to be done at

different levels of abstractness such that the protocol is general enough to be applica-

ble to all types of tutoring systems (at higher, more general levels of specification)

and detailed enough for specific types of tutoring systems to be readily implementable

by various groups. For instance, a general specification for querying the assessment

module would include a general query element that indicates that an user input is

needed together with a context variable which may contain other useful information

for best assessing the student input (the context variable could be as simple as an user

identifier and a session identifier or much more complex including a comprehensive

list of factors that might impact assessment) and the format of the response from the

assessment component of the tutoring service. This general specification can be fur-

ther specified for benchmark-based tutoring systems (AutoTutor – Graesser et al.,

2005, Guru – Olney et al. 2012; DeepTutor – Rus et al., to appear) as well as for rea-

soning-based tutoring systems (Why-Atlas; VanLehn et al., 2007). We use this broad

categorization of tutoring systems to help us illustrate the need for further specifying

general query formats. A benchmark-tutoring system is one that requires an expert-

generated or benchmark response against which the student response is assessed

(DeepTutor is such a system; Rus et al., to appear). For benchmark-tutoring systems

the assessment query will need to pass (a pointer to) the benchmark response as one

of the input parameters. Reasoning-based systems are able to infer the correct re-

sponse automatically (Why-Atlas; VanLehn et al., 2007). For reasoning-based sys-

tems the benchmark response may not be needed but instead (a pointer to) a

knowledge base.

In summary, a web service together with XML-based protocols may offer the

best option for moving forward in GIFT. The advantage of using a web service solu-

tion with an XML-based protocol has the advantage of being easily extendable (new

functionality can be added by simple adding new tags in the XML protocol). Another

advantage is the decoupling the logical view from the actual implementation. The

decoupling of functionality from actual implementation can be very useful. For ex-

ample, the XML protocol can offer a GIFT-like view of the system with components

so defined to meet GIFT standards while the actual, back-end implementation can be

so designed to best fit particular types of ITSs. Sometimes refactoring and exporting

 122

functionality is conceptually challenging as for some tutoring systems there is a tight

connection between components that GIFT suggest be separate. For instance, in LP-

based ITSs such as DeepTutor, there is a tight relationship between learner models

and the domain model because the domain is organized from a learner perspective

(Rus et al., in press). Separating the learner model from the domain model is concep-

tually challenging and probably not recommended. The decoupling of functionality

allows keeping the best implementation while offering differing views recommended

by standards.

The combination of web service/XML protocol is also more advantageous when

it comes to updates and extensions. There is no need to download and recompile a

client application with the latest version of a component or the whole tutoring system.

We conclude this section by noting that the service model can further be refined

into two types of service-based models: single service versus bundle of services. The

current DeepTutor system is a bundle of services. In this model, the functionality of

the various modules would be available as separate web services, e.g. the assessment

module could be a separate web service. There are some interesting aspects of the

bundle of services model. For instance, in DeepTutor some functionality is offered

through a combination of the two DeepTutor services: debugging capabilities are

offered through a combination of the tutoring and support services. That is, a devel-

oper polishing various components has to use both services.

All services can eventually be bundled together in a single, deep service (contain-

ing many subservices) in which case we have a single-entry service model. This

model implements the concept of a one-stop-shop meaning users will use on access

point for the components or the whole tutoring system.

3 The SEMILAR Library For Assessing Natural Language

Student Inputs

Our SEMILAR (SEMantic similarity) toolkit, includes implementations and exten-

sions of a number of algorithms proposed over the last decade to address the general

problem of semantic similarity. SEMILAR includes algorithms based on Latent Se-

mantic Analysis (LSA; Landauer et al., 2007), Latent Dirichlet Allocation (Blei, Ng,

& Jordan, 2003), and lexico-syntactic optimization methods with negation handling

(Rus & Lintean, 2012a; Rus et al., 2012b); Rus et al, in press). Due to space reasons,

we do not present the set of methods available but rather discuss the design of

SEMILAR as a Java library and its implications for using an akin design for GIFT.

The Java library design for SEMILAR has the advantage of being easily integrat-

ed as compiled code into Java applications which, at least in theory, should be plat-

form independent. However, users have to download the whole package, install it, and

then compile it with their tutoring systems. If these systems or components are written

in a programming language different from Java, extra effort will be needed for inte-

gration. We call this the library-API model for a GIFT framework. Indeed, a GIFT

framework based on the library-API model will require downloading and installing

large software packages on various platforms by users of various technical back-

grounds which may make the whole effort more challenging. For instance, the

SEMILAR library and application is 300MB large (it includes large models for syn-

 123

tactic parsing among other things). SEMILAR can be regarded as a tutoring compo-

nent for assessing students’ natural language inputs. If ITS developers were to use

SEMILAR as a library they have to download it and integrate it in their products.

They have to install and update the API when updates become available. In fact, this

is how SEMILAR is currently integrated in DeepTutor. Changes in implementation,

e.g. bug fixes, would require a new download and reintegration of the systems that

rely on the library. When SEMILAR will be available as a web service, all is needed

is understanding the API, in the form of an XML-based communication protocol, and

connect to the tutoring service. The need for a network connection are a potential risk

for the service model in the form of network congestion which may make the service

inaccessible or slow at times.

4 Discussion and Conclusions

We presented three models based on our experience with implementing a set of

coherent functionalities related to intelligent tutoring systems and semantic processing.

Each of the models has its own advantages and disadvantages. Ideally, all three mod-

els should be adopted by GIFT. However, if it were to choose we believe that the

service-based models are the best solution for an emerging world of mobile devices in

which accessing software services in the cloud is becoming the norm. The library-API

and web service solutions are functionally equivalent with the former presenting more

technical challenges for users with diverse backgrounds and computing environments

and also being less suitable for a mobile computing world.

One apparent downside of the web service model is that potential developers

cannot alter the code themselves in order to conduct research. This is just an apparent

downside as a quick fix would be for each component to offer enough parameters, in

the form of a switchboard, to allow potential users to alter behavior without the need

to change the code. In fact, this solution should be preferred as users would not need

to spend time to understand and alter the code, a tedious and error-prone activity.

Standardization efforts for XML-based protocols may start with previous efforts

where available. For instance, the dialogue processing community has made attempts

to standardize dialogue acts/speech acts, a major component in dialogue-based ITSs,

for more than a decade. The resulting Dialogue Act Mark-Up in Several Layers

(DAMSL) XML schema can be used as a start to standardize speech acts in dialogue

ITSs.

In summary, we favor a one-stop-shop service model with switchboard-like fa-

cilities for implementing GIFT. Table 1 below illustrates the pros and cons of the

three models discussed in this paper.

 124

Table 6. Comparison of the three proposed model: single-entry service, bundle of services, and library.

 One-Stop-

Shop/Single-Entry

Service

Bundle of Ser-

vices

Library

Programming

Language Inde-

pendent

YES YES NO

Install and update

on local machine/

environment

NO NO YES

Fit for emerging

mobile and cloud-

computing fitness

EXCELLENT EXCELLENT POOR

Customization VERY GOOD VERY GOOD EXCELLENT

Cost of Customi-

zation

LOW MEDIUM HIGH (error prone

and time to work

with someone else’

code)

Extendible EXCELLENT EXCELLENT GOOD

5 Acknowledgements

The authors would like to thank members of DeepTutor project

(www.deeptutor.org). This research was supported by the Institute for Education Sci-

ences (IES) under award R305A100875 by a grant from the Army Research Lab

(ARL). Any opinions, findings and conclusions, or recommendations expressed in

this paper are those of the authors and do not necessarily reflect the views of the IES

or ARL.

6 References

1. Blei, D.M., Ng, A.Y., & Jordan, M.I. 2003. Latent dirichlet allocation, The Journal of Ma-

chine Learning Research 3, 993-1022.

2. Corcoran, T., Mosher, F.A., & Rogat, A. (2009). Learning progressions in science: An

evidencebased approach to reform. Consortium for Policy Research in Education Report

#RR-63. Philadelphia, PA: Consortium for Policy Research in Education.

3. Duschl, R.A., Schweingruber, H.A., & Shouse, A. (Eds.). (2007). Taking science to school:

Learning and teaching science in grades K-8. Washington, DC: National Academy Press.

4. Graesser, A. C.; Olney, A.; Haynes, B. C.; and Chipman, P. 2005. Autotutor: A cognitive

system that simulates a tutor that facilitates learning through mixed-initiative dialogue. In

Cognitive Systems: Human Cognitive Models in Systems Design. Mahwah: Erlbaum.

5. Landauer, T.; McNamara, D. S.; Dennis, S.; and Kintsch, W. (2007). Handbook of Latent

Semantic Analysis. Mahwah, NJ: Erlbaum.

6. Freedman, Reva, Yujian Zhou, Jung Hee Kim, Michael Glass, and Martha W. Evens.

 125

7. SGML-Based Markup as a Step toward Improving Knowledge Acquisition for Text Genera-

tion AAAI 1998 Spring Symposium: Applying Machine Learning to Discourse Processing

8. VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring

Systems, and Other Tutoring Systems, Educational Psychologist, 46:4, 197-221.

9. Olney, A., D'Mello, A., Person, N., Cade, W., Hays, P., Williams, C., Lehman, B., &

Graesser, A. (2012). Guru: A computer tutor that models expert human tutors. In S. Cerri,

W. Clancey, G. Papadourakis & K. Panourgia (Eds.), Proceedings of the 11th International

Conference on Intelligent Tutoring Systems (pp. 256-261). Springer-Verlag.

10. Patil, A. S., & Abraham, A. (2010). Intelligent and Interactive Web-Based Tutoring System

in Engineering Education: Reviews, Perspectives and Development. In F. Xhafa, S. Caballe,

A. Abraham, T. Daradoumis, & A. Juan Perez (Eds.), Computational Intelligence for Tech-

nology Enhanced Learning. Studies in Computational Intelligence (Vol 273, pp. 79-97).

Berlin: Springer-Verlag.

11. Rus, V. & Lintean, M. (2012a). A Comparison of Greedy and Optimal Assessment of Natu-

ral Language Student Input Using Word-to-Word Similarity Metrics, Proceedings of the

Seventh Workshop on Innovative Use of Natural Language Processing for Building Educa-

tional Applications, NAACL-HLT 2012, Montreal, Canada, June 7-8, 2012.

12. Rus, V., Lintean, M., Moldovan, C., Baggett, W., Niraula, N., Morgan, B. (2012b). The

SIMILAR Corpus: A Resource to Foster the Qualitative Understanding of Semantic Similar-

ity of Texts, In Semantic Relations II: Enhancing Resources and Applications, The 8th Lan-

guage Resources and Evaluation Conference (LREC 2012), May 23-25, Instanbul, Turkey.

13. Rus, V.; Lintean, M.; Banjade, R.; Niraula, N.; Stefanescu, D. (2013). SEMILAR: The Se-

mantic Similarity Toolkit, The 51st Annual Meeting of the Association for Computational

Linguistics, System Demo Paper, August 4-9, 2013, Sofia, Bulgaria.

14. Rus, V., D’Mello, S., Hu, X., and Graesser, A.C. (to appear) .Recent Advances In Conversa-

tional Intelligent Tutoring Systems, AI Magazine.

15. VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A., & Rose, C. P. (2007).

When are tutorial dialogues more effective than reading? Cognitive Science, 31, 3-62.

16. VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring

Systems, and Other Tutoring Systems, Educational Psychologist, 46:4, 197-221.

Authors

Vasile Rus: Dr. Vasile Rus is an Associate Professor of Computer Science with a

joint appointment in the Institute for Intelligent Systems (IIS). Dr. Rus’ areas of ex-

pertise are computational linguistics, artificial intelligence, software engineering, and

computer science in general. His research areas of interest include question answering

and asking, dialogue-based intelligent tutoring systems (ITSs), knowledge representa-

tion and reasoning, information retrieval, and machine learning. For the past 10 years,

Dr. Rus has been heavily involved in various dialogue-based ITS projects including

systems that tutor students on science topics (DeepTutor), reading strategies

(iSTART), writing strategies (W-Pal), and metacognitive skills (MetaTutor). Current-

ly, Dr. Rus leads the development of the first intelligent tutoring system based on

learning progressions, DeepTutor (www.deeptutor.org). He has coedited three books,

received several Best Paper Awards, and authored more than 90 publications in top,

peer-reviewed international conferences and journals. He is currently Associate Editor

of the International Journal on Artificial Intelligence Tools.

 126

Nobal Niraula: Nobal B. Niraula received the B.E. in computer engineering from

Pulchowk Campus, Tribhuvan University, Nepal, the M.E. in information and com-

munication technology and the M.Sc. in communication networks and services from

Asian Institute of Technology, Thailand and Telecom SudParis, France respectively.

He was a research engineer at INRIA, Saclay, France where he worked in semantic

web, database systems and P2P networks. Currently, he has been doing his PhD at

The University of Memphis, USA. His research interests are primarily in Intelligent

Tutoring Systems, Dialogue Systems, Information Extraction, Machine Learning,

Data Mining, Semantic Web, P2P and Ad hoc networks. He has received the best

paper and the best presentation awards. He also has intern experiences in leading

research labs such as AT&T Labs Research.Mihai Lintean: Dr. Mihai Lintean is cur-

rently a research scientist at Carney Labs LLC and previous to that he was a Postdoc-

toral Research Fellow in the Computer Science Department at the University of

Memphis, where he worked with Dr. Vasile Rus ondialogue based tutoring systems

for teaching conceptual physics to high school students. Mihai's primary research

interests are in Natural Language Processing (NLP), with focused applicability on

educational technologies such as intelligent tutoring systems. Particularly he is inter-

ested in measuring semantic similarity between texts, representing knowledge through

relational diagrams of concepts, automatic generation of questions, and using various

machine learning techniques to solve other complex NLP problems. Mihai has pub-

lished numerous papers and articles in reputable, peer-reviewed conferences and jour-

nals. He currently serves as co-chair of the Applied Natural Language Processing

Special Track at the 25th International Conference of the Florida Artificial Intelli-

gence Research Society (FLAIRS 2012).

Rajendra Banjade: Rajendra Banjade is a PhD student in Computer Science at The

University of Memphis. He is a research assistant in the DeepTutor project

(www.deeptutor.org) - a dialogue based tutoring system. Rajendra's research interests

are in the area of Natural Language Processing, Information Retrieval, and Data Min-

ing. Currently, he is focusing on measuring semantic similarity of short texts (word

and sentence level) using knowledge based and corpus based methods and heading

towards more human like inferencing techniques. His current research focus is on

robust methods to evaluate student answers in conversational intelligent tutoring sys-

tems. He is keenly dedicated to enhancing the SEMILAR toolkit

(www.semanticsimilarity.org) which is an off-the-shelf semantic similarity toolkit.

Before joining The University of Memphis, he worked for five years as a Software

Engineer (R&D) at Verisk Information Technologies CMMI III, Kathmandu (a sub-

sidiary of Verisk Analytics inc.) where he got opportunities working on various

healthcare data mining projects including DxCG Risk Solutions engine. He received

an outstanding employee award at Verisk. Rajendra is a certified Scrum Master and

Software Developer, and Certified HIPAA professional. He holds bachelor's degree in

Computer Engineering.

William B. Baggett: William B. Baggett earned a PhD in Cognitive Psychology from

The University of Memphis in 1998. He also holds an MS in Computer Science and

an MBA in Management Information Systems. William is currently a Project Coordi-

 127

nator in the Computer Science Department at The University of Memphis, where he

works on DeepTutor. DeepTutor is an intelligent tutoring system, implemented as a

web application, which uses natural language dialogue to teach conceptual physics to

high school and college students. Previously, William was a Professor and part-time

Department Chair of Computer Information Systems at Strayer University and an

adjunct Professor of Computer Science at The University of Memphis. In both posi-

tions, William taught graduate and undergraduate Computer Science courses, men-

tored, tutored, and advised students, and developed new curricula. He was also a

Business Analyst at FedEx Express where he wrote software specifications for

PowerPad, a mission-critical handheld computer carried by FedEx Express couriers.

PowerPad software is designed to promote optimal courier behavior including the

efficient pickup and delivery of FedEx shipments, package tracking, and conformance

to policies and procedures for a wide variety of domestic and international services.

Dan Ștefănescu: Dr. Dan Ștefănescu is a Postdoctoral Research Fellow in the De-

partment of Computer Science of the University of Memphis and the Institute for

Intelligent Systems (IIS). As a member of DeepTutor team, his main research activity

is dialogue-based Intelligent Tutoring Systems. Previously, Dr. Ștefănescu was a Sen-

ior Researcher at the Research Institute for Artificial Intelligence (RACAI) in Bucha-

rest, Romania. He graduated from the Computer Science Faculty of ”A.I. Cuza” Uni-

versity of Iași in 2002 and obtained his MSc in Computational Linguistics from the

same university in 2004. In 2010 he was awarded the PhD title (Magna Cum Laude)

at the Romanian Academy for a thesis on Knowledge Extraction from Multilingual

Corpora. He authored more than 50 papers in peer‐reviewed journals and conference

proceedings and successfully participated in various software competitions like the

Question-Answering competitions organized by Conference and Labs of the Evalua-

tion Forum (CLEF), Microsoft Imagine Cup and Microsoft Speller Challenge. His

research work covers various Natural Language Processing topics like: Question An-

swering, Information Extraction, Word Sense Disambiguation, Connota-

tion/Sentiment Analysis, Collocations/Terminology Identification, Machine Transla-

tion, or Query Alteration for Search Engines.

 128

The SCHOLAR Legacy: A New Look at the Affordances

of Semantic Networks for Conversational Agents in

Intelligent Tutoring Systems

Donald M. Morrison and Vasile Rus

Institute for Intelligent Systems, The University of Memphis, Memphis, Tennessee
{dmmrrson and vrus}@memphis.edu

Abstract. The time is ripe for a new look at the affordances of semantic net-

works as backbone structures for knowledge representation in intelligent tutor-

ing systems (ITSs). While the semantic space approach has undeniable value,

and will likely continue to be an essential part of solutions to the problem of

computer-based dialogue with humans, technical advances such the automatic

extraction of ontologies from text corpora, now encourage a vision in which in-

telligent tutoring agents have access to forms of knowledge representation that

allow them to more fully “understand” something of what they are talking about

with learners. These developments have important implications for key ITS

components including the structure of expert domain models, learner models,

instructional modules, and dialogue strategies, particularly in respect to issues

of transportability across systems. As such, they in turn have important implica-

tions for the design of a general-purpose framework such as the U.S. Army’s

Generalized Intelligent Framework for Tutoring (GIFT).

Keywords: Intelligent tutoring, semantic networks, semantic spaces, ontology

extraction.

1 Introduction

The idea that a computer might be programmed to carry on an intelligent conversation

with a human emerged in the early days of artificial intelligence, possibly as early as

the 1940s, but was articulated most fully in computer pioneer Alan Turing’s famous

“Turing test” [40] in which a human is invited to carry on a typed conversation with

both a hidden human and a machine, and has to decide which is which. A computer

program that passes the Turing test is considered to be intelligent. Early programs that

were claimed to have passed the test included ELIZA [43], which employed the ping-

pong conversational strategies of a Rogerian psychotherapist, thus, allowing ELIZA

to be “free to assume the pose of knowing almost nothing of the real world” [p. 42],

and PARRY, which was designed to mimic the behavior of a paranoid schizophrenic,

and reportedly fooled about half the psychologists who interacted with it [11].

 129

SHRDLU [44] was similar to ELIZA and PARRY in that it was capable of en-

gaging humans in something like natural language dialog, but distinctly different in

one important respect; it actually “understood” something about what it was talking

about, albeit within a highly restricted domain, a virtual world consisting of a set of

wooden blocks of different shapes and colors. SHRDLU could be instructed to pick

up a block, put it on top of another block, and would remember which block was now

on top.

SCHOLAR [9, 10, 17] is thought to have been the first program to demonstrate

the use of mixed-initiative, natural-language conversation for the specific purpose of

instruction, and as such is widely considered the first intelligent tutoring system [e.g.,

29,14]. The program was intended to demonstrate what Carbonell, a computer scien-

tist at Bolt, Beranek and Newman (BBN), termed an “information-structure-oriented”

(ISO) tutorial system. In contrast to “ad hoc-frame oriented” (AFO) systems of the

time, which were organized around “frames” of specific text strings, questions, and

answers written by a human author, SCHOLAR drew its questions and answers di-

rectly from its own knowledge base, which, in the examples referenced here, consisted

of a set of simple facts about the geography of South America.
8
 The following tran-

script, reported by Freedman [17], gives some sense of how these interactions went:

SCHOLAR: The capital of Chile is Santiago. Correct or incorrect?

STUDENT: Correct.

SCHOLAR: That’s right. Approximately what is the area of Brazil?

STUDENT: 2,500,000 square miles.

SCHOLAR: Wrong. Please indicate if the following statement is correct or incorrect:

 The area of Paraguay is approx. 47432 square miles.

While it seems unlikely that SCHOLAR fooled anyone, the program was arguably

ahead of its time in one important respect. SCHOLAR’s knowledge of the world was

stored in a semantic network, a data structure that featured in the work of Carbonell’s

colleagues at BBN, Ross Quillian and Allan Collins [32, 12, 13]. Semantic networks

do not, in themselves, provide easy solutions to the problem of machine understand-

ing of human language; however, for reasons explained below, there is good reason to

take a second look at the various affordances they may offer to designers of general-

purpose intelligent tutoring systems (ITSs), including general-purpose frameworks

such as GIFT.

2 Affordances of Semantic Networks for Intelligent Tutoring

Systems

Researchers in artificial intelligence have explored a range of solutions to the prob-

lem of representation of conceptual knowledge, from symbolic representations to

purely statistical ones [25,19]. Semantic networks of the type employed by

SCHOLAR, where concepts and their relationships are represented as nodes and edg-

8
 Carbonell was born in Uruguay. A second database was developed to pro-

vide tutoring for an online text editing system.

 130

es, are arguably closest to symbolic natural language in that noun-predicate-object

clusters (semantic triples) are incorporated and preserved. In “semantic space” mod-

els, on the other hand, relationships among concepts are represented mathematically.

Methods include Latent Semantic Analysis (LSA) [24], Hyperspace Analogue to

Language (HAL) [26], Latent Dirichlet Allocation (LDA) [5], Non-Latent Similarity

(NLS) [8]; Word Association Space (WAS) [39], and Pointwise Mutual Information

(PMI) [33].

In general terms, these semantic space models identify the meaning of a word

through “the company it keeps” [15:11], that is, by examining the co-occurrence of

words across large numbers of documents and using this data to calculate statistical

measures of semantic similarity. This approach has been used successfully in a variety

of applications where measures of document similarity are useful, such as in text re-

trieval and automatic scoring of student essays [25]. In intelligent tutoring applica-

tions, probabilistic semantic space engines allow for the automatic creation of domain

models as “bags of words” [20]. For example, AutoTutor employs LSA measures of

text similarity to evaluate the extent to which a learner’s answers to its questions cor-

respond to scripted correct answers consisting of unordered sets of expected words

and phrases [42].

When applied to the problem of knowledge representation in intelligent learning

systems, the selection of one approach over another results in important trade-offs.

Although the choice of probabilistic semantic models in intelligent tutoring systems

avoids the time-consuming tasks involved in creating more granular, linguistically

encoded models of domain knowledge, it also imposes significant constraints on the

functionality of the system, including limits on its ability to engage in true dialog with

a human learner, which in turn constrains both its ability to represent what is in the

learner’s head and the nature and quality of the apparent (virtual) social relationship

between the agent and the learner.

Most importantly, an agent that relies exclusively on a probabilistic semantic mod-

el cannot generate substantive questions of its own, nor can it respond to a learner’s

questions. Rather, because its knowledge is enclosed in a “black box” [1] it is limited

to asking scripted questions with scripted answers, then evaluating the extent to which

the learner’s answers conform. As a result, it naturally assumes the role of a tradition-

al pedagogue, a teacher who looks only for correct answers to questions.

2.1 Some Recent Developments

In spite of these limitations, in recent years the use of probabilistic, black box seman-

tic models has been favored over semantic network representations, owing, as noted

above, largely to the difficulties inherent in laborious manual authoring of useful do-

main models based on semantic networks [35]. However, over the past decade or so

this situation has begun to change in important ways. While the extraction of proposi-

tions (semantic triples) from connected text—the building blocks of semantic network

solutions—remains as one of the hardest problems in artificial intelligence and ma-

chine learning [35,19], considerable progress has been made [e.g., 2, 31, 30, 6, 4].

 131

For example, Berland & Charniak [2] developed an algorithm which, given a

seed word such as car, and a large corpus of text to mine, identified the following as

possible fillers for the slot ___ is-part-of ____[car]: headlight, windshield, ignition,

shifter, dashboard, radiator, brake, tailpipe, etc. Similarly, Pantel & Ravichandran

[31] describe an algorithm for automatically discovering semantic classes in large

databases, labeling them, then relating instances to classes in the form X is-a Y. For

example, for the instances Olympia Snowe, Susan Collins, and James Jeffords, the

algorithm settled on republican, senator, chairman, supporter, and conservative as

possible labels, meaning that it could form the basis for assertions such “Olympia

Snowe is a republican.”

Other relevant work includes the corpus of annotated propositional representa-

tions in PropBank [30], and AutoProp [6] a tool that has been designed to

“propositionalize” texts that have already been reduced to clauses. More recently,

members of the DBpedia project [4] have been working to extract semantic triples

from Wikipedia itself. As of September 2011, the DBpedia dataset described more

than 3.64 million “things,” with consistent ontologies for some 416,000 persons,

526,000 places, 106,000 music albums, 60,000 films, 17,500 video games, 169,000

organizations, 183,000 species and 5,400 diseases. A similar project, Freebase, allows

users to edit ontologies extracted from Wikipedia [27], while YAGO2 [21] is a

knowledge base of similar size (nearly 10 million entities and events, as well as 80

million facts representing general world knowledge) that includes the dimensions of

space and time in its ontologies. All of these projects employ a form of semantic net-

work to represent conceptual knowledge.

Given the labor required in building formal representations of procedural

knowledge by hand, it is natural to consider the possibility of automatic extraction of

production rules from text corpora, using machine learning (data mining) methods

similar to those for extracting declarative knowledge. As it turns out, work on this

problem is already producing promising results. For example, Schumacher, Minor,

Walter, & Bergmann [36] have compared two methods of extracting formal “work-

flow representations” of cooking recipes from the Web, finding that the frame-based

SUNDANCE system [34] gives superior results, as rated by human experts. Song et al.

[37] have tested a method for extracting procedural knowledge from PubMed ab-

stracts. Jung, Ryu, Kim, & Myaeng [23] describe an approach to automatically con-

structing what they call “situation ontologies” by mining sets of how-to instructions

from the large-scale web resources eHow (www.eHow.com) and wikiHow

(www.wikihow.com).

While the implications of this work for the development of intelligent learning

systems remain unclear, the possibilities inherent in semantic data mining of both

declarative and procedural knowledge clearly deserve attention. It seems the most

likely scenario is that future systems will employ different knowledge representations

for different purposes. For example, Rus [35] describes the use of a hybrid solution,

Latent Semantic Logic Form (LS-LF), for use in the extraction of expert knowledge

bases from corpora such as textbooks. Also, while the use of semantic networks in

particular domains may allow an agent to engage in something approaching intelligent

conversation regarding these domains, the agent may still need a way of coping with

user utterances that it cannot handle in any other way, much as humans make educat-

ed, intuitive guesses about the meaning of ambiguous or confusing utterances. For

 132

example, Hu & Martindale [22] discuss the use of a semantic vector model as a means

of evaluating the relevance and novelty of a given utterance in a series of discourse

moves, which is clearly useful in the event that an agent has no other way of evaluat-

ing a user’s utterance.

2.2 Implications for General-purpose Tutoring Systems

The field of intelligent tutoring has come a long way in the four decades that separate

us from the time of SCHOLAR. A recent estimate [28], identified some 370 ITS “ar-

chitecture families,” or which 12 were considered “major architectures,” defined as

those with at least ten scholarly papers published between the years 2009-2012. How-

ever, in spite of these efforts (representing investments of untold millions of taxpayer

dollars), the field has not yet had much of an impact on educational practice. The

study cited above, for example, estimated less than 1 million users worldwide. To put

this in perspective, a recent estimate puts the number of school-age children in the

U.S. at 70 million, and in the world at over 1 billion [7].

Important barriers to more widespread adoption and impact of ITSs include two im-

portant and related problems. One is the high cost of authoring domain-specific sys-

tems, recently estimated to require between 24 and 220 hours of development time for

one hour of instruction, with a mean of around 100 hours [16]. A second problem is

that ITSs tend to be constructed as “unique, one-of-a-kind, largely domain-dependent

solutions focused on a single pedagogical strategy” [38]. Among other things, because

components are not shareable, this means that returns on investment in particular

systems is limited to whatever impact those particular systems might on their own,

like stones tossed into a pond that make no ripples.

The use of semantic networks to represent expert domain knowledge might go far to

reduce authoring costs and could also lead to portable expert models, and, by exten-

sion, learner models. As we have seen, a considerable amount of work is already go-

ing on in the semi-automatic (i.e., supervised) extraction of domain ontologies from

text corpora. What this means, conceptually, is that the ontology of a particular do-

main becomes not just a single person (or team’s) unique description of the domain of

interest, but a structure that emerges from the way the domain is represented linguisti-

cally in some very large number of texts, written by different authors. While it is true

that supervised extraction introduces and reflected the biases of the human supervi-

sors, ontologies constructed in this way arguably have much more in common than

those constructed entirely from scratch for specific purposes. The ability to extract

domain models directly from text corpora also, of course, speeds the development

process, and, to the extent that expert models constructed in this way are architecture-

independent, they are more likely to acquire general currency than dedicated models

developed for the particular purposes of specific systems. Finally, to the extent that

learner models, or at least some portion of them, are seen as overlays of expert models

(i.e., flawed or incomplete versions of expert maps), these may also become trans-

portable across systems, and because these models can be expressed mathematically,

as graphs, it becomes possible to estimate differences between learner models and

expert models computationally.

 133

3 Conclusion

While the specific affordances of semantic networks in respect to problems of

knowledge representation, learner modeling, and conversational fluency of intelligent

agents have yet to be fully explored, and while such structures do not by any means

solve fundamental problems, the future is indeed promising. As argued here, the

movement to structure the vast store of human knowledge on the Web in the form of

explicit ontologies, as evidenced in the Semantic Web project and its many associated

technologies, is well underway, and has undeniable momentum. The future of human

knowledge representation almost certainly lies in this direction, with some obvious

potential benefits to ITS developers. For example, to the extent that expert domain

models are conceived as populated ontologies, then it becomes easier to conceive of

portable domain models, and, to the extent that a learner models are also conceived of

as populated ontologies, then learner models can also be portable across systems.

Interestingly, the underpinnings of the Semantic Web originated in the work of Ross

Quillian, the same work that SCHOLAR, the ancestor of modern ITSs, was based on.

Now that the technology is beginning to catch up with that initial vision, the time has

arguably come to take another look at the affordances of semantic networks. In par-

ticular, the designers of systems such as GIFT, which seek to provide a general-

purpose framework for development of ITS systems of the future, are advised to look

carefully at the specific implications of the reemergence and increasing importance of

semantic networks as general-purpose structures for representing the knowledge of

both experts and learners, and as the basis for bringing these structures into alignment

through natural processes of teaching and learning.

References

1. Anderson, J.R. The expert model. In Polson, M. C., & Richardson, J. J. (eds.) Foundations

of intelligent tutoring systems. Lawrence Erlbaum. 21-53 (1988)

2. Berland, M., Charniak, E. Finding parts in very large corpora. In Annual Meeting-

Association For Computational Linguistics 37, 57-64 (1999, June)

3. Bickmore, T., Schulman, D., Yin, L. Engagement vs. deceit: Virtual humans with human

autobiographies. In Intelligent Virtual Agents, pp. 6-19. Springer Berlin/Heidelberg (2009)

4. Bizer, C., Lehmann, J., Kobilarov, G., Auer, S., Becker, C., Cyganiak, R., Hellmann, S.

DBpedia-A crystallization point for the Web of Data. Web Semantics: Science, Services and

Agents on the World Wide Web, 7(3), 154-165 (2009)

5. Blei, D. M., Ng, A. Y., Jordan, M. I. Latent dirichlet allocation. The Journal of Machine

Learning Research, 3, 993-1022 (2003)

6. Briner, S.W., McCarthy, P.M., McNamara, D.S. Automating text propositionalization: An

assessment of AutoProp. In R. Sun & N. Miyake (eds.), Proceedings of the 28th Annual

Conference of the Cognitive Science Society, pp. 2449. Austin, TX: Cognitive Science So-

ciety (2006)

7. Bruneforth, M. & Wallet, P. Out-of-school adolescents. UNESCO Institute for Statistics.

(2010).

 134

8. Cai, Z., McNamara, D. S., Louwerse, M., Hu, X., Rowe, M., Graesser, A. C. NLS: A non-

latent similarity algorithm. In Proc. 26th Ann. Meeting of the Cognitive Science Soc.,

CogSci’04, pp. 180-185 (2004)

9. Carbonell, J. R. AI in CAI: Artificial intelligence approach to computer assisted instruction.

IEEE Transactions on Man-Machine Systems 11(4): 190-202 (1970)

10. Carbonell, J. R., Collins, A. M. Natural semantics in artificial intelligence. In Proceedings of

the Third International Joint Conference on Artificial Intelligence. IJCAI 73, 344 -351

(1973, August)

11. Colby, K. M., Hilf, F. D., Weber, S., Kraemer, H. C. Turing-like indistinguishability tests

for the validation of a computer simulation of paranoid processes. Artificial Intelligence, 3,

199-221 (1972)

12. Collins, A. M., Loftus, E. F. A spreading-activation theory of semantic processing. Psycho-

logical review, 82(6), 407 (1975)

13. Collins, A. M., Quillian, M. R. Retrieval time from semantic memory. Journal of verbal

learning and verbal behavior, 8(2), 240-247 (1969)

14. Corbett, A. T., Koedinger, K. R., Anderson, J. R. Intelligent tutoring systems. Handbook of

human-computer interaction, 849-874 (1997)

15. Firth, John Rupert. A synopsis of linguistic theory, 1930-1955. (1957).

16. Folsom-Kovarik, J. T., S. Schatz, and D. Nicholson. Return on investment: A practical re-

view of ITS student modeling techniques. M&S Journal, Winter Edition (2011): 22-37.

17. Freedman, R. Degrees of mixed-initiative interaction in an intelligent tutoring system. In

Proceedings of the AAAI Spring Symposium on Computational Models for Mixed Initiative

Interaction, Palo Alto, CA. Menlo Park, CA: AAAI Press (1997)

18. Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A., Louwerse,

M. M. AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods,

Instruments, & Computers, 36(2), 180-192 (2004)

19. Graesser, A. C., McNamara, D. S., Louwerse, M. M. Two methods of automated text analy-

sis. Handbook of Reading Research, 34 (2009)

20. Harris, Z. Distributional structure. Word 10 (2/3): 146–62 (1954)

21. Hoffart, J., Suchanek, F. M., Berberich, K., Lewis-Kelham, E., De Melo, G., Weikum, G.

Yago2: exploring and querying world knowledge in time, space, context, and many lan-

guages. In Proceedings of the 20th international conference companion on World Wide

Web, pp. 229-232. ACM (2011, March)

22. Hu, X., Martindale, T. Enhancing learning with ITS-style interactions between learner and

content. Interservice/Industry Training, Simulation & Education 2008, 8218, 1-11 (2008)

23. Jung, Y., Ryu, J., Kim, K. M., Myaeng, S. H. Automatic construction of a large-scale situa-

tion ontology by mining how-to instructions from the web. Web Semantics: Science, Ser-

vices and Agents on the World Wide Web, 8(2), 110-124 (2010)

24. Landauer, T. K., Dumais, S. T. A solution to Plato's problem: The Latent Semantic Analysis

theory of the acquisition, induction, and representation of knowledge. Psychological Review

, 104 , 211-140 (1997)

25. Landauer, T. K., Laham, D., Foltz, P. W. Automated scoring and annotation of essays with

the Intelligent Essay Assessor. Automated essay scoring: A cross-disciplinary perspective,

87-112 (2003)

26. Lund, K., & Burgess, C. Producing high-dimensional semantic spaces from lexical co-

occurrence. Behavior Research Methods, Instruments, & Computers, 28(2), 203-208 (1996)

27. Markoff, J. Start-up aims for database to automate web searching. The New York Times

(2007-03-09) Retrieved 4/21/2013

 135

28. Nye, B.. Two sigma or two percent: A mapping study on barriers to ITS adoption. (in prepa-

ration)

29. Nwana, H. S. Intelligent tutoring systems: an overview. Artificial Intelligence Review, 4(4),

251-277 (1990)

30. Palmer, M., Kingsbury, P., Gildea, D. The Proposition Bank: An annotated corpus of se-

mantic roles. Computational Linguistics, 31, 71-106 (2005)

31. Pantel, P., & Ravichandran, D. Automatically labeling semantic classes. In Proceedings of

HLT/NAACL (4), 321-328 (2004, May)

32. Quillian, M.R. Semantic memory. In M. Minsky, (E.), Semantic Information Processing.

MIT Press, Cambridge, MA (1968).

33. Recchia, G., Jones, M. N. More data trumps smarter algorithms: Comparing pointwise mu-

tual information with latent semantic analysis. Behavior Research Methods, 41(3), 647-656

(2009)

34. Riloff, E., Phillips, W. An introduction to the sundance and autoslog systems. Technical Re-

port UUCS-04-015, School of Computing, University of Utah (2004)

35. Rus, V. What next in knowledge representation? Proceedings of the International Confer-

ence on Knowledge Engineering, Principles and Techniques. Cluj-Napoca (Romania), July

2-4, pp. 1-9 (2009)

36. Schumacher, P., Minor, M., Walter, K., Bergmann, R. Extraction of procedural knowledge

from the web: A comparison of two workflow extraction approaches. In Proceedings of the

21st international conference companion on World Wide Web, pp. 739-747. ACM (2012,

April)

37. Song, S. K., Choi, Y. S., Oh, H. S., Myaeng, S. H., Choi, S. P., Chun, H. W., and Sung, W.

K. Feasibility study for procedural knowledge extraction in biomedical documents. Infor-

mation Retrieval Technology, 519-528 (2011)

38. Sottilare, R. A., Goldberg, B. S., Brawner, K. W., & Holden, H. K. A Modular Framework

to Support the Authoring and Assessment of Adaptive Computer-Based Tutoring Systems

(CBTS). In The Interservice/Industry Training, Simulation & Education Conference

(I/ITSEC) (Vol. 2012, No. 1). National Training Systems Association. (2012, January).

39. Steyvers, M., Griffiths, T. L., Dennis, S. Probabilistic inference in human semantic memory.

Trends in Cognitive Sciences, 10(7), 327-334 (2006)

40. Turing, A. M. Computing machinery and intelligence. Mind, 59(236), 433-460 (1950)

41. VanLehn, K. The behavior of tutoring systems. International journal of artificial intelligence

in education, 16(3), 227-265 (2006)

42. Wiemer-Hastings, Peter, Arthur C. Graesser, and Derek Harter. The foundations and archi-

tecture of AutoTutor. In Intelligent Tutoring Systems, pp. 334-343. Springer Berlin Heidel-

berg, 1998.

43. Weizenbaum, J. ELIZA—A computer program for the study of natural language communi-

cation between man and machine. Communications of the ACM, 9(1), 36-45 (1966)

44. Winograd, T. Procedures as a representation for data in a computer program for understand-

ing natural language. MIT AI Technical Report 235 (February 1971)

 136

Authors

Dr. Chip Morrison is a Faculty Affiliate at IIS. A graduate of Dartmouth, Dr. Mor-

rison holds an M.A. from the University of Hong Kong and an Ed.D. from Harvard.

His current research interests include models of human cognition and learning, and

the application of these models to conversation-based intelligent learning systems.

Vasile Rus: Dr. Vasile Rus is an Associate Professor of Computer Science with a

joint appointment in the Institute for Intelligent Systems (IIS). Dr. Rus’ areas of ex-

pertise are computational linguistics, artificial intelligence, software engineering, and

computer science in general. His research areas of interest include question answering

and asking, dialogue-based intelligent tutoring systems (ITSs), knowledge representa-

tion and reasoning, information retrieval, and machine learning. For the past 10 years,

Dr. Rus has been heavily involved in various dialogue-based ITS projects including

systems that tutor students on science topics (DeepTutor), reading strategies

(iSTART), writing strategies (W-Pal), and metacognitive skills (MetaTutor). Current-

ly, Dr. Rus leads the development of the first intelligent tutoring system based on

learning progressions, DeepTutor (www.deeptutor.org). He has coedited three books,

received several Best Paper Awards, and authored more than 90 publications in top,

peer-reviewed international conferences and journals. He is currently Associate Editor

of the International Journal on Artificial Intelligence Tools.

 137

 XNAgent: Authoring Embodied Conversational Agents

for Tutor-User Interfaces

Andrew M. Olney, Patrick Hays, & Whitney L. Cade

Institute for Intelligent Systems & Department of Psychology

365 Innovation Drive

Memphis, Tennessee 38152

{aolney,dphays,wlcade}@memphis.edu

http://iis.memphis.edu

Abstract. Embodied conversational agents are virtual characters that engage

users in conversation with appropriate speech, gesture, and facial expression.

The high cost of developing embodied conversational agents has led to a recent

increase in open source agent platforms. In this paper, we present XNAgent, an

open source platform for embodied conversational agents based on the XNA

Framework. By leveraging the high-level class structure of the XNA Frame-

work, XNAgent provides a compact implementation that is suitable both as a

starting point for the development of a more advanced system and as a teaching

tool for AI curricula. In this paper we describe how we created an embodied

conversational agent in XNA using skeletal and morph animation, motion cap-

ture, and event-driven animation and how this process can facilitate the use of

embodied conversational agents in the Generalized Intelligent Framework for

Tutoring.

Keywords: XNA, ECA, GIFT, agent, HCI, conversation, interface, tutoring

1 Introduction

It is well known that we unconsciously and automatically interact with computers

using social norms [1]. Embodied conversational agents (ECAs) capitalize on this

phenomena as characters with human-like communicative capabilities. By doing so,

ECAs leverage pointing, gestures, facial expressions, and voice to create a richer hu-

man-computer interface. As a result ECAs have been used in diverse AI applications,

including education [2], where they form an important part of the tutor-user interface.

ECAs combine research in discourse, computer animation, speech synthesis, and

emotion. Consequently ECA systems tend to be costly to build [3] As a result, in the

past decade, a great deal of tutoring research has used closed-source platforms such as

Microsoft Agent [4], adapted commercial/open source game engines [5], or low-level

libraries like OpenGL [6]. These approaches present different types of challenges.

Game engines usually have support for basic character animation but lack native lip-

sync and fine animation control, and game engines come with a complex API with

 138

many features that may not be relevant for education research, e.g. bullet/explosion

physics or first-person shooter perspective. Conversely low-level libraries have no

similar irrelevant complexity but require designing the AI from the ground up. Given

the challenges of both the game-engine and low-level routes, recent researchers have

released open source platforms for ECA development [7, 8, 9, 10] based on either

game engines or low-level libraries.

The design and development challenges described above for ECAs are manifest

in the development of computer-based training environments and have recently been

addressed by the Generalized Intelligent Framework for Tutoring Framework [11].

One of the design goals of the Generalized Intelligent Framework for Tutoring

(GIFT) is to provide authoring capability for the creation of computer-based training

components. One such component is the tutor-user interface, which in modern intelli-

gent tutoring systems often uses an ECA. Accordingly, in this paper we present an

open source solution to ECA development that meets the design goals of the GIFT

Framework. Rather than use a game engine with its inherent complexities or a low-

level library that requires a large investment of initial development, we present an

ECA platform that combines the best of these using Microsoft’s XNA framework [12].

By providing high-level libraries, a runtime environment for managed code (C#), free

development tools, and extensive support in the form of code samples, official forums,

and commercially available books at all levels, the XNA framework provides a solid

foundation for ECA development. In this the following sections we describe how we

implement the face and body of XNAgent using skeletal and morph animation via

vertex shaders, motion capture, and event-driven animation. At each step the content

creation pipeline is outlined to illustrate how XNAgent may be adapted to new AI

contexts. We conclude by considering the design goals of the GIFT Framework and

how they are addressed by XNAgent.

2 Face

The face of an ECA can be considered independently of the body in terms of speech,

emotions, and facial expressions. The classic reference for facial expression is the

Facial Action Coding System, which uses the anatomy of the face, primarily in terms

of muscle groups, to define facial action units [13]. While it is certainly possible to

create “virtual muscles” and animate with them, a number of other real-time ap-

proaches exist which give satisfactory results [14]. Perhaps the most well-known and

widely used facial animation approach is morph target animation.

In morph target animation, a version of the head is created for each desired ex-

pression. For example, one version for smiling, frowning, or a “w” lip shape. Each of

these shapes becomes a target for interpolation, a morph target. If two morph channels

exist, e.g. a neutral face and a smiling face, the interpolation between them can be

described by the distance between matching vertices across the two faces. In practice,

this distance is often normalized as a weight such that a weight of 1 would push the

neutral face all the way to happy. The advantage to using morph target animations is

that each morph target can be carefully crafted to the correct expression, and then

mixtures of morph targets can be used to create huge number of intermediate expres-

sions, e.g. smiling while talking and blinking.

 139

FaceGen Modeler, by Singular Inversions, is a popular software package for cre-

ating 3D faces that has been used in psychological research on gaze, facial expression,

and attractiveness [15]. FaceGen Modeler contains a statistical model of the human

face with approximately one hundred and fifty parameters to vary face shape and

texture. Using FaceGen Modeler, a virtual infinite variety of human faces can be cre-

ated by manipulating these parameters, and for a given custom face FaceGen Modeler

can output thirty-nine morph targets including seven emotions and sixteen visemes

(the visual correlates of phonemes used for lip-sync). XNAgent uses FaceGen Model-

er output, so a correspondingly large variety of faces can be implemented in XNAgent.

Since XNA does not provide native support for morph targets, we have imple-

mented them using vertex shaders. A shader is a program that runs directly on the

graphics card. In XNA, shaders are written in High Level Shader Language that re-

sembles the C programming language, and the shaders compile side by side with C#.

To implement morph target animation, XNAgent’s vertex shaders operate on each

vertex on face and perform bilinear interpolation (interpolation on two axes). Thus

there are three versions of the XNAgent head loaded at any particular time: a neutral

head that was skinned with the body (see Section 3), a viseme head for the current

viseme, and an emotion/expression head for the current emotion. It is possible to have

more channels for additional morphing, and these are easily added if necessary.

XNAgent utilizes a dynamic, event-driven animation system for facial expres-

sions. Three categories of facial animation are currently supported, including blinking,

lip-sync via visemes, and facial expressions. Blinking is implemented using a model

of blinking behavior in humans [16] in its own thread. Because the most salient fea-

ture of blinking is perhaps that the eyelids cover the eyes, XNAgent imitates blinking

through texture animation rather than morph target animation. In texture animation

the texture of the face is switched quickly with another version of the face. In the case

of blinking the two textures are nearly identical except the blink texture’s eyes are

colored to match the surrounding skin, thus simulating closed eyes.

Lip-syncing through morph target animation is controlled by the agent’s voice, i.e.

a text-to-speech synthesizer. Some speech synthesizers generate lip-sync information

during synthesis by producing visemes, the visual correlates of phonemes. Each

viseme unit typically includes the current viseme and the viseme’s duration. In a

viseme event handler, XNAgent sets the current viseme morph target and its duration

using these values. In the Update() loop, the viseme’s time left is decremented by the

elapsed time. In the Draw() loop, the viseme morph is expressed with a weight based

on the remaining time left. Thus the lip sync remains true independently of the

framerate speed of the computer running XNAgent and linearly interpolates between

visemes.

Morphing expressions like emotions require a more flexible approach than

viseme animations. For example, a smile can be a slow smile that peaks at a medium

value, or a rapid smile that peaks at an extreme value. To capture these intuitions, our

expression morph animation has parameters for rise, sustain, and decay times, with a

maximum weight parameters that specifies what the maximal morph will be during

the sustain phase. Currently these three phases are interpolated linearly.

 140

3 Body

Non-facial movements, or gestures, appear to greatly differ from the face greatly in

terms of communicative complexity, forming sign language in the extreme case. Our

approach is therefore to model the entire body as a collection of joints, such that ma-

nipulating the values of these joints will cause the body to move. This common ap-

proach to animation is often called skeletal, or skinned animation [17].

In skinned animation a character “shell” is first created that represents a static

character. An underlying skeletal structure is created for the shell with appropriate

placement of joints and placed inside the shell. The shell and skeleton are then bound

together such that a transformation on the underlying skeleton is mirrored in the shell;

this result is known as a rigged model. Once a model is rigged, it may be animated by

manipulating the skeleton and saving the resulting joint position data. Every saved

movement creates a keyframe, and when these keyframes are played back at a rapid

rate (e.g. 30 fps) the rigged model will carry out the animated action. Alternatively

motion capture technologies can extrapolate joint position data from naturalistic hu-

man movement. In this case the resulting animation is still a keyframe animation.

In order to create a body for XNAgent, we used several software packages to

form what is commonly known as a 3D authoring pipeline. At each stage of the pipe-

line there are multiple available techniques and software packages, making navigating

this space a complex process. In brief, there are three major phases to creating a body

with gestures, namely model creation, rigging, and animation. Model creation can be

extremely difficult for non-artists without initial materials to work from. To facilitate

the process of body creation, we used the face model generated by FaceGen Modeler

together with the FaceGen Exporter to export the face model to the Daz Studio soft-

ware package. This process seamlessly combines the face and body models and auto-

rigs the body with a skeleton. Daz Studio allows for comparable customizations of the

body (gender, size, shape) as FaceGen does for the face. In addition, Daz Studio

comes with a variety clothing and accessory packs that can be applied to the body in a

drag and drop manner. In effect, several hundred hours of 3D authoring can be ac-

complished by a novice in less than an hour.

In order to create realistic animations, we primarily used the low-cost iPi Desktop

Motion Capture system from iPi Soft. The simplest camera configuration for this

system uses the Microsoft Kinect camera. Once the motion capture has been recorded

by iPi, it can be merged and edited using AutoDesk 3DS Max, where ultimately it is

exported for XNA using the kw X-port plugin. A complete description of this process

is beyond the space limitations of the current discussion, but a full tutorial, including

software installer and step by step slides, is available from the corresponding author’s

website
9
.

In order to achieve similar functionality to interpolating visemes, skinned anima-

tion clips require mechanisms for blending and mixing. Simply put, blending is end to

end interpolation, like a DJ fading from one song to the next. Mixing breaks the ani-

mation into components and plays them simultaneously, like a DJ taking the beat

from one song, vocals from another, and playing them together. Blending and mixing

can be done simultaneously if clips are playing in different regions of the skeleton

9
 http://andrewmolney.name

 141

while being blended with other clips in those same regions. XNAgent uses the Com-

munist Animation Library [18] to perform blending and mixing. Currently in

XNAgent the skeleton is divided into center, left side, right side, and head regions.

These regions are used to represent the following tracks: idle, both arms, left arm,

right arm, and head. Animations are assigned to tracks at design time and then played

with weights according to what other animations are currently playing in their track.

For example, the idle animation consists of motion capture of a person standing and

slightly swaying. Some degree of the idle animation is always playing in all the tracks,

but when other animations are played in those tracks they are played with a higher

weight. Thus lower priority animations like idle will be superseded by higher priority

animations in a relatively simple manner.

Animations are triggered in XNAgent by inserting animation tags into the text to

speak, either dynamically or manually. When the TTS encounters the tag, it schedules

the animation immediately. The mixing properties of the animation are specified in

the tag to create new versions of animations, similar to morphing. For example, since

the idle animation is always playing, it can be given more weight relative to an arm

gesture to create a “beat” gesture [19]. Thus a normal full arm extension animation

can be dampened arbitrarily using weighting, bringing the arm closer to the body with

increasing weight. In addition, the speed of the animation clip can be modulated to

control for the appropriate speed of the beat gesture, since beat gestures are often

quick and fluid.

Although XNA has some level of built in support for skinned animations, com-

bining skinned animations with morph target animations requires a custom vertex

shader. In XNAgent there are two vertex shaders that operate separately on the head

and body of the agent. The head shader applies morphing to calculate a new vertex

position and then applies the transformation defined by skinning. This allows the head

to be applying morph targets (e.g. speaking) while also nodding or shaking. The se-

cond vertex shader focuses strictly on the body and so does not require morphing.

4 Working with XNAgent

One of the most important aspects of any ECA is its ability to integrate into an AI

application. Game engines typically don’t support integration well and rather present

a fullscreen interface for the game, as does XNA. Although text input and other user

interface functions can be carried out inside XNA, they are difficult because XNA

doesn’t provide the native support commonly expected by GUI designers. For exam-

ple, key presses in XNA are interpreted based on the framerate of the game, meaning

that a normal keystroke will produce a double or triple production of letters or num-

bers. To address the integration issue, XNAgent provides an XNA environment inside

a Windows form control. That means that adding XNAgent to an interface is as sim-

ple as selecting the XNAgent control from the Visual Studio toolbox and dropping it

on a form. The primary method to call on the control is Speak(), which processes both

text to speech and animation tags as described in previous sections. In summary, the

process for using XNAgent is (1) create a 3D model using the authoring pipeline de-

scribed above (2) import the model to XNAgent (3) call XNAgent from your applica-

tion using the Speak() method. We have previously integrated XNAgent into the Guru

 142

intelligent tutoring system shown in Figure 1 and conducted a number of experiments

[20].

Figure 1: XNAgent running in the Guru intelligent tutoring system.

We argue that XNAgent fulfills many if not all of the design goals for GIFT au-

thoring components [11]. XNAgent decreases the effort of authoring ECAs through

its 3D authoring pipeline. Similarly it decreases the skills required for authoring

ECAs by making authoring a drag-and-drop process, rather than a pixel-by-pixel pro-

cess. XNAgent’s animation framework allows authors to organize their knowledge

about pedagogical animations and helps structure pedagogical animations. Perhaps

most importantly in a research environment, XNAgent supports rapid prototyping of

ECAs with different properties (gender, size, or clothing) for different pedagogical

roles (teacher, mentor, or peer). XNAgent supports standards for easy integration with

other software as a Windows form control. By cleanly separating domain-independent

code from specific 3D model and animation content, XNAgent promotes reuse. Final-

ly XNAgent leverages open source solutions. Not only is XNAgent open source, but

every element in its 3D authoring pipeline either has a freeware version or is free for

academic use. Moreover, the recent version of MonoGame, an open source imple-

mentation of XNA, promises to make XNAgent cross platform to desktop and mobile

devices beyond the Windows desktop.

 143

5 Conclusion

In this paper we have described the XNAgent platform for developing embodied con-

versational agents. Unlike existing ECA platforms that require either low level

graphics programming or the use of complex game engines, XNAgent is written using

a high level framework (XNA). Our contribution to this research area is in showing

how to implement appropriate speech, gesture, and facial expression using skeletal

and morph animation via vertex shaders, motion capture, and event-driven animation.

We argue that the XNAgent platform fulfills most of the authoring design goals for

GIFT with respect to authoring ECAs. It is our hope that XNAgent will be used by

adopters of GIFT to facilitate creation of dialogue based tutoring systems that use

ECAs.

6 Acknowledgments

The research reported here was supported by the Institute of Education Sciences, U.S.

Department of Education, through Grant R305A080594 and by the National Science

Foundation, through Grant BCS-0826825, to the University of Memphis. The opin-

ions expressed are those of the authors and do not represent views of the Institute or

the U.S. Department of Education or the National Science Foundation.

7 References

1. Nass, C., Steuer, J., Tauber, E.R.: Computers are social actors. In: Proceedings of the

SIGCHI conference on Human factors in computing systems: celebrating interdependence.

CHI ’94, New York, NY, ACM (1994) 72–78

2. Dunsworth, Q., Atkinson, R.K.: Fostering multimedia learning of science: Exploring the

role of an animated agent’s image. Computers & Education 49(3) (November 2007) 677–

690

3. Heloir, A., Kipp, M.: Real-time animation of interactive agents: Specification and realiza-

tion. Applied Artificial Intelligence 24 (July 2010) 510–529

4. Graesser, A.C., Lu, S., Jackson, G.T., Mitchell, H., Ventura, M., Olney, A., Louwerse,

M.M.: AutoTutor: A tutor with dialogue in natural language. Behavioral Research Meth-

ods, Instruments, and Computers 36 (2004) 180–193

5. Rowe, J.P., Mott, B.W., W. McQuiggan, S.W., Robison, J.L., Lee, S., Lester, J.C.:

CRYSTAL ISLAND: A Narrative-Centered learning environment for eighth grade micro-

biology. In: Workshops Proceedings Volume 3: Intelligent Educational Games, Brighton,

UK (July 2009) 11–20

6. Lester, J.C., Voerman, J.L., Towns, S.G., Callaway, C.B.: Deictic believability: Coordinat-

ing gesture, locomotion, and speech in lifelike pedagogical agents. Applied Artificial Intel-

ligence 13 (1999) 383–414

7. Damian, I., Endrass, B., Bee, N., André, E.: A software framework for individualized

agent behavior. In: Proceedings of the 10th international conference on Intelligent virtual

agents. IVA’11, Berlin, Heidelberg, Springer-Verlag (2011) 437–438

 144

8. Heloir, A., Kipp, M.: Embr — a realtime animation engine for interactive embodied

agents. In: Proceedings of the 9th International Conference on Intelligent Virtual Agents.

IVA ’09, Berlin, Heidelberg, Springer-Verlag (2009) 393–404

9. de Rosis, F., Pelachaud, C., Poggi, I., Carofiglio, V., De Carolis, B.: From Greta’s mind to

her face: modelling the dynamics of affective states in a conversational embodied agent.

International Journal of Human-Computer Studies 59(1-2) (2003) 81–118

10. Thiebaux, M., Marsella, S., Marshall, A.N., Kallmann, M.: SmartBody: behavior realiza-

tion for embodied conversational agents. In: Proceedings of the 7th international joint con-

ference on Autonomous agents and multiagent systems - Volume 1, Estoril, Portugal, In-

ternational Foundation for Autonomous Agents and Multiagent Systems (2008) 151–158

11. Sottilare, R.A., Brawner, K.W., Goldberg, B.S., Holden, H.K.: The generalized intelligent

framework for tutoring (GIFT). Technical report, U.S. Army Research Laboratory â” Hu-

man Research & Engineering Directorate (ARL-HRED) (October 2012)

12. Cawood, S., McGee, P.: Microsoft XNA game studio creator’s guide. McGraw-Hill Prof

Med/Tech (2009)

13. Ekman, P., Rosenberg, E.: What the face reveals: basic and applied studies of spontaneous

expression using the facial action coding system FACS. Series in affective science. Oxford

University Press (1997)

14. Noh, J., Neumann, U.: A survey of facial modeling and animation techniques. Technical

Report 99-705, University of Southern California (1998)

15. N’Diaye, K., Sander, D., Vuilleumier, P.: Self-relevance processing in the human amygda-

la: gaze direction, facial expression, and emotion intensity. Emotion 9(6) (December 2009)

798–806

16. Pelachaud, C., Badler, N., Steedman, M.: Generating facial expressions for speech. Cogni-

tive Science 20 (1996) 1–46

17. Gregory, J.: Game engine architecture. A K Peters Series. A K Peters (2009)

18. Alexandru-Cristian, P.: Communist animation library for xna 4.0 (December 2010)

19. McNeill, D.: Hand and mind: what gestures reveal about thought. University of Chicago

Press (1992)

20. Olney, A., D’Mello, S., Person, N., Cade, W., Hays, P., Williams, C., Lehman, B.,

Graesser, A.: Guru: A computer tutor that models expert human tutors. In Cerri, S.,

Clancey, W., Papadourakis, G., Panourgia, K., eds.: Intelligent Tutoring Systems. Volume

7315 of Lecture Notes in Computer Science., Springer Berlin / Heidelberg (2012) 256–261

Authors

Andrew Olney is presently an assistant professor in the Department of Psychology at

the University of Memphis and the associate director of the Institute for Intelligent

Systems. His primary research interests are in natural language interfaces. Specific

interests include vector space models, dialogue systems, grammar induction, robotics,

and intelligent tutoring systems.

Patrick Hays is a research assistant at the University of Memphis. He is a recent

graduate with a BA in Psychology. Patrick's work focuses on 3D animation, 3D mod-

eling, graphic arts, and human-computer interaction.

 145

Whitney Cade is a graduate student in the Department of Psychology at the Universi-

ty of Memphis. Her research interests include intelligent tutoring systems, expert

tutors, pedagogical strategies, 3D agents, and machine learning.

