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This book is the third in a planned series of books that examine key topics (e.g., learner modeling, 

instructional strategies, authoring, domain modeling, impact on learning, and team tutoring) in intelligent 

tutoring system (ITS) design through the lens of the Generalized Intelligent Framework for Tutoring 

(GIFT) (Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, Goldberg & Holden, 2013). 

GIFT is a modular, service-oriented architecture created to reduce the cost and skill required to author 

ITSs, manage instruction within ITSs, and evaluate the effect of ITS technologies on learning, 

performance, retention, and transfer.  

The first two books in this series, Learner Modeling (ISBN 978-0-9893923-2-7) and Instructional 

Management (ISBN 978-0-9893923-0-3), are freely available at www.GIFTtutoring.org and on Google 

Play. 

This introduction begins with a description of tutoring functions, provides a glimpse of authoring best 

practices, and examines the motivation for standards in the design, authoring, instruction, and evaluation 

of ITS tools and methods. We introduce GIFT design principles discuss how readers might use this book 

as a design tool. We begin by examining the major components of ITSs. 

Components and Functions of Intelligent Tutoring Systems 

It is generally accepted that an ITS has four major components (Elson-Cook, 1993; Nkambou, Mizoguchi 

& Bourdeau, 2010; Graesser, Conley & Olney, 2012; Psotka & Mutter, 2008; Sleeman & Brown, 1982; 

VanLehn, 2006; Woolf, 2009): the domain model, the student model, the tutoring model, and the user-

interface model. GIFT similarly adopts this four-part distinction, but with slightly different corresponding 

labels (domain module, learner module, pedagogical module, and tutor-user interface) and the addition of 

the sensor module, which can be viewed as an expansion of the user interface. 

(1) The domain model contains the set of skills, knowledge, and strategies/tactics of the topic being 

tutored. It normally contains the ideal expert knowledge and also the bugs, mal-rules, and 

misconceptions that students periodically exhibit.  

(2) The learner model consists of the cognitive, affective, motivational, and other psychological 

states that evolve during the course of learning. Since learner performance is primarily tracked in 

the domain model, the learner model is often viewed as an overlay (subset) of the domain model, 

which changes over the course of tutoring. For example, “knowledge tracing” tracks the learner’s 

progress from problem to problem and builds a profile of strengths and weaknesses relative to the 

domain model (Anderson, Corbett, Koedinger & Pelletier, 1995). An ITS may also consider 

psychological states outside of the domain model that need to be considered as parameters to 

guide tutoring.  

(3) The tutor model (also known as the pedagogical model or the instructional model) takes the 

domain and learner models as input and selects tutoring strategies, steps, and actions on what the 

tutor should do next in the exchange. In mixed-initiative systems, the learners may also take 

actions, ask questions, or request help (Aleven, McClaren, Roll & Koedinger, 2006; Rus & 

Graesser, 2009), but the ITS always needs to be ready to decide “what to do next” at any point 

and this is determined by a tutoring model that captures the researchers’ pedagogical theories.  

(4) The user interface interprets the learner’s contributions through various input media (speech, 

typing, clicking) and produces output in different media (text, diagrams, animations, agents). In 

addition to the conventional human-computer interface features, some recent systems have 

incorporated natural language interaction (Graesser et al., 2012; Johnson & Valente, 2008), 

http://www.gifttutoring.org/
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speech recognition (D’Mello, Graesser & King, 2010; Litman, 2013), and the sensing of learner 

emotions (Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 2010; Goldberg, 

Sottilare, Brawner, Holden, 2011).  

The designers of a tutor model must make decisions on each of the various major components in order to 

create an enhanced learning experience through well-grounded pedagogical strategies (optimal plans for 

action by the tutor) that are selected based on learner states and traits and that are delivered to the learner 

as instructional tactics (optimal actions by the tutor). Next, tactics are chosen based on the previously 

selected strategies and instructional context (the conditions of the training at the time of the instructional 

decision. This is part of the learning effect model (Sottilare, 2012; Fletcher & Sottilare, 2013; Sottilare, 

2013; Sottilare, Ragusa, Hoffman & Goldberg, 2013), which has been updated and described below in 

more detail in section titled “Motivations for Intelligent Tutoring System Standards” in this introductory 

chapter.  

Principles of Learning and Instructional Techniques, Strategies, and Tactics 

Instructional techniques, strategies, and tactics play a central role in the design of GIFT. Instructional 

techniques represent instructional best practices and principles from the literature, many of which have 

yet to be implemented within GIFT at the writing of this volume. Examples of instructional techniques 

include, but are not limited to, error-sensitive feedback, mastery learning, adaptive spacing and repetition, 

and fading worked examples. Others are represented in the next section of this introduction. It is 

anticipated that techniques within GIFT will be implemented as software-based agents where the agent 

will monitor learner progress and instructional context to determine if best practices (agent policies) have 

been adhered to or violated. Over time, the agent will learn to enforce agent policies in a manner that 

optimizes learning and performance. 

Some of the best instructional practices (techniques) have yet to be implemented in GIFT, but many 

instructional strategies and tactics have been implemented. Instructional strategies (plans for action by the 

tutor) are selected based on changes to the learner’s state (cognitive, affective, physical). If a sufficient 

change in any learner’s state occurs, this triggers GIFT to select a generic strategy (e.g., provide 

feedback). The instructional context along with the instructional strategy then triggers the specific 

selection of an instructional tactic (an action to be taken by the tutor). If the strategy is “provide 

feedback,” then the tactic might be to “provide feedback on the error committed during the presentation 

of instructional concept ‘B’ in the chat window during the next turn.” Tactics detail what is to be done, 

why, when, and how. 

An adaptive, intelligent learning environment needs to select the right instructional strategies at the right 

time, based on its model of the learner in specific conditions and the learning process in general. Such 

selections should be taken to maximize deep learning and motivation while minimizing training time and 

costs. Authoring Tools was the theme of the third advisory board meeting of the collaboration between  

(1) the Human Research and Engineering Directorate (HRED) of the U.S. Army Research Laboratory 

(ARL) and (2) the Advanced Distributed Learning Center for Intelligent Tutoring Systems Research & 

Development (ADL CITSRD) in the Institute for Intelligent Systems (IIS) at the University of Memphis. 

The purpose of this volume is to provide a succinct illustration of some commonly used authoring tools 

and associated principles of authoring tool design.  

The following are examples of successful authoring tools:  

 The Authoring Software Platform for Intelligent Resources in Education (ASPIRE) (Mitrovic, et 

al., 2009), created by the Intelligent Computer Tutoring Group at the University of Canterbury in 
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New Zealand, employs domain experts to create constraint-based tutors through the generation of 

domain model supplemental information from interactions with the system. Such information is 

then processed by an expert user who has familiarity with the constraint language. 

 The AutoTutor Authoring Tools were created by the University of Memphis IIS. These tools 

allow a user to configure AutoTutor conversational scripts via a desktop or web-based interface, 

and have made recent efforts to simplify the authoring process to a level which the student can 

have input. The AutoTutor Script Authoring Tool (ASAT) is compatible with the GIFT authoring 

suite and can be shared as sharable knowledge objects (SKOs) (Nye, Hu, Graesser, and Zhiqiang, 

2014)). 

 The Cognitive Tutor Authoring Tools (CTAT), developed by Carnegie Mellon University, are 

one of the longest running and most successful toolsets. CTAT allows authors to link tutoring 

knowledge to a graphical user interface (GUI) with little programming effort and demonstrate 

model solutions rapidly. Recently efforts have taken steps to automate authoring through a 

process of demonstration by an expert with a project called SimStudent (Matsuda, Cohen, and 

Koedinger, 2015), resulting in an expert model. 

 The GIFT Authoring Tools, created by ARL and increasingly by the GIFT user community, are 

open source. GIFT was created to realize the US Army Learning Model (ALM) self-regulated 

learning capability and to reduce the time/cost/skill needed to author ITSs. Currently, the GIFT 

authoring tools consist of a series of developer-oriented, XML-based editing tools (e.g., Course 

Authoring Tool (CAT), Survey Authoring System, Domain Knowledge File Authoring Tool 

(DAT), and Pedagogy Configuration Authoring Tool (PCAT)), which are being integrated with a 

single simplified web-based authoring tool known as the GIFT Authoring Tool (GAT). These 

tools have been used to create a variety of tutors in a variety of domains of instruction (e.g., 

casualty care, cryptography, solving logic puzzles, and construction equipment use). The design 

goal for the GAT is to provide ITS authoring capabilities, which can be used by domain experts 

with little or no knowledge or skill in either computer programming or instructional system 

design to produce highly effective and efficient ITSs (Sottilare, 2013). 

 The Situated Pedagogical (SitPed) authoring tool, created by the University of Southern 

California, focuses heavily on preview-based authoring, where a non-technical author can 

simulate the experience of a student while simultaneously demonstrating actions and statements 

to the tutor. This model blends the authoring components of an expert model, pedagogical action, 

and virtual human creation in order to gain efficiency. 

There are a number of barriers to making authoring tools usable by the general public. The main barriers 

are: 

 Specialized skills (e.g., computer programming, understanding of instructional design) are 

required to master existing authoring tools. 

 Time and cost to author ITSs using existing authoring tools is high due to the complexity of ITSs 

and deficiencies in the usability of current authoring tools. 

 Time required to retrieve and organize authoring content is high. 

 Standards for ITS authoring are non-existent, yielding extremely low interoperability between 

authoring toolsets.  
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Members of the third advisory board were selected because their research fills many of these gaps and 

provides more sophisticated authoring strategies for GIFT. More specifically, researchers on the board 

have made major advances for model-tracing, agent-based, and/or dialogue-based ITSs in three thematic 

subcategories: (1) simplified user interfaces, (2) methods for curation of data (retrieval, storage, and 

organization), and (3) development of authoring job aids. Research in these subcategories is destined to 

move the horizon of authoring tools from the laboratory to the classroom through the creation of easy to 

use systems built on standardized design principles. Our goal was to elicit input from members of this 

advisory board and the authors of this book to shape ITSs authoring standards. 

Motivations for Intelligent Tutoring System Standards 

An emphasis on self-regulated learning has highlighted a requirement for point-of-need training in 

environments where human tutors are either unavailable or impractical. ITSs have been shown to be as 

effective as expert human tutors (VanLehn, 2011) in one-to-one tutoring in well-defined domains  

(e.g., mathematics or physics) and significantly better than traditional classroom training environments. 

ITSs have demonstrated significant promise, but 50 years of research have been unsuccessful in making 

ITSs ubiquitous in military training or the tool of choice in our educational system. This begs the 

question: “Why?” 

Part of the answer lies in the fact that the availability and use of ITSs have been constrained by their high 

development costs, their limited reuse, a lack of standards, and their inadequate adaptability to the needs 

of learners. Educational and training technologies like ITSs are primarily researched and developed in a 

few key environments: industry, academia, and government including military domains. Each of these 

environments has its own challenges and design constraints. The application of ITSs to military domains 

is further hampered by the complex and often ill-defined environments in which the US military operates 

today. ITSs are often built as domain-specific, unique, one-of-a-kind, largely domain-dependent solutions 

focused on a single pedagogical strategy (e.g., model tracing or constraint-based approaches) when 

complex learning domains may require novel or hybrid approaches. Therefore, a modular ITS framework 

and standards are needed to enhance reuse, support authoring, optimize instructional strategies, and lower 

the cost and skillset needed for users to adopt ITS solutions for training and education. It was out of this 

need that the idea for GIFT arose.  

GIFT has three primary functions: authoring, instructional management, and evaluation. First, it is a 

framework for authoring new ITS components, methods, strategies, and whole tutoring systems. Second, 

GIFT is an instructional manager that integrates selected instructional theory, principles, and strategies for 

use in ITSs. Finally, GIFT is an experimental testbed used to evaluate the effectiveness and impact of ITS 

components, tools, and methods. GIFT is based on a learner-centric approach with the goal of improving 

linkages in the updated adaptive tutoring learning effect model (Figure 1; Sottilare, 2012; Fletcher & 

Sottilare, 2013; Sottilare, 2013; Sottilare, Ragusa, Hoffman & Goldberg, 2013).  
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Figure 1. Updated adaptive tutoring learning effect model  

 

A deeper understanding of the learner’s behaviors, traits, and preferences (learner data) collected through 

performance, physiological and behavioral sensors, and surveys will allow for more accurate evaluation 

of the learner’s states (e.g., engagement level, confusion, frustration). This will result in a better and more 

persistent model of the learner. To enhance the adaptability of the ITS, methods are needed to accurately 

classify learner states (e.g., cognitive, affective, psychomotor, social) and select optimal instructional 

strategies given the learner’s existing states. A more comprehensive learner model will allow the ITS to 

adapt more appropriately to address the learner’s needs by changing the instructional strategy (e.g., 

content, flow, or feedback). An instructional strategy better aligned to the learner’s needs is more likely to 

positively influence their learning gains. It is with the goal of optimized learning gains in mind that the 

design principles for GIFT were formulated. 

This version of the learning effect model has been updated to gain understanding of the effect of optimal 

instructional tactics and instructional context (both part of the domain model) on specific desired 

outcomes including knowledge and skill acquisition, performance, retention, and transfer of skills from 

training or tutoring environments to operational contexts (e.g., from practice to application). The feedback 

loops in Figure 1 have been added to identify tactics as either a change in instructional context or 

interaction with the learner. This allows the ITS to adapt to the need of the learner. Consequently, the ITS 

changes over time by reinforcing learning mechanisms. 

GIFT Design Principles 

The GIFT methodology for developing a modular, computer-based tutoring framework for training and 

education considered major design goals, anticipated uses, and applications. The design process also 

considered enhancing one-to-one (individual) and one-to-many (collective or team) tutoring experiences 

beyond the state of practice for ITSs today. A significant focus of the GIFT design was on domain-

dependent elements in the domain module only. This is a design tradeoff to foster reuse and allows ITS 

decisions and actions to be made across any/all domains of instruction. 
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One design principle adopted in GIFT is that each module should be capable of gathering information 

from other modules according to the design specification. Designing to this principle resulted in standard 

message sets and message transmission rules (i.e., request-driven, event-driven, or periodic 

transmissions). For instance, the pedagogical module is capable of receiving information from the learner 

module to develop courses of action for future instructional content to be displayed, manage flow and 

challenge level, and select appropriate feedback. Changes to the learner’s state (e.g., engagement, 

motivation, or affect) trigger messages to the pedagogical module, which then recommends general 

courses of action (e.g., ask a question or prompt the learner for more information) to the domain module, 

which provides a domain-specific intervention (e.g., what is the next step?).  

Another design principle adopted within GIFT is the separation of content from the executable code (Patil 

& Abraham, 2010). Data and data structures are placed within models and libraries, while software 

processes are programmed into interoperable modules. Efficiency and effectiveness goals (e.g., 

accelerated learning and enhanced retention) were considered to address the time available for military 

training and the renewed emphasis on self-regulated learning. An outgrowth of this emphasis on 

efficiency and effectiveness led Dr. Sottilare to seek external collaboration and guidance. In 2012, ARL 

with the University of Memphis developed advisory boards of senior tutoring system scientists from 

academia and government to influence the GIFT design goals moving forward. Advisory boards have 

been held each year since 2012 resulting in volumes in the Design Recommendations for Intelligent 

Tutoring Systems series the following year. The learner modeling advisory board was completed in 

September 2012 and Volume 1 followed in July 2013. An advisory board on instructional management 

was completed in July 2013 and Volume 2 followed in June 2014. The authoring tools advisory board 

was completed in June of 2014 and Volume 3 is planned for publication in May or June 2015. Future 

boards are planned for domain modeling, learner assessment, team training, and learning effect 

evaluations. 

Design Goals and Anticipated Uses 

GIFT may be used for a number of purposes, with the primary ones enumerated below: 

1. An architectural framework with modular, interchangeable elements and defined relationships to 

support stand-alone tutoring or guided training if integrated with a training system  

2. A set of specifications to guide ITS development 

3. A set of exemplars or use cases for GIFT to support authoring, reuse, and ease-of-use 

4. A technical platform or testbed for guiding the evaluation, development/refinement of concrete 

systems 

These use cases have been distilled down into the three primary functional areas, or constructs:  

authoring, instructional management, and the recently renamed evaluation construct. Discussed below are 

the purposes, associated design goals, and anticipated uses for each of the GIFT constructs. 

GIFT Authoring Construct 

The purpose of the GIFT authoring construct is to provide technology (tools and methods) to make it 

affordable and easier to build ITSs and ITS components. Toward this end, a set of XML configuration 

tools continues to be developed to allow for data-driven changes to the design and implementation of 
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GIFT-generated ITSs. The design goals for the GIFT authoring construct have been adapted from Murray 

(1999, 2003) and Sottilare and Gilbert (2011). The GIFT authoring design goals are as follow:  

 Decrease the effort (time, cost, and/or other resources) for authoring and analyzing ITSs by 

automating authoring processes, developing authoring tools and methods, and developing 

standards to promote reuse. 

 Decrease the skill threshold by tailoring tools for specific disciplines (e.g., instructional designers, 

training developers, and trainers) to author, analyze, and employ ITS technologies. 

 Provide tools to aid designers/authors/trainers/researchers in organizing their knowledge. 

 Support (structure, recommend, or enforce) good design principles in pedagogy through user 

interfaces and other interactions. 

 Enable rapid prototyping of ITSs to allow for rapid design/evaluation cycles of prototype 

capabilities. 

 Employ standards to support rapid integration of external training/tutoring environments (e.g., 

simulators, serious games, slide presentations, transmedia narratives, and other interactive 

multimedia). 

 Develop/exploit common tools and user interfaces to adapt ITS design through data-driven 

means. 

 Promote reuse through domain-independent modules and data structures. 

 Leverage open-source solutions to reduce ITS development and sustainment costs. 

 Develop interfaces/gateways to widely-used commercial and academic tools (e.g., games, 

sensors, toolkits, virtual humans). 

As a user-centric architecture, anticipated uses for GIFT authoring tools are driven largely by the 

anticipated users, which include learners, domain experts, instructional system designers, training and 

tutoring system developers, trainers and teachers, and researchers. In addition to user models and GUIs, 

GIFT authoring tools include domain-specific knowledge configuration tools, instructional strategy 

development tools, and a compiler to generate executable ITSs from GIFT components in a variety of 

formats (e.g., PC, Android, and IPad).  

Within GIFT, domain-specific knowledge configuration tools permit authoring of new knowledge 

elements or reusing existing (stored) knowledge elements. Domain knowledge elements include learning 

objectives, media, task descriptions, task conditions, standards and measures of success, common 

misconceptions, feedback library, and a question library, which are informed by instructional system 

design principles that, in turn, inform concept maps for lessons and whole courses. The task descriptions, 

task conditions, standards and measures of success, and common misconceptions may be informed by an 

expert or ideal learner model derived through a task analysis of the behaviors of a highly skilled user. 

ARL is investigating techniques to automate this expert model development process to reduce the time 

and cost of developing ITSs. In addition to feedback and questions, supplementary tools are anticipated to 

author explanations, summaries, examples, analogies, hints, and prompts in support of GIFT’s 

instructional management construct. 



 

x 

 

GIFT Instructional Management Construct 

The purpose of the GIFT instructional management construct is to integrate pedagogical best practices in 

GIFT-generated ITSs. The modularity of GIFT will also allow GIFT users to extract pedagogical models 

for use in tutoring/training systems that are not GIFT-generated. GIFT users may also integrate 

pedagogical models, instructional strategies, or instructional tactics from other tutoring systems into 

GIFT. The design goals for the GIFT instructional management construct are the following: 

 Support ITS instruction for individuals and small teams in local and geographically distributed 

training environments (e.g., mobile training), and in both well-defined and ill-defined learning 

domains. 

 Provide for comprehensive learner models that incorporate learner states, traits, demographics, 

and historical data (e.g., performance) to inform ITS decisions to adapt training/tutoring.  

 Support low-cost, unobtrusive (passive) methods to sense learner behaviors and physiological 

measures and use these data along with instructional context to inform models to classify (in near 

real time) the learner’s states (e.g., cognitive and affective). 

 Support both macro-adaptive strategies (adaptation based on pre-training learner traits) and 

micro-adaptive instructional strategies and tactics (adaptation based learner states and state 

changes during training). 

 Support the consideration of individual differences where they have empirically been documented 

to be significant influencers of learning outcomes (e.g., knowledge or skill acquisition, retention, 

and performance). 

 Support adaptation (e.g., pace, flow, and challenge level) of the instruction based the domain and 

learning class (e.g., cognitive learning, affective learning, psychomotor learning, social learning). 

 Model appropriate instructional strategies and tactics of expert human tutors to develop a 

comprehensive pedagogical model. 

To support the development of optimized instructional strategies and tactics, GIFT is heavily grounded in 

learning theory, tutoring theory, and motivational theory. Learning theory applied in GIFT includes 

conditions of learning and theory of instruction (Gagne, 1985), component display theory (Merrill, Reiser, 

Ranney & Trafton, 1992), cognitive learning (Anderson & Krathwohl, 2001), affective learning 

(Krathwohl, Bloom & Masia, 1964; Goleman, 1995), psychomotor learning (Simpson, 1972), and social 

learning (Sottilare, Holden, Brawner, and Goldberg, 2011; Soller, 2001). Aligning with our goal to model 

expert human tutors, GIFT considers the intelligent, nurturant, Socratic, progressive, indirect, reflective, 

and encouraging (INSPIRE) model of tutoring success (Lepper, Drake, and O’Donnell-Johnson, 1997) 

and the tutoring process defined by Person, Kreuz, Zwaan, and Graesser (1995) in the development of 

GIFT instructional strategies and tactics.  

Human tutoring strategies have been documented by observing tutors with varying levels of expertise. For 

example, Lepper’s INSPIRE model is an acronym that highlights the seven critical characteristics of 

successful tutors:. Graesser and Person’s (1994) 5-step tutoring frame is a common pattern of the tutor-

learner interchange in which the tutor asks a question, the learner answers the question, the tutor gives 

short feedback on the answer, then the tutor and learner collaboratively improve the quality of (or 

embellish) the answer, and finally, the tutor evaluates whether the learner understands the answer. Cade, 
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Copeland, Person, and D’Mello (2008) identified a number of tutoring modes used by expert tutors, 

which hopefully could be integrated with ITS. 

As a learner-centric architecture, anticipated uses for GIFT instructional management capabilities include 

both automated instruction and blended instruction, where human tutors/teachers/trainers use GIFT to 

support their curriculum objectives. If its design goals are realized, it is anticipated that GIFT will be 

widely used beyond military training contexts as GIFT users expand the number and type of learning 

domains and resulting ITS generated using GIFT.  

GIFT Evaluation Construct 

The GIFT Analysis Construct has recently migrated to become the GIFT Evaluation Construct with an 

emphasis on the evaluation of effect on learning, performance, retention and transfer. The purpose of the 

GIFT evaluation construct is to allow ITS researchers to experimentally assess and evaluate ITS 

technologies (ITS components, tools, and methods). The design goals for the GIFT evaluation construct 

are the following: 

 Support the conduct of formative assessments to improve learning.  

 Support summative evaluations to gauge the effect of technologies on learning. 

 Support assessment of ITS processes to understand how learning is progressing throughout the 

tutoring process.  

 Support evaluation of resulting learning versus stated learning objectives. 

 Provide diagnostics to identify areas for improvement within ITS processes. 

 Support the ability to comparatively evaluate ITS technologies against traditional tutoring or 

classroom teaching methods. 

 Develop a testbed methodology to support assessments and evaluations (Figure 2). 

 

Figure 2. GIFT evaluation testbed methodology 
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Figure 2 illustrates an analysis testbed methodology being implemented in GIFT. This methodology was 

derived from Hanks, Pollack, and Cohen (1993). It supports manipulation of the learner model, 

instructional strategies, and domain-specific knowledge within GIFT, and may be used to evaluate 

variable in the adaptive tutoring learning effect model (Sottilare, 2012; Sottilare, Ragusa, Hoffman, and 

Goldberg, 2013). In developing their testbed methodology, Hanks et al. reviewed four testbed 

implementations (Tileworld, the Michigan Intelligent Coordination Experiment [MICE], the Phoenix 

testbed, and Truckworld) for evaluating the performance of artificially intelligent agents. Although agents 

have changed substantially in complexity during the past 20‒25 years, the methods to evaluate their 

performance have remained markedly similar. 

The authors designed the GIFT analysis testbed based upon Cohen’s assertion (Hanks et al., 1993) that 

testbeds have three critical roles related to the three phases of research. During the exploratory phase, 

agent behaviors need to be observed and classified in broad categories. This can be performed in an 

experimental environment. During the confirmatory phase, the testbed is needed to allow more strict 

characterizations of agent behavior to test specific hypotheses and compare methodologies. Finally, in 

order to generalize results, measurement and replication of conditions must be possible. Similarly, the 

GIFT analysis methodology (Figure 2) enables the comparison/contrast of ITS elements and assessment 

of their effect on learning outcomes (e.g., knowledge acquisition, skill acquisition, and retention).  

How to Use This Book  

This book is organized into five sections:  

I. Perspectives of Authoring Tools and Methods 

II. Authoring Model-Tracing Tutors 

III. Authoring Agent-Based Tutors 

IV. Authoring Dialogue-Based Tutors 

V. Increasing Interoperability and Reducing Workload and Skill Requirements for Authoring 

Tutors 

Section I, Perspective of Authoring Tools and Methods, describes a variety of approaches to authoring 

ITSs and discusses their capabilities, limitations, and potential impact on learning. Section II, Authoring 

Model-Tracing Tutors, examines authoring tools for model-tracing tutors (sometimes referred to as 

example-tracing tutors), which are based on a problem representation stored in a behavior graph with 

problem-solving steps and specific methods handling alternative student behaviors. Emerging model-

tracing tutoring authoring technologies are discussed with respect to how GIFT should be enhanced to 

make authoring of model-tracing tutors easier and more efficient. Section III, Authoring Agent-Based 

Tutors, discusses authoring processes guided by intelligent software agents. Section IV, Authoring 

Dialogue-Based Tutors, focuses primarily on interactive conversational tutors where virtual humans guide 

instruction. Finally, in Section V, we address the need for tools and methods to increase interoperability 

between authoring toolsets, and also reduce the knowledge and skill needed to author ITSs. A goal for 

GIFT is to reduce the skill and time needed to author ITSs to a point where domain experts can author 

ITSs without computer programming and instructional design knowledge/skills.   

Chapter authors in each section were carefully selected for participation in this project based on their 

expertise in the field as ITS scientists, developers, and practitioners. Design Recommendations for 
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Intelligent Tutoring Systems: Volume 3 Authoring Tools is intended to be a design resource as well as 

community research resource. Volume 3 can also be of significant benefit as an educational guide for 

developing ITS scientists, as a roadmap for ITS research opportunities.  
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CHAPTER 1  Challenges to Enhancing Authoring Tools and 

Methods for Intelligent Tutoring Systems 
Robert A. Sottilare 

US Army Research Laboratory 

Introduction 

This chapter highlights a vision for intelligent tutoring system (ITS) authoring capabilities with respect to 

the major challenges or barriers to their adoption. A variety of authoring tools for ITSs have emerged, 

flourished, and gone extinct over the last 25 years. A few authoring toolsets, which have been introduced 

in Chapter 1 of this book, continue to evolve. Outside the growing number of commercial tools, two sets 

of authoring tools have found an active user community to sustain them. Carnegie Mellon University’s 

Cognitive Tutor Authoring Tools (CTAT; Koedinger, Aleven & Heffernan, 2003) and the AutoTutor 

Authoring Tools (University of Memphis; Graesser et al., 1999) have a long history and remain viable 

today. Others like the Authoring Software Platform for Intelligent Resources in Education (ASPIRE; 

Mitrovic et al., 2009) are a bit more recent and still other authoring tools like the Generalized Intelligent 

Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012) and the Situated 

Pedagogical Authoring (SPA; University of Southern California, 2013) tools are newer still. Each of these 

tools has different scope (e.g., authoring for model-tracing, agent-based, or dialogue-based tutors) and a 

different set of learning theories (e.g., component display theory) that drive their design. A short 

description of each follows for comparison. 

CTAT now has a set of authoring tools for both cognitive and example-tracing tutors. The CTAT 

authoring process requires definition of a task domain along with appropriate problems. CTAT was 

developed to support problem-based task domains. It may be more difficult to support the authoring of 

scenario-based tutors where problem-solving processes are less linear and multiple paths to success are 

the norm. In order to develop a domain model, a cognitive task analysis is required to understand how 

students learn the required concepts and evolve their skills. CTAT requires familiarity with the Java 

Expert System Shell (JESS) production rule language. The authoring tools for example-tracing tutors do 

not require any programming. CTAT is currently available as binary (executable) code.  

The AutoTutor Authoring Tools are used to develop interactive tutors where students are taught through 

natural language discourse. AutoTutor was developed to support specific domains (e.g., Newtonian 

physics and computer literacy). As the name suggests, the AutoTutor Script Authoring Tool (ASAT) is a 

tool within the AutoTutor framework used to create AutoTutor scripts. ASAT-X is an extensible markup 

language (XML)-based tool. The ASAT-V tool is used to view and test AutoTutor visual scripts created 

by Microsoft Visio. Conversation rules can be very challenging for instructors, course managers, and 

domain experts. However, the AutoTutor Lite authoring interface is more intuitive. The tools are 

available as binary code. 

ASPIRE is an authoring environment for developing constraint-based ITSs, which can be used by 

instructors to author ITSs to supplement their courses. ASPIRE supports authoring of the domain 

knowledge. The use of this knowledge is key to development of the domain model which is the most 

complex and time-consuming part of an ITS to develop. ASPIRE uses automation and intelligent support 

to guide authors through the authoring process. In ASPIRE, authoring consists of seven steps 

(aspire.cosc.canterbury.ac.nz/ ASPIRE-Author.php), some of which are beyond the capabilities of 

instructors, course managers, and domain experts without the intervention and support of the artificial 

intelligence (AI)-based scaffolding. A goal of ASPIRE is to allow non-computer scientists to author ITSs.   



 

4 

The SPA Tools support the definition of learning objectives, the development of learner measures and 

assessments, and the design appropriate feedback and scaffolding for reflection and self-directed learning. 

The goal of SPA is to simplify the process of creating knowledge for automated assessment and feedback 

in virtual environments and, like AutoTutor, is targeted at training domains where virtual humans play an 

active role in tutoring. The developers of the SPA tools assert that authoring in an environment that 

closely emulates the learner’s experience eases the technical burdens usually encountered with ITS 

content creation and improves authoring efficiency. SPA is not available to the public at this time.    

The GIFT authoring tools currently consist of several separate open-source authoring tools (e.g., course, 

domain knowledge file, pedagogy configuration, survey) to support various elements of the authoring 

process. A unifying GIFT Authoring Tool (GAT) is being developed as of the publication of this volume 

along with cloud-based versions of the entire GIFT. A usability evaluation will drive the development of 

an intelligently guided authoring experience. The GIFT authoring tools differ from the other authoring 

tools discussed here in that the GIFT tools have been integrated with external toolsets like the ASAT to 

support dialogue-based interactions, which can be triggered by GIFT-based tutors, and the Student 

Information Models for Intelligent Learning Environments (SIMILE) to support assessments where 

serious games are linked to ITSs. GIFT also provides a tool for automatically evaluating the hierarchical 

relationships between concepts in text-based material to support rapid development of expert models and 

other domain knowledge for use in the authoring process. A goal of the GIFT authoring tools is to allow 

development of effective ITSs by domain experts with little or no knowledge of computer programming 

or instructional design. This toolset is intended to support authoring across multiple task domains, but will 

continue to explore opportunities to leverage and integrate existing toolsets. The GIFT authoring tools, 

along with the rest of the GIFT software (source code), are freely available at www.GIFTtutoring.org.    

A Vision for Authoring Capabilities 

While it is obvious that we may never realize a single authoring toolset for ITSs, we continue to strive for 

authoring toolsets that are easy to access and use, and support authoring in multiple task domains 

(cognitive, affective, psychomotor, and social) resulting in a variety of ITSs (constraint-based, model-

tracing, dialogue-based, agent-based). For these reasons, our vision is for a shell tutor or architecture 

where a variety of ITSs can support training in a variety of task domains.  

Customized interfaces are needed to support improved usability novice, journeyman, and expert level 

authors. To support ease of use, intelligent agents would be used to guide human authors through the 

process where automation is not practical. The authoring process for this ideal toolset would also be 

heavily focused on process automation to reduce the burden of content and domain knowledge 

development to maximum extent possible. Usability and automation in the authoring process are 

discussed in more detail below. 

Enhancing the Usability of Authoring Tools 

We chose to examine the authoring process as a domain in which the author is being tutored with respect 

to best practices and the final ITS product. Using Nielsen’s (1994) 10 usability heuristics, we discuss how 

authoring tools might be improved to support tailored interaction with authors of varied capabilities. We 

begin by examining the visibility of system status. In guiding the authoring process, the system should 

keep authors informed about the impact of their decisions on the final product, and feedback should be 

provided in a timely manner.  

http://www.gifttutoring.org/
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Next, we examine the match between system and the real world. If the author has a background in 

instructional design, it is desirable to use words, phrases, and concepts familiar to that author and provide 

information and guide steps in a natural and logical order based on knowledge of the process. What we 

are describing here is a tailored interface based on a user model that describes their capabilities and 

preferences. 

Another desirable characteristic for our authoring tool interface is centered on user control and freedom. 

The ideal authoring system should support easy undo and redo functions without having to through 

multiple steps. For our purposes, this means the authoring system will be required to track previous 

authoring states in much the same way that Microsoft Office products save previous states of Word, 

PowerPoint, and Excel in memory. Given the ITS authoring process is more complex than an Office 

document, the specific schema to determine what to keep in memory and how often to update the model 

will require some research.  

Consistency and standards should be realized across all user interface elements. Words, situations, and 

actions should mean the same thing throughout the user interface. Our authoring interface should also 

have mechanisms for error prevention either by alerting the author through error messages or by checking 

for errors through agents and then presenting confirmation options to the author before allowing the 

author to commit to an action. If an action is not permitted, then it would be desirable to have a rule to 

exclude it. If errors occur, the authoring system should help the users recognize, diagnose, and recover 

from errors. This should include as a minimum some help messages and documentation. Documentation 

should be easy to search, focused by the author’s context (where they are in the process), and include a 

list of concrete steps. 

An intelligent troubleshooting mechanism is a desirable authoring tool feature and should include 

constructive options to solve the problem as well as identify it. One option to develop a library of 

common errors is to collect user interaction data over time (big data) and mine that data to identify and 

document common errors and solution options. User-generated content (social media) may be another 

option for evaluating the effectiveness of solutions. 

The recognition rather than recall heuristic states that the user interface should minimize the author’s 

memory load by making objects, actions, and options visible. The author should not have to remember 

where a control is or what the next step is in the process. Standards should be developed for ITS authoring 

controls/objects. Where there are universal graphics for controls (e.g., undo), these symbols should be 

used instead of creating new, ITS-unique symbols. 

Next, we examine the flexibility and efficiency of user interfaces for authoring ITSs. The interface should 

be sensitive to different types of users, their capabilities, and their limitations. Authoring tools should be 

able to select default conditions for novice users who may not understand the impact of these decisions. 

The selections made by the system are not seen by the novice user, but may be selected and changed by 

more experienced authors. Authoring tools should also be able to support shortcuts for frequent actions. 

Finally, authoring user interfaces should be aesthetic and minimalistic. They should not contain irrelevant 

information, which contributes to extraneous cognitive load and reduces available resources for 

processing germane and intrinsic workload. Every extra bit of information competes with the relevant 

information and diminishes their relative visibility to the author. It may be useful for future authoring 

systems to reveal additional information to the user when the object, action, or option becomes relevant 

based on where the author is in the process. 
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Automation to Enhance Reuse and Reduce Authoring Burden 

While the usability discussion above focused on the author’s interface with the author tools, this section 

argues the merits of automation to take the human out of the authoring loop and support the search, 

retrieval, curation, and development of content and other domain knowledge. Metadata standards are 

needed to tag content objects for reuse. Intelligent search methods would use this metadata to find, 

retrieve, and curate appropriate content to support instructional objectives set by the author. Intelligent 

search would reduce the workload and skill needed to author effective ITSs. 

Another area of reuse may be in the design and publishing of standard interface specifications for ITSs. 

As part of its architectural description, GIFT has published an interface control document, which 

describes how to push and pull data from GIFT and support real-time interaction with external training 

platforms (e.g., serious games, virtual simulations). If we describe adaptive training systems in terms of 

interactions between the learner, the training environment, and intelligent agents within the ITS, being 

able to reuse external training platforms in conjunction with an ITS reduces the burden of creating a 

problem space for each individual training scenario, but still allows for an AI to drive instructional 

decisions and provide tailored training. 

Automatic authoring techniques would also allow authors to create content without humans in the loop. 

For example, GIFT currently has an authoring tool to rapidly develop expert models, which can 

automatically analyze a text-based corpus and generate a hierarchical representation of the concepts in 

that corpus. This can be used to generate an expert model and other domain knowledge thereby reducing 

the authoring burden.  

Influence on GIFT Authoring Tool Design 

As noted, the major challenges for the ITS authoring process are the time, cost, and skill needed to author 

effective ITSs. Based on the usability heuristic and automation discussions above, we have identified 

goals for the GIFT authoring tools as follows: 

 Develop an authoring tool user interface that supports Nielsen’s usability heuristics and allows 

instructors and course managers to develop effective ITS without knowledge of computer 

programming and instructional design. 

 Create tools and methods to identify best authoring practices through the mining of user-

generated content. 

 Develop and publish GIFT metadata standards to support the search, retrieval, and curation. 

 Develop search, retrieval, and curation tools to support the reuse of appropriate domain content. 

 Examine the end-to-end process to identify the cost of developing ITSs and examine 

opportunities to automate elements of the authoring process where practicable. 

 Create automated authoring tools and validate their performance. 



 

7 

Perspectives on Authoring Tools and Methods 

The following chapters in this section discuss various perspectives on authoring tool. In Chapter 2, Dr. 

Tom Murray discusses a theory-based approach to authoring tool design. Dr. Murray is well known for 

his work in ITS authoring having conducted extensive reviews of authoring tools (Murray, 1999; Murray, 

2003). In Chapter 3, Dr. Benjamin Bell compares and contrasts authoring tools for different ITS genres. 

Finally, in Chapter 4, Drs. Benjamin Nye, Benjamin Goldberg, and Xiangen Hu discuss design 

considerations for authoring tools across various tutoring/training domains. 
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CHAPTER 2  Theory-based Authoring Tool Design:  

Considering the Complexity of Tasks and Mental Models 
Tom Murray 

School of Computer Science, University of Massachusetts 

Introduction 

In this chapter, I propose some theoretical foundations for future authoring tool design, focusing on 

operationalizing the construct of complexity—for tool, task, and user. Intelligent tutoring systems (ITSs) 

are highly complex educational software applications used to produce highly complex software 

applications. ITS authoring tools are major undertakings and to redeem this investment it is important to 

anticipate actual user needs and capacities. I propose that one way to do this is to match the complexity of 

tool design to the complexity of authoring tasks and the complexity capacity of users and user 

communities. Doing so entails estimating the complexity of the mental models that a user is expected to 

build in order to use a tool as intended. This chapter presents some exploratory ideas on how to 

operationalize the concept of complexity for tool, task, and user. I draw from the following theories and 

frameworks to weave this narrative: complexity science, activity theory, epistemic forms and games, and 

adult cognitive developmental theory (hierarchical complexity theory). 

ITS Authoring Tool Design Tradeoffs 

This chapter builds on earlier work (now over a decade old) describing the “state of the art” in ITS 

authoring tools research and development (R&D) (Murray, 2003). It does not provide any updates on the 

state of R&D in this field
1
, but rather takes a perpendicular tact to look at some fundamental issues in 

authoring tools design. We start with a review of the design tradeoffs in creating ITS authoring tools. 

ITSs are highly complex educational software applications (or learning environments) that can include the 

following components: user interface (which might include a simulated phenomenon or task 

environment), Expert Knowledge Model (of the task and/or knowledge), learner knowledge model, 

pedagogical model, and curriculum model (also collaborative learning environments may include group-

level aspects of any of these) (see Woolf, 2010). For several decades developers and researchers have 

been investigating the possibilities for creating ITS authoring tools because these are hoped to (1) reduce 

the effort and cost of building or customizing ITSs, and (2) allow non-programmers, including teachers 

and domain experts (and even students), to participate fully or partly in building or customizing ITSs 

(Murray et al., 2003; Aleven et al., 2006; Suraweera et al., 2010; Constaintin et al., 2013; Ainsworth et 

al., 2003; Ritter & Blessing, 1998).  

There are many design tradeoffs involved—the primary one being that, in general, the easier or more 

efficient a tool is to use, the more simplistic or constrained are the ITSs that can be built from it. Trivial 

examples at two extremes are a tool that allows the author to select among checkboxes and lists to order 

and toggle and sequence features and curriculum items in an otherwise fixed system vs. a tool that is so 

complicated and multi-featured that building an ITS with it is not much easier than traditional software 

programming. One can imagine a design tradeoff space (a triangle) among usability, depth, and flexibility 

(see Murray, 2004). Depth, which refers to the structural or casual depth of any of the ITS models (listed 

                                                           
1
 For more recent work in the field, see Aleven & Sewall, 2010; Cristea, 2005; Olsen et al. 2013; Specht, 2012; 

Suraweera et al., 2010; Mitrovic et al. 2009; Sottilare et al., 2012, 2014; and the chapters in this edited book 
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above), is usually at odds with flexibility, which is the ability to author a diversity of types of ITSs. 

Usability is usually at odds with both depth and flexibility, i.e., a system that facilitates building deep 

models or many types of models tends to be more powerful yet less usable. A main theme of this chapter 

is to provide some rough metrics to help with these design tradeoffs.  

Toward Theoretical Foundations 

Unlike educational software (including ITSs), whose user audience is relatively well defined and known, 

the target users of authoring tools are less well defined and understood (unless the tool is intended for in-

house use by a few specialized personnel, in which case, it has limited value as a research case study or 

data source). The main point of authoring tool (academic) research is to produce results that are 

generalizable to questions of ITS creation/customization related to production efficiency and accessibility 

by a non-trivial cohort of potential authors. That is, descriptions of new systems and innovations should 

be framed in terms of results, principles, or lessons learned that are relevant for other projects. Though 

efficiency is an important concern, I focus on usability in this chapter.  

We can draw from the standard literature on usability for tool design principles, which is important but 

relatively straightforward, but in addition there are some more theoretical issues specific to authoring 

tools (of any sort, not just for ITSs) that I find quite interesting. Influenced by topics I have studied since 

my early papers on the subject, I have come to believe that a key issue is in how one matches the 

complexity of the authoring task to the complexity of the tool and the complexity capacity of the target 

user. Thus, in the bulk of this chapter, I sketch some preliminary considerations and principles that, 

though quite speculative, are intended to initiate inquiry in this direction.  

Taking a more theoretical approach to ITS (or any) authoring tools is rarely if ever done, but my goal here 

is to point toward possible theoretical foundations for the (sub-) field. “Theory” can sometimes refer to a 

mere conceptual framework (without any underlying causal theory), but here I mean cognitive, social, 

epistemological, and/or information science theories that provide theoretical underpinnings. These areas 

of foundational theory (especially the learning and cognitive sciences) are now routinely considered in the 

design of ITSs and other educational software, but are rarely brought into discussions about the design or 

use of authoring tools.  

Design science and usability theory draw on socio-cognitive theories to explore the relationships between 

the design of artifacts and the needs, capabilities, and limitations of intended users (and other 

stakeholders) (see Oja, 2010; Norman, 1988; Nielsen, 1993). Originally, these theories were in response 

to the (now more accepted) realization that domain experts (those who are not instructors), traditional 

software architects, and academics all historically have difficulty predicting or imagining the needs and 

limitations of the average software user and the average real-life task scenario (or difficulty predicting the 

range of users and task scenarios). Thus software design, and artifact design, in general, is increasingly 

understood as needing (1) empirical trial-and-error development, (2) the skills of rigorous empathy and 

imagination to put oneself in the shoes of a range of types of users and situations, and (3) some basis in 

underlying psycho-socio-technical theory (Brown & Campione, 1996; Cobb et al., 2003).  

As mentioned, user-centered design (#1, 2 above) is important but may not lend itself to scholarly 

advances in authoring tools, but a more theoretical perspective should constitute a contribution to 

authoring tool design. The notion of assessing and coordinating complexity among tool, task, and user is a 

central theme in this particular theoretical exploration. In what follows, I first reflect on the factors 

leading to my 1999 article on authoring tools. I then consider some challenges facing authoring tool 

researchers today. Then, in the remainder of the chapter, I propose some theoretical foundations for future 
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authoring tool design. As mentioned, I draw from the following theories and frameworks to weave this 

particular theoretical narrative:  

 Complexity in software design 

 Activity theory 

 Epistemic forms and games, and  

 Adult cognitive developmental theory (i.e., hierarchical complexity theory).  

Theories of complex software design are used to emphasize some of the issues, because ITS authoring 

tools are complex artifacts designed to produce complex artifacts. Complexity science also helps us 

operationalize what is meant by complexity in general. Activity theory, which highlights the relationships 

between an artifact and its usage-tasks, usage-rules, and community of practice, provides an orientation 

and basic vocabulary for the task of ITS design by various types of users in an authoring role. We can ask 

whether a tool and its “rules” of use afford the accomplishment of a particular task for a particular class of 

users. Much of the process of matching tool/task complexity to user (and community) complexity 

capacity revolves around the complexity of the mental models that a user is expected to build in order to 

use a tool as intended. Colin’s work on epistemic forms and games provides a highly useful framework 

for talking about this tool-rule-user match in holistic terms at the right level of granularity. At this point, 

we have a framework for describing many sources of complexity in tools, tasks, and users (cognition or 

mental models), but no good way to order or coordinate these types of complexity. For that, we draw on 

hierarchical complexity theory and related theories of adult cognitive development to suggest this order as 

a final step in matching the complexity of an authoring tool to the complexity capacity of its target users.  

Challenges Facing Authoring Tool Research Today  

Predicting Future Flying Machines  

ITS authoring tool research is in an interesting socio-techno-historical position. Intelligent tutors, despite 

30 years of R&D, are not yet common in mainstream education or training, though a few notable systems 

have achieved wide-spread use (Koedinger et al., 1997; Heffernan & Heffernan, 2014; Graesser et al., 

2005; VanLehn et al. 2005; Mitrovic, 2012; Johnson et al., 2008; Sitaram & Mostow, 2012). This may be 

a completely appropriate development and adoption arc for a technology this complex and innovative, 

and we have every reason to believe that the results of ITS (and more generally advanced technology 

learning systems (ATLS)) research will continue to influence on-the-ground, computer-mediated learning. 

However, authoring tool researchers are in the awkward position of developing the cart before the horse, 

or worse yet, developing the cart-factory before the horse. It is as if, as the Wright brothers were 

experimenting with the first airplanes, a group of researchers and academics were observing on the side, 

working out how to design airplane factories that would make airplane production efficient and flexible. 

As those first manned flight contraptions were being developed, it would have been difficult to predict 

what future flying machines would look like, never mind what the market would be like or how to best 

mass-produce and easily customize them for typical users.  

Of course, ITS work is well beyond its first prototypes, so this analogy is stretched. Still, authoring tool 

designers work under considerable uncertainty as to what types of systems will find their way to 

substantial use and benefit from the scale and flexibility that authoring tools enable. However, we are 

talking about software here, not equipment manufacturing. Building abstractions and design tools is a 
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natural impulse in software design (procedural-, data-, and knowledge-abstraction are basic computer 

science principles; see Abelson & Sussman, 1983). As indicated in the history of my own projects, it can 

be beneficial to build authoring tools merely to facilitate local or small-scale R&D projects. A company 

that makes a decent profit on one single piece of widely used software (say, an ITS) would benefit from 

building authoring tools to customize and enter content for the ITS. However, the less generic the system, 

the more difficult it is to frame research questions and findings (especially after others have mapped out 

the territory).  

Old vs. New Conceptions of ITSs 

The original understanding of computational “intelligence” in ITSs involved mostly modeling and 

knowledge representation tasks (or challenges)—learner, domain, and instructional models. The more 

deeply cognitive science understands knowledge and learning (or finds how little it does understand), the 

more difficult these modeling tasks appear for authentic situated tasks. In general, the most successful 

ITSs are those focusing on knowledge that is the easiest to represent, including declarative facts and 

procedural steps (simple skills, which create complexity as they are combined). Yet developments in 

learning theory increasingly emphasize the importance of less representable forms of knowledge, such as 

metacognition, conceptual understanding, problems solving, open-ended inquiry, collaboration, 

communication, argumentation, hypothetical and analogical thinking, etc.  

The more basic forms of knowledge (fact, skills, and concept-map-like relationships) continue to have 

fundamental importance as building blocks for more sophisticated skills, but the more exciting work in 

ITS/ATLS has been moving into a wide variety of areas that do not involve “deep modeling” of 

knowledge or expertise. These new research trends include recognizing and responding to affect; using 

big data to classify and predict learner behavior (without trying to create runnable models per-se); 

wearable gadgets; immersive experiences; natural language understanding and production; gamification; 

and socialmediafication. For a project to be considered “ITS” research, it no longer requires 

computational intelligence per se, but only the inclusion of some state-of-the-art computational 

technology (or leading-edge techno-socio-psycho theory). While the idea of a generic ITS framework 

requires some commonality of basic components and/or representational frameworks, the scope of ITSs is 

becoming increasingly diverse, and overarching frameworks are increasingly difficult to envision. 

However, once could counter that as diversity increases, so does the number of projects, so that the actual 

impact of designing generic frameworks still serves a significant (if smaller percentage-wise) potential 

user base.  

Toward Design Theories 

Authoring tools are still essential for scale-up, wide adoption, and easy customization of learning systems, 

though each may need to be specific to a very specific genre of instructional systems. If so, authoring tool 

design may become more of an engineering challenge than a research area. However, there are still 

important theoretical issues that can be investigated, which we explore next. 

Engineering challenges involve figuring out how to apply general theories, methods, or principles to 

specific contexts. These challenges are no less arduous and important, as design principles tend to be 

rather abstract, and nailing down “how the rubber meets the road” in each context can be the bulk of the 

work. Also, because theory must ground in and remain responsive to actual examples, ideally there is an 

ongoing dialogue allowing general principles to be informed by the various methods that have been used 

to apply them to practical contexts. 
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Software Usability and Complexity 

Usability and Managing Software Development Risks 

Bracketing the above concerns, let’s assume that ITSs of some sort will indeed become mainstream and 

that authoring tools will become increasingly important—a safe bet, I think. Other than tools designed for 

in-house use by highly trained specialists, authoring tools, by their nature, must be usable by some 

anticipated user audience. As mentioned, with any tool there are context-specific usability concerns that 

can be worked out through good design practices (prototyping, early feedback from authentic users, etc.), 

but here I look at very general usability concerns, having to do with the complexity of these systems.  

ITSs are complex software applications and full-featured ITS authoring tools can be an order of 

magnitude larger and more complex—just as a machine designed to build many types of lamps is much 

more complex than a lamp (though the machine itself may be relatively easy for the end-user/author to 

use, its interiors will be more complex). Next, we look to the literature on the design and usability of 

complex software systems for advice relevant to ITS authoring tool design. This is a first step in 

imagining a more theory-driven approach to authoring tool design. 

Design tasks such as authoring ITSs fall under the “ill-defined” and “wicked” problems characteristic of 

real-world projects (Conklin, 2005; Mirel, 2004). In his treatment of usability of complex systems, Oga 

(2010) defines complex software development in terms of Mirel’s definition of complex problem-solving, 

which involves “ill-defined situations; vague or broad goals; large volumes of data from many sources... 

nonlinear, often uncharted analytical paths; no pre-set entry or stopping points; many contending 

legitimate options; collaborators with different priorities; [and] ‘good enough’ solutions with no one right 

answer.” Chilana et al. (2010) give three additional factors that contribute to the complexity of designing 

usable software: domain-specific terminology, every situation is unique, and limited access to domain 

experts. ITS/ATLSs and their authoring tools certainly have all these characteristics.  

Oja contends that Nielson’s classic usability heuristics are even more critical for complex software 

development (Nielson, 1994). Nielson’s usability heuristics include reification (visualizing key 

abstractions and relationships; minimizing working memory load); user control and freedom (not 

constraining user actions any more than is necessary); flexibility in outcomes (allowing for variations in 

style and needs); match between system and the real world (using the vocabulary and mental models users 

already have); assistance with helping users recognize, diagnose, and recover from errors; and efficiency 

of use. 

Echoing the heuristic to “match between system and the real world,” Johnson (2006) analyzed software 

usability failures in the healthcare sector that imposed significant financial and acceptance burdens within 

that sector and found that “many usability problems stem from the inability of suppliers and 

manufacturers to anticipate [user] requirements.” The educational technology R&D community is poised 

to create ITS authoring tools that could be used on a large scale. As the investment in authoring tools 

increases, there is a corresponding increased “risk” that investment in design, outreach, etc., will 

outweigh the benefits if the tools do not directly meet the needs of a wide variety of users (or if the ITSs 

build with the tools do not reach a large number of learners).  

Figure 1 illustrates the type of risk management and risk reduction principles increasingly being used in 

software and other industries.
2
 Additional investments in software can follow the “80/20” rule, where 

                                                           
2
 Image adapted from “Risk Management in the (Bio)Pharmaceutical and Device Industry,” L Huber & 

Labcompliance Inc., http://www.labcompliance.com/tutorial/risk/default.aspx?sm=d_a. 
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perfecting the last 10% or 20% can take a disproportionate amount of effort. Meanwhile, the return on 

user value gets proportionately less. The goal is to find the sweet spot where risk is acceptably low and 

expected value is relatively high (“optimum” in Figure 1). To mitigate this risk, usability principles 

recommend both empirical and theoretical grounding: i.e., usability evaluation and user-feedback from 

authentic contexts done “early and often;” and a good theoretical understanding of the user and task. 

Complexity is a useful construct for operationalizing Johnson’s “[ability] of suppliers and manufacturers 

to anticipate [user] requirements,” but the construct needs better definition for this to happen—which is 

what we hope to contribute to here.  

 

Figure 1: Cost vs. value in software risk assessment 

Complexity Science and Information Theory 

Next we branch away from complexity in software and usability theory to consider how complexity is 

theorized in more general terms. Complexity science points to various methods for measuring complexity, 

which are all related to the amount of information contained in an object, system, or process, with 

“information” being closely related to the concepts of difference, discernibility, and degrees of freedom. 

Information and communication theories also quantify information (even “meaning”) in terms of entropy, 

randomness, chaos, “surprise,” and “shortest possible description” (Grünwald & Vitányi, 2003). There are 

many individual metrics that contribute to overall complexity, including the number and diversity of 

components and their structural or functional relationships (Benbya & McKelvey, 2006). Complexity 

science also deals with time-based phenomena: change, feedback loops, self-organization, evolution, and 

emergence in dynamic systems—so-called “complex adaptive systems.”  

Campbell (1988) describes three sources of complexity: number of dimensions of information, the rate of 

information change, and the number of alternatives associated with each dimension (i.e., information 

diversity). We modify and generalize this scheme as in Figure 2, using the categories of structural, 

dynamic, and perspectival complexity.  
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Figure 2: Sources of system complexity 

For structural complexity, other things being equal, systems are more complex if they have more parts 

(e.g., an ant colony or a huge Lego project); more types of parts (e.g., a car or human anatomy); more 

properties in each part; more relationships or constraints among the components (internally and with the 

external environment); and more types of relationships. In particular, one-to-one mappings (relationships) 

are the simplest, one-to-many mappings are more difficult, and many-to-many mappings are most 

complex to manage and conceptualize.  

In addition to these structural dimensions (which are metaphorically space-like), systems whose 

properties, relationships, and objects change over time are more complex (the dynamic or temporal 

dimension). Dynamic complexity can be represented in terms of the laws, rules, mechanisms, or 

influences that create change in a system. Not only change but feedback loops and nonlinear dynamics, all 

outside our scope to elaborate on, come into play here.  

As indicated above, complexity is related to information intricacy, space of possibility, and even 

“meaning,” and thus is not simply an objective property of systems, but has a quasi-subjective component 

that involves human context, activity and the reasons for doing the complexity analysis. In software, 

information systems and usability analysis, there are cognitive and epistemic considerations. Byström & 

Järvelin’s analysis of task complexity includes factors such as repetitively, analyzability, a-priori 

determinability, number of alternative paths, outcome novelty, number of goals and conflicting 

dependencies, uncertainties between performance and goals, number of inputs, and time-varying 

conditions of task performance (1995, p. 5). Zhang et al.’s (2009) “epistemic complexity” measures 

complexity in terms of the movement from facts to explanations and from unelaborated to elaborated 

knowledge—both of which indicate increasing depth and complexity. Epistemic complexity includes 

measurement of the “diversity” and “messiness” one encounters in a situation (Bereiter & Scardamalia, 

2006). Thus concepts of nuance/subtlety, abstraction/ generalization, uncertainty/ambiguity must be 

considered.  

Therefore, in Figure 2, we have the third category “perspectival” complexity, which is complexity due to 

multiplicity and uncertainty, including conflicting goals or subtasks; diverse perspectives among 

stakeholders; stochastic randomness and indeterminacy; and vagueness and uncertainty in any of the 

structural or dynamic elements (measuring these would be more heuristic than the other two complexity 

factor types). Perspectival factors relate as much to subjectivity and the nature of cognition as to the 

objective nature of the artifact.  
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Usability Complexity and Runnable Artifacts 

In terms of software systems, specifically authoring tools, the factors mentioned above can be applied to 

the software artifacts (code and interface), development (programming or authoring), or the complexity of 

use (the user interface understanding and the mental model a user must acquire to understand a system). 

Theoretically, each of the sources of complexity in Figure 2 could be enumerated or estimated and 

combined to measure the complexity of a system (its code, interface, task, etc.) toward the goal of 

comparative analysis of the complexity of systems. 

Software tools and applications allow us to make and improve things, which we call “authoring.” 

Artifacts that “run” or behave dynamically are, of course, more difficult to author. With authoring tools 

and educational software such as Scratch and StarLogo, and scripting languages in Office applications, 

the line between programming and using software is increasingly blurred. ITS authoring can fall 

anywhere along a spectrum of complexity from customizing parameters and choosing content to creating 

teaching strategies, which is closer to software programming.  

ITSs are dynamic systems that must be run to test them. They have multiple learning paths and it is 

intractable to test every possible student behavior. Unpredictable behaviors inevitably occur in complex 

software (which is why rigorous testing is important). The simplest systems have predicable paths with 

little interaction or parameterization, such as scripts and story-board-type procedural flows. If an 

authoring tool allows branches, if/then rules, procedures, loops, parameterized subroutines, or recursion 

(in rough order of difficulty), the level of authoring complexity jumps dramatically. The author is 

essentially doing software programming. Writing and debugging computer programs is a complex task 

requiring special skill and tools. Without these skills, and even with them, it can be quite difficult to 

determine the source of a run-time software bug.  

Creators of authoring tools that allow authors to enter into this level of task complexity must (1) not 

underestimate the complexity of the task or overestimate the skill of the typical user, and (2) provide real 

debugging and tracing tools for the systems to be viable. One of Neilsen’s (1994) “Top 10” 

recommendations for usability is to “help users [authors in this case] recognize, diagnose, and recover 

from errors.” This can be as simple as providing an Undo feature for authored content, but for systems 

with dynamic complexity special tools are needed to trace and debug procedural representations.  

Like most software systems, ITSs should be designed in user-participatory feedback loops, where, as 

Benbya & McKelvey note, “the critical factor in all information systems is continual change” (2006, p. 

20). This might even imply that viable authoring tools should have some sort of “version control” 

subsystem.  

The above discussion suggests factors that could be considered in characterizing the complexity of 

software tasks and interfaces. It is implied that for some tasks, such as version control and debugging, 

there is a need for special skill such as knowledge engineering. Thus it is also important to consider the 

“complexity capacity” of users and communities of practice—and for this we turn next to activity theory.  

Activity Theory—Users, Tasks, Tools, and Communities 

We borrow concepts from activity theory, which stresses the mediating role of tools (artifacts) and their 

usage rules in collective human activity and development (Jonassen & Rohrer-Murphy, 1999; Stahl, 

2006; Engestrom et al., 1999). Here rules indicate the (sometimes implicit) skills, understandings, and 

habits held by a community of practice. Thus, we can frame our exploration of authoring tool usability in 

terms of the interaction between users, tools, rules, and tasks. We can ask whether a tool and its “rules” of 
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use afford the accomplishment of a particular task for a particular class of users. Clearly, our users are 

authoring tool users and the task is to design or customize an ITS; later we introduce “epistemic 

forms/games” as a way to describe the rules of use.  

Figure 3 illustrates these factors in activity theory terms (adapted from Jonassen & Rohrer-Murphy 1999; 

Engestrom et al. 1999). Thus, from our focus on the concept of complexity, we must consider the 

following: 

 Task and rule complexity (user activity methods and goals) 

 Tool (artifact) complexity 

 Socio-cognitive complexity (community of practice and division of labor) 

We are concerned with the match between the following: 

 User vs. tool complexity 

 Task vs. user complexity 

 Community of practice vs. tool complexity 

 

Figure 3: Activity theory 

When we speak of users, we are really speaking of users in particular roles. This distinction is important 

when we begin to speak of the complexity capacity of a user (or type of user). We are not referring to a 

person’s general ability to handle complexity, but to one’s ability within a certain role (ITS author, 

content developer, tester, etc.), which might depend more on training and experience than on innate 

intellectual sophistication.  

Campbell notes that there are several approaches to assessing complexity: as a subjective psychological 

experience of the user, as an objective measure of the task, and as an interaction between subjective and 

objective elements (1988, pg. 44). While measuring complexity in terms of user (author) experience is 
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important, methods for doing so are outside our scope here. However, we describe methods for describing 

user capacity, and we assume that, on average, complexity capacity is closely related to the complexity 

experience of the user (they will be frustrated or confused if their complexity capacity in a particular role 

is mismatched for the task). In the prior section, we outlined specific methods for assessing task and tool 

complexity objectively (though perhaps heuristically as estimations). Our eventual goal is to assess the 

match (or interaction) between user capacities and the measures of tool/task complexity (user capacities is 

roughly estimated, while tool/task complexity affords a more objective measurement).  

Note that in the prior section tool and task complexity were treated together. Unlike simple tools such as a 

hammer, for which the task a tool is used for (e.g., building a barn) is usually much more complex than 

the tool itself, for most software tools, the complexity of the tool features can stand as a fair indication of 

the complexity of the task. This is, of course, not strictly true, as building an ITS involves much more 

than using an authoring tool (e.g., applying learning theory, paper mock-up design, etc.), but for 

simplicity we assume that the complexity analysis given above of artifacts (tools) maps well to 

complexity analysis of tasks. Task-related issues of how the tool is used and learned are categorized in 

rules or community of practice (COP) elements of activity theory, rather than with the artifact.  

Epistemic Complexity and Complexity Capacity 

Oja quotes Haynes and Kannampallil (2004) who say that “complex software applications require great 

cognitive skill, integration of knowledge from various areas, and advanced instruction and learning; thus, 

it is not surprising that ‘screen deep’ interfaces to such systems may not yield the best results in terms of 

usability.” This is one reason why understanding the intended user is so important—because making a 

tool more easy to use, i.e., “usable,” may dumb it down too much for some users or tasks, and decrease 

“user control and freedom” and “flexibility and efficiency of use” (from Nielson’s model) for those 

contexts. Oja (2010) noted, “As Mirel [2004] points out, most current HCI practices concentrate on ease 

of use or simplifying the work, and this may lead to ‘producing good designs but for the wrong 

problems’” (p. 3800). The design goal is thus to make tools “operationally simple, while intellectually 

sophisticated and nuanced” (Mirel, 2004). 

“Cognitive complexity” is one term used to describe a person’s capacity to perform complex mental or 

behavioral tasks. Cognitive complexity involves not only the number and complexity of the objects and 

relationships as described above, but also the ability to perceive nuances and subtle differences, i.e., it can 

involve both integrative and differentiating capacities (Mirel, 2004). Jordan uses the term “complexity 

awareness” for “a person’s propensity to notice...that phenomena are compounded and variable, depend 

on varying conditions, are results of causal processes that may be...multivariate and systemic, and are 

embedded in processes [that involve non-simple information feedback loops]” (2013, p. 41). As 

mentioned above, Zhang et al. (2009) use the term “epistemic complexity,” which includes an 

understanding of underlying reasons, theoretical explanations, or hidden mechanisms within phenomena. 

In what follows, I use the term “complexity capacity” to remind us that cognitive complexity required for 

a task is about the context and role a person is in, and depends on experience in addition to any general 

complexity “intelligence” they may have.  

In the exploratory discussion of software usability and complexity, I enumerated many factors and it 

remains for future work to determine how these factors are operationalized, weighted, and combined in 

any overall complexity metric (a process that may be quite context-specific, as complexity components 

will have different weights for different situations). As we move from characterizing the complexity of 

tools (artifacts like software) and tasks (in this case authoring) to that of users, my approach continues to 

be preliminary and suggestive, with many details remaining to be worked out beyond this chapter. Let’s 

assume, for simplicity, that we have worked out the details of a scheme such as the one described in prior 
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sections of this chapter, have devised a method to characterize task/tool complexity level, and have 

collapsed the dimensionality of analysis to rate tasks/tools on a scale of low/medium/high complexity. 

How might we map this to user (or community of practice) complexity capacity? Table 1 illustrates what 

such a mapping might look like, showing types of authors, benefits, and problems typical of each author 

type, and the level of design complexity one can typically expect in the authoring task.  

Table 1 Authoring tool user roles and complexity capacity estimates 

Roles 

(tool use roles) 
Benefits 

(of that role) 
Problems 

(of that role) 

Complexity 

Capacity for ITS 

Design 

Teachers 

PRACTICAL 

Practical experience Not good at articulating or 

abstracting expertise 

LOW 

Domain Experts and 

content developers 

PARTIAL 

Auth. tool infers the 

instructional methods 

A fixed instructional 

method 

MED 

Instructional designers 

and learning theorists 

THEORETICAL 

Know learning theories and 

research 

Rare; not trained in 

knowledge engineering 

MED 

Knowledge engineers and 

ITS developers 

EXPERIENCED 

Know the tools; are 

sometimes also plugged into 

user testing 

May not know what it is like 

to teach or learn the material 

MED-HIGH 

Computer scientists and 

software developers 

(ACTUAL?!) 

Complexity capacity. Don’t 

have to build to a real user 

base. 

“it’s intuitively obvious to 

the casual observer…” 

HIGH 

 

Teachers have on-the-ground experience of the needs of students and classroom situations, and, while 

their input should be included in the iterative design process, they cannot be expected to have the skill, 

nor the time, to use (or learn how to use) complex authoring tools. Domain experts and content 

developers are more typically used to define knowledge and expertise, though they may have little 

practical or theoretical knowledge of pedagogy. Instructional designers and learning theorists bring 

different sources of pedagogical knowledge and epistemological knowledge (understanding how 

knowledge is structured), though they will often not have the time to dedicate to a steep tool learning 

curve.  

For all of the above user types, the task of representing knowledge in a computationally usable fashion 

may be foreign—while knowledge engineers are trained in exactly that task. It is only with this level of 

skill and higher that we can expect sophisticated authoring tasks to be managed. Most user communities 

do not have people with knowledge engineering (or ITS design) skills, meaning that users at this level are 

usually part of a dedicated ITS design team, which would only exist in an academic lab, a company 

dedicated to building learning systems, or an educational organization large enough to form such a team 

to be shared widely (e.g., a university or city school district).
3
 

                                                           
3
 Note that this specific scheme is suggestive and meant to illustrate a framework rather than the “content” of the 

framework—i.e., I do not need to make a strong argument here that, e.g., “domain experts and content developers” 

have a limited or “fixed” understanding of instructional methods, as is given in the Table. Of course, the roles in the 
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The final category of users in Table 1 is computer scientists and software developers. This category 

connotes the unfortunate yet understandable fact that many ITS authoring tools never see a robust user 

community and are only used within the confines of the team or organization that built the tool. This 

stakeholder group tends to be the most sophisticated in terms of designing complex structural and 

procedural models. The benefit is that more powerful ITSs can be built, but the drawback is that without 

usability input from “real” users, the tools may be too complex to expect many others to pick up, and the 

tool designers may be out of touch with the needs of intended users.  

In authentic contexts, the actual “capacity” of a user to use a tool to accomplish a task depends on 

“community of practice” considerations as well as the potential complexity capacity level of the 

individual (see Figure 3). These considerations include (1) opportunities, investment, and incentives in 

training; (2) community of practice peer and mentor support; and (3) time available to author. Thus, even 

if a user, say, an unusual teacher, has a high level of generic complexity capacity, in order to successfully 

make use of an ITS authoring tool that person would need to be able to invest time in the learning curve, 

have the support of peers and superiors in adopting this new technology, and have the ongoing time 

available to do the authoring (along with other job responsibilities). Contexts satisfying these conditions 

are indeed rare.  

In addition, for newly introduced artifacts, there is a dynamic, often evolutionary, interplay between 

artifacts (their design), the standard and novel ways that artifacts are put to use, and the human capacities 

enabled by artifacts. That is, new tools create new capacities, which create new possibilities and new 

goals/tasks, around which new (or improved) communities of practice develop—all of which, in turn, 

prompt new innovations (tools) to continue the cycle. Benbya & McKelvey (2006, p. 14) refer to the “co-

evolutionary” aspects and “adaptive tension” of the “complex adaptive” socio-technological systems and 

discuss the problem of “accumulating requirements.” So, an important community-of-practice question is, 

How effective are the feedback and development learning loops between users, trainers, and designers? 

Thus far I have described what a tool/task/user complexity mapping scheme might look like, without 

saying much about the nature of user cognitive complexity. A user’s understanding of tools, tasks, and 

methods can be described in terms of the mental models one has of these things (Gentner & Stevens,1983; 

Johnson-Laird, 1983). Mental models are cognitive representations of external systems that include 

structures and processes that a person simulates (runs or visualizes) mentally. One task of the authoring 

tool is to help the user construct a valid mental model of the ITS building blocks, range of configurations, 

and design steps that the authoring tool affords.  

Oja notes that “cognitive engineering (Gersh et al., 2005) and learner-centered design (Soloway et al., 

1994) focus on improving system-human cognitive fit and allowing users to construct better mental 

models (knowledge) of the system” (p. 3801), and that “reification is the basis for successful 

communication and the establishment of a shared goal in human-computer collaboration” (p. 3803). Thus, 

it is important that the authoring tool interface accurately and powerfully reify the structures, objects, 

constraints, decision rules, and procedures involved in authoring, so that authors can build correct mental 

models and can use these mental models to coordinate the various steps and roles within a design process. 

The complexity of mental model that is supported in the authoring tool should match the complexity 

capacity of the user.  

Collins and Ferguson’s work on “epistemic forms” provides a valuable link between task/tool complexity 

and the user’s complexity capacity in terms of the mental models that the user must construct and 

                                                                                                                                                                                           

table can be combined in any individual, but it would be rare that, for example, a classroom instructor would also be 

a learning theorist or knowledge engineer. 
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maintain. Their concept of “epistemic games” also anticipates the community-of-practice element of 

activity theory. I discuss epistemic forms and games next.  

Epistemic Forms and Games 

Collins and Ferguson (1993) first articulated the concepts of epistemic games and epistemic forms (see 

also, Morrison & Collins, 1994; Shaffer, 2006). Epistemic forms are “target structures, like mental 

models, that guide inquiry” and are “recurring forms that are found among theories in science and 

history.” Epistemic games are “general purpose strategies for analysing phenomena in order to fill out a 

particular epistemic form” that are shared within a community of practice (Collins and Ferguson, 1993, p. 

25). Example epistemic forms include lists, hierarchy or tree structures, tables, networks, if-then rules, 

and constraint-based systems. They are “generative frameworks with slots and constraints on filling in 

those slots,” and in this sense are like domain-independent scripts, templates, or grammars that specify the 

structural properties of a phenomena. They serve as commonly understood mental models for 

understanding tasks and tools.  

The theory of epistemic forms/games considers not only the structure of information, but also the ways 

(i.e., games) communities use, understand, and build knowledge using that structure. For example, 

perhaps the simplest epistemic form is the list. Knowing how to play an epistemic game includes knowing 

its constraints, strategies, and moves. For the “list game,” this includes knowing how to add, remove, 

combine, split, and arrange (classify, filter, or sort) items, and knowing when the “list form” is most 

appropriate for a particular problem or inquiry. This framing is compatible with activity theory, which 

highlights the interplay between cognition, artifact design, and communities of practice.  

Morrison and Collins (1994) coined the term “epistemic fluency” to refer to the ability to use and choose 

appropriately among the repertoire or ecology of epistemic games available within a community of 

practice. Epistemic games are rarely used in isolation and are combined with other games as well as 

transformed into other games, as when one representation (a concept network) is seen as more appropriate 

than another (a table). Tables can be seen as composed of lists; even more complex forms might combine 

tables with networks (e.g., a network of tables, or a table of networks). Table 2 lists some epistemic 

forms/games mentioned by Collins and Ferguson (1993).  

Table 2 Epistemic forms and games (mental models)  

(Collins & Furgeson, 1993) 

 list 

 matrix or table 

 molecular model 

 periodic table  

 web page menu 

 x-y graph 

 pert chart 

 binary tree 

 floor plan  

 street map 

 org. chart 

 musical score 

 timeline 

 cause/effect diagram 

 network 

 relational database 

 sentence diagram 

 term paper outline 

 

Epistemic games can be framed in terms of the key questions driving an inquiry. Knowing an epistemic 

game includes knowing how to evaluate whether it is being played well. Example quality/validity criteria 

for the list game include coverage (is anything missing?), similarity (do the items belong together, or 

should they be split into two lists—apples and oranges?), distinctness (are the items actually different?), 

and perspicuity (is it sufficiently short, simple, efficient, and understandable?). Vibrant communities of 

practice can be creating, tweaking, and evolving, and mashing up their epistemic games.  
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Authoring Tool Epistemic Forms 

Epistemic forms/games allow for a compact method of classifying tool/task complexity. In our original 

discussion of artifact complexity, I suggested that one could enumerate the number and types of parts, 

properties, relationships, etc., in a system. This may be useful to do but also quite cumbersome. 

Meanwhile, epistemic forms serve well as a first-pass description of the complexity of end-user software 

systems. Epistemic forms also address one difficult issue in the characterization of an artifact, which I call 

the “dimension compression problem:” it may not be difficult to classify and compare artifacts along any 

single dimension (as in Figure 2), but we have little guidance thus far on how to combine and prioritize 

the many dimensions into a single (or simple) complexity characterization. Epistemic forms are holistic 

and representationally efficient in that they incorporate many of these dimensions into each category.  

In discussing authoring tools, I am interested specifically in design activities or design games (a term not 

used by Collins and colleagues). In all epistemic games, one of the evaluation criteria is whether one’s 

product (use of the epistemic form) is understandable or meaningful to others within one’s community, 

while design games are distinguished by the additional need to assess how understandable and useable the 

product will be to users (who belong to a community related to but different from the designer 

community). Thus, the set of design game quality/validity criteria is extended to a group that requires 

some cognitive empathy (and design/test iterations) to serve well.  

In surveying a set of 14 authoring tools mentioned in Murray et al. (2003), one can clearly see a set of 

epistemic forms that are repeated numerous times throughout most of these systems. This list of forms is 

not be surprising—they are seen in most software tools, as shown in Figure 4. The basic elements include 

check boxes and choice lists; sliders, dials, and meters; graphical networks and trees; and interactive 

hierarchical and tabular textual representations. As discussed, to compare across and within any class of 

epistemic forms (say, a hierarchical menu system), we can use the elements suggested in the earlier 

discussion of complexity science, i.e., the complexity of an interface and task includes the number and 

diversity of such elements and the degree of their inter-relationship or coupling in an overall system.  

 

Figure 4: Epistemic forms in authoring tools 
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Intuitively, one can roughly compare or rate the complexity of epistemic forms. Lists, sliders, and 

checkboxes are simpler than hierarchies, tables, and concept networks, which are, in turn, simpler than the 

complex systems/mental models that are composed of dynamic the interactions among many simple sub-

components. Hierarchical complexity theory offers a more rigorous and more theory-based foundation for 

rating and comparing complexity components, and it was developed to apply to human tasks and skills. 

Next, I explore HCT as the last theoretical territory of exploration in my journey to link several 

interdisciplinary fields.  

Hierarchical Complexity and Skill/Task Development 

Above I drew from information/systems theories and socio-technology theories (activity theory and 

usability theory) to suggest ways to characterize the complexity of systems in general terms. Epistemic 

forms provide a way of ameliorating the “dimensionality issue” by enumerating common forms that are 

more intuitive and ready-to-hand than a list of low-level complexity dimensions. But we are still far from 

a quantitative or semi-quantitative method for combining the factors involved to be able to make 

comparative complexity judgments. To move in this direction, I draw from an area of cognitive/learning 

science that is has significant implications for learning theory and ATLS design in general, yet, curiously, 

is rarely referenced in these fields: Neo-Piagetian developmental theories. Cognitive developmentalists 

(Neo-Piagetian theorists) have undertaken a deep study of complexity, because human development and 

learning can be described in terms of “qualitative differences in mental complexity” relative to various 

tasks, skills, or life contexts (Kegan, 1994, p. 152).  

The key insight is that development, and complexity in general, advance through both horizontal and 

vertical (“hierarchical”) movement, and do so through a particular alternating or spiraling pattern.
4
 The 

structure and nature of horizontal growth is different than the structure and nature of vertical growth. 

Vertical growth is more quantized or punctuated, and the vertical leaps involve particular challenges. If 

we frame authoring tool features, tasks, and epistemic games in terms of vertical and horizontal 

differences in complexity, we have additional tools for comparing complexity, and we gain insight into 

why certain forms may be particularly difficult for users to learn. 

Neo-Piagetian (adult) developmental theories go beyond early developmental work (e.g., Piaget, Perry, 

Kohlberg) to add a hierarchical “structural perspective in analyzing changes in the organization of 

“actions and thought” (Fischer & Yan, 2002, p. 283). These theories propose underlying representations 

for skills and suggest rules for the transformation of skills to higher-level skills.
5
 These theories apply 

principles from complexity science to human cognition and behavior, which can be easily mapped onto 

artifacts (tools). As stated by Commons & Pekker, “Theories of difficulty have generally not addressed 

the hierarchical complexity of tasks. Within developmental psychology, notions of hierarchical 

complexity have come into being in the last 20 years. [...] a model of hierarchical complexity, which 

assigns an order of hierarchical complexity to every task regardless of domain, may help account for 

difficulty” (2009; p. 2). 

Horizontal increases in complexity involve adding more of what already exists to an object, process, or 

structure (more parts, relationships, steps, etc.—adding more “bits” of information without adding new 

structural emergence). Commons suggests that increases in the horizontal complexity of tasks (which he 

calls the “classical” model of information complexity) are analogous to increases in cognitive load 

                                                           
4
 These developmental models are discussed in more detail in the appendix in Murray (2015).  

5
 Fischer’s Skill Theory (Fisher, 1980; Fisher & Yan, 2002) and other Neo-Piagetian models, including Commons’ 

Hierarchical Complexity Model (Commons & Richards1984, Commons et al. 2008), Kegan’s stage model (1994, 

1982); and Cook-Greuter’s ego development model (2000, 2005). 
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(Commons & Pekker, unpublished). Horizontal growth can also be roughly compared to Piaget’s 

assimilation, as it adds new knowledge in the form of existing structures (Piaget, 1972). Vertical growth 

relates to accommodation, in which new structures are created to understand the world in new ways. 

Horizontal growth tends to be continuous, while vertical growth follows a more discrete model and occurs 

after a sufficient amount of horizontal growth allows for a reorganization at the next higher level.  

Vertical increases in complexity lead to a new level or stage by applying an operation upon, or 

“coordinating and transforming,” the objects of the lower layer. Each artifact or skill at a given 

hierarchical level consolidates a set of items at the lower level into a single whole, transcending and yet 

including them. Completely new properties and concerns arise at each level (a phenomena called 

emergence). Examples of increasing levels of hierarchical complexity include the development (or 

evolution) from words to sentences; addition to multiplication; single celled to multi-celled organisms; 

concrete to formal operational concepts; using to designing an artifact; and doing a task to managing 

others doing it.  

There are numerous operations that can produce the next hierarchical level. Examples include abstraction 

and generalization operate on lower-level objects to create higher-level ones; compilation or aggregation 

can create higher-level units; steps are combined together to create processes; going “meta” (“thinking 

about thinking”); and moving from static to dynamic systems or linear dependency to mutual dependency 

also involve hierarchical transformations. Kegan notes that increasing complexity and sophistication 

moves (vertically) from entities to processes, from static to dynamic systems and from dichotomous to 

dialectical relationships (Kegan, 1994, p. 13).  

Horizontal growth also follows a pattern in natural systems including human learning. The sequence is 

from single objects, to multiple independent objects, to multiple interacting objects, to massively 

interconnected object, and finally to an emergent whole that transitions to the next hierarchical level. It 

makes intuitive sense that it is easy to learn a few more words (horizontal), but the leap to speaking 

sentences is comparatively momentous (which is not to say that it comes online all of a sudden, i.e., 

children produce quasi-sentences first). Furthermore, this difference is quantitative. If we wanted to 

measure language complexity, we can count the size of vocabulary and the length of words, but no 

amount of increase in vocabulary will “equal” the shift from words to sentences.  

Hierarchical complexity (which is Commons’ term; other developmentalists use different terms) 

contributes to our analysis of authoring tool complexity in several ways. First, it ameliorates the 

“dimensionality issue” by providing another tool for organizing the plethora of complexity dimensions, 

i.e., according to horizontal and vertical differences in complexity, toward our goal of coordinating the 

complexities of tool vs. task vs. user and in our goal of comparing two (or more) tools (or tasks, or types 

of users). Second, because it is primarily a learning or developmental theory, it provides important 

insights into the effort and prerequisite knowledge a new user needs to use an authoring tool. Vertical 

growth is typically more difficult than horizontal growth, and the emergence of a new level of 

organization often comes with some disequilibrium or dissonance, which, in turn, means there can be 

resistance or hesitancy.  

Now, we can begin with a rough characterization of the level of software tool complexity that a 

hypothetical user already has, and then ask whether the features and tasks of an authoring tool represent 

horizontal or vertical types of learning for the skill acquisition learning curve. We must not assume that 

new user skill level can be increased in any sort amount of time with something like a training 

intervention if vertical learning is involved.  
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Hierarchical Complexity and Epistemic Forms 

The analysis of tool/task/user complexity can proceed in basically two directions: more rigorous 

qualitative analysis and more heuristic quantitative analysis (though any analyses will probably combine 

qualitative and quantitative methods). For my purposes, I focus on heuristic estimations. My goal is to 

either start with a particular authoring tool/task and identify the communities of practice and training 

needs that will match the tool/task; or, starting with a target user group, design the tool/task to match the 

estimated complexity of a community of practice. One can use the concepts introduced in this chapter, 

including the dimensions of complexity, types of epistemic forms, and the distinction between horizontal 

and vertical differences in complexity, to make subjective shoot-from-the-hip assessments and inform 

design discussions as is usually done in software design. Alternatively, and left for others to carry 

forward, one can use these concepts to construct detailed quantitative metrics and formulas for calculating 

task/tool/knowledge complexity—but such is not necessary to make solid progress in matching 

tools/tasks to users.  

Morrison and Collins (1994) mention the “epistemic complexity” of epistemic forms and games, but they 

do not define it precisely. What I contribute here is an attempt to link epistemic games to cognitive 

developmental theory in an attempt to create a grounded framework for assessing the relative complexity 

of epistemic forms/games, which then provides a framework for describing the complexity of authoring 

tool features. These epistemic forms can be sequenced according to complexity level modeled on the 

levels mentioned in hierarchical complexity theory, as shown in Table 3. 

Table 3 Epistemic forms organized by complexity level 

Epistemic Form for Tool/Task/Mental Model Complexity Level 

 Text information fill-in boxes 

 Lists, choices, sliders, and check boxes 

Simple objects 

 Forms, schemas, or templates 

 Tables and matrices 

 Hierarchies and trees 

Abstractions and mappings 

 Scripts (with branches) 

 Equations and Boolean logic  

 Structural models: concept networks, boxology diagrams 

Formal systems  

 Causal and constraint models (and using variables) 

 Behavioral/procedural models: If/then and rule-based procedural 

representations  

 (Authoring of) decision trees, Bayesian nets, etc. 

Dynamic systems 

 Coordination of dynamic modules, e.g., complex interactions between 

expert, student, teaching modules, and dynamic use scenarios. 

 Design that takes into account emergent and chaotic interactions.  

Architectures and ecosystems 

(systems of dynamic systems) 

 

As a final step, in Figure 5, I link these complexity levels to the low/medium/high level of complexity 

associated with different categories of users from Table 2. Again, this mapping is a heuristic estimation 

that is intended to illustrate the type of analysis; no strong claims are made for the specific mappings.  
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Figure 5: Complexity levels of epistemic forms 

Discussion 

Beginning with a summary of my article on ITS authoring tool design, I described some of the challenges 

facing authoring tool designers and researchers today. Consonant with this Special Issue’s theme of 

personal retrospectives on classic papers, I also included a narrative look at what brought me to authoring 

tools work and mentioned that my academic journey since then has included interdisciplinary tributaries 

outside of ITS and educational technology per se. The invitation to write this chapter has given me the 

happy opportunity to apply new frames of reference to an old topic. The reader hoping for definitive 

answers to questions about software complexity may have been disappointed—what I have done is 

exploratory theorizing to help frame important questions by suggesting certain theories, principles, and 

concepts amenable to ITS authoring tool R&D.  

In this chapter, I have explored some theoretical bases for assessing the appropriateness of ITS authoring 

tools, and any type of software artifact, to intended user communities. The analysis is based on general 

notions of complexity from complexity science and hierarchical complexity theory. The importance of 

considering tools, tasks, user capacity, and community of practice in an integrated way was supported 

through the inclusion of the models of activity theory and epistemic forms.  

Matching tool/task complexity to user/community complexity capacity is important because authoring 

tools are complex and expensive to build, and, using a “risk analysis” framework, we can say that the 

more expensive a system is to build, the larger the risk if user needs and capacities are not understood and 

anticipated. The design goal is to find the sweet spot where risk is acceptably low and expected value is 
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relatively high. Oja’s (2010) study of improving usability in complex software systems concludes that 

systems should anticipate that projects usually involve a variety of roles and areas of expertise, and that 

interfaces should allow for the “distribution of tasks according to participant strengths” (p. 3800). Thus, 

the goal is not so much to match the affordances of an authoring tool to an intended user type, but 

anticipate the range of user types involved in an ITS design and build tools that clearly meet the needs of 

each design role. Also, and plans for large scale adoption of authoring tools should include plans for 

learning and peer-mentoring within specific communication pathways in communities of learning.  

The inclusion of complexity science and theories of dynamic systems in our narrative supports a bigger 

picture consideration of authoring that considers not only how tools should be built to match user 

capacities, but the reciprocal evolution of tools and human capacities over longer periods of time. As 

Jerome Bruner notes “through using tools, man changes himself and his culture...human evolution is 

altered by man-made tools” (1987). Thus, tools can not only support the construction of advanced 

learning systems, but might also be designed to help users (especially instructors) more deeply understand 

and incorporate leading-edge learning theories and mental models of the learning process (or build more 

adequate mental models of their content domain). We can move beyond seeing authoring tools primarily 

in terms of time and effort savings and consider their role in empowering content and pedagogy experts, 

including teacher, and in terms of propelling the evolution of computer-mediated learning in general.  
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CHAPTER 3  One-Size-Fits-Some: ITS Genres and What They 
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Introduction 

The process of creating sophisticated Intelligent Tutoring System (ITS) can be costly, complex, and 

tedious, and relies on collaborative expertise from multiple disciplines. Authoring tools streamline and 

accelerate the construction of ITS by providing a framework within which an author can design a learning 

system. Some authoring systems are general-purpose tools that provide an author with a great deal of 

leeway. Others embody a set of assumptions about what the authored product will look like and how it 

will behave. However, the authoring tool ecosystem has evolved with little discussion of ITS genres and 

the desired properties of tools supporting authoring within each genre. Instead, authors of instructional 

software often determine a priori what the authoring tool(s) will be and then commence the design 

process informed by a combination of past experience, online research, discussion with colleagues, and 

product availability. 

I hypothesize that authors seldom think about the genre of the learning system they wish to create and 

even more seldom use that genre as a filter in selecting the appropriate tools. Moreover, even the author 

who engages in this deliberative process is unlikely to find authoring tools that are explicitly aligned with 

specific genres of ITS.  

In this chapter, I discuss the characteristics of ITSs that can be used to derive a set of genres, and the 

relationships between those characteristics and desired properties of ITS tools corresponding to each. I 

use examples of authoring tools to contrast general-purpose and specialized tools, and illustrate the utility 

of aligning authoring tools to corresponding genres. 

Related Research 

This chapter discusses various genres of ITSs and what they have to say about ITS authoring tools. The 

purpose is not to propose an exhaustive ontology of tutoring systems, but highlight how fundamental 

properties of tutorial interactions and simulations influence thinking about authoring tools. 

Why ITS Categories Matter 

Numerous ontologies have been proposed for characterizing ITS. Since this chapter explores the influence 

of ITS genres on authoring tools, the properties relevant to this discussion are not those focusing on the 

user experience so much as those governing the design and construction of an ITS (though these are often 

related). I can go further and suggest that instructional strategies similarly do not define what genre an 

ITS should be identified with, so much as how they are built (though these too are related). Put another 

way, the relevant distinguishing characteristics of an ITS are related to the questions “how do I build 

one?” and “what’s hard about that?”.
1
 

                                                           
1
 Murray (2003) proposes as a fundamental question “who should author ITS?” which is an important question but 

less relevant to characterizing ITS categories. 
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This is not a radical departure from traditional ITS research by any means. A view of ITSs that has 

endured for four decades and remains influential today identifies the three elements of an ITS as (1) the 

expert model (domain knowledge), (2) the student model (knowledge about the user), and (3) the tutor 

(knowledge of teaching strategies) (Hartley & Sleeman, 1973). This decomposition factors in neither user 

experience nor instructional strategies, but is essentially an architectural blueprint. Researchers thus 

generally converged around the general notion that building an ITS was a process of creating, more or 

less independently, expert models, student models, and tutoring strategies (Burns & Capps, 1988). 

Debate about specific approaches generally focused within each of these three components. A good deal 

of research has resulted in an array of theoretical frameworks that remain vigorously investigated to this 

day. Reviews of expert modeling appear in Ahuja & Sille (2013); Paviotti, Rossi & Zarka (2012); and 

Sani & Aris, (2014). For a review of student modeling, see Pavlik, Brawner, Olney & Mitrovic (2013). A 

review of tutoring strategies is presented in Sottilare, DeFalco & Connor (2014). 

An extension to the canonical ITS model has acknowledged the interface between the user and tutor as an 

integral component (Miller, 1998; Sottilare, 2012). Interface as used here refers to how the user and tutor 

interact, not simply to how the display appears. Miller (1998) distinguished two principal metaphors for 

this interaction: first-person interfaces, where the user directly manipulates displayed objects; and second-

person interfaces, which allow the user to command actions. First-person interfaces can provide the user 

with a feeling of working directly with the domain. This interface metaphor is a natural way for a user to 

engage in a simulation because changes in the system, process, environment, or device being simulated 

can be effected in a manner that resembles the physical world. That this type of interaction raises 

questions about authoring tools should be clear (I discuss this later). 

In a second-person interface, a user commands actions to an implicitly or explicitly represented agent. 

Agency is thus delegated to the system through what can be an abstraction (e.g., a menu), an embodiment 

of a person (e.g., a depiction of a tutor), or some other representation of a non-human but still interactive 

entity (e.g., a helpful paper clip). The modality of this interaction can vary. Basic interface controls 

provide a (usually) graphically oriented palette of user commands (such as “skip,” “go back,” or “help”). 

These commands are distinctive from controls embedded within the simulated environment (a steering 

wheel, a syringe, etc.). Menus are another common means to embody an abstraction of an agent, and have 

evolved to be highly context-dependent. 

The basic elements governing the interaction between the user and tutor thus appear to have become 

established in the canonical ITS (Sottilare, 2012). However, answering the questions “how do I build 

one?” and “what’s hard about that?” has become less straightforward as ITSs have grown less 

homogeneous. This heterogeneity among ITSs matters, in part, because of the implications for authoring 

tools. In the next section, I briefly discuss two genres, linked with first- and second-person metaphors, 

respectively, and a third that borrows from both traditions. These are representative of the last few 

decades of ITS research that have been influential in the technology-mediated learning community. For 

purposes of discussion, I label the first two simulation-based learning and discourse-based learning. The 

third genre, which adopts elements of both first-person and second-person interfaces, is labeled situation-

based learning. Although the terms “simulation” and “situation” are related, I draw an important 

pragmatic distinction between a computational simulation (of a device, process, system or environment) 

and a collection of situations that a learner could encounter through taking actions or asking questions—

where each circumstance itself is static but where the overall user experience could feel dynamic.
2
 The 

                                                           
2 
For instance, a finite state machine could occupy both simulation and situation paradigms, but since a state has 

inspectable, static properties, for our purposes such an architecture fits more within the situation-based learning 

genre. 
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discussions that follow are summary in nature; the reader is referred to more comprehensive reviews cited 

in each section. 

Simulation-Based Learning 

The emergence of desktop simulation and its rapid trajectories toward greater fidelity and lower cost have 

created rich opportunities for automated learning while raising fundamental questions for the ITS 

community. The general construct of a simulated world is captured in the term reactive environment 

(Shute & Psotka, 1996) to describe an ITS in which “the system responds to learners’ actions in a variety 

of ways that extend understanding and help change entrenched belief structures using examples that 

challenge the learner’s current hypotheses.” (p. 579). As a result of much research into the teaching 

potential of simulations, the canonical ITS has expanded to include a simulated environment. Researchers 

have used various labels to describe such components (and the encapsulating tutoring system), including 

environment module (Burton, 1988), microworld (Frederiksen & White, 2002), simulation-centered tutor 

(Munro, et al., 1997), or discovery learning environment (Veermans, van Joolingen & de Jong, 2000). 

Although a simulator is not in itself a tutoring system, there has been significant progress in the use of 

desktop simulation to advance learning objectives in ITSs, particularly those employing games. The 

pervasive presence of this approach is reflected in the literature, which discusses, alternately, embedding 

a simulation within a tutor (Jong & van Joolingen, 1998; Towne & Munro, 1988) and embedding a tutor 

within a simulation (Rickel & Johnson, 1999; Fowler, Smith & Litteral, 2005; Wray, Woods & Priest, 

2012; Bell, Johnston, Freeman & Rody, 2004; Bell, Jarmasz & Nelson, 2011). Since this distinction is 

largely an implementation question and not a theoretical one, the term “intelligent game-based learning 

environment” is often used to refer to a pairing of simulation and tutoring capabilities, irrespective of 

system architecture (Lester, Lobene, Mott & Rowe, 2014). 

Discourse-Based Learning 

The prevalent metaphor for driving second-person interfaces is discourse. Improved capabilities for 

natural language interaction have enabled more conversational forms of this kind of interaction. Also, 

remarkable gains in speech recognition have yielded second-person interfaces that support spoken 

discourse between a user and the agent that is interpreting and carrying out the user’s instructions. In this 

regard, technology has caught up with the visions of earlier ITS researchers, exemplified by Miller’s 

observation that “the image of an interface as a ‘second person’ agent working for the user is perhaps 

most clearly captured by a natural language interface” (1998, p. 155). 

Discourse as a tutorial strategy is intended to operate in an ITS much like it does when practiced by a 

skilled human tutor (Van Lehn, 2011). Using discourse as a tutoring technique is distinct from using 

discourse to train the skills related to engaging in discourse (e.g., in language training, see Johnson & 

Valente, 2008). In discourse-based learning, the tutor uses conversation and its varied constructs 

(questions, answers, reflection, rhetoric) to elicit thought, reasoning, problem solving, and question-

posing from the student.  

This chapter does not survey the literature on dialogue-based tutors though recent reviews appear in 

Brawner & Graesser (2014) and Rus, D’Mello, Hu & Graesser (2013). Instead, I use as an exemplar an 

influential and representative body of research in dialogue-based tutors led by Graesser and colleagues 

called AutoTutor and its variants (Graesser, et al., 2004; Graesser, Chipman, Haynes & Olney, 2005; 

D’Mello & Graesser, 2012). AutoTutor embodies a theory of dialogue-based instruction based on 

authentic (human) tutoring behaviors. The theory has evolved from proposing numerous dialogue moves 

(e.g., question, prompt, correct, hint) (Graesser, et al., 1999; Graesser, et al., 2001) to proposing an 
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integrative dialogue model called Expectation and Misconception Tailored (EMT) (Graesser, et al., 

2012). AutoTutor thus offers a useful example for my discussion later of how authoring tools address 

discourse-based ITS. 

Situation-Based Learning 

The third example of an ITS genre fits neither wholly within first-person interfaces nor wholly within 

second-person interfaces. Situation-based learning though has great contemporary importance and 

addresses a conceptual flaw in traditional ITS models that did not call for any sort of authentic context—

the requirements for a user model, domain model, and tutoring strategies (and later, an interface) did not 

implicate a need for setting instruction against a backdrop relevant to the target skills and knowledge. 

Learning sciences researchers though recognized that instructional systems could be more effective when 

coupled with circumstances in which the user naturally encounter, learn, and apply the skills and 

knowledge being taught.  

Collins, Brown & Newman (1989) describe natural alignment of how people learn with the use of an 

authentic context in which to embed learning. They use the term cognitive apprenticeship to describe the 

application of traditional apprenticeship learning to class instruction, which they argue is especially 

relevant to learning higher-order metacognitive skills and problem-solving strategies as employed by 

expert practitioners. Situated learning theory (Brown, Collins & Duguid, 1989) asserts that learning in 

context is more consistent with how people acquire knowledge and skills as supported by research in 

education and cognitive science. The authors “argue that approaches such as cognitive apprenticeship that 

embed learning in activity and make deliberate use of the social and physical context are more in line with 

the understanding of learning and cognition that is emerging from research” (Brown, Collins & Duguid, 

1989, p. 32). Bransford and colleagues (1990) present a framework for anchored instruction that makes 

the role of an authentic context explicit by structuring learning through realistic, complex problems 

embedded within a narrative. Another body of research influenced by these contextual approaches yielded 

a long series of ITS conforming to a framework called goal-based scenarios (GBS) (Schank, Fano, Bell & 

Jona, 1994).  

Although these theories differ in surface features, they share the essential principles of goal-driven 

inquiry in pursuit of authentic, complex and ill-defined problems (Bell & Zirkel, 2001), embedded within 

a fictional narrative context (Riedl & Young, 2014). The shared emphasis on creating an authentic context 

for learning, and for embedding instruction within a suitable culture of practice, has implications for ITS 

authoring as discussed later. 

Implications for ITS Authoring Tools 

In the previous section I presented three representative ITS genres that have each emerged from, and 

altered the canonical ITS model. This section considers the authoring process and its challenges in the 

more contemporary context of ITS genres as they have evolved in recent research. In his analysis of ITS 

authoring tools, Murray (1999) proposed distinguishing those that are pedagogy-oriented (supporting the 

sequencing and teaching of generally static content) from those that are performance-oriented (enabling 

interactive environments with opportunities to learn and apply skills and get feedback). Murray (2003) 

identified four categories of pedagogy-oriented ITS authoring tools: curriculum sequencing and planning, 

tutoring strategies, multiple knowledge types, and intelligent/adaptive hypermedia; and three specific 

categories of performance-oriented ITS authoring tools: device simulation and equipment training, 

domain expert system, and special purpose. 

The three categories mentioned previously do not neatly align with Murray’s categories, but are useful for 

contextualizing the present discussion. Simulation-, discourse-, and situation-based learning, while not 
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intended as an elaborated ontology, are used here to organize a brief consideration of how ITS tools can 

best support the authoring process along with a few select exemplars. 

Intelligent Tutoring Demands Intelligent Authoring 

The act of constructing an ITS has been viewed largely as the assembly and integration of disparate but 

interacting components, where “traditional intelligent tutoring systems (ITSs) are typically constructed 

out of four primary components or modules: the user interface, expert model, student model, and 

instructional module” (Jona & Kass, 1997, p. 39), and ITS authoring tools have evolved largely along 

these lines (Macmillan, Emme & Berkowitz, 1988; Murray, 2003; Murray & Woolf, 1992; Russell, 

Moran & Jordan, 1988; Brawner, Holden, Goldberg & Sottilare, 2012). To support construction of each 

of these modules, authoring tools came to “consist of specialized editors for building each component 

(i.e., a user interface builder, expert model editor, etc.)” (Jona & Kass, 1997, p. 39). 

More recently, work being done under the Generalized Intelligent Framework for Tutoring (GIFT) 

initiative has called for authoring support of five functions: user models, domain knowledge, instructional 

strategies, user-tutor interfaces, and integrating tutor components (Sottilare, 2012). In calling attention to 

integrating components, GIFT researchers explicitly acknowledge the importance of and the challenges 

surrounding the integration of ITS components. 

GIFT and its precursors are thus generally aligned with a software engineering approach to supporting the 

process of creating complex ITS components. However it is also important to consider the underlying 

learning principles that are implicitly adopted or explicitly enforced by an authoring tool architecture and 

to examine how an ITS authoring tool provides support to an author in properly adhering to those learning 

principles. 

In previous work, we suggested that authoring tools that observe this component-oriented approach “are 

too general to serve as a specification for a piece of educational software, and are too general to be of 

much help in guiding a designer in creating such software” (Bell, 2003, p. 349). Lack of specificity 

though could have implications for ITS tools beyond just limiting their utility. Kass & Jona (1997) argue 

that “while the idea of modular, interchangeable components sounds quite appealing from a software 

engineering perspective, we’re skeptical about the educational validity of this idea, and of the implicit 

model of learning which underlies it” (p. 39). In other words, authoring tools premised solely on a 

software engineering approach may lack a theoretical basis for guiding the creation of effective 

instruction. 

An alternative is to think about ITS tools as a general label for the space of discrete, specific, and 

standalone authoring environments, each conforming to a different teaching architecture (instructional 

approach). One benefit to this approach is that there is arguably a wide range of categories of ITSs, so this 

approach avoids the problem of how to create a truly supportive and sound “universal” tool. Another 

benefit is that the enormous range of potential actions and interactions, which a universal tool would need 

to support the authoring of, would require vast representational knowledge capturing the structure of what 

users do when engaging with ITS. With tools that are specific to an instructional architecture, the 

representational challenges become far more tractable. Third, an ITS tool specific to an instructional 

architecture is in principle more capable of providing informed authoring guidance than a tool that, by 

necessity, could offer guidance in only very general terms. An ITS authoring tool built with a specific 

instructional approach in mind can thus avoid sacrificing value as an intelligent guide in the name of 

generality. 
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This sort of approach does not come without some cost: research, analysis, and validation is required in 

order to derive teaching architectures that are viable (meaning, ITS tools could effectively support 

authoring) and effective (meaning, ITS created from such tools could have instructional utility). There is 

therefore a dual process that “entails creating a fully designed and implemented teaching architecture 

along with a special-purpose tool for instantiating that architecture in a variety of domains” (Jona & Kass, 

1997, p. 39). 

In the next sections, I revisit the three categories introduced previously (learning driven by simulations, 

by discourse, and by situations) and discuss implications for authoring tools that embody the notion of 

category-tailored ITS authoring. 

Implications of Simulation-Based Learning for ITS Authoring 

The first-person interface metaphor was introduced previously as the basis for a great deal of productive 

research that has explored the instructional potential of simulations as powerful environments for tutoring 

systems. The process of authoring an ITS in this category is unlikely to conform very closely with the 

general model of ITS authoring, so it is also unlikely that a general-purpose tool is the ideal authoring 

environment. One challenge faced by the ITS author is how to structure event sequences and transitions to 

achieve the desired learning outcomes. Open-word simulations do not ensure that learning objectives are 

achieved (or even encountered); a helpful tool should coach the ITS author in exercising some measure of 

controls expressed in frameworks such as Guided Experiential Learning (Clark, Yates, Early & Moulton, 

2010). So here we see a need for ITS authoring tools to “understand” simulation in a way that diverges 

from traditional authoring. 

For instance, in a simulation-driven ITS the nature of the student model may not be along the traditional 

lines of a separate, explicit module. Student models are useful for recognizing what a user’s goals are in 

selecting a course of action (Greer & Koehn, 1995; Whitaker & Bonnell, 1990) and identifying typical 

error modes a user may be displaying (Burton & Brown, 1978; Brown & VanLehn, 1988; Brusilovsky, 

1994). However, exploratory environments enabled by simulation can reduce the reliance on a student 

model, if not eliminate the need entirely. Student models emerged as a means to interpret and track 

student actions and intentions. A simulation though can be seen as a dynamic record of a user’s path, 

since the state of the simulated world at any moment in time is attributable to the user’s intentions and 

how the user effected change in the world in service of those intentions. The environment thus can reveal 

how far toward some defined objective the user has progressed and what the user has done correctly or 

erroneously (Livak, Heffernan& Moyer, 2004). This is a simplification but expresses the basic argument 

that I can elaborate with a brief example. 

Consider a flight simulator embedded within an ITS designed to train Air Force student pilots in proper 

radio communications procedures. A student model could be developed that cues a tutor to recognize 

what goals a user is pursuing (reducing power, extending flaps, and lowering the gear signals a goal to 

land) and what behaviors might be attributable to a common type of error (e.g., failing to report gear 

down at a required position in the pattern). However, the simulation, as a realistic, doctrinally correct 

model, knows (in some sense) what reducing power, deploying flaps, and lowering the gear signals in 

terms of intent; it also knows that failing to communicate at a mandatory reporting point is an error. The 

simulation would therefore be able to cue the tutor to derive an appropriate intervention, such as 

commanding the synthetic instructor pilot to tell the user, “you need to make a gear-down call.” One is 
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left to conclude that either there is no student model in this instance or that the student model is not a 

separate module but is embedded in the simulated world (the environment and the agents that occupy it).
3
 

Either way, one consequence of an ITS that provides a rich set of affordances through which a learner 

explores and influences the environment is that the construct of a separate student model becomes less 

relevant. It can also be problematic, since an “open world” simulation of any reasonably complex 

phenomenology greatly complicates encapsulating all possible solution paths in a model (Derry & Lajoie, 

1993). Derry and Lajoie (1993) present five additional factors that cast doubt on the learner modeling 

paradigm:  

(1) learner error patterns, or bugs, cannot be fully pre-determined;  

(2) the presentation of static content and feedback is antithetical to principles of tutorial dialogue;  

(3) reflection and diagnosis should be performed by the learner, not the tutor;  

(4) learner modeling is technically very difficult; and  

(5) the assumptions on which most modeling approaches are based are applicable to procedural 

learning, whereas the emphasis should be on critical thinking and problem solving.  

What does this say about authoring tools? Though much contemporary ITS research adopts as an 

assumption the requirement for a student model, we can say at the very least that the need for a student 

model is governed by the instructional objectives of the ITS. And the capabilities of simulation-based 

learning ITSs can often reduce, or eliminate, the need for a student model. So to support ITS authoring, 

tools should support tagging and tracking the user’s actions in order to correlate user activity with the 

state of the world, in support of feedback and assessment.
4
 

More broadly, a capability that should be characteristic of tools for authoring ITSs in this genre is to help 

the author define states of the world and transitions in the world that correspond to instructionally 

significant events. How simulations can be controlled to achieve a desired instructional outcome has been 

the subject of much research. “Open world” learning environments require structure to align the 

interaction with instructional objectives. Lane & Johnson (2008) discuss the need for guided practice, to 

make more tractable the problem of managing tutoring given the additional dimensions of time and 

movement that simulations add to ITS. Guided Experiential Learning (Clark, Yates, Early & Moulton, 

2010), mentioned previously, proposes a structured, seven-step process to ensure an instructionally 

effective sequence is observed in using discovery learning environments.  

Constraining simulations in instructionally meaningful ways has enabled much recent work that blends 

instructional strategies and simulation-driven ITS. Researchers have been investigating methods for 

identifying “teachable moments” (Havighurst, 1952) during exploratory interactions. One technique is to 

align the content (i.e., the target skills and knowledge) to a user’s goals and then employ the user’s 

behaviors to trigger the presentation of the corresponding content (Mall, et al., 2014). Another is to 

modulate responses provided through the simulation (e.g., through animated agents) to increase or 

decrease feedback and advance the instructional aims of the interaction (Lane & Johnson, 2008). Related 

to this approach is the explicit modification of the world state to condition the environment for addressing 

specific learning objectives (Magerko, Stensrud & Holt, 2006). 

                                                           
3
 This example was taken from a simulation-driven learning environment developed for US Air Force pilot training 

(Bell, Bennett, Billington, S., Ryder & Billington, I., 2010). 
4
 A simulation scenario can be an objective and complete assessment rubric as numerous researchers have observed 

(Schank, 2001; Fowlkes, Dwyer, Oser & Salas, 1998; Bell, et al., 2010). 
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Although these techniques show promise, there remains the question of how to incorporate them into 

authoring tools. Creating the simulation environment itself is not the province of an ITS authoring tool; 

simulation construction is a complex and distinctive process and demands a different skill set and 

correspondingly tailored suite of tools. Instead, ITS authoring should evolve to allow training developers 

to integrate tutoring with simulations.  

Implications of Discourse-Based Learning for ITS Authoring 

The second-person interface metaphor discussed previously has cultivated a rich body of research 

exploring the interactions between a user and an ITS. The central challenges faced by an author of a 

dialogue-driven ITS are unique to this genre and thus would be optimally overcome by an authoring tool 

that understands discourse-based learning. 

One obvious way in which creating discourse-driven ITS diverges from the traditional model (and thus 

from traditional notions of authoring tools to support that model) is the blurring of any distinction 

between the “tutor module” and the “interface module.” Tutoring knowledge can be encapsulated directly 

within the discourse space and in how that space is traversed (by dialogue events triggering state 

transitions). Not all discourse models operate precisely in this way but the challenges of the authoring 

process largely remain across implementations. A model introduced previously that illustrates the novel 

requirements for authoring discourse-driven ITS is AutoTutor. The process of creating AutoTutor 

applications implicitly merges the tutoring and interface modules, and requires that an author develop a 

well-elaborated conversation space.  

Among the authoring challenges that set this ITS genre apart from the other two examples is that the 

dialogue must be structured to completely address the intended learning objectives. It also follows that a 

tool to support this kind of authoring should embody whatever dialogue theory the author is 

implementing. In other words, creating an AutoTutor application is best supported by an ITS authoring 

tool that understands the expectation and misconception-tailored (EMT) discourse model, so that the tool 

can effectively coach an author in structuring the dialogue in a way that ensures the instructional 

objectives are achieved. 

An example of such a tool is the AutoTutor Authoring Tools (ASAT), designed to support authors in 

creating the underlying rules to achieve the intended tutoring dialogue (Graesser et al., 2004). Similar 

tools have been developed to support the authoring of ITS implemented via a related framework called 

AutoTutor Lite (Wolfe, et al., 2013). A salient characteristic of these tools relevant to the current 

discussion is that they explicitly embody an instructional theory and are therefore able to support the ITS 

author. The authoring tool guides the author by presenting the elements of the dialogue that have to be 

defined and the actions and transitions that make the dialogue dynamic and instructionally relevant. 

Implications of Situation-Based Learning for ITS Authoring 

As discussed, situation-based learning is somewhat of a hybrid, adopting both first- and second-person 

interface elements. In this section, I consider the process of authoring this kind of ITS and present 

examples of ITS tools developed to support the process. Situation-based learning can be, and usually is, 

implemented as a network or graph of states (each corresponding to a situation the user has arrived at 

through actions taken). Authoring a branching simulation requires defining the state space, creating the 

transitions among states, and elaborating each state. The mechanics can be relatively straightforward. The 

challenge is more in developing a coherent and compelling narrative that squarely addresses the learning 

objectives of the ITS. As a result, the creation of a branched-simulation ITS has often been coincident 

with the evolution of an authoring tool used to support that ITS or its immediate progeny. For instance, 
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early work by Ohmaye (1998) in creating a language tutor yielded an architecture and authoring tool for 

developing dialogue-driven branched simulations that was further refined by Guralnick (1996) and Jona 

(1998). 

This approach has been generally referred to as outcome-driven simulation, a term coined by Christopher 

Riesbeck at Northwestern University in 1994 that “refers to a class of applications where users adopt a 

role in a fictional scenario, and where the decisions and action that the user takes moves the scenario 

forward in time to new situations that are relevant to the pedagogical objectives” (Gordon, 2004, p. 230).  

This simple architecture can create quite vivid user experiences, creating the impression of a dynamic 

simulation, and continues to be employed to both create learning applications and to develop authoring 

tools tailored to supporting this genre of ITS. Gordon (2004) described a process to support authoring and 

its application to leadership training for US Army officers. A related authoring tool based on this 

architecture was developed along with several applications to support cultural awareness training 

(Deaton, et al., 2005). This approach remains widely used to this day. For instance, a suite of medical 

training applications is being developed around an outcome-driven simulation ITS authoring tool (King, 

Scott, Davidson & Bope, 2014). 

This work is related to the goal-based scenario (GBS) framework introduced previously (Schank, Fano, 

Bell & Jona, 1994). The GBS research team proposed five categories of ITS, named for the principal 

activity anchoring learning: advise, investigate and decide, run, script, and persuade (Jona & Kass, 1997). 

The research team then developed specialized ITS authoring tools to support the construction of GBS 

within each specific category, and conducted numerous evaluations and user trials (e.g., Bell, 1998). 

These authoring frameworks continued to evolve, and today several tools are in use that support authoring 

of GBS as well as specific sub-categories of these situation-based ITS (e.g., investigate and decide; see 

Bell, 2003; Dobson, 1998; Dobson & Riesbeck, 1998; Riesbeck & Dobson, 1998).
5
 

These variants share an approach to instruction effected through the states and transitions. Tutoring is 

implicitly represented in the states and transitions defined by the author, and dynamically engages the 

user as states are traversed, with transitions triggered by the user’s decisions and actions. 

What these examples of authoring tools tell us is that outcome-driven simulation is created through an 

authoring process that is distinctive from the traditional ITS component approach. Outcome-driven 

simulation as an instance of situation-based learning has advantages in terms of facilitating authoring and 

ensuring instructional goals are achieved. This approach “demonstrates that training experiences in virtual 

reality environments need not be constrained by the modeling limitations of current constructive 

simulations, and that by focusing on specific decision situations we can design immersive training 

environments that are tightly structured around training goals” (Gordon, 2004, p. 237).  

Discussion 

This chapter illustrates that ITS as a research enterprise has matured and diversified, reflecting a broader 

theme of this volume, which similarly segments the ITS space (though along different lines—model-

tracing, agent-based, and dialogue-based). The categories themselves are less important than the question 

of authoring tools, and specifically, whether we should strive to create a universal ITS tool or 

acknowledge the diversity of ITS and develop authoring tools specific to different types. 

                                                           
5
 The GBS Tool and commercial variants are developed and marketed by Socratic Arts, www.socraticarts.com. 
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This call for distinctive authoring tools is not meant to suggest that different domains call for different 

tools. Authoring tools should be agnostic with respect to domain; whether an author wishes to teach about 

combat casualty care or playground etiquette is not the issue—the how is more determinant than the what. 

It does not even matter greatly whom the intended audience is. As Murray (2003) points out, “the key 

differences among ITS authoring systems are not related to specific domains or student populations, but 

to the domain-independent capabilities that the authored ITSs have.” (p. 495).  

While the domain itself may not be a factor in authoring tool design, research being conducted within the 

GIFT community is drawing an important distinction between well-defined and ill-defined domains. The 

implication is that “with a two-dimensional approach to domain definition, instructional strategies can be 

specified based on the component characteristics identified within the domain designation” (Goldberg, 

Holden, Brawner & Sottilare, 2011). So at least at this high level, we see a trajectory for GIFT to support 

distinctive authoring processes based on domain. 

GIFT researchers also call for specificity at the domain level when authoring assessments. “The 

fundamental problems of domain dependent components are how to assess student actions, how to 

respond to instructional changes, how to respond to requests for immediate feedback, and an interface 

which supports learning” (Goldberg, Holden, Brawner & Sottilare, 2011). However, the GIFT framework 

manages these differences through domain modeling tools, which allow for author-customized and 

domain-specific feedback and assessment but which do not present distinctive approaches to instruction. 

A dimension more discriminating for authoring tools than domain is instructional approach. An assertion 

drawn from this chapter is that ITS tools should (and do) embody a specific instructional theory to 

supports authoring ITS that also embody that theory (e.g., Adenowo & Patel, 2014; Aleven, McLaren & 

Sewall, 2009; Gordon, 2004; Ramachandran & Sorensen, 2007). The GIFT framework takes a more 

generic approach than authoring in specific ITS genres—ITS authors instead “can use GIFT to author 

strategies aligned with a particular instructional theory” and “have access to libraries of strategies that are 

tailored to the user and can be used to develop timely feedback mechanisms.” (Sottilare, Goldberg, 

Brawner & Holden, 2012). GIFT thus seeks a best-of-both-worlds solution, by offering a generic suite of 

authoring tools while supporting the construction of ITS in a range of instructional traditions. 

Where the GIFT approach diverges from proponents of theory-specific ITS authoring tools is not so much 

in the availability of strategies but in the knowledge that the authoring tool can bring to bear in helping 

the author to properly select and apply those strategies. As an analogy, consider the difference between a 

website that lists airline routes and schedules and an experienced travel agent. The GIFT approach can 

offer a library of tutoring strategies that provides the savvy ITS author with flexibility but which does 

little to support a novice ITS author (for instance, a subject matter expert) in creating effective instruction. 

Recommendations and Future Research 

The mission of GIFT is more than supporting authoring—GIFT is oriented around providing three 

services: authoring of components, management of instructional processes, and an assessment 

methodology (Sottilare, Goldberg, Brawner & Holden, 2012). This volume’s focus on authoring tools 

provides a range of perspectives on tutoring approaches and how to best support authors in creating 

effective ITS.  

GIFT is addressing a difficult problem during a time of rapid change. The convergence of ITS with 

immersive games, for instance, creates numerous authoring challenges, such as how to support the 

creation of reactive agents characteristic of ITS and proactive agents characteristic of simulations 

(Brawner, Holden, Goldberg & Sottilare, 2012). Such trends are blurring long-standing boundaries. The 
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blending of tutoring and gaming is likely to raise questions about the relative importance of a tutor in an 

ITS (and implications for authoring tool design). Jona & Kass (1997) may have anticipated the 

ascendance of gaming in questioning the assumption “that the central component of a learning 

environment is the tutor, and that the critical learning events are interactions between the learner and the 

tutor.” They assert instead that “this view is not compatible with what many who study education and 

human learning have found. For example, many progressive educators would argue that the most 

important aspect of a learning environment is a complex, realistic activity in which the learner becomes 

engaged, and not the tutoring received” (p. 39, original emphasis). 

GIFT, in fulfilling the vision of technology that is generalizable and integrated, is promoting modularity, 

reuse and broad applicability (Sottilare, Goldberg, Brawner & Holden, 2012). It remains to be seen 

whether this approach is theory-neutral or an aggregation of multiple theories. Also, some might question 

whether an ITS authoring tool (which is intended to support the creation of end-products grounded in 

some instructional theory) can even be theory-neutral. As observed by Jona & Kass (1997): “The mix and 

match approach is not theoretically neutral with regard to the questions of what really drives learning, and 

what are the central features of a learning environment” (p. 39). 

I conclude by revisiting the general aims of an authoring tool. Reducing the effort needed to produce ITS 

can include the following: 

 assuming responsibility for mechanical aspects of the task; 

 furnishing predefined elements that an author can package together to suit a particular need; and 

 guiding the author. 

GIFT in its early stages has established a promising framework for supporting some of the mechanical 

aspects of ITS construction (Sottilare, Goldberg, Brawner & Holden, 2012). Accelerating the authoring 

process with predefined elements has more numerous and nuanced dimensions. There is some appeal to 

thinking of authoring as aligning old components in new ways; however, authors would require visibility 

into the properties of these components, what can be customized, and how to link them. There are 

numerous metaphors that might inspire novel approaches to addressing this need. For instance, preparing 

a new dish is something people generally do by adapting a recipe that not only lists the ingredients but 

also instructs in how the ingredients are to be combined and even what substitutions might be tried. 

Applying this metaphor to GIFT, we can envision a library of completed ITSs, each cataloging its 

components, their properties, and instructions on adapting each for reuse. As this framework becomes 

populated with more content, GIFT will advance in its support for providing such predefined elements 

and libraries that ITS authors can incorporate and adapt. It should be emphasized, however, that simply 

making a large collection of ITS components available to an author is not sufficient; in the cooking 

analogy, it is more akin to roaming the aisles of a grocery store than to browsing a recipe book. 

It is just this sort of guidance for the author that will require increased attention. As the research reviewed 

in this chapter suggests, an authoring tool should have some understanding of what the author wishes to 

create and be able to offer useful and specific support. The forms such support take can vary from 

recommendations about low-level dialogue elements to presenting a worked example similar to the 

author’s intended ITS (as recommended in Hsu & Moore, 2011) and supporting its incremental adaptation 

(which we term guided-case adaptation, see Bell, 1998).  

The needs remains for ongoing evaluation, of GIFT’s authoring tools and of the products emerging from 

authors using the framework. As the ranks of GIFT contributors continue to expand, greater opportunities 

will become available to study how GIFT supports ITS authoring, and ITS will emerge that will provide 
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researchers with artifacts to evaluate. The instructional effectiveness of products created using GIFT will 

provide formative direction to the evolution of the framework, and will ultimately be a persuasive 

indicator of the value of GIFT to the ITS community. 
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Introduction 

Compared to many other learning technologies, intelligent tutoring systems (ITSs) have a distinct 

challenge: authoring an adaptive inner loop that provides pedagogical support on one or more learning 

tasks. This coupling of tutoring behavior to student interaction with a learning task means that authoring 

tools need to reflect both the learning task and the ITS pedagogy. To explore this issue, common learning 

activities in intelligent tutoring need to be categorized and analyzed for the information that is required to 

tutor each task. The types of learning activities considered cover a large range: step-by-step problem 

solving, bug repair, building generative functions (e.g., computer code), structured argumentation, self-

reflection, short question answering, essay writing, classification, semantic matching, representation 

mapping (e.g., graph to equation), concept map revision, choice scenarios, simulated process scenarios, 

motor skills practice, collaborative discussion, collaborative design, and team coordination tasks. These 

different tasks imply a need for different authoring tools and processes used to create tutoring systems for 

each task. In this chapter, we consider three facets of authoring: (1) the minimum information required to 

create the task, (2) the minimum information needed to implement common pedagogical strategies, (3) 

the expertise required for each type of information. The goal of this analysis is to present a roadmap of 

effective practices in authoring tool interfaces for each tutoring task considered. 

A long-term vision for ITSs is to have generalizable authoring tools, which could be used to rapidly create 

content for a variety of ITSs. However, it is as-yet unclear if this goal is even attainable. Authoring tools 

have a number of serious challenges from the standpoint of generalizability. These challenges include the 

domain, the data format, and the author. First, different ITS domains require different sets of authoring 

tools, because they have different learning tasks. Tools that are convenient for embedding tutoring in a 

3D virtual world are completely different than ones that make it convenient to add tutoring to a system for 

practicing essay-writing, for example. Second, the data produced by an authoring tool need to be 

consumed by an ITS that will make pedagogical decisions. As such, at least some of the data are specific 

to the pedagogy of the ITS, rather than directly reflecting domain content. As a simple example, if an ITS 

uses text hints, those hints need to be authored, but some systems may just highlight errors rather than 

providing text hints. As such, the first system actually needs more content authored and represented as 

data. With that said, typical ITSs use a relatively small and uniform set of authored content to interact 

with learners, such as correctness feedback, corrections, and hints (VanLehn, 2006). Third, different 

authors may need different tools (Nye, Rahman, Yang, Hays, Cai, Graesser & Hu, 2014). This means that 

even the same content may need distinct authoring tools that match the expertise of different authors. 

In this chapter, we are focusing primarily on the first challenge: differences in domains. In particular, our 

stance is that the “content domain” is too coarse-grained to allow much reuse between authoring tools. 

This is because, to a significant extent, content domains are simply names for related content. However, 

the skills and pedagogy for the same domain can vary drastically across different topics and expertise 

levels. For example, algebra and geometry are both high school level math domains. However, in 

geometry, graphical depictions (e.g., shapes, angles) are a central aspect of the pedagogy, while algebra 

tends to use graphics very differently (e.g., coordinate plots). As such, some learning tasks tend to be 

shared between those subdomains (e.g., equation-solving) and other tasks are not (e.g., classifying 

shapes).  
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This raises the central point of our chapter: the learning tasks for a domain define how we author content 

for that domain. For example, while algebra does not involve recognizing many shapes, understanding the 

elements of architecture involves recognizing a variety of basic and advanced shapes and forms. In total, 

this means that no single whole-cloth authoring tool will work well for any pair of algebra, geometry, and 

architectural forms. However, it also implies that a reasonable number of task-specific tools for each 

learning task might allow authoring for all three domains. To do this, we need to understand the common 

learning tasks for domains taught using ITSs and why those tasks are applied to those domains. In the 

following sections, we identify and categorize common learning tasks for different ITS domains. Then, 

we extract common principles for those learning tasks. Finally, we suggest a set of general learning 

activities that might be used to tutor a large number of domains. 

What is a Learning Task? 

Before we begin, it is important to define what we mean by a learning task. Functionally speaking, a 

learning task is an activity designed to help the participant(s) learn certain knowledge or skills. Any 

learning task has a three essential parts:  

(1) Task State (ST) - the context and status of the task,  

(2) Task Interface (IT) - the representation used to present the task and its available actions,  

(3) Task Goals (GT) - importance or value given to states or state trajectories, which may be stated in 

the task, given prior to the task (e.g., by a teacher), or chosen by the learner. 

A directed learning task, such as one run by a teacher or an ITS (as opposed to an undirected sandbox 

activity), also has complementary parts related to the instructor’s control over the system: 

(1) Pedagogical State (SP) - the context and status relevant to pedagogical decision making, 

(2) Pedagogical Interface (IP) - the pedagogical actions available during a task, and 

(3) Pedagogical Goals (GP) - importance or value given to reaching certain pedagogical states. 

The relationships between these parts are noted in Figure 1. From an ITS authoring standpoint, both the 

task and the pedagogical model need to be authored. In this representation, the pedagogical state includes 

the task goals, task state, and the learner’s state (e.g., a student model). In this respect, the pedagogical 

state is more complex than the task state. However, excluding the learner’s internal state (which is only 

observable through the history of task interactions) and the task goals (which are typically not changed 

during a given task), the pedagogical state is by definition less complex than the task state. Considering a 

task as a Markov decision process, the pedagogical state trajectory SP cannot consider any more 

information from the task beyond its trajectory of task states (ST). In most cases, the representation of the 

pedagogical state is far simpler and based on features sets such as classifying good/bad answers, 

identifying specific misconceptions or bugs, and other assessments that reduce even rich environments 

(e.g., 3D simulators) into streams of simpler features that form the pedagogical state used for triggering 

interventions such as hints (Kim et al., 2009; Nye, Graesser & Hu, 2014; VanLehn, 2006). 
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Figure 1: Tasks and pedagogy 

This implies that ITS authoring should be greatly constrained by the learning task. At face value, it seems 

like there might be exceptions: a tutor for metacognitive skills might need to know almost nothing about 

learner’s performance on their primary learning task, if it only suggests self-reflection and an unassessed 

summarization. However, it can be argued that such a task-agnostic tutor has that capability only because 

it generates its own learning tasks (e.g., journals for summarization, delays for self-reflection). This has 

two implications: 

 First, it implies that all ITS authoring is tied to a specific set of tasks.  

 Second, it implies that multiple learning tasks may be interleaved or even occurring 

simultaneously. 

In simulation-based training for complex tasks, such as flight simulators or cross-cultural competencies, 

working on multiple tasks simultaneously might even be a major part of the pedagogy (Silverman, 

Pietrocola, Nye, Weyer, Osin, Johnson & Weaver, 2012). So long as interactive feedback on each 

learning task is independent (i.e., feedback on one task does not directly impact the pedagogical state of 

other tasks), authoring for such tasks can typically be done independently as well. 

So then, this is what we mean by a learning task from an authoring standpoint: (1) a task with a distinct 

pedagogical state, (2) whose dynamics during that task are mainly or wholly derived from the task state, 

and (3) which includes the actions performed by the learner (or learners). Moreover, as simplifying 

assumptions, we posit that the pedagogical goals and problem goals remain static for the typical ITS 

learning task. For example, even in complex training environments, switching the task goals typically 

implies ending a task and starting a new one. The counterexample to this case would be a learning task 

specifically targeting the learner’s skills at goal-setting or adapting to changing task goals. Such tasks are 

uncommon and no major authoring tools target such tasks. Finally, we assume that changes to the learner 

during an ITS task (e.g., learning, affect changes) are primarily influenced by and observable based on 

interactions with the task interface. If they were not, this would be problematic: the ITS would have little 

ability to tell if its interventions are effective if some external factors are causing learning and/or task 

performance (e.g., a second user helping). With that said, such confounds are possible, such as when 
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multiple users share an ITS intended for one user (Ogan, Walker, Baker, Rebolledo Mendez, Jimenez 

Castro, Laurentino & de Carvalho, 2012). However, as no known authoring tools develop ITS content for 

such situations, these are also considered edge cases that we exclude from this analysis authoring learning 

tasks for ITSs. 

A Review of Authoring-Relevant Characteristics of Learning Tasks 

Significant literature focuses on taxonomies of learning tasks and the types of knowledge they are 

designed to convey to a learner. Notable examples include Bloom’s Taxonomy and its revisions (Bloom, 

1956; Anderson, Krathwohl, Airasian, Cruikshank, Mayer, Pintrich, Raths & Wittrock, 2000), guidelines 

for learning activities and resources (R. Clark, 2002; R. Clark & Mayer, 2011), and theories of different 

types of knowledge components involved in learning (Koedinger, Corbett & Perfetti, 2012). These three 

perspectives each look at a different facet of learning tasks: (1) the task activity (Bloom, 1956), (2) the 

pedagogical goals for the learning task (R. Clark, 2002), and (3) the knowledge components theorized to 

encode the knowledge (Koedinger et al., 2012). Figure 2 shows different possible combinations of 

learning tasks and pedagogical goals. 

 

Figure 2: Combinatorial combinations for learning tasks and pedagogical goals 

Bloom’s taxonomy is the most widely used taxonomy to label learning tasks and has undergone a number 

of revisions (D. Clark, 2014). Bloom’s revised taxonomy (2000) of cognitive knowledge considers six 

levels: remembering (e.g., list facts), understanding (e.g., summarize in own words), applying (e.g., solve 

a math problem), analyzing (e.g., identify a statistical trend), evaluating (e.g., select the best-value car for 

an average consumer), and creating (e.g., build a robot for some task out of parts). Ruth Clark (2002) 

presented a complementary taxonomy for different types of knowledge associated with pedagogical goals 

for learning tasks, which built on Merrill (1983). Her categories included facts (unique instances), 

concepts (classes of instances), processes (representations of how a system works), procedures (steps to 

reach a task state), and principles (causal relationships and general dynamics).  

In addition to these pedagogical goals, metacognitive knowledge can also be a pedagogical goal: where 

the learner gains understanding or skills to monitor their own cognitive state or learning (Biswas, Jeong, 

Kinnebrew, Sulcer & Roscoe, 2010; Azevedo, Johnson, Chauncey & Burkett, 2010; Goldberg & Spain, 

2014). While metacognitive knowledge may fall into other categories, it can involve learning to monitor 

an additional information channel other than the task state (i.e., their own mental state). As such, at least 

some types of metacognitive learning are probably qualitatively different than other types of knowledge 

(possibly closer to affective or psychomotor skills).  

Koedinger et al. (2012) looked at the next step for learning activities, which was the cognitive 

components relevant to assessment and cognitive encoding of knowledge. They considered four facets for 

encoding knowledge: the task feature dynamics (static vs. variable), the required learner response (static 

vs. variable), the relationship between task features (explicit vs. implicit), and the availability of a 

rationale (e.g., a “why” justification for the relationship between features). These different categorizations 
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determine when a learner would need to encode, such as a rule (e.g., y*x = x*y) or simply an association 

(e.g., x and y were observed together). 

Considering these approaches to categorizing learning activities, key facets emerge for different learning 

tasks. These fall into three design concerns: pedagogical goals (what the student should learn), task design 

(the learning environment and its affordances), and task interface (how the task is represented and 

presented). Together, these concerns constrain the pedagogical interface for how an ITS interacts with 

learners and what needs to be authored. 

Task Dynamics 

A major constraint on ITS authoring is the dynamics of the task state itself. For example, some learning 

tasks are static and have no dynamic features (e.g., memorizing a shape or a fact). Koedinger et al. (2012) 

highlighted the distinction between tasks whose features are static (e.g., the same across all instances) 

versus those that are variable (e.g., some features vary across instances, requiring the learner to generalize 

across them). We further subdivide variable tasks into a few types, as shown in Figure 3. In our 

conceptualization, three types of variation can occur in the state of a task. The first type, which we call 

variable instance, is across presented tasks, such as presenting a series of pictures and requiring the 

learner to identify which ones contain triangles. Other variable tasks change during the process of solving 

the task. The second type, reactive, is a task whose state changes due to the learners’ actions (e.g., step-

by-step equation solving). In the third type, time-varying, the task state changes over time regardless of 

user input (e.g., a video or simulation that unfolds over time). When the task is both time-varying and 

reactive to user input, we consider it interactive (e.g., a 3D game world). 

 

Figure 3: Different types of task variability 

These distinctions constrain authoring: static tasks are not typically taught by ITSs at all, because many 

are rote learning that respond equally well to simpler drill-and-practice methods. However, some 

intelligent systems, such as Pavlik et al.’s (2007) FaCT system, improve recall-type tasks by optimizing 

spacing effects and the sequence of instance presentations. Static tasks that do not change based on user 

input are limited to interventions such as highlighting salient features, demonstrating how to find the right 

solution, responding to a single answer from the learner, or presenting different tasks (e.g., learning 

prerequisites). It is still possible to adapt to the learner’s responses, such as with systems that provide 

hints and retry attempts in response to wrong answers on multiple choice questions (Conejo, Guzmán, de-

la Cruz & Millán, 2006).  However, most ITSs tend to focus on reactive and interactive tasks, because 

learner actions during the task allow a greater ability to target feedback and hints. 

Task Assessment 

A second major constraint is how well can the ITS measure progress toward pedagogical goals. Since 

tasks are used to assess learning, measuring progress toward pedagogical goals requires measuring 

progress toward task goals. In many ways, the ability to measure such progress distinguishes between 

well-defined and ill-defined domains (Fournier-Viger, Nkambou & Nguifo, 2010; Nye, Bharathy, 
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Silverman & Eksin 2012). Any task has two possible levels of introspection: the value for the task state 

and the value of learner actions. When the goals are known, it is often possible to infer the value of 

actions from the state if the outcomes are predictable, but this is not always (e.g., due to competing goals 

to choose between). Table 1 categorizes different combinations of knowing the value of states and the 

value of learner actions. Knowing the value of states allows measuring good outcomes, while knowing 

the value of actions allows measuring good process. 

Table 1: Measures for task goal progress 

s  

If a state utility function is available, all states and transitions between states have a known value. For a 

completely measurable task, the relative value of actions is also known, such as a well-formed economics 

problem where some actions lead to more profit than others. In other cases, the ultimate impact of actions 

is uncertain (e.g., a chaotic system like the stock market), but good outcomes can still be measured. 

Generative simulations with emergent behavior often have this quality (Nye et al., 2012).  

When an ITS can detect improvements between states but can’t evaluate states exactly, then state 

transition gradients are known. So long as the relationship between learner actions and transitions is 

known (e.g., problem-solving in algebra), formative assessments such as model tracing and example 

tracing can be used (Aleven et al., 2006). When specific learner actions cannot be evaluated easily (e.g., 

editing a learner’s essay), ITSs can still provide feedback on the task state. Design-based ITSs often use 

this approach, such as essay-writing ITS that can assess an essay and suggest guidelines to improve the 

state of the essay (Roscoe & McNamara, 2013). Likewise, when relative value of overall task states is 

unknown, it is sometimes still possible to assess learner actions. This approach to measurement considers 

the process, rather than the outcomes. Constraint-based ITSs are often applied to these kind of tasks 

(Mitrovic, 2003). If it is impossible to assess the quality of either the task state or the learner’s actions, the 

task is ill-defined. 

In general, when considering Figure 2, higher levels of Bloom’s Taxonomy tend to involve tasks closer to 

the bottom and right of Table 1. The ability to measure progress on task goals is the first constraint on ITS 

authoring, since it directly constrains the types of feedback and interventions available to the ITS. If it is 

impossible to evaluate the quality of actions, it is impossible to provide a “correction” or suggest a 

concrete “next step” action. As such, there is no need to author one. As such, more complex tasks and 

generative models tend to offer fewer affordances for authoring traditional ITS content, and tend to rely 

on the natural dynamics of the simulation to provide reactive feedback (i.e., intelligent environments, 

rather than intelligent tutors). 
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Task Interface 

The interface of the task consists of how it is presented to the learner and of how the learner presents 

input. More generally, task interfaces are part of the communication module of a classical four-

component ITS diagram (Woolf, 2010). They are the input and output with the learner for the learning 

task. Typical inputs to an ITS include discrete selections (e.g., multiple choice), continuous selections 

(e.g., manipulating sliders for a simulation), formal representations (e.g., math equations, graphs), 

freeform input (e.g., natural language, freehand sketches), and controlling an avatar (e.g., 3D worlds). The 

modality of learner input is a further constraint on authoring: the pedagogical interface needs to turn input 

from the task into something actionable. Ironically, this means that feature-rich inputs, such as natural 

language, are typically simplified into much simpler representations such as discrete selections (e.g., 

good/bad answers). The representation of the user input is the final major constraint on authoring.  

 

Figure 4: Common interventions for an ITS 

Based on the pedagogical features extracted from the task state and user input, the ITS needs to author 

various interventions. When extending an ITS to new learning tasks, these interventions are typically a 

major focus for authoring. When, why, and how the ITS applies its pedagogical strategies and tactics is 

the main repository of an author’s domain pedagogy expertise. Figure 4 displays a variety of options for 

an ITS to intervene during a task. The most rudimentary of these is to recognize a difference between a 

detected state and some other state (e.g., “You seem to like chocolate ice cream more than the average 

learner.”). Since this response assigns no specific value judgment, it can be used for entirely ill-defined 

domains by using techniques such as novelty detection (Markou & Singh, 2003). It is also possible to 

modify the task state or features even for tasks that lack clear assessments of state or action value, such as 

through random perturbations. However, typically an ITS changes the state of a task to make it easier or 

harder (elastic difficulty). This is done by reducing the degrees of freedom (fewer options), completing a 

task step, or increasing the salience of important task features (e.g., highlighting). Another approach is to 

react in response to user input. Even if no assessment can be made for that input, their input can always 

be acknowledged (Ack). While this might seem like a weak tactic, it is often used to prompt learners to 

self-reflect, write in a journal, or mark the start or completion of other metacognitive activities. 

On well-defined tasks, ITS tactics often take the form of various types of feedback or modeling effective 

solution paths (VanLehn, 2006). Feedback is a response to a user action that either presents an answer or 

otherwise modifies the task state. Common feedback methods include reacting to errors or good answers 

(binary assessments), scoring (continuous or ranked assessments), corrections (providing a fix to the 

answer), and explanations (stating why an answer is right or wrong). Modeling a good answer or solution 

path is also common. It can be used as feedback or provided at some point during the task state (e.g., 

provide the worked solution if the user cannot solve the problem). A few types of modeling are possible, 

including presenting the solution to a similar task example, providing the next step(s) to the current task, 

or providing a good final solution for the student to look at (e.g., a good essay on the same topic they are 
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trying to write about). If the full set of steps and the solution is provided, then the intervention was a 

worked solution.  

The authoring effort for these types of feedback varies significantly. Meaningful corrections and 

explanations require a much deeper connection to domain pedagogy than simpler feedback such as 

detecting the existence of errors. Likewise, adding explanations to modeling interventions greatly 

increases authoring effort, because it moves beyond simply assessing task performance and starts to 

model how a human teacher or instructor might correct student errors or explain the process of working 

on the task. However, this authoring effort probably supports some of the most effective ITS tutoring 

behaviors, since it is ideally based on the expertise accumulated from hundreds of hours of human 

teaching interactions. 

Discussion: Common Learning Tasks and Tools 

Based on these task features, it is possible to break down a variety of common ITS learning tasks and 

examine how their distinguishing characteristics are reflected in their authoring tools. Three types of tasks 

can be considered: well-defined tasks (mostly reactive to user input, values for user actions can be known, 

user inputs are formal and decidable), less-well-defined tasks (highly interactive, freeform input, lack 

well-defined goals etc.), and task sandboxes (e.g., complex simulators used to build pedagogical tasks). 

Well-Defined Tasks 

Table 2 lists common, well-defined learning tasks. Two salient learning activities and pedagogical goals 

for each class of task are noted. With that said, specific tutors may use different types of scaffolding to 

use the same task to focus on different pedagogical goals and activities, so there can be significant 

variation on these.  In terms of pedagogy, well-defined tasks probably allow the widest set of 

interventions: because the task state and user input allow clear assessments and have constrained solution 

paths, the ITS has a fairly clear view of the task and associated pedagogical state. 

The most established ITS tasks center on multi-step problem-solving, such as step-by-step math or 

physics (Ritter, Anderson, Koedinger & Corbett, 2007; Aleven, McLaren, Sewall & Koedinger, 2006; 

VanLehn et al., 2005), diagnosing systems and repairing them (Lajoie & Lesgold, 1989), and building 

dynamical system models (Biswas et al., 2010; Iwaniec, Childers, VanLehn & Wiek, 2014). Step-by-step 

problem-solving tasks can also be presented in 2D or 3D worlds (Rowe, Shores, Mott & Lester, 2011). 

Step-by-step problem-solving ITSs tend to author hints and feedback that is conditional on the current 

task state and the current action (or actions). They also typically provide a full bottom-out worked 

solution when needed. In-game worked solutions are not common for ITS with avatar input (e.g., 3D 

worlds), though sometimes recorded cut-screen/video solutions are available. The specific ITS 

intervention content that is presented is typically tied to general rules that are shared across many task 

examples (e.g., hints related to the commutative property of addition). As such, authoring these tasks 

tends to require authoring: (1) A well-defined state representation (e.g., a chess board), (2) a set of 

domain rules that transform state (e.g., piece move rules), (3) a goal state for the task, (4) a set of expert 

rules that rely on features of the task state, (5) sometimes buggy rules that represent specific 

misconceptions to remedy, and (6) templates for feedback and hints that are associated with certain task 

states or production sequences. In some cases, authoring the task interface is also part of the ITS tool set. 

The Cognitive Tutor Authoring Tools (CTAT; Aleven et al., 2006) offers an example of fairly mature 

tools for problem-solving tasks. 

Authoring tools for these tasks focus on defining ideal and buggy production rules that can be used to 

classify task states and learner behavior as they complete the task (Aleven et al., 2006). Ideal production 
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rules can be used to identify points for positive feedback on a good action or provide hints about good 

next steps for a problem. These ideal next steps are inferred by evaluating the chains of actions required 

to reach the task goal (i.e., solution). Similarly, buggy rules can be used to detect specific misconceptions 

for the learner when they perform certain sequences of actions. Instance-based authoring can be used to 

infer these rules instead of explicit authoring, through systems such as SimStudent (Matsuda, Cohen & 

Koedinger, 2014). Feedback and hints tend to be provided through parameterized templates that can refer 

to task features. A simpler approach to authoring these tasks involves forcing the learner to stay on a 

linear or simple branching example-tracing approach, with hints that are specific to certain states or 

transitions in a problem template (Razzaq, Patvarczki, Almeida, Vartak, Feng, Heffernan & Koedinger, 

2009). At least for certain mathematics topics, tutoring a single solution strategy (or even a single path) is 

nearly as effective as a more complex structure (Waalkens, Aleven & Taatgen, 2013; Weitz, Salden, Kim 

& Heffernan, 2010).  

As such, two alternatives exist to rule authoring: (1) instance-based inference and (2) template-specific 

tutoring. In the first case (e.g., SimStudent), rules are inferred from expert (and perhaps non-expert) 

solution paths. This requires an authoring tool that shows a complete interface to the problem, as well as 

an external judgment of the user’s expertise level. This allows skipping explicit rule authoring. In the 

second case, task templates can be authored with tutoring associated with specific task paths. This type of 

authoring is also used for other tasks (e.g., constrained choice dialogues with branching), so it is a 

valuable general-purpose authoring interface in its own right. Much like making inferences across 

multiple instances, an authoring tool for integrating tutoring templates with task paths also needs to give 

the author a good view of the task state that is similar to the student’s view. 

Table 2: Common well-defined ITS tasks 

Task Activities 

(Top-2) 

Pedagogy 

Goal (Top-2) 

Variability State 

Values 

Action 

Values 

Task 

Inputs 

Interventions to 

Author 

Step-By- 

Step Math 

Apply, 

Understand 

Procedure, 

Principle 
Reactive 

Gradients/

Ranks 
Known 

Formal 

Expression 

Feedback (Any),  

Next Steps, 

Similar 

Example, 

Worked Solution 

Diagnosis & 

Repair 

Analyze, 

Apply 

Process, 

Procedure 

Reactive or 

Interactive 

Gradients/

Ranks 
Known 

Formal 

Model 

Feedback (Any), 

Next Steps, 

Similar 

Example, 

Worked Solution 

Dynamical 

Systems 

Create, 

Analyze 

Procedure, 

Process 

Reactive or 

Interactive 

Utility or 

Gradients 
Known 

Formal 

Model 

Feedback (Any), 

Next Steps, 

Similar 

Example, 

Worked Solution 

Classifying 
Understand, 

Analyze 

Concept, 

Process 
Static Category Known 

Discrete 

Selection 

Feedback (Error, 

Correct, Expl.), 

Similar Example 

Bug Detect 
Analyze, 

Understand 

Process, 

Concept 
Static Category Known 

Discrete/ 

Continuous 

Selection 

Feedback (Error, 

Correct, Expl.), 

Similar Example 
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Represent- 

ation Map 

Understand, 

Apply 

Concept, 

Process 
Reactive 

Gradients/

Ranks 
Known 

Formal 

Models 

Feedback (Any),  

Next Steps, 

Worked Solution 

Concept 

Map Revise 

Understand, 

Analyze 
Concept Reactive 

Gradients/

Ranks 
Known 

Formal 

Model 

Feedback (Any),  

Next Steps, 

Worked Solution 

Constrained 

Choice 

Analyze, 

Evaluate 

Process, 

Principle 

Reactive or 

Interactive 

Utility or 

Gradients 
Known 

Discrete 

Choice 
Feedback (Any) 

A second major class of problems includes pattern matching and classification of examples, such as 

biological taxonomies (Olney et al., 2012), or identifying errors in a complex task, such as bugs in a 

computer program (Carter & Blank, 2013). These ITSs tend to provide hints and feedback based on the 

difference in features between the chosen classification and the ideal one, with strong use of explanation 

but seldom presenting a step-by-step process. A third class of well-defined ITS tasks includes building 

formal semantic models from freeform representations (e.g., concept map revision) and converting 

between different well-defined representations, such as from a graph to an equation (Olney et al., 2012). 

These also tend to keep track of the difference in features between the current and ideal models, but can 

also suggest next-step changes because the model can be modified.  

Authoring tools for these tasks tend to rely on defining ontologies, concept maps, or other structures that 

define the features of classes and examples. Each instance in a task can be authored by tagging its features 

or class memberships, after which hints, counter-examples, or other feedback need to be created. If the 

pedagogy goals also include following a certain step-by-step process to make classification distinctions, 

authoring may also require tutoring similar to branching example tracing. Across these types of tasks, a 

simplified ontology class and instance editor could be quite effective, if it provided clear intervention 

templates to target differences or similarities between patterns. 

Finally, there are constrained choice problems, such as ITS-supported multiple choice or branching 

dialogues (Kim et al., 2009). These can actually be quite varied, but tend to provide interventions that are 

either dependent only on the current state (e.g., a hint for choosing the wrong answer) or that are 

exhaustively defined by a branching state path. This means that authoring such tasks tends to be easier up-

front than a problem-solving ITS, but harder to reuse for related tasks. In general, authoring these tasks 

should be similar to linear example-tracing. However, because the tasks may involve fewer general 

principles that repeat across examples, the authoring is likely to have more explanations and need fewer 

templates and parameters. 

Less-Well-Defined Tasks 

Ill-defined and less-well-defined tasks are presented in Table 3. These tasks tend to be less-well-defined 

because either the goals are not fully defined, the inputs require natural language processing or are 

otherwise not formally evaluable, or the task requires the learner to produce a full artifact before it can be 

evaluated. Structured argument tasks, such as those used for law (Pinkwart, Ashley, Lynch & Aleven, 

2009) or policy (Easterday & Jo, 2014), work similarly to causal concept map tasks. However, they differ 

because the goals for argumentation are not always well-defined (i.e., the learner must first choose what 

to argue). As such, authoring typically requires generating an extensive formal model of free-text sources. 

This model may be hand-authored or extracted from the associated reference texts. Learners will then 

need to generate explanations that are logically or causally consistent with the underlying formal model, 

while supporting the argument goal that the learner has selected. These ITSs tend to also require a 

reusable set of hint and error-correction templates (e.g., for different logical inconsistencies). For specific 

common misconceptions, rules or constraints may also be used to trigger explanations or modeling 
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behavior (e.g., presenting an analogous case or example). Case-based reasoning is one mechanism for 

identifying similar examples (Kolodner, Cox & González-Calero, 2005) and can also be used as a 

pedagogical strategy for these domains. 

The next category of tasks requires the user to create significant artifacts, such as essays or computer 

programs (Roscoe & McNamara, 2013; Kumar et al., 2013). These ITSs tend to calculate an overall 

quality score, based on a number of calculated features that it can highlight or give hints for improvement. 

However, unlike an ITS for algebra, these tutors cannot explicitly correct most problems (e.g., a 

programming ITS typically cannot fix the learner’s code). ITS authoring for these tasks requires defining 

a set of features that are used to determine quality of the task artifact. Typically, this training is done 

using supervised learning or hand-authoring. Tutoring often focuses on feedback and hints related to 

specific features that need improvement for the artifact, as well as an overall quality score. 

Table 3: Common less-well-defined ITS tasks 

Task Activities 

(Top-2) 

Pedagogy 

Goal (Top-2) 

Variability State 

Values 

Action 

Values 

Task 

Inputs 

Interventions to 

Author 

Structured 

Argument 

Evaluate, 

Analyze 

Principle, 

Concept 
Reactive 

Gradients

/Ranks 
Varies 

Formal 

Model 

Feedback (Error, 

Score, Explain), 

Similar Example 

Functional 

Coding 

Create, 

Understand 

Procedure, 

Concept 
Reactive 

Gradients

/Ranks 

Not 

Known 

Mixed 

Formal 

and 

Freeform 

Feedback (Error, 

Score, Explain), 

Similar Example  

Essay 

Writing 

Create, 

Analyze 

Procedure, 

Concept 
Reactive 

Gradients

/Ranks 

Not 

Known 

Freeform 

(NLP) 

Feedback (Score, 

Explain), 

 Similar 

Example 

Summaries Understand 
Concept, 

Process 
Reactive 

Gradients

/Ranks 

Not 

Known 

Freeform 

(NLP) 

Feedback (Score, 

Explain) 

Expectation 

Coverage 

Understand, 

Analyze 

Concept, 

Principle 
Interactive 

Gradients

/Ranks 
Known 

Freeform 

(NLP) 

Feedback (Any), 

Next Steps, 

Worked Solution 

Short 

Answer 

Understand, 

Analyze 

Concept, 

Fact 

Reactive/ 

Interactive 

Gradients

/Ranks 
Known 

Freeform 

(NLP) 

Feedback (Any), 

Similar Example  

Open Self- 

Reflection 
Understand 

Concept, 

Process 
Static 

Not 

Known 

Not 

Known 
Freeform 

Difference 

Recog., 

Acknowledge 

Choice 

Search 

Evaluate, 

Analyze 

Process, 

Principle 
Interactive 

Utility or 

Gradients 

Not 

Known 

Freeform 

or Avatar 

Feedback (Any), 

Similar Example 

Setting 

Goals and 

Priorities 

Evaluate, 

Analyze 

Principle, 

Process 
Interactive 

Not 

Known 

Not 

Known 

Varies 

(Formal or 

Freeform) 

Difference 

Recog., 

 Similar 

Example 
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The next set of less-well-defined ITS focus on helping the learner understand, analyze, and evaluate 

information. They include self-reflection, expectation coverage tasks (Graesser, Chipman, Haynes & 

Olney, 2005), summarization and paraphrasing tasks (McNamara, Levinstein & Boonthum, 2004), and 

short-answer tasks. All of these tasks focus on helping the learner understand semantic content and its 

relationships. Open self-reflection tasks focus on the metacognitive practice of reflecting on the content. 

As such, in many cases the quality of content is not assessed (e.g., a journaling task). Instead, ITS content 

focuses on encouraging the habit of self-reflection. In general, many metacognitive tutors focus on 

building habits, such as encouraging question-asking or hint button use (Azevedo et al., 2010; Roll, 

Aleven, McLaren & Koedinger, 2011). Open self-reflection tasks and other content-agnostic tasks tend to 

require little content authoring, and often require only a set of simple prompt and acknowledgement 

templates. These reflection prompts can be triggered by task events or even by general timers. 

Expectation coverage tasks unfold over many dialogue turns, which assume a part-whole relationship for 

multiple expectations as part of a full explanation. As such, these ITS must detect multiple related 

subtopics and provide feedback and hints on each one. Short answer tasks are even more constrained, and 

their answers tend to be binned into good answers, specific misconceptions, or general bad answers. 

Expectation coverage tasks tend to contain short answer tasks inside of them, when specific knowledge 

needs to be assessed. A variety of authoring representations exist for evaluating semantic statements, 

which fall into three main categories: instance-based authoring, feature authoring, and grammar-based 

authoring. Instance-based authoring involves generating various classes of answers (i.e., good/bad), which 

are then used to match against using various algorithms. Feature-based authoring involves creating special 

features, such as regular expressions or keywords that capture key defining features between different 

types of answers. Finally, grammar-based authoring involves developing domain-specific parsers that 

extract domain-relevant relationships from the text.  

In all cases, these techniques are used to bin learner answers into specific speech act categories, which 

can then be associated with feedback, hints, or modeling interventions. Summarization tasks work 

similarly, but require the learner to rephrase a passage. A successful summary requires the answer to have 

similar semantics, but dissimilar surface features (i.e., it cannot be identical). These tend to focus on 

understanding the content, but their quality tends to be rated on a continuous scale, because there are 

competing feature sets. In addition to assessments of learner input, rules are also required to allow the 

dialogue to progress naturally.  In general, a limited set of templates can be sufficient to handle typical 

ITS tasks. While there are some indications that different levels of knowledge might benefit from 

different dialogue interactions (Nye et al., 2014), similar logical rules for managing dialogue interactions 

can cover a variety of domains. 

Task Sandbox Environments 

As a final task category, open-ended searches and decision-points for choices are common, particularly in 

virtual worlds and scenario-based learning. These include looking for a satisfactory or optimal set of 

actions to some learning task. In many cases, the action sets vary by context and are not known a priori. If 

the quality of choices can be ranked or their component features ranked, the ITS can provide feedback, 

hints, and explanations about the quality of actions (Kim et al., 2009; Sottilare, Goldberg, Brawner & 

Holden, 2012). However, for a simulation, this information may only be available after the completion of 

a scenario. The next level of complexity occurs when the task goals are not fully defined, but must be set 

or prioritized by the learner. For subjective or “wicked” tasks where actions change how goals are 

understood, goal selection tasks are almost unavoidable (Nye et al., 2012). This tends to occur almost 

exclusively in simulations or design tasks, where defining and monitoring goals are a major part of the 

tasks and learning content. These tasks tend to be very hard to tutor directly and sometimes rely on 

detecting certain common or uncommon patterns, which are then brought to the attention of the learner. 
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For complex simulations, many current pedagogical methodologies focus on after-action review 

procedures. These tend to include a mixture of artifact evaluation (i.e., considering metrics collected from 

a simulation run) and self-reflection. After-action reviews have historically been facilitated by a human-

in-the-loop and are geared toward focused reflection and knowledge elicitation. The underlying task 

consists of a series of choices and decision points in a specific scenario, which are translated to 

overarching learning objectives.  These choices are then considered similarly to other types of learning 

tasks, such as following procedural rules while receiving feedback about deviations from desired 

performance.  

Rather than being more complicated to author, the pedagogy for complex choice tasks is often as simple 

(or simpler) than highly constrained domains such as mathematics. This is because well-defined domains 

give many opportunities for clear pedagogical interventions: the state of the task is fully known, 

completely based on the learner’s inputs, and allows immediate feedback. By comparison, a game-based 

task requires game messages that are sent to assessment models that infer the pedagogical state. As a 

result, ITS authoring is limited to the data made available by a task interface that was not originally 

intended to offer pedagogically useful assessments (e.g., a 3D game engine). As such, an additional 

authoring layer needs to convert the raw task state into a much more pedagogical state. This requires an 

operational task analysis and authoring tools that transform various task events into pedagogically useful 

assessments. This extra assessment layer makes complex environments more difficult to author, which 

ultimately limits the interventions that can be authored (e.g., hints and feedback). 

While serious games and simulation-based training environments can alleviate this problem in the 

development phase, many do not. In fact, simulation-based training solutions have increasingly moved 

toward commercial and open-source game engines to reduce production costs, such as Virtual Battle 

Space 3 (VBS3), Unity, and the Unreal Game Engine. These sandbox authoring environments enable 

developers to build complex task scenarios for both individuals and collaborative/team-based interactions. 

However, the data generated by these systems follow generic protocols for distributed delivery, such as 

distributed interactive simulation (DIS) and high-level architecture (HLA) that lack any concept of 

pedagogy or semantics (Hofer & Loper, 1995; Kuhl, Dahmann & Weatherly, 2000). 

The best solution so far to this problem has been to explicitly build a layer of metrics onto the task 

environment, which are then consumed by the ITS as its pedagogical state. Basically, a simpler task state 

is constructed from features in the task sandbox, which is then linked to assessments. For example, 

Generalized Intelligent Framework for Tutoring (GIFT) provides a generalized architecture that can 

consume game-message traffic and use this to infer pedagogical conditions linked to a concept hierarchy 

(Sottilare et al., 2012). Much of the data captured associate with entity state (i.e., avatars, non-player 

characters, weapons, machines, vehicles, etc.) location, movement, and action. In short, much of the task 

state is too low-level or downright irrelevant to ITS behavior. A subset of these data are continuously 

communicated to GIFT and routed to the domain knowledge file (DKF) for managing assessment 

practices. The DKF is where an author structures: the concept hierarchy associated with a set of tasks, 

how data are integrated into a concept assessment, and how those data are managed at runtime. 

Assessments can be authored directly within a DKF or it can be supported by an external assessment 

engine, such as the Student Information Models for Intelligent Learning Environments (SIMILE; 

Goldberg, 2013), where the DKF acts by routing data to the appropriate concept assessments (Figure 5). 
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Figure 5. SIMILE workbench with authored assessments for vMedic 

However, the reverse direction (i.e., offering specific interventions) has the same complications. 

Conditions need to consider both the real-time performance and user intention, as well as the possible 

actions that are available to the user (which must also be relayed to the ITS, to enable suggestions). In 

GIFT’s current use-cases, this information includes tagged locations for the user’s position in the 

environment, the set of entities and objects that are around the user, what entities the user can currently 

observe, the actions available, and the timers related to task execution.  

For example, consider the task of “maintaining cover” while patrolling a compound, which requires time, 

location, and entity state data. Waypoints and areas of interest are defined around the compound wall so 

that the player can be tracked to monitor patrol progress. An author can then define assessments based on 

if the user has reached certain waypoints within a specific timeframe. In addition, if a scenario author 

determines that a user should adjust their entity’s state within specific areas of interest, such as adjusting 

their stance from standing to kneeling due to a wall being low, then the author can associate assessments 

to inform student action in relation to performance criteria. By knowing this context, it is also possible to 

deliver real-time feedback based on the actions and current assessment information. 

To further complicate the issue, these types of interactive environments are excellent for collaborative and 

team-based learning events. From the ITS perspective, this requires additional modeling dependencies 

that associate interaction and intention with team oriented skills and attributes. While there is extensive 

literature on what makes effective teams and effective team training approaches (Salas et al., 2008), how 

to establish these practices in an automated fashion is a challenge. Beyond modeling individualized tasks 

and how interaction in a virtual environment can infer competencies, additional assessments must analyze 

group-level data that is aggregated across a set of users. These assessments include team cohesion, trust, 

communication, and shared cognition. While this field is a wide-open research area, architectures like 

GIFT must be designed to facilitate the type of modeling techniques that are based on trends across users 

rather than within users. In terms of authoring, the challenge is taking available data and translating them 

to team-based inferences that can designate performance across a set of concepts. In addition, how to 

react to these assessments needs to be explored, such as how interventions are handled and how they are 

communicated to a team. 
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Recommendations and Future Research 

Across this book, examples and lessons learned for authoring each type of learning task are discussed. By 

identifying common learning tasks in ITSs, it should be possible to develop general authoring interfaces 

that make authoring for each type of task intuitive and effective. In some cases, highly effective authoring 

models already exist and might serve as exemplars for task-specific authoring tools in generalized ITSs 

such as GIFT. Ideally, these authoring tools should collect information in ways that are familiar to 

instructors and other domain pedagogy experts. Form-based authoring, example-based authoring, and 

supervised tagging are all reasonable approaches that are particularly attractive. 

However, there are also learning tasks that do not yet have well-established techniques that allow non-

technical domain experts to easily author content. For example, authoring real-time assessments for 

complex tasks remains more of an art than a science. At least some of this authoring involves mapping 

simulation or virtual world events to pedagogical features. For this type of authoring, even if game worlds 

had integrated pedagogical tools, a tool to easily map raw simulation data to metrics may be hard to use 

by the domain experts, even if it is well designed. Similarly, authoring for ITS tasks with multiple 

learners is a poorly understood area. For example, team-based tutoring requires assessment and 

intervention at multiple levels (e.g., individual and group). Further research on such tasks and exploration 

of different types of authoring approaches may be needed before good examples of such authoring tools 

become clear. 

References 

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The cognitive tutor authoring tools (CTAT): 

Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley & T. Chan (Eds.) Intelligent Tutoring 

Systems (ITS) 2006 (pp. 61-70). Springer Berlin Heidelberg. 

Azevedo, R., Johnson, A., Chauncey, A. & Burkett, C. (2010). Self-regulated learning with MetaTutor: Advancing 

the science of learning with MetaCognitive tools. In M. S. Khine & I. M. Saleh (Eds.) New Science of 

Learning (pp. 225-247). Springer New York. 

Biswas, G., Jeong, H., Kinnebrew, J. S., Sulcer, B. & Roscoe, R. D. (2010). Measuring Self-Regulated Learning 

Skills through Social Interactions in a teachable Agent Environment. Research and Practice in Technology 

Enhanced Learning, 5(2), 123-152. 

Carter, E. & Blank, G. D. (2013). An Intelligent Tutoring System to Teach Debugging. In H. C. Lane, K. Yacef, J. 

Mostow & P. Pavlik (Eds.) Artificial Intelligence in Education (AIED) 2013 (pp. 872-875). Springer Berlin 

Heidelberg. 

Clark, D. (2014). Bloom’s taxonomy of learning domains. Retrieved August, 26, 2014. 

Clark, R. C. (2002). Applying cognitive strategies to instructional design. Performance Improvement, 41(7), 8-14. 

Clark, R. C. & Mayer, R. E. (2011). E-learning and the science of instruction: Proven guidelines for consumers and 

designers of multimedia learning. John Wiley & Sons. 

Conejo, R., Guzmán, E., de-la Cruz, J. L. P. & Millán, E. (2006). An empirical study about calibration of adaptive 

hints in web-based adaptive testing environments. In V. Wade, H. Ashman & B. Smyth (Eds.) Adaptive 

Hypermedia and Adaptive Web-Based Systems (pp. 71-80). Springer Berlin Heidelberg. 

Easterday, M. W. & Jo, I. Y. (2014). Replay Penalties in Cognitive Games. In S. Trausan-Matu, K. Boyer, M. 

Crosby & K. Panourgia (Eds.) Intelligent Tutoring Systems (ITS) 2014 (pp. 388-397). Springer Berlin 

Heidelberg. 

Fournier-Viger, P., Nkambou, R. & Nguifo, E. M. (2010). Building intelligent tutoring systems for ill-defined 

domains. In R. Nkambou, R. Mizoguchi & J. Bourdeau (Eds.) Advances in Intelligent Tutoring Systems 

(pp. 81-101). Springer Berlin Heidelberg. 

Goldberg, B. & Spain, R. (2014). Creating the Intelligent Novice: Supporting Self-Regulated Learning and 

Metacognition in Educational Technology. In R. Sottilare, A. Graesser, X. Hu, and B. Goldberg (Eds.) 

Design Recommendations for Intelligent Tutoring Systems, Vol. 2: Instructional Management (pp. 109-

134). U.S. Army Research Laboratory. 



 

62 

Goldberg, B. (2013). Explicit Feedback Within Game-Based Training: Examining the Influence of Source Modality 

Effects on Interaction. Ph.D., University of Central Florida.   

Graesser, A. C., Chipman, P., Haynes, B. C. & Olney, A. (2005). AutoTutor: An intelligent tutoring system with 

mixed-initiative dialogue. IEEE Transactions on Education, 48(4), 612-618. 

Hofer, R. C. & Loper, M. L. (1995). DIS today [Distributed interactive simulation]. Proceedings of the IEEE, 83(8), 

1124-1137.  

Iwaniec, D. M., Childers, D. L., VanLehn, K. & Wiek, A. (2014). Studying, teaching and applying sustainability 

visions using systems modeling. Sustainability, 6(7), 4452-4469. 

Kim, J. M., Hill, Jr, R. W., Durlach, P. J., Lane, H. C., Forbell, E., Core, M., ... & Hart, J. (2009). BiLAT: A game-

based environment for practicing negotiation in a cultural context. International Journal of Artificial 

Intelligence in Education, 19(3), 289-308. 

Koedinger, K. R., Corbett, A. T. & Perfetti, C. (2012). The Knowledge-Learning-Instruction framework: Bridging 

the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757-798. 

Kolodner, J. L., Cox, M. T. & González-Calero, P. A. (2005). Case-based reasoning-inspired approaches to 

education. The Knowledge Engineering Review, 20(03), 299-303. 

Kuhl, F., Dahmann, J. & Weatherly, R. (2000). Creating computer simulation systems: an introduction to the high 

level architecture. Prentice Hall PTR Upper Saddle River. 

Kumar, A. N. (2013). Using Problets for problem-solving exercises in introductory C++/Java/C# courses. In IEEE 

2013 Frontiers in Education Conference (pp. 9-10). IEEE Press. 

Lajoie, S. P. & Lesgold, A. (1989). Apprenticeship Training in the Workplace: Computer-Coached Practice 

Environment as a New Form of Apprenticeship. Machine-Mediated Learning, 3(1), 7-28. 

Markou, M. & Singh, S. (2003). Novelty detection: a review- part 1: Statistical approaches. Signal Processing, 

83(12), 2481-2497. 

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (Online First). Teaching the Teacher: Tutoring SimStudent Leads to 

More Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education, 1-

34. 

McNamara, D. S., Levinstein, I. B. & Boonthum, C. (2004). iSTART: Interactive strategy training for active reading 

and thinking. Behavior Research Methods, Instruments & Computers, 36(2), 222-233. 

Merrill, M. D. (1983). Component Display Theory. In C. M. Reigeluth (Eds.), Instructional Design Theories and 

Models: An Overview of their Current States (279-333). Hillsdale, NJ: Lawrence Erlbaum. 

Mitrovic, A. (2003). An intelligent SQL tutor on the web. International Journal of Artificial Intelligence in 

Education, 13(2), 173-197. 

Nye, B. D., Bharathy, G. K., Silverman, B. G. & Eksin, C. (2012). Simulation-Based training of ill-defined social 

domains: the complex environment assessment and tutoring system (CEATS). In S. A. Cerri, W. J. 

Clancey, G. Papadourakis & K. Panourgia (Eds.) Intelligent Tutoring Systems (ITS) 2012 (pp. 642-644). 

Springer Berlin Heidelberg. 

Nye, B. D., Graesser, A. C. & Hu, X. (2014). AutoTutor and Family: A review of 17 years of natural language 

tutoring. International Journal of Artificial Intelligence in Education, 24(4), 427-469. 

Nye, B. D., Rahman, M. F., Yang, M., Hays, P., Cai, Z., Graesser, A. & Hu, X. (2014). A tutoring page markup 

suite for integrating Shareable Knowledge Objects (SKO) with HTML. In Intelligent Tutoring Systems 

(ITS) 2014 Workshop on Authoring Tools, (pp. 1-8). CEUR. 

Ogan, A., Walker, E., Baker, R. S., Rebolledo Mendez, G., Jimenez Castro, M., Laurentino, T. & de Carvalho, A. 

(2012). Collaboration in Cognitive Tutor use in Latin America: Field study and design recommendations. 

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1381-1390). 

ACM. 

Olney, A. M., D’Mello, S., Person, N., Cade, W., Hays, P., Williams, C., ... & Graesser, A. (2012). Guru: A 

computer tutor that models expert human tutors. In S. A. Cerri, W. J. Clancey, G. Papadourakis & K. 

Panourgia (Eds.) Intelligent Tutoring Systems (ITS) 2012 (pp. 256-261). Springer Berlin Heidelberg. 

Pavlik Jr., P. I., Presson, N., Dozzi, G., Wu, S., MacWhinney, B., Koedinger, K. R. (2007). The FaCT (Fact and 

Concept Training) System: A New Tool Linking Cognitive Science with Educators. In McNamara, D., 

Trafton, G. (eds.) Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society, 

pp. 397–402. Lawrence Erlbaum: Mahwah. 

Pinkwart, N., Ashley, K., Lynch, C. & Aleven, V. (2009). Evaluating an intelligent tutoring system for making legal 

arguments with hypotheticals. International Journal of Artificial Intelligence in Education, 19(4), 401-424. 



 

63 

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, M., Heffernan, N. T. & Koedinger, K. R. (2009). The 

Assistment Builder: Supporting the life cycle of tutoring system content creation. IEEE Transactions on 

Learning Technologies, 2(2), 157-166. 

Ritter, S., Anderson, J. R., Koedinger, K. R. & Corbett, A. (2007). Cognitive Tutor: Applied research in 

mathematics education. Psychonomic Bulletin & Review, 14(2), 249-255. 

Roscoe, R. D. & McNamara, D. S. (2013). Writing pal: Feasibility of an intelligent writing strategy tutor in the high 

school classroom. Journal of Educational Psychology, 105(4), 1010. 

Roll, I., Aleven, V., McLaren, B. M. & Koedinger, K. R. (2011). Improving students’ help-seeking skills using 

metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 21(2), 267-280. 

Rowe, J. P., Shores, L. R., Mott, B. W. & Lester, J. C. (2011). Integrating learning, problem solving, and 

engagement in narrative-centered learning environments. International Journal of Artificial Intelligence in 

Education, 21(1), 115-133. 

Salas, E., DiazGranados, D., Klein, C., Burke, C. S., Stagl, K. C., Goodwin, G. F. & Halpin, S. M. (2008). Does 

team training improve team performance? A meta-analysis. Human Factors: The Journal of the Human 

Factors and Ergonomics Society, 50(6), 903-933. 

Silverman, B. G., Pietrocola, D., Nye, B., Weyer, N., Osin, O., Johnson, D. & Weaver, R. (2012). Rich socio-

cognitive agents for immersive training environments: case of NonKin Village. Autonomous Agents and 

Multi-Agent Systems, 24(2), 312-343. 

Sottilare, R. A., Goldberg, B. S., Brawner, K. W. & Holden, H. K. (2012). A modular framework to support the 

authoring and assessment of adaptive computer-based tutoring systems (CBTS). In Interservice/Industry 

Training, Simulation and Education Conference (I/ITSEC) 2012. 

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 

16(3), 227-265. 

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., ... & Wintersgill, M. (2005). The Andes 

physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education, 

15(3), 147-204. 

Waalkens, M., Aleven, V. & Taatgen, N. (2013). Does supporting multiple student strategies lead to greater learning 

and motivation? Investigating a source of complexity in the architecture of intelligent tutoring systems. 

Computers & Education, 60(1), 159-171. 

Weitz, R., Salden, R. J., Kim, R. S. & Heffernan, N. T. (2010). Comparing worked examples and tutored problem 

solving: Pure vs. mixed approaches. In S. Ohlsson & R. Catrambone (Eds.) Proceedings of the Thirty-

Second Annual Meeting of the Cognitive Science Society (pp. 2876-2881). 

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-

learning. Morgan Kaufmann.  



 

64 

 

  



 

65 

SECTION II 

AUTHORING MODEL-

TRACING TUTORS 

Xiangen Hu, Ed. 
  



 

66 

 

  



 

67 

 

CHAPTER 5  A Historical Perspective on Authoring and ITS: 

Reviewing Some Lessons Learned 
Benjamin D. Nye

1
 and Xiangen Hu

1,2 

1
University of Memphis, 

2
China Central Normal University 

Introduction 

This section discusses the practices and lessons learned from authoring tools that have been applied and 

revised through repeated use by researchers, content authors, and/or instructors. All of the tools noted in 

this section represent relatively mature applications that can be used to build and configure educationally 

effective content. Each tool has been tailored to address both the tutoring content and the expected 

authors who will be using the tool. As such, even tools which support similar tutoring strategies may use 

very different interfaces to represent equivalent domain knowledge. In some cases, authoring tools even 

represent offshoots where different authoring goals led to divergent evolution of both the authoring tools 

and the intelligent tutoring systems (ITSs) from a common lineage. Understanding how these systems 

adapted their tools to their particular authoring challenges gives concrete examples of the tradeoffs 

involved for different types of authoring. By reviewing the successes and challenges of the past, the 

chapters in this section provide lessons learned for the development of future systems. 

Authoring Tools for Adaptive and Data-Driven Systems 

In general, for ITS authoring tools, discussion often centers on tools for creating content, such as new 

problems or new dialogues that interactively help the learner step-by-step. While these are a key part of 

the authoring process, mature authoring tools tend to cover a wider array of authoring and configuration 

options. These activities range from small activities like selecting HTML pages to larger tasks such as 

manually selecting or sequencing curriculum topics. In other cases, the problem is not so much authoring 

as versioning: maintaining and updating content in a reliable way. Within this section, all of these 

activities are considered as facets of the larger authoring lifecycle. 

This lifecycle typically includes the following steps:  

(1) Creating initial content module (e.g., a problem),  

(2) Interacting with module like a student,  

(3) Revising the module,  

(4) Selecting and composing modules for inclusion in a given curriculum,  

(5) Collecting data on student interaction, and  

(6) Revising module based on collected data.  

From the standpoint of content quality, each of these steps contributes to development of effective 

tutoring and learning. Efficient tools for certain stages of this lifecycle may be less effective for other 

stages. For example, while a series of simple may be efficient for entering the initial content, that same 

interface would not necessarily make it easy to find and correct a specific field during the revision step. 
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As such, all systems must make choices about the authoring activities that receive the most support, often 

based on the types of expected authors. With this in mind, the chapters in this section describe a variety of 

approaches to authoring. 

In Chapter 6, Blessing, Aleven, Gilbert, Heffernan, Matsuda, and Mitrovic discuss different approaches to 

“Authoring Example-based Tutors for Procedural Tasks.” This chapter discusses the convergence of 

multiple lines of authoring tools for step-based problem solving tutors toward example-based authoring. 

Example-based authoring, also sometimes called instance-based authoring, provides an interface where 

the author builds tutoring content and student support (e.g., hints) for an individual example or limited 

class of parameterized examples. By comparison, traditional authoring techniques often required 

implementing a full set of explicit domain rules. A number of advantages for such tutors are provided, 

which are evident in the authoring tools presented. For some systems, such as ASSISTments and 

Cognitive Tutor Authoring Tools (CTAT), this approach was chosen to lower barriers to authoring so that 

instructors could develop ITS content. For other systems, such as the Extensible Problem-Solving Tutor 

(xPST), the approach allows tightly integrating tutoring with a wide variety of content, ranging from 3D 

games to web pages. Finally, in systems such as Authoring Software Platform for Intelligent Resources in 

Education (ASPIRE) and SimStudent, algorithms are used to generalize domain rules and constraints that 

enable the ITS to tutor a wider variety of problems than were explicitly authored. Particularly since 

domain content experts are much more likely to be able to author examples than create formal 

representations of their rules, this approach is appealing for well-defined procedural tasks. 

In Chapter 7, Matuk, Linn, and Gerard describe the authoring capabilities of the Web-based Inquiry 

Science Environment (WISE) system. While WISE is does not currently focus on adaptive elements, the 

system has a strong focus on both theory-based (the knowledge-integration framework) and data-driven 

development and revision of content. This system demonstrates the potential reach of a well-designed 

system designed around teachers, with over 10,000 teachers registered to use WISE. Their main 

principles are to provide tools accommodate a range of abilities, allow users to reuse, revise, and extend 

what others have made, reporting student data as evidence to inform revision, and allowing flexibility for 

authors to repurpose the system for their goals. Compared to many authoring systems, WISE strongly 

supports later parts of the authoring lifecycle (i.e., selecting content and data-driven revision). 

In Chapter 8, Jacovina, Snow, Dai, and McNamara describe the authoring tools for iSTART-2 and 

Writing Pal. These systems use natural language processing techniques to support reading comprehension 

strategies and essay-writing skills, respectively. Authoring tools within these systems are novel in a few 

ways. First, the tools explicitly contain distinct features that are intended for researchers (e.g., 

randomizing the use of a certain feedback strategy) versus for teachers (e.g., modifying or selecting 

content). In general, authoring in these systems attempts to mirror the student experience with the system 

but with buttons to edit content or behavior. Second, the tools are being designed to allow authoring 

behavior that is associated with stealth assessments, such as feedback or experimental activities. 

Compared to other systems in this section, this work explores the potential for collecting and applying 

rich metrics on student behavior (e.g., the narrativity of a student’s essays). 

In Chapter 9, Charlie Ragusa outlines the design principles of the Generalized Intelligent Framework for 

Tutoring (GIFT) authoring tools, which are currently being used by multiple groups to integrate tutoring 

into environments as varied as 3D worlds and PowerPoint presentations. A major focus of this chapter is 

the need and development of collaborative authoring tools: frameworks that allow multiple authors with 

complementary expertise to contribute effectively. These processes are essential, since the knowledge 

needed to author an ITS tends to be spread across multiple experts. 

Finally, in Chapter 10, Steve Ritter describes practices related to authoring and refining ITS content 

across the lifecycle of a commercial product, based on practices used by the widely used Cognitive Tutor 
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system. This chapter focuses significantly on methods to leverage student data to improve an ITS over 

time. The discussion revolves around the types of changes that are often necessary (e.g., parameters, 

design of the tasks, content) and methods to determine the changes (e.g., manually, automatically 

calculated, crowdsourced). Versioning issues are noted with data-driven models, such as data becoming 

less-applicable if the design of the task has changed. Also, suggestions are made for which types of 

changes are best suited for certain methods (e.g., certain parameter changes can be automatically rolled 

out). These issues reflect the realities of balancing data-driven design with a regularly-used product that 

must also behave reliably for users on a day-to-day basis. 

Themes and Lessons Learned 

Across these chapters, some common themes emerged for systems that have matured to reach wider user 

bases. Strong themes included the following: 

(1) User-Centric Design: Authoring tools that are tailored for the specific authors who are intended to 

use them. In some cases, building multiple tools that serve qualitatively different types of authors. 

Both systems with wide user bases of authors (ASSISTments and WISE, both with >1k teachers) 

strongly focused on serving the common needs of teachers, which include being able to modify 

and add content. This was also a significant theme for multiple other systems (e.g., iSTART-2). 

(2) Workflows: In some cases, multiple tools and qualitatively different approaches are used to build, 

refine, and enhance different parts of a system. The GIFT discussion focuses extensively on 

collaborative authoring. The Cognitive Tutor product lifecycle discussion also describes a multi-

faceted authoring process.  

(3) Constraints: Authoring tools constrain the author (by design). For each of the systems with large 

student user bases (Cognitive Tutor, ASSISTments, and WISE, all with > 75k students), 

authoring and configuration was often significantly constrained. In many cases, this was to 

simplify the authoring process. However, systems may also attempt to limit certain types of 

configurations or authoring that are not pedagogically sound within the system. This raises the 

issue that sometimes the options that are not given for authoring can be as important as those that 

are. 

(4) Content vs. Adaptivity: Different authoring tools and processes emphasize different parts of the 

content authoring cycle, with systems for teachers tending to support simple content creation 

revision (WISE, iSTART-2 for teachers, ASSISTments) and systems with stronger use by the 

research community providing more tools for training step-based adaptivity (CTAT, SimStudent, 

GIFT, ASPIRE). 

(5) What You See Is What You Get (WYSIWYG): Nearly all of the systems in this chapter describe 

methods to quickly view the content after it is authored, incrementally and iteratively (CTAT, 

SimStudent, xPST, ASSISTments, iSTART-2, WISE, ASPIRE). By allowing authors to see what 

they are creating in real time, these tools enable a more direct authoring process. 

(6) Generalization Algorithms: While some of these systems use complex formal representations 

(e.g., ontologies, production rules), the field has taken steps toward authoring using examples. As 

such, research on methods to identify general principles or rules from examples has become an 

important topic (SimStudent, ASPIRE). 
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(7) Versioning and Maintaining Content: For systems with large user bases, these chapters touched 

on the complexities and advantages of maintaining a large system, such as supporting modified 

content, tracking its evolution, and retaining only content with signs of effectiveness evident in 

the student data (Cognitive Tutor and WISE). 

Based on these lessons learned, a few areas of focus emerge. First, support for example-based authoring 

and other WYSIWYG approaches is probably essential to help instructors author new ITS-tutored 

activities. Second, collecting and presenting centralized data about an existing repository of tutoring 

modules (such as GIFT’s domain knowledge files) could significantly improve the ability and confidence 

of authors trying to select tutoring for an activity. These data could also be used for versioning that tracks, 

maintains, and prunes the set of recommended tutoring modules over time (an issue that is explored in 

Chapter 6). Finally, this work implies that multiple authoring interfaces are needed to support the research 

community versus instructors. With these shifts, GIFT could expand its user base and also increase the 

effectiveness of content over time. More generally, these are lessons that authoring tools for ITS and other 

learning technologies should follow to ensure that their systems are easier to author, effective for learners, 

and can be revised and maintained over time. 
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Introduction 

Researchers who have worked on authoring systems for intelligent tutoring systems (ITSs) have 

examined how examples may form the basis for authoring. In this chapter, we describe several such 

systems, consider their commonalities and differences, and reflect on the merit of such an approach. It is 

not surprising perhaps that several tutor developers have explored how examples can be used in the 

authoring process. In a broader context, educators and researchers have long known the power of 

examples in learning new material. Students can gather much information by poring over a worked 

example, applying what they learn to novel problems. Often these worked examples prove more powerful 

than direct instruction in the domain. For example, Reed and Bolstad (1991) found that students learning 

solely by worked examples exhibited much greater learning than those learning instruction based on 

procedures. By extension then, since tutor authoring can be considered to be teaching a tabula rasa tutor, 

tutor authoring by use of examples may be as powerful as directly programming the instruction, while 

being easier to do. 

Several researchers have considered how examples may assist programmers in a more general sense (e.g., 

Nardi, 1993; Lieberman, 2001). This approach, referred to as “programming by example” or 

“programming by demonstration,” generally involves the author programmer demonstrating the 

procedure in the context of a specific example and then the system abstracting the general rules of the 

procedure on the basis of machine learning or other artificial intelligence (AI) techniques. The balance in 

such systems is between its ease of use versus its expressivity. A system may be easy to use, but lack 

expressive power and thus generality. At the other extreme (e.g., a general-purpose programming 

language), a system can be very expressive and thus generalizes to new situations readily, but lacks ease 

of learning. Of course, as an author gets more used to a tool, regardless of initial complexity, the tool 

becomes easier. The balance between ease of use and expressivity lies with tutor authoring tools as much 

as it does in the more general case of programming by example. 

Some researchers who build authoring systems for ITSs have leveraged this general approach, using 

examples as a major input method for the ITS. Five such systems are discussed here: Authoring Software 

Platform for Intelligent Resources in Education (ASPIRE), ASSISTments, Cognitive Tutor Authoring 

Tools (CTAT), SimStudent, and the Extensible Problem-Solving Tutor (xPST). All of these systems use 

examples in at least some important aspect of tutor creation. A main goal in using examples is to ease the 

authoring burden, to both speed up the authoring of ITSs and enable authoring for a wider variety of 

people. All five systems build tutors for procedural-type tasks, where each step of the task is reasonably 

well defined and student answers tend to be easily checked. The tutors built by these systems have been 

deployed in a wide variety of such tasks (e.g., math, chemistry, genetics, statistics, and manufacturing, to 

name a few). However, some of the systems can also tutor on non-procedural tasks (e.g., ASPIRE). The 

type of tutoring interaction mediated by these tutors is typically in the pattern of constraint-based and 

model-tracing tutors. That is, each student step is checked for correctness, with help and just-in-time 

messages available. 
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A short description of each of these five systems follows. After these discussions, the general implications 

for such an example-based method for tutor creation conclude the chapter. 

The Authoring Systems 

ASSISTments 

ASSISTments is a web-based tutoring system started from work on CTAT (discussed below), and 

developed at both Carnegie Mellon University (CMU) and Worcester Polytechnic Institute (WPI). It is a 

platform, hosted at WPI, which allows sharing of content between teachers. The platform is domain 

neutral. ASSISTments gives students problems, and there are content libraries for many disparate subjects 

including mathematics, statistics, inquiry-based science, foreign language, and reading, but 90% of the 

content is in mathematics. Each item, or ASSISTment, consists of a main problem and the associated 

scaffolding questions, hints, and buggy messages.  

Early work on this system (circa 2004) required programmers to build content, but soon this was 

untenable, so a graphical user interface (GUI)-based authoring tool was developed to enable other people, 

such as teachers and other researchers, to create content in quantity. Figure 1 shows the tutor and 

authoring screens for the same problem (Razzaq et al., 2009). Somewhere around 2011,the total amount 

of content created by non-WPI personnel began to outnumber that created by WPI personnel. 

 

Figure 1. ASSISTments interface.  

This is possible because we created an authoring tool that makes it easy to build, test, and deploy items, as 

well as for teachers to get reports. We have a gentle slope for authors in that they can use our 
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QuickBuilder to just type in a set of questions and associated answers. In that sense, they have created a 

simple quiz, where the one hint given would just tell them the answer. For those that want to add further 

hints to the questions, that step is easy and is part of the QuickBuilder. If they want to create scaffolding 

questions or feedback messages for common wrong answers, they have to invoke the ASSISTment 

Builder, requiring a steeper learning curve. While there is a steeper learning curve, we have shown that 

going through the work of creating scaffolding questions can be very helpful for the lower knowledge 

students (Razzaq & Heffernan, 2009), but that does not mean that everyone creating content in 

ASSISTments needs to create both a scaffolding version and a hint version.  

This gives teachers the opportunity to create problems specific to their school, for differentiated 

instruction, or to work with their textbook. All content created by any user can he viewed by, but not 

edited by, any other user that has the problem number. This makes sharing easy and prevents teachers 

from having to worry that their content could get “graffiti” on it. 

We are exploring a new way of adding content with teachers in Maine. The teacher types in something 

like the following, “Do #7 from Page 327,” so the students have to open their textbook to page 327 to see 

the seventh question on that page (in doing it this way, the teachers are not violating the copyright of the 

publisher by duplicating the problem). Teachers can elect for students to receive correctness only 

feedback or additional tutoring on the homework. The content created around these texts is driven by the 

teachers and can be shared by anyone using that book. Inspired by Ostrow and Heffernan (2014) that 

showed video hint messages were more effective that a text version that used the same words, we funded 

seven teachers to make video hint messages, posted on YouTube or SchoolTube. We are just starting a 

study to examine the effectiveness of this. 

The variabilization feature of the ASSISTments builder allows an author to design one problem and then 

have many problems created that assess the same skill. This was key to our getting our Skill Builders 

running. Skill Builders are problem sets that allow a student to keep doing problems until they reach the 

proficiency threshold, which by default its three correct in a row but can be set by the author. Any teacher 

that wants to change that simply makes their own copy and changes it. 

Figure 2 shows the interface for a variablized assistment. Authors can variablize the hint messages, 

scaffolding questions, and feedback messages. Authors have to write tiny programs of interconnected 

variables, which do things like randomly changing the numbers used in the problems. Skill builders are 

much harder to create, and only a few teachers do this themselves, but WPI has created several hundred 

for topics from 4th to 10th grade mathematics. Well over half of the teachers use our skill builders. 

 

Figure 2. This is a variablized problem on the Pythagorean Theorem.  
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The authoring tool for ASSISTments has a gentle usability slope. Many teachers start using 

ASSISTments by first using content WPI created, but most of them soon use the extensibility of the tool 

to write their own questions. Most of these questions will be what we call “naked,” or the lacking of 

scaffolding hints, as that takes more time to create. We do have some authors that have used the tool to 

create large libraries of content. For instance, one teacher successfully made hundreds of Advanced 

Placement (AP) statistics questions with extensive hints. 

CTAT 

Examples are used extensively in CTAT, a widely used suite of authoring tools (Aleven, McLaren, Sewall 

& Koedinger, 2009; Aleven, Sewall, McLaren & Koedinger, 2006; Koedinger, Aleven, Heffernan, 

McLaren & Hockenberry, 2004). CTAT supports the development of tutors that provide individualized, 

step-by-step guidance during complex problem solving. These tutors provide ample assistance within a 

problem, such as feedback on the steps, next-step hints, and error feedback messages. They also support 

individualized problem selection to help each individual student achieve mastery of all targeted 

knowledge components. Therefore, these tutors support most of the tutoring behaviors identified by 

VanLehn (2006) as characteristic of ITSs. Over the years, many tutors have been built with CTAT in a 

very wide range of domains (Aleven et al., 2009; under review). Many of these tutors have been shown to 

be effective in helping students learn in actual classrooms. 

CTAT supports the development of two kinds of tutors: example-tracing tutors, which use generalized 

examples of problem-solving behavior as their central representation of domain knowledge, and model-

tracing tutors (or Cognitive Tutors), which use a rule-based cognitive model for this purpose (Aleven, 

2010; Aleven, McLaren, Sewall & Koedinger, 2006). Example-tracing tutors are an innovation that 

originated with CTAT; this tutoring technology was developed as part of developing CTAT; cognitive 

tutors on the other hand have a long history that pre-dates CTAT (e.g., Aleven & Koedinger, 2007; 

Anderson, Corbett, Koedinger & Pelletier, 1995; Koedinger, Anderson, Hadley & Martk, 1997). These 

two types of tutors support the same set of tutoring behaviors. The main difference is that rule-based 

cognitive tutors are more practical when a problem can be solved in many different ways (Waalkens, 

Aleven & Taatgen, 2013). CTAT supports three different approaches to authoring (Figure 3). Example-

tracing tutors are built with a variety of end-user programming techniques, including building an interface 

through drag-and-drop and then programming by demonstration within that interface, where the author’s 

actions are recorded as paths in a behavior graph (Figure 4; the behavior graph is on the right). Rule-

based tutors on the other hand can be built in CTAT either through rule-based cognitive modeling, a form 

of AI programming (Aleven, 2010) or through programming by automated rule induction by a module 

called SimStudent, which is described in the next section. 

 

Figure 3. Tutor types and ways of authoring in CTAT 
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 Figure 4. Author using CTAT (right) and Flash (left) to create an example-tracing tutor.  

Examples figure prominently in each of these three authoring approaches. These examples take the form 

of behavior graphs, which capture correct and incorrect problem-solving behavior for the problems that 

the tutor will help students solve. A behavior graph may have multiple paths, each capturing a different 

way of solving the problem. Put differently, a behavior graph represents the solution space of a problem. 

Behavior graphs go at least as far back as Newell and Simon’s (1972) classic book Human Problem 

Solving, a foundational work in cognitive science. An author can easily create behavior graphs using 

CTAT, by demonstrating how to solve problems in the tutor interface. A tool called the Behavior 

Recorder records the steps in a graph. CTAT also offers tools with which an author can generalize a 

behavior graph, expanding the range of problem-solving behavior that it represents. 

Examples serve many different purposes in CTAT. In all three of CTAT’s approaches to tutor authoring, 

examples (i.e., behavior graphs) function as a tool for cognitive task analysis. They help an author map 

out the solution space of the problems for which tutoring is to be provided, think about different ways a 

problem might be solved, and develop hypotheses about the particular knowledge components needed and 

how these components might transfer across steps. In addition, behavior graphs serve various separate 

functions in each of the authoring approaches. First, in example-tracing tutors generalized examples are 

the tutor’s domain knowledge. The author generalizes the examples in various ways to indicate the range 

of student behaviors that the tutor will deem correct, so the tutor can be appropriately flexible in 

recognizing correct student behavior (Aleven, McLaren, Sewall & Koedinger, 2009). Also, in the 

common authoring scenario that many problems of the same type are needed, an author can turn a 

behavior graph into a template and create a table with specific values for each problem. Second, in 

building rule-based cognitive tutors by hand, the examples help in testing and debugging. They help 

navigate a problem’s solution space (e.g., authors can jump to any problem-solving state captured in the 

graph, which is useful when developing a model from scratch), they serve as semi-automated test cases, 

and they can be used for regression testing (i.e., making sure that later changes do not introduce bugs). 

Lastly, in SimStudent, author-demonstrated examples are used to automatically induce production rules 

that capture the tutor’s problem-solving behavior (more detail on this process can be found in the 

SimStudent section below). 
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As mentioned, example-tracing tutors use generalized examples (behavior graphs) to flexibly interpret 

student problem-solving behavior. The tutor checks whether the student follows a path in the graph. Once 

the student commits to a path, by executing one or more steps on that path, the example-tracer will insist 

that the student finishes that path, that is, that all subsequent actions are all on at least one path through 

the graph. Students are not allowed to backtrack and try an alternative problem-solving strategy within the 

given problem in order to keep them moving forward. Within this basic approach, CTAT’s example tracer 

is very flexible in how it matches a student’s problem-solving steps against a behavior graph. First, the 

example tracer can handle ambiguity regarding which path the student is on and when the steps that the 

student has entered so far are consistent with multiple paths in a graph. In such situations, the example 

tracer will maintain multiple alternative interpretations of student behavior until subsequent student steps 

rule out one or more interpretations. The example tracer also can deal with variations in the order of steps. 

That is, the student does not need to strictly follow the order in which the steps appear in the graph. An 

author can specify which parts of a behavior graph require a strict order and which steps can be done in 

any order. Even better, an author can create a hierarchy of nested groups of unordered and ordered steps. 

Further, steps can be marked as optional or repeatable. The example tracer can also deal with variations of 

the steps themselves. An author has a number of ways to specify a range of possibilities for a particular 

steps, including range matches, wildcard matches, regular expressions, as well as an extensible formula 

language for specifying calculations and how a step depends on other steps. Thus, in CTAT example-

tracing tutors, a behavior graph can stand for a wide range of behavior well beyond exactly the steps in 

the graph in exactly the order they appear in the graph. Authors have many tools that enable them to 

specify how far to generalize. When an author wants to make behavior graphs for many different but 

isomorphic problems, CTAT provides a “Mass Production” approach in which an author creates a 

behavior graph with variables for the problem-specific values and then, in Excel, creates a table with 

problem-specific values for a range of problems. They can then generate specific instances of the template 

in a merge step. This template-based process greatly facilitates the creation of a series of isomorphic 

problems, as are typically needed in tutor development. 

Our experience over the years, both as developers of example-tracing tutors and consultants assisting 

others in developing example-tracing tutors, indicates that this type of tutor is useful and effective in a 

range of domains. It also indicates that the example-tracing technology implemented in CTAT routinely 

withstands the rigors of actual classroom use. Examples of example-tracing tutors recently built with 

CTAT and used in actual classrooms are Mathtutor (Aleven, McLaren & Sewall, 2009), the Genetics 

Tutor (Corbett, Kauffman, MacLaren, Wagner & Jones, 2010), the Fractions Tutor (Rau, Aleven & 

Rummel, 2015; Rau, Aleven, Rummel & Pardos, 2014), a version of the Fractions Tutor for collaborative 

learning (Olsen, Belenky, Aleven & Rummel, 2014; Olsen, Belenky, Aleven, Rummel, Sewall & 

Ringenberg, 2014), a fractions tutor that provides grounded feedback (Stampfer & Koedinger, 2013), the 

Stoichiometry Tutor (McLaren, DeLeeuw & Mayer, 2011a; 2011b), AdaptErrEx (Adams et al., 2014; 

McLaren et al., 2012), an English article tutor (Wylie, Sheng, Mitamura & Koedinger, 2011), Lynnette, a 

tutor for equation solving (Long & Aleven, 2013; Waalkens et al., 2013), and a tutor for guided invention 

activities (Roll, Holmes, Day & Bonn, 2012). We have also seen, in courses, workshops, and summer 

schools that we have taught, that learning to build example-tracing tutors with CTAT can be done in a 

relatively short amount of time. Generally, it does not take more than a couple of hours to get started, a 

day to understand basic functionality, and a couple more days to grasp the full range of functionality that 

this tutoring technology offers. This is a much lower learning curve than that for learning to build 

cognitive tutors with CTAT. Authoring and debugging a rule-based cognitive models is a more complex 

task that requires AI programming. Example-tracing tutors on the other hand do not require any 

programming. In our past publication (Aleven, McLaren, Sewall & Koedinger, 2009), we estimated, 

based on data from projects in which example-tracing tutors were built and used in real educational 

settings (i.e., not just prototypes) that example-tracing tutors make tutor development 4–8 times more 

cost-effective: they can be developed faster and do not require expertise in AI programming. Echoing a 

theme that runs throughout the chapter, we emphasize that building a good tutor requires more than being 
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facile with authoring tools; for example, it also requires careful cognitive task analysis to understand 

student thinking and students’ difficulties in the given task domain. 

In sum, the CTAT experience indicates that the use of examples, in the form of behavior graphs that 

capture the solution space of a problem, is key to offering easy-to-learn, non-programmer options to ITS 

authoring. Thinking in terms of examples and concrete scenarios is helpful for authors. So is avoiding 

actual coding, made possible by the use of examples. The experience indicates also that the same 

representation of problem-solving examples, namely, behavior graphs, can serve many different purposes. 

This versatility derives from the fact that behavior graphs are a general representation of problem-solving 

processes. As such, they may be useful in a range of ITS authoring tools, not just CTAT, since many ITSs 

deal with complex problem-solving activities. 

SimStudent 

SimStudent is a machine-learning agent that inductively learns problem-solving skills (Li, Matsuda, 

Cohen & Koedinger, 2015; Matsuda, Cohen & Koedinger, 2005). At an implementation level, 

SimStudent acts as a pedagogical agent that can be interactively tutored. SimStudent is a realization of 

programming by demonstration (Cypher, 1993; Lau & Weld, 1998) in the form of inductive logic 

programming (Muggleton & de Raedt, 1994). SimStudent learns domain principles (i.e., how to solve 

problems) by specializing and generalizing positive and negative examples on how to apply, and not to 

apply, particular skills to solve problems.  

At a theory level, SimStudent is a computational model of learning that explains both domain-general and 

domain-specific theories of learning. As for the domain-general theory of learning, SimStudent models 

two learning strategies: learning from examples and learning by doing (Matsuda, Cohen, Sewall, Lacerda 

& Koedinger, 2008). Learning from examples is a model of passive learning in which SimStudent is 

given a set of worked-out examples and it silently generalizes solution steps from these examples. There 

is no interaction between the “tutor” and SimStudent during learning from examples, except that tutor 

provides examples to SimStudent. Learning by doing, on the other hand, is a model of interactive, 

tutored-problem solving (i.e., cognitive tutoring) in which SimStudent is given a sequence of problems 

and asked to solve them. In this context, there must be a “tutor” (i.e., author) who provides tutoring 

scaffolding (i.e., feedback and hints) to SimStudent. That is, the “tutor” provides immediate flagged 

feedback (i.e., correct or incorrect) for each of the steps that SimStudent performs. SimStudent may get 

stuck in the middle of a solution and ask the “tutor” for help on what to do next. The “tutor” responds to 

SimStudent’s inquiry by demonstrating the exact next step.  

As for the domain-specific theory of learning, SimStudent can be used as a tool for student modeling to 

advance a cognitive theory of learning skills to solve problems for a particular domain task. Using the 

SimStudent technology, researchers can conduct simulation studies with tightly controlled variables. For 

example, to understand why students make commonly observed errors when they learn how to solve 

algebraic linear equations, we conducted a simulation study. An example of a common error is to subtract 

4 from both sides of 2x–4=5. We hypothesized that students learn skills incorrectly due to incorrect 

induction. We also hypothesized that incorrect induction might more likely occur when students carry out 

induction based on weak background knowledge that, by definition, is perceptually grounded and 

therefore lacks connection to domain principles. An example of such weak background knowledge is to 

perceive “3” in 5x+3=7 as a last number on the left-hand side of the equation, instead of perceiving ‘+3’ 

as a last term. To test these hypotheses, we controlled SimStudent’s background knowledge by replacing 

some of the background knowledge (e.g., the knowledge to recognize the last term) with weak 

perceptually grounded knowledge (e.g., the knowledge to recognize the last number). We trained two 

versions of SimStudent (one with normal background knowledge and the other one with weak 
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background knowledge) and compared their learning with students’ learning. The result showed that only 

SimStudent with weak background knowledge made the same errors that students commonly make 

(Matsuda, Lee, Cohen & Koedinger, 2009).  

So far, we have demonstrated that SimStudent can be used to advance educational studies for three major 

problems: (1) intelligent authoring, (2) student modeling, and (3) teachable agent. For intelligent 

authoring, SimStudent functions as an intelligent plug-in component for CTAT (Aleven, McLaren, Sewall 

& Koedinger, 2006; Aleven, McLaren, Sewall & Koedinger, 2009) that allows authors to create a 

cognitive model (i.e., a domain expert model) by tutoring SimStudent on how to solve problems. The 

intelligent authoring project was started as an extension of prior attempts (Jarvis, Nuzzo-Jones & 

Heffernan, 2004; Koedinger, Aleven & Heffernan, 2003; Koedinger, Aleven, Heffernan, McLaren & 

Hockenberry, 2004).  

In the context of intelligent authoring, the author first creates a tutoring interface using CTAT, and then 

“tutors” SimStudent using the tutoring interface (Figure 5). There are two authoring strategies, authoring 

by tutoring and authoring by demonstration, and each corresponds to two learning strategies mentioned 

above, i.e., learning by doing and learning from worked-out examples, respectively. We have showed that 

when the quality of a cognitive model is measured as the accuracy of solution steps suggested by the 

cognitive model, authoring by tutoring generates a better cognitive model than authoring by 

demonstration (Matsuda, Cohen & Koedinger, 2015). It is only authoring by tutoring that provides 

negative examples, which by definition tell SimStudent when not to apply overly general productions, 

and negative examples have the significant role in inductively generating a better quality cognitive model.  

 
 

Figure 5. Authoring using SimStudent with the assistance of CTAT 

SimStudent also functions as a teachable agent in an online learning environment in which students learn 

skills to solve problems by interactively teaching SimStudent. The online learning environment is called 

the Artificial Peer Learning environment Using SimStudent (APLUS). APLUS and a cognitive tutor share 

underlying technologies. In fact, APLUS consists of (1) the tutoring interface on which a student tutors 
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SimStudent; (2) a cognitive tutor in the form of the meta-tutor that provides scaffolding for the student on 

how to teach SimStudent and how to solve problems; and (3) a teachable agent (SimStudent), with its 

avatar representation. The combination of CTAT and SimStudent allows users to build APLUS for their 

own domains. In this context, SimStudent plays a dual role: (1) a tool to create a cognitive model for the 

embedded meta-tutor and (2) a teachable agent.  

Examples, in the context of the interaction with SimStudent, are major input for SimStudent to induce a 

cognitive model. SimStudent learns procedural skills to solve target problems either from learning by 

doing or learning from worked-examples. SimStudent generalizes provided examples (both positive and 

negative) and generates a set of productions that each represents a procedural skill. The set of productions 

become a cognitive model that can be used for cognitive tutoring in the form of a cognitive tutor or a 

meta-tutor in APLUS. 

An empirical study (Matsuda et al., 2015) showed that to make an expert model for an algebra cognitive 

tutor, it took a subject matter expert 86 minutes for authoring by tutoring SimStudent on 20 problems 

whereas authoring by demonstration with 20 problems took 238 minutes. A more recent study showed 

that authoring an algebra tutor in SimStudent is 2.5 times faster than example-tracing while maintaining 

equivalent final model quality (MacLellan, Koedinger & Matsuda, 2014). We are currently conducting a 

study to validate the quality of production rules. In the study, we actually use a SimStudent-generated 

cognitive model for an algebra cognitive tutor to model trace real student’s solution steps. A preliminary 

result shows that after tutoring SimStudent on 37 problems, the model tracer correctly model traces 96% 

of steps that students correctly performed. At the same time, the “accuracy” of detecting a correct step 

(i.e., the ratio of the correct positive judgement, judging a step as correct, to all positive judgement) was 

98%.  

ASPIRE 

The Intelligent Computer Tutoring Group (ICTG; http://www.ictg.canterbury.ac.nz/) has developed many 

successful constraint-based tutors in diverse instructional domains (Mitrovic, Martin & Suraweera, 2007; 

Mitrovic, 2012). Some early comparisons of constraint-based modeling (Ohlsson, 1994) to the model-

tracing approach have shown that constraint-based tutors are less time-consuming to develop (Ohlsson & 

Mitrovic, 2007; Mitrovic, Koedinger & Martin, 2003), but yet require substantial expertise and effort. The 

estimate of time per constraint for Structured Query Language (SQL)-Tutor, the first and biggest 

constraint-based modeling (CBM) tutor developed (Mitrovic, 1998), was 1 hour per constraint, with the 

same person acting as the knowledge engineer, domain expert, and software developer. In order to 

support the development process, ICTG developed an authoring shell, the Web-Enabled Tutor Authoring 

System (WETAS; Martin & Mitrovic, 2002). Studies with novice ITS authors using WETAS had shown 

that the authoring time per constraint on average was 2 hours (Suraweera et al., 2009), but the authors still 

found writing constraints challenging. 

ASPIRE (http://aspire.cosc.canterbury.ac.nz/) is a general authoring and deployment system for 

constraints-based tutors. It assists in the process of composing domain models for constraint-based tutors 

and automatically serves tutoring systems on the web. ASPIRE guides the author through building the 

domain model, automating some of the tasks involved, and seamlessly deploys the resulting domain 

model to produce a fully functional web-based ITS. 

The authoring process in ASPIRE consists of eight phases. Initially, the author specifies general features 

of the chosen instructional domain, such as whether or not the task is procedural. For procedural tasks, the 

author describes the problem-solving steps. This is not a trivial activity, as the author needs to decide on 
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the approach to teaching the task. The author also needs to decide on how to structure the student 

interface and whether the steps will be presented on the same page or on multiple pages. 

The author then develops the domain ontology, containing the concepts relevant to the instructional task. 

The purpose of the domain ontology is to focus the author on important domain concepts; ASPIRE does 

not require a complete ontology, but only those domain concepts students need to interact with in order to 

solve problems in the chosen area. The ontology specifies the hierarchical structure of the domain in 

terms of sub- and super-concepts. Each concept might have a number of properties and may be related to 

other domain concepts. The author can define restrictions on properties and relationships, such as the 

minimum and maximum, number of values, types of values, etc. The ontology editor does not offer a way 

of specifying restrictions on different properties attached to a given concept, such as the number of years 

of work experience should be less than the person’s age. It also does not contain functionality to specify 

restrictions on properties from different concepts, such as the salary of the manager has to be higher than 

the salaries of employees for whom they are responsible. However, these restrictions are not an obstacle 

for generating the constraint set, as ASPIRE generates constraints not only from the ontology, but also 

from sample problems and their solutions. Figure 6 shows the domain ontology for the thermodynamics 

tutor, which is defined as a procedural task. In this tutor, the student needs to develop a diagram first and 

later compute unknowns using a set of formulas. 

 

Figure 6: The ontology of Thermo-Tutor 

In the third phase, the author defines the problem structure and the general structure of solutions, 

expressed in terms of concepts from the ontology. The author specifies the types of components to show 

on the student interface and the number of components (e.g., a component may be optional or can have 
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multiple instances). On the basis of the information provided by the author in the previous phases, 

ASPIRE then generates a default, text-based student interface, which can be replaced with a Java applet. 

ASPIRE also provides a remote procedure call interface, allowing for sophisticated student interfaces to 

be built, such as an Augmented Reality interface (Westerfield, Mitrovic & Billinghurst, 2013). Figure 7 

shows the Java applet allowing students to solve problems in Thermo-Tutor (Mitrovic et al., 2011). 

 

Figure 7: A screenshot from Thermo-Tutor showing the applet 

In the fifth phase, the author adds sample problems and their correct solutions using the problem solution 

interface. ASPIRE does not require the author to specify incorrect solutions. The interface enforces that 

the solutions to adhere to the structure defined in the previous step. The author is encouraged to provide 

multiple solutions for each problem, demonstrating different ways of solving it. In domains where there 

are multiple solutions per problem, the author should enter all practicable alternative solutions. The 

solution editor reduces the amount of effort required to do this by allowing the author to transform a copy 

of the first solution into the desired alternative. This feature significantly reduces the author’s workload 

because alternative solutions often have a high degree of similarity. 

ASPIRE then generates syntax constraints by analyzing the ontology and the solution structure. The 

syntax constraint generation algorithm extracts all useful syntactic information from the ontology and 

translates it into constraints. Syntax constraints are generated by analyzing relationships between concepts 

and concept properties specified in the ontology (Suraweera, Mitrovic & Martin, 2010). An additional set 

of constraints is also generated for procedural tasks, which ensure the student performs the problem-

solving steps in the correct order (also called path constraints). 

Semantic constraints check that the student’s solution has the desired meaning (i.e., it answers the 

question). Constraint-based tutors determine semantic correctness by comparing the student solution to a 

single correct solution to the problem; however, they are still capable of identifying alternative correct 

solutions because the constraints are encoded to check for equivalent ways of representing the same 

semantics (Ohlsson & Mitrovic, 2007; Mitrovic, 2012). ASPIRE generates semantic constraints by 

analyzing alternative correct solutions for the same problem supplied by the author. ASPIRE analyses the 
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similarities and differences between two solutions to the same problem. The process of generating 

constraints is iterated until all pairs of solutions are analyzed. Each new pair of solutions can lead to either 

generalizing or specializing previously generated constraints. If a newly analyzed pair of solutions 

violates a previously generated constraint, its satisfaction condition is generalized in order to satisfy the 

solutions, or the constraint’s relevance condition is specialized for the constraint to be irrelevant for the 

solutions. A detailed discussion of the constraint-generation algorithms is available in (Suraweera, 

Mitrovic & Martin, 2010). 

xPST 

When an author uses the xPST system to create a model-tracing style tutor (e.g., Koedinger, Anderson, 

Hadley & Mark, 1997) for a learner, the author bases the instruction on a particular example. The 

example needs to already be in existence—xPST does not provide a way to create that example. Rather, 

that example comes from previously created content or is based on third-party software. This aspect of the 

system is contained in its name—problem-specific tutor. Very little generalization is done from the 

example. Broadly speaking, the instruction that the author creates is appropriate only for that one 

example. While this limits the ability for the instruction to be applied in multiple instances, it allows for a 

more streamlined and simplistic authoring process, opening up the possibility of authoring tutors to a 

wider variety of people, e.g., those who do not possess programming skills. 

To quickly explain the first word in the xPST name, extensible, that ability comes from two different 

aspects. First, xPST can be extended in terms of the types of learner answers it can check. xPST’s 

architecture compartmentalizes these “checktypes,” and it is easy for a programmer to add additional ones 

and make them available to xPST authors. Second, and more importantly, xPST can be extended in terms 

of the interfaces on which it can provide tutoring. Like other ITSs (such as seen in CTAT, or see Blessing, 

Gilbert, Ourada, and Ritter, 2009; Ritter & Koedinger, 1996), xPST’s architecture makes a clear 

separation between the learner’s interface and the tutoring engine. The architecture contains a TutorLink 

module that mediates the communication between these two parts of the system. The learner’s interface 

can in theory be any existing piece of software, as long as a TutorLink module can translate the actions of 

the learner in the interface into what xPST understands, and then the module needs to communicate the 

tutoring feedback back to the learner’s interface (e.g., a help message or an indication if an answer is right 

or wrong). More information concerning this type of communication can be found elsewhere (Gilbert, 

Blessing & Blankenship, 2009). 

Allowing the learner interface to be existing software, given the proper TutorLink module, opens up 

many possibilities in terms of what to provide tutoring on and how that tutoring manifests itself. We have 

written TutorLink modules for Microsoft .NET programs, the Torque 3-D game engine, and the Firefox 

web browser. Regardless of the interface, the authoring interaction is similar: a specific scenario is 

created within the context of the interface and instruction on completing that scenario is authored in 

xPST. To explain how examples are used to create tutoring in xPST, we illustrate the process using the 

Firefox web browser as the interface. In this case, the TutorLink module operates as a Firefox plug-in. 

This allows any webpage to contain potentially tutorable content, where the student is provided with 

model-tracing style feedback. In one project, we had authors, which included non-programmer 

undergraduates, use a drag-and-drop form creation tool to easily create custom homework problems for a 

statistics tutor (Maass & Blessing, 2011). Countless webpages already exist that could be used for 

instruction. In another project, we used a webpage from the National Institutes of Health (NIH) to create 

activities involving DNA sequencing. 

To provide a specific example, imagine an author wanted to create instruction on how to search using a 

popular article database, the American Psychological Association’s (APA) PsychINFO, to find research 
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papers, so that students become better at information literacy. The webpage already exists, with all the 

widgets (the entry boxes, radio buttons, and pull-down menus) in place. The Firefox plug-in allows the 

author to write a problem scenario (e.g., to find a particular paper using those widgets) that will appear in 

a sidebar next to the already established page, and then the author writes instruction code that will ensure 

that the learner uses the page appropriately, providing help when needed, so that the learner finds the 

correct article. The author does their work on the xPST website (http://xpst.vrac.iastate.edu). This website 

provides a form to create a new problem, where the instruction to the existing webpage (in this case, 

http://search.proquest.com/psychinfo/advanced/), the sidebar’s problem scenario, and the tutor “code” 

that contains the right answers and help messages can all be entered. While the code does have some of 

the trappings of traditional programming, those are kept to a minimum.  

Figure 8 shows some of the code that would be used to create this PsychINFO tutor. This code in 

conjunction with the author-supplied scenario is in essence the example. The existing webpage provides 

the means by which the learner will work through the example (via the entry boxes and drop-down 

menus), and what is seen in Figure 8 is the information needed by xPST to provide tutoring. The code has 

three main sections: Mappings, Sequence, and Feedback. The Mappings map the interface widgets onto 

the names that the xPST tutor will use. The Firefox plug-in provides the names of the widgets for the 

author as the author begins to create the scenario. The Sequence is the allowed orderings for how the 

learner may progress through the problem. The syntax allows for required and optional parts, along with 

different kinds of branching. The Feedback section is where the author indicates the right answer for a 

widget, and the help and just-in-time messages that might be displayed for incorrect responses. Once 

authors have entered in enough code to see results, they can click the “Save and Run” button and 

immediately see the results of the xPST tutor. Figure 9 shows the tutor running the PsychINFO site with 

the code shown in Figure 8. This code is specific to this problem scenario, but could easily be copied and 

modified in order to create a different problem. In such a way an author could quickly create a short 5–6 

problem homework set to provide practice to students concerning information literacy. 

 

Figure 8. Authoring interface for xPST. 
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Figure 9. The example-based tutor running on the PsychInfo site. 

We have examined the way non-programmers have learned to use xPST (e.g., Blessing, Devasani & 

Gilbert, 2011). Despite the text-entry method for instruction, non-programmers have successfully used 

xPST to create new tutors. In Blessing, Devasani, and Gilbert (2011), five such authors spent roughly 30 

hours on average learning the system and developing 15 statistics problems apiece. Keeping in mind that 

all the problems had a similar feel to them, the endpoint was the ability to create one of the problems, 

which contained about 10 minutes of instruction, in under 45 minutes.  

Conclusions 

We start our conclusions by comparing the above systems on five dimensions: (1) their heritage, 

(2) practical concerns such as teacher reporting, (3) the authoring process, (4) how they generalize 

examples, and (5) their approach to cognitive task analysis. We finish by making recommendation to the 

Generalized Intelligent Framework for Tutoring (GIFT) architecture based on our observations. 

Heritage 

Four of these five systems (ASSISTments, CTAT, SimStudent, and xPST) share a common heritage, the 

ACT Tutors that John Anderson and his colleagues developed over the course of many years (Anderson, 

Corbett, Koedinger & Pelletier, 1995). The researchers created these tutors to fully test the ACT Theory 

of cognition, and they covered a few different domains, including several programming languages and 

many levels of mathematics. The most direct descendant of the ACT Tutors existing today are the 

commercial tutors produced by Carnegie Learning, Inc., which cover middle and high school math.  

Despite this common heritage of the present systems, they were developed independently. Each of us felt 

that the authoring tools created to support the ACT Tutors (the Tutor Development Kit for the original set 

of tutors (Anderson & Pelletier, 1991) and the Cognitive Tutor Software Development Kit for Carnegie 

Learning’s tutors (Blessing, Gilbert, Ourada & Ritter, 2009)), while powerful, were not approachable by 

non-programmers or non-cognitive scientists. We realized that in order for ITSs to be more prevalent, 

authoring needed to be easier. In our own labs, we developed separate systems that mimicked the 

behavior of the original ACT Tutors, because that had proved so successful, but without the programming 
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overhead that prior tools required. As seen in our descriptions above and our discussion here, these 

systems contain some similarities, but differ in important ways as well. 

ASPIRE, the one system that does not have a connection to the ACT Tutors, originated with Ohlsson’s 

work on a theory of learning from performance errors (Ohlsson, 1996). This led to the development of 

CBM (Mitrovic & Ohlsson, 1999), in which the tutor’s knowledge is represented as a set of constraints, 

as opposed to the production-based representation of the ACT Tutors. In this way, the tutor’s knowledge 

represents boundary points within which the solution lies. Having multiple systems that descend from 

multiple sources provides credence to the idea that the general technique of programming by 

demonstration and the use of examples is a useful and powerful one for the creation of ITSs. 

Practical Concerns 

There are scientific concerns as to what knowledge representations are most valuable to use to reflect how 

humans think (e.g., Ohlsson’s constraints-based theory vs. Anderson’s production rules). However, there 

are also practical concerns. For example, which tools prove easier to use might drive adoption, not 

necessarily those that produce the most learning. As another somewhat practical concern, some of the 

authoring methods discussed above may allow authors to more easily add complexity to their content over 

time. For instance, after assigning a homework question, a teacher may see that an unanticipated common 

wrong answer occurs, and the system needs to allow the teacher to write a feedback message that 

addresses that common wrong answer quickly. 

While this chapter has focused on author tools for the content, an equally important element has to do 

with reporting. Some of these tools, such as ASSISTments and CTAT offer very robust ways to report 

student data. There is a possible tradeoff on the complexity and adaptability of the content, and the ways 

we report to instructors. We need easy ways that report information to the instructors and content creators. 

The reports to these classes of people should be focused differently than the types of reports to 

researchers. For instance, if a researcher has used ASSISTments’ tools to create a randomized controlled 

experiment (see sites.google.com/site/neilheffernanscv/webinar for more information concerning this 

feature) embedded in a homework, perhaps comparing text hints versus video hints, the reports that the 

teachers receive should be different than the reports that the researchers receive. 

The Authoring Process 

The method by which authors create tutors in these systems varies along at least two different, though 

somewhat related, dimensions: (1) how the instruction is inputted and (2) how much of the process is 

automated. With regard to how the instruction is inputted, this varies from a method that is more 

traditional coding as in xPST, to a method that is more graphical in nature, such as CTAT’s behavior 

graph. ASSISTment’s QuickBuilder and ASSISTment Builder techniques seem to be a bit of a midpoint 

between those two methods of input. Devasani, Gilbert, and Blessing (2012) examined the trade-offs 

between these approaches with novice authors building tutors in both CTAT and xPST within two 

different domains, statistics and geometry. Relating their findings to Green and Petre’s (1996) cognitive 

dimensions, they argued that the GUI approach has certain advantages, such as eliminating certain types 

of errors and the fact that visual programming allows for a more direct mapping. A more text-based 

approach has the advantages of flexibility in terms of how the authoring is completed and the ability to 

capture larger tutors that contain more intermediate states and solution paths more economically (what 

Green and Petre termed “diffuseness” and “terseness”). That flexibility may also translate into easier 

maintenance of those larger tutors. 
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The systems also differ in how much of the process is automated. This is also related to the amount of 

generalizability that the systems are able to perform, discussed below. In both ASSISTments and xPST, 

very little, if anything, is automated. ASPIRE and SimStudent have some degree of automation, in terms 

of how they induce constraints or productions. This automation eliminates or reduces greatly some of the 

steps that the author would otherwise have to do in order to input the instruction. CTAT is the middle 

system here, as it does have some mechanisms available to the author to more automatically created 

instruction (e.g., using Excel to more quickly create problem sets that all share similar instruction). As in 

any interface and systems design, these two dimensions play off each other in terms of what advantages 

they offer the author, between ease-of-use and generalizability. 

Generalization of Examples 

The discussed authoring technologies are diverse: they help authors create different kinds of domain 

models that can be used for adaptive tutoring. Some help authors create a collection of questions and 

answers with knowledge of feedback (ASSISTments, the example-tracing version of CTAT, and xPST), 

whereas others provide scaffolding to create the domain model either in the form of constraints (ASPIRE) 

or production rules (the model-tracing version of CTAT and SimStudent).  

Some of the discussed approaches rely on the author’s ability for programming while providing 

elaborated scaffolding to facilitate the programming process and ease the author’s labor (ASSISTments, 

CTAT, xPST). In xPST, there is no generalization of examples at all. In CTAT, the author specifies the 

behavior graphs that includes both correct and incorrect steps, and also provides feedback on steps and 

hints. Furthermore, the author generalizes examples by adding variables and formulas that express how 

steps depend on each other or how a given vary, by relaxing ordering constraints, and by marking steps as 

optional or repeatable. In ASSISSTments, some variabilization is possible. In those two cases, the 

authoring system does not generalize examples on its own; this task is left to the author. 

On the other hand, ASPIRE and SimStudent deploy AI technologies to generate the domain model given 

appropriate background knowledge. ASPIRE, for example, generates constraints given the domain 

ontology developed by the author and example solutions. SimStudent uses the given primitive domain 

skills to generate a cognitive model from a set of positive and negative examples provided by the author. 

The difference between ASPIRE and SimStudent is not only in the formalism in which domain 

knowledge is represented, but also in the kind of examples they use. ASPIRE requires the author to 

specify only the alternative correct solutions for problems, without any feedback or further elaborations 

on them. SimStudent requires immediate feedback on steps (when inducing production rules in the 

learning by doing mode) or a set of positive and negative examples.  

All five authoring systems discussed in this chapter share a common input for tutor authoring—example 

solutions. Different techniques are used for different purposes to generalize or specialize the given 

examples. It must be noted that all these five authoring systems share a fundamentally comparable 

instructional strategy for procedural tasks, step decomposition (i.e., force students to enter a solution one 

step at a time). ASPIRE differs from this requirement, as it can also support non-procedural tasks, in 

which the student can enter the whole solution at once. With the exception of ASPIRE, which provides 

on-demand feedback, the other authoring systems provide immediate (or semi-immediate) feedback on 

the correctness of the step performed, and just-in-time hint on what to do next. 

Cognitive Task Analysis 

Performing a cognitive task analysis (CTA) has been shown to be an effective means of producing quality 

instruction in a domain (Clark & Estes, 1996). CTA involves elucidating the cognitive structures that 
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underlie performance in a task. Another aspect of CTA is to describe the development of that knowledge 

from novice to expert performance. The more ITS authors (or any other designers of instruction) 

understand about how students learn in the given task domain, what the major hurdles, errors, and 

misconceptions are, and what prior knowledge students are likely to bring to bear, the better off they are. 

This holds for designing many, if not all, other forms of instruction, regardless of whether any technology 

is involved. 

The space of cognitive task methods and methodologies is vast (Clark, Feldon, van Merriënboer, Yates & 

Early, 2007). Some of these techniques have been applied successfully in tutor development (Lovett, 

1998; Means & Gott, 1988; Rau, Aleven, Rummel & Rohrbach, 2013). Two techniques that have proven 

to be particularly useful in ITS development, though not the only ones, are think-aloud protocols and a 

technique developed by Koedinger called difficulty factors assessment (DFA; Koedinger & Nathan, 

2004). DFA is a way of creating a test (with multiple forms and a Latin-Square logic) designed to 

evaluate the impact on student performance of various hypothesized difficulty factors. Creating these tests 

is somewhat of an art form, but we may see more data-driven and perhaps crowd-based approaches in the 

future. Baker, Corbett, and Koedinger (2007) discussed how these two forms of cognitive task analysis 

can help, in combination with iterative tutor development and testing to detect and understand design 

flaws in a tutor and create a more effective tutor. Interestingly, in the area of ITS development, manual 

approaches to CTA are more and more being supplemented by automated or semi-automated approaches, 

especially in the service of building knowledge component models that accurately predict student learning 

(Aleven & Koedinger, 2013). CTA is important to ITS development, as it is for other forms of 

instructional design. The more instruction is designed with a good understanding of where the real 

learning difficulties lie, the more effective the instruction is going to be. ITSs are no exception. This point 

was illustrated in the work by Baker et al. (2007) on a tutor for middle school data analysis—CTA helped 

make a tutor more effective. Outside the realm of ITSs, this point was illustrated in the redesign of an 

online course for statistics, using CTA, where the redesigned course was dramatically more effective 

(Lovett, Myers & Thille, 2008).  

Given the importance of CTA in instructional design, we should ask to what degree ITS authoring tools 

support any form of CTA and in what ways they are designed to take advantage of the results of CTA to 

help construct an effective tutor and perhaps make tutor development more efficient. For example, one 

function of the behavior graphs used in CTAT is as a CTA tool. The other authoring tools described here 

make use of CTA in various ways as the author creates a tutor. Although mostly implicit in their design, 

the authoring systems depend on authors having performed an adequate task decomposition in their initial 

interface construction, sometimes referred to as subgoal reification (Corbett & Anderson, 1995). Without 

the author having enabled the learner to make explicit their thought processes as they use the tutor, then 

attempts at assessing their current state of knowledge or addressing any deficiency will be greatly 

diminished. Therefore, before beginning the writing of any help or just-in-time messages, it is crucial to 

have the student’s interface support the appropriate tasks needed to be performed by the student.  

As mentioned, CTA is supported in CTAT, as the easily recorded behavior graphs. A behavior graph is a 

map of the solution space for a given problem for which the tutoring-system-being-built will provide 

tutoring. In other words, it simply represents ways in which the given problem can be solved. CTAT 

provides a tool, the Behavior Recorder, for creating them easily. Behavior graphs help in analyzing the 

knowledge needs, support thinking about transfer, and thereby guide the development of a cognitive 

model. 

As a representation of the solution space of a problem, behavior graphs are not tied to any particular type 

of tutor and are likely be useful across a range of tutor authoring tools, especially those addressing 

tutoring for problems with a more complex solution space. For example, they may be helpful in tools for 

building constraint-based tutors. They may be less useful in the ASSISTments tool, given ASSISTments 
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strongly constrains the variability of the problems’ solution space, with each problem essentially having 

one single-step path and multi-step path, the latter representing the scaffolded, version. 

As the CTAT author creates a behavior graph, an xPST author begins to construct the task sequence and 

goal-nodes in xPST pseudo-code. In both cases, these authoring steps are a reflection of the tasks and 

knowledge components that the author is indicating as needed in order for a learner to do the task. 

ASPIRE has the author identify those tasks upfront, before the author creates the examples, based on the 

ontology that the author creates. SimStudent’s induction of the task’s rules depends on the representation 

being used, so the author’s CTA is important in shaping what the learned rules will look like. 

After the author has created the first version of the tutor and students have gone through its instruction, 

some of these systems have features that enable the authors to iterate the design of the tutor using student 

log files to inform a CTA and a redo of the tutor. ASSISTments, CTAT, and SimStudent all have robust 

ways for researchers and teachers to examine learner responses and adapt their tutor’s instruction 

accordingly. ASSISTments produces a report showing learners’ most common wrong answers, and also 

allows students to comment on the problems. SimStudent has a tool to validate its cognitive model by 

model-tracing through student log data to ensure correct functioning. Initial work has shown that this 

improves the quality of the model, though additional work will have to be performed to see how much it 

improves student learning. 

Recommendations for GIFT 

Having reviewed the challenges and benefits of example-based tutor authoring, we offer suggested 

features for GIFT so that it may also benefit from this approach. We begin with a brief summary of its 

architecture from the authoring perspective. GIFT is closer to ASPIRE than the other tools, in that its 

tutors can be viewed as a collection of states to be reached or constraints to be satisfied, without a 

particular procedural order to be followed. While sequencing can be achieved through conditions and 

subconditions, GIFT’s core is designed around states. In particular, in GIFT’s domain knowledge file 

(DKF) editor, typically used for authoring, there are tasks, which have concepts, which, in turn, have 

conditions, which, in turn, trigger feedback (Figure 10). The tasks are collections of states to be achieved. 

The concepts (with possible subconcepts) are analogous to learner skills used. Concepts are designed as 

learned if their conditions and subconditions are met. There is not a specific analogy to a procedural step 

that a learner might take, but a DKF condition is similar. If a step is taken, a condition is likely met. Note 

that the feedback assigned to be given when a condition is met is chosen from a menu of possible 

feedback items. Thus, a given feedback item can be reused easily by the author in multiple conditions.  

 

Figure 10: GIFT’s DKF format, typically used for authoring  

Conditions might be based on whether a certain time has passed in the simulation, or whether the learner 

has reached a specific location or state. At this early point within GIFT’s development, there is not any 

way to combine conditions in its DKF authoring module, e.g., if the learner does X (Condition 1) while 
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also in location Y (Condition 2), then perform a particular action. However, it does have an additional 

authoring tool, SIMILE, that works more like a scripting engine in which authors write explicit if…then 

code, in which this is possible. 

In GIFT there is not a natural way to represent a procedural solution path or branching at a decision point 

such as in CTAT or xPST. Software applications that manage the passage of time (e.g., video editing 

suites or medical systems monitoring patient data), aka “timeline-navigators” (Rubio, 2014), typically 

have a timeline and playhead metaphor as part of their user interface. An analogous interface is 

recommended for GIFT to indicate to the author the current status of the internal condition evaluations, 

though it would not likely map cleanly onto a linear timeline, since GIFT looks for active concepts and 

then evaluates their conditions. Whenever conditions are true, they generate feedback, which may 

accumulate across multiple conditions. While it is feasible with significant management of the conditions 

to create a sequence with branching points, the underlying architecture does not make this a natural task 

for an author. Also, GIFT does not differentiate between forms of feedback, such as hints, prompts, or 

buggy messages based on incorrect answers.  

This state-based and less procedural approach makes GIFT much better adapted to tutors on simulations 

that enable multiple complex states, such as game engines. A 3D game engine scenario, with multiple live 

player entities and some game-based non-player characters, is difficult to frame as a procedural tutor and 

is better approached as a network of noteworthy states (Devasani, Gilbert, Shetty, Ramaswamy & 

Blessing, 2011; Gilbert, Devasani, Kodavali & Blessing, 2011; Sottliare & Gilbert, 2011). Game engines 

often have level editors that allow almost WYSIWYG editing and scripting by non-programmers. These 

could be an inspiration for GIFT. However, since GIFT is essentially an abstraction layer used to describe 

conditions and states within such a system, enabling the author to visualize the learner’s experience 

within the simulation while simultaneously understanding the current state of the tutor is a complex 

challenge for which that are not many common user interface precedents. Currently within GIFT, it is 

difficult to preview and debug the learner’s experience using the tutor or to easily encode a particular 

example into GIFT. The CTA of a tutoring experience (described above) must first be created separately 

and then be transformed to match GIFT’s state-based condition architecture. Once authored, this 

architecture also makes it difficult to conduct quality assurance testing. The condition-based tutor can be 

complex to test because the author must think through all possible combinations of states that might 

generate feedback.  

In terms of example-based authoring, a given GIFT tutor is essentially one large example; there is no 

particular mechanism for generalization. However, GIFT is highly modular, so that elements of a given 

tutor such as the feedback items can be re-used in other tutors. The features of the aforementioned 

tutoring systems that promote generalization of rules and easy visualization of the learner’s experience via 

the authoring tool would be ones for GIFT to emulate.  

References 

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S. & Velsen, M. V. (2014). 

Using erroneous examples to improve mathematics learning with a web-based tutoring system. Computers 

in Human Behavior, 36, 401 - 411. doi:10.1016/j.chb.2014.03.053} 

Aleven, V. (2010). Rule-Based cognitive modeling for intelligent tutoring systems. In R. Nkambou, J. Bourdeau & 

R. Mizoguchi (Eds.), Studies in Computational Intelligence: Vol. 308. Advances in intelligent tutoring 

systems (pp. 33-62). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14363-2_3 

Aleven, V. & Koedinger, K. R. (2013). Knowledge component approaches to learner modeling. In R. Sottilare, A. 

Graesser, X. Hu & H. Holden (Eds.), Design recommendations for adaptive intelligent tutoring systems 

(Vol. I, Learner Modeling, pp. 165-182). Orlando, FL: US Army Research Laboratory. 



 

90 

Aleven, V., McLaren, B. M. & Sewall, J. (2009). Scaling up programming by demonstration for intelligent tutoring 

systems development: An open-access web site for middle school mathematics learning. IEEE 

Transactions on Learning Technologies, 2(2), 64-78 

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The Cognitive Tutor Authoring Tools (CTAT): 

Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley & T. W. Chan (Eds.), Proceedings of 

the 8th International Conference on Intelligent Tutoring Systems (pp. 61-70). Berlin: Springer Verlag. 

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2009). A New Paradigm for Intelligent Tutoring 

Systems: Example-Tracing Tutors. International Journal of Artificial Intelligence in Education, 19(2), 105-

154. 

Aleven, V., McLaren, B. M., Sewall, J., van Velsen, M., Popescu, O., Demi, S. & Koedinger, K. R. (under review). 

Toward tutoring at scale: Reflections on “A new paradigm for intelligent tutoring systems: Example-tracing 

tutors.” Submitted to the International Journal of Artificial Intelligence in Education. 

Aleven, V., Sewall, J., McLaren, B. M. & Koedinger, K. R. (2006). Rapid authoring of intelligent tutors for real-

world and experimental use. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson & W. 

Didderen (Eds.), Proceedings of the 6th IEEE international conference on advanced learning technologies 

(ICALT 2006) (pp. 847-851). Los Alamitos, CA: IEEE Computer Society 

Anderson, J. R. & Pelletier, R. (1991). A development system for model-tracing tutors. In Proceedings of the 

International Conference of the Learning Sciences, 1-8. Evanston, IL.  

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The 

Journal of the Learning Sciences, 4(2), 167-207. 

Baker, R. S. J. d., Corbett, A. T. & Koedinger, K. R. (2007). The difficulty factors approach to the design of lessons 

in intelligent tutor curricula. International Journal of Artificial Intelligence and Education, 17(4), 341-369. 

Blessing, S. B., Devasani, S. & Gilbert, S. (2011). Evaluation of webxpst: A browser-based authoring tool for 

problem-specific tutors. In G. Biswas, S. Bull & J. Kay (Eds.), Proceedings of the Fifteenth International 

Artificial Intelligence in Education Conference (pp. 423-425), Auckland, NZ. Berlin, Germany: Springer. 

Blessing, S. B., Gilbert, S., Ourada, S. & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International 

Journal for Artificial Intelligence in Education, 19, 189-210.  

Clark, R. E. & Estes, F. (1996). Cognitive task analysis. International Journal of Educational Research. 25(5). 403-

417. 

Clark, R. E., Feldon, D., van Merriënboer, J., Yates, K. & Early, S. (2007). Cognitive task analysis. In J. M. Spector, 

M. D. Merrill, J. J. G. van Merriënboer & M. P. Driscoll (Eds.), Handbook of research on educational 

communications and technology (3rd ed.). (pp. 577-93). Mahwah, NJ: Lawrence Erlbaum Associates. 

Corbett, A. T. & Anderson, J. R. (1995). Knowledge decomposition and subgoal reification in the ACT 

programming tutor. Artificial Intelligence and Education, 1995: The Proceedings of AI-ED 95. 

Charlottesville, VA: AACE. 

Corbett, A., Kauffman, L., MacLaren, B., Wagner, A. & Jones, E. (2010). A cognitive tutor for genetics problem 

solving: Learning gains and student modeling. Journal of Educational Computing Research, 42(2), 219-

239. 

Cypher, A. (Ed.). (1993). Watch what I do: Programming by demonstration. Cambridge, MA: MIT Press. 

Devasani, S., Gilbert, S. & Blessing, S. B. (2012). Evaluation of two intelligent tutoring system authoring tool 

paradigms: Graphical user interface-based and text-based. Proceedings of the 21st Conference on Behavior 

Representation in Modeling and Simulation (pp. 54-61), Amelia Island, FL. 

Devasani, S., Gilbert, S. B., Shetty, S., Ramaswamy, N. & Blessing, S. (2011). Authoring Intelligent Tutoring 

Systems for 3D Game Environments. Presentation at the Authoring Simulation and Game-based Intelligent 

Tutoring Workshop at the Fifteenth Conference on Artificial Intelligence in Education, Auckland.  

Gilbert, S. B., Blessing, S. B. & Blankenship, E. (2009). The accidental tutor: Overlaying an intelligent tutor on an 

existing user interface. In CHI ‘09 Extended Abstracts on Human Factors in Computing Systems.  

Gilbert, S., Devasani, S., Kodavali, S. & Blessing, S. B. (2011). Easy authoring of intelligent tutoring systems for 

synthetic environments. Proceedings of the 20th Conference on Behavior Representation in Modeling and 

Simulation (pp. 192-199), Sundance, UT. 

Green, T. R. G. & Petre, M. (1996). Usability analysis of visual programming environments: A ‘cognitive 

dimensions’ framework. Journal of Visual Languages and Computing, 7, 131- 174. 

Jarvis, M. P., Nuzzo-Jones, G. & Heffernan, N. T. (2004). Applying Machine Learning Techniques to Rule 

Generation in Intelligent Tutoring Systems. In J. C. Lester (Ed.), Proceedings of the International 

Conference on Intelligent Tutoring Systems (pp. 541-553). Heidelberg, Berlin: Springer. 



 

91 

Koedinger, K. R. & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on 

quantitative reasoning. The Journal of the Learning Sciences, 13(2), 129-164. 

Koedinger, K. R., Aleven, V. & Heffernan, N. (2003). Toward a rapid development environment for cognitive 

tutors. In U. Hoppe, F. Verdejo & J. Kay (Eds.), Proceedings of the International Conference on Artificial 

Intelligence in Education (pp. 455-457). Amsterdam: IOS Press 

Koedinger, K. R., Anderson, J. R., Hadley, W. H. & Mark, M. A. (1997). Intelligent tutoring goes to school in the 

big city. International Journal of Artificial Intelligence in Education, 8, 30-43. 

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. & Hockenberry, M. (2004). Opening the door to non-

programmers: Authoring intelligent tutor behavior by demonstration. In J. C. Lester, R. M. Vicario & F. 

Paraguaçu (Eds.), Proceedings of seventh international conference on intelligent tutoring systems, ITS 2004 

(pp. 162-174). Berlin: Springer. 

Lau, T. A. & Weld, D. S. (1998). Programming by demonstration: An inductive learning formulation Proceedings of 

the 4th international conference on Intelligent user interfaces (pp. 145-152). New York, NY: ACM Press  

Li, N., Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2015). Integrating Representation Learning and Skill 

Learning in a Human-Like Intelligent Agent. Artificial Intelligence, 219, 67-91. 

Lieberman, H. (2001). Your wish is my command: Programming by example. San Francisco, CA: Morgan 

Kaufmann. 

Long, Y. & Aleven, V. (2013). Supporting students’ self-regulated learning with an open learner model in a linear 

equation tutor. In H. C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.), Proceedings of the 16th 

international conference on artificial intelligence in education (AIED 2013) (pp. 249-258). Berlin: Springer 

Lovett, M. C. (1998). Cognitive task analysis in service of intelligent tutoring system design: a case study in 

statistics. In B. P. Goettl, H. M. Halff, C. L. Redfield & V. Shute (Eds.) Intelligent Tutoring Systems, 

Proceedings of the Fourth International Conference (pp. 234-243). Lecture Notes in Computer Science, 

1452. Berlin: Springer-Verlag. 

Lovett, M., Meyer, O. & Thille, C. (2008). JIME-The open learning initiative: Measuring the effectiveness of the 

OLI statistics course in accelerating student learning. Journal of Interactive Media in Education, 2008(1). 

Maass, J. K. & Blessing, S. B. (April, 2011). Xstat: An intelligent homework helper for students. Poster presented at 

the 2011 Georgia Undergraduate Research in Psychology Conference, Kennesaw, GA. 

MacLellan, C., Koedinger, R. K. & Matsuda, N. (2014). Authoring tutors with SimStudent: An evaluation of 

efficiency and model quality. In S. Trausen-Matu & K. Boyer (Eds.), Proceedings of the International 

Conference on Intelligent Tutoring Systems (pp. 551-560). Switzerland: Springer. 

Martin, B. & Mitrovic, A. (2002). WETAS: a web-based authoring system for constraint-based ITS. In: P. de Bra, P. 

Brusilovsky and R. Conejo (eds) Proc. 2
nd

 Int. Conf on Adaptive Hypermedia and Adaptive Web-based 

Systems AH 2002, Malaga, Spain, LCNS 2347, 543-546. 

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2005). Applying Programming by Demonstration in an Intelligent 

Authoring Tool for Cognitive Tutors AAAI Workshop on Human Comprehensible Machine Learning 

(Technical Report WS-05-04) (pp. 1-8). Menlo Park, CA: AAAI association. 

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (in press). Teaching the Teacher: Tutoring SimStudent leads to 

more Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education. 

Matsuda, N., Lee, A., Cohen, W. W. & Koedinger, K. R. (2009). A computational model of how learner errors arise 

from weak prior knowledge. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the Annual Conference of 

the Cognitive Science Society (pp. 1288-1293). Austin, TX: Cognitive Science Society. 

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2008). Why tutored problem solving may 

be better than example study: Theoretical implications from a simulated-student study. In B. P. Woolf, E. 

Aimeur, R. Nkambou & S. Lajoie (Eds.), Proceedings of the International Conference on Intelligent 

Tutoring Systems (pp. 111-121). Heidelberg, Berlin: Springer. 

McLaren, B. M., Adams, D., Durkin, K., Goguadze, G., Mayer, R. E., Rittle-Johnson, B., . . . Velsen, M. V. (2012). 

To err is human, to explain and correct is divine: A study of interactive erroneous examples with middle 

school math students. In A. Ravenscroft, S. Lindstaedt, C. Delgado Kloos & D. Hernández-Leo (Eds.), 21st 

century Learning for 21st Century Skills:7th European Conference of Technology Enhanced Learning, EC-

TEL 2012 (pp. 222-235). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-33263-0_18 

McLaren, B. M., DeLeeuw, K. E. & Mayer, R. E. (2011a). Polite web-based intelligent tutors: Can they improve 

learning in classrooms? Computers & Education, 56(3), 574-584. 

McLaren, B. M., DeLeeuw, K. E. & Mayer, R. E. (2011b). A politeness effect in learning with web-based intelligent 

tutors. International Journal of Human Computer Studies, 69(1-2), 70-79. doi:10.1016/j.ijhcs.2010.09.001 



 

92 

Means, B. & Gott, S. (1988). Cognitive task analysis as a basis for tutor development: Articulating abstract 

knowledge representations. In J. Pstotka, L.D. Massey & S.A. Mutter (Eds.), Intelligent tutoring systems: 

Lessons learned (pp.35-57). Hillsdale, NJ: Lawrence Erlbaum Associates. 

Mitrovic, A. (1998). Experiences in implementing constraint-based modelling in SQL-tutor. In Goettl, B.P., Halff, 

H.M., Redfield, C.L. and Shute, V.J. (Eds.), Proceedings of Intelligent Tutoring Systems, 414-423. 

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: What we have achieved and where we are going. User 

Modeling and User-Adapted Interaction, 22, 39-72. 

Mitrovic, A. & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language, International 

Journal of Artificial Intelligence in Education, 10, 238-256. 

Mitrovic, A., Koedinger, K. R. & Martin, B. (2003). A Comparative analysis of cognitive tutoring and constraint-

based modeling. In: Brusilovsky, P., Corbett, A., and de Rosis, F. (Eds.) Proceedings of User Modelling, 

313-322. 

Mitrovic, A., Martin, B. & Suraweera, P. (2007). Intelligent tutors for all: Constraint-based modeling methodology, 

systems and authoring. IEEE Intelligent Systems, 22, 38-45. 

Mitrovic, A., Williamson, C., Bebbington, A., Mathews, M., Suraweera, P., Martin, B., Thomson, D. & Holland, J. 

(2011). An Intelligent Tutoring System for Thermodynamics. EDUCON 2011, Amman, Jordan, 378-385. 

Muggleton, S. & de Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of Logic 

Programming, 19-20(Supplement 1), 629-679. 

Nardi, B. A. (1993). A small matter of programming: Perspectives on end-user computing. Boston, MA: MIT press. 

Newell, A. & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall. 

Ohlsson, S. (1994). Constraint-based student modelling, in Student modelling: The key to individualized knowledge-

based instruction, 167-189. 

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103, 241-262. 

Ohlsson, S. & Mitrovic, A. (2007). Fidelity and efficiency of knowledge representations for intelligent tutoring 

systems. Technology, Instruction, Cognition and Learning, 5, 101-132. 

Olsen, J. K., Belenky, D. M., Aleven, V. & Rummel, N. (2014). Using an intelligent tutoring system to support 

collaborative as well as individual learning. In S. Trausan-Matu, K. E. Boyer, M. Crosby & K. Panourgia 

(Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS 2014 (pp. 

134-143). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66 

Olsen, J. K., Belenky, D. M., Aleven, V., Rummel, N., Sewall, J. & Ringenberg, M. (2014). Authoring tools for 

collaborative intelligent tutoring system environments. In S. Trausan-Matu, K. E. Boyer, M. Crosby & K. 

Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS 

2014 (pp. 523-528). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66 

Ostrow, K. & Heffernan, N. T. (2014). Testing the multimedia principle in the real world: a comparison of video vs. 

Text feedback in authentic middle school math assignments. In Proceedings of the 7th international 

conference on educational data mining (pp. 296-299). 

Rau, M. A., Aleven, V. & Rummel, N. (2015). Successful learning with multiple graphical representations and self-

explanation prompts. Journal of Educational Psychology, 107(1), 30-46. doi:10.1037/a0037211 

Rau, M. A., Aleven, V., Rummel, N. & Pardos, Z. (2014). How should intelligent tutoring systems sequence 

multiple graphical representations of fractions? A multi-methods study. International Journal of Artificial 

Intelligence in Education, 24(2), 125-161. 

Rau, M. A., Aleven, V., Rummel, N. & Rohrbach, S. (2013). Why interactive learning environments can have it all: 

Resolving design conflicts between conflicting goals. In W. E. Mackay, S. Brewster & S. Bødker (Eds.), 

Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI 2013) (pp. 

109-118). ACM, New York.  

Razzaq, L. M. & Heffernan, N. T. (2009, July). To tutor or not to tutor: That is the question. In AIED (pp. 457-464). 

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, M., Heffernan, N. T. & Koedinger, K. R. (2009). The 

assistment builder: Supporting the life cycle of tutoring system content creation. Learning Technologies, 

IEEE Transactions on, 2(2), 157-166. 

Reed, S. K. & Bolstad, C. A. (1991). Use of examples and procedures in problem solving. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 17, 753-766. 

Ritter, S. & Koedinger, K. R. (1996). An architecture for plug-in tutor agents. International Journal of Artificial 

Intelligence in Education, 7, 315-347. 

Roll, I., Holmes, N. G., Day, J. & Bonn, D. (2012). Evaluating metacognitive scaffolding in guided invention 

activities. Instructional Science, 40(4), 1-20. doi:10.1007/s11251-012-9208-7 



 

93 

Rubio, E. (2014) Defining a software genre: Timeline navigators. (Unpublished Master’s thesis). Iowa State 

University, Ames, IA.  

Sottilare, R. and Gilbert, S. B. (2011). Considerations for adaptive tutoring within serious games: authoring 

cognitive models and game interfaces. Presentation at the Authoring Simulation and Game-based 

Intelligent Tutoring Workshop at the Fifteenth Conference on Artificial Intelligence in Education, 

Auckland. 

Stampfer, E. & Koedinger, K. R. (2013). When seeing isn’t believing: Influences of prior conceptions and 

misconceptions. In M. Knauff, M. Pauen, N. Sebanz & I. Wachsmuth (Eds.), Proceedings of the 35th 

Annual Conference of the Cognitive Science Society (pp. 916-919). Berlin, Heidelberg: Springer. 

doi:10.1007/978-3-642-39112-5_145 

Suraweera, P., Mitrovic, A. & Martin, B. (2010). Widening the knowledge acquisition bottleneck for constraint-

based tutors. International Journal of Artificial Intelligence in Education, 20(2), 137-173. 

Suraweera, P., Mitrovic, A., Martin, B., Holland, J., Milik, N., Zakharov, K. & McGuigan, N. (2009). Ontologies for 

authoring instructional systems. D. Dicheva, R. Mizoguchi, J. Greer (eds.) Semantic Web Technologies for 

e-Learning. IOS Press, (pp. 77-95). 

VanLehn , K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education, 

16(3), 227-265. 

Waalkens, M., Aleven, V. & Taatgen, N. (2013). Does supporting multiple student strategies lead to greater learning 

and motivation? Investigating a source of complexity in the architecture of intelligent tutoring systems. 

Computers & Education, 60(1), 159-171. 

Westerfield, G., Mitrovic, A. & Billinghurst, M. (2013). Intelligent augmented reality training for assembly tasks. 

In: H. C. Lane, K. Yacef, J. Mostow, O. Pavlik (Eds.): Proceedings of the Sixteenth International 

Conference of Artificial Intelligence in Education, LNAI 7926, pp. 542-551. Springer, Heidelberg. 

Wylie, R., Sheng, M., Mitamura, T. & Koedinger, K. (2011). Effects of adaptive prompted self-explanation on 

robust learning of second language grammar. In G. Biswas, S. Bull, J. Kay & A. Mitrovic (Eds.), 

Proceedings of the 15th International Conference on Artificial Intelligence in Education, AIED 2011 (pp. 

588-590). Springer Berlin Heidelberg. doi:10.1007/978-3-642-21869-9_110  



 

94 

  



 

95 

 

CHAPTER 7  Supporting the WISE Design Process:  

Authoring Tools that Enable Insights into  

Technology-Enhanced Learning 

Camillia Matuk
1
, Marcia C. Linn

2
, and Libby Gerard

2
 

1 
New York University; 

2 
University of California, Berkeley 

Introduction 

Authoring environments not only provide tools to create supports for learning, they can also be 

opportunities to better understand the role of technology in learning. The key to achieving their dual 

purpose is to support users in reflective cycles of iterative, evidence-based refinement of learning 

materials. Doing so can enable users to ask and answer their own questions; encourage them to be more 

reflective of their instructional and design practices; and increase their awareness of the relationships 

between technology, learning, and instruction. Ultimately, this leads to improved materials that enhance 

learning. 

This emphasis on supporting design is reflected in Murray’s (2003) goals for contemporary digital 

authoring tools. These include lowering the cost of creating learning materials; involving users in the 

design of materials; supporting the representation of domain and pedagogical knowledge; facilitating the 

implementation of effective design principles; enabling rapid testing and refinement of new ideas; and 

producing materials that are reusable by multiple authors. Together, these goals encapsulate a vision of 

design that is more accessible, guided, and likely to flourish from the efforts of a community as opposed 

to those of an individual. 

Authoring tools that support design are especially important for inquiry learning environments, which 

benefit from iterative refinement, customization, and a community of users. This chapter discusses four 

principles by which the Web-based Inquiry Science Environment (WISE) guides users’ design processes. 

These include (1) providing design tools that are accessible by users with a range of abilities; (2) enabling 

users to build on the contributions of others; (3) making student data available as evidence to inform 

iterative refinement; and (4) allowing ways for users to appropriate the system to advance new goals. We 

end by discussing challenges and future directions for the design of similar authoring tools for inquiry-

learning environments. Through examples drawn from the experiences of our network of users, we 

illustrate how WISE supports a process of design that also enables new understandings of technology-

enhanced learning. 

Related Research 

For some time now, there has been a trend in the field of educational technology design toward thinking 

of teachers as more than just end-users, but rather as designers of curricula (e.g., Brown, 2009; Brown & 

Edelson, 2003; Cviko, McKenney & Voogt, 2014; Edelson, 2002). Indeed, the increasing availability of 

usable technologies means that authoring need no longer be a specialized task relegated only to 

developers (Dabbagh, 2001), but also one in which researchers and teachers of varying abilities can 

participate. Authoring moreover allows users to engage directly in design-based research (Murray 2003), 

which allows them to pose and answer their own questions about technology-enhanced learning; reflect 

upon their students’ and their own teaching and design practices; and directly change the materials of 

their instruction. 
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The authoring of learning environments takes many shapes. It can be as minimal as duplicating existing 

materials and making a few textual edits. It can extend to reordering activities, adding features, and 

building curriculum and embedded technologies from scratch (Davis & Varma, 2008; Matuk, Linn & 

Eylon, under review). Such modifications by users, regardless of their extent, help ensure the materials’ 

successful implementation and sustainability beyond the original designer’s involvement (McLaughlin, 

1976). 

Authoring tools for inquiry learning environments are especially crucial. Although the benefits of inquiry 

learning are widely acknowledged (NRC, 1996, 2000), conducting inquiry in the classroom is challenging 

and benefits from adequate support (Evans, 2003; Settlage, 2003). Whereas several authoring tools 

feature all manner of advanced design capabilities, including the ability to create and customize 

curriculum materials through remixing, adapting, and sharing with other users (Dabbagh, 2001, Murray, 

2003), few of these environments explicitly support inquiry learning (Donnelly et al., 2014). Below, we 

present an authoring environment that enables the principled design of science inquiry learning and 

instruction. 

The Web-based Inquiry Science Environment 

WISE (wise.berkeley.edu) is a free, open-source curriculum platform. Integrated tools allow users to 

author and customize units, manage student progress, and give feedback on students’ work. The 20 freely 

available classroom-tested units—several of which are available in Spanish, Taiwanese, and Dutch, as 

well as English—cover challenging topics in the middle and high school science standards. These units 

have been refined through years of design-based research, guided by the Knowledge Integration 

framework (KI, Linn & Eylon, 2011), a pattern of instruction based in cognitive theories of how students 

learn. Units guided by KI engage students in a cycle of activities that includes eliciting their prior ideas, 

adding new normative ideas, distinguishing among and organizing those ideas, and reflecting upon and 

integrating them into a coherent explanation. WISE has a long history of improving students’ science 

learning and an extensive user network of teachers and researchers (Linn & Eylon, 2011). As of Fall 

2014, WISE had more than 10,000 registered teachers and 85,000 registered students worldwide (see 

wise.berkeley.edu/webapp/ pages/statistics.html for live use statistics). 

The units available on the WISE website have undergone cycles of review by experts in curriculum 

development, subject matter, and education research (Linn, Clark & Slotta, 2009). Concurrently, the 

design of the authoring tools has been iterated as we learn about users’ goals and needs. Our observations 

of teachers implementing units in their classrooms, and our formal and informal conversations with 

teachers and researchers provide insights into user’s authoring needs. Particularly as the usability of 

technology continues to shift authoring away from the developer and into the hands of the end-user, 

questions arise regarding how authoring tools might add value by not only supporting users’ goals, but 

also guiding them to follow best practices in design and instruction. 

Our work continually aims to balance the pedagogical practices we wish to promote among our users, 

with their actual observed practices. This can sometimes present tensions for designers, as teachers’ 

decisions are by necessity not always driven by their pedagogical ideals. Indeed, when pressed for time or 

pressured to cover much content, teachers’ instructional strategies can tend to emphasize content delivery 

rather than scaffold inquiry processes (Bell, 1998; Dabbagh, 2001; Murray, 1998); their decisions can 

tend to be driven by practical constraints rather than grounded in evidence from students’ work 

(Boschman et al., 2014); and their professional insights can tend to remain static and isolated, and fail to 

benefit colleagues beyond their local circles. 

http://wise.berkeley.edu/webapp/pages/statistics.html
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At the same time, the system could evolve in beneficial ways if it could be constantly informed by and 

updated according to teachers’ expertise. 

We contend that authoring tools in support of users’ research and design processes add most widespread 

value when their interaction is dialogic: That is, when use of the tools guides users’ pedagogically sound 

actions, and when users’ expertise and insights can be harnessed to refine the tools and extend their 

benefit to others. Our years of work from this perspective have resulted in the emergence and refinement 

of four guiding principles underlying WISE’s authoring technologies: 

(1) Provide design tools that are accessible by users with a range of abilities. 

(2) Enable users to build on the contributions of others. 

(3) Make student data available as evidence to inform iterative refinement. 

(4) Allow ways for users to appropriate the system to advance new goals. 

Discussion 

Provide Design Tools that are Accessible to Users with a Range of Abilities 

End-users have unique insights into the local needs of their classrooms and can thus design materials with 

greater relevance to learners than can developers. But not all users have the time nor the expertise to 

master complicated tools that might otherwise allow them to realize their ideas. Tools that lower the bar 

for users of all ability levels can make authoring accessible to a wide audience (Murray, 2003).  

Authoring Tools for Customization 

WISE makes design accessible to a range of users by providing tools that facilitate the creation and 

customization of materials without requiring programming skills. Units are organized as sequences of 

steps contained within activities (Figure 1). In building a unit, authors may iterate between creating and 

sequencing these nested containers in order to define the flow of tasks, and populating these with content. 

Users define individual step types from a drop-down menu, which include an array of question and 

response formats, such as multiple choice, open response, object sequences, drawings, concept diagrams, 

annotated images, data tables, and graphs. Through a what you see is what you get (WYSIWYG) 

interface, users can create and edit textual content, and embed rich multimedia from various sources, 

including web-based applications such as simulations, video, images, animations, and interactive 

multimedia. These customizations are displayed in real time within a preview mode, which allows users 

to test the appearance and functionality of their work from the student’s point of view. 
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Figure 1. These screenshots from the WISE authoring interface show the sequence of steps and activities, 

which can be created, copied, imported, and reordered (top); and the WYSIWYG editing interface that 

supports text and layout edits, automated feedback, and embedding of rich multimedia. 

Becoming familiar with the tools to make these and more complex customizations requires new users less 

than 1 hour of training. The time to actually perform those customizations can vary greatly between both 

novice and expert authors, but depends mainly on authors’ familiarity with the content, clarity of goals, 

and commitment to a design strategy for achieving those goals. For example, minor edits to text, 

embedded media, and page formatting, can take just a few minutes to perform and can even be done in 

the midst of students’ work on the unit. More complex authoring tasks, however, such as designing 

activity sequences, creating new content, and integrating scaffolding tools, require careful alignment of 
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designs to some pedagogical framework. In these cases, it is an author’s general experience having 

authored curricula that determines the time costs rather than having authored with particular WISE tools. 

Among the core WISE research and design team, these more elaborate designs go through cycles of 

review, feedback, and iteration by curriculum designers, content experts, educators, and technologists 

(Slotta & Linn, 2009). It may take just several hours to lay the foundation for a new curriculum unit, but it 

may take weeks, months, and years to continue to refine it. 

The extent to which teachers use these tools to customize depends on various factors. These include 

practical considerations, as well as teachers’ attitudes toward technology, assumptions about learning, and 

views on their roles as educators (Luehmann, 2002). Some teachers have independently learned to use the 

authoring environment to modify the content of given units for their particular classroom needs. One 

middle school teacher, for example, used the text editing tools to tailor the prompts in a grade 7 WISE 

unit about cell division. Knowing the specific comprehension difficulties of her mainly English-language 

learners, she elaborated on the instructions and incorporated hints, keywords, and sentence starters to 

guide her students’ responses (Matuk, Linn & Eylon, 2015). 

With the proper kind of support, these authoring tools allow teachers to effect powerful changes in their 

instruction. During summer professional development workshops, for instance, teachers worked in groups 

under the guidance of WISE researchers. Using the authoring tools they made customizations to units, 

which subsequently led to improved student learning (Gerard, Spitulnik & Linn, 2010). In this case, 

teachers benefited from having time to work with another teacher who taught the same unit during the 

prior school year and examine their students’ work to inform customizations. Together, the teachers 

shared their classroom experiences with one another and identified places in the unit where students had 

difficulty. The teachers then examined their students’ work on an embedded assessment in one of these 

challenging spots and students’ work on a pre/posttest. Based on their classroom experiences and analysis 

of their students work, teacher negotiated changes for the unit. Importantly, researchers were present to 

provide technology support and insights on best practices in inquiry learning design. 

Authoring Tools for Research 

The ease with which units can be created and modified affords the rapid testing of ideas, and thus, their 

use as instruments for research. Researchers often use WISE’s more complicated authoring functions to 

construct design experiments to investigate how students learn from technology-enhanced materials 

(Murray, 2003). For example, users can incorporate input to the WISE interface from hardware such as 

light, temperature, and motion probes. By checking boxes, users can specify navigation constraints 

dependent on students’ responses. By selecting steps from a list, they can define nonlinear trajectories 

through a unit. Within the authoring interfaces of certain items, users can also compose conditional 

automated feedback directly beside students’ possible responses. For other items, users can specify 

keywords that, if they were to appear in students’ open responses, would trigger certain kinds of feedback 

to be delivered to students. 

Using these capabilities, researchers have designed and implemented alternative versions of the same unit 

to investigate the value of different instructional approaches. They have explored the impacts of different 

kinds of automated feedback on how students revise their drawings (Rafferty, Gerard, McElhany & Linn, 

2013), concept diagrams (Ryoo & Linn, 2014), graphs (Vitale, Lai & Linn, 2014), and open-ended 

responses (Liu, et al., 2014). They have compared ways of integrating new collaborative technologies into 

existing curriculum (Matuk & Linn, 2014), scaffolding students’ understanding of visualizations (Chang, 

et al., 2008; Zhang & Linn, 2011), and supporting students’ interpretations of visual evidence (Matuk & 

McElhaney, 2014). 
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The availability of several content-free scaffolding tools has allowed researchers to author units across 

subject matters in order to investigate their own questions about learning. The Idea Manager, for instance, 

a tool that helps students track and share ideas over the course of a unit, has been used to study the 

development of students’ ideas about chemistry (McElhaney et al., 2013) and astronomy (Matuk & King 

Chen, 2011); and understand the value of exchanging ideas when studying the life sciences (Matuk & 

Linn, 2014; Wichmann et al., 2014). Likewise, the Image Annotator, a tool that allows students to label 

static and animated visuals, has been used to scaffold students’ observations in chemistry, physics, and 

cell biology (Matuk & McElhaney, 2014). In another example, the concept diagramming tool, MySystem, 

has been used to study students’ understanding of energy in physics (Swanson, 2010) and biology (Ryoo 

& Linn, 2010). 

Thus, tools that facilitate creation and customization lower the bar for users of all abilities. They make it 

easy for teachers to adapt materials to their particular needs, and they enable researchers to rapidly build 

and test ideas in order to investigate questions about learning with technology-enhanced materials. In 

these manners, authoring tools allow the educational environment to become a platform for research as 

much as a platform for learning and instruction. 

Enable Users to Build on the Contributions of Others 

Another way that authoring is made more accessible is through the availability of existing resources. The 

ability to make use of an array of existing, pre-constructed artifacts offloads much of the workload from 

authoring, which allows teachers to focus on teaching and researchers to focus on research. 

Indeed, while it is possible to author units from scratch, most users build upon existing, freely available 

materials. Authors can search for and clone any publicly available classroom-tested unit, any of their own 

privately owned units, and any unit directly shared with them by other users. They may then use these 

materials as templates for their own work, importing whole activities or individual steps, along with the 

existing resources contained within them. These resources include embedded multimedia, page layouts, 

investigation narratives, and assessment items. Tools for inserting, editing, and reordering allow users to 

easily remix various given materials for new purposes. 

The ability to thus copy and modify units takes advantage of a community’s contributions to make design 

more efficient (Recker et al., 2007). One middle school unit on global climate change, for example, has 

undergone multiple iterations by different generations of WISE researchers. As new users copied the unit, 

they made modifications to the embedded models and scaffolds: They added details to the content and 

even re-crafted the narrative to present the ideas from different angles. One version of the unit, for 

example, focuses on how the transfer of energy affects the Earth’s temperature, while another examines 

the chemical reactions behind the greenhouse effect, and a third version introduces the notion of feedback 

loops as an explanation for climate change. It is also possible to merge elements from different units. This 

allows authors to quickly create entirely new activity sequences by combining existing tested material, 

and then modify these for coherence. 

This ability to build on existing materials has moreover permitted systematic refinements to units on 

subsequent classroom implementations. Svihla and Linn (2012), for instance, made multiple iterations on 

their version of the Global Climate Change unit. Small adjustments made with each classroom 

implementation helped to clarify the visualizations, distinguish between concepts, and add structure to 

students’ experimentation with a NetLogo simulation. Ultimately, their iterations produced a version of 

the unit that resulted in higher learning gains. 

The ability to remix existing resources by copying and modifying has also allowed researchers new to 

WISE to quickly design and implement their own research projects. In a period of just several weeks, one 
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visiting researcher appropriated a middle school unit on photosynthesis as the context for a study on 

collaborative learning. Maintaining the unit’s original simulations, she crafted a new inquiry narrative, 

integrated a collaborative tool to scaffold students’ exchanging ideas with their peers, and analyzed 

students’ learning based on existing assessment items (Wichmann, et al., 2014). 

A strength of WISE is that it allows users to draw from the vast resources available online to compose 

coherent and personally relevant investigations (Linn, 2000; Linn & Hsi, 2000). By enabling users to 

draw on a user community resource of shared materials, WISE’s authoring environment aids the 

refinement of existing designs, encourages the initiation of new research, and increases the variety of 

existing materials available for others’ use. 

Make Student Data Available as Evidence to Inform Iterative Refinement 

Making student work accessible means it can be used as evidence for identifying refinements and 

customizations. Indeed, research finds that curriculum customizations informed by students’ work result 

in greater learning gains than typical refinements that rely on teacher insights (Ruiz-Primo & Furtak, 

2007). By making student evidence accessible in many formats and from various outlets, WISE enables 

researchers and teachers to readily use it to guide their revisions or customizations. 

For example, most teachers and researchers make use of the grading interface’s basic facilities for 

displaying class progress through a unit. These simple bar graphs show the percentage of students who 

have completed individual steps in the unit, as well as the percentage of the unit completed by individual 

students. With this information, users can make general pacing decisions that include adjusting allocated 

class time on subsequent implementations. Users may also obtain a snapshot view of students’ ideas by 

browsing submitted responses, filtering these along different dimensions (class period, step in the unit), 

and viewing them by individual student or by step in the unit. Most teachers use the “grade by step” 

feature to see a range of responses to the same question at one time and use this information to customize 

their guidance, class instruction, and the unit accordingly. More experienced users may sort these 

responses according to various criteria, such as teacher-assigned or computer-automated score, whether 

the teacher had flagged or commented upon the response during grading, the number of revisions students 

made, and so forth. They may also view a table of the numbers of students currently working on any 

given step and the length of time spent there. Such information has been especially useful to those with 

previous experience implementing a given unit. By observing when critical masses of students either 

struggle or progress without the benefit of a challenge, teachers can identify where in the unit to adjust 

their face-to-face guidance, as well as how to modify the unit’s embedded scaffolds. Each of the functions 

above allows users to more closely monitor students’ progress and thinking at both the individual and 

group levels, thus informing appropriate modifications to the design of the materials. The My Notes tool 

available in the grading interface furthermore permits users to document private reflections that remain 

associated with the unit and useful as reference during subsequent implementations. 

Researchers can conduct detailed analyses of students’ interactions within the unit by exporting logged 

data in the form of a spreadsheet. McElhaney and Linn (2011) analyzed logs of students’ interactions with 

a simulation of a car collision in a high school physics unit. By examining the number of students’ trials, 

what variables they chose, and how they varied them, the researchers identified categories of students’ 

approaches to experimentation and the necessary conditions for understanding its nature. 

Similarly, Matuk and Linn (2014) used logs of students’ uses of the Idea Manger to identify patterns in 

how middle school students shared ideas during a unit on cell division and the effects of these behaviors 

on their subsequent explanations of cancer treatment. Given ways to inspect and interpret students’ 
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interactions, users can ensure their design refinements are grounded in evidence from students’ work, and 

thus, avoid making unfounded design decisions. 

Allow Users to Appropriate the System to Advance New Goals 

Above, we discussed how WISE’s authoring tools allow units to be adapted to individuals’ local needs. 

However, there are also tools that allow users to tailor the platform itself for broader audiences and goals. 

For example, international researchers have employed WISE’s translation tools to adapt versions of units 

from WISE’s public library in Spanish, Taiwanese, and Dutch. These translated units have been featured 

in teacher professional development workshops and used by students and teachers in Europe, Asia, and 

South America (e.g., Rizzi et al., 2014). They have also served as platforms for users at other academic 

institutes to pursue research programs of their own (e.g., Raes, Schellens & de Wever, 2013). 

New technologies can also be tested within WISE, given the ability to integrate third-party technologies. 

These can include virtual models from Molecular Workbench (Xie et al., 2011) and NetLogo (Wilensky, 

1999), which are themselves free, open-source, and customizable. Users can also embed technologies of 

their own within WISE’s existing step types. 

This is how the Image Annotator was developed: as a basic working version of a tool—programmed in 

Actionscript—that allowed students to directly label existing static and animated graphics. Findings from 

subsequent classroom pilot tests (Matuk & Linn, 2013, Matuk & McElhaney, 2013) prompted users to 

request further features, which led WISE developers to create a dedicated Annotator step based on the 

initial prototype. The latest version features authorable elements, including user- rather than developer-

defined images and label colors, prompts for students to elaborate written explanations of their labels, 

constraints on the number of labels required, and automated scoring and feedback dependent on students’ 

responses. Thus, the result of WISE allowing the embedding of user-contributed technologies and ways to 

easily test them in classrooms led to the development of a new authorable tool usable by a wide audience 

of users both to support and research student learning. 

WISE’s open-source license has attracted an even broader base of users, who by their collective efforts, 

improve and enrich the system for others. Users have set up unique instances of WISE on their own 

servers and are tailoring it for new purposes. At Northwestern University, for example, the Center for 

Connected Learning (CCL) and Computer-Based Modeling, led by Uri Wilensky, has chosen WISE as a 

platform for delivering a curriculum of NetLogo/HTML5 simulations to teach complex systems. Their 

choice was based in their survey of contemporary learning management systems, which found WISE to 

be the most fully featured and capable as a platform to support the delivery and data-logging of their 

technologies (Wilensky, personal communication). Another research group led by Douglas Clark at 

Vanderbilt University has built a novel curriculum-integrated game engine within WISE called SURGE 

(www.surgeuniverse.com) and uses it to investigate how games can teach formal concepts of Newtonian 

mechanics (Clark et al., 2011). Meanwhile, Jennifer Chiu at the University of Virginia has re-skinned the 

WISE platform for a curriculum on engineering design (Chiu & Linn, 2011). 

These examples illustrate the value of maintaining WISE on an open-source license. In doing so, 

improvements to the system evolve from the expert contributions of a distributed community of users 

(Kogut & Metiu, 2001), as uncoordinated developers can propose and select changes that optimize the 

system over time (Axelrod & Cohen, 2000). 
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Recommendations and Future Research 

This chapter discussed four principles behind the design of WISE’s authoring environment that enable 

users to engage in design-related activities for teaching and research. We specifically described how tools 

that enable efficient creation and customization can help lower the bar for design by users of all abilities, 

and empower them to ask and answer their own questions about technology, learning, and instruction. We 

described how the ability to draw upon and remix shared, pre-constructed elements encourages refined 

curriculum designs and supports systematic design-based research. We discussed how making student 

data available for users to inspect and query can inform design revisions, as well as make visible new 

insights into student learning. Finally, we described how the open sourcing of WISE has encouraged other 

researchers to use it as a platform for new research programs. Ultimately, users’ contributions enhance the 

usefulness of the system for others. 

The examples from WISE illustrated how features of authoring environments can support efficient testing 

and iteration of new learning tools, materials, and ideas. In doing so, users can be free to ask and answer 

their own questions, and to make direct modifications based on their observations—behaviors that 

encourage reflective educational practice, and contribute to research insights. Together, these outcomes 

can lead to powerful impacts on students’ learning.  

Below, we highlight three remaining questions derived from this work and discuss opportunities for 

future development. 

How Do We Design Tools that Guide Pedagogically Sound Design? 

While contemporary authoring environments permit considerably more freedom to design outside set 

patterns and structures than did the earlier computer-based instruction systems (Dabbagh, 2001), they also 

permit designs that veer from tested pedagogical approaches. Indeed, a number of commercially available 

authoring environments support the creation of visually appealing materials. However, when these 

environments are not founded on pedagogically oriented design principles, they invite ineptly made, text-

heavy drill-and-practice tasks and few inquiry-oriented activities (Bell, 1998; Dabbagh, 2001; Murray, 

1998). This is especially true when teachers feel pressured to cover large amounts of content. A challenge 

for developers of authoring environments is thus to balance the tension between allowing users the 

freedom to design, while also providing the guidance needed to produce the most effective designs.  

Our experiences suggest the most effective guidance to be in face-to-face support, whether this occurs in 

informal interactions among fellow teachers and researchers, or organized professional development. 

However, features within the authoring environment itself add value by offering timely, in-the-moment 

guidance during users’ independent work. In WISE, guidance is implicit in the pre-constructed resources 

available to authors, which reflect the underlying Knowledge Integration pedagogy. Existing classroom-

tested units exemplify successful instructional patterns (e.g., predict-observe-explain, response-feedback-

revision, faded scaffolds); and when cloned, these serve as templates upon which new authors can build. 

Integrated tools, such as the Idea Manager, are explicit in breaking down the process of eliciting, 

organizing, distinguishing, and reflecting upon ideas; and when integrated into a unit, they scaffold 

students through these steps. Contrary to the media primitives (e.g., buttons, menus, icons) that 

characterize other authoring environments (see Mulholland et al., 2011), these pedagogical primitives 

make transparent an underlying pedagogy with assumptions about how students learn and what makes 

effective instruction (Murray, 2003). 

But how can we ensure that users are actually building upon successful instructional patterns and 

avoiding the lethal mutations that occur when customizations detract from the goals of the original design 
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(Haertel, cited in Brown and Campione, 1996)? The solution may be to explore ways to integrate 

guidance on effective pedagogical and instructional approaches into various stages of the design process 

(Dabbagh, Bannan-Ritland & Silc, 2000). 

To aid in the planning stages, WISE might encourage users to thoughtfully approach their instruction by 

providing tools to conceptually map the flow of activities and associated resources (cf. learning activity 

management system (LAMS), CADMOS, Learning Designer, etc., cited in Conole, 2013). Learning tools 

and activity templates might be explicitly connected to outcomes, such that users might select patterns 

according to the learning goals they wish to target (e.g., incorporate the Image Annotator tool to develop 

students’ observational skills; use a predict-observe-explain task to structure students’ approaches to 

experimentation). “Running” the design would result in an evaluation of its predicted success and offer 

recommendations for activities, tools, and resources to optimize the design for given constraints (e.g., 

available class time, percentage of English language learners, etc.) and better align it with the goals of 

inquiry. 

While authoring, shared artifacts might contain embedded guidance in the form of annotations. These 

could be contributed by designers, education researchers, and experienced educators; and would offer 

authors insights into design rationales and best practices for their use (cf. educative curriculum materials, 

Davis & Krajcik, 2005; Davis & Varma, 2008). 

Finally, ready access to a database of instructional design principles would allow users guidance on-

demand (e.g., Kali, 2006). Integrating these or similar solutions into the authoring process may help 

balance users’ freedom to design with guidance for making pedagogically-sound design decisions. 

How Can We Create Authoring Communities that Also Enable the System to Evolve? 

As discussed, WISE authors benefit greatly from the ability to build upon others’ contributions. Although 

WISE maintains a public database of classroom-tested units, there is currently no way for users to make 

their own creations publicly accessible except by directly sharing individual units with known users. 

Supporting an open marketplace of artifacts has the potential to allow individuals to build on one 

another’s past successes on a large scale (see Morris & Heibert, 2011; Recker et al. 2007). However, 

unsupervised exchange also risks introducing contributions that are not aligned with practices known to 

be successful. 

Whether and how to curate users’ contributions is both a democratic issue, as well as a logistical one. 

Allowing users to freely exchange artifacts can foster the social interactions conducive to learning (Lave 

& Wenger, 1991; Lerner, Levy & Wilensky, 2010; Vygotsky, 1978; Wenger, 1998), and enrich the 

variety of contributions upon which others might draw. At the same time, an open marketplace of artifacts 

might decrease its perceived authority, as it would no longer be a resource of tested, theory-based 

materials. Yet, curation of such a repository would be costly to maintain. It would require the long-term 

commitment of a central individual or group of curators, as well as an effective system for passing down 

knowledge of the system to subsequent members. 

One compromise is for a consortium of curators to maintain a subset of tested materials separate from a 

library for open exchange (cf. Lerner, Levy & Wilensky, 2010). This would offer users both the value of a 

trustworthy resource of materials alongside the value of social interactions and richness of community 

contributed artifacts. The impact of each for supporting high quality authoring needs to be explored.  
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How Can We Tap into the Vast Amounts of Logged Data to Support Authoring and 

Encourage Looking at Students’ Ideas? 

Logged data can be valuable for informing authoring decisions. WISE can track fine-grained data on 

students’ interactions in WISE, from their responses and revisions within units, to the grades and 

feedback received across units and years. Some of this information is accessible through the teacher tools, 

which teachers use to inform their current and future instruction (e.g., when to give feedback on particular 

items, and to whom). Similarly, the authoring system might channel automated scores and other logged 

data to inform specific design decisions. For instance, information documented on past students’ 

performance on particular items might inform authors of areas requiring revision. Archives of students’ 

typical ideas on certain topics, and even records of the average time spent completing particular activities, 

might help authors see where more or less emphasis would benefit students’ understanding. 

These data, along with the annotations and templates contributed by other users, might fuel a 

recommender system to guide authors in following sound instructional design principles and tailoring 

their designs toward particular needs and goals (Dabbagh, 2000). A further question then becomes how to 

design a dashboard that displays these data in ways that make them accessible. What data are most 

appropriate and how are they best visualized to guide authors’ design tasks? 

In sum, supporting educators and researchers in designing learning environments, especially inquiry-

based ones, can encourage more reflective practice, and ensure the long-term sustainability of materials. 

This goal is met when authoring tools follow principles that are sensitive to the design issues faced by 

researchers and educators. 

Design Implications for GIFT 

WISE shares many features in line with the design goals of the Generalized Intelligent Framework for 

Tutoring’s (GIFT) authoring construct. Among others, these include tools that decrease the level of effort 

and skill necessary to author; allow integration of external media; facilitate rapid prototyping and testing; 

enable reuse and adaptation of materials; and rely on an open-source model of development of 

maintenance. 

Two characteristics of WISE’s efforts might inform the design of GIFT authoring tools. One is that WISE 

devotes many resources to creating and making available ready-to-use curriculum materials. Because the 

teachers that WISE targets have little time to devote to creating their own curriculum materials, let alone 

to learning to use authoring tools, the provision of existing materials encourages and sustains their 

engagement, and guides their practice. Units that address specific topics in middle and high school 

science curricula draw teachers to use WISE, and provide classroom-tested seed material upon which they 

can build when authoring their own customizations (Matuk, Linn & Eylon, 2015). 

In seeking similar resources, users self-select as members of a community with specific shared goals. This 

allows WISE to build targeted support. Regularly scheduled gatherings bring WISE users together around 

mutual questions and challenges. These allow researchers and teachers to exchange insights about 

teaching, learning, and technology, and so better understand and appreciate one another’s complementary 

roles. 

This is related to a second characteristic of WISE, which is that through the concurrent nurturing of a 

community of users, teachers are both mentored in their use of the tools, as well as given voice to the 

shape those tools. In-class assistance and online support from WISE researchers, as well as regular 

organized professional development, serve to orient teachers who are new to WISE. They ensure smooth 
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and positive curriculum implementation experiences with the expectation that this initial guidance will 

build teachers’ confidence to author their own customizations for subsequent implementations. 

Teacher-researcher partnerships are moreover opportunities for teachers to contribute to designing and 

refining the tools of their own practice. Over the years, WISE has developed methods for eliciting 

teachers’ insights, and a commitment to incorporating these into new iterations of its technologies (Matuk 

et al., 2015). An approach that thus privileges the voice of a user community ensures that the authoring 

environment is not prescriptive of researchers’ theoretical ideals. Instead, these ideals continually evolve 

with practitioners’ needs and goals, which, in turn, shape and drive the design of the tools. 

In conclusion, WISE has found that its success lies beyond merely providing a comprehensive set of tools 

to meet the anticipated demands of its users. It also relies upon providing multiple channels of support 

and communication among its researchers and teachers. These ensure that the tools remain responsive to 

users’ changing needs and are also used to their greatest value. 
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Introduction 

Intelligent tutoring systems (ITSs) provide customized instruction to students by modeling what students 

need to know and what they seem to know, and by providing adaptive feedback and problem sets based 

on performance within the system (e.g., Beal, Arroyo, Cohen & Woolf, 2010; Graesser et al., 2004). 

Building a successful ITS requires a great deal of time and expertise, which has inspired researchers to 

develop authoring tools to aid in their development (Ainsworth & Fleming, 2006; Blessing, 1997; 

Marchiori et al., 2012). Authoring tools have empowered instructors, researchers, and designers to create 

additional content and modify the ways in which a system responds to different performance and 

behaviors. One key goal of authoring tools is to facilitate these design objectives. Although authoring 

tools are developed for all stages of ITS development, we focus on tools (and the techniques that enable 

such tools) that are designed for researchers and instructors who, ultimately, are the ones who use the 

system. Ideally, for example, domain experts should be able to successfully modify a system for their 

particular domain even if they lack training as a computer programmer (Murray, 2003).  

Notably, not all domains impose the same challenges to the creation and implementation of ITSs and their 

authoring tools. Developing a system to provide instruction on algebra is quite different from a system to 

teach aesthetic design. One common distinction made by developers of educational technologies is 

between well-defined and ill-defined learning problems and domains (Le, Loll & Pinkwart, 2013; Lynch, 

Ashley, Pinkwart & Aleven, 2009). Generally, problems in more well-defined domains have a limited 

number of solutions, and importantly, those solutions can be objectively predefined (e.g., 2x2=4). By 

contrast, problems in ill-defined domains often have multiple solutions and the accuracy or quality of 

those solutions can be subjective and on a continuous scale (e.g., the quality of an essay). As such, 

building an expert model or tracing students’ progress through a series of problems is different for well-

defined and ill-defined domains. In this chapter, we particularly focus on the needs of researchers and 

teachers in the ill-defined domains of reading comprehension and writing, and how those needs can begin 

to be addressed by authoring tools and data collection techniques.  

The observations and recommendations in this chapter are based on two systems developed in our lab: the 

Interactive Strategy Training for Active Reading and Thinking-2 (iSTART-2) and Writing Pal (W-Pal). 

Through our discussion, we aim to extract key lessons we have garnered during our development process 

and use those lessons learned to provide suggestions for Generalized Intelligent Framework for Tutoring 

(GIFT) and other ITSs. Specifically, we first highlight the need for flexibility of content within our 

systems. Researchers require the ability to edit system features to test their effectiveness, and teachers 

need to add and edit content to better align with their courses. The system features that are made available 

to researchers and teachers should be selected to support these particular needs. Next, we highlight the 

potential benefits of collecting and analyzing behavioral data beyond what is required for traditional 

assessments. By conducting such analyses, researchers can learn about the processes underlying students’ 

choices and performance. Importantly, these analyses are intended to eventually feed back into system 

flexibility, affording more appropriate and timely feedback for a broader range of content. Although our 
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recommendations are not limited to systems for ill-defined domains, they have emerged as particularly 

salient topics in our own work.  

Related Research 

In this section, we first provide a brief overview of each of our systems. We then discuss research related 

to scoring student responses using natural language processing (NLP) techniques and stealth assessments. 

Ultimately, these are the approaches we suggest here as having some potential to enhance flexibility and 

efficacy in tutoring systems, particularly in the context of authoring tools. 

iSTART-2 and Writing Pal 

The iSTART-2 system is a game-based tutoring system designed to improve high school students’ 

reading comprehension by providing self-explanation and comprehension strategy instruction (Jackson & 

McNamara, 2013; McNamara, Levinstein & Boonthum, 2004; Snow, Allen, Jacovina & McNamara, 

2015). Students using iSTART-2 complete a training phase before moving on to the practice phase. The 

training phase consists of a series of lesson videos that cover five self-explanation strategies and provide 

examples of their use. These lessons provide students with instruction on how to paraphrase texts in their 

own words, monitor their understanding of text information, predict what topics and information the text 

will next cover, bridge information with previous parts of the text, and elaborate on text information using 

prior knowledge. Each lesson video also includes a series of checkpoint questions that reinforce students’ 

understanding of these strategies.  

The practice phase includes a series of practice activities and customization options. From the practice 

menu, students can engage with several practice games, check their achievements earned during practice, 

or personalize the color of the system of the appearance of an on-screen avatar. The practice games fall 

into two categories: generative or identification practice. In generative practice, students read science 

texts and self-explain selected target sentences. They receive a score and (in certain activities) feedback 

on how to improve their self-explanations. In identification games, students read self-explanations that 

have ostensibly been written by other students, with the goal of identifying which of the five self-

explanation strategies were used by the student. Our research indicates that when students receive self-

explanation training in iSTART-2 (and earlier versions, iSTART and iSTART-ME), their self-explanation 

quality and comprehension improves when compared to receiving no self-explanation training (e.g., 

McNamara et al., 2004; McNamara, O’Reilly, Best & Ozuru, 2006; McNamara, O’Reilly, Rowe, 

Boonthum & Levinstein, 2007). 

W-Pal is a game-based tutoring system designed to provide high school students with strategy lesson 

training, strategy practice, and holistic writing practice, specifically for prompt-based, argumentative 

essays (Allen, Crossley, Snow & McNamara, 2014; Roscoe & McNamara, 2013; Roscoe, Brandon, Snow 

& McNamara, 2013). The system includes eight modules that cover topics within prewriting (Freewriting 

and Planning), drafting (Introduction Building, Body Building, and Conclusion Building), and revising 

(Paraphrasing, Cohesion Building, and Revising). Each of these modules contains a series of lesson 

videos covering specific strategies that students are encouraged to use during the writing process. 

Examples of the strategies and checkpoint questions are included in these videos.  

Students practice using strategies in a variety of practice games that focus students on individual 

components of writing (e.g., practicing conclusion paragraphs). Across games, students are given 

different tasks, such as generating text, answering multiple-choice questions, or organizing information 

by dragging and dropping. The game mechanics, such as points, levels, and bonus activities (e.g., a 

Sudoku-like game) are designed to enhance motivation and engagement. Students can also practice 
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writing essays and receive automatic formative feedback. Research from our lab indicates that students’ 

writing strategy knowledge and writing proficiency improves over time while using the system (e.g., 

Allen, Crossley, et al., 2014; Crossley, Varner, Roscoe & McNamara, 2013). 

Flexibility through Natural Language Processing 

NLP lies at the core of both iSTART-2 and W-Pal. Within both, we have attempted to develop NLP 

algorithms that maintain a certain degree of flexibility within the systems, such that new content can be 

added to the systems (e.g., by the teachers) without having to recalculate the algorithms.  

In iSTART-2, an NLP algorithm drives the self-explanation scoring using both latent semantic analysis 

(LSA; Landauer, McNamara, Dennis & Kintsch, 2007) and word-based measures to provide a score from 

0 to 3. The algorithm is designed to assess the quality of the self-explanation in terms of how well 

students employed self-explanation strategies, not in terms of their content knowledge. That is, the 

comparisons made between the content of the text and students’ self-explanations can detect similarities 

but not inaccuracies. One considerable advantage of not scoring quality of content knowledge (which is a 

very difficult task) is that any text can be entered into the system and used for practice. The algorithm 

assigns a low score when the self-explanation is short or contains irrelevant information and higher scores 

when the self-explanation incorporates information from earlier in the text and other relevant information. 

Scores from the iSTART algorithm have been shown to be similar to those of human raters (McNamara, 

Boonthum, Levinstein & Millis, 2007; Jackson, Guess & McNamara, 2010). Based on these scores and 

other factors (e.g., students’ recent history of scores and the strategies they self-report using), students 

also receive feedback messages. When students consistently generate high quality self-explanations, they 

receive positive feedback. But when students receive lower scores, they might be encouraged to employ 

different self-explanation strategies, such as elaborating on what is in the text with what they already 

know. Instructors are able to add their own texts to the system that students can then self-explain using 

one of the system’s generative practice activities. By adding their own texts, teachers can customize the 

content of iSTART-2 to more efficiently fit into their lesson plans. For example, a science teacher might 

input and assign several texts on photosynthesis; completing this training will then not only provide 

instruction on comprehension strategies for challenging science texts, but also help cover material within 

the teacher’s curriculum.  

NLP algorithms also drive the scoring and feedback in W-Pal. These algorithms are based on several 

linguistic properties of students’ essays, ranging from simple measures such as the total number of words 

and paragraphs, to more sophisticated measures such as syntactic complexity and lexical specificity. 

Linguistic indices are calculated using both Coh-Metrix (McNamara & Graesser, 2012; McNamara, 

Graesser, McCarthy & Cai, 2014) and the Writing Analysis Tool (WAT; McNamara, Crossley & Roscoe, 

2013). These algorithms provide students with both summative feedback on their essay (i.e., a holistic 

score on 6-point scale) as well as formative strategy feedback. The formative feedback provides students 

with actionable suggestions for how to improve the student’s current and future essays. The feedback 

messages align with the strategy lesson videos provided within W-Pal. For example, if an essay contains 

very few words, feedback messages will likely focus on idea generation. Similar to iSTART-2, the 

algorithms in W-Pal are designed to be relatively generalizable; they are not tied to specific prompts. This 

allows teachers to add their own essay prompts into the system and create their own assignments for 

students.  

Stealth Assessments 

The ability for a system to provide intelligent feedback and recommendations to students is, in part, 

dependent on the quality of the student model and the data that drive that model. Performance measures 
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(e.g., accuracy) are clearly important, but sometimes not sufficient for a system to behave ideally—for 

example, they may not successfully detect when a student is sufficiently bored to consider quitting the 

system. Additional measures of student behavior and engagement may also be necessary. One way to 

covertly capture learning behaviors is through the use of stealth assessment (Shute, 2011; Shute, Ventura, 

Bauer & Zapata-Rivera, 2009). Stealth assessments are metrics designed to measure a specific variable 

that are discretely woven into a learning task rendering them invisible to the learner. This design allows 

these covert measures to assess designated constructs (e.g., engagement, cognitive skills, etc.) without 

disrupting students’ flow during learning. Stealth assessments offer an alternative to traditional self-report 

or explicit construct measures. Indeed, one advantage of stealth assessments is that they do not rely on 

students’ perceptions or memory of the learning task, but instead capture the targeted behavior in real 

time as it occurs during learning, thus eliminating the concern of a discrepancy between students’ 

perceived behavior and observations of their actual behavior (McNamara, 2011). Stealth assessments can 

also save valuable time during an experiment or in a classroom. These measures do not have to be 

collected separately from the learning task and as such, and do not require extra instruction or time 

allocation that can take away from the teacher or ultimate learning task.  

There are multiple ways that researchers can create and design stealth assessments (Shute, 2011). 

Relevant to this chapter is the use of online data (i.e., log data, language, and choice patterns) as proxies 

for learning behaviors. Online data have been used as a form of stealth assessment to measure a multitude 

of constructs, such as students’ self-regulatory abilities (Hadwin et al., 2007), amount of exerted agency 

(Snow et al., 2015), and gaming behaviors (Baker, Corbett, Roll & Koedinger, 2008). For example, 

Hadwin and colleagues (2007) used log data from gStudy to examine variations and patterns in students’ 

studying; gStudy is software that displays content to learners and tracks, for example, their annotating, 

searching, and help-seeking behaviors. The authors were particularly interested in examining how log 

data from gStudy could be used to profile students’ self-regulatory abilities compared to traditional self-

report measures. Results from this work revealed that students’ studying habits could be captured by log 

data and patterns in these habits were predictive of self-regulation ability. Such promising results 

showcase the potential for stealth assessments to influence the behavior of an ITS. Critically, however, 

researchers must be careful (and often quite clever) in thinking about which interactions could relate to 

important student attributes or abilities, systems must be designed to record this information, and finally, 

the information needs to be usefully implemented into the system to make it more adaptive to individual 

students. 

Discussion  

Flexibility for Researchers and Teachers 

Our ultimate goal is for iSTART-2 and W-Pal to be widely used by educators to enhance instruction of 

reading comprehension and writing. Specifically, one audience is high school teachers and their students. 

In order to optimize our systems, while simultaneously better understanding the processes involved with 

writing and reading, we also need our systems to be easily used by researchers who want to design 

experiments within our systems to answer research questions. Even research questions that are not 

directly designed to test the system will inevitably give some indication of system effectiveness and 

collect behavioral data from participants’ use. For these reasons, we consider the usability of our system 

for researchers and teachers to be a high priority, thus requiring the development of authoring tools to 

meet their needs. Table 1 provides a summary of the features we discuss. We note that our estimates of 

the difficulty of use are based on anecdotal experiences rather than empirical data. 
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Table 1. Summary of the tools/features discussed in this chapter, including the targeted user for each.  

Feature System(s) User(s) Difficulty Comments 

Lesson/practice 

selection 

iSTART-2 

& W-Pal 

Researchers* Easy Intuitive: Checkboxes mark available 

activities 

Practice activity 

appearance groups 

W-Pal Researchers Moderate Requires an understanding of how different 

completion conditions (e.g., completing a 

game) will trigger the next appearance group 

Performance 

thresholds 

iSTART-2 Researchers Moderate Requires an understanding of iSTART-2 

scoring 

Essay feedback 

quantity/control 

W-Pal Researchers Easy Intuitive: Uses radio buttons 

Essay self-

assessments 

W-Pal Researchers Easy Intuitive: Uses radio buttons 

New essay prompts W-Pal Teachers & 

Researchers 

Easy Intuitive: However, prompts must be for 

persuasive essays  

New practice texts iSTART-2 Teachers & 

Researchers 

Advanced Requires knowledge of how to tag 

appropriate target sentences 

* Currently being considered for teachers 

Note: Difficulty corresponds to the time required to use the feature competently, not masterfully. We estimate 

that “easy” features are immediately usable provided the user has a basic understanding of the system; 

“moderate” features require 1–2 hours to learn; “advanced” features require specialized knowledge through 

training/tutorials (~3–5 hours). 

Before attempting to design a complete set of authoring tools for researchers and teachers, we built 

systems that delivered lesson content that covered targeted strategies and practice activities that provided 

actionable feedback—that is, more or less complete (essentially hard coded) systems that functioned on 

their own. As we tested the success of these systems, building certain tools for our research team was a 

practicality; we needed to toggle features on and off to test their relative effectiveness. Moreover, we 

wanted researchers without a programming background to be able to set these options for different 

students within the system. To meet this need, our programming team developed a web interface through 

which researchers can set the parameters for several options. As these selectable features accumulated in 

our researcher control panel, the systems became more flexible. Because student accounts are enrolled in 

“system classrooms,” each of which has its own settings, researchers can make comparisons between 

students in different classrooms. 

When possible, settings and features are selectable through a live connection between the authoring tool 

and students’ interface. For example, researchers can select which lesson videos and practice activities are 

displayed to students. Figure 1 shows the iSTART-2 researcher control panel being used to disable certain 

practice games from appearing in students’ practice interface. Importantly, the layout of the authoring tool 

for this page matches the layout of the practice interface, with checkboxes indicating which games will be 
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available to students. In W-Pal, a more powerful (though more complex) tool is available that allows 

researchers to both select practice activities in each module as well as the order in which the activities are 

available to students. Figure 2 shows the tool that researchers use to define practice game “appearance 

groups” (i.e., one or more games that appear to students as part of a single group) as well as the 

conditions that must be met to advance to the next appearance group. In the depicted example from W-

Pal’s Body Building module, a researcher has created two groups, each with one game. To advance from 

the first group to the second, a student must complete the game Fix It: Bodies three times. Researchers 

can also define a time requirement for how long students must play a game before advancing (leaving the 

time at zero yields no time requirements). Several other settings are available through this tool, such as 

the ability to control how students are transitioned from one group to the next once time has expired, or 

display pop-up messages to students after completing the appearance group. The appearance group 

editing tool is thus useful for controlling students’ practice experience and assessing the relative value of 

different games. After completing an appearance group that has been set, researchers see a visual 

representation for each group, which is similar to what will be displayed to students. The close alignment 

between what is seen by researchers and students renders it easy for researchers to confirm that settings 

are correct.  

 

Figure 1. Research settings in iSTART-2 and the resulting practice interfaces that are visible to students.  
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Figure 2. The appearance group editor in W-Pal and the resulting visual representation of the groups. 

As examples of more specialized features, researchers in iSTART-2 can set pop-up messages to trigger 

when students do not meet a performance threshold in generative practice games, after which they are 

transitioned to a more rigorous practice activity. In Figure 3, a researcher has set the threshold to a score 

of 2.0 and applied that threshold to the games Map Conquest and Showdown. With this setting, whenever 

students’ average self-explanation quality score is below 2.0 across those games, they receive a pop-up 

message that is defined in the editor. After closing the pop-up message, students are transitioned to 

Coached Practice, an activity that has fewer game features but provides additional feedback to students. 

By using this tool, researchers can assess the effects of alerting students of their poor performance and 

prescribing a specific practice activity as a means for improvement—additionally, the specific wording of 

the message and the stringency of the threshold can be easily manipulated. In W-Pal, researchers can also 

set options that change students’ experiences while practicing; notably, during the process of writing 

essays and receiving feedback. These changes are made through the researcher control panel simply by 

toggling features on and off, or by selecting among options using radio buttons. For example, researchers 

can set whether students self-assess the quality of their essay after submitting it but before receiving 

feedback. Researchers also select whether students have control over the number of feedback messages 

that they receive about their essay, and the maximum number of messages that they can receive. By 

varying these features, researchers can study the optimal conditions for encouraging quality essay 

revisions following the delivery of the automated essay feedback. 
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Figure 3. The self-explanation threshold editor and the pop-up message students receive after not meeting the 

performance threshold. 

Generally, we consider the numerous options available to be a boon for researchers. We view our 

authoring tools as communicative of the features that are potentially important for students. By design, a 

researcher who is interested in reading comprehension or writing should be able to set up system 

classrooms with different settings and design an experiment using our researcher control panel, with 

minimal experience with the system and no programming knowledge. Selecting which system features to 

test and in which combination to design an interesting study, of course, requires expertise. However, 

some features are obviously more important than others, and we rely on researchers to make careful study 

design decisions whenever changing a feature from its default setting.  

For teachers, the communicative function of our authoring tools is somewhat different. Options available 

through the teacher control panel may be considered as a means to customize the system to best match 

course content and classroom needs. When considering many of the features available to researchers, the 

goal of optimally setting system options is ambiguous. Disabling games might seem like a sensible 

decision if the teacher is under a tight time schedule and if the teacher fears that students will ignore the 

goal of learning to write in the context of games. However, our research indicates that eliminating the 

motivating features of games will likely decrease performance over the long term (e.g., Jackson & 

McNamara, 2013). Therefore, we currently do not include the ability to toggle games on and off within 

the teacher control panel. This may change in the future, of course, and teachers always retain their 

control over what they do and do not assign to students. Some features, meanwhile, are esoteric and 

clearly should be excluded from teachers’ options (e.g., being able to disable certain uses of the word 

“game,” which was included for a study in which we did not want to prime students to think of practice as 

gaming). Thus, for teachers, we have aimed to build authoring tools around their needs for adapting the 

system to their course. This has primarily centered on content creation. 

A recent survey found that a majority of teachers prefer to modify the content of educational resources 

they obtain, and that they often share the resources they find with colleagues (Hassler, Hennessy, Knight 

& Connolly, 2014). Our experiences working with teachers match these findings, and we propose that 

flexibility of content is particularly important for ill-defined domains in which skills are often taught in 

the context of topics particular to individual classrooms. For example, the persuasive essay writing skills 

covered in W-Pal might normally be taught in the context of current events or topics raised by a book the 
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class is currently reading. Teachers may be unlikely to use systems in ill-defined domains that do not 

allow them to align practice (i.e., students’ system use) with system content. Because of the NLP 

techniques we use to drive our scoring algorithms, however, our systems are able to meet this 

considerable challenge (see the previous section on NLP for more information). Figure 4 shows the 

interface teachers use to add new argumentative writing prompts into W-Pal. Though plain, this simple 

interface allows teachers to create new assignments in W-Pal that receive the same level and quality of 

feedback as the prompts built into it. Thus, pasting in an essay prompt and assigning it takes minutes and 

provides students, by default, a 25+ minute practice experience (longer if revisions are required). 

Similarly, iSTART-2 allows teachers to add texts to the system that can be self-explained in the practice 

activities. Although this process is somewhat complicated by the need to define target sentences 

(currently, we work directly with teachers wishing to add texts but will add tutorials in the future), it 

allows teachers, without an understanding of the algorithms driving feedback, to expand and customize 

system content. The NLP underpinnings in both systems are invisible to teachers, allowing them to focus 

on adding essay prompts and texts through the simple features available in the teacher control panel. 

Learning to adeptly tag target sentences takes many hours, but once mastered, teachers will be able to add 

texts in about 30 minutes, completing both the entry and tagging processes; practice with each text will 

last 10–30 minutes depending on its length. 

 

Figure 4. Interface for adding a new essay prompt in W-Pal. 

Stealth Assessments and their Representation in Authoring Tools 

An ongoing goal for our systems is to better direct instruction and feedback to each student. Although our 

systems currently deliver feedback messages and make recommendations based on students’ current and 

past performance, we plan to build richer student models that can respond with greater nuance. For ill-

defined domains, in particular, constructing these models is a challenge that must be supported by copious 

data. As we discussed earlier, we are strong proponents of using stealth assessments to help obtain much 

information about students in a non-intrusive manner. In our own system designs, we allow students to 

make important choices that afford meaningful interaction patterns and generate responses that can be 

analyzed using NLP techniques. Essentially, our goal is to build systems that convey rich information 

about students through their normal interactions that go beyond what is directly being measured. This 

promotes meaningful data mining of system interactions. For example, in one study, we analyzed the 
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degree to which students were ordered or disordered in their interactions with iSTART-2, and found that 

more ordered interactions led to better performance (Snow et al., 2015). In another study, we found that 

when analyzing the narrativity of students’ writing over a series of several essays, more successful writers 

were less rigid in their use of narrative elements (Allen, Snow & McNamara, under revision). In both 

studies, we were able to use stealth assessment to measure important student characteristics. In the future, 

we will attempt to leverage our ability to monitor these student attributes by using them to drive feedback 

messages. 

The importance of stealth assessment, however, is not primarily what we wish to push forward (the 

virtues of stealth assessment have already been beautifully laid out in a past volume: Ventura, Shute & 

Small, 2014). Instead, we suggest that stealth assessments should become more prominent and easier for 

researchers (and eventually teachers) to use. The goals are to build better understandings of what stealth 

measures are capturing and, subsequently, drive better instruction for students. Eventually, we plan for 

our authoring tools to provide examples of the types of measures that are logged by the system and 

encourage researchers to consider those measures in conjunction with the other components of their 

studies. Over time, we intend this enhanced awareness of stealth measures to improve the understanding 

of tutoring systems for reading comprehension and writing. This goal could be particularly important for 

all ill-defined domains that already struggle for tractability in scoring and modeling. If a research group, 

for example, conducts a study examining impulsivity and writing performance, they could easily compare 

impulsivity scores with choice pattern measures, which our systems already measure—this could provide 

insight into impulsivity, choice patterns, and their interaction with writing performance. The authoring 

tools that researchers use when setting up their studies should make it apparent that these analyses are 

possible. When researchers are ready to run the analyses, tools should then provide these data to 

researchers in an understandable format. Again, we view it as an important goal of authoring tools to 

communicate system features that are pertinent to the needs of researchers.  

Teachers, likewise, could benefit from an understanding of some of the stealth assessments that a system 

records. Although the system will ideally be using relevant information to guide instruction, keeping 

teachers apprised of their students’ system performance can be helpful for letting the teacher know what 

is and is not working, and, of course, teachers can often intervene in ways that the system cannot (e.g., a 

teacher might assign different work to a student who is struggling with system content). By displaying 

certain stealth measures to teachers within their authoring interface, they will also develop a better 

understanding of how the system works. Although teachers do not need to understand the intricacies of 

how a system’s “intelligence” works, it might also inspire observations about their students’ in-person 

behavior as it connects to their system performance. Perhaps an oft-distracted student is particularly 

motivated by the game components of reading practice, and a teacher can leverage this information in 

other ways. Finally, by empowering teachers with knowledge of how a system works, they are better able 

to communicate their feedback and work with designers to improve its ability to function within 

classrooms. An obvious issue with displaying this information is that it may be counterproductive; instead 

of being enlightening, it may be overwhelming, confusing, and unhelpful. For our own systems, we have 

been cautious in adding too much information and have discussed with several teachers the pros and cons 

of adding specific pieces of information. Our approach to communicating with teachers about these issues 

varies by situation. Some teachers have a strong interest in educational technology and frequently provide 

feedback about their desired features and are excited to provide insights about the utility of more 

advanced features. In other situations, we ask teachers to fill out short online surveys that include free 

response questions asking about how we can improve and what they would like to see added. Based on 

information from teachers, we are planning new features, some of which will convey students’ choice 

patterns. 
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Recommendations and Future Research 

In this chapter, we discussed how stealth assessment techniques undergird our tutoring systems, iSTART-

2 and W-Pal, which operate in the ill-defined domains of comprehension and writing. We specifically 

explore how techniques, such as NLP, can be used within the context of authoring tools and ill-defined 

domains in which student-generated responses must be scored and for which teachers (or researchers) 

may want to add their own content and prompts. Stealth assessments afford researchers the opportunity to 

examine and build more nuanced, complete models of student performance and behavior. Thus, for 

researchers and teachers, these techniques can help inform authoring tools, acting both as communicative 

devices to explain the impact of various features on learning and as means for content to be edited and 

added. 

GIFT offers a platform to build powerful tutoring systems that can adapt to student needs. Its greatest 

strengths are currently most likely to be used by cognitive scientists and programmers who are already 

skilled developers. In order for the efficient advancement and proliferation of ITSs in ill-defined domains, 

however, we suggest that researchers and teachers must collaborate in system design, particularly to test 

and optimize system features. Across the brief time of our using GIFT, it has already made great strides in 

becoming easier for non-programmers to author; the example courses available through the GIFT package 

can easily be used as models and modified. The exemplified ability to use PowerPoint to present 

content—a familiar tool for many researchers and teachers—is an excellent means of affording educators 

opportunities to expand course content.  

One avenue for expanding GIFT would be the addition of features that allow students to generate written 

responses and then receive feedback. Students often experience memory benefits when generating 

content, making generative activities educationally desirable (e.g., McNamara & Healy, 1995; Slamecka 

& Graf, 1978). To support these features, GIFT might consider incorporating simple NLP techniques (see 

Crossley, Allen & McNamara, 2014). NLP algorithms that rely on simple indices such as word counts 

and bags of words can go a long way in providing information about a student’s responses. Such 

techniques can be effective for many purposes such as scoring responses to short answers, open-ended 

questions, and even, essays. As the framework evolves to more easily provide NLP output and use it to 

guide scoring and feedback, more sophisticated techniques can be developed and implemented (Allen, 

Snow, Crossley, Jackson & McNamara, 2014). An important goal for more advanced, flexible scoring 

and feedback algorithms will be to allow teachers to add their own question content.  

Another consideration would be to provide easily understood methods of recording log data during 

system use. As we have discussed, the use of stealth assessments during tutoring affords the means to 

better understand students’ use of the system and also collect information about the student without 

interruptions from surveys or additional assessments. Adding the ability to then implement these data—as 

well as linguistic data extracted from student-generated responses—into student models delivers a 

powerful tool for researchers. For teachers, displaying the most important and interpretable of these 

measures could also be useful to communicate nuances of student performance that might remain hidden 

when only traditional performance summaries are provided. Ultimately, the information provided by 

stealth assessments such as NLP techniques, can improve systems’ ability to identify when students need 

assistance and what specific assistance would be most appropriate.  

One exciting aspect about the GIFT project is its potential to empower both research and educational 

communities with the ability to build powerful ITSs. Because of the flexible and adaptable nature of the 

framework, a wide range of features can be built into systems that cover content in many domains. A 

particular hope is that these systems spread, inspiring researchers to test components of various systems 

and offering educators the opportunity to provide valuable feedback. Through such a network, combined 
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with the power of stealth assessment techniques such as NLP, even the challenges of ill-defined domains 

can be met successfully. 
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CHAPTER 9  Design Considerations for Collaborative 

Authoring in Intelligent Tutoring Systems 
Charlie Ragusa 

Dignitas Technologies, LLC 

Introduction 

Use of eLearning systems has grown dramatically in recent years, driven by demand from government, 

educational institutions, and corporations. Technological advancements have facilitated this growth, 

including software as a service (SaaS), cloud computing, and an increasing variety of delivery platforms 

(e.g., mobiles, tablets, internet-of-things). As Internet access and mobile device usage increase, the next 

generation is accustomed to the concept of interactive media for everything from informal information 

gathering to formal training. 

In comparison to the broader eLearning community, intelligent tutoring systems (ITSs) are still primarily 

limited to a research and development context. A key enabler to the widespread adoption of ITSs will be 

the existence of robust and easy-to-use authoring tools (Murray, 2003). ITS development has special 

challenges compared to a general eLearning system, and development of domain independent ITSs even 

more so. Though certainly not trivial, the basics of authoring in many non-ITS eLearning systems are 

straightforward, typically involving support for authoring of non-interactive content (e.g., text, pictures, 

videos) and simple assessments (e.g., multiple choice). Learner assessment often takes the form of 

quizzes or exams, while content is frequently a link to existing media or an attached document. All too 

often this results in little more than a migration of offline content such as text books and lecture notes to 

an online environment, with the presentation of data enhanced through limited multimedia.  

Authoring for an ITS is more demanding because the system is interactive: the difference is analogous to 

creating a playable video game instead of a movie. Content and knowledge assessment remain essential, 

but ITS-enabled courses require representations of domain knowledge, learner models, expert models, 

pedagogical models, conditional and non-linear flow through the material, and various meta-data. For 

ITSs equipped with physiological sensors, authoring is needed to adapt to the learner’s affective state.  

Due to these complexities, for non-trivial domains, the knowledge and skills required to author effective 

instruction often do not reside in a single individual. The best outcome is achieved by collaboration 

among some combination of instructional designers, subject matter experts, psychologists, traditional 

educators, and software engineers (Nye, Rahman, Yang, Hays, Cai, Graesser & Hu, 2014). This chapter 

examines the challenges related to collaborative authoring in general and as they pertain to the 

Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012). 

Topics include roles and responsibilities, workflow, and software architecture considerations. 

As an intelligent tutoring framework, GIFT is unique in that it is open source and domain independent, 

includes a sensor framework, and is designed to integrate with external training applications. These 

characteristics, along with the author’s familiarity with GIFT, make it well suited for a discussion on 

collaborative ITS authoring. Consequently, discussion from this point forward is very GIFT centric. Of 

course, many of the ideas should be applicable to collaborative authoring in general. 
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Related Research  

While the literature is replete with publications on eLearning and ITSs, relatively little has been published 

on the topic of collaborative authoring for ITSs. Early research on collaborative authoring typically 

addressed collaborative authoring of documents. More recently, collaboratively writing documents is 

pervasive and most readers should have some experience with collaborative authoring in a variety of 

formats such as the following:  

 Documents shared via email 

 Shared network drives within an organization 

 Shared documents on cloud-based drives such as Microsoft OneDrive and Dropbox 

 Wiki page authoring, e.g., Wikipedia 

 Document workflow tools, such as Microsoft SharePoint 

 Google Documents 

 Microsoft OneNote and Word 

 Content Management Systems 

 WebDAV (Whitehead Jr. & Wiggins, 1998)  

 Version control systems such as Subversion, Git, or Mercurial 

Research on collaborative writing continues; however, only some of this work is relevant for eLearning. 

The eLearning industry has published The Ultimate List of Cloud-Based Authoring Tools, which lists over 

50 cloud-based eLearning authoring tools (Pappas, 2013). Several tools offer support for collaborative 

authoring and some even support branching and interactivity, implying a rudimentary level of intelligent 

tutoring. There are a few published reviews of these tools, in some cases comparing many tools (Elkins, 

2013), and in other cases, providing more in depth comparison of just two (Tao, 2015). This set of tools 

offers some insights for collaborative authoring. First, each tool tends to focus on either web developers 

or instructors, and less commonly both. Second, most tools allow authors to create content in ways that is 

familiar to them (e.g., translating their PowerPoint slides into an interactive web page). Finally, most 

tools focus in building specific learning resources that can be embedded as HTML pages. 

Another relevant collaborative authoring environment is Stanford University’s WebProtégé, a free open-

source collaborative ontology development environment for the web (Tudorache, Nyulas, & Noy, 2013). 

WebProtégé is particularly interesting because, in addition to being a cloud-based collaborative authoring 

environment, it embodies many of the concepts described in this chapter including history and revision 

management, built-in discussion support, and interoperability with a desktop version of the Protégé 

authoring tool. Much like GIFT, it is a highly technical editor that outputs extensible markup language 

(XML) (among other formats). Also, WebProtégé is constructed using the Google Web Toolkit (GWT)

 the same platform used to construct GIFT’s web based authoring tools. Assuming the continued 

use of GWT by the GIFT team, approaches and techniques used by WebProtégé may be directly 

transferrable to future GIFT collaborative authoring tools.  
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Discussion 

The current suite of GIFT authoring tools is largely desktop applications (Hoffman & Ragusa, 2014). The 

tools allow flexible configuration of the system, but are aimed toward software developers rather than 

content experts. Moreover, they were not specifically designed with collaboration in mind. However, each 

incremental improvement to the GIFT framework can update these tools, since they are generated 

automatically from the XML schemas of GIFT’s configuration files. Additional coding is necessary only 

when it is required to implement specialized functions, such as creation of custom dialogues or additional 

validation beyond the schema. While these tools do not formally support collaboration, the usual 

cumbersome collaboration methods for collaboration are possible: emailing authored files, shared drives, 

or a revision control system (e.g., Subversion). The latter approach has the advantage of versioning, 

graceful merging of edits, and conflict resolution for when two authors edit the same part of a file. 

Though most GIFT tools are desktop applications, a few are web-based. The GIFT survey authoring 

system was designed as a web application and recent GIFT releases have introduced web-based tools for 

authoring courses and for domain knowledge files. These new tools are a step toward reaching content 

experts, but would be more powerful with explicit support for collaboration. 

General Considerations 

Independent of issues related to collaboration, any new authoring tools should adhere to best practices for 

user interface design (Stone, Jarrett, Woodroffe & Minocha, 2005), such as the following: 

 Intuitive interfaces that do not surprise users with unusual behavior 

 Availability of context sensitive help 

 Aesthetics 

 Input validation 

 User-friendly error messages 

 Undo/Redo 

 Preview capability 

These considerations are not discussed in detail, but are noted here for completeness. 

Terminology and Authoring Granularity 

Currently, GIFT supports authoring and runtime execution at the granularity of a single learner session 

which it calls a GIFT “course.” There is no minimum or maximum time associated with a course, but the 

working assumption is that a course will be completed in a single learner session, whether it be 5 minutes 

or 2 hours or more. Given a single granularity, this is the obvious choice, however, independent of 

collaborative authoring concerns, GIFT should expand its capability to support a wider range of 

granularities and would be well served by modifying its nomenclature to match current norms. One 

suggestion would be to rename the current course construct to “lesson” and repurpose the term “course” 

to describe a series of related lessons.  



 

126 

A further refinement would be to add an optional intermediate level of granularity that could be used to 

define “sections” or “modules” within a course. The precise terminology is perhaps less important than 

the support for the hierarchical construct. Despite this suggestion, unless otherwise noted, “course” will 

be used throughout the remainder of this chapter to reflect a GIFT course as currently implemented by 

GIFT. Collaborative authoring considerations for course/module/lesson hierarchies is left to a future 

discussion. 

Authoring in the Cloud 

GIFT supports both web-based content delivery as well as desktop/fat-client operation. Regardless of the 

runtime environment, GIFT authoring can and should be managed as a cloud-based web application. 

Cloud deployment is an ideal environment for collaborative authoring (Schneider, 2012). Beyond the 

obvious benefits to collaborative authoring of concurrent access by multiple users, cloud infrastructure 

typically includes support for several key elements of a collaborative system such as accessibility, 

storage, versioning, and scalability. For simple courses that require no other client resources beyond a 

web browser, content can remain in the cloud and be fetched by the browser as needed. On a desktop 

runtime environment, the course and any resources needed locally can be downloaded and cached as 

necessary. For the remainder of this chapter, a cloud-based authoring system is assumed. 

Given the assumption of a cloud-based authoring environment, GIFT must move all core authoring 

functions to the cloud. Essential functions of the authoring system (ignoring collaboration, for the 

moment) include the following: 

 Authoring, uploading, and management of content  

 Authoring, uploading, and management of GIFT configuration elements/files 

 Authoring and management of surveys
1
  

 Publishing authored courses (i.e., making them available for use) 

The objective is for authored courses and all required resources to be served from the cloud, and fetched 

or downloaded as needed. Courses requiring only a browser and internet connection can be delivered on 

demand to the browser from the cloud. Courses using sensors or third-party desktop applications will be 

downloaded and cached by the local GIFT runtime, where the user or local administrator will bear some 

responsibility for downloading and installing the necessary desktop applications. 

It should be noted that some changes suggested here will require changes to the GIFT runtime 

environment. As much as possible and practical, existing third-party software (e.g., Java Web Start) that 

can be used without license fees or proprietary encumbrances should be leveraged to handle the low-level 

details, including security related issues. From the author’s standpoint, the goal is a seamless and 

straightforward system. The same cloud application responsible for authoring could then be leveraged for 

tools such as report generation. 

Resource Management, Projects, and Tool Integration 

A typical GIFT course references multiple resources including some combination of the following: 

                                                           
1
 GIFT uses “survey” as a catch-all term for form-based quizzes, assessments, exams, as well as traditional surveys 

(e.g., psychological, biographical, and satisfaction, etc.). 
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 Content (HTML, PDF, PowerPoint, etc.) 

 Core GIFT XML configuration files: Course, Domain Knowledge, Meta-Data 

 Surveys
1
 

 3
rd

 Party Training Applications including application-specific scenario and configuration files, 

such as 3D training simulation data. 

 Secondary XML configuration files: Learner and Sensor Configuration 

Content and XML configurations currently exist as files. Surveys are managed using a relational database. 

To date, third-party training applications have been desktop applications installed on the user workstation 

that not directly managed by GIFT. Existing GIFT best practices are to organize content and primary 

XML configuration files inside a common subfolder of a designated domain folder for the GIFT 

installation. A domain knowledge folder is required, but organization beyond that is not enforced. Rather 

than being configured on a per-course basis, secondary XML configuration files have been managed as 

part of the GIFT installation. 

To facilitate collaboration, GIFT will need to create a project construct to serve as the overarching logical 

container for all the resources related to a specific effort. The project is analogous to the best-practice idea 

of locating related resources in a common folder, but is more flexible. Resources used by multiple 

projects can be stored in a single location and simply referenced by projects as needed. The project 

construct also serves to manage the collaboration settings for the project, including the user names of the 

collaborators, their roles, and access control specifications. This paradigm has parallels to collaborative 

editing tools of compiled documents (such as LaTeX, e.g., www.overleaf.com) or code projects (e.g., 

Cloud9, c9.io). 

GIFT currently uses a distinct editor for each major authoring task. This is true of both the desktop 

authoring tools as well as the browser-based authoring tools. The project construct also serves to unify the 

tools so that the user experiences the tool suite as a single unified tool with multiple integrated functions. 

With the project construct as a framework, two collaboration functions are essential:  

 Project creation 

 Collaborator management 

Project creation means the creation of a new project within the system. Collaborator management is the 

infrastructure used to manage collaborators and their roles, permissions, and workflow. 

Types of Collaboration 

Collaboration can take multiple forms. The most basic forms of collaborative authoring include in-person 

reviews where a document is shown on a shared screen and a group reviews and/or edits together. 

Another simple collaborative authoring technique is sharing documents via email or a shared document 

repository for multiple authors to contribute to or review. In the following sections, more advanced 

collaboration modes and related issues are discussed. 

http://www.overleaf.com/
https://c9.io/
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Concurrent Editing 

In a concurrent editing environment, multiple authors can edit a shared document in real time. Edits made 

by one author appear immediately in the views of the other authors. Well-known commercial applications 

supporting concurrent authoring include recent versions of certain Microsoft Office applications, 

Microsoft OneNote, Etherpad, and documents in Google Drive. Aside from a few variations, these 

applications all work similarly in that they are cloud-based, require sharing of the document with other 

collaborators, and allow updates and edits to be seen by other collaborators in real time (if shared with 

those collaborators).  

Concurrent editing has the obvious advantage of allowing real-time collaboration between two or more 

remote authors, which closely mimics working together side-by-side at a single workstation or 

whiteboard, especially when paired with an additional voice or chat communication channel to discuss 

ideas. This is especially useful for authoring where ideas are not fully developed, and require discussion, 

negotiation, and agreement by the authors.  

Roles 

In the context of intelligent tutoring, collaborative authoring implies a team of two or more individuals 

working together to create an intelligent tutor. In some cases, the team members may be peers, in which 

case the team may exist for no other reason than to divide the workload or support peer reviews. 

However, a more likely scenario is that the team consists of individuals with differing skills and 

backgrounds that are brought together to leverage their complementary talents. Thus, before considering 

the nature of role-based collaboration, we first define some common roles of potential collaborators.  

Key authoring roles include the following: 

Instructional System Designer This is a person with experience and/or formal training in the design and 

construction of instructional systems. A person in this role is well founded in learning theory and the 

application of current technology to the learning process. 

Subject Matter Expert Within the context of a given authoring project this is the person with advanced 

domain knowledge in the area to be trained. The expertise could be from advanced education in the 

area, life experience, or both.  

Course Facilitator This is the person(s) that will be responsible for delivering the training to the 

end-user (learners). They could be an actual instructor in a blended learning environment or simply a 

training coordinator. 

Supporting roles include the following: 

Educational Psychologist This is a person with an expertise in the science of learning from both a 

cognitive and behavioral perspective.  

Software Engineer The existence of this role reflects the idea that certain ITS capabilities require 

expertise in programming, formal logic, or other specialized skills. Thus, the software engineer’s role 

is to manage and/or implement any lower-level system requirements or configuration items that are 

either not handled by the authoring tool’s user interface or require strong technical expertise. 
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Experimenter Given that GIFT and other ITSs are often used as research tools, experiments are an 

important part of the ecosystem. This role involves implementing an experimental design and 

collecting the correct types and quantities of data to satisfy the objectives of an experiment. 

Reviewer This is a role that exists to capture and approve learners’ completion or results, with 

responsibility for review and approval. An example would be a training compliance officer within a 

corporate environment. This role may overlap with other roles, particularly the course facilitator. 

Administrator This is a system-level role. Users with administrative privileges have the ability to 

configure authoring tool and application-wide settings, perhaps including adding and/or approving 

new users to the site and assigning roles. 

It’s worth noting that the composition of authoring teams is likely to vary widely from one organization to 

another and even from one project to another within an organization. In many cases, a single individual 

may support multiple roles, and in other cases, multiple individuals may share the same role. 

Additionally, though the set of roles described above may be sufficient for many authoring environments, 

the system should not limit users to the roles in this set. Rather the system should support the arbitrary 

creation of new roles via assignment of access levels and privileges. 

Role-Based Access Control 

Controlling access to project resources based on role is valuable for collaborative ITS authoring. It is a 

ubiquitous concept in multi-user information technology (IT) systems. Collaborators are assigned one or 

more roles on a per-project basis, and their access to resources is constrained by their least restrictive role. 

Allowing “read” and/or “write” privileges for each role may be sufficient for most projects, although 

“create” and “delete” for management roles may also be required. Such constraints serve to declutter 

views and minimize unwanted and potentially costly erroneous operations.  

It is worth considering the granularity at which privileges can be set, as too fine a granularity can be 

overwhelming for those setting privileges, but too coarse a granularity may leave gaps where a user has 

too few or too many privileges. Fine granularity gives the administrator the most control, but coarse 

granularity is easier to implement. In places where fine granular control is appropriate, the burden should 

be minimized by cascading changes on nested resources and resource elements. 

Both the organizational level and the project level of a collaborative authoring system should allow role-

based access control. Roles and permissions established at the organizational level would become defaults 

for any new project, but could be customized by the project as needed, simplifying initial setup. 

Role-Based Interface Customization 

In light of the roles previously described, it is clear that different collaborators may need to interact with 

the authoring system in substantially different ways. Some roles have completely non-intersecting skills 

and experience, and may author different parts of the course. All portions of the course under 

development frequently require input and/or review by more than one user. Displaying content in a form 

that is natural to the author or reviewer should be considered a best practice. 

Multiple viewers/editors can be built in to the authoring system to provide an intuitive interaction for a 

user based upon the role(s). The working assumption is that users with a given role will have similar 
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expectations and technical abilities. For example, many software engineers may prefer editing content as 

raw XML, whereas subject matter experts may prefer a graphical drag-and-drop interface. 

At a minimum, interfaces must have two modes: one that allows editing and one that is simply for review 

where edits are not permitted. For this functionality, the interface would remain effectively the same. This 

level of interface customization may be sufficient for some portions of the authoring system, while others 

would benefit from fully separate views of the data. There is a trade-off in terms of effort required to 

implement additional interfaces and a pay-off in terms of usability of those interfaces. Accordingly, 

analysis and input from potential users in each of the target roles must drive the decisions to implement 

each additional interface (i.e., build to meet demand). 

Workflow 

Role-based access controls constrain who and what can be edited, while a workflow typically (though not 

always) imposes constraints based on timing, sequencing, and roles. Enterprise document management 

systems offer examples of formal document workflows, such as Microsoft SharePoint. GIFT authoring is 

currently unconstrained by workflow. Courses can be authored in a top-down or bottom-up fashion, and 

any and all aspects of a GIFT course can be edited at any time. If workflow is desired, it must be agreed 

upon and managed by the collaborators themselves. 

Given the extreme flexibility and generalized nature of GIFT, low-level authoring is unlikely to ever be 

constrained by workflow. Nevertheless, implementing support for workflow for high-level authoring 

could have several advantages for collaborators, including division of labor, support for review/approval 

processes, assignments based on expertise, or enforcement of authoring best practices. 

A system of note in this regard is EasyGenerator (www.easygenerator.com), a commercial cloud-based 

adaptive system, which supports both collaborative authoring and built-in workflow. In EasyGenerator, 

authoring is performed using a didactic approach. Authors first enter learning objectives based on course 

goals. After goals and objectives are established, authors enter questions used to evaluate student learning 

of goals. Finally, learning content is added/authored. Content can be added separately or it can be tied 

directly to a question. 

For GIFT, workflow support could be created at one of three different levels. The first and simplest level 

would be to provide built-in support for one or more pre-defined workflow templates, analogous to the 

EasyGenerator approach. The second level would integrate a workflow engine into the authoring system 

and provide a means to upload (or choose from previously uploaded) workflow configurations created 

outside of the authoring system. The third, and most sophisticated, approach builds on the second but 

includes support for creating the workflow definition within the authoring tool itself. 

Before developing any workflow, it is essential to solicit input from the user community. This is 

especially true for the first level, given that user-configurable workflow would not be supported. For the 

second and third approaches, a key step is to identify a suitable workflow engine. One promising option 

in this regard is jBPM (http://www.jbpm.org/), an open-source business process management (BPM) 

suite, which includes, among several features and tools, an extensible pure Java workflow engine 

supporting the Business Process Modeling Notation specification (www.omg.org/spec/BPMN/2.0/). Of 

course, jBPM is just one of many open-source workflow engines that might be applied to this purpose 

(for more examples, see java-source.net). 

http://www.easygenerator.com/
http://www.jbpm.org/
http://www.omg.org/spec/BPMN/2.0/
http://java-source.net/
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Inline Support for Collaborator Communication 

Support for inline communication is an appreciated feature in many collaborative environments. This 

functionality is primarily provided by two modes of communication in current technology. The first 

allows real-time conversations/discussions between collaborators with a global real-time chat capability. 

Applications such as Google Chat provide this capability and are widely available for no cost. For many 

use cases, this may be sufficient; however, there is some advantage to having the capability built in to the 

collaborative authoring system. With a built-in capability, a record of the conversation could be saved as 

part of the course “project” and then referenced in the future. Also, because the current state of the course 

is readily available on their screen, collaborators are able to more easily reference the material they are 

discussing.  

The second mode of communication is per-element annotations that can be associated with various 

aspects of the course. This functionality is seen on the review tab in Microsoft Office products, which 

allow “comments” on specific parts of a document. Such a feature enables asynchronous communication 

between authors concerning specific aspects. For example, reviewers could use it to note confusion or 

mark something needing improvements during the review process. 

Should the GIFT team decide to implement support for comments, decisions must be made as to the 

appropriate level of granularity. In the case of Microsoft Word, comments can be inserted/attached to 

something as small as a single character. However, as a practical matter for GIFT, it may be best to keep 

the comments fairly coarse to avoid introducing unnecessary complexity to the authoring tools. There are 

also issues about the portability of comments across multiple authoring interfaces for the same data (e.g., 

raw XML vs. a form-based tool). 

Social Networking 

Collaborative authoring is social by its very nature. However, beyond the obvious, it is uncertain exactly 

what role social networking should play. It may be that social networking in the larger sense has more of 

a role in the end-user/learner experience than in the authoring process itself. In this case, the authoring 

system would clearly require support for configuration of the social networking aspects of the runtime 

environment, perhaps on a per-course basis, and could then provide a view into data generated via the 

social interactions as a means to inform ongoing course development. Furthermore, it is not uncommon 

for instructors to engage with learners in a social learning context, so a mechanism to support this may 

also be required. Given the assumption of a cloud architecture, it is easy to envision the instructor’s 

interaction being mediated through the authoring system itself, blurring the distinction between the 

authoring system and the runtime system. 

On the other hand, in the event that GIFT (or any other ITS) is deployed as large-scale SaaS platform, 

there may be a role for social networking in authoring. One can imagine, for example, the authoring 

system allowing authors from different organizations sharing resources, ideas, etc. Of course, this is 

impractical for commercial enterprises based on proprietary intellectual property but fits well with various 

open education initiatives. In general, this area has a wide variety of areas for investigation and requires 

significant further research.  

Version Control and Course Publication 

Version control of documents is essential in a collaborative authoring system. The idea is to protect work 

progress against inadvertent changes and deletion by saving revisions of the work as it progresses. In the 
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event that unwanted changes or deletions are made, the system provides a mechanism to roll back to an 

earlier revision. 

GIFT currently manages course configuration and content at the file level, while surveys are managed as 

entries in a relational database. The first step for revision management would be to manage revisions at 

these same levels. Concurrent editing requires a more sophisticated approach than file-level management. 

One approach would be to abandon the notion of files and store configuration and content items as objects 

in a database. In this way, revisions can be tracked at more granular levels. This approach also supports 

other ideas described in this document such as access constraints, workflow, and comments. For 

versioning surveys, database schema changes would be required. 

Currently GIFT course authoring and publishing are decoupled. Thus, after authoring, a second explicit 

step, using the GIFT export tool, must be taken by the author to export an authored course—a process 

which packages up one or more GIFT courses, including copies of required resources, in a form suitable 

for distribution. After receiving the distribution, the recipient of the exported course must explicitly 

import the course into a GIFT instance.  

Once the GIFT authoring tool and GIFT content both reside in the cloud, the distinction between a course 

that is under development (i.e., being authored) and one that’s ready for use will be blurred. Courses in-

progress may reside in the same repository and (depending upon the implementation) may actually 

reference some of the same shared files. The act of publishing a course then becomes an operation that 

provides visibility and access to a particular revision(s) of a set of course resources, rather than the 

physical act of copying files. Additional refinements to the course would be saved as later (non-

published) revisions, that can be published if desired. 

Course Resource Metadata 

A potentially valuable feature for the authoring system would be support for metadata tagging of course 

resources. Such a capability is probably best categorized as a like-to-have feature more than a must-have, 

but is certainly worthy of consideration. Such a scheme would be useful for capturing and managing 

documentation of rationales for key decisions, references for content acquired from third parties and other 

data relevant to the authoring process. Having such data stored and available alongside the corresponding 

resource could be useful to authors in the same way that inline code comments are useful to computer 

programmers. The true value of such metadata is often fully appreciated (either by their presence or their 

absence) only when the content is revisited or modified at some point in the future, particularly by a new 

author. 

Managing metadata at the file level could be done as a sub-element of the project construct and/or as part 

of a shared content repository. Approaches for finer grained management vary depending on the resource. 

For example, metadata for objects in a database (e.g., surveys) are probably best handled by extending the 

database schema appropriately. Given that GIFT already supports metadata tagging of content for 

pedagogical purposes, there may be some opportunity for synergy or reuse. 

Usability Metrics 

Any new authoring system should include support for capturing usability metrics. The objective is to log 

user interactions with the authoring system and then, once a sufficient dataset is collected, perform an 

analysis on the data to better understand how the system is used. Lessons learned from the analysis can be 

applied to improve the application’s user experience in forthcoming releases.  
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 At a minimum, the application should be instrumented to capture the following time-stamped data: 

 User navigation to the functional areas of the application  

 User access to the help system 

 Usage errors (e.g., errors caught by input validation) 

 Server response times 

Finer-grained instrumentation could include detailed logging of user interactions (e.g., mouse clicks) with 

widgets contained in the different functional areas. Also, although the value of the help system can often 

be inferred from surrounding user interactions, it may be worthwhile to directly ask users of the help 

system if the provided help was satisfactory via a simple checkbox conveniently and unobtrusively 

located within the help display. 

Details about data analysis must be left for another discussion; however, it is worth noting that users must 

be tracked individually, rather than collectively, and the analysis should not be viewed as a static data set 

but rather should track how user behavior changes over time. Doing so enable inferences to be made 

about collaboration as well as how individuals and teams increase in their proficiency over time.  

Integration with Third-Party Authoring Tools 

GIFT currently has some level of integration with four systems: AutoTutor (Graesser, Chipman, Haynes 

& Olney, 2005; Nye, 2013), the Student Information Models for Intelligent Learning Environments 

(SIMILE) Workbench (Goldberg & Cannon-Bowers, 2013), Tools for Rapid Development of Expert 

Models (TRADEM) (Brown, Martin, Ray, & Robson, 2014), and RapidMiner (Hoffman & Klinkenberg, 

2013). None of these authoring tools are integrated seamlessly, but the design of GIFT is meant to support 

authoring of ITSs via external (third-party) applications that deliver content and user experiences within 

the context of a GIFT course. Indeed, the current version of GIFT includes sample courses that use 

AutoTutor, Virtual Battlefield Simulator 2 (VBS2), Tactical Combat Casualty Care Simulation (TC3Sim; 

Sotomayor, 2010), PowerPoint, and others. In each case, scenarios and/or content was developed using 

the training application’s respective authoring capabilities. 

As a matter of practicality, it is not feasible for GIFT authoring tools to integrate with more than a small 

subset of possible third-party authoring tools, although these integrations are beneficial. Integration with 

third-party tools means that each new release of either system incurs a significant burden of ongoing 

testing and maintenance. In addition, many third-party authoring tools exist only as proprietary desktop 

applications and very few expose the requisite functionality via an application programming interface 

(API), making cloud-based integration difficult if not impossible. Hence, as a general rule, external 

authoring tools will not/should not be integrated, but rather should remain as independent tools, the output 

of which is used as input to the GIFT authoring system. 

A compelling use case driven by either a unique technical capability and/or substantial user demand could 

motivate an exception to this rule. Of course, the extent to which such integration can be made seamless 

would vary based upon technical feasibility. One of the four systems currently integrated with GIFT, 

AutoTutor is an ITS unto itself and offers the most promise in terms of authoring integration.  

AutoTutor’s compelling capability is that it provides the ability to engage learners in two-way dialogue 

driven by computational linguistics and semantic analysis. Additionally, the AutoTutor runtime has been 

integrated with GIFT for some time now. More recently the AutoTutor Script Authoring Tool has been 
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released as a web application (Nye, Graesser, Hu & Cai, 2014), and thus is well suited for integration with 

any web or cloud based authoring system for GIFT. 

There will likely be increased interest and opportunities for integration with third-party authoring systems 

as the GIFT authoring capability matures and its popularity grows. Each potential integration partner 

system must be considered based on its merit and weighed against competing opportunities. An 

alternative approach might be to make a common plug-in API for third-party authoring tools, though this 

might be complex to implement in a cloud-based environment. Since GIFT is an open-source project, this 

sort of specialized integration may best be left to third-parties with a vested interest in the success of the 

respective authoring system. 

Mobile 

Without question, GIFT should support mobile learning; however, mobile authoring seems less of a 

priority. Desirable though it may be, there are simply too many competing priorities. The work of creating 

and maintaining platform specific (iOS, Android, Windows, etc.) apps as well as addressing the concern 

for minimizing bandwidth seems like an unnecessary burden at this time.  

That said, it would be wise for ongoing ITS authoring development to proceed with a mobile future in 

mind. At the very least, developers should be acquainted with mobile best practices so as to architect the 

system in such a way as to facilitate migration in the future. Until such time, mobile considerations may 

best be limited to designing web pages to render effectively on mobile devices. 

Scalability and Cloud Architecture Considerations 

Earlier we made the assumption that any collaborative ITS authoring system would be best constructed as 

a cloud-based web application. However, the discussion thus far, save for a brief mention of the 

advantages of deploying within the cloud, has relied very little on cloud technology per se. In fact, the 

only real assumption has been that an authoring tool would be Internet accessible and support multiple 

concurrent users. For small-scale use, a traditional web application would be sufficient. In theory, the 

entire system could reside on a single host, perhaps augmented by a second host for database operations. 

For enterprise-level deployments, more sophisticated architectures are required to take full advantage of 

the cloud, especially in the area of scalability. Perhaps the greatest scalability challenge would arise from 

offering GIFT (inclusive of the authoring system) as a SaaS platform. In such a case, there would simply 

be a single GIFT presence in the cloud, which would scale to meet demand as new organizations and their 

users came on board.  

To gracefully support this level of scalability, GIFT must be architected for and implemented on a cloud 

infrastructure, either platform as a service (PaaS) or infrastructure as a service (IaaS). While a detailed 

discussion on the implications of these choices is beyond the scope of this chapter (see Mell & Grance, 

2011 for an overview), PaaS would allow developers to start at a higher level of abstraction and thereby 

accelerate development. The trade-off, of course, is that PaaS ties the application to the chosen platform, 

reducing, and perhaps even, eliminating, any hopes for portability. This may be irrelevant for a 

commercial enterprise, but may be of some concern for an open-source project such as GIFT. Conversely, 

the choice of IaaS will tend to maintain a higher level of portability at the expense of development time 

and long-term maintenance expense.  

A particularly interesting IaaS option is OpenStack (www.openstack.org), an open-source IaaS platform. 

Ignoring the relative merits of OpenStack vs. other IaaS options, OpenStack has the unique advantage of 

http://www.openstack.org/
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being available both through commercial OpenStack cloud service providers, while also being deployable 

to organization-owned hardware for an internally owned and operated cloud.  

Lastly, regulatory and compliance requirements, such as International Traffic in Arms Regulations 

(ITAR), must be considered for certain applications by US government agencies and contractors. Amazon 

Web Services, for example, offers Amazon Web Services (AWS) GovCloud (2015) to address this 

concern. In general, service providers have been expanding to fill these types of spaces, with specialized 

support for government needs and also Health Insurance Portability and Accountability Act (HIPAA) 

privacy regulations. 

The IaaS/PaaS choice is just the first of several architectural considerations, where getting the architecture 

right is the fundamental design that will determine scalability. The bottom line is that development of any 

cloud-based authoring system must be preceded by a thorough analysis of cloud architectures, in light of 

current and anticipated system requirements.  

Recommendations and Future Research 

Future success of advanced ITSs will depend on the availability of collaborative authoring tools. Any 

effort to develop the next generation of such authoring tools should be preceded by a thorough analysis 

including the following: 

 Detailed examination of the design considerations as outlined here, 

 Review of analogous tools such as WebProtégé and EasyGenerator, and 

 Input from the user community to identify design considerations and priorities. 

Once objectives and priorities for the authoring tool are established they must also be put into the larger 

context of schedule and budget for the ITS as a whole. Tradeoffs will have to be made between advancing 

the capabilities of the ITS itself and advancing the authoring system.  

Given the rapid pace of development of GIFT (and presumably other ITSs) authoring tool design should 

plan for change. To the greatest extent practical, the authoring system should be built with appropriate 

abstractions, perhaps as a framework, so that authoring for new ITS capabilities can be added with 

minimal changes to the system as a whole.  

Finally, while authoring tools are currently mainly used to support research on ITSs and their capabilities, 

a sophisticated collaborative authoring environment could offer a testbed for research on the psychology 

of collaboration. Even in the short term, quantitative research studying the performance and efficiency of 

the ITS authoring systems is an important direction. As such, moving forward, identification and analysis 

of a common set of usability metrics is probably an important step forward. 
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Chapter 10  Authoring for the Product Lifecycle 
Steve Ritter 

Carnegie Learning 

Introduction 

Intelligent tutoring systems (ITSs) and other adaptive learning environments have been developed and 

tested for many years, and there is substantial evidence that they can contribute to significantly better 

student outcomes (Van Lehn, 2011; Pane et al., 2014). However, such systems have found limited use in 

schools and training programs. In part, this reflects a mismatch between the traditional educational 

environment, which holds time fixed and aims to teach students as much as possible within that time, and 

adaptive systems (and other mastery environments), which aim to allow students to define levels of 

student mastery and then provide enough instruction to allow students to reach that level of competency, 

however long it takes. 

Within the authoring tool community, there is another theory about the relatively slow adoption of 

adaptive learning environments: they are too expensive to produce. In the classic volume on such 

authoring tools (Murray, Blessing and Ainsworth, 2003), there are two stated reasons for developing 

authoring tools: “to reduce development cost, and to allow practicing educators to become more involved 

in their creation.” (p. iv). In both of these goals, we have primarily focused on the creation of the 

instructional systems (c.f. Blessing, 2003; Razzaq and Heffernan, 2010; Aleven, et al., 2006). Some 

systems have focused on reuse of existing systems (Ainsworth, et al., 2003; Ritter and Koedinger, 1996), 

but even these take the creation of a new system from existing parts to be their goal. 

It is important that authoring tools for intelligent tutoring systems focus on being able to create new 

systems quickly and on making authoring accessible to teachers and content experts who are not 

sophisticated programmers. But if ITSs are to become widespread and in regular use, they need to also 

focus on features that allow these systems to be maintained and improved over time. One of the primary 

advantages of ITSs is that they allow us to collect detailed data on student learning, which can help us 

improve the educational outcomes of the systems themselves. We call this focus on continual 

improvement “authoring for the product lifecycle.”  

The Far-Outer Loop 

VanLehn (2006) describes tutoring systems as containing an inner loop and an outer loop. The inner loop 

relates to the tutor’s behavior at each step of a complex task; the outer loop is responsible for choosing 

tasks for a student. In fact, the inner and outer loop description applies more generally to adaptive 

systems. Within adaptive systems, inner-loop behavior is responsible for guiding students through a task, 

including providing hints and feedback for the student, diagnosing errors and adapting to different 

methods of problem-solving that the student might employ. The outer loop helps the system adapt to the 

student by assessing the student’s level of knowledge at a higher level. The outer loop sets appropriate 

pacing for the student (for example, by assessing mastery and allowing or recommending that the student 

progress to the next topic when master is obtained) and picks appropriate tasks for the student to complete 

(typically aiming to select tasks that emphasize skills that are within the student’s zone of proximal 

development). In this way, tutoring systems adapt both within-task and across tasks. 
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Product-lifecycle authoring introduces an additional form of adaptation, taking place in what could be 

referred to as the far-outer loop. This loop encompasses changes to the tutoring system at a timescale 

larger than the task level. These changes represent improvements to the system itself that are made based 

on data collected from prior users of the system. The goal of a tool focused on authoring for the lifecycle 

is to enable rapid and relatively inexpensive responses to data collected from the system, so that future 

students using the system will have an improved experience. When considering such a system, we need to 

consider the possible changes to the system that can result from this data collection and some models for 

how to implement changes to the tutoring system itself. 

Types of Data-Based Changes 

Our first consideration for product-lifecycle authoring is the type of changes that we might make to 

systems based on these data. We consider four types of changes: those affecting system parameters, those 

focused on instructional design changes, those addressing content, and those affecting the ability of the 

system to be personalized for different types of students. These types of changes differ in the extent to 

which they require extensive changes to the system and the extent to which they employ human judgment 

(and thus cannot be easily automated). 

Parameter Changes 

A common type of change to ITSs is to adjust the parameters that control how the system reacts to 

students. For example, model-tracing tutors typically assess student knowledge with respect to discrete 

skills, also known as knowledge components. The system’s task is to assess each student’s mastery of 

each knowledge component. Many tutors perform this task through Bayesian knowledge tracing, which 

employs four parameters for each knowledge component (Corbett and Anderson, 1995). Two of these 

parameters represent estimates of knowledge: the probability that the student has mastered the knowledge 

component prior to instruction and the probability that the knowledge component will be mastered, given 

an opportunity (this parameter is basically controlling the ease of learning the knowledge component). 

Since knowledge is not perfectly reflected in performance, Bayesian knowledge tracing also uses two 

performance parameters: the probability that the student will guess the correct answer (i.e., answer 

correctly without having mastered the underlying knowledge) and the probability that the student will 

“slip” (i.e., answer incorrectly, even though the student does possess the requisite knowledge). Since each 

of the four parameters is considered a probability, each can vary between 0 and 1, although there are 

various reasons why particular areas of this four-dimensional problem space may not be used (Beck and 

Chang, 2007; Ritter et al., 2009). 

Since settings of these parameters control task selection and mastery determination, they are essential 

components in implementing the outer loop of a tutoring system. Although the settings of these 

parameters is crucial to proper behavior of the system, the parameters are typically based on the intuitions 

of the developers in the initial release of a tutoring system. Once data are collected from students, best-

fitting values for these parameters can be found (Cen et al., 2007; Gonzalez-Brenes et al., 2014; Khajah et 

al., 2014), and Cen et al. (2007) demonstrated that modifying the system to use the discovered parameters 

can produce better outcomes. 

Beyond fitting Bayesian parameters within knowledge components is the question of whether the task is 

being modeled with the correct set of knowledge components. Decomposing a task into the knowledge 

components that best explain learning is also typically done based on intuition (informed by cognitive 

task analysis). Here, too, there is a need for empirical refinement. Koedinger et al. (2012) demonstrate 

that models found through data-fitting provide significant improvements over the initial intuition-driven 
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model. Thus, authoring systems that manage changes to such parameters over time can provide significant 

benefit to a widely used system. 

Design Changes 

Adjusting knowledge tracing parameters can correct inefficiencies in the way that the tutoring system 

navigates the outer loop. If a deficiency in the system involves the inner loop (the nature of the task 

itself), changes may require fundamental changes to the task model itself. Dickison et al. (2010) found 

that parameter adjustments made on the basis of previously collected data correctly modeled a new 

student cohort, except in the case of an instructional unit that had undergone design changes. Since design 

changes can negate the validity of changes to knowledge tracing parameters, it is essential that authors 

wishing to improve a system be able to understand whether improvements can be achieved through 

parameter changes or if they require design changes. In a system maintained for any length of time, there 

are always a long list of potential design changes to be made. Some are driven by customer requests; 

others by technical changes. If changes are to be made on the basis of the potential for improvements in 

the instructional effectiveness of the system, then a lifecycle authoring system needs to provide guidance 

to authors that can help prioritize these improvements and predict their likely impact. 

While it is difficult to provide general guidance on identifying design errors, Carnegie Learning’s 

experience suggests a few heuristics that could be helpful in prioritizing design changes. Internally, we 

use an “attention metric,” which combines several indicators of educational ineffectiveness, to which we 

(as authors) must direct our attention. The most important relates to “wheel spinning” (Beck and Gong, 

2013), the case where students fail to master a skill in what is considered a reasonable amount of time. A 

pure mastery learning system will continue to try and instruct such a student, even if no progress is being 

made. In our tutors, we terminate instruction on this topic after some period of time and notify a teacher 

that the student has failed to master the topic. Instructional topics that produce a large number of such 

notifications are strong candidates for redesign. In fact, parameter fitting on such units may be 

counterproductive. If a particular unit is not producing improvements in performance, then fitting 

parameters based on the data might lead to a near-zero probability of mastering the skill on an 

opportunity, which would result in such a system wanting to present even more ineffective instruction to 

students. 

Another factor we have found useful in our “attention metric” concerns the way that teacher treat units of 

instruction. Teachers have control over inclusion of units of instruction within a curriculum, and units that 

are often excluded are good candidates for scrutiny. Similarly, teachers can manually skip students past 

particular problems, and the record of the frequency of this kind of behavior can indicate that those 

problems are perceived to be confusing or otherwise ineffective. 

Content Changes 

One form of task change within a tutoring system involves changes to the content presented within a task, 

rather than the basic structure of the task. Such content changes could be driven by user feedback to the 

authors (e.g., ratings of helpfulness or enjoyment of particular activities), or the desire to allow end-users 

to customize their system (Heffernan & Heffernan, 2014), increase the number of task contexts, or 

increase the variety of contexts. 

Depending on the sophistication of the task model and architecture of the overall system, content 

authoring might employ general tools that can easily be used by non-programmers, or they might employ 

special-purpose tools, whether for programmers or not (Ritter et al., 1998). In a lifecycle authoring tool, 

the particular concern for content is in managing the data about particular pieces of content. Such a 
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system needs to track what elements of content are being used and (if available), which receive high or 

low ratings from users. A particular concern related to lifecycle content authoring is the issue of problem 

morphs. Tutoring systems assume that problems that are modeled with the same knowledge components 

and delivered with the same task model are educationally equivalent. A lifecycle authoring system needs 

to provide tools to determine whether this assumption is justified. If some problems prove to be 

unexpectedly difficult or easy, then either the task model or the knowledge component model will need to 

be adjusted. 

Personalization 

A particularly compelling type of change to a tutoring system is one that personalizes the system such that 

different students receive different educational experiences. Such personalization changes would be 

warranted, for example, if data showed aptitude-treatment interactions: that a particular tutoring approach 

worked well for students with certain characteristics but that a different approach worked best with 

students possessing different characteristics. Many people have strong intuitions that aptitude-treatment 

interactions are pervasive in education and, particularly, believe that learning styles reflecting a preferred 

presentation mode (such as verbal vs. visual) reflect such interactions, but the evidence for this is weak 

(Pashler, et al., 2009). More modest forms of personalization do seem to be effective (Ritter et al., 2014). 

An important consideration for lifecycle authoring tools would be identifying potential opportunities for 

treating individuals or classes of individuals differently within a tutoring system. Yudelson et al. (2014) 

describe a technique for identifying whether a tutoring system should treat subclasses of students 

differently for the purpose of knowledge tracing. 

Models for Applying Changes 

The previous section focused on the types of changes that we might want to make to a tutoring system, 

based on data collected from that system. Another dimension to be considered in a lifecycle authoring 

system is the model for approving and applying such changes to the system. We consider three types of 

models. In the “manual” model, the data are analyzed and reviewed by authors before changes are made 

to the system. In the “automated” model, the data are collected and analyzed by a stored set of 

procedures, and the changes to the system are automatically applied. The “crowdsourced” model 

combines aspects of the human judgment applied in the manual model and the programmed changes used 

in the automated model. In this case, changes contributed by users can be automatically incorporated into 

the system, making users authors. But the model might also have a publishing model where a central 

authority approves changes or where users (or particular categories of users) approve changes or control 

who has access to the changes. A key issue within each of these models is determining when our 

confidence in the data currently collected justifies making changes to be seen for future users. Given the 

concerns of personalization and, in some cases, uncertainty about how user populations may change over 

time, this is a difficult statistical issue that has not received enough attention. 

The Manual Change Model 

The manual change model is a model of iterative change with humans (typically learning scientists) in the 

loop. In this model, instruction is often instrumented to provide feedback about what elements of 

instruction are most effective. Sometimes, A/B tests (randomized field experiments) are employed, 

providing data directly relevant to future improvements; other times, more naturalistic data collection is 

involved. 
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The Open Learning Initiative (oli.cmu.edu) courses are good examples of how manual iterative 

refinement can produce more effective courseware (Thille, 2008). These courses collect extensive data, 

from embedded tutors, manipulatives and other embedded activities that provide extensive information 

about the effectiveness of various aspects of individual courses. In many cases, it can be relatively easy to 

identify areas for improvement in a course, but there is often a large space of potential design 

improvements available to remedy the flaws. Instead of relying solely on in-house expertise, the OLI 

project aims to develop a community of practice, sharing results on elements of the courses and soliciting 

ideas for improvement. 

Improvements to Carnegie Learning’s geometry tutor represent another example of the manual change 

model (Butcher and Aleven, 2008; Hausmann and Vuong, 2012). Over a period of several years, iterative 

improvements in the design of a tutor teaching reasoning about angles in a geometric diagram were 

conducted, focused on more closely following research on self-explanation and on the contiguity principle 

(Clark and Mayer, 2011). The process involved a series of lab-based and small field design experiments, 

which eventually led to large implementations and field evaluations. Results showed that students were 

able to reach mastery in less time and with the need to complete fewer problems in the improved version 

of the tutor. 

The Automated Change Model 

The manual change model is quite flexible, potentially leading to a wide variety of changes, but it is 

labor-intensive and can take years of effort to produce improvements. The automated change model may 

be more limited in its scope, but automated changes are able to be applied much more quickly. 

The basic idea behind the automated change model is that one can pre-specify a design space of potential 

approaches to instruction (or paramaterizations of approaches). The system is then able to explore the 

design space, collecting data on what approaches work best. 

Liu et al. (2014a) used Learning Factors Analysis (LFA; Cen, et al., 2007) to automatically discover 

knowledge component models that best explained previously collected data from cognitive tutors. In this 

process, the author specifies a set of knowledge components that might potentially represent relevant 

learning factors. For example, in modeling the ability for students to take the area of geometric figures, 

the orientation of a triangle (base parallel to the ground or not) may or may not cause difficulties for some 

students. These skills become parameters for potential use in a predictive model. LFA is also able to 

“merge” knowledge components to produce new parameters. For example, the LFA model discovered 

that computing area “backwards” (calculating one of the linear measures, given the area) was a difficulty 

factor for circles but not for rectangles. This parameter results from merging the potential knowledge 

components related to particular shapes and to working backwards. In almost all cases, the models found 

by LFA were superior to those developed by experienced developers, even after years of manual 

refinement. While changes resulting from LFA have not yet been automatically applied to the tutoring 

system, it would be straightforward to create a system that did automatically apply the results of such an 

analysis. At this point, automatic refinement of this kind requires enough confidence in the technique. It is 

likely that such confidence would result from continued demonstrations that such changes not only 

produce improvements in model fits but that applying such improvements produce real-world 

improvements. Some such randomized field trials are currently underway. 

One approach that is inherently fully automated is the use of multi-armed bandit procedures (Liu et al., 

2014b). As with LFA, the multi-armed bandit approach starts with a specification of a design space for 

the application. The approach typically works well with large spaces that can be parameterized. The 

approach performs a search of the design space in the field, presenting different variants of the 
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educational system to different students. Designs (defined by sets of parameters) that work best (by 

whatever metric is able to be used in the field) become probabilistically favored in selection for new 

students. Eventually, the system converges on a design that works best for users. One important 

consideration in this type of system include balancing the need for exploration of the design space and the 

desire to exploit the parameters representing the most effective variant of the system. Implementations of 

this kind of system must also be in contexts where it is reasonable to measure effectiveness quickly and 

reliably. 

One concern with automated change models, particularly in commercial systems, is maintaining some 

control and knowledge over the changes made. If we are to rely on automated changes, we need to be 

very certain that the changes made will result in better performance, not just for typical students but 

across the whole range of students using the system. 

The Crowdsourced Change Model 

Adaptation to different student populations is a strength of the crowdsourced change model. In this 

model, users (or some subset of users) are able to contribute to the improvement of the system, either by 

creating new content or providing feedback on existing system content and features. Key to the 

crowdsourced change model is the ability to create a community in which users feel rewarded for their 

contributions. Variants of this model may be similar to the manual change model (in the case where 

suggested changes are centrally curated) or the automated change model (in the case where user-

generated content is automatically provided to other users). 

Razzaq et al. (2009) provide an example of a crowdsourced content authoring system. The ASSISTment 

Builder is a content authoring system allowing end-users (particularly teachers) to extend ASSISTment 

by writing new content. Their goal was to provide a system that is simple to use but also provides some 

flexibility in allowing advanced users to variablize content, enabling users to create a large quantity of 

items. This new content can be immediately provided to other users, resulting in something like an 

automated improvement model. The system also provides a feedback mechanism for users, which 

provides a basis for manual improvements in the system. Users are able to point out errors or contribute 

suggestions for improvement in particular items.  

Aleahmad et al. (2009) similarly describe an open content authoring system, grounded in creating a web-

based authoring community. A particular goal of this system was to encourage a wide variety of items, 

which could enable the resulting system to better personalize content to address particular student 

interests. The system also contemplated a rating and curation system that would allow the community to 

vet content before it was presented to students. 

The Lifecycle Authoring System and Implications for the Generalized 

Intelligent Framework for Tutoring (GIFT) 

If ITSs and other adaptive learning systems are to achieve wide adoption, they will need to be built with 

the expectation that they can change over time. Lifecycle authoring systems allow these systems to 

capitalize on one of their most important advantages: their ability to collect and make sense of data that 

can result in improvement to the systems themselves. The design goals of the Generalized Intelligent 

Framework for Tutoring (GIFT) architecture include consideration of the use of data to improve 

instructional effectiveness (Sottilare & Holden, 2013), but much work remains to be done in identifying 

commonalities in the way this may be done across different tutoring systems and formalizing these 

commonalities into standard approaches to system improvement. 
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While different lifecycle authoring systems will take different approaches, all systems need to consider 

two basic dimensions: the types of changes that they support and the model for applying such changes. 

We would not expect a single system to be designed to support all types of changes and all models. Some 

change models seem particularly appropriate for particular types of changes. For example, automated 

change models seem particularly suited to parameter changes, since they require a description of the 

search space. Crowdsourcing seems particularly suited to content changes, under the assumption that 

content creation is a natural domain for end-users, particularly, users who are teachers. Design changes, 

on the other hand, may require input from programmers, instructional designers and domain experts, 

leading to the likelihood that such changes will be produced with a manual change process. Advance 

planning for the types of changes expected to be made in adaptive systems and incorporation of 

appropriate models for improvement will allow advanced adaptive instructional systems to become more 

mainstream, leading to better educational outcomes. 
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CHAPTER 11  Authoring Agent-based Tutors 
Keith W Brawner

 

US Army Research Laboratory  

Introduction 

The purpose of this introductory chapter is not to raise questions or present recommendations, but to 

attempt minor summary of the conversations among the literature. Many of these written works have 

revolved around the ideas of identification of authors, establishment of roles, reductions in complexity, 

and automation. The artificial intelligence (AI) community has long desired to “democratize AI” through 

the use of tools to encode knowledge in expert systems, neural networks, and other items. These efforts 

have fallen somewhat short: AI for problem solving purposes remains in the hands of engineers, 

scientists, and programmers. The field of intelligent tutoring systems (ITSs) has made somewhat better 

progress but has started looking to the agent-based AI world for solutions, making this section timely and 

relevant. Before addressing the topic of agents and their authoring, it is helpful to refresh the mental 

model of tool software lifecycle. 

The Birth of a Tool 

Given that necessity is the mother of invention, it is no surprise that the ITS tools, thus far, have been 

primarily crafted toward a single system, template, use case, or user category. The creation of a tool is 

frequently the last portion of the development of a system, relegated to the end of a project along with 

user manuals, training materials, and long-term supporting logistics. The reason for this is simple: tooling 

occurs after machining. 

There has been little research into ITS tools as a factor of two things. The first is byproduct of being late 

in the developmental cycle, while the second is the multi-faceted nature of the tools. ITS authoring tools 

naturally involve pedagogical strategy, learning knowledge modeling and assessment, content creation 

and supplementation, and other items. Each of these items calls for a somewhat unique solution, and in 

this section, I call for a science of the pedagogical authoring process, as it relates to pedagogical agent 

creation (Shaffer, Ruis & Graesser, 2015). 

The Life and Growth of a Tool 

The life of a tool is naturally closely tied to the life of the system. At the time of system creation, there is 

usually no tool to speed the process of development. Developers must handcraft each of the system parts, 

edit configuration files by hand, and test various configurations for speed and effectiveness. After a 

workable solution is found, the work of creating the ITS components can be offloaded to a knowledgeable 

user with the appropriate background. This usually occurs with a simplistic tool, such as an extensible 

markup language (XML) editor, interface specifier, or simple application programming interface (API) 

specification. Projects such as the Generalized Intelligent Framework for Tutoring (GIFT) *AT editing 

tools, and the AutoTutor Script Authoring Tool (ASAT) have reached these stages by XML editing 

(Brawner & Sinatra, 2014) and script authoring (Nye, Hu, Graesser & Cai, 2014), respectively. 
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Assuming that the system survives long enough to be well used or profitable, such a knowledgeable user 

usually has enough of a programming background to automate part of the process, program a workflow, 

or otherwise decompose the authoring task into pieces. This allows the task to be performed by less 

knowledgeable users such as undergraduate students or interns. Projects for authoring conversational 

agent-based tutors such AutoTutor have recently reached this stage (Nye et al., 2015). 

The Death of a Tool 

Assuming the system survives long enough to reach a modicum of success, the authoring task is 

decomposed into component parts and performed by more junior personnel. Such a task is time 

consuming but uncomplicated, and automation techniques begin to become attractive time-saving items. 

Projects such as SimStudent (MacLellan, Koedinger & Matsuda, 2014) allow mostly automated authoring 

through a process of knowledge demonstration. With SimStudent, such knowledge demonstration can be 

performed by any user with knowledge of the domain of instruction, but relies upon the extensive 

architecture underpinning a simulation of the environment, measurement of actions, and tutoring system 

interoperability. Each one of these items could potentially have a tool to aid a category of user in 

assembling a system, if the situation is complicated enough to warrant it. 

ITS Complicated 

One of the themes that repeats itself through the ITS literature conversation is the simple fact that ITSs 

are complicated. The word “complicated” is used as a proxy for expensive, time-consuming, difficult to 

understand, and other themes. The construction of an ITS currently involves personnel with knowledge of 

instructional design, learner modeling, a specific domain, sensors/interfaces, machine learning 

interpretation of data streams, and the ability to create a student environment that is able to provide these 

assessments and feedbacks. Another author in this section describes the process as requiring “deep and 

broad knowledge to manage these constraints, accommodate tradeoffs, and negotiate incompatibilities” 

(Shaffer et al., 2015). 

One of the goals of the GIFT project is to simplify this expertise required through the creation of 

interoperable “modules,” with each of them tasked with the functions above (Learner, Pedagogical, 

Sensor, Domain, etc.). In this manner, the hope and plan is to create a module (or module plug-in) only 

once, allow it to interoperate, and to extensively reuse it. Such a module could be a plan for instruction, 

such as the Engine for Management of Adaptive Pedagogy (Goldberg et al., 2012), or a machine learning 

process for interpreting sensor data from game environments and the Microsoft Kinect (Baker, DeFalco, 

Ocumpaugh & Paquette). This type of solution, however, raises a new problem: that of generalization. 

Generalization 

The problem of generalization is a discussion that permeates all conversations where GIFT is involved. 

The first book in the Design Recommendations for Intelligent Tutoring series attempted to summarize the 

problem of generalizable models of student performance (Sottilare, Graesser, Hu & Holden, 2013), while 

subsequent books have addressed domain-general models for instruction (Sottilare, Graesser, Hu & 

Goldberg, 2014), and future books intend to address the topics of assessment and teams. In each meeting 

to discuss each problem, the question of “how can X be done without explicit and complete knowledge of 

Y?” is raised, where X and Y relate to any of the other modules. 
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ITSs, as a category, are intended to cut across all categories of training. ITS authoring, as a category, cuts 

across all categories of modules and components. The unique challenges presented are how to construct 

tools that generalize to the general purpose of the ITS. In this regard, the authors of this section present 

solutions and recommendations for how this may be accomplished for agents (Cohn, Olde, Bolton, 

Schmorrow & Freeman, 2015), in complex domains of instruction (Shaffer et al., 2015), during assessing 

conversations (Zapata-Rivera, Jackson & Katz, 2015), and with pedagogical and authoring soundness 

(Lester, Mott, Rowe & Taylor, 2015). 

Agents 

One of the reoccurring themes is that, as part of the natural process of replacing a human tutor with a 

computer tutor, the computer tutor should be presented in the form of an agent. Agent-based software 

technology has struggled with many of the same problems that ITS generalization has: domain-general 

behaviors, user behavior recognition, user intention recognition, response planning, management of 

specific domain knowledge, etc. (Allen et al., 2000). 

The chapters in this section are especially relevant to the agent replacement conversation. The nature of 

computer teaching agents is that they can teach more complex domain information, involve deeper 

knowledge elicitation (Rus, Stefanescu, Niraula & Graesser, 2014), and generally improve learning 

(Graesser, VanLehn, Rosé, Jordan & Harter, 2001). The task of creating such learning agents is difficult 

and worthy of discussion in this chapter. The chapters within this section provide timely and relevant 

descriptions of authoring tools for agent-based tutors and include descriptions of existing tools and 

methods that uniquely support agent-based tutors; emerging technologies for agent-based tutors; and 

recommendations for how GIFT should be enhanced to make authoring of agent-based tutors easier/more 

efficient. 
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Introduction 

Pedagogical agents hold great promise for enhancing the learning experience of students within intelligent 

tutoring systems (ITSs). There is mounting evidence that ITSs lead to improved student learning (Beal, 

Walles, Arroyo & Woolf, 2007; Schroeder, Adesope & Gilbert, 2013) and in some cases, have been 

found to be nearly as effective as one-on-one human tutoring (VanLehn, 2011). The timely and 

customized advice of ITSs may be further enhanced by the addition of pedagogical agents embodied as 

virtual characters that have the ability to motivate students while simultaneously providing 

complementary feedback through deictic gestures, motions, and utterances (Lester, Voerman, Towns & 

Callaway, 1999; Rus, D’Mello, Hu & Graesser, 2013). Advancing the case for employing pedagogical 

agents in tutoring systems is the increase in availability of game engines and graphics hardware capable 

of rendering lifelike virtual characters with significantly reduced development effort (Petridis et al., 

2012). 

Despite the potential for increased student engagement and the reduced cost of creating lifelike virtual 

characters, pedagogical agents have not yet achieved widespread adoption in computer-based learning 

environments. A formidable and well-known barrier to building and widely deploying a pedagogical 

agent is the complexity and expense associated with instilling the pedagogical agent with domain-specific 

knowledge and tutoring strategies (Murray, 2003; Woolf, 2009). Furthermore, an additional complication 

in creating an effective pedagogical agent is that the agent must present believable, lifelike behaviors such 

that students feel they are observing and interacting with “a sentient being with its own beliefs, desires, 

and personality” (Lester & Stone, 1997). Thus, a limiting factor in the widespread deployment of 

pedagogical agents is the significant effort and pedagogical agent expertise required to codify knowledge 

and behaviors from subject matter experts into the ITS. 

An approach to solving this problem is improving the efficiency of codifying expert knowledge by 

creating pedagogical agent authoring tools that are tailored for subject matter experts rather than 

researchers. However, creating an effective authoring tool for subject matter experts poses two principal 

challenges. First, it must facilitate the creation of curricular content for the learning environment by 

subject matter experts who are not pedagogical agent experts and are often not software engineers. 

Second, it must support the creation or modification of pedagogical agent behaviors without exposing the 

complexity of the pedagogical agent itself to the subject matter expert. In practice, a majority of the 

design and programming effort expended on pedagogical agents is developing the agent and the learning 

environment itself. This often results in the authoring tool being treated as an afterthought, leaving little 

time or resources to design and develop authoring tools that are suitable for subject matter experts. Based 

on our experience developing a pedagogical agent authoring tool for educators, this chapter identifies 

promising authoring tool principles and features that could improve the authoring efficiency of subject 

matter experts. To conclude, we reason that the Generalized Intelligent Framework for Tutoring (GIFT) 

(Sottilare, Brawner, Goldberg & Holden, 2012) could be used to provide a high-quality implementation of 

these authoring tool design principles and, therefore, act as a force multiplier for creating new 

pedagogical agent-based tutoring systems that use GIFT. 
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Related Research 

Creating authoring tools for building ITSs is receiving ever-increasing attention from the research 

community. With a goal of making ITS creation and authoring accessible to subject matter experts who 

are not computer scientists, progress is being made in researching approaches to create authoring tools 

(Susarla, Adcock, Van Eck, Moreno & Graesser, 2003; Jordan, Hall, Ringenberg, Cue & Rose, 2007) and 

automate aspects of pedagogical agents such as dialogue (André et al., 2000; Si, Marsella & Pynadath, 

2005; Piwek, Hernault, Prendinger & Ishizuka, 2007) or nonverbal behaviors (Lhommet & Marsella, 

2013). 

Authoring tools for conversation-based learning environments have focused on assisting non-technical 

users in the creation of pedagogical agent dialogues. AutoTutor provides multi-agent conversational 

interactions to tutor students using the discourse patterns of a human tutor. AutoTutor has been used 

across multiple domains including computer literacy and physics (Graesser, Chipman, Haynes & Olney, 

2005). To facilitate the application of AutoTutor to other domains, authoring tools have been developed 

to aid subject matter experts in creating dialogue-based tutors, such as the AutoTutor Script Authoring 

Tool (Susarla, Adcock, Van Eck, Moreno & Graesser, 2003) and AutoLearn (Preuss, Garc & Boullosa, 

2010). Another example of an authoring tool for agent dialogue is TuTalk, which was created to support 

the rapid development of agent-based dialogue systems by non-programmers (Jordan, Hall, Ringenberg, 

Cue & Rose, 2007). This tool facilitates the authoring of domain knowledge and resources required by the 

dialogue agent in the form of artificial intelligence (AI) planning techniques that address high-level goals 

of the dialogue system. Similarly, an authoring tool has been created for the Tactical Language and 

Culture Training System (TLCTS) that allows subject matter experts to create pedagogical dialogue for a 

foreign language learning training system at reduced cost and time (Meron, Valente & Johnson, 2007). 

Another approach to improving pedagogical agent authoring is to remove the need for authoring 

altogether through the use of automation. In particular, automating the creation of pedagogical agents’ 

lifelike nonverbal behaviors eliminates a potentially significant amount of authoring effort. Cerebella is a 

system that monitors an agent’s utterances (in both text and audio formats) and automatically generates 

lifelike nonverbal behaviors such as averting gaze, raising an eye brow, or slumping shoulders (Lhommet 

& Marsella, 2013). The automatically generated nonverbal behaviors inferred from the communicative 

intent and underlying mental state of the agent can be used as an additional channel of communication 

between the pedagogical agent and the student, increasing the agent’s believability as well as students’ 

engagement. The THESPIAN system reduces the effort to author pedagogical agents by facilitating the 

creation of interactive pedagogical dramas (Si, Marsella & Pynadath, 2005). In THESPIAN, the learner 

and the pedagogical agents interact with each other as characters within a story. THESPIAN accepts as 

input a set of scripts that it uses to automatically generate and adjust agents’ goals to guide their behavior. 

Another example of automating pedagogical agent authoring tasks is to convey domain knowledge to the 

student through observations of simulated conversations and interactions between agents. The agent 

dialogue, character selection, and content rendering tasks would be automatically performed by the 

presentation system as described by André et al.(2000). In this approach, information is communicated by 

decomposing knowledge into atomic information units that are then conveyed to the student through 

verbal and nonverbal interactions between two or more agents.  

Authoring of pedagogical agents can be accelerated by leveraging knowledge that has already been 

recorded in other forms such as Wikipedia pages, PowerPoint presentations, dialogue scripts, or PDFs. 

The Tools for Rapid Automated Development of Expert Models (TRADEM) project parses existing 

domain content and automatically generates dialogue, questions, and a script that represents the order of 

instruction based on the ordering of the original content (Robson, Ray & Cai, 2013). This system can be 

used to create a minimal dialogue-based tutoring system where a pedagogical agent can ask questions and 
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evaluate student answers related to the original content without requiring a subject matter expert to 

explicitly author the knowledge or assessments in the ITS (Brawner & Graesser, 2014). Text2Dialogue is 

another system that can use existing knowledge represented as text files to produce dialogue that is acted 

out by 3D virtual characters (Piwek, Hernault, Prendinger & Ishizuka, 2007). A significant difference 

between this approach and the previously described presentation system developed by André et al.(2000) 

is that Text2Dialogue can accept textual information as input without presentation goals being defined by 

a subject matter expert, which means that dialogue may be generated from existing text files without 

requiring annotation by a subject matter expert. 

Even though the aforementioned research into implementing, augmenting, and eliminating the need for 

pedagogical agent authoring tools holds great promise, there is still an immediate need for effective and 

efficient tools that enable subject matter experts to codify knowledge and tutoring strategies as 

pedagogical agents without requiring the subject matter experts to possess or acquire programming or 

intelligent tutoring expertise. 

Discussion 

To address the immediate need for effective and efficient authoring tools, we present seven design 

principles that are grounded in software engineering practice and have the potential to significantly 

improve pedagogical agent authoring tools intended for subject matter experts. We illustrate our 

discussion with the COMPOSER authoring tool, which was developed for non-technical subject matter 

experts to author pedagogical agents. We describe our lessons-learned using COMPOSER to create a 

pedagogical agent for a widely deployed ITS for upper elementary science education. 

Design Principles for Pedagogical Agent Authoring Tools 

To make pedagogical agent-based learning environments more widely available, authoring tools must be 

designed and implemented that empower subject matter experts to quickly and efficiently populate the 

domain knowledge and tutoring strategies used by the pedagogical agent. To this end, creating usable and 

efficient authoring tools can be framed as a software engineering problem that may be addressed by 

general software design principles. The principles we advocate are well established in software 

engineering. Our contribution is discussing how to operationalize these principles in the context of 

authoring pedagogical agents. Since the design and implementation of authoring tools directly impacts the 

design and implementation of intelligent pedagogical agents (and vice versa), we recommend that the 

following pedagogical agent authoring tool design principles be considered at the beginning of a project, 

and leveraged in concert with the development of the learning environment, rather than leaving the tool 

development for the end of the project, where the tool will be constrained by an existing pedagogical 

agent implementation. In this section, we enumerate software design principles and features that should 

be considered for inclusion in a subject matter expert-centered pedagogical agent authoring tool. 

Adopt a Familiar User Interface Paradigm 

From a usability standpoint, the most important feature of an authoring tool is its user interface (UI). 

Ideally, a pedagogical agent authoring tool should present a UI that is familiar and intuitive for the type of 

subject matter expert who is intended to use it. Instead of requiring the subject matter expert to conform 

to unfamiliar ITS naming conventions and authoring workflow, the authoring tool should be modeled 

after software that the subject matter expert is already comfortable using. For example, if the intended 

user of the tool is a K-12 teacher, this type of user is likely very comfortable using Microsoft PowerPoint 

to create presentations to be shown in the classroom. Likewise, if the type of subject matter expert is a 
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computer scientist, this user will be comfortable writing code and using an integrated development 

environment (IDE), such as Eclipse. Of course, existing UIs and usage paradigms can (and should) be 

improved upon; however, instead of starting from scratch when designing an authoring tool, modeling 

upon an existing tool leverages decades of real-world usability and efficiency improvements. 

Modeling a pedagogical agent authoring tool’s UI after an existing authoring tool, such as Microsoft 

PowerPoint, does not imply that the tutoring knowledge constructs must be as simple as the content in a 

typical PowerPoint presentation. This would indeed be challenging since tutoring systems are likely to 

require authoring pedagogical strategies or annotating answer correctness, which are features that are not 

afforded by the PowerPoint UI. Instead, this principle implies that the authoring tool should model the 

existing tool by using similar naming conventions, presenting similar software features, and mimicking its 

workflow. For example, a pedagogy-oriented authoring tool might represent blocks of curriculum 

knowledge as “slides” in a PowerPoint-like authoring tool (Figure 1). Likewise, a slide might provide 

 
 

Figure 1. Slide-based authoring paradigm illustrated by the COMPOSER authoring tool user interface 
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static text or multimedia that is used to convey information to the student, as well as embedded 

assessments that are used to gauge student competencies. Slides could be associated with production rules 

for teaching the specific concepts and skills represented by the slide, while tags enable the pedagogical 

agent to associate students’ performance with an overarching set of knowledge components. Without the 

subject matter expert explicitly authoring it, the pedagogical agent could use this metadata and the student 

model to determine the next slide to display to the student. 

Include Standard Editing Features 

Modeling a pedagogical agent authoring tool after a mature software package, such as Microsoft 

PowerPoint, suggests the implementation of several software features that are expected and relied upon 

by typical software users; however, these features are often nontrivial to implement and have profound 

effects on how data are represented, stored, and manipulated within the authoring tool, which is likely to 

affect how the data are represented in the ITS itself. For example, copy, cut, and paste features are 

expected by users to be available on any data type that can be authored in a tool. This feature may require 

deep or shallow copies of data models used to represent curriculum and pedagogical data while 

maintaining relationships between the data. Similarly, the undo and redo features enable users to 

experiment and quickly repair authoring mistakes. Undo and redo can drastically impact the design and 

implementation of the authoring tool itself and, therefore, should not be left as a feature to be added at the 

end of project when there is limited time to refactor data models or add revision tracking to the content 

being authored. 

Support Author Collaboration 

A pedagogical agent authoring tool should implement features that allow multiple subject matter experts 

to collaborate while authoring domain knowledge and pedagogical strategies. Collaboration has the 

potential to increase both the quality and quantity of content available to the ITS. Users have come to 

expect and rely upon collaboration features in other contexts. For example, at one extreme, multiple 

authors can use web browsers to simultaneously edit a single Google document, presentation, or 

spreadsheet. The authors can view each other’s modifications and chat with one another while editing. 

Likewise, many content authoring tools enable change tracking to record which author made a change and 

when, or allow an author to comment on a piece of content without changing it in the form of a note. 

Implementing collaboration in an authoring tool will have significant impacts on the design of data 

models, the architecture of the application, and user authorization in regards to who is allowed to access 

which data. For example, storing domain knowledge and pedagogical strategies in a cloud-based server 

and implementing a web browser-based authoring tool would simplify implementation of collaboration 

features. Of course, this decision would need to be considered early in the design of the pedagogical agent 

and the authoring tool since it would impact the architecture and implementation of the entire system. 

Facilitate Rapid Iteration and Testing 

To facilitate refining the domain knowledge and pedagogical agent behaviors, the authoring tool should 

support a “rapid iteration” mode where small changes made in the authoring tool can be quickly seen and 

interacted with in the context of the ITS. In this mode, the subject matter expert can ideally interact with 

the pedagogical agent while editing content in real time or with only a minor delay. This feature allows 

the subject matter expert to quickly confirm that content is presented in a visually appealing manner in the 

learning environment and that the pedagogical agent behaves in a believable manner while the subject 

matter expert is modifying properties or settings that influence the pedagogical agent’s behavior. This 

feature could be implemented as a real-time connection to the ITS running as a separate application or the 

ITS could be embedded in the authoring tool to provide a what you see if what you get (WYSIWYG) 
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experience. In either situation, the data models would be required to support incremental dynamic updates 

and the ITS itself would have to respond to commands from the authoring tool such as navigating to 

specific domain content or modify the current state of the pedagogical agent depending on the types of 

edits the subject matter expert is making. 

Accommodate Novice and Expert Authors 

The pedagogical agent authoring tool should support editing methods that are specifically tailored to 

novice and expert users rather than presenting a one-size-fits-all UI. For example, a novice user is likely 

to be overwhelmed and discouraged by an authoring tool that exposes too many ITS-specific properties or 

settings. Conversely, an expert will be less efficient and will be frustrated by a UI that repeatedly walks 

through a series of basic steps. Therefore, for less frequently used authoring activities, or when authoring 

complex knowledge representations or pedagogical agent-specific behavior, the authoring tool should 

present a step-by-step wizard interface for novice users and a more direct authoring UI for expert users. 

For example, when authoring rules to evaluate the answer to an essay question, a wizard UI might ask the 

subject matter expert a series of questions that are used to generate a set of rules for evaluating the 

answer. On the other hand, an expert user would have the option of bypassing the wizard and authoring 

the rules directly. Interestingly, this design principle could be realized by embedding a pedagogical agent 

in the authoring tool itself to assist the subject matter expert in authoring content. 

Automate Complex and Tedious Tasks 

Some aspects of authoring domain knowledge or pedagogical agent behavior may be too complicated, 

labor intensive, or tedious for a subject matter expert to accomplish manually using a pedagogical agent 

authoring tool. In these situations, the authoring tool should provide automated mechanisms for 

generating curriculum content, pedagogical strategies, and pedagogical agent behaviors. This is where the 

automatic agent behavior generation techniques, as illustrated by Cerebella (Lhommet & Marsella, 2013), 

and automatic dialogue generation methods, as leveraged by THESPIAN (Si et al., 2005), can be used 

within the pedagogical agent authoring tool to reduce the authoring load for a subject matter expert. 

Another approach to simplify the authoring of knowledge and pedagogical strategies is to assist the 

subject matter expert though the use of data mining techniques. Instead of authoring a pedagogical agent 

with strategies for every conceivable situation, authoring effort could be placed on the most common 

misconceptions or areas where students are showing weakness. In an educational data-mining study by 

Merceron and Yacef, student data from a web-based learning environment was mined to inform teachers 

about students who were at risk (Merceron & Yacef, 2005). Students were grouped into learner cohorts 

using clustering techniques to identify students who were having difficulties. In a similar way, an ITS 

could initially be deployed with curriculum content but a relatively primitive pedagogical agent. After 

collecting student answers, the data could be mined to identify common misconceptions or domain 

knowledge that may require additional scaffolding by the pedagogical agent. The authoring tool would 

flag sections of the domain knowledge or identify broader concepts that the subject matter expert should 

focus on improving. This would naturally lead to an iterative authoring process where the pedagogical 

agent continues to evolve by focusing effort on the issues most relevant to students who are using the ITS. 

Using this type of authoring assistance feature has the potential to dramatically reduce the amount of 

authoring effort, because the subject matter expert is not required to exhaustively predict and annotate all 

possible correct and incorrect answers. On the other hand, the initial iterations of the pedagogical agent 

are unlikely to be particularly effective since they will have limited ability to provide remediation to 

students who are having difficulty. 
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Avoid the Blank Page 

Pedagogical agent authoring tools should assist the subject matter expert in getting started. Starting from 

a blank page using an unfamiliar tool can be a daunting task for any author of any skill level. This is 

particularly the case for someone who is authoring content for software as complex as a pedagogical 

agent-based ITSs. Therefore, authoring tools should provide templates and sample systems that can be 

used as starting points for authoring domain knowledge and pedagogical agent behaviors and dialogue. In 

addition, allowing subject matter experts to easily share their work with others has the potential to create a 

community that can evolve pedagogical agents by starting with another author’s agent and building upon 

it rather than starting from scratch. 

Importing existing knowledge that is already authored in the form of Microsoft Word documents, web 

pages, PowerPoint presentations, databases, or text files is a powerful feature for authoring tools to assist 

subject matter experts in quickly moving past the blank page. Taking it several steps further, automated 

systems such as TRADEM (Robson et al., 2013) and Text2Dialogue (Piwek et al., 2007) import existing 

knowledge and then automatically author agent dialogue, further reducing (or possibly eliminating) the 

pedagogical agent authoring load on the subject matter expert.  

Lessons Learned from the LEONARDO Digital Science Notebook 

For the past four years, our laboratory has been developing a digital science notebook for upper 

elementary science education, the LEONARDO CyberPad, which runs on the Apple iPad and within web 

browsers on Windows and Mac OS X computing platforms. LEONARDO integrates a pedagogical agent 

into a digital science notebook that enables students to graphically model science phenomena. With a 

focus on the physical and earth sciences, the LEONARDO PadMate, a 3D embodied pedagogical agent, 

supports students’ learning with real-time, problem-solving advice. LEONARDO’s curriculum is based on 

the Full Option Science System (Mangrubang, 2004). Throughout the inquiry process, students using the 

LEONARDO CyberPad are invited to answer multiple-choice questions, write answers to constructed 

response questions, and create symbolic sketches of different types, including electrical circuits. To date, 

LEONARDO has been implemented in over 70 elementary school classrooms across the United States. 

 

Figure 2. The COMPOSER tool (left) and CyberPad (right) in rapid iteration editing mode 
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LEONARDO consists of three major components: the CyberPad digital science notebook, the COMPOSER 

authoring tool, and a cloud-based server. Fourth and fifth grade elementary students learn about 

magnetism, circuits, and electricity using the CyberPad software (Figure 2, right). Subject matter experts 

use the COMPOSER (Figure 2, left) authoring tool to create curriculum content displayed in the digital 

science notebook, as well as rules, dialogue, and gestures that drive the pedagogical agent, which is 

embodied as a green alien within the CyberPad UI. The cloud-based server is used to store all curriculum 

knowledge, tutoring rules, and student data. During the design and development of the COMPOSER 

authoring tool, many of the principles for creating subject matter expert-centered authoring tools were 

identified as necessary features or enhancements that would improve the productivity of subject matter 

experts. 

The LEONARDO project did not originally include the COMPOSER authoring tool in its work plan. The first 

year of the project was spent designing and implementing a prototype of the CyberPad application to field 

test with fourth and fifth grade students to assess the practicality and ergonomics of using iPads in 

elementary school classrooms. During the first year, subject matter experts, who were science education 

faculty and graduate students, used Microsoft Word to author all of the curriculum content and 

pedagogical agent dialogue. The development team, who were computer science research staff and 

graduate students, manually copied the text from the Microsoft Word document into multiple extensible 

markup language (XML) documents. The XML documents were then embedded in the CyberPad iPad 

application as fixed resources that were then installed on iPads. The agent dialogue and rules were coded 

directly into the CyberPad’s source code. Needless to say, this approach to content authoring was highly 

inefficient. It was labor intensive and error prone due to the need to repeatedly copy data by hand. In 

addition, pedagogical agent rules, dialogue, and gestures were tightly coupled with the contents of the 

XML documents making the entire system highly susceptible to syntax and typographical errors. 

This initial approach to pedagogical agent authoring for the LEONARDO project had several significant 

drawbacks: First, the subject matter experts did not have a means to visualize what the curriculum content 

and pedagogical agent dialogue would look like when it was displayed in the CyberPad UI as they were 

authoring content in Microsoft Word. Second, it was extremely slow to make small changes to the content 

since it required a development team member to be available to (a) make the change in XML, (b) rebuild 

the application, and (c) redeploy the CyberPad application to the iPads. Third, this dependency resulted in 

frustration for the subject matter experts and development team members. As a result, the curriculum 

content lacked polish, which is typically achieved by making many small changes after the original 

content is created. Since making small changes was highly inefficient, these changes were not made due 

to lack of resources and time. Using this approach to authoring content, 1 hour of instruction required 

more than the estimated 300 hours of development time often cited for ITS authoring (Tom Murray, 

2003). 

Based on this initial authoring experience and future plans to more than triple the amount of curricular 

content and pedagogical agent dialogue, it became imperative to design and implement the COMPOSER 

authoring tool in the second year of the project. We started requirements gathering by identifying the 

types of subject matter experts who would use the tool in the future: elementary school teachers, 

education graduate students, and education faculty. We then proceeded to design COMPOSER’s UI by 

reviewing authoring tools from other areas that our subject matter experts were comfortable using. This 

included applications such as Microsoft PowerPoint, Google documents, and Edmodo. In the new system, 

curriculum content, agent dialogue, and rules would be stored in a cloud-based server where it could be 

directly accessed by both the COMPOSER tool and the CyberPad application. This approach formed the 

basis for the authoring tool principles and features proposed in this chapter. 

The COMPOSER authoring tool improved the authoring workflow for the LEONARDO project in years two 

and three by decoupling content authors from the development team. Subject matter experts were 
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empowered to refine curriculum content and pedagogical agent behavior independently of the 

development team. In addition, a familiar workflow and editing feature set further improved the 

efficiency of subject matter experts. However, since authoring wasn’t considered in the initial design, 

these improvements did come at a development cost of refactoring data models, logic, and storage to 

make it possible to edit and track small discrete parts of the curriculum. 

Recommendations and Future Research 

Widespread development and deployment of pedagogical agents in ITSs depends on efficient transfer of 

domain knowledge and pedagogical agent dialogue, strategies, and behaviors from subject matter experts 

to the tutoring system. Authoring tools hold great promise to facilitate knowledge engineering. However, 

it should be emphasized that authoring tools should be tailored to the subject matter expert using features 

and workflows that have been proven effective by authoring software from non-ITS domains.  

In future work, it will be important to investigate the addition of automation features to assist in the 

authoring of pedagogical behaviors and tutoring strategies. In the near term, leveraging educational data 

mining techniques to discover prevalent student behaviors, as well as misconceptions, from ITS datasets 

could further enhance ITS authoring tools and identify parts of curricula that require additional 

scaffolding. Future work should strive to immediately incorporate decades of software engineering 

knowledge in the design and implementation of novice and expert UIs to simplify authoring complex 

knowledge and underlying ITS mechanisms. 

The design principles for pedagogical agent authoring tools presented in this chapter are not specific to 

any given tutoring system. Since these authoring tool principles are broadly applicable across ITSs, GIFT 

affords a unique opportunity to act as a authoring tool platform where many of these authoring tool design 

principles could be implemented once and used by many tutoring systems. This would allow a single 

high-quality authoring tool implementation to be established that could then be shared across multiple 

tutoring systems, thereby reducing redundant authoring tool design and development effort across 

multiple projects while simultaneously raising the quality of the authoring tools based on GIFT. It follows 

that this approach has the potential to produce higher-quality pedagogical agent-based learning 

environments more quickly and at reduced cost. 
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Introduction 

In this chapter, we provide a vision, based on our combined 40+ years of developing training and 

education technologies, for the next stage in training system content development. While this vision is 

informed by specific Defense needs gaps and requirements, it is developed in a manner that makes it 

broadly applicable to a much wider range of training needs. Our vision treats training content as the 

foundation upon which effective training systems are developed and addresses a deep limitation in how 

content is developed is developed today. We believe that the limits on content development are a key 

factor in preventing the development of large-scale adaptive training systems. Simply put, regardless of 

how quickly and accurately a training system can diagnose a student’s performance deficits, the 

effectiveness with which the training system can develop and enact remedial strategies relies wholly on 

the depth and scope of the content from which specific instances of these strategies can be applied. 

We envision an automated capability to generate new, context-appropriate training content with limited 

human supervision, based on integrating training system authoring tools with expert system technologies 

and using unbounded data sets. A critical enabler of this approach is the ability to deliver training through 

student interactions with one or more agents within a simulated training environment. These agents will 

accomplish three important training goals. First, by interacting with students in real time, these agents’ 

behaviors will provide an experiential type of learning, arguably one of the strongest types of learning 

strategy. Second, by virtue of interacting with students, these agents will have the ability to assess student 

performance against a set of training goals and objectives, and identify specific training deficits. Lastly, 

using knowledge about the student’s current state and their desired end-state, these agents will have the 

basic information necessary to generate new and appropriate behaviors—an entirely new form of 

adaptive content that is not solely dependent on instructor forethought or scripting.  

This new capability will replace hand-coded rule sets, automatically generating new and appropriate agent 

behaviors from one or more data sources including data captured during live exercises; data captured 

from experts operating their systems within a simulated environment; or data provided in a script-like 

format. On the basis of one or more of these initial data sets, it should then be possible to reproduce the 

behaviors, model them for more general uses, and extend those models to provide new behaviors in a 

training environment. This approach will require integrating cognitive modeling approaches with machine 

learning techniques to generate tactically authentic behaviors. Cognitive models provide a means of 

formally representing the underlying behaviors of interest. Machine learning techniques provide a wide 

range of inductive approaches to generalize modeled behaviors to new missions and contexts. Training 

objectives, doctrine and tactics, techniques and procedures (TTPs) bound the initial cognitive models and 

subsequent machine learning generalization to ensure that new behaviors are tactically authentic and also 

responsive to training needs. The resultant behaviors can then be validated as part of a new training 

scenario. The need for new approaches for delivering effective training is clear. Using live assets for 

training exercises is becoming prohibitively costly, both due to reduced access to live training ranges 

(Mehta, 2014) and range space for conducting live training exercises continues to be reduced (or 

eliminated; Oslon, 2014). Increased operational tempos, and reduced manpower across the Services, 

further limits access to training. Intelligent tutoring systems (ITSs) are meant to address these challenges 



 

162 

by providing tailored, adaptive training “on demand” but these approaches often struggle to show a 

significant return on investment (O’Connor & Cohn 2010). On the one hand, the very best ITSs, which 

mimic the very best student-instructor interactions, are still too costly to develop for large-scale use (Cohn 

& Fletcher, 2010). On the other hand, more affordable ITSs offer only pre-scripted training or minimally 

adaptive training, which while significantly lower in cost, is also less effective (Woolf, 2009).  

Against this backdrop, new combat platforms, like unmanned systems and cyber combat systems, are 

being procured to address a new set of threats and challenges to our Nation’s security. These platforms 

will require training that is more focused on cognitive skills sets like problem solving, decision making, 

multi- tasking, task switching, and mission management, rather than on physical skill sets. This training is 

best delivered through interactive and adaptive approaches rather than less personal “one size fits all” 

classroom approaches (Vogel-Wolcutt, 2013). O’Connor & Cohn (2010) and Cohn & Fletcher (2010) 

suggest that if ITSs are the indicated solution, then key drivers in making this type of training affordable 

lie in reducing the amount of effort needed to develop training content, while advancing the level of 

training system adaptability.  

State of the Art 

Adaptive, generative, and modular agents provide a key tool for enabling ITSs, by providing a new 

approach for developing and delivering content. In our view, content is the hub through which the spokes 

of any training system must be connected. To that end, we explore not only current research in content 

development, but, also, current research in other elements of adaptive training systems. Figure 1 provides 

one representation of the various elements necessary for developing adaptive training tools, based in part 

on Conati (1997), Woolf (2009) and Pardos et al.(2013), with details discussed below. 

 

Figure 1: Elements that are critical to delivering effective instruction, mapped onto science and technology 

efforts, indicated in “( )”: understanding each student’s overall learning needs (Individual Student Model, 

Student Monitoring), identifying specific approaches for addressing any learning gaps and building 

instructional modules (Instructional Strategies and Instructor Actions), that deliver content using these 

approaches (Content) through some hardware or software connection (Tutoring Environment, Interface).  
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Individual Student Models and Student Monitoring 

Adaptive tutoring systems are meant to modify their instructional content and delivery to each individual 

student’s learning needs (Jeremic et al.2012). This is best accomplished through a student model (Sison & 

Shimura, 1998), which integrates into an executable representation as much information about the 

individual student as can be reasonably and meaningfully captured, to provide to the tutoring system a 

picture of the student’s current “state.” Yet, despite the strong development of numerous, different, 

computational approaches to modeling student state, like Bayesian knowledge tracing (Corbett & 

Anderson, 1995) and performance factors analysis (Pavlik & Koedinger, 2009), it is becoming 

increasingly clear that current approaches may be reaching their upper limits accurately representing 

individual student state (Pardos, et al.2013). A critical reason for this may be that information about the 

student is often “latent” (Pardo et al.2013) or intangible, like meta-cognition, motivation, and affect 

(Desmarais & Baker, 2012).  

Instructional Strategies and Instructor Actions 

While representing a student’s current learning needs and predicting their future ones is necessary for 

effective adaptive training (Clemente, Ramírez & De Antonio, 2011), it is not sufficient. An adaptive 

training system, like an expert instructor, must be able to tailor and deliver instruction in a way best suited 

to match these learning needs. This includes identifying the different types of strategies that enable 

effective instruction (see, for example, Lunenburg & Irby, 2011); establishing a framework for selectively 

applying these strategies to different student styles, as well as different student levels of expertise (e.g., 

Koedinger, Corbett & Perfetti (2012 )’s “Knowledge–Learning–Instruction Framework,”); and 

developing a capability to computationally represent this framework in a way that can be integrated into 

an adaptive training system. 

Tightly linked to instructional strategies is the method by which these strategies are delivered—the 

instructor actions that will impart information using one or more strategies. Simply requiring a training 

system to deliver reinforcement says nothing about how that reinforcement should be delivered or the 

form that such reinforcement should take. At their most fundamental, these actions should lead to 

learning, “…the process by which long-lasting changes occur in behavioral potential as a result of 

experience…” (Anderson, 2000). Learning, in turn, is enabled by activating the short- and long-term 

memory systems (Anderson, 2000). Consequently, the delivery of these strategies should be done in a 

way that durably establishes these memories in a way that also eases their retrieval. Recent work by 

Rohrer & Pashler (2014), Pashler et al. (2007) and Karpicke & Roediger (2008) indicates that “enforced 

retrieval” of information through a blend of studying, rehearsal, and testing can increase the ease with 

which information is stored, maintained, and retrieved.  

Content  

The cost of developing content is a major challenge to building effective ITSs. One reason for the high 

cost of content development is that it is expensive to create the corpus of knowledge that will inform 

content. While there are some advances being made on this front, such as Robinson et al.’s (2012) 

simulation based knowledge elicitation approach to elicit and model expert behaviors, this approach may 

only shift the cost away from content development to environment development. A second reason for the 

high cost of content development is that as more content is required for more complex adaptive systems, 

the framework (ontology) into which this content is embedded may need to expand pseudo-exponentially, 

with corresponding cost (Simperl & Mochol, 2006). Some interesting and new approaches for developing 

content include crowdsourcing (Koedinger, McLaughlin & Stamper, 2012; Weld et al.2012) and “big 

data” collection (Arroyo & Woolf, 2005) approaches, and the development of new types of knowledge 
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structures (Boyce & Pahl, 2007; Koenig, Lee, Iseli & Wainess, 2009) and associated techniques to 

represent these data sets (Pardos & Heffernan, 2010). 

Tutoring Environment and Interface 

There are many examples of “training systems,” which, lacking the elements indicated in Figure 1, are 

little more than practice platforms (Vogel-Walcutt, 2013). As Woolf (2009) suggests, training must be 

delivered in an authentic and relevant fashion to be effective. This means that not only must the interface 

to the system be “realistic” and transparent and the environment must be engaging, but the content must 

also be delivered in a motivating and stimulating fashion. As a result, the veridicality of the training may 

be significantly enhanced, leading to better, positive, learning transfer rates (Grossman & Salas, 2011).  

Discussion 

Our vision for adaptive training systems hinges on developing training content from as wide a range of 

sources as possible, making this content adaptive to student needs in real time, and embedding this 

content in agents that can deliver this training.  

General Approach 

The steps necessary to achieving this vision include the following (Figure 2): 

 Develop the knowledge structures (ontologies) that will be used to capture source data. 

 Define boundaries of behavior patterns that are of interest. This includes identifying what kind of 

activities to look for in real entity behaviors.  

 Find the behavior patterns of interest using the boundary definitions. 

 Develop representative cognitive models from the behavior data. 

 Apply doctrine training goals and objectives to define and constrain agent behaviors.  

 Use machine learning techniques to generate novel, doctrinally accurate, agents. 

 

Figure 2: General approach for developing adaptive and generative agents. Data are placed into an ontology 

(left side). Boundary conditions are identified, based on doctrine or other sources (right side). The ontology 

and the boundary conditions are merged using cognitive models, and machine learning techniques evolve and 

adapt the represented behaviors to guide the agent (center) which is then integrated into the training system. 
Source Office of Naval Research Fact Sheet Unmanned Aerial Systems Interface, Selection & Training Technologies Dynamic Adaptive & Modular entities for UAS (DyAdeM) 
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There are still challenges associated with applying these steps to specific training needs. As instructional 

system developers look to use more and varied data sources, fundamentally new types of ontologies will 

need to be developed to accommodate these data, which will certainly have a wide range of spatial and 

temporal fidelity. Early efforts to build these blended types of ontologies have been used with some 

success in the development of cognitive based control systems for autonomous systems (Stacy et al., 

2010) and are now being expanded to include much larger and more varied types of data, including 

blending neural, behavioral, and machine-based sources (Cohn et al., 2015). Identifying boundaries for 

behavior patterns and discovering behavior patterns of interest is in many ways a big data analytics 

challenge, focusing on identifying an often minor signal against a backdrop of seemingly random “noise.” 

Modeling and pattern recognition approaches developed in other contexts, such as those used in the 

Office of the Secretary of Defenses’ Human Social Cultural Behavior Modeling Program (Boiney & 

Foster, 2013), could provide a foundation from which to build these techniques. An equally challenging 

problem is developing affordable methods for building executable representations (cognitive models) 

from these data to generate in real time novel, contextually appropriate, and doctrinally accurate agent 

behaviors to drive instruction. Today, building these behaviors requires significant time investment by 

scenario authors (Koedinger, et al.2004). In the future, it will be critical to generate these models 

autonomously from the source data. 

Example Application 

Unmanned aerial system (UAS) training represents a new and complex domain that will strongly leverage 

modeling and simulation (M&S) solutions to develop embedded and emulated training environments, and 

in which agent-delivered content will play a key role for delivering training. Because the kinds of tasks in 

operating a UAS involve observing, tracking, and identifying many different types of entities (e.g., blue, 

red, and white forces), ITS training for UAS operators requires the integration of hundreds, if not 

thousands, of simulated entities into the overall training scenario. Currently, developing these entities 

requires significant time and effort, and results in entities whose behaviors are strictly guided, scripted, 

and limited based on pre-determined rules that define the entities’ behaviors over the course of the 

training scenario. The net result is entities whose behaviors are not realistic, leading to reduced training 

effectiveness, yet at the same time require significant effort to create, leading to prohibitively high 

authoring costs.  

Applying the process described in Figure 2 to this challenge allows us to automate the development of 

new behaviors to drive a range of different types of simulated entities, providing an alternative, and 

potentially more effective and less costly, solution. The process begins with automating the recognition of 

live entity behaviors, captured from various UAS sensor data streams, and transforming those data into 

digital representations (Figure 3a). This requires ontologies that can capture both discrete and continuous 

data, across representations that can accommodate data with both high and low spatial and temporal 

resolution. This provides the foundation from which to model and generate behaviors to drive simulated 

entities. Next, the transformed data are bounded by user-specified parameters to create behavior 

envelopes, which represent goals and associated constraints. This sets the conditions for developing rules 

for generating new behaviors that are related to those captured from the live entity. During a training 

exercise, student performance is monitored to detect when goals are either archived or potentially not 

achieved, and when constraints are close to being violated. When these conditions are met, machine 

learning algorithms are applied to generate new behaviors (Figure 3b).  
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Figure 3: (a) Automated activity recognition identifies behaviors of live entities (e.g., aircraft, vehicles, people) 

to model using pattern recognition techniques applied to real sensor data received from UASs.  

(b) Generalized behavior envelopes are then developed from these patterns to provide rules for generating 

related behaviors. These rules are applied in response to student performance to deliver adaptive and 

generative agent behaviors. Courtesy of Aptima Inc. and SOARTech 

Recommendations and Future Research  

Extending the Approach 

The approach for developing adaptive and generative agents overlays nicely on the different elements that 

comprise ITSs (Figure 1). The student models provide one of the functions that drive the agents to seek 

new behaviors. Student performance is monitored and assessed, and the outcome of this assessment 

provides the basis for either capturing new data or evolving current data sets into new behaviors that can, 

in turn, help remediate the student. At the same time, these agents would be able to build, through 

continuous interaction with each trainee, dynamic and highly individualized models that could capture 

“missing” information, such as latent (Pardos 2013) or affective (Desmarais & Baker, 2012) behaviors. 

How this information could be elicited remains to be determined, but one possible solution may lie in 

recent advances in the development of classifiers for inferring cognition from brain activity. In these 

efforts, individuals are shown a wide array of objects, of different categories, while simultaneously 

having their brain activity captured through non-invasive techniques. Using machine learning routines, a 

classifier can be built that can then scan brain activity when subjects view a new object and, with some 

degree of accuracy, predict what sort of object an individual is looking at (Mitchell, et al., 2004). 

Importantly, these classifiers appear to be transferrable to new categories of objects as well as to new 

groups of individuals, while maintaining reasonable levels of predictive accuracy (Shinkareva et al., 

2008). In a similar manner, it might be possible to develop generalizable approaches to train classifiers to 

detect certain kinds of latent and affective variables. Alternatively, it may be possible to leverage and 

adapt machine learning approaches pioneered by the affective computing community (Picard, 1997), 

which allow computer systems to adapt their actions to the affective state of the user, inferred through 

facial feature recognition technologies. In both instances, a major leap that must be made is to move away 

from using physiological or physical based data (brain data or facial expression data) and focus on 

behaviors detected only through the student’s interface with the training system. 

The resultant, data could support the development of models that would, in turn, guide the development 

of content specific instructional strategies to address learning deficits. At the other end of the spectrum, 
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the behaviors that could be driven through this approach provide new opportunities to realize a range of 

actions that the ITS can take to deliver instruction. Lunenburg & Irby (2011) identify a set of effective 

strategies, like Set Induction, Stimulus Variation, Reinforcement, and Questioning. Precisely how these 

strategies could be delivered using this approach also remains to be determined. Lastly, the current 

approach is being developed for a specific application, UAS instruction, in which data naturally are 

provided in digital format. Extending this approach to other domains in which the data are not inherently 

digital, like math or science instruction, will require new approaches for capturing and eliciting data from 

expert instructors.  

Impact to the Generalized Intelligent Framework for Tutoring (GIFT) 

GIFT already provides a strong foundation into which this approach may be integrated, with 

modifications potentially required for only a few modules. The GIFT sensor module offers a way for new 

data to be captured, although it would need to be extended to include large-scale ontologies and data from 

non-traditional sensor sources. The GIFT learner module is analogous to the student modeling and student 

monitoring elements (Figure 1), and may require only minor modifications to support the approach 

proposed here, allowing it to boot-strap from the output of the agents. The GIFT pedagogical module 

would similarly need to be modified to allow for instruction to be delivered via agents, as discussed 

above.  
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CHAPTER 14  Authoring Conversation-based Assessment 

Scenarios 
Diego Zapata-Rivera, Tanner Jackson, and Irvin R. Katz  

Educational Testing Service 

Introduction 

At Educational Testing Service (Princeton, NJ), current research seeks to adapt technologies and 

techniques originally developed for intelligent tutoring systems (ITSs) to create innovative forms of 

assessment. This chapter focuses on one such project, working from the dialogue-based instruction of 

Graesser and colleagues (Graesser, Person & Harter, 2001) to develop a series of “conversation-based 

assessments” (CBAs). CBAs use dialogues between automated computer agents and test-takers to help 

measure the level of a construct — knowledge and skill in a particular domain — that a test taker 

possesses. To date, we have developed prototype CBAs each designed to measure a distinct skill such as 

science inquiry (Zapata-Rivera, Jackson, Liu, Bertling, Vezzu & Katz, 2014), formulating and justifying 

arguments (Song, Sparks, Brantley, Jackson, Zapata-Rivera & Oliveri, 2014), and reading, listening, and 

speaking skills for English language learners (Evanini, So, Tao, Zapata, Luce, Battistini & Wang, 2014). 

The assessment, rather than instructional, context for dialogues lead to unique challenges when designing 

CBAs. To meet these challenges, we have built authoring tools to support the processes of designing and 

developing automated conversations for assessment purposes. These tools include conversation-space 

diagrams (Zapata-Rivera et al., 2014), an automated testing tool, and a version of the AutoTutor Script 

Authoring Tool (Susarla, Adcock, Van Eck, Moreno & Graesser, 2003), which we call the AutoTutor 

Script Authoring Tool for Assessment (ASATA). 

Each task within a CBA is defined to measure a particular set of constructs; a conversation-space diagram 

shows how evidence (test taker performance) of each construct is collected through various discourse 

paths of the conversation. The diagram helps the designers to place recognizable discourse patterns in the 

conversations to create authentic-seeming situations. These conversation-space diagrams lead directly to 

dialogue scripts in ASATA and test-taker response “scripts” for the automated testing system. These 

authoring tools have helped speed up the design and testing of CBAs. 

Related Research 

As the need for assessing more complex skills increases, more researchers are exploring the use of new 

technologies to implement technology-enhanced assessments (TEAs) that can make use of multiple 

sources of evidence to support claims about students’ skills, knowledge and other attributes (Invitational 

Research Symposium on Technology Enhanced Assessments, 2012; Perrotta & Wright, 2010). Some of 

these TEAs include the use of computer simulations (Bennett, Persky, Weiss & Jenkins, 2007; Clarke-

Midura, Code, Dede, Mayrath & Zap, 2011; Quellmalz et al., 2011) and games (Shute, et al., 2009; 

Mislevy, et al., 2014). TEAs frequently involve the use of authoring tools to facilitate the design and 

implementation process of these systems.  

A variety of authoring tools have been implemented and evaluated for ITSs. These tools include authoring 

tools for dialogue systems (Susarla, et al., 2003; Butler, et al., 2011), constraint-based tutors (Mitrovic, 

Martin, Suraweera, et al., 2009), model-tracing cognitive tutors (Aleven, McLaren, Sewall & Koedinger, 
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2006, Blessing, Gilbert, Ourada & Ritter, 2009) and other problem-specific tutors (Blessing et al., 2009). 

An overview of authoring tools in ITSs can be found in Murray (2003). Relevant research also includes 

prior work on authoring tools for creating data collection instruments (Katz, Stinson & Conrad, 1997). 

Although this prior work provides a guide, the intent of a conversation differs between an ITS and an 

assessment, changing also the elements of a dialogue. When a conversation is part of an ITS, the primary 

goal is instruction. Graesser’s dialogic framework consists of a computer agent asking a main question of 

the human student, then following up with additional questions or prompts if the initial response is 

incomplete. Different follow-up questions, prompts, or hints would be offered depending on the specific 

way that the initial response is incorrect or incomplete. In the case of assessment, follow-up questions, 

prompts, and hints take on a new meaning. Rather than guiding the student to a good answer to the main 

question, the goal of the assessment is to make sure that any incompleteness in the initial answer reflects 

that the student does not know the answer rather than the student simply did not express what he or she 

knows. Of course, in an assessment, even if the student answered a question incorrectly or provided an 

incomplete answer, the system would not attempt to teach, but rather create situations that help students 

elaborate on their initial incomplete or incorrect responses. These sequences of interactions are recorded 

(and later scored). Thus, compared with the original AutoTutor framework, the assessment focuses on 

incompleteness and in drawing out additional information about student understanding.  

Discussion 

Traditional authoring tools for dialogue systems assume that authors are familiar with computer natural 

language processing techniques (e.g., regular expressions and latent semantic analysis) and have some 

computer programming skills (e.g., rule-based and constraint programming). Most of these tools have 

been designed to be used by dialogue engineers who have years of experience designing, implementing, 

and testing these types of systems. Even though assessment developers are highly skilled at developing 

valid assessments using traditional task types, they are not familiar with the use of conversations as 

assessment tasks and do not usually have programming experience. In addition, other team members such 

as psychometricians, game programmers, research assistants, and research scientists do not necessarily 

understand how these CBAs are created and scored.  

In order to support the work of assessment developers, a different layer of authoring needed to be 

explored. This layer includes support for assessment design concepts and processes (e.g., target 

constructs, evidence identification, and scoring). Although we have tried several tools in the creation of 

CBAs, such as text documents and chat-like tools to document how dialogue interactions are used to 

gather evidence of target constructs, these tools quickly became cumbersome to use and did not include 

all the elements required to develop assessment tasks. Conversation-space diagrams were created to 

facilitate the authoring of conversational tasks. The next sections describe the process of authoring CBAs.  

Authoring CBAs 

Building on the principles of evidence-centered design (ECD; Mislevy, Steinberg & Almond, 2003), the 

development process of these conversation-based tasks involves an iterative process that starts from a 

clear definition of the construct, followed by the identification of the evidence (e.g., types of responses to 

particular questions) required to support particular claims about what students know or can do in regards 

to each target construct (Figure 1).  
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Figure 1. CBA development process 

Scenes are designed in order to create the context where intended conversations can take place and the 

evidence needed can be gathered. Scene design elements include the situation or context of the 

conversation, main question, conversation moves/patterns, who asks each question, the type of responses 

that are intended to be elicited, and how characters respond to each type of response. This information is 

represented in a conversation space diagram (see the next section). A scoring model is also developed for 

each particular conversation. The scoring model has two components: (1) path-based scoring (partial 

credit scores per each relevant construct based on expert judgment) and (2) revised scores based on 

additional evidence from human raters or other automated scoring engines. Conversation scripts are 

implemented in ASATA based on these conversation space diagrams. These conversation scripts can be 

tested within ASATA (text-based interface). Finally, a conversation prototype that includes all the 

graphical components, interactive tasks (e.g., simulations) and conversations is produced and used to 

collect assessment data. These data are used to refine the various elements of the system in an iterative 

cycle. 

Conversation Space Diagrams 

Conversation diagrams have been designed to facilitate authoring of CBAs (see Figure 2). These 

diagrams serve as communication tools to facilitate communication about task design among an 

interdisciplinary group of experts that may not share the same location or have the same level of expertise 

in particular area. Conversation space diagrams provide a common language for these experts to 

collaborate in the CBA design and testing process. 

Conversation space diagrams include the definition of the construct that is being assessed along with a 

column for each virtual character/real student. Utterances and potential conversational branches are 

displayed in the body of the diagram to form conversation paths (including sample user responses). These 

paths may involve several turns (i.e., columns of the diagram) depending on the conversation. Paths 

within a diagram can be used to represent several types of conversation moves/patterns (e.g., Comparison 
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-> Selection -> Agree/Disagree -> Why?; Define -> Explanation -> Scaffolding -> Rephrase; Irrelevant -> 

Rephrase & Ask Again). 

Interactions with characters are designed to provide opportunities for assessing the construct(s) of interest. 

Each task includes an opening that sets the stage for the interactions with virtual characters and a closing 

that concludes the current scene and connects it to the next one. Each scene includes a main question that 

is directed to the student. Depending on how the student responds to this question, virtual characters react.  

There is usually a predefined set of possible responses: (a) a correct response is usually connected to a 

closing statement, (b) partially correct responses are handled in various ways depending on the nature of 

the response (e.g., characters may ask for additional information, provide a hint, or restate the question), 

(c) irrelevant responses are usually handled by a character showing lack of understanding and restating 

the question, (d) no response usually involves a character asking “Are you still thinking?” and giving the 

student additional time, if appropriate, and (e) meta-communicative responses (e.g., “What did you say?,” 

“Please repeat”) and meta-cognitive responses (e.g., “I have no idea,” “I am not sure,” “I forgot”) are 

handled by repeating the question or rephrasing it. 

Each conversational script typically has up to three cycles or opportunities for students to answer different 

types of questions related to the main question. If the student does not answer the question after the initial 

attempt and follow-up prompts, then a character may provide a closing statement and move the 

conversation along to the next scene. 

Path information is based on expert judgment and is implemented using regular expressions and rules as 

part of the script. Figure 2 shows sample closing statements including path-based scores for the target 

constructs. Figure 3 (top) shows a sample rule telling the system that ClosingPath1 should be executed if 

the student response is classified as Good. A fragment of a regular expressions for a good response is 

displayed at the bottom of Figure 3. Path-based scores for target constructs are assigned at the closing 

statement.  
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Figure 2. Fragment of a conversation space diagram for the Volcano scenario (Zapata-Rivera, et al., 2014). 

Note: To allow exemplar text to be legible, the text in other boxes was purposefully obscured in this figure. 
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Figure 3. Sample rule and regular expression (fragment) in ASATA 

AutoTutor Script Authoring Tool for Assessment (ASATA) 

ASATA offers many features for creating a variety of conversation-based tasks. Dialogue engineers can 

create, test, and revise conversations for tutoring and assessment purposes using the modules available in 

ASATA.  

ASATA provides conversation authors with a graphical interface that includes modules such as the 

following: 

 Agents this module is used to define agent characteristics such as name, title, gender, and canned 

expressions for predefined categories of responses (e.g., meta-communicative responses);  

 Speech Acts used to define regular expressions for general categories of responses;  

 Rigid Packs used to represent non-interactive conversations among the agents (e.g., opening 

and closing statements);  
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 Tutoring Packs determine how agents react to particular student responses, establish thresholds 

for classification purposes, and contain linguistic information like regular expressions, text for 

latent semantic analysis, expected answers, misconceptions, hints, and prompts;  

 Rules Implement conversation sequences (paths); and  

 a Testing module that uses a chat-like environment to display the internal state of the system 

(e.g., rules fired and matching values) as the user interacts with each conversation.  

ASATA shares many of the same features as ASAT. Many of the improvements made to ASAT have 

been transferred to ASATA and vice versa. Figure 3 shows some of the components of ASATA. 

Automated Testing 

Testing CBA scripts can be a time-consuming process of manually entering possible student responses 

and observing whether the conversation flows as expected. This process usually requires several iterations 

of testing/refining, which becomes a bottleneck for the use of these systems in operational contexts. We 

have developed an approach for automated testing of CBAs. This process makes use of sample responses 

gathered from an interdisciplinary group of experts and allows for the creation of predefined response 

categories that are represented in the form of a conversation diagram. This information is used to create 

extensible markup language (XML)-based testing scripts that can evaluate individual responses and 

complete sequences (and alternative sequences) of responses (paths). This process has already shown 

value by reducing the number of iterations and testing time required in implementing CBAs. The next 

section describes some of the results that have been achieved so far using various authoring and testing 

tools. 

Initial Results  

We have implemented CBAs in various areas including English language learning, mathematics, science, 

and argumentation during the last two years. Conversation space diagrams for these domains may share 

similar components including path structure, conversation patterns, and graphical components (e.g., 

virtual characters and delivery environment). This helps in terms of reducing the cost of CBA 

development and improving scalability. For example, it is possible to design a parallel version of a CBA 

by reusing and adapting the elements from an existing one. We are currently testing a newly developed 

isomorphic environment to an existing CBA and comparing them in terms of their psychometric and other 

properties. 

By using conversation space diagrams, we have been able to assign work that was done by scientists or 

assessment developers to research assistants (e.g., modification of conversation based diagrams, 

generation of additional materials, and testing), making better use of resources while still producing high 

quality work. 

We have collected data on the time required by our team to design and test CBAs across different target 

domains. The development can be divided into three different stages based on various authoring tools 

available for designing and testing CBAs. Initially, we used text documents and chat tools to create the 

scripts before using ASATA to implement them and testing was done manually. Later, we started using 

conversation-based diagrams design and ASATA and manual testing. Currently, we are using 

conversation-based diagrams, ASATA, and automated testing. The introduction of automated testing of 

scripts has made the process of detecting and fixing errors more efficient. Table 1 shows some indicators 

of the development and testing process using various types of authoring tools. These data have been 
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collected at different stages of this work. The introduction of conversation based diagrams and automated 

testing have increased the efficiency of the process. We continue to make improvements to these tools by 

enhancing their usability and integration with other development tools. 

Table 1. Development indicators for conversation-based assessments using various authoring tools. 

Development Indicator 

Authoring Tool 

Text 

Documents/Chat 

tools + ASATA   

 

Conversation Space 

Diagrams + 

ASATA  

 

Conversational Space 

Diagrams +  

ASATA +  

Automated Testing  

Number of scripts 

developed  

2  8  ~20  

Time designing and testing 

a new script  

4–8 weeks  1–4 weeks  1–2 weeks  

Percentage of errors 

identified before data 

collection 

20%–30%  40%–60% 60%–80%  

Time correcting errors  1 week  2–4 days 1–2 days  

Next Steps 

The conversation space diagram and testing system are distinct components, separate from each other and 

ASATA, the latter of which is the way that conversations are implemented. In our current work, we are 

combining these three systems into an authoring tool that we call ASAT-V (“V” for visualization). 

ASAT-V is a visual programming environment in which an author draws the conversation space diagram 

and, for each node, specifies metadata (what is to be said by which agent, for example). Another user of 

the system, the dialogue engineer, would add metadata associated with the technical aspects of the 

conversation, such as regular expressions and other parameters to ensure that the conversation would 

work correctly. The psychometrician might add in scoring metadata associated with scoring. Once the 

diagram is created in ASAT-V, it produces files that can be read by the dialogue engine to execute a 

dialogue, with no intermediary steps. Additionally, the ASAT-V will produce testing scripts and script 

models (tailorable by the author) and execute those scripts to ensure that the conversation flows as 

expected. 
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Recommendations and Future Research 

Authoring tools such as conversation space diagrams and automated testing modules facilitate the 

development and testing process of CBAs. Through our authoring tools, we have been able to reuse 

domain-independent structures (e.g., conversation patterns), accelerate the development of CBAs, and 

improve communication among the members of our development teams. Conversation-based diagrams 

have also helped new members get familiar with these innovative assessment tasks and improved the 

acceptance of a new assessment design paradigm. In addition, it has allowed for an effective allocation of 

resources so people can do what they know best. 

Some recommendations for the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, 

Brawner, Goldberg, and Holden, 2012), and future ITS include the following: 

 

 Develop integrated authoring tools that take into account the needs, knowledge, and attitudes of 

particular team members. 

 Keep important design information readily available throughout the development process (e.g., 

construct information for assessment tasks)  

 Develop technical development infrastructure and representations to help integrate/reuse 

components across different CBAs. 

 Make use of automated testing tools to help speed-up the development and testing process of 

conversation-based systems. 

References 

Aleven, V., McLaren, B.M., Sewall, J. & Koedinger, K.R. (2009). A New Paradigm for Intelligent Tutoring 

Systems: Example-Tracing Tutors. International Journal of Artificial Intelligent in Education. Special Issue 

on Authoring Systems, 19(2), 105-154.  

Bennett, R. E., Persky, H., Weiss, A. & Jenkins, F. (2007). Problem-Solving in technology rich environments: A 

report from the NAEP technology-based assessment project. NCES 2007-466, U.S. Department of 

Education, National Center for Educational Statistics, U.S. Government Printing Office, Washington, DC.  

Blessing, S. B., Gilbert, S. B., Blankenship, L. A. & Sanghvi, B. (2009). From sdk to xpst: A new way to overlay a 

tutor on existing software. In Proceedings of the Twenty-second International FLAIRS Conference (pp. 

466-467), Sanibel Island, FL. AAAI Press.  

Blessing, S. B., Gilbert, S.B., Ourada, S. & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International 

Journal of Artificial Intelligent in Education. Special Issue on Authoring Systems, 19(2), 189-210.  

Butler, H., Forsyth, C., Halpern, D., Graesser, A.C. & Millis, K (2012). Secret agents, alien spies, and a quest to 

save the world: Operation ARIES! Engages students in scientific reasoning and critical thinking. In R. L. 

Miller, R. F. Rycek, E. Amsel, B. Kowalski, B. Beins, K. Keith & B.Peden (Eds.)., Volume 1: Programs, 

Techniques and Opportunities. Syracuse, NY: Society for the Teaching of Psychology. 

Clarke-Midura, J., Code, J., Dede, C., Mayrath, M. & Zap, N. (2011). Thinking outside the bubble: Virtual 

performance assessments for measuring complex learning. In M.C. Mayrath, J. Clarke-Midura & D. 

Robinson (Eds.), Technology-based assessments for 21st century skills: Theoretical and practical 

implications from modern research. Charlotte, NC: Information Age. 125-147 

Evanini, K., So, Y., Tao, J., Zapata, D., Luce, C., Battistini, L. & Wang, X. (2014). Performance of a trialogue-based 

prototype system for English language assessment for young learners. Proceedings of the Interspeech 

Workshop on Child Computer Interaction (WOCCI 2014), Singapore, September 19, 2014. 



 

178 

Graesser, A. C., Person, N. K. & Harter, D. (2001) The Tutoring Research Group: Teaching tactics and dialogue in 

AutoTutor International Journal of Artificial Intelligent in Education. 12, 257-279. 

Katz, I., Stinson, L.L, and Conrad, F.G. (1997). Questionnaire designers versus instrument authors: Bottlenecks in 

the development of computer administered questionnaires. Fifty-Second Annual Conference of the 

American Association for Public Opinion Research, Norfolk, VA. 1029-1034. 

Mislevy, R., Oranje, A., Bauer, M., von Davier, A., Hao, J., Corrigan, S., Hoffman, E., DiCerbo, K. & Michael, J. 

(2014) Psychometric Considerations In Game-Based Assessment. Retrieved October 5, 2014, from 

http://www.instituteofplay.org/wp-content/uploads/2014/02/GlassLab_GBA1_WhitePaperFull.pdf 

 Invitational Research Symposium on Technology Enhanced Assessments. (2012). Center for K–12 Assessment & 

Performance Management at ETS. Retrieved October 5, 2014, from 

http://www.k12center.org/events/research_meetings/tea.html 

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & McGuigan, N., (2009) ASPIRE: An 

Authoring System and Deployment Environment for Constraint-Based Tutors, International Journal of 

Artificial Intelligent in Education. Special Issue on Authoring Systems, 19(2), 155-183. 

Murray, T. (2003) An Overview of Intelligent Tutoring System Authoring Tools: Updated Analysis of the State of 

the Art. Authoring tools for advanced technology learning environments. 491-545.  

Perrotta, C. & Wright, M. (2010) New Assessment Scenarios. Retrieved October 5, 2014, from 

http://www.futurelab.org.uk/resources/new-assessment-scenarios 

Quellmalz, E. S., Timms, M. J., Buckley, B. C., Davenport, J., Loveland, M. & Silberglitt, M. D. (2011). 21st 

Century Dynamic Assessment. In M.C. Mayrath, J. Clarke-Midura & D. Robinson (Eds.), Technology-

based assessments for 21st century skills: Theoretical and practical implications from modern research. 

Charlotte, NC: Information Age. 55-90.  

Shute, V. J., Ventura, M., Bauer, M. I. & Zapata-Rivera, D. (2009). Melding the power of serious games and 

embedded assessment to monitor and foster learning: Flow and grow. In U. Ritterfeld, M. J. Cody & P. 

Vorderer (Eds.), Serious Games: Mechanisms and Effects. Philadelphia, PA: Routledge/LEA. 295-321.  

Sottilare, R., Graesser, A., Hu, X., and Goldberg, B. (Eds.). (2014). Design Recommendations for Intelligent 

Tutoring Systems: Volume 2 - Instructional Management. Orlando, FL: U.S. Army Research Laboratory. 

ISBN 978-0-9893923-3-4. Available at: https://gifttutoring.org/documents/  

Song, Y., Sparks, J., R., Brantley, J. W., Jackson, T., Zapata-Rivera, D. & Oliveri, M. E. (2014) Developing 

Argumentation Skills through Game-Based Assessment. In Proceedings of the 10th Annual Game Learning 

Society Conference, Madison, WI. 

Susarla, S., Adcock, A., Van Eck, R., Moreno, K. & Graesser, A.C. (2003) Development and evaluation of a lesson 

authoring tool for AutoTutor. In: Aleven, V., et al. (eds.) AIED 2003 Supplemental Proceedings, pp. 378–

387 

Zapata-Rivera, D., Jackson, T., Liu, L., Bertling, M., Vezzu, M. & Katz, I. R., (2014) Science Inquiry Skills using 

Trialogues. 12th International conference on Intelligence Tutoring Systems. 625-626. 

 
  



 

179 

 

Chapter 15  Authoring Networked Learner Models in  

Complex Domains 
David Williamson Shaffer

1
, A. R. Ruis

1
, and Arthur C. Graesser

2 

1
University of Wisconsin–Madison, 

2
University of Memphis 

Introduction 

Education leaders have called for a significant expansion in the use of computer games and simulations, 

intelligent tutoring systems (ITSs), and other virtual learning environments in both formal and informal 

learning contexts (Graesser, 2013; Honey & Hilton, 2011; Sottilare, Graesser, Hu & Holden, 2013). To 

accomplish this will require that curriculum developers be able to author and customize such technologies 

for integration into specific curricula, adaptation to local needs, and alignment with changing standards 

(Clark, Nelson, Sengupta & D’Angelo, 2009; Honey & Hilton, 2011; Mitrovic et al., 2009). Research on 

the development of ITSs has shown that anywhere from 100 to 1000 hours of authoring time are needed 

to produce just 1 hour of instruction (Koedinger & Mitrovic, 2009). The substantial time commitment and 

expertise required place significant limitations on the creation of sophisticated virtual learning 

environments. “Our holy grail,” Vincent Aleven and colleagues have suggested, is “to create cost-effective 

tools that non-programmers can use to create and deliver sophisticated tutors for real-world use” (Vincent 

Aleven et al., 2009). 

Prior studies on authorware development suggest that building such tools is both ambitious and 

potentially transformative (Koedinger, Aleven, Heffernan, McLaren & Hockenberry, 2004; Murray, 

Blessing & Ainsworth, 2003; Murray, 1999). Recent efforts to design authorware for sophisticated 

systems has revealed the many difficulties involved in creating a platform that is rich in features but easy 

to use. It is challenging for curriculum developers and instructors to use authoring tools effectively, and 

adding additional intelligent features could make it even more challenging (Ainsworth & Grimshaw, 

2004; Major, Ainsworth & Wood, 1997). Authoring tools must be able to account for essential 

components, such as conversation management, semantic representations, production rules, pedagogical 

strategies, and other technical modules (Vincent Aleven, Sewall, McLaren & Koedinger, 2006; Murray et 

al., 2003; Woolf, 2010). The curriculum or learning modules created also need to fit theory-driven 

constraints, discourse processes, cognitive science, and computer science, as well as the practical 

constraints created by state standards, assessments, and education practices. Pedagogical authoring thus 

requires deep and broad knowledge to manage these constraints, accommodate tradeoffs, and negotiate 

incompatibilities. 

The complexity inherent in the pedagogical authoring of virtual learning environments raises a key 

question: Can authorware systems be designed that facilitate this process without requiring the 

curriculum developer to have expertise in computer programming or educational software development? 

While progress has been made toward this goal, most sophisticated authoring systems (there are many for 

ITSs alone) are used primarily in research contexts. Those that have received broader usage, such as 

Cognitive Tutor Authoring Tools (CTAT) and Authoring Software Platform for Intelligent Resources in 

Education (ASPIRE), primarily support the development of modules that help students learn to solve 

well-formed problems, such as those common in basic mathematics, computer science, or language 

acquisition. One notable exception is the AutoTutor Script Authoring Tools (ASAT and ASAT-Lite), 

which support intelligent conversational agents in any subject matter (Hu et al., 2009; Nye, Graesser & 

Hu, 2015; Cai, Graesser & Hu, this volume). ASAT handles a single human learner who interacts with 



 

180 

one or more conversational agents. In this chapter, we discuss the potential to develop authorware for 

virtual learning environments in which students work in small teams to solve complex, ill-formed 

problems. In particular, we explore the parameters, affordances, and challenges of designing authoring 

tools for Syntern, a platform for the development and deployment of virtual internships (Arastoopour, 

Chesler & Shaffer, 2014; Bagley & Shaffer, 2009; Chesler et al., 2015; Chesler, Arastoopour, D’Angelo, 

Bagley & Shaffer, 2013; Shaffer, 2007). Virtual internships are online learning environments that 

simulate professional practica in complex science, technology, engineering, and mathematics (STEM) 

domains. 

Virtual internships are based on the theory of situated learning (Anderson, Reder & Simon, 1996; Lave & 

Wenger, 1991; Sadler, 2009), which suggests that students learn complex thinking best when they have 

an opportunity to take consequential action in a realistic setting. In STEM fields, this typically occurs in 

the context of an internship or other professional practicum through a process of legitimate peripheral 

participation, where novices learn to think like experts by working on problems similar in form to those 

of the practice but with reduced intensity and risk (Lave & Wenger, 1991). What distinguishes an 

internship from other learning environments is the combination of action, the ability to do authentic work, 

and reflection-on-action (Schön, 1983, 1987; Shaffer, 2003), the opportunity novices have to think about 

what went well, what did not, and why, and then discuss this with peers and mentors. Virtual internships 

simulate the key features of a professional practicum, especially the close mentorship that is critical to 

learning in professional contexts (Bagley & Shaffer, 2010; Nash & Shaffer, 2011, 2013; Nulty & Shaffer, 

2008). 

In a STEM virtual internship, students are presented with a complex, real-world problem for which there 

is no optimal solution. Student project teams read and analyze research reports, perform experiments 

using virtual tools and analyze the results, respond to the requirements of stakeholders and clients, write 

reports and proposals, and present and justify their proposed solutions. During the virtual internship, 

students communicate with one another using built-in email and instant message systems. They also 

receive directions, feedback, and guidance from non-player characters (NPCs), such as their boss or 

company stakeholders, whose actions are controlled by a combination of artificial intelligence (AI) and 

human domain managers using scripted material in the simulation. Through flexible scripts and 

automated processes, NPCs answer students’ questions, offer suggestions, guide reflective conversations, 

facilitate student collaboration, and provide support. The goal of a virtual internship is to provide an 

authentic simulation of the internships, practica, and cooperative research experiences with which STEM 

professionals are trained in the real world. 

In the virtual internship Nephrotex, for example, students work at a fictitious biomedical engineering 

company, which has tasked them with designing a new ultrafiltration membrane for use in hemodialysis 

equipment. To accomplish this task, students review technical documents, conduct background research, 

and examine research reports based on actual experimental data. After these tasks are complete, they 

develop hypotheses based on their research, test those hypotheses in the provided design space, and then 

analyze the results, first individually and then in teams. Students also become knowledgeable about 

consultants within the company who have a stake in the outcome of their designed prototypes. These 

consultants value different performance metrics. For example, the clinical engineer is most interested in 

biocompatibility and flux, and the manufacturing engineer values reliability and cost. During the last days 

of the internship, interns present and justify their final design selections. 

Our goal is to develop authorware that allows curriculum developers to design or modify STEM virtual 

internships to address different audiences, topics, or purposes without requiring significant expertise in 

computer programming or educational software development. We believe this is possible because (a) the 

pedagogical foundation is well developed and the design space is constrained, reducing the specialized 

knowledge required for pedagogical authoring; (b) the computational module for natural language 
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processing (NLP) is STEM domain general, so it does not require rewriting for new STEM virtual 

internships; updates to the semantic coding system automatically propagate to the AI modules; and (c) the 

Syntern platform has a modular design consisting of a core application programming interface (API) and 

plug-ins, so each component may be added, removed, or modified without affecting other components. 

Although we focus on the design of one particular system, the principles of authorware design are 

applicable to learning environments in ill-formed domains more generally. Given the relatively small 

body of research on the processes with which curriculum developers design content, however, we argue 

that a key element of developing such authorware systems is to develop a science of the pedagogical 

authoring process. 

Related Research 

In the past two decades, there has been a proliferation of sophisticated virtual learning environments in 

STEM. There are now ITSs that can outperform human teachers on certain tasks, such as determining 

student knowledge and identifying student misconceptions (Graesser, Conley & Olney, 2012; Woolf, 

2010). STEM educational games, such as Quest Atlantis (Barab et al., 2009; Hickey, Ingram-Goble & 

Jameson, 2009), River City (Dieterle, 2009; Ketelhut, Dede, Clarke-Midura & Nelson, 2006), SAVE 

Science (Nelson, Ketelhut & Schifter, 2010), Operation ARA (Halpern et al., 2012), and Mission Biotech 

(Sadler, Romine, Stuart & Merle-Johnson, 2013), have been shown to help students learn important 

STEM concepts and engage more fully with material. And our own work on STEM virtual internships has 

shown that computer simulations based on authentic STEM practices help students learn how to solve 

problems in the ways that innovative STEM professionals do (Arastoopour et al., 2014; Bagley & 

Shaffer, 2009; Chesler et al., 2015, 2013; Shaffer, 2007). 

Despite these successes, use of such technologies in education is still quite modest. If ITSs, educational 

games and simulations, and virtual internships are so effective, why have they not been more widely 

incorporated into learning? There are numerous issues that contribute to this problem, but a key element 

is that it is too difficult, too expensive, and too slow to create or modify sophisticated learning 

technologies to fit the wide range of learners and learning contexts. Creating authorware that enables 

curriculum developers to easily, cheaply, and quickly produce or modify learning technologies, while also 

ensuring that the products are pedagogically sound, is thus a crucial requirement for scaling up the use of 

such technologies in education. While this research and development effort is still in its early stages, 

significant steps have been taken toward this goal. 

A number of authorware systems have been developed that allow curriculum developers to construct 

virtual learning environments in which students learn to solve problems in a variety of domains. Initial 

research on CTAT, for example, found that an example-tracing approach to pedagogical authoring, which 

requires no programming ability, cut authoring time by as much as 50% (Vincent Aleven, McLaren, 

Sewall & Koedinger, 2006). CTAT is now perhaps the most widely used authoring system for ITSs, and 

the gains in efficiency have improved as well. Large-scale CTAT-created tutors used in educational 

settings have been built with fewer than 100 hours invested per hour of instruction produced. By 

eliminating the need for programming assistance, CTAT can reduce overall development costs by a factor 

of 4–8 (Vincent Aleven et al., 2009). 

Similarly ASPIRE, an authorware platform for the creation of constraint-based ITSs, has been used to 

create a wide range of learning technologies (Mitrovic, 2012; Mitrovic et al., 2009). ASPIRE is domain 

agnostic, allowing curriculum designers in any field to author ITSs. This generality is a tremendous 

advantage, but it also means that the learning curve is steep for new users and that best results have been 

achieved by authors with more advanced technological abilities (Mitrovic, 2012). 
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Of course there are many other authoring tools, as well as other approaches to authorware design. But 

there remains a fundamental challenge: in making the authoring process easier and faster, the more 

advanced features of cognitive tutors are often lost. Example-tracing systems, for instance, significantly 

reduce authoring time and require no programming skill, but the pseudo-tutors produced are not as 

dynamic as those that expert programmers can build (Vincent Aleven, Sewall, et al., 2006; Koedinger et 

al., 2004). As a result, most of the learning modules that have been produced with accessible authoring 

tools help students learn to solve well-formed problems. But many problems with which innovative 

professionals engage are ill formed, requiring the kinds of complex thinking that is beyond the capacities 

of most systems to teach, unless the system has the capacity for natural language interaction and a 

statistical representation of world knowledge (Graesser, D’Mello, et al., 2012; Halpern et al., 2012; 

Hilton, 2008; McNamara, Levinstein & Boonthum, 2004; Rotherham & Willingham, 2009; VanLehn et 

al., 2007). Given this issue, a key next step in the development of authorware is to enable curriculum 

developers, even those with limited technological skill, and design virtual learning environments that 

simulate realistic practices or allow students to solve ill-formed or non-routine problems. 

Discussion 

Virtual internships, and the Syntern platform with which they are developed and deployed, have three key 

features that make it possible to develop authorware for curriculum developers who have limited 

technological skill: (1) the design space is constrained, (2) the NLP components are STEM domain 

general, and (3) the system is modular. Although virtual internships simulate ill-formed domains and 

problems, these three elements reduce the scope and complexity of the pedagogical authoring 

environment, allowing us to design authoring tools that can scaffold the curriculum development process. 

Of course, this limits the range of virtual learning environments that a curriculum developer will be able 

to design, but it also ensures that the final product will be functional, pedagogically and structurally 

sound, and able to accurately simulate non-routine problem solving in a practice-based context. In what 

follows, we first describe the existing Syntern platform. Then, we outline the design of an authorware 

system for Syntern virtual internships, and in doing so, we discuss our approach to studying the 

pedagogical authoring process itself. Although we focus on one specific system, the principles of 

authorware design that we discuss are generalizable to learning environments in ill-formed domains as a 

whole. 

Syntern, a Modular Development and Deployment Platform for Virtual Internships 

The Syntern virtual internship platform (Figure 1) is comprised of six distinct structural elements, which 

when combined produce (a) an online user experience that authentically simulates real-world STEM 

practices, and (b) a log file that records all the actions and interactions of students and domain managers 

in the system for subsequent analysis: 

(1) Frameboard. The Syntern frameboard contains the content for each STEM virtual internship and 

determines the sequence and structure of activities in the virtual environment. For example, 

virtual internships consist of a progression of rooms. Each room consists of three related and 

sequential activities: (a) an introduction, in which interns receive a specific task from their 

supervisor via email; (b) a sandbox, which contains the tools and resources interns need to 

complete the task; and (c) one or more deliverables, or the work output that the supervisor has 

asked interns to submit, including a notebook entry documenting their work. The frameboard is 

structured as a series of possible actions that the computer-generated NPCs use to interact with 

students in the internship. The Syntern system tracks students’ progress through the internship 

and presents the human domain manager with context-appropriate choices for NPC action, 
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including grading rubrics for deliverables that students complete, response options for student 

questions, and guide questions for reflective discussions. 

(2) Workbench. The workbench provides actual or simulated tools from the STEM domain that help 

students solve problems in the field. In the urban planning virtual internship Land Science, for 

example, students use a geographic information system to model the effects of land-use changes 

on various social, economic, and environmental indicators. 

(3) Templates for Automated Mentoring. Syntern uses NLP algorithms to automatically deliver some 

content from the frameboard (such as task assignments from the supervisor). During team 

meetings, for example, in which student project teams discuss their recent activities with the NPC 

mentor and plan their next steps, the system can use the AutoReflect template to determine when 

student responses achieve a pre-defined learning objective. This helps the domain manager decide 

whether to revoice the response(s) and move on to a new topic or send a follow-up question to 

provide further scaffolding. In an engineering design simulation, for example, students may graph 

data to get a better sense for how various design choices affect certain performance metrics. After 

this activity, one question the NPC mentor may ask during the team meeting is: Based on your 

surfactant graph, how did the surfactants perform relative to one another? Because no one 

surfactant performs best on all performance metrics in this particular case, the target student 

response would be something like: No surfactant performed best on all the design attributes. The 

AutoReflect template uses an automated coder (see component five, below) to code student 

discourse in real time, alerting the domain manager when a student response achieves this goal. 

Of course, questions, targets, and coding criteria must be defined in advance, which requires 

experience in both curriculum design and educational technology development. 

(4) Assessment Rubrics. The frameboard contains an assessment rubric for every deliverable in the 

virtual internship. Assessment criteria are linked to pre-composed responses from the NPC 

supervisor. A custom NLP module uses a range of syntactic and semantic criteria, including word 

count, sentence complexity, and a domain-specific coding scheme, to determine whether a 

deliverable is above threshold, meaning it clearly meets evaluation criteria established by the 

rubric. Deliverables that are above threshold are automatically approved by the Syntern system, 

and the appropriate response from the NPC supervisor is sent. Deliverables that are not clearly 

above threshold are tagged by the system for manual evaluation by the domain manager using the 

assessment rubric. 

(5) Domain Coder. The automation of functions in a virtual internship is made possible by a domain 

coder that uses a combination of keywords and regular expressions to code chat messages, emails, 

notebook entries, and students’ actions in the system for specific attributes of the domain. 

(6) Application Programming Interface. The API ensures that all Syntern elements integrate 

seamlessly and allows for easy addition, modification, or removal of modules. The API is 

comprised of six core components (Figure 1). The Java 7 Hub governs basic operations and links 

content, assessment, and the user experience. The R Project for Statistical Computing (R) 

supports NLP and learning analytics tools. The MySQL database holds content from the 

frameboard and records the actions of students and domain managers during the virtual 

internship. The NLP module uses R and the domain coder to analyze student and mentor 

interactions in the system. The learning analytics module evaluates coded discourse, deliverables, 

and other activity in the system to determine whether pre-defined learning objectives have been 

met. The WorkPro graphical user interface (GUI) simulates an online productivity suite through 

which students access resources and tools and interact with NPCs and their project team. The API 

thus ensures integration of the frameboard (curriculum content), workbench, automated 
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mentoring templates, assessment rubrics, and domain coder and provides the core architecture 

needed to produce a coherent user experience from them. 

 

Figure 3. The existing Syntern virtual internship system and the eight components of the Internship-inator 

authorware platform. 

With these components, Syntern recreates the key elements of an internship experience in an online 

environment. The frameboard and the STEM workbench provide students with the ability to take 

consequential action; the frameboard, mentoring templates, and learning analytics (using the assessment 

rubrics, domain coder, and NLP) support reflection-on-action; and the learning analytics, user experience, 

and log files enable the iterative development of virtual internships. 

The Internship-inator, an Authoring System for Syntern Virtual Internships 

A key challenge for the development of authorware that would enable curriculum developers to design 

STEM virtual internships for the Syntern platform is that we lack a science of the pedagogical authoring 

process. In what follows, we describe plans for the Internship-inator, an authorware system for the 

Syntern platform. Our goal is not only to design a functional authorware system but to use both the design 

process and the resulting tools to study the pedagogical authoring process. Of course, studying one 

particular authoring context with a relatively small number of curriculum developers will not support 
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generalization to all pedagogical authoring contexts, but this research will suggest useful directions for 

future work. 

Developing authorware for the Syntern platform thus merits a systematic investigation of the curriculum 

design process and requires iterative prototyping and refinement of the authoring tools. We conceive of 

this project as a form of design research (Brown, 1992; Cobb, Confrey, Lehrer & Schauble, 2003; 

Confrey, 2006; Kelly, Lesh & Baek, 2008), where initial hypotheses about authorware design, Syntern 

modularity, and pedagogical authoring are revised by subsequent research in each area. To do this, we 

will work with a core network of early-adopters: STEM curriculum developers who will help us create 

initial prototypes of the Internship-inator, use the system to modify and design virtual internships, and 

create support materials. To minimize development time and make evidence-based design decisions, we 

will develop different components of the authorware system as standalone modules (described in detail 

below) and employ a Wizard of Oz (Dow et al., 2005) approach. Rather than building a complete version 

of each component initially, we will build a minimum viable version of each tool. Specifically, we will 

only automate those processes that need to be run in real time during the content-development process. 

Wherever possible, we will use members of the development team to perform functions of the tool in its 

early stages, and later build automated systems to replicate and replace the work of these human experts. 

Throughout these iterative design cycles, we will collect three kinds of data in order to study the 

pedagogical authoring process: (1) focus groups and interviews conducted with the early adopters before 

and during the design process and after they have used authorware prototypes will help us understand 

their approach to curriculum development, the supports they need to use the authorware effectively, and 

their preferences for features, user experience, and so forth; (2) the Internship-inator will document in log 

files the actions and interactions of early-adopters while using the authoring tools, giving us a rich record 

of authoring behavior for further analysis; and (3) pre/post tests and log files from implementations of 

virtual internships modified or created by curriculum developers will provide rich information about the 

quality of the learning simulations produced with the Internship-inator. Evaluation of the pedagogical 

authoring process will thus encompass investigation of both technology use (e.g., the human-computer 

interaction process) and the quality of the content produced. 

Collecting these data will allow us to address fundamental research questions about pedagogical 

authoring: Are some components of the authorware system more useful for editorial versus creative use? 

Are some components used more (or easier to use) in conjunction with others? Which aspects of the 

system influence whether, how, and to what extent curriculum developers use different authoring 

components? And so forth. For example, we can look at the pattern of use of different authoring 

components, including the order in which components are accessed, the frequency and duration of use, 

and other log file data, combined with focus groups, to better understand how to sequence and scaffold 

the authoring tools within the system to align with pedagogical authoring practices. 

We conceive of the Internship-inator as a suite of eight online authoring tools (see Figure 1). For 

analytical purposes, we divide the system into content components (the Frameboard-inator and 

Workbench-inator), automation components (the Reflect-inator, Assess-inator, Code-inator, and Mentor-

inator), and support components (the Guide-inator and Collaborate-inator). 

Content Development Components 

(1) Frameboard-inator. The Frameboard-inator will enable STEM content developers to create or 

modify content for a virtual internship, including the structure and sequence of activities, 

assignments (such as readings or videos), assessments and rubrics, and other content that students 

or domain managers will need during the virtual internship. A key challenge is ensuring that 

STEM content developers include all of the information that the Syntern system needs to make 
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the content function. Thus, the Frameboard-inator will require a GUI that indicates (a) what kinds 

of content are required to make each element of the simulation function, and (b) what kinds of 

content are acceptable for different portions of the simulation. For example, every room in a 

virtual internship begins with an email from the supervisor NPC describing the activities to 

follow. Emails have specific properties in the system, so the Frameboard-inator GUI will need to 

indicate to the curriculum developer that (a) an email is required to begin a room and (b) what the 

constituent components of an email are. 

(2) Workbench-inator. The Workbench-inator will provide mechanisms through which curriculum 

developers can include problem-solving tools, such as AutoCAD or Matlab, in a virtual 

internship. Open-source or editable tools, such as Geogebra or Google Maps, can be connected to 

the Syntern API if the curriculum developer has programming expertise. For tools that are not 

open-source but that store their output in one of Syntern’s supported file types (including XML, 

JSON, YAML, HTML, CSV, TXT, and Properties), the Workbench-inator will provide an 

interface that lets the developer tag elements of the file as Syntern readable. (This will also work 

in a more limited way for graphics files in JPG, GIF, or PNG format for content such as location, 

date, and time.) Finally, the Syntern system will allow students in a simulation to upload any file 

as a deliverable. As long as the domain managers have the appropriate program to read the file, 

they will be able to assess it using the system’s rubrics. In the first two cases (open source 

program or output), the Syntern system would be able to apply automated assessment rules to the 

deliverables created. In the third case (proprietary tool or output), the system will store and track 

the file, but a human would have to assess its content. 

Automation Components 

(1) Reflect-inator. The AutoReflect template makes it easier for domain managers to control 

reflective conversations between students and NPC mentors by identifying a set of reflection 

topics and, for each topic, specifying (a) a set of prompting questions for the NPC to use, (b) a set 

of NLP rules and other components to identify possible appropriate responses to the topic, and (c) 

a pre-scripted revoicing of the key ideas about the topic that students should be able to articulate. 

While prompting questions (a) and a revoicing (c) are relatively easy for curriculum developers to 

construct, NLP rules and other components for identifying candidate answers (b) will be more 

difficult. The Reflect-inator will scaffold the construction of these NLP components. For 

example, curriculum developers could enter hypothetical answers from students (as well as 

incorrect answers, if desired), and from the set of answers and non-answers, the Reflect-inator 

would abstract a matching NLP rule. Because of the limited context of students responding to a 

specific question in a reflective meeting taking place at a specific point in a specific STEM 

simulation, we have found empirically that relatively simple rules can distinguish appropriate 

responses from inappropriate responses. We therefore hypothesize that a limited set of model 

responses will be sufficient for the system to extract functional rules. 

(2) Assess-inator. Assessment rubrics in the Syntern system can automatically determine whether 

certain student deliverables are acceptable. The system uses a custom NLP algorithm that 

involves three computations: (a) a word type count (the number of unique words used), (b) a 

domain code count, and (c) a measure based on four measures from the text analysis program 

Linguistic Inquiry and Word Count (Pennebaker, Booth & Francis, 2007). We are also currently 

exploring including latent semantic analysis of deliverables to further refine the accuracy of the 

automated scoring algorithm (Graesser, Penumatsa, Ventura, Cai & Hu, 2007). The current 

algorithm uses six thresholds, which determine whether the deliverable is accepted automatically 

or sent to the domain manager for further evaluation. We hypothesize that, as a result, a relatively 

small number of sample answers will be required for the Assess-inator to automatically compute 
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appropriate values for these thresholds. The Assess-inator will initially set all thresholds to zero—

which means all deliverables will be reviewed by hand. Log files created when the simulation is 

run will include real examples of deliverables and the domain manager’s determination of 

whether or not they are acceptable. The Assess-inator will then use these data to adjust the 

thresholds automatically and with each subsequent iteration, the Assess-inator can automatically 

refine the adjustments over time. 

(3) Code-inator. The domain coder uses a combination of keywords and regular expressions to 

interpret student-generated chats, emails, notebook entries, and actions in the Syntern system. The 

resulting codes are then used by components of the system to automate responses to student 

verbal contributions and actions. The domain coder can achieve the level of semantic accuracy 

needed to create believable responses because the domain of possible speech acts and actions in the 

virtual internship is limited (Graesser & McNamara, 2012; Grishman & Kittredge, 1986; Richard & 

Lehrberger, 1982; Rupp, Gustha, Mislevy & Shaffer, 2010). Curriculum developers, however, will 

not be able to easily create appropriate sets of keywords and expressions. 

(4) We have already developed a tool, the HandCoder/AutoCoder, to create codesets for virtual 

internships. This tool takes either manufactured or real examples from the target context (that is, 

the STEM virtual internship) and uses a coding loop to create a set of keywords and expressions. 

In the coding loop, a user codes a subset of examples from the target context for a given domain 

code. These are compared to the existing codeset, and the user is able to adjust the codeset based 

on the discrepancies. Further excerpts are hand-coded, and the process is repeated until the 

desired level of agreement is reached—typically Cohen’s kappa > 0.69, which is excellent for 

automated coding. Two key features support the rapid identification of an appropriate codeset: (a) 

the system computes changes in the level of agreement on the fly as keywords are added or 

removed from the codeset, and (b) a custom-written algorithm computes the confidence interval 

for the level of agreement, thus reducing the number of coded excerpts needed to establish an 

acceptable level. This system has been used in several different domains to establish coding 

schemes, and we hypothesize that it can be easily adapted for use by curriculum developers. 

(5) Mentor-inator. The frameboard for a Syntern virtual internship contains scripted responses from 

NPCs that the domain manager can send to students. The Mentor-inator will automatically extend 

the range of scripted material by (a) providing an interface through which curriculum developers 

can easily add custom responses from previous runs to the frameboard, and (b) updating the 

interface through which domain managers access scripted content so that they can manage the 

larger number of scripted responses. To do this, the Mentor-inator will automatically extract 

composed responses from the log file. Responses that were used multiple times will be 

automatically added to the frameboard. Responses that appear only once will be presented with 

their surrounding context to the curriculum developer, who can decide whether to include them as 

scripts in future implementations. 

Support Components 

(1) Guide-inator. The Guide-inator will provide templates for curriculum developers to use in 

creating support materials for virtual internships, along with an Internship-inator user guide. The 

Guide-inator will be designed as a comprehensive interface to the Internship-inator and Syntern 

systems, integrating design, support, curricular, and implementation materials for curriculum 

developers. 

(2) Collaborate-inator. The Collaborate-inator will provide a social networking component to the 

Internship-inator system. Curriculum developers and educators will be able to create individual 
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accounts on the system, which will (at their discretion) be linked to their email or other social 

media tools. The Collaborate-inator will facilitate content-focused exchanges about the 

Internship-inator, Syntern system, and virtual internships. Users will be able to comment on and 

link to content directly from the system. The result, we hypothesize, will be a self-sustaining 

community of STEM content developers who can share virtual internship designs, curricula, and 

experiences. By providing critical feedback and input on one another’s designs, support materials, 

and implementation practices, the Collaborate-inator will provide the “real world tips” that our 

focus groups suggest education professionals want to supplement formal information about such 

systems. 

(3) We hypothesize that this suite of authoring tools will enable curriculum developers to design and 

modify virtual internships without needing programming experience or extensive training. The 

pedagogical framework, the mode of communication (email and chat), and the structure of the 

intervention are all relatively fixed, which makes it easier to scaffold the design process and 

ensure that the product is pedagogically and structurally sound. The NLP computational module 

is STEM domain general, so the semantic coding system can be automatically updated; this 

reduces the need for curriculum developers to have expertise in instructional technology design. 

The modular design of the Internship-inator has several advantages. First, it will allow curriculum 

developers to develop simulations quickly for testing. For example, a functional virtual internship 

could be developed from scratch using only the Frameboard-inator; the resulting simulation 

would not have automated features, but those could be incorporated more gradually. The initial 

time commitment can thus be relatively low if a curriculum developer wants to experiment with 

virtual internship design or content. Second, the Internship-inator will allow curriculum 

developers to make precise modifications to virtual internships, such as adding resources or 

workbench tools, altering scripted content, or expanding the codeset, without altering the rest of 

the simulation. Lastly, the system will accommodate different design processes: there isn’t a 

single, linear progression that all curriculum developers must follow. Of course, that can be a 

disadvantage as well, as it may make the learning curve steeper, but we believe this is a useful 

trade-off because it will allow curriculum developers to use the tools in the ways that best fit their 

specific needs and design approach. 

Recommendations and Future Research 

Designing authorware that makes the creation of virtual learning environments easier, cheaper, and faster 

is critical for expanding the use of ITSs, educational games, and virtual internships. Most authorware 

design research, however, has focused on the technological challenges. We suggest that developing a 

science of pedagogical authoring is an equally important but largely neglected aspect of this problem. 

Just as there are established sciences that systematically investigate the processes that underlie learning, 

writing, design, problem solving, and other human achievements, there needs to be a comparable science 

of creating advanced learning environments with authoring tools. This science would need to (a) track the 

behavior of authors; (b) identify technological features that promote or impede authors’ progress and the 

quality of the final products; (c) collect verbal protocols on the design processes of the authors while 

authoring material; (d) modify the features of authoring tools as data are collected; (e) formulate a testable 

theory of the authoring process; and (f) identify characteristics of authors that predict authoring quality. 

The current lack of a science of the authoring process explains in part why most authoring is 

accomplished by experts. 

Designers of authoring tools generally agree that it is important to document the many versions of 

authored content over time (i.e., the authoring process) and analyze the trajectory of changes: To what 

extent are the authors using particular components of the authorware? To what extent are particular 
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learning principles instantiated in the materials that end up being designed? What components are 

frequently deleted or modified? But such questions have yet to guide the development of a science of 

pedagogical authoring. A key goal of the Internship-inator project is to contribute to the foundation of 

such a science. By tracking the actions of curriculum developers who use the authoring tools (log files) 

and developing a community of users (Collaborate-inator) from whom we can obtain feedback, we will be 

able to study systematically the processes at work in pedagogical authoring. 

Our vision is compatible with the Generalized Intelligent Framework for Tutoring (GIFT) architecture 

both pragmatically (scaling up) and technically. Scholars are aware of the challenges involved in scaling 

up and having an architecture that can handle different media. This level presents no significant problems. 

We do see two efforts needed to expand GIFT. First, there needs to be a mechanism to handle groups, 

teams, and other collaborations that go beyond the individual learner. The main technical challenge is 

organizing the database, grouping individuals, and making systematic claims about individuals, groups, 

and organizations. The data stream needs to be time stamped and populated with adequate metadata to 

handle multiparty and sometimes multiteam interactions. Second, there needs to be a systematic facility 

for handling the authoring analytics. We need to store data on multiple versions of software content and 

track the authoring process. This is required to build a science of the pedagogical authoring process.  

We have made considerable progress in the design of authorware for sophisticated virtual learning 

environments, and there are many projects currently underway that are likely to continue and even 

accelerate this progress. To improve uptake of such environments, however, we must develop authorware 

that can be used successfully beyond the research context. Aleven and colleagues suggest that our Holy 

Grail is to create cost-effective, user-friendly authorware; we suggest that our El Dorado is to develop a 

science of the pedagogical authoring process. 
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CHAPTER 16  Authoring Conversation-based Tutors 
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Introduction 

Conversation-based intelligent tutoring systems (ITSs) attempt to help students learn by holding a 

conversation in natural language. Most of the systems consist of dialogues between the human learner and 

the computer tutor, who take turns in the conversation. Two or more agents can also hold conversations 

with a learner. For example, in trialogues the learner interacts with two agents, such as a tutor and a peer, 

or two peers. Trialogues allow the ITS to exhibit conversation skills, for the learner to view, in addition to 

advancing the learning of the subject matter. Most of these dialogue-based ITSs also have external media, 

such as a picture, table, diagram, or interactive simulation. The designers of conversation-based ITSs need 

to worry about the coordination and timing of the conversational turns among the learners, agents, and 

dynamic external media. Designers of these ITSs also need to worry about what each agent looks like. An 

agent can vary from a minimalist depiction of the human persona (such as a chat message) to a very 

realistic depiction, such a fully embodied avatar in a virtual world.  

The core of the conversation-based ITSs resides in natural language, discourse, and communication. 

There are three basic tasks in these conversation systems: (1) interpret the meaning of the learner’s 

language and discourse, (2) assess how these verbal contributions might update the student model on 

knowledge, skills, and strategies, and (3) generate tutor dialogue moves that advance the pedagogical 

agenda. The authoring tools need incorporate components that accommodate all of these tasks in addition 

to creating the agent persona and external media. This is particularly difficult because most designers of 

curricula with subject matter expertise have never been trained on the mechanisms that underlie language, 

discourse, and communication; instead most of their training is on the subject matter, pedagogy, and 

curriculum.  

Conversation-based ITS are not able to interpret and intelligently respond to any verbal expression that a 

human expresses. One reason is because much of natural language is fragmentary, vague, imprecise, 

ungrammatical, and filled with spelling errors. A second reason is that the computer can effectively 

handle only input that matches content that it anticipates ahead of time, such as expected good answers, 

bad answers, and misconceptions that the author specifies in the curriculum. In essence, the ITS computes 

semantic matches between student verbal input and the expected content in the curriculum and student 

model. Advances in computational linguistics and statistical models of world knowledge have 

impressively increased the accuracy of the semantic matches. However, the author or automated 

components need to specify how the expected content is represented; this requires expertise in 

computational linguistics, cognitive science, corpus analysis, and perhaps other fields if these 

representations are anything other than natural language. In an ideal world, there would be a large suite of 

automated utilities in the authoring tool to minimize the burden on the author. But most systems in 

current practice require methodical annotation of the curriculum content for semantic match 

computations. 

The authors need to create the tutorial dialogue moves that get launched under specific conditions in 

response to the learner’s contributions. Most conversation-based ITSs have production rules that declare 

what an agent says under particular conditions. For example, the tutor agent gives positive feedback 

(“That’s correct”) after the learner’s verbal contribution has a high semantic match to a good answer. Or 

the tutor agent generates a hint if the semantic match is close but not quite high enough. Unfortunately, 



 

196 

computer science expertise is normally needed to set up the production rules in the production systems 

that intelligently generate the agents’ discourse moves. The rules get particularly tricky when there are 

many conditions to check, when there are links to dynamic external media, and when the timing of 

discourse move production is important. Again, one option is for the author to specify this content 

meticulously. Visualizations such as Excel tables and chat maps can sometimes help the author. Another 

approach is to copy previous production systems that are successful and modify them for specific content. 

More advanced methods include machine learning and crowd sourcing methodologies to minimize the 

burden on the author. 

Chapters 

The chapter by Cai, Graesser, and Hu describes its AutoTutor Script Authoring Tool (ASAT) that is used 

to develop content for AutoTutor. AutoTutor helps students learn subject matters (e.g., science, 

technology, engineering and mathematics (STEM) topics) and skills (e.g., comprehension, scientific 

reasoning) by holding a conversation in natural language with conversational agents. The conversations 

often refer to components in external media, such as pictures, diagrams, video, and virtual reality 

scenarios. Agents can converse with each other in addition to the human learner. The ASAT tool needs to 

specify the characteristics of the expected learner input (ranging from mouse clicks to natural language), 

the alternative messages produced by the agents under particular conditions, the external media, and the 

flow of the conversation. The AutoTutor Conversation Engine (ACE) is responsible for evaluating the 

student input, updating the learner’s performance scores, selecting a new set of conversational messages, 

and sending all of this back to the learning system. The learner’s verbal input is compared with expected 

input through semantic matching algorithms that can accommodate language that is often ungrammatical, 

vague, imprecise, and filled with spelling errors. This chapter describes some new visualization tools in 

ASAT-V that help the author create the content and production rules in such complex and multifaceted 

conversations.  

The chapter by Ward and Cole describes the processes and tools for authoring content in an ITS called 

My Science Tutor (MyST). This virtual science tutor engages children in spoken dialogues to help them 

construct explanations of science phenomena that are presented in illustrations, animations, and 

interactive simulations in a curriculum that incorporates science standards (Full Option Science System). 

The chapter describes an iterative process of recording, annotating, and analyzing logs of natural language 

from sessions with students, which, in turn, update the automated tutor model. A major challenge in all 

conversational systems lies in representing and extracting the semantics of student language, which, in 

turn, guides selecting tutor actions. The chapter describes some computational linguistics tools, natural 

language corpora, and machine learning methods that help the author create content for new material.  

In the chapter by Johnson, there is a focus on virtual role-play simulations in which learners perform roles 

similar to what they would perform in real life. Virtual role play is a category of training that is 

particularly well suited to interpersonal skills. It has been applied to training foreign language, cross-

cultural skills, negotiation, motivational interviewing, and customer service. Processes and tools are 

described for creating such simulations. The development process has distinct phases, including 

background sociocultural research, instructional design, scenario authoring, media production, and quality 

assurance. The authoring tools need to handle the creation of agents, social scenarios, conversational 

discourse, and other dimensions of a rich social environment. Johnsons authoring tools are selected or 

developed to handle all phases and attributes of these simulations. Multiple types of expertise are needed 

in those who author these learning environments so it is unlikely that a single author could handle all 

dimensions of these simulations. Expertise in the natural language component is distinctively different 

than the other levels, but one important message is that cultural sensitivity must be integrated with the 

language and dialogue. 
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The chapter by Olney, Brawner, Pavlik, and Koedinger describes some new trends in the authoring 

process that can potentially improve the quality, speed, and cost of ITS authoring. These new alternatives 

have additional layers of automation that attempt to reduce some of the authoring tasks, and in some 

cases, make the authoring tasks invisible. For example, instead of an author hand-authoring a production 

system (i.e., what should the computer do when there are different student inputs), in systems like 

SimStudent the author tutors a machine learning system that learns the production system from scratch. In 

the BrainTrust system for conversational tutoring, novices do some authoring, the computer generates 

additional expressions automatically, and other novices check the work to ensure quality. In advanced 

component-based authoring, previous components from a learning registry are reused and new 

combinations of components are assembled; these candidate learning objects can be modified to fit 

constraints of a new application. In these examples, content can be more quickly authored by interacting 

with a simulation, generating content automatically, reusing content from previous applications, and 

crowd sourcing. These new approaches are promising because expertise in authoring and subject matter 

knowledge is typically limited and also requires exceptional analytical skills in more complex learning 

environments.    

Implications for the Generalized Intelligent Framework for Tutoring (GIFT) 

The four chapters provide both general and specific recommendations for GIFT’s suite of authoring tools 

for conversation-based tutors. GIFT has already developed one conversation-based tutor when it used the 

AutoTutor-Lite authoring tool to integrate AutoTutor with Physics Playground, a learning environment 

with multimedia, animation, and game features. This is an important beginning, but GIFT will need to be 

expanded to build the more complex conversation-based ITS that have been covered in this section.  

One issue periodically raised addresses the degree or depth of integration between the language/discourse 

components and the subject matter knowledge/skills to be mastered. Should there be independent 

components, loose coupling, or tight integration? The different approaches have implications for the 

authoring tools in addition to the information that ends up being stored in the learner model (as in TinCan, 

the Learner Record Store, or other GIFT solutions). A tight integration will result in a more complex 

authoring tool and student model that incorporates language-discourse-knowledge-skill configurations. A 

tight integration allows new discoveries in data-mining explorations to improve the conversation-based 

ITS. However, it will also end up being more complex to author, more difficult to specify production 

rules, and a more detailed inventory of learning objects, all of which aggravates the analytical challenges 

for the author.   

A second major issue addresses how GIFT can incorporate a suite of visualization tools, lexicons, 

corpora, and other facilities that are routinely used in computational linguistics. For example, the projects 

of AutoTutor (Cai et al.) and Virtual Role-Play Simulation (Johnson) both desired a chat map 

visualization facility in the authoring tools. The authoring tools in all of the projects in this section would 

benefit from standard computational linguistics resources, such as the WordNet lexicon, corpora in the 

Linguistic Data Consortium, frequently used syntactic parsers, regular expression generators, and 

machine learning tools for natural language. These would need to be integrated in the authoring tool so 

the author can quickly test the fidelity of a candidate linguistic or symbolic expression being annotated. 

Agent tool kits would be needed to quickly test out how an agent’s spoken message, facial expression, or 

message is rendered. World knowledge representations, such as latent semantic analysis and semantic 

networks, are also periodically needed. GIFT needs to expand its library of facilities in computational 

linguistics, discourse, agent technologies, and world knowledge representations.  

A third issue is to find ways for GIFT to automate aspects of the authoring process. The reuse of existing 

successful components, modules, and lessons is encouraged by everyone and fits perfectly with the GIFT 
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philosophy. So relevant existing components need to be discovered for a particular lesson and then reused 

and repurposed on the spot. A good authoring tool would essentially be good at modding a similar lesson. 

Some deep thought is needed on how to expand GIFT to include the SimStudent, BrainTrust, and crowd-

sourcing approaches to iteratively improve the quality of the authored content, as was discussed in the 

Olney et al. chapter, and to some extent, in the chapter by Ward and Cole.    
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CHAPTER 17  ASAT: AutoTutor Script Authoring Tool 
Zhiqiang Cai, Arthur Graesser, and Xiangen Hu 

University of Memphis 

Introduction 

AutoTutor is a class of intelligent tutoring systems (ITSs) that helps students learn by holding a 

conversation in natural language (Graesser et al., 2004, 2012; Nye, Graesser & Hu, in press). AutoTutor’s 

intelligent conversation framework has been integrated into many learning systems that range from 

tutorial dialogues on science, technology, engineering, and mathematics (STEM) topics (such as 

computer literacy, and physics) to trialogues (i.e., two agents and a human) on critical thinking and 

reading comprehension (Graesser, Li & Forsyth, 2014; Millis et al., 2011; Halpern et al., 2012; Forsyth et 

al., 2013). Examples of trialogues under construction 

(https://www.youtube.com/channel/UCGoWLJj6BXZ6X2KIRLYrgZw) can be viewed for a more 

concrete illustration of the nature of these conversations. AutoTutor is an advanced conversation 

framework that can be used to generate conversation scripts and be integrated into most learning systems. 

AutoTutor takes the learner’s typed verbal contributions, speech, and actions as input and accommodates 

events in different media to trigger or change paths of conversations. It also sends commands to the 

learning system for execution, such as presenting pictures and launching scenarios (Cai, Feng, Baer & 

Graesser, 2014). 

There are many steps in composing an AutoTutor conversation with one or more computer agents and a 

human learner. Authoring an AutoTutor conversation includes preparing spoken contributions for each 

computer agent, specifying conditions at which a speech is delivered, determining the points at which 

human learners’ responses and/or environmental events are expected, formulating scores that can be used 

to track learners’ performance, designing pedagogical strategies, creating commands that make changes to 

learning system parameters, and so on (Cai, Hu & Graesser, 2013). Because of this complexity, an 

AutoTutor script authoring process usually requires collaborative work by domain experts, language 

experts, learning experts and software developers. Domain experts use the tool to construct learning 

content in terms of agent questions and expected learner responses. Language experts revise the content 

of the dialogue moves to accommodate targeted learners and their possible responses. Learning experts 

design student models and pedagogical models. Software developers specify interaction constraints and 

develop interactive media units.  

The AutoTutor Script Authoring Tool (ASAT) is a tool we developed to facilitate the process of authoring 

AutoTutor content. In this chapter, we present ASAT-V, the visualized version of ASAT. ASAT-V uses 

graphical shapes to represent agents’ spoken contributions, questions, answers, world events, and system 

actions. Semantic cues and student performance scores are stored in shape data. Conversation rules are 

represented by directional connections from shape to shape. Pedagogical strategies are represented by 

partial flowcharts, which can be reused. The tool also integrates utility modules to help authors validate, 

test and refine scripts. In this chapter, we first give an overview of the AutoTutor framework and the 

major components that make AutoTutor work. We then describe ASAT-V and the AutoTutor shapes that 

are used to compose visual scripts. The chapter ends with suggestions for developing conversation 

modules and authoring tools for ITSs. 

https://www.youtube.com/channel/UCGoWLJj6BXZ6X2KIRLYrgZw
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AutoTutor Framework 

AutoTutor provides a framework to integrate intelligent conversations into learning systems. A learning 

system can start an AutoTutor conversation session by loading an AutoTutor script to the AutoTutor 

Conversation Engine (ACE). ACE sends messages to the learning system, including agent spoken 

utterances and system commands. An AutoTutor conversation usually starts with spoken turns by 

computer agents, together with background changes on the computer screen, such as page turning, video 

playing, image changing, and text highlighting. At particular points, the system stops and waits for the 

learner’s input, in the form of speech, text, or action. The learner’s input is then sent by the learning 

system to ACE. ACE is responsible for evaluating the input, setting learner’s performance scores, 

selecting a new set of conversational messages, and sending all of them back to the learning system. The 

process repeats until the conversation session ends.  

An example illustrates this process. Suppose a learning system is showing a video to a learner to review a 

lesson about the use of punctuations. While the video is playing, a tutor agent is talking about the video. 

The video pauses at a certain time and the tutor asks the learner questions about the learning material. The 

learning system starts this process by loading a script to ACE. After the script is successfully loaded, 

ACE sends to the learning system the following actions to execute: 

(1) System : LoadVideo : https://www.youtube.com/watch?v=wTs6Q8Cs5AY 

(2) System : SetPauseTime : 00:00:30 

(3) System : StartVidio 

(4) Tutor : Speak: Now, let us have a review of lesson 5. In this lesson, we learn about the use of 

punctuations. Please watch this video carefully and pay attention to how punctuations help 

reading. 

 

When the learning system gets these four actions from ACE, the system first loads the video from the 

given URL. Then the system sets a timer for 30 seconds and starts to play the video. The tutor talks while 

the video is playing. Notice that ACE may send many different types of actions to the learning system. 

The learning system is responsible for interpreting the actions. AutoTutor authors have to collaborate with 

learning system developers on what actions are executable and how they should be executed. 

When the video pauses at the specified time, the learning system sends to ACE a message that the video is 

paused. ACE then makes decisions on what to do next and sends a new set of actions to the learning 

system: 

(1) Tutor : Speak : OK. This video talked about punctuation definition signals. What are they? 

(2) System : WaitForInput : 20 

The learning system then delivers the speech and waits 20 seconds for the learner to enter a response. 

Suppose the learner entered “They are dashes and commas.” The response then is sent to ACE. ACE then 

analyzes the response and figures out that the response is a partial answer. ACE then sends out a new set 

of actions: 

(1) Tutor : Speak : Wonderful! You got some of them. Can you say more? 

https://www.youtube.com/watch?v=wTs6Q8Cs5AY
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(2) System : WaitForInput : 20 

This process continues until the conversation session ends. 

The above example involves the conversation engine ACE, the conversation script, and semantic analysis. 

In order to understand the authoring process of AutoTutor conversation, it is important to know the 

following main features in AutoTutor framework. 

Script 

An AutoTutor script defines all elements in a conversation session, including agents, commonly used 

speech acts, spoken messages of agents, questions, answers, and so on. Conversation rules are also 

specified in the script, which is implemented in ASAT-V by connecting script shapes with single 

directional lines.  

Natural Language Input Assessment  

Evaluating natural language input in AutoTutor is accomplished in two steps. The first step is to 

determine the type of speech act of the learner input, such as definitional question (“What is X?”), yes/no 

question (“Is X?”), request (“Can you show me another page?”), meta-cognition (“I have no idea about 

that.”), meta-communication (“Can you repeat that?”), statement, and so on (Samei, Li, Keshtkar, Rus & 

Graesser, 2014). The second step is to identify semantic units in the input and match the input with 

prepared target units. For example, if the input is a definitional question, then AutoTutor will find for 

what concept the learner needs a definition. If the input is an answer to a question an agent asked, 

AutoTutor will match the input with prepared answers to the question. AutoTutor uses two ways to 

accomplish semantic matching. One is using regular expression matching. A regular expression is simply 

a string pattern that is used to check whether or not a target string has matches to the pattern. For 

example, if the expected answer is “they are dashes and commas,” the regular expressions could be 

{“\bdash”, “\bcomma”}, where “\b” indicates “word boundary”. For each target answer, a set of regular 

expressions is created to represent the key parts of the answer. The proportion of matched regular 

expressions is used as regular expression matching score as part of the semantic evaluation. Another one 

is latent semantic analysis (LSA) (Hu et al., 2007, Cai et al., 2011). LSA represents the meaning of text 

units by vectors of statistical semantic features. The cosine value between two vectors (the student input 

and an expected answer, both in natural language) is used as another part of semantic evaluation.  

Student Models and Pedagogical Models 

Student models keep track of students’ performance. The data from student model are used by 

pedagogical model for tutoring strategy selection. What should be used as variables for student modeling 

is still an unanswered question (Graesser, 2013). AutoTutor allows authors and learning system designers 

to create customized variables to track students’ learning process and performance. The customized 

student model is implemented as a set of name-value pairs, together with a few functions to do score 

operations, such as initializing scores, adding scores, etc. The tutoring strategies in AutoTutor are 

implemented as conversation patterns, such as vicarious learning, expectation-misconception tailored 

tutoring, teachable agent, etc. (Cai et al., 2014). In ASAT-V, conversation patterns are implemented as 

partial flowcharts, which can be reused in script authoring. 
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Communication between AutoTutor Conversation Engine and Learning Systems 

When AutoTutor conversation is integrated into a learning system, the conversation engine needs to 

communicate with the learning system constantly. The conversation engine needs to know what is 

happening in the learning environment in order to choose the next step to move on. In the example above, 

when the video is paused, a “video paused” message is sent from the learning system to the conversation 

engine and the conversation engine decides that the next step is to ask the learner a question. AutoTutor 

allows learning system to send messages about what happens in the learning system as “world events.” 

World events are simply labels that are pre-negotiated between learning system developers and AutoTutor 

rule designers. In the example above, “VideoPaused” could be a label that is used to indicate the pause of 

any video in the learning environment. The learning system always sends such a world event to 

AutoTutor engine when a video is paused. It is up to the rule designer to decide what to do with this 

event. Therefore, a world event list needs to be shared by the learning system developers and AutoTutor 

rule designers, so that the system developers know what can be sent and the rule designers know what can 

be expected. 

ACE: AutoTutor Conversation Engine 

ACE is a web service that interprets AutoTutor scripts and communicates with learning systems. ACE is 

currently implemented as a RESTful web service, which can be easily integrated into any system. 

With the above features, AutoTutor is capable of taking care of the conversation part of learning systems. 

However, authoring AutoTutor scripts is never an easy task. The AutoTutor research group at University 

of Memphis has worked for more than a decade to develop tools to help the script authoring process. 

ASAT-V, a visualized authoring tool, is the latest development. 

ASAT-V 

ASAT-V is a windows desktop application that requires .Net Framework 4.5 and Microsoft Visio 2013. 

This tool is used to define computer agents, view Visio flowcharts, and test scripts.  

Figure 1 shows a screen shot of ASAT-V. On the menu strip, there are only two menu items. The “FILE” 

menu is used for creating a new project or open an existing project. A project is a set of Visio flowcharts. 

Developers can select “Sample Project” in the File menu to open the sample project. The sample project 

folder is in the installation directory of ASAT-V. Authors can make a new copy of the sample project 

folder to start a new project. The “HELP” menu is used to access an online help document, which is 

updated when new release of the tool comes out.  

The left panel of the tool is a list box that contains the flowchart names of the opened project. Authors can 

click an item to select a flowchart to work on. 

The right panel contains six tab pages, labeled as “Visio,” “Shape Data,” “Question,” “Test,” “Agent,” 

and “Speech Acts,” respectively. “Visio” page contains a standard Visio Viewer that displays a selected 

Visio flowchart. This page is connected to Visio 2013. When editing is needed, an author can press the 

Visio editing button to open the Visio script in Visio 2013. The flowchart shown in Figure 1 contains 

different Visio shapes (circles, rectangles, lines, etc.). In addition to the look of each shape, each shape 

type contains a set of attributes that are specifically defined in ASAT-V. We explain the data defined for 

every shape type in later sections. The tab page “Shape Data” lists all shapes in the selected script and 

displays the associated data of a selected shape. Authors can review the data shape by shape and see if 

there is any error. The tab page “Questions” is actually created for answer evaluation. The questions in a 
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selected flowchart are listed in this page. When a question is selected, all prepared answers associated 

with the selected question are then displayed. There is an input box on the page for an author to type in an 

answer to the question and see how much an answer can match each prepared answer. Authors can use 

this tab page to set the thresholds for semantic assessment. The “Test” page is for script testing. Authors 

can simulate a student’s interaction to a selected script by submitting expected textual responses or world 

events to find out if the system performs as desired. The “Agent” page defines computer agents. An 

author can find all defined agents in a dropdown menu. When an item in the menu is selected, the 

information about the selected agent will be displayed and can be edited. New agents can be added by 

typing in the text field of the dropdown menu. The tab page “Common Speech Acts” defines commonly 

used speech acts using regular expressions. The definition of agents and speech acts are for all flowcharts 

in a selected project. Therefore, the agents and speech acts are not defined in any of the flowcharts. 

 

Figure 4. ASAT-V 

In the next section, we describe all AutoTutor shapes, their text and data fields, and their use in 

constructing the scripts. Although these shapes are currently implemented in Visio 2013, it is possible to 

implement them in other drawing tools that store accessible shape data. 

Autotutor shapes 

Figure 2 shows an AutoTutor script flowchart drawn in Visio 2013. The flowchart is an AutoTutor 

conversation pattern called “Greeting.” The conversation begins with a greeting “Hello!” from a teacher. 

Then the system waits for user’s response. If the user says anything, the teacher says, “Terrific! We’ve 

connected.” The conversation then ends. If the user is silent, the teacher says, “Are you there, user?” Then 

the system waits for the user to respond. If the user is silent again, the teacher says, “Too bad.” Then the 

conversation ends.  
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Figure 2. Script flowchart for Greeting 

As one can see in Figure 2, the conversation script is represented by connected Autotutor shapes. An 

AutoTutor shape refers to a visual shape and its associated data. Every shape has a type name and a text 

field. Any text inside a pair of brackets is considered commentary text and is ignored by ACE in the 

interpretation. Currently, ten shape types have been defined for AutoTutor script. Figure 3 shows these 

ten shapes as the AutoTutor stencil in Visio 2013. We explain these shapes below in more detail. 

End Shape 

Figure 3. AutoTutor stencil in Visio 2013 

Start Shape 

A Start shape represents the beginning of a conversation. The text should be “Start.” Although, the text 

field of this shape is not really used in the script interpretation, using an explicit “Start” helps to make the 

 

 

 

 

 

 

 

 

 

Figure 5. AutoTutor Script Flowchart 
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flowchart clear. No shape data are defined for Start shape. Each script should have one and only one Start 

shape, which should point to at least one other shape. Usually, Start is the first shape to put to a script 

flowchart.  

An End shape represents an end of a conversation. A script must have at least one End shape. Multiple 

End shapes are allowed. The text field of the End shape helps to indicate the ending path of a 

conversation. Therefore, the text on different End shapes can be different, such as “End-1,” “Good-End,” 

“A-End,” etc. “Score” is the only data field in an End shape. Authors may specify this score for a shape in 

a flowchart to indicate the learner’s performance at the specific ending.  

Agent Shape 

AutoTutor agents are not defined in the flowchart, as we already explained earlier. However, we created 

Agent shape type for authors to put agent names together with a script flowchart to show what agents are 

used in the flowchart. Agent shape is not required in a script and will not be interpreted by ACE. The 

agents used in the flowchart are defined in the Agent tab page of ASAT-V.  

Speech Shape 

The Speech shape represents the conversational contribution of an agent. The text field is the text form of 

the speech content, together with optional commentary note in brackets. While the commentary note is 

arbitrary, it is recommended that, for a Speech shape, the note contains the agent information, such as 

“Teacher,” “Peer Student,” etc. The text form of the speech content can be displayed to the learner. There 

are two data fields in Speech shape. One is “Agent.” The value of “Agent” field is an ID created separately 

(see section ASAT-V). The other data field is “Speech.” The value of this field is optional. Authors may 

use this field for one of the two different purposes: (1) to create a tagged speech string for on-the-fly 

speech generation or (2) to store a label or URL of a stored speech. The stored speech could be recorded 

human speech or a pre-generated speech from a text-to-speech (TTS) engine. If the speech data are 

empty, the displayable text can be used to generate speech. When a conversation moves to this shape, the 

agent will deliver the speech. Once the speech is done, the flow moves to the next shape. 

Question Shape  

The Question shape has the same data fields as the Speech shape. However, this shape is always followed 

by answer shapes or transition shapes (see below). When the conversation moves to this shape, whether or 

not the question shape will be asked depends on if there is a good answer of the question that has already 

been answered by the learner. If the learner has already answered the question, this shape will not be 

selected and the conversation will move to other paths. One important issue for authors to keep in mind is 

that, alternative paths should be available when a question shape is not selected, so that the conversation 

always has a path to go. 

Answer Shape 

The Answer shape represents a possible answer that a learner may give to a preceding question. The text 

field of this shape is a sample answer of the type. There are several data fields in Answer shape, as 

described below: 
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 AnswerType: Answer type can be any arbitrary string. However, there are a few reserved types, 

including “Good,” “Bad,” “Irrelevant,” “Undetermined,” and “Blank.” These types have special 

interpretations in ACE and should be used correctly. 

o A “Good” answer (Figure 4) is a correct and complete answer to the question. If this 

answer is matched with the learner’s previous input, then the question associated with 

this answer will not normally be asked because the content is already covered. If, for 

some reason, one wants to ask the question anyway, that can be accomplished by not 

specifying any answer with the type as “Good.”  

 

Figure 4. Data for the Answer shape 

o A “Bad” answer represents a typical bad answer that a learner may usually give. In 

addition to help determining the conversation path, “Bad” answer also helps to determine 

whether or not an answer is “Irrelevant” or “Undetermined.”  

o An answer is “Irrelevant” if it does not match any “Good” answer or “Bad” answer.  

o An answer is “Undetermined” if it matches at least one “Good” answer and one “Bad” 

answer.  

o “Blank” answer is an answer without any word.  

 RegEx: The value of this field is a set of regular expressions. Each regular expression represents 

the string pattern of a part of the answer. This field is used to assess a learner’s answer by regular 

expressions. The proportion of the matched regular expressions is the learner’s regular expression 

match score. 

 RegExThreshold: This field is a value between 0 and 1, indicating the minimum regular 

expression score for an answer to be considered matched by regular expression. 
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 LSAThreshold: This filed is a value between 0 and 1, indicating the minimum LSA match value 

for an answer to be considered matched by LSA. The LSA score is computed by comparing a 

learner’s answer to the answer in the text field and the “Sample” fields (see below) of the answer 

shape. The largest cosine value of all comparisons is taken as the final LSA match score. 

 Score: This field is a number to indicate a score that a learner should receive if this answer is 

matched by a regular expression or LSA. 

 SampleN: The sample fields (Sample1, Sample2, …) are possible answers of this type. These 

samples are used to compute LSA scores. The number of sample answers is not limited and an 

author can put as many samples as desired. The samples may come from real student responses 

after the script has been used. In this way, AutoTutor can learn from learners and improve its 

performance over time. 

 ResponseType: The response type could be “Global” or “Local.” This is used in nested 

questions. Usually, an answer to a main question or problem to solve is “Global” and an answer 

to a hint or prompt is “Local.” 

Event Shape 

Event shape is used to integrate AutoTutor conversation with external environment. This shape is used 

when an external event is expected. An external event can be an action from the learner, such as a mouse 

click, a choice selection, etc. It can also be a system event, such as a scenario is loaded, a certain time has 

elapsed, and so on. Event shape data has an “Agent” field and a “Score” field. “Agent” indicates the 

source of the event, from learner or system. “Score” is a performance score assigned to the learner when 

this event is matched. The text filed of this shape is the label of the event. When the label of any external 

event matches the text field of the shape, this event is considered matched. 

Action Shape 

The Action shape is used to send a sequence of actions to the system. There is only one “Name” field in 

the shape data. Authors can put a sequence of lines in the text field of the shape. Each line is of the form 

“Agent:Act:Data.” An example line could be “System:Wait:30,” meaning that the system should wait for 

30 seconds. When this shape is encountered, ACE will send all actions to the external environment for 

execution. Authors have to negotiate with external environment developers to get a list of executable acts 

and associated data. 

Transition Shape 

The Transition shape does not have any data field. However, it plays a very important role in simplifying 

the structure of the flowchart. What an author should know is that all Transition shapes with the same text 

are considered “identical” in the flowchart. For example, in Figure 2, two shapes point to the “Greeting” 

shape and the “Greeting” shape points to two other shapes. If there is another Transition shape in the 

flowchart with the same text “Greeting,” then that shape will also be considered as connected with those 

four shapes in the same way. 
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Connector Shape 

The Connector shapes connect other shapes together to form a conversation flowchart. A connector shape 

is a single directional line that connects two shapes, indicating a move from one shape to another shape. A 

Connector shape has three data fields: “Priority,” “Frequency,” and “MaxVisit”. These three fields play 

important roles in controlling the conversation flow. We explain each of them in detail below: 

 Priority: Priority is a positive integer (1,2,3,…) indicating the priority of a path. A value 1 

indicates the highest priority. A shape may point to multiple shapes. ACE will consider the paths 

according to the priority. For example, in Figure 2, the Transition shape “Greeting” points to two 

shapes, an answer shape “Hi!” and an event shape “Silence.” The connector to “Hi!” has a 

priority 1 and “Silence” has a priority 2. When ACE selects a path from “Greeting,” it will first 

match the answer shape “Hi!” If the learner greets back, that path will be selected. Otherwise, it 

will consider the event “Silence.” 

 Frequency: This field is a positive number. This number is used to set a selection probability for 

paths of same priority. The selection probability of a path is the frequency of that path divided by 

the sum of frequencies of all possible paths coming out from the same shape. Paths will be 

randomly selected with the given probability distribution. 

 MaxVisit: This field is a positive number, indicating the number of times a path can be chosen. 

This value is used to terminate a loop. For example, in Figure 2, the connector from the “Silence” 

shape to the question shape “Are you there, _user_?” has MaxVisit = 1. Therefore, that path can 

be selected for only once. Otherwise, the system may keep asking “Are you there, _user_?” 

forever if the user keeps silent. 

The above shapes are used to compose AutoTutor script flowcharts. With the help of the Transition 

shape, flowcharts can be drawn on multiple pages and connected by common Transition shapes. Step-by-

step tutorials are available. Authors can click on the “Help” menu on ASAT-V to access online tutorials.  

While currently these shapes are implemented in ASAT-V as Visio shapes, they can be implemented in 

any drawing tools that has the following features: 

 Shapes can be customized; 

 Each shape can be associated with a set of customized properties; 

 Shapes can be connected by connector shapes to form flowcharts; 

 One complete flowchart can be split into multiple pages; and 

 The flowcharts can be exported as xml files. 

Conclusion 

As a generalized intelligent framework for tutoring, GIFT needs to include intelligent conversations. 

Unfortunately, creating intelligent conversations is a very complex process. AutoTutor conversation 

framework makes it possible to seamlessly integrate conversations into learning systems. When authoring 

conversations, the most challenging task is to set up conversation rules. The visualized authoring tool, 

ASAT-V, makes the rules visible and greatly reduces the complexity of the authoring process. Thus, 
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visualized conversation authoring tools like ASAT-V are important components of GIFT framework. To 

close this chapter, we give the following list of suggestions on general intelligent conversation modules 

and authoring tools for intelligent conversations: 

(1) Conversation modules should have good communication channels with learning systems.  

(2) Conversation modules should have flexible student model so that student’s learning process and 

performance can be easily integrated into the conversation.  

(3) Conversation modules should have fast and high quality natural language processing (NLP) 

support. It is the best that the conversation module allows NLP plug-ins. 

(4) Conversation script authoring should have graphical rule editing tools. 

(5) Conversation authoring tools should have good validation and test utility. 
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Chapter 18  Constructing Virtual Role-Play Simulations  
W. Lewis Johnson, Ph.D. 

Alelo Inc. 

Introduction 

Virtual role-play simulations are interactive simulations in which learners perform roles similar to what 

they would perform in real life. They are populated with virtual role players, i.e., non-player characters 

that fill out the roles in the simulation and interact with learners much as people typically do in real-life 

situations. Virtual role play is an important category of training that is particularly well suited to 

interpersonal skills. It has been applied to foreign language education (Johnson, 2010), cross-cultural 

skills training (Johnson et al., 2011), negotiation skills training (Kim et al., 2009), motivational 

interviewing (Radecki et al., 2013), and other clinical skills. Role-play scenarios are employed in sales 

and customer service training (Simmons, 2010). The impact of virtual role play is likely to grow as easy-

to-use tools for creating such simulations become more widely available. It thus has a potentially 

important role to play as part of the Generalized Intelligent Frameworks For Tutoring (GIFT). 

Virtual role play is inspired by training with live role players. In the military, it is common to employ 

people as role players in training exercises, acting as civilians and combatants, for example, see Wilcox 

(2012). Such training can be highly effective but unfortunately the costs involved in employing role 

players and the logistics involved in staging live exercises limit their use. Sometimes military members 

must play supporting roles in these training exercises, acting as foreign civilians or opposing forces, so 

they are supporting the exercise instead of receiving training themselves. Medical education also makes 

use of live role players in the form of standardized patients, actors trained to behave as if they have a 

particular medical condition (Barrows, 1993). Such training can be valuable but is limited by the 

availability of suitably trained actors. Role play is also very common in sales training (Robinson, 1987), 

but trainees often do not like it because it is not conducted in a way that is supportive and conducive to 

learning (Sandler Training, 2014). Best practices call for sales managers to role play the customer in such 

training episodes; this limits role play to times when busy sales managers are available to engage in 

training sessions. 

Some researchers are seeking to make role-play training more convenient by moving interaction with live 

role players into virtual worlds. For example the Otago Virtual Hospital lets learners practice their clinical 

skills in a virtual world, interacting with simulated patients played by clinicians (Loke et al., 2012). Such 

training offers added convenience, but it still depends upon the availability of skilled role players to 

control the patient avatars in the virtual world. Virtual role play with virtual humans has no such 

constraint; trainees can practice as much as they want, whenever they want. 

Alelo has been heavily involved in virtual role-play training since its inception. It draws on an extensive 

body of research in supporting technologies such as pedagogical agents (Johnson & Lester, in press). The 

development team at Alelo has broad experience in creating virtual role-play content for a variety of user 

groups. For example Alelo’s Virtual Cultural Awareness Trainers (VCATs) have been developed to teach 

about culture in over 80 countries. Users of Alelo courses number in the hundreds of thousands. This 

gives us practical insights into the issues involved in creating, validating, and delivering virtual role-play 

training at scale.  

This chapter provides an overview of the key capabilities of virtual role-play training systems, using 

deployed training systems as examples. This motivates the requirements for authoring tools. This is 
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followed by a discussion of authoring processes for creating and validating virtual role-play content. 

Authoring tools should be designed with these processes in mind. Next is an overview of available tools 

for authoring virtual role-play content. These include tools for creating simple role-play scenarios, tools 

for authoring complex role-play simulations, and emerging tools that empower trainers to construct and 

customize role-play training content themselves. Finally there is a discussion of future directions for this 

work and its implications for GIFT. 

Examples of Virtual Role-Play Technologies 

Figure 1 shows two example usage scenarios for virtual role play. These particular examples are intended 

to help learners develop their Chinese conversational skills. A common use case is shown on the left, 

where the learner has an on-screen avatar who interacts with on-screen virtual role players. If the user’s 

computer or mobile device supports speech input, as in this example, the training system can employ 

speech understanding technology so that the virtual role players understand what the learner says and 

respond accordingly. This results in an engaging, immersive experience in which learners must apply 

their communication skills much as they would in real-life situations. 

  

Figure 1. Learners can participate in a virtual role-play exercise by speaking and choosing actions for an on-

screen avatar (left) or speaking directly with the virtual role player (right). 

Advances in sensor technologies make it possible for learners to interact directly with virtual role players, 

instead of through an avatar. When integrated into lifelike robots, as in Figure 1 right, the virtual role 

player can interact with learners in the real world. This increases the realism of the role-play experience, 

particularly if the interface incorporates proximity sensors and gesture recognition to support mixed-

initiative multimodal communication. In practice, similar software architectures can be used in both cases 

to control the virtual role players. 

Mobile devices are also increasingly attractive as platforms for virtual role play (Johnson et al., 2012). 

Advances in the computing power of mobile devices make it possible to deliver interactive virtual role 

players on tablets and smart phones, for anywhere, anytime training. Mobile devices are increasingly 

equipped with cameras and other sensors that facilitate natural interaction between learners and virtual 

role players. 
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Techniques for Effective Use of Virtual Role Play 

When used properly virtual role play offers a training experience that is realistic and similar to real-life 

interaction, but is in many ways actually superior to practice in real life. The example shown in Figure 2, 

taken from Alelo’s VCAT Taiwan course, is a case in point. Here the learner is playing the role of an 

American officer on assignment in Taiwan. The learner has been invited to a formal banquet hosted by his 

Taiwanese counterpart. It is important that the learner make a good impression and avoid doing 

something embarrassing or culturally inappropriate. For example, many toasts tend to be exchanged at 

such dinners. How can one follow proper etiquette for exchanging toasts without getting drunk in the 

process? Virtual role play offers an alternative to learning the hard way by making mistakes in real-life 

high-stakes situations. In this example, the learner’s avatar, on the left, has offered a toast saying, “Drink 

as you like.” This gives the learner the option of offering the toast with his teacup instead of a shot glass, 

as his host on the right does. If the learner says or does something inappropriate, the virtual role players 

will react to it, so learner can see the consequences of mistakes. But since the training module is just a 

simulation the negative consequences of mistakes are minimal. The learner can practice multiple times 

until becoming comfortable saying and doing the right things at the right times. Alternative training 

media such as guidebooks may give learners a general understanding of the culture, but do not help 

learners acquire the skills they need for such situations. 

  

Figure 2. Virtual role play lets learners practice high-stakes interactions in a safe environment. 

The following are some techniques for employing virtual role play that maximize its effectiveness. 

Authoring tools and technologies for virtual role play should support these techniques to help developers 

and trainers make best use of this innovative instructional technology. 

Intelligent tutoring technology, in the form of virtual coaches, can monitor learner performance in role-

play simulations, provide feedback, and ensure that learners draw the right lessons from the practice 

experience. Figure 3 illustrates the VCAT’s Virtual Coach, Erika, in action. In this example, the learner 

has expressed dislike for a dish that sounded unappealing, namely, sea cucumber. The Virtual Coach 

advises the learner to show appreciation and interest in the dishes that his host has offered. Such feedback 

can be very important in cross-cultural communication, where learners sometimes are not even aware 

when they make cultural mistakes. 
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Figure 3. A Virtual Coach provides scaffolding and feedback on the learner’s performance. 

When tasks become particularly complex, involving a variety of skills, it can be beneficial to break a task 

a part into component skills and role play them separately in a part-task training approach. VCATs and 

other Alelo courses use this approach to reinforce individual communication skills, as shown in Figure 4. 

Here the learner is practicing offering compliments to his host. Learners can practice individual responses 

by selecting from menus of options, as in this case, or speaking their response into a microphone.  

 

Figure 4. Learners can practice individual communication skills in a part-task training approach. 

To encourage ongoing practice and provide an appropriate level of challenge, simulations can be made to 

vary both in terms of amount of scaffolding and degree of difficulty of the interactions. The Tactical 
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Interaction Simulator (TI Simulator) (Emonts et al., 2012) illustrates both dimensions of variability, as 

shown in Figure 5. The avatar in these examples is an Australian soldier on a peacekeeping mission in 

East Timor. The screenshots in the figure illustrate two different simulations of a clearance operation, in 

which the learner is supposed to keep civilians clear of hazardous areas. In the left screenshot, the learner 

is provided with a high degree of scaffolding, including a transcript of the dialogue, possible courses of 

action, and possible ways of expressing these courses of action in Tetum (the language spoken in East 

Timor). In the example on the right, the scaffolding is removed and the learner is expected to engage in 

conversation unassisted.  

  

Figure 5. The Tactical Interaction Simulator can be played at a low level of difficulty and a high level of 

scaffolding (left), or a high level of difficulty and a low level of scaffolding (right). 

The left example, in which the civilians are hostile, is at a low level of communicative difficulty all the 

learner can do in this case is to tell the civilians to calm down and call the police. The right example, in 

which the civilian is initially cooperative, is linguistically more difficult the learner must explain calmly 

why the civilian cannot enter the restricted zone and avoid raising tensions. These examples illustrate how 

virtual role-play simulations, if designed properly, can support learners at a variety of skill levels and 

encourage learners to practice and try alternative courses of action until they have fully mastered the 

target skills. 

These examples also illustrate that virtual role play involves nonverbal communication as well as verbal 

dialogue. The body language of the virtual role players can communicate their emotions and attitudes in 

ways that their verbal responses may not. Conversely, virtual role play can enable learners to practice 

their nonverbal communication and use of body language. If the computing device has suitable sensors, it 

can track the learner’s body language directly. If not, the learner can use menus or interface gestures to 

control the body movements of his avatar. 

Virtual role-play simulations can serve multiple purposes and phases of training: walkthroughs, practice, 

and assessment. In walkthrough scenarios, the learner may have little or no mastery of the target skills 

and so the system provides a high degree of scaffolding and helps the learner walk through the scenario to 

get a feel for how to perform the task. The left screenshot in Figure 4 is an example of such a walkthrough

 one doesn’t need to know much Tetum to complete this simulation, although the score one 

receives depends upon how much Tetum is used. Practice simulations help learners develop their skills 

and involve progressively less amounts of scaffolding and higher levels of difficulty. In assessment 

simulations, scaffolding is withheld and learners must demonstrate that they can complete the task 

unassisted. 
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In summary, below is a list of desirable characteristics for virtual role play, as illustrated in these 

examples: 

 Engaging, immersive experiences that simulate real-world interactions. 

 Support for multiple computing devices and interface modalities. 

 Support for speech recognition and other sensors for more realistic interaction. 

 Nonverbal as well as verbal communication. 

 Alternative courses of action, to promote replayability. 

 Support for walkthroughs, practice, and assessment. 

 Virtual coaching support. 

 Part-task training of component skills. 

 Varying levels of scaffolding. 

 Varying levels of difficulty. 

Role-Play Training and Scenario-Based Training 

Virtual role-play training is a related to scenario-based training. Scenarios and stories are used widely in 

training, and authoring tools are available to support their development. However, scenarios in general are 

much simpler than virtual role-play simulations, and so are the authoring tools used to create them. 

Figure 6 shows an example scenario created by Van Nice (2014), created using Articulate Storyline 

(Articulate Global, 2015). In this approach to scenario-based training, each character in the scenario 

appears as a drawn or photographic character, in a sequence of still poses. The non-player character poses 

a question, presented on the screen. The learner chooses from a small set of multiple-choice answers. The 

non-player character then responds to the learner’s choice, and the system gives feedback on that choice. 
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Figure 6. This example scenario was created using the Articulate Storyline authoring tool. 

Scenarios such as this are useful for some purposes such walkthroughs. Current authoring tools make it 

possible to create such scenarios without any programming. However, they lack many of the 

characteristics discussed in the previous section, and this limits their utility. In particular, scenarios tend 

to limit learners to a small set of choices, as in this example. They are limited to a single question-

response pair, as in this case, or a linear sequence of inputs and responses. This limits their replayability. 

Simulations in contrast support a range of possible inputs, responses, and outcomes, and so are more 

suitable for ongoing practice and sustainment. The challenge for role-play authoring tools is to make it 

easy to create such simulations with little or no programming. 

Authoring Processes 

Authoring virtual role play is not simply the application of a tool; it is a process. It can involve multiple 

stages, with different participants involved at each stage. This is true for any significant intelligent 

tutoring development effort, but it is especially true for virtual role-play authoring, because it can involve 

people with different skill sets. Authoring tools must be designed to support the intended process, 

participants, and roles. 

Figure 7 shows one example development process, used to develop VCAT courses. Development 

proceeds in six distinct phases, from background sociocultural research through instructional design, 

scenario authoring, media production, and quality assurance. Each phase of authoring involves distinct 

activities and skill sets, and consequently, different authoring capabilities. The course also goes through 

an approval process with the client, which also involves multiple phases. Authoring tool features can vary 

depending upon the stage. 
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Figure 7. This example authoring process involves multiple phases and roles, both for the system developer 

and for the client. 

Below are examples of some process issues that a good virtual role-play authoring toolset should support 

in order to create product-quality virtual role-play training systems: 

 Domain model validation. The role-play simulation must reflect an accurate understanding of 

how the target skills are performed in real life. This is important when the training author and the 

subject matter experts are different people, or when multiple subject matter experts are required. 

Otherwise there is a risk that the course author will create content that appears to be correct but in 

fact is inaccurate. This is a critical issue for cultural awareness courses such as VCATs, which 

incorporate expertise in culture as well as military operations. For VCATs, we cross-validate 

cultural content from multiple sources to ensure that the final content correctly reflects the target 

culture. 

 Team collaboration and workflow. Role-play simulation development often requires 

multidisciplinary teams. Authoring tools should support sharing among team members.  

 Courseware quality assurance. The tools should support thorough testing and validation to 

ensure that the resulting content is free of mistakes. Again, VCATs provide a good case in point. 

Errors can creep in in the domain model, the instructional design and content, the artwork, and 

the interaction behavior.  

Virtual Role-Play Authoring Tools 

Currently, few authoring tools are generally available for creating virtual role-play simulations. Virtual 

role-play developers such as SIMmersion (2013) and Kognito Interactive (Boyd, 2015) create simulations 

using in-house tools and methods; they do not make these tools available to others and publish few details 

about them. Scenario editors such as Articulate Storyline (Articulate Global, 2015) and Video RolePlay 

(Rehearsal Video Role-Play, 2015) make it easy to create simple scenarios but are not designed to support 

the creation of rich role-play simulations. 

Page-based Authoring Tools 

Most scenario authoring tools use a page metaphor, similar to slides in PowerPoint. The author creates a 

set of pages, where the virtual role player and learner’s dialogue choices are bits of artwork embedded in 

the page. The dialogue progresses by jumping from page to page. 
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SkillStudio, the authoring toolset offered by Skillsoft, has support for creating role-plays (Skillsoft 

Ireland Limited, 2013). SkillStudio does not give users the option of creating new role-plays, but it 

permits users to edit existing role-plays developed by Skillsoft. 

Skillsoft role-plays are composed of pages showing an image of a character saying something to the 

learner and a list of multiple-choice responses to select from, similar to the example in Figure 6. 

SkillStudio supports single-path role-plays and multiple-path role-plays. In single-path role-plays, there is 

only one correct choice in each turn of the role-play, and learner is constrained to follow the correct path. 

In multiple-path role-plays, each choice leads to a new dialogue page, each of which, in turn, leads to a 

set of successor pages. This results in a tree of pages. Skillsoft role-plays can be played in either Explore 

Mode or Summary Mode. Explore Mode is a kind of walkthrough mode in which the learner can explore 

the outcome of each option before making a choice. Summary Mode is a kind of assessment mode, in 

which the learner must make an immediate choice at each step in the role-play. Learners receive a 

cumulative score based on number of correct choices they make over the course of the role-play. 

One limitation of the Skillsoft approach is that it offers the learner a limited range of options at each 

decision point. Each learner action is selected from a small list of choices, so learners learn to recognize 

appropriate responses instead of coming up with their own responses. Single-path role-plays constrain 

learners to follow a linear script. Multiple-path role-play trees offer more options, but they are not 

scalable. The number of pages is exponential in the depth of the tree. Realistic role-plays involving a 

series of conversational turns and a range of options become very large and time-consuming to produce. 

ZebraZapps (Lee, 2013) is a more recently released authoring tool that supports the creation of role-

plays as well as other interactive eLearning media. As in SkillStudio authors can author role-plays by 

creating a set of pages showing a picture of a character saying something and a set of multiple-choice 

options. The author can specify go-tos between pages, so that when the learner selects a choice it causes 

the course to jump to another page. The properties of graphical objects in the page, as well as the go-tos 

between pages, are presented in a table to facilitate editing. 

ZebraZapps role-play applications do not require quite as many pages as SkillSoft role-plays, since 

authors can use go-tos to merge paths and share pages across paths. But since each simulation state is a 

separate page, dynamic simulations inevitably require large numbers of pages. Large numbers of go-tos 

result in complex control structures that are hard to follow and difficult to maintain.  

Dialogue Authoring Tools 

Dialogue authoring tools differ from the above tools in that there is an explicit model of the dialogue that 

the character is engaging in, independent of the screen artwork. Dialogue authoring tools are designed to 

enable authors to define complex dialogues with interactive characters. Some dialogue authoring tools are 

emerging that are designed specifically to create role-play simulations. 

ChatMapper (Urban Brain Studios, 2014) is a general-purpose authoring tool for nonlinear dialogue. 

Authors can create dialogue trees and specify conditions under which branches are activated. It can thus 

be used to create complex simulations. Dialogues are compiled into the Lua scripting language (Lua, 

2014), a commonly used scripting language in games. The ChatMapper editor has a built-in conversation 

simulator, which makes it easy for developers to test dialogues as they are developing them. Although 

ChatMapper is very flexible, it only takes care of authoring dialogue logic. Constructing complete role-

play simulations with capabilities listed above, such as spoken dialogue, scaffolding, etc., inevitably 

requires additional Lua scripting and programming. 
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The USC Institute for Creative Technologies (ICT) has developed a series of experimental authoring tools 

for role-play development. For example the Tactical Questioning authoring tool (Gandhe et al., 2009) 

been used to create virtual role players for a system that trains tactical questioning skills. It supports a 

model of dialogue in which the virtual role player responds to questions posed by the trainee, and 

sometimes engages in subdialogues to negotiate with the trainee for compensation in return for the release 

of information. In this approach, the author creates a model of information that the virtual role player 

knows and can talk about. This includes information about objects, people, and places. The author then 

defines dialogue acts that the player and virtual role player can engage in concerning this information. 

Dialogue acts include questions, assertions, offers, threats, offers, and insults, as well greetings and 

closings to start and end the conversation. Dialogue moves are specified as state transition networks, in 

which the author can specify conditions under which transitions may occur. Conditions may include the 

emotional state of the character and character’s willingness to comply and cooperate, which, in turn, are 

influenced by what the learner has said previously in the dialogue. The system uses statistical language 

processing techniques for natural language understanding as well as natural language generation to map 

between English text utterances and dialogue acts. The authoring tool enables the author to train the 

natural language processor by selecting which dialogue act to map to a given text utterance. Ghandhe et 

al. (2009) report that the developers used the Tactical Questioning authoring tool to create the first 

character, Hassan, after which two subject matter experts without previous experience building dialogue 

systems used the tool to author dialogue for two additional characters. 

More recent ICT authoring tool named Situated Pedagogical Authoring (SitPed) uses the ChatMapper 

tool to create branching dialogue and incorporates a character simulator so that authors can test and 

annotate dialogue as they create it (Lane et al., in press). It also provides authors a tool for annotating 

dialogue texts to indicate how well they exhibit the skills being taught in the simulation. An evaluation of 

SitPed was conducted in 2014, and at the time of this writing, the results of this evaluation are still being 

analyzed. 

Alelo has a suite of tools for creating training content employing virtual role play (Johnson & Valente, 

2008). Alelo uses these in house and also makes them available to third parties. For example, the Danish 

Simulator (Dansksimulatoren, 2015), an award-winning game for learning Danish language and culture, 

was developed using Alelo’s tools and platform. The toolset supports development teams throughout the 

authoring process, from background sociocultural research through building complete training systems. 

The tools and supporting methodology have enabled Alelo to deliver a wide range of effective culture and 

language training courses, which have a consistently high level of quality. 

The core tools in the Alelo authoring toolset are Xonnet and Tide. Xonnet supports web-based authoring 

by teams of authors, operating on content stored in a central learning content management system. It 

provides content management functions necessary for collaborative authoring such as checking in and 

checking out of content. Tide is used to design and construct the virtual role-play content elements within 

each course. Other tools in the toolset edit and manage the media assets comprising simulations, such as 

character animations and voice recordings. Content is specified in a device-agnostic fashion so that it can 

run on personal computers and mobile devices, in web browsers, immersive games, mixed-reality 

environments, and even mobile robots. For each hardware/software configuration, Alelo has developed a 

content player capable of delivering content on that device and software platform. 

To understand how authoring works one needs to know something about how the Alelo architecture 

controls the behavior of virtual role players (Johnson et al., 2012). Each virtual role player has a “brain” 

(decision engine) that controls a “body” (character persona and sensing-action layer) that operates within 

the simulated world or real-world environment. When the virtual role player is interacting with a trainee, 

the sensing-action layer receives inputs from the speech recognizer, user interface, other sensors, and the 

virtual-world simulation, and relays them to the decision engine to determine what the character should 
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do in response. The decision engine interprets the inputs in the context of the culture, current situation, 

and dialogue history to determine what act the trainee is performing. Acts are similar to the dialogue acts 

in Ghandhe et al.’s (2009) formulation, but also subsume nonverbal communication and other actions. For 

example in the VCAT Taiwan simulations the trainee’s avatar might extend his hand in order to share 

hands or raise his glass to offer a toast. The decision engine interprets such behaviors as acts with 

communicative intent and chooses an action to perform in response. The decision engine is able to 

recognize a variety of possible acts, affording the trainee a range of possible courses of action. The 

decision engine then chooses what action to perform in response, and realizes that as a combination of 

speech and gesture for the sensing-action layer to perform. 

Each virtual role-player model can incorporate a set of dynamic variables that represent the attitudes of 

the virtual role player toward the trainee. Trust and rapport are typically the most important variables. 

These can change over the course of the encounter in reaction to the trainee’s actions and can influence 

what actions the virtual role player will take. In many of the simulations Alelo creates the trainee must 

first establish trust and rapport in order to accomplish the mission. 

The job of Tide is to enable authors to create content that conforms to this architecture, enables the virtual 

role player to interpret the trainee’s actions, and responds accordingly. For each encounter or scene, 

authors create an act library, which is the inventory of acts that the trainee or the virtual role player may 

perform during the encounter or scene. These can vary from simulation to simulation, but in practice 

authors reuse elements of previous act libraries when developing new act libraries. Authors also create 

utterance libraries, which consist of example utterances that express the meaning of the acts in the target 

language. To increase the coverage of utterances in the utterance library, authors can use a templatizer 

tool, based on the work of Kumar et al. (2009), to generalize utterances into utterance patterns that match 

a variety of utterances. 

Tide provides an interactive diagramming tool for specifying interactive dialogues. Dialogues are 

depicted as directed acyclic graphs containing nodes representing acts, utterances, and nonverbal 

behaviors. Transitions may be conditioned on certain predicates becoming true, e.g., a character’s trust 

level exceeding a certain threshold. Authors can also create subdialogues that are activated and 

deactivated during the course of the dialogue. Through these simple mechanisms authors can create 

complex dialogues with a variety of alternative paths. A testing function enables authors to execute a 

dialogue within the editor to validate the dialogue logic. This helps with the problem of quality assurance 

of the simulation content. 

As authors create dialogues they incorporate assessment and feedback. Learner responses are scored and 

contribute to an overall assessment of the trainee’s performance in the simulation. Some feedback, what 

we call organic feedback, is incorporated into the responses of the virtual role player and thus becomes an 

organic part of the simulation. For example, the virtual role player might take offence at the trainee’s 

statement or display facial expressions that indicate discomfort or disapproval. Such feedback is powerful 

and effective because learners can immediately see the consequences of their actions. Other feedback 

takes the form of corrective and explanatory feedback to be provided by the Virtual Coach. The author 

supplies the feedback at authoring time, and it is up to the run-time content player to determine whether to 

present that feedback to the learner, based upon the chosen level of scaffolding or upon learner request. 

Alelo tools are used to create role-play simulations that serve as walkthroughs, practice sessions, or 

assessments. They include single conversational turns for part-task training, as well as extended 

exchanges of several minutes in duration. Hundreds or even thousands of simulations have been authored 

to date using these tools. 
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Empowering Trainers Using Role-Play Configuration Tools 

Current dialogue authoring tools reduce the amount of programming required to create role-play 

simulations. However to promote adoption of the virtual role-play approach at a really large scale, it is 

important that we empower trainers so that they can create their own virtual role-play simulations. This 

goal of empowering trainers is one of the next big challenges for adaptive intelligent tutoring systems 

(ITSs) generally, including the tools described in this volume. Visionaries such as Sottilare (2013) have 

called for interfaces to ITSs that teachers and instructors can use. However, there are just a few instances 

to date, such as ASSISTments (Heffernan & Heffernan, 2014) that teachers or trainers have used to any 

significant extent to create their own content. Alelo has developed a new product named VRP
®
 MIL 

(Stuart, 2014) that is specifically designed to meet this need in the area of virtual role play. 

VRP MIL was developed to meet the needs of military training organizations that wish to organize 

training exercises for their units at simulation training centers. Simulation training centers are equipped 

with computers for virtual training and staffed with personnel who are skilled in running training 

exercises using this equipment. The simulation center staff is permanently resident at the training center, 

while the units continually rotate through the center as part of their preparation for deployment. 

When a unit wishes to organize a training program, the training officer associated with the unit typically 

works with the simulation center staff to define a series of training exercises for the unit to perform. The 

training officers are experts in training but may have little knowledge of simulation technology. It is up to 

the simulation center staff to quickly put together training simulations that meet the training officer’s 

requirements. A common request from the training officer is training scenarios at varying levels of 

difficulty. The training officer might start with a training exercise at a high level of difficulty knowing 

that the trainees will likely fail the exercise in order to motivate the trainees to improve. The trainer will 

then undertake another exercise at a low level of difficulty, in which the trainees will likely succeed. They 

then undertake additional exercises at progressively higher levels of difficulty until the exercises again 

reach a high level of difficulty. By this point, the trainees have progressed to the point where they can 

successfully complete the mission with full confidence in their skills. 

When the training is preparation for overseas deployments, a key challenge is providing training that 

accurately reflects the culture of the region of deployment. Unfortunately, the training officers and 

simulation staff may not have detailed knowledge of the target culture. Cultural subject matter experts, if 

available, may not have much knowledge of military missions or simulation technology. Moreover, if 

they are available they may not have accurate knowledge of the culture of the specific region; if they have 

been out of the country for an extended period, their knowledge may not be up to date. 

VRP MIL helps trainers and simulation staff to overcome these challenges and quickly create training 

simulations that are culturally accurate and appropriate for the intended training objectives. It provides 

trainers with a library of reusable virtual role players, each intended to perform a designated role in 

training simulations. Example roles include local leaders, guards and sentries, shopkeepers, and passers-

by on the street. Instead of authoring content from scratch using authoring tools, trainers populate the 

virtual training world with virtual role players and configure them to meet their needs. The behavior of 

each virtual role player has been validated beforehand as culturally accurate, ensuring that the resulting 

training simulation is also culturally accurate. VRP MIL is built as a plug-in that integrates into the 

popular VBS simulation-based training tool (Bohemia Interactive Simulations, 2015), which already 

provides users with tools for constructing virtual worlds and populating them with buildings, vehicles, 

and other entities. 

We have developed the VRP MIL framework and a basic library of virtual role players (VRPs), and now 

plan to extend it with form-based interfaces for providing the necessary configuration parameters. 
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Configuration parameters will include the level of difficulty interaction with the VRP, as well as specific 

topics that the VRP is prepared to discuss with the trainee. This fits well with the way the military 

currently defines roles for live role players in training exercises. These configuration parameters will then 

be automatically inserted into the dialogue model to generate the target behavior. Authoring tools will still 

be used to create the VRP models, but this way each VRP model will undergo much broader use. 

Simulation center staff will have the option to use the authoring tools themselves to add adapt and extend 

the VRP library. 

VRP MIL underwent a successful trial evaluation in February 2015 at the NATO Joint Force Training 

Centre in Bydgoszcz, Poland, with NATO units preparing to travel to Afghanistan on training and support 

missions. From there, we anticipate its adoption by NATO member nations and allied nations preparing 

for overseas coalition operations. 

Conclusions and Future Directions 

Virtual role play is becoming an increasingly important training method for intelligent learning 

environments. It is being applied to an ever-broadening range of education and training applications, 

particularly for cross-cultural communication. Progress in authoring tool development for this class of 

applications has made this possible. Emerging developments such as role-play configuration tools are 

likely to further accelerate the expansion and large-scale adoption of this technology. 

Dialogue authoring tools for role-play simulations are in some ways similar to tutorial dialogue authoring 

tools such as AutoTutor’s authoring tools (Nye et al., 2014) or TuTalk (Jordan et al., 2007), and there is 

much that we can learn from these tools. However role-play simulations have their own unique 

characteristics that warrant their own class of authoring tools. 

Role-play authoring tools have been most successful when they take into account the tasks and roles of 

the people using the tools, and the processes by which content is developed. This is an important general 

lesson for authoring tools for adaptive ITSs. The clearer understanding we have of our intended users the 

better a job we can do of addressing their needs. 

As we have seen, existing page-based authoring tools are quite capable of creating simple role-play 

scenarios. These tools are very widely available, and many training developers are familiar with their use. 

Virtual role-play and associated tools are most likely to be adopted when they offer clear and compelling 

advantages over existing methods, especially in skill development, authentic assessment, and promoting 

behavior change. There is a general lesson here for authoring tools for the adaptive ITSs of GIFT. 

Researchers in adaptive ITSs often wonder why their technologies are not being adopted more widely. 

Existing authoring tools are quite capable of creating simple versions of various types of learning 

environments, and trainers are unlikely to switch to new tools if they do not see a compelling advantage. 

The general architecture for GIFT, as described in Sottilare (2012), needs to be clarified so that it 

accommodates the instructional interaction typical of virtual role-play simulations. According to the GIFT 

architecture the tutor-user interface and the training app client are separate, and interact with users 

separately. However, as we have seen, assessment and feedback are often tightly integrated into virtual 

role-play simulations, and feedback is an organic part of virtual-role-player behavior. If the GIFT 

architecture is to support virtual role play it should support such integrated interaction. 

Virtual role-play systems can collect valuable, accurate data about trainee performance. There is an 

opportunity to capture and exploit this data as part of the GIFT architecture. One way of doing this via the 

TinCan API. Once data are captured via TinCan and stored in a Learner Record Store (LRS), it is possible 
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to analyze these data and develop more granular models of learner skills, which in turn can be used to 

tailor training. If these are integrated with job performance data, it would provide a method for providing 

just-in-time training and promoting behavior change on the job. 

There is a need in virtual role-play systems for flexible domain models of dialogue that can be used in a 

variety of ways. In live role-play training exercises, it can be useful to switch roles, so that the trainee can 

better understand the perspective of the other person. For virtual role-play systems to have similar 

flexibility, they require dialogue models that capture the interaction while being agnostic as to which roles 

are played by the learners and which are played by the virtual role players. This is very consistent with the 

GIFT approach of modeling domain expertise independent of specific instructional use. 

Looking ahead, speech recognition will continue to improve. Sensor and interface technologies will 

increase in performance and reduce in cost. This will make it easier to deliver virtual role-play training 

and assessment in a wider range of domains, to a wider range of organizations. Techniques that have been 

developed and proven in military training can be applied to a wide range of domains in training, 

development, and behavior change for a wide range of organizations. Many of these currently rely on 

traditional methods and informal observation of performance. There are many opportunities to achieve 

radical improvements in training and performance development, through virtual role-play methods that 

employ realistic models of skill and provide accurate assessments of performance. 

References 

Articulate Global (2015). Storyline 2: Create interactive e-learning, easily. Retrieved Feb. 19, 2015 from 

https://www.articulate.com/products/storyline-why.php. 

Barrows, H.S. (1993). An overview of the uses of standardized patients for teaching and evaluating clinical skills. 

Academic Medicine, (1993), 443-451. 

Bohemia Interactive Simulations (2015). VBS3: The future battlespace. Retrieved Feb. 19, 2015 from 

www.bisimulations.com/virtual-battlespace-3. 

Boyd, P. (2015). Dooplo - Kognito’s human interaction platform. Retrieved Feb. 19, 2015 from 

http://patboyd.com/site/projects/kognito-platform. 

Dansksimulatoren (2015). Dansksimulatoren revolutionizing language learning. Retrieved Feb. 19, 2015 from 

www.dansksimulatoren.dk. 

Emonts, M., Row, R., Johnson. W.L., Thomson, E., Joyce, H. de S., Gorman, G. & Carpenter, R. (2012). Integration 

of social simulations into a task-based blended training curriculum. In Proceedings of the 2012 Land 

Warfare Conference. Canberra, AUS: DSTO. 

Gandhe, S., Whitman, N., Traum, D. & Artstein, R. (2009). An integrated authoring tool for tactical questioning 

dialogue systems. In 6th Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Pasadena, 

California. 2009. Retrieved Feb. 19, 2015 from 

http://people.ict.usc.edu/~traum/Papers/krpd09authoring.pdf. 

Heffernan, N. & Heffernan, C. (2014). The ASSISTments Ecosystem: Building a platform that brings scientists and 

teachers together for minimally invasive research on human learning and teaching. International Journal of 

Artificial Intelligence in Education 24(4), 470-497. 

Johnson, W.L. (2010). Serious use of a serious game for language learning. International Journal of Artificial 

Intelligence in Education, 20(2), 175-195. 

Johnson, W.L., Friedland, L., Schrider, P., Valente, A. & Sheridan, S. (2011). The Virtual Cultural Awareness 

Trainer (VCAT): Joint Knowledge Online’s (JKO’s) solution to the individual operational culture and 

language training gap. In Proceedings of ITEC 2011. London: Clarion Events.  

Johnson, W.L., Friedland, L., Watson, A.M. & Surface, E.A. (2012). The art and science of developing intercultural 

competence. In P.J. Durlach & A.M. Lesgold (Eds.), Adaptive Technologies for Training and Education, 

261-285. New York: Cambridge University Press. 

Johnson, W.L. & Lester, J.C. (in press). Twenty years of face-to-face interaction with pedagogical agents. 

International Journal of Artificial Intelligence in Education. 



 

225 

Johnson, W.L. & Valente, A. (2008). Collaborative authoring of serious games for language and culture. 

Proceedings of SimTecT 2008. 

Jordan, P., Hall, B., Ringenberg, M., Cue, Y. & Rosé, C. (2007). Tools for authoring a dialog agent that participates 

in learning studies. In R. Luckin et al. (Eds.), Artificial Intelligence in Education, 43-50. Amsterdam: IOS 

Press. 

Kim, J.M., Hill, R.W. Jr., Durlach, P.J., Lane, H.C., Forbell, E., Core, M.G., Marsella, S. Pynadath, D.V. & Hart, J. 

(2009). BiLAT: A game-based environment for practicing negotiation in a cultural context. International 

Journal of Artificial Intelligence in Education, 19, 289-308. 

Lane, H.C., Core, M.G. & Goldberg, B.S. (in press). Lowering the skill level requirements for building intelligent 

tutors: A review of authoring tools. In R. Sottilare, A. Graesser, Xiangen Hu & K. Brawner (Eds.), Design 

Recommendations for Adaptive Intelligent Tutoring Systems: Authoring Tools (Volume 3). Orlando, FL: 

U.S. Army Research Laboratory. 

Lee, S. (2013). Build a role play in a day with ZebraZapps. Retrieved Feb. 19, 2015 from 

http://vimeo.com/80417830. 

Loke, S.-K., Blyth, P. & Swan, J. (2012). Student views on how role-playing in a virtual hospital is distinctly 

relevant to medical education. Proceedings of ascilite 2012. Retrieved Feb. 19, 2015 from 

http://www.ascilite.org/conferences/Wellington12/2012/pagec16a.html. 

Lua (2014). Lua: The programming language. Retrieved Feb. 19, 2015 from www.lua.org. 

Nye, B.D., Graesser, A.C. & Hu, X. (2014). AutoTutor and family: A review of 17 years of natural language 

tutoring. International Journal of Artificial Intelligence in Education 24 (2014), 427-469. 

Radecki, L., Goldman, R, Baker, A., Lindros, J. & Boucher, J. (2013). Are pediatricians “game”? Reducing 

childhood obesity by training clinicians to use motivational interviewing through role-play simulations with 

avatars. Games for Health Journal, 2(3), 174-178. 

Rehearsal Video Role-Play (2015). Rehearsal features. Retrieved Feb. 19, 2015 from 

http://www.videoroleplay.com/features. 

Robinson, L.J.B. (1987). Role playing as a sales training tool. Harvard Business Review, May-June 1987, No. 

87310. Cambridge, MA: Harvard Business Publishing. 

Sandler Training (2014). A better way to role play. Retrieved on Feb. 19, 2015 from http://www.sandler.com/blog/a-

better-way-to-role-play/. 

SIMmersion (2013). Technology: Ground-breaking technology lets SIMmersion deliver effective communication 

training to learners of all kinds. Retrieved Feb. 19, 2015 from http://simmersion.com/Technology.aspx. 

Simmons, T.G. (2010). Using virtual role-play to solve training problems: How do you train employees to think on 

their feet? eLearn magazine, June 2010. Retrieved Feb. 19, 2015 from 

http://elearnmag.acm.org/archive.cfm?aid=1821985. 

Skillsoft Ireland Limited (2013). Roleplays. Retrieved Feb. 19, 2015 from 

http://documentation.skillsoft.com/en_us/sstudio/index.htm#17853.htm. 

Sottilare, R.A. (2012). A modular framework to support the authoring and assessment of adaptive computer-based 

tutoring systems. Paper presented at the Interservice/Industry Training, Simulation & Education 

Conference (I/ITSEC), Orlando, FL. 

Sottilare, R.A. (2013). Pushing and pulling toward future ITS learner modeling concepts. In R. Sottilare, A. 

Graesser, X. Hu & H. Holden (Eds.), Design recommendations for intelligent tutoring systems, 195-198. 

Orlando, FL: U.S. Army Research Laboratory. 

Stuart, S. (2014). Using video games to prepare for the culture shock of war. PC.com, Nov. 24, 2014. Retrieved Feb. 

19, 2015 from http://www.pcmag.com/article2/0,2817,2472395,00.asp. 

Urban Brain Studios (2014). Chat Mapper 1.7 documentation. Retrieved Feb. 19, 2015 from 

http://www.chatmapper.com/documentation. 

USC ICT (2013). Situated pedagogical authoring for virtual human-based training. Retrieved on Feb. 19, 2015 from 

http://ict.usc.edu/wp-content/uploads/overviews/Situated%20Pedagogical%20Authoring_Overview.pdf. 

Van Nice, J. (2014). Toolbox Tip: Creating scenarios in Articulate Storyline No programming necessary. 

Retrieved Feb. 19, 2015 from https://www.td.org/Publications/Blogs/Learning-Technologies-

Blog/2014/08/Creating-Scenarios-in-Articulate-Storyline. 

Wilcox, A. (2012). Somali-Americans assist reserve Marines with pre-deployment training. The Daily News

 Jacksonville, NC, Dec. 13.  



 

226 

  



 

 

Chapter 19  Emerging Trends in Automated Authoring  
Andrew M. Olney

1
, Keith Brawner

2
, Phillip Pavlik

1
, Kenneth R. Koedinger

3
 

1 
University of Memphis; 

2 
US Army Research Laboratory; 

3 
Carnegie Mellon University 

Introduction 

Traditional intelligent tutoring systems (ITS) are specialized feats of engineering: they are custom-made 

to implement a theory of learning, in a particular domain, within a specific computer environment. There 

are many ways to describe or categorize authoring tools used to make ITSs (Murray, 2004). This chapter 

considers authoring tools primarily in terms of intelligent tutor paradigms. Three popular ITS paradigms 

are dialogue-based tutors (Nye, Graesser & Hu, 2014), constraint-based tutors (Mitrovic, 2012), and 

model-tracing tutors (Anderson et al., 1995). These paradigms may be distinguished along two abstract 

axes, as shown in Figure 1. The axes reflect how the learning task is defined and how student progress in 

the task is measured. 

 

 

 
 

 

 

Figure 6. Tutoring paradigms arranged by orientation (path vs. constraint) and  

comparison to ideal answer (direct vs. indirect). 

The horizontal axis indicates whether the paradigm is primarily path-oriented or constraint-oriented. A 

path-oriented paradigm conceives the learning task as a sequence of steps that lead to a solution. For 

example, the instructional theory behind model-tracing tutors can be expressed within the knowledge-
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learning-instruction (KLI) framework (Koedinger, Perfetti & Corbett, 2012). Critical to the KLI 

framework are the ideas that (a) most of our knowledge in any area of expertise (e.g., grammar, algebra, 

design) is in the form of procedural skills, which are learned by induction from experience and feedback, 

and (b) two forms of instruction that best facilitate such learning are problem solving practice with as-

needed feedback on student errors and as-needed examples of correct behavior (next step hints). The key 

is to engage the learner in the process of doing, that is, engaging in the target activity, and provide 

personalized tutoring support for the learner that adapts to their particular needs. Tutoring support is 

achieved by the use of a model of desired or correct performances and of particularly common undesired 

or incorrect performances. This direct comparison against a model (which includes ideal answers) also 

situates model-tracing on the vertical axis. Each student’s actions are traced against this model such that 

feedback can be generated when undesired performance is observed and next-step hints can be generated 

when students are stuck. In both cases, the emphasis is on minimal intervention (Anderson et al., 1995) in 

order to maximize student active and constructive involvement in the thinking and learning process. 

Conversely, a constraint-oriented paradigm conceives of the learning task as attaining a solution state 

irrespective of the path that led to it. Both dialogue-based and constraint-based paradigms share this 

property but they differ in many respects, most notably in how they represent knowledge and compare the 

student answer to an ideal answer. Dialogue-based tutors are typically frame-filling systems (McTear, 

2002) that fill slots in a frame in any order. For example, given the physics question, “If a lightweight car 

and a massive truck have a head-on collision, upon which vehicle is the impact force greater, and why?”, 

a dialogue-based system might have the slots [The magnitudes of the forces exerted by A and B on each 

other are equal] and [If A exerts a force on B, then B exerts a force on A in the opposite direction]. If a 

user says, “the forces are equal,” the system would recognize that the first slot is filled and follow up with 

a question to fill the second slot like, “What can you say about the direction of the forces?” The slots are 

known as expectations, or expected components of the ideal answer (Graesser, D’Mello, et al., 2012), and 

the follow-up questions used to fill out the frame are aligned with models of naturalistic human tutoring 

(D’Mello, Olney & Person, 2010; Graesser & Person, 1994; Graesser, Person & Magliano, 1995; Person, 

Graesser, Magliano & Kreuz, 1994) plus ideal pedagogical strategies in some versions. Dialogue-based 

systems determine whether a slot, or expectation, is filled by directly comparing the student’s answer to 

an ideal answer, typically using methods like latent semantic analysis (Landauer, McNamara, Dennis & 

Kintsch, 2007) and other semantic matching algorithms. Dialogue-based tutors can be considered as a 

very narrow form of constraint-based tutors where the constraints are defined by whether all slots are 

filled, i.e., all expectations are met. 

Constraint-based tutors operationalize constraints as consisting of a relevance condition (R) and a 

satisfaction condition (S) (Ohlsson, 1992). The constraint is only applicable when the relevance condition 

is met, at which point the satisfaction condition defines what conditions the student’s solution must meet 

in order to be correct. Only solutions that violate no constraints are correct. Constraints therefore do not 

specify a path or set of paths to a solution but rather define a space of correct solutions (Ohlsson & 

Mitrovic, 2007). For example, a constraint for fraction addition might have the relevance conditions 

problem statement: a/b + c/d and student solution: (a+c)/n with satisfaction condition b=d=n: the solution 

is correct only when the denominators of the problem statement and student solution are equal (Ohlsson, 

1992). Constraints are well suited for design tasks and tasks that are ill defined precisely because they 

allow solutions to be recognized without requiring them to be enumerated by the author. With regard to 

the vertical axis, constraint-based tutors do not directly compare a solution to an ideal solution but instead 

compare indirectly via preserved and violated constraints. 

The characterization presented in Figure 1 is undoubtedly an over-simplification of the differences 

between these tutoring paradigms because they differ on so many other dimensions. Moreover, they share 

more features than Figure 1 represents, because path-oriented tutors can relax ordering restrictions and 

constraint-oriented tutors can incorporate path-like ordering restrictions. However, from an authoring tool 
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standpoint, the above depiction highlights some of the key authoring problems faced by each paradigm. 

Model-tracing tutors require a model to trace, commonly in the form of sequences of steps and production 

rules that require next-step hints. Dialogue-based tutors require a set of expectations and associated 

follow-up questions (e.g., hints or prompts) when the expectations are unfulfilled. Constraint-based tutors 

require a set of constraints and associated feedback for their violations.  

This chapter discusses several emerging approaches to ITS authoring that attempt to go beyond the 

typical human-created practice and automate more of the authoring process than has been previously 

attempted. Efforts are currently being undertaken in order to ease this burden from the authors in the form 

of programming by tutoring, automated concept map generation, metadata tagging, extensive content 

reuse, and continual refinement. With respect to Figure 1, the chapter emphasizes automated authoring in 

the model-tracing and dialogue-based traditions (see Mitrovic et al., 2006 and Mitrovic et al., 2009 for 

discussion of automated authoring of constraint-based tutors). 

Related Research 

Advanced Authoring for Model-Tracing Tutors 

This section focuses on authoring tools for model-tracing tutors. The instructional approach in such tutors 

is to provide students with one-on-one tutoring support as they work on problem or activity scenarios of 

varying complexity. They do so within rich interface tools or simulation environments, for example, 

solving a physics problem using tools for drawing and annotating a free body diagram, and for writing 

and solving equations (e.g., VanLehn, 2006); solving a real-world quantitative reasoning problem (e.g., 

which cell phone plan to choose) using tools for creating tables, graphs, and equations (e.g., Koedinger et 

al., 1997); designing an efficient system using a thermodynamics simulation (see Fig. 26 in Aleven et al., 

2009 ); and making an English grammar choice using a pop-menu (Wylie, Koedinger & Mitamura, 2010).  

Effective and efficient authoring depends on how completely, accurately, and quickly an author can 

specify a sufficiently complete set of desired and common undesired student actions. This set of 

reasonable actions was traditionally specified in a general artificial intelligence (AI) rule-based system 

(cf., Anderson et al., 1995). For example, in a production system, each production rule is annotated with 

instructional messages, such as (a) next-step hints in the case of productions that represent desirable 

student actions and (b) error feedback messages in the case of productions that represent common student 

errors or underlying misconceptions. One successful alternative to production system authoring is to 

concretely enumerate, for each problem scenario, every action along all reasonable solution paths. This is 

the “example-tracing” approach taken in the Cognitive Tutor Authoring Tools (CTAT) (Aleven, Mclaren, 

Sewall & Koedinger, 2009), a complete tutor-authoring suite that has been used to create several dozen 

ITSs. 

A second alternative to hand-authoring production systems is to have the author tutor a machine learning 

system that learns the production system (largely) from scratch. This is the approach taken by SimStudent 

(Matsuda, Cohen & Koedinger, 2015). SimStudent learns problem-solving skills from the two kinds of 

instruction that are arguably the most powerful in human skill acquisition: learning from examples and 

learning from (feedback on) doing (e.g., Gick & Holyoak, 1983; Roediger & Butler, 2011; Zhu & Simon, 

1987). Figure 2 shows an example of SimStudent being tutored on algebra equation solving. An example 

of an acquired production rule (in the JESS language) from the first author demonstration is shown on the 

right. SimStudent has three online learning mechanisms that focus on learning (1) information retrieval 

paths (clauses of the IF-part of the production that identifies where in the interface relevant information 

may lie), (2) preconditions on actions (clauses of the IF-part that constrain when the production is 

appropriate), and (3) action plans (compositions of functions that compute appropriate actions). The 
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newest addition to SimStudent is a representation learning mechanism that learns the general structure of 

declarative memory structures, which are the basis for both the operation and learning of production rules 

(Li, Matsuda, Cohen & Koedinger, 2015).  

 

Figure 2. After using CTAT to create an interface (shown at top) and entering a problem (“2x=8”), the author 

begins teaching SimStudent either by giving yes-or-no feedback when SimStudent attempts a step or by 

demonstrating a correct step when SimStudent cannot (e.g., “divide 2”). SimStudent induces production rules 

from demonstrations (example shown on right) for each skill label (e.g., “divide” or “div-typein” shown on 

left). It refines productions based on subsequent positive (demo or yes feedback) or negative (no feedback) 

examples. 

The use of SimStudent as authoring tool is still experimental, but there is evidence that it may accelerate 

the authoring process and that it may produce more accurate cognitive models. In one demonstration, 

Matsuda et al. (2015) explored the benefits of a traditional programming by demonstration approach to 

authoring in SimStudent versus a programming by tutoring approach, whereby SimStudent asks for 

demonstrations only at steps in a problem/activity where it has no relevant productions and otherwise it 

performs a step (firing a relevant production) and asks the author for feedback as to whether the step is 

correct/desirable or not. They found that programming by tutoring is much faster, 13 productions learned 

with 20 problems in 77 minutes versus 238 minutes in programming by demonstration. They also found 

that programming by tutoring produced a more accurate cognitive model whereby there were fewer 

productions that produced overgeneralization errors. Programming by tutoring is now the standard 

approach used in SimStudent and its improved efficiency and effectiveness over programming by 

demonstration follow from having SimStudent start performing its own demonstrations. Better efficiency 

is obtained because the author need only respond to each of SimStudent’s step demonstrations with a 

single click, on a yes or no button, which is much faster than demonstrating that step. Better effectiveness 

is obtained because these demonstrations better expose overgeneralization errors to which the author 
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responds “no” and the system learns new IF-part preconditions to more appropriately narrow the 

generality of the modified production rule.  

In a second demonstration of SimStudent as an authoring tool, MacLellan, Koedinger & Matsuda (2014) 

compared authoring in SimStudent (by tutoring) with authoring example-tracing tutors in CTAT. 

Tutoring SimStudent has considerable similarity with creating an example-tracing tutor except that 

SimStudent starts to perform actions for the author, which can be merely checked as desirable or not, 

saving the time it otherwise takes for an author to perform those demonstrations. That study reported a 

potential savings of 43% in authoring time by using SimStudent to aid in creating example-tracing tutors. 

A third demonstration by Li, Stampfer, Cohen, and Koedinger (2013) evaluated the empirical accuracy of 

the cognitive models that SimStudent learns as compared to hand authored cognitive models. The 

accuracy of a cognitive model in this demonstration was measured by the so-called “smooth learning 

curve” criteria (Martin, Mitrovic, Mathan & Koedinger, 2011; Stamper & Koedinger, 2011) that tests how 

well a cognitive model predicts student performance data over successive opportunities to practice and 

improve. Across four domains (algebra, fractions, chemistry, English grammar), Li et al.(2013) found that 

the cognitive model acquired by SimStudent produced cognitive models that typically produced better 

predictions of learning curve data (in 3 of 4 cases). More ambitious attempts to improve and evaluate 

SimStudent as a tutor authoring aid are underway. SimStudent and other means for AI-driven 

enhancement of ITSs, including data-driven hint generation and Markov decision process algorithms to 

optimize tutor action choices, are discussed in Koedinger et al. (2013).  

Advanced Authoring for Dialogue-Based Tutors 

In dialogue-based ITSs (Graesser et al., 2005; Olney et al., 2012, Rus et al., 2014), the computer attempts 

to tutor the student by having a conversation with them. These ITSs present similar challenges in ITS 

authoring as those without natural language dialogue, but there are greater dialogue-authoring demands 

than typical ITSs. The dialogue is typically authored by a subject matter expert (Graesser et al., 2004), 

though attempts have been made to semi-automate the process by automatically generating questions and 

representations that a subject matter can select or modify (Olney, Cade & Williams, 2011; Olney, 

Graesser & Person, 2012). However, both manual and semi-automated approaches have a common 

weakness: a shortage of motivated experts. In other words, experts are scarce, and it is uncommon for 

experts to volunteer their time to author ITS content. Without willing experts to use an authoring tool, an 

authoring tool will remain unused. 

Our recent work addresses the shortage of motivated experts by considering expertise and motivation 

independently. Expertise may be approximated by allowing novices to do the authoring but then having 

other novices check the work to ensure quality. Motivation may be addressed by disguising the authoring 

task as another task in which novices are already engaged. We combine these two approaches in the 

BrainTrust system. In order to enhance motivation, BrainTrust leverages out-of-class reading activities, 

specifically online reading activities using eTextbooks through providers like CourseSmart
1
, as 

opportunities for ITS authoring. As students read online, they work with a virtual student on a variety of 

educational tasks related to the reading. These educational tasks are designed to both improve reading 

comprehension and contribute to the creation of an ITS based on the material read. After reading a 

passage, the human student works with the virtual student to summarize, generate concept maps, reflect 

on the reading, and predict what will happen next. The tasks and interaction are inspired by reciprocal 

teaching (Palincsar and Brown, 1984), a well-known method of teaching reading comprehension 

strategies. Thus the key strategies to enhance motivation are leveraging a reading task to which the user 

has already committed, a teachable agent that enhances motivation (Chase et al., 2009), and a 

collaborative dialogue that increases arousal (D’Mello et al., 2010). 
                                                           
1
 http://www.coursesmart.com/ 
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The virtual student’s performance on these tasks is be a mixture of previous student answers and answers 

dynamically generated using AI and natural language processing techniques. As the human teaches and 

corrects the virtual student, they, in effect, improve the answers from previous sessions and author 

dialogues and a domain model for the underlying ITS. The process of presenting previously proposed 

solutions to a task for a new set of users to improve upon has been called “iterative improvement” in the 

human computation literature (von Ahn, 2005; Chklovski, 2005; Cycorp, 2005). These methods often use 

a simple heuristic that if the majority of evaluating users agrees a solution is correct, then the solution is 

correct, a process sometimes referred to as “majority voting.” However, even simple tasks, such as 

determining if an image includes the sky, can have non-agreeing “schools of thought” who systematically 

respond in opposing ways (Tian & Zhu, 2012). Therefore it is preferable to use Bayesian models of 

agreement jointly to determine the ability of the user (and their trustworthiness as teachers) as well as the 

difficulty of the items they correct (Raykar et al., 2010). Although Bayesian approaches of this kind are 

an emerging research area, they are being actively pursued by the massive open online course (MOOC) 

community, because peer-grading is an important component of scaling MOOCs to many thousands of 

students (Piech et al., 2013).  

Because BrainTrust activities are designed to facilitate learning (both of the content and of reading 

comprehension strategies) while preserving motivation, not all of the BrainTrust activities directly relate 

to the authoring of an ITS. In fact, the primary task that relates to ITS authoring is the construction of 

concept maps, as show in Figure 2. Concept maps can be used to generate exercises and questions in a 

dialogue-based ITS (Olney, Cade & Williams, 2011; Olney, Graesser & Person, 2012). They can also be 

used to generate rather trivially direct instruction, e.g., “attitudes are made of emotions and beliefs,” as in  

Figure 2. With a small amount of additional information, such as the overall gist of a text passage, 

concept maps can also be used to generate larger summaries or “ideal answers” (Graesser et al., 2005). In 

the example given, the gist is “attitudes and attitude change,” and using this gist, a concept-map driven 

summary can be topicalized so that “attitudes” are the key concept rather than another node. 

Topicalization is important because non-hierarchical concept maps can be read in any order, but a given 

text passage can only be read in the linear order in which it was written. 
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Figure 7. BrainTrust during a concept map activity 

Advanced Component-Based Authoring 

The previous sections describe efforts to automate authoring of a particular ITS component, such as the 

model in model-tracing tutors. However, there are also emerging technologies that facilitate the reuse and 

dynamic configuration of existing components, which allow for a different kind of automated authoring. 

Instead of authoring the components, these technologies attempt to dynamically assemble components for 

a particular learning objective. An outline of these technologies is presented in this section as a possible 

path forward to completely remove ITS expertise required in component-based authoring. In short, the 

steps to this process, addressed in further detail below, are the following: 

(1) Gather content. 

(2) Make the content discoverable. 

(3) Make the content customizable. 

(4) Generate additional tutoring-type information. 

(5) Perform delivery for both information and practice sessions. 

(6) Perform ITS-standard tasks (learner modeling, experience tracking, etc.); not discussed here. 

(7) Repeat: perform pedagogical selection/adaption (steps 1–6). 
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With regards to gathering (1) of content, the Internet presents a wealth of information, but little of it is 

relevant to educational goals. There are a few such efforts that attempt to make learning-specific 

resources available: the Learning Registry (Jesukiewicz & Rehak, 2011), Gooru Learning 

(GooruLearning, 2014) and, to a lesser extent, the Soldier-Centered Army Learning Environment 

(Mangold, Beauchat, Long & Amburn, 2012). Fundamentally, each of these has faced the problem of 

indexing learning content for gathering purposes. The Learning Registry adopts a solution of maintaining 

separately developed, but interlinked, content repositories while making indexing information available. 

Gooru instead allows for a centrally managed cloud of content, indexed in the same fashion as a search 

engine. 

Continuing with the Internet analogy, search engines make content discoverable through indexing and 

cross-referencing. Each of the two main learning architectures must make the content discoverable (2) for 

a given topic in order for it to be used.  Gooru Learning takes a traditional web approach of using 

community-curated metadata tags, while the Learning Registry has a project to automate the generation of 

these tags using a project called “Data for Enabling Content in Adaptive Learning Systems (DECALS)” 

(Veden, 2014). Both approaches make use of metadata-based descriptions of the content in order to drive 

content selection, in approaches inspired by search engines. The content is made customizable (3) through 

the editing access from the Gooru platform, or a Sharable Contend Object Reference Model (SCORM) 

editing and packaging standard (Initiative, 2001) is made available through the Re-Usability Support 

System for eLearning (RUSSEL) for management of repurposing courses, documents, and multimedia 

(Eduworks Corporation, 2014). Such systems allow content to be found via search of metadata attributes 

(e.g., reading level, interactivity index, etc.) and customized for the user. 

Generating tutoring-type information (4) is discussed in the previous sections, but simply involves the 

supplementation of a piece of content with learning-relevant information. One such example of a process 

involves the generation of a concept map of the key topics contained within the indexed material. Such a 

concept map can then be used grouping of learning content, with underlying content used for the 

supplementation of additional learning-relevant items. Examples of such machine-generated learning-

relevant information include topic sequencing (Robson, Ray & Cai, 2013), question generation for 

learning assessment (Olney, Graesser & Person, 2012), hint generation for student help during learning, 

or other supplemental information.  

Content delivery (5) is both an easy and a difficult problem. Both Gooru and the Generalized Intelligent 

Frameworks For Tutoring (GIFT) support delivery via a web browser, which can easily deliver the 

majority of modern content. Difficulty stems from more complex SCORM objects, executable programs, 

3D simulations, or other items. RUSSEL makes use of human authoring of Gagne’s 9 events (Gagné & 

Gagn , 1985), while GIFT automates the process of authoring through the Rule/Example/Recall/Practice 

quadrants of Merril’s Component Display Theory (Wang-Costello, Tarr, Cintron, Jiang & Goldberg, 

2013). The potential to automate the delivery of content based on searchable metadata parameters is one 

of the key services missing from most of the instructional architectures, but has great potential for content 

to reach a wide audience quickly. 

With the difficult problem of content delivery, the user may be given a simulated environment to practice 

their obtained knowledge. The integration of intelligent tutoring technologies into systems of practice is 

not an easy problem, but it is one that is commonly addressed. This integration is a frequent and standard 

use of the GIFT and Cognitive Tutor systems (e.g., Aleven et al., 2009; Ritter & Koedinger, 1997). 

However, the current adaptive content (hints, prompts, pumps, etc.) is hand-generated. It may be possible 

to use the generated tutoring-style information from the previous sections of this work to assist within the 

practice environment, and eschew the need for expert authoring. As an example, the ordering-based hint 

“you should multiply before you add” can be generated from the content and used to populate the practice 

environment. 
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The above sequence of technologies has the potential to create an adaptive learning system without 

human intervention. Even substantially diminishing the human workload required would represent a 

significant savings of time. As part of this overall vision, learning content can be found on the Internet, 

indexed and sorted into repositories, tagged with searchable metadata information, supplemented with 

tutoring information, and delivered via browser. The combination of these technologies can allow an 

instructional system to use an instructional template (e.g., “Rule” content), define user characteristics 

(e.g., low motivation), match it with intended metadata (e.g., animated/interactable), query a learning 

system for the appropriate content on the subject (e.g., 4
th
 grade history), and deliver it to the student. 

Such a combination averts the problem of authoring by reusing existing ITS components for a particular 

learning objective. 

Closing the Authoring Loop: Continuous Feedback and Improvement 

Many ITSs have a number of free parameters that must be fixed during the authoring process. For 

example, in dialogue-based systems, the author must decide how “correct” a student answer should be in 

order to be counted correct, e.g., must it be exactly the same as the ideal answer or can it be “close 

enough.” Once fixed, these parameters usually remain fixed until the ITS is overhauled or re-

parameterized with new data.  

However, ideally, we would close the loop and an ITS would be “self-updating” such that the parameters 

of the theory of learning would be automatically adjusted to be more optimal as more students used the 

system. While automated authoring of content involves creating exercises for students to interact with, 

automated improvement in the pedagogical interactions means modifying the learner model used for 

pedagogical decision making. For example, a self-updating system may be able to make use of 

information on population dynamics to provide a “best guess” for model parameters of an unseen student. 

Such guesses could be updated based upon their effect on learning among groups, allowing broader 

applicability of the ITSs. 

To do such continuous improvement will require a flexible model that characterizes the student learning 

in the domain. Flexible implies that the model will behave in multiple different ways, depending on how 

it is configured with parameters or mechanisms. For example, a model might characterize the different 

outcomes for the student from success and failure with a practice problem. This model can be flexible in 

its representation of the effect of the success and failure if the model allows this difference to vary, for 

example, by quantifying success and failure effects numerically. Similarly, a model might characterize 

forgetting, but again a flexible representation of forgetting would specify that it might range from none at 

all to very fast depending on some numerical parameter. Again, the model allows for continuous variation 

in the model space.  

Given such a flexible model, one can configure a system with only preliminary settings for the different 

flexible mechanisms. Following this initial cold start, the system would be designed to be self-tuning, 

such that the model continuously improves both for groups of students and individual students connected 

in a server-client architecture. While the network communication and mathematical complexity of this 

proposal makes it challenging, the possibility for better effectiveness with students in ITSs may also be 

large. It should also be noted that similar, but conceptually much simpler, A/B tests are now commonly 

used in industry (e.g., deciding how many search results to put on a page). In the next few paragraphs, we 

sketch the outlines for such a system. 

The system would be controlled by a central server that receives data from the individual clients in order 

for the server to reestimate parameters. These group estimates of parameters would then be offered to 

existing and new clients. This system would allow for all the students’ data to be quickly analyzed by the 
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server to see if the default parameters resulted in a good fit or if they needed to be adjusted. Adjustments 

would be gradual. Default parameters would thus incrementally evolve on the server for the task, 

depending on the clients. These default parameters mean that the system will adapt to different contexts 

of use. For example, a poor performing school district might give rise to parameters that reflect higher 

forgetting than a better funded district. An adapted system would be expected to promote better learning, 

since the accuracy of the model effects the accuracy of pedagogical decision making. 

In addition to this tracking at the server level, the individual student models would be adjusted at the 

client level as well. For example, a low performing student might find the task hard, since the system 

would have adapted to the average student. The client level tracking would correct this inaccuracy very 

quickly, since the client data would weigh heavily on the model parameters provided by the server. In 

fact, the server level tracking would function more as a seed for new students than having active effects 

on a student, minute to minute, supplied by the client level model. 

Such capabilities are currently possible but have not been explored greatly. Some systems have been 

constructed which illustrate this client level tracking of the student model. For example, in the FaCT 

system experimental software (Pavlik Jr. et al., 2007), the model that controls student actions can be 

configured to automatically take optimization steps every N number of student practices. After N 

practices, any particular parameter can be optimized one step either up or down by a specific increment 

(the step size). This is accomplished by computing the log-likelihood of model fit for the parameter 

above, below and at the current value. The step size can be specified to determine how fast adaptation 

occurs. If adaptation occurs too quickly with too little data, pedagogical decisions may fluctuate too 

wildly. 

One problem with this strategy is that often there is not enough variability in the data due to the 

consistency of the pedagogical decisions. For example, the FaCT system tries to balance correctness and 

spacing, and generally recommends practice at around 95% correct. Unfortunately, this means that there 

is little variability in the conditions of the data collection with which to improve the model. One solution 

to this is to embed small experiments in the tutored practice in order to better measure the parameters in 

the individual student’s model. These embedded randomized trials might be delivered at much wider 

spacing than the tutor selected items, making them more difficult. Efforts like this to create varying 

conditions in the tutor data may be necessary to make sure that automated adjustment systems have some 

variability in the data in order to identify the parameters being optimized as being unique from the other 

parameters. 

Discussion 

The new approaches to authoring discussed in this chapter overlap in the problems they are trying to 

solve. Firstly, there must be content that the user will interact with, whether it is digital characters, 

simulated environments, or static webpages. This content is usually authored by a subject matter expert 

(SME) or an instructional design expert (ISD). SimStudent, BrainTrust, and component-based authoring 

all try to ease the burden of authoring content while still keeping a human “in the loop.”  

Secondly, adaptive tutoring systems must have something to adapt to, usually through the modeling of 

expert and learner knowledge. While this content has traditionally been authored by an SME, SimStudent 

and BrainTrust speed the authoring of both these models simultaneously, because they compare student 

actions to an ideal, or expert, answer. Component-based authoring can make use of diverse student 

models, and a system with continuous improvement and feedback re-parameterizes the student model 

making best use of the learner data collected to date. 
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Thirdly, adaptive tutoring systems must contain instruction and feedback to give to the student when 

diagnosed with a deficiency in a proficiency. These items consist of hints, scenario adaptations, texts, 

summaries, or other items in response to student actions. There are several efforts at authoring tools 

which attempt to automate this process. SimStudent uses author demonstrations and collects feedback 

from the author on the steps SimStudent performs to learn production rules that can be employed to check 

student solution progress and to generate next step hints when a student is stuck. BrainTrust uses the 

question-generation technology previously developed for Guru and uses concept maps to generate various 

kinds of question, e.g., hints, prompts, verification, as well as direct instruction. Similar reusable 

components are being developed for concept maps and question generation (Robson, Ray & Cai, 2013). 

Naturally, all of the items of the ITS system must be delivered through an actual system, which is usually 

developed through the programming of a simulation or conversational interaction. Both SimStudent and 

BrainTrust assume specific systems, namely, they produce expert models to be used in existing model-

tracing and dialogue-based systems. To create other modules (e.g., interface and tutoring modules), other 

tools (e.g., CTAT) or other system-level programming may be necessary. In contrast, component-based 

authoring addresses programming more comprehensively by attempting to dynamically assemble systems 

out of existing components with no additional programming. 

The above discussion is summarized in Table 1. Both SimStudent and BrainTrust address the majority of 

authoring needs but do not squarely address system-level programming. If SimStudent is used as a 

module within CTAT, then systems-level programming support is provided through the remainder of the 

CTAT suite. CTAT provides non-programmer authoring tools for interface development and algorithms 

(model tracing and knowledge tracing) that provide adaptive tutoring support when given the production 

rules that SimStudent automatically learns. Component-based approaches and continuous improvement, 

as presented in this chapter, most directly address the authoring needs of programming and assessment, 

respectively. However, each approach is quite general and could be applied to other authoring needs. 

  



 

238 

Table 1 Authoring roles addressed by emerging approaches discussed in this chapter. 

Authoring Need  Human role SimStudent BrainTrust Component-

based 

Continuous-

improvement 

Content SME & ISD     

Assessment SME & ISD     

Instruction/Feedback SME & ISD     

Programming Programmer     

Note. SME: Subject Matter Expert; ISD: Instructional Design Expert 

 

As this chapter has focused on emerging areas of research, it is perhaps no surprise that these areas are 

operating somewhat in their own silos, motivated by authoring problems in their own ITS traditions. 

Perhaps a total integration of these approaches may not be possible, given the differences discussed in the 

introduction and depicted in Figure 1. To that end, it may be preferable for these emerging areas to 

continue to develop following their own needs, but also more broadly to the needs of their tutoring 

paradigm, namely, model-tracing, dialogue-based, and constraint-based. If general tools can be made for 

these quadrants, then in time it may be possible to assemble an integrated suite of tools that, once a 

paradigm has been selected, afford the greatest degree of automation possible so that ITS learning 

objectives may be authored completely, accurately, and quickly. 

Finally, Figure 1 has an empty quadrant corresponding to path-oriented tutors that indirectly compare 

student activities to an ideal answer. Whether existing ITS research can properly be located in this 

quadrant is unclear, but there are several possibilities that may have implications for tutoring in ill-defined 

domains (Fournier-Viger, Nkambou & Nguifo, 2010; Lynch et al., 2006). In particular, it may be that 

tutors using case-based reasoning (CBR), such as those used for tutoring the law (Aleven, 2003), fall into 

this quadrant, because they are both path-oriented and only indirectly compare student input to an expert 

solution. CBR compares the current situation to previous situations (i.e., cases) and adapts solutions from 

previous situations to the current problem (Leake, 1996). From this standpoint, CBR may be viewed as 

representing solution paths in cases, but these paths are ultimately fragments that might be generalized or 

recombined in a new situation. Comparison to an ideal answer may be indirect because comparison may 

apply not only to the final solution (as in constraint-based tutoring), but also to whether the solution made 

use of the same cases and in the same way. If so, then CBR tutors may be an area of research that is 

currently underdeveloped and amenable to further research in automated authoring.  

Recommendations and Future Research 

Based on our findings, we can make several recommendations for GIFT and future ITSs. First, the four 

quadrants of ITS research described in Figure 1 should continue to be developed, with an end goal that 

the resulting authoring tools may ultimately form a suite of tools that could generally be applied to any 

problem in their respective tutoring paradigm. As discussed above, however, these approaches are largely 

building models and do not implement systems-level programming. To assemble new systems from 

scratch, GIFT should also encompass component-based authoring. This implies that tools operating in the 

four quadrants should output reusable components, but it further implies that these components must be 

discoverable and customizable. Finally, we argue that all future ITSs should implement continuous 

improvement so that the tutor can better adapt to an individual or specific population. As described in this 

chapter, continuous improvement best aligns with improving of learner models based on interaction data, 

but it is also conceivable to implement continuous improvement generally for content, assessment, and 

instruction. 
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Very impressive performance support tools for ITS authoring already exist (Aleven et al., 2009) and the 

research described in this chapter does not propose to replace these tools in the near future. Instead, we 

recommend that such tools continue to incorporate improvements in automated authoring in the research 

we describe, so that ITS learning objectives may be authored completely, accurately, and quickly. Indeed, 

it may be the case that some tasks supported by such performance support tools, such as drag-and-drop 

editors for building ITS graphical interfaces, may never be completely automated. We anticipate that the 

current generation of ITS authoring tools will instead continue to be enriched by new advances in 

automated authoring, which will ultimately lower the cost and increase the adoption of ITS. 
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Introduction 

This chapter describes an approach to authoring intelligent tutoring systems (ITSs) used in My Science 

Tutor (MyST). This virtual science tutor engages children in spoken dialogues in which they learn to 

construct explanations of science phenomena presented in illustrations, animations, and interactive 

simulations. Tutorials are developed through an iterative process of recording, annotating, and analyzing 

logs from sessions with students, and then updating tutor models. This approach has been used to develop 

over 100 tutorial dialogue sessions, of about 15 minutes each, in 8 areas of elementary school science.  

Summative evaluations indicate that students are highly engaged in the tutoring sessions and achieve 

learning outcomes equivalent to expert human tutors (Ward et al., 2011; 2013). 

This chapter describes the process of developing conversational science tutors that use visual media and 

the infrastructure supporting the development. A particular focus is the development of models for 

representing and extracting the semantics that provide the basis for selecting tutor actions based on 

interpretations of student answers. While initial evidence suggests that MyST tutorials can improve 

students’ motivation and science learning (Ward et al., 2011; 2013), the potential of these systems to 

transform learning and education is limited by the amount of effort required to develop them. A major 

focus of our current research, discussed in this chapter, is to motivate and demonstrate the feasibility of an 

approach to authoring conversational tutoring systems that substantially reduces the effort and data 

required to develop dialogues for each new science domain.  

Related Research 

Research in ITSs addresses a critical need to provide teachers and students with accessible, inexpensive 

and reliably effective tools for improving young learners’ interest in science, as well as their ability to 

learn science and participate productively in classroom science activities. The 2009 National Assessment 

of Educational Progress (NAEP 2009) reports that fewer than 2% of 4
th
, 8

th
, and 12

th
 grade students 

demonstrated advanced knowledge of science, and over two-thirds of all students in these grades were 

scored as not proficient in science. Analyses of NAEP scores in reading, math, and science over the past 

20 years indicate that this situation is not improving, and is actually worsening. The gap between English 

learners and English-only students, which is over one standard deviation lower for English learners, has 

increased rather than decreased over the past 20 years. 

ITSs aim to enhance learning by providing students with individualized and adaptive instruction similar 

to that provided by a knowledgeable human tutor. These systems support conversational interaction with 

users through either typed or spoken input with the system presenting prompts and feedback via text, 

human voice, or an animated pedagogical agent (Graesser et al., 2001; D’Mello et al., 2011; Rus et al., 

2013; Graesser et al., 2014). Advances in ITSs during the past 15 years have resulted in systems that 

produce learning gains equivalent to human tutoring, which is widely regarded as the most efficient and 

effective form of learning. A review by Van Lehn (2011) compared learning gains with human tutoring 
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and ITSs that required students to engage in problem solving and construct explanations. When compared 

to students who did not receive tutoring, the effect size of human tutoring across studies was d=0.79 

whereas the effect size of tutoring systems was d=0.76. Van Lehn concluded that ITSs “are nearly as 

effective as human tutoring systems.” (Van Lehn, 2011, pg. 197). A recent meta-analysis by Ma et al. 

(2014) indicated that ITSs produce significant effects across a wide range of subjects at all education 

levels relative to large group instruction, non-ITS computer-based instruction, or textbook or workbooks, 

and no differences between human tutoring and learning using ITSs (Ma, et al., 2014).  

Research in argumentation and collaborative discourse acknowledges the strong influence of the theories 

of Vygotsky (1978, 1987) and Bakhtin (1975; 1986), who argue that all learning occurs in and is shaped 

by the social, cultural, and linguistic contexts in which they occur. Roth (2013, 2014) provides an 

excellent integration of Vygotsky’s and Bakhtin’s theories and their relevance to research on 

collaborative discourse. He argues that, when considered in the context of the basic tenets of their 

theories, “currently available analyses of science classroom talk do not appear to exhibit sufficient 

appreciation of the fact that words, statements, and language are living phenomena, that is, they 

inherently change in speaking” (Roth, 2014). Vygotsky argued that scientific vocabulary and concepts 

could only be learned through deliberate instruction in an academic setting, as opposed to the more ad-

hoc manner in which vocabulary and concepts are learned in everyday conversation. Consistent with this 

view, the 2007 NRC report emphasizes that scientific inquiry and discourse is a learned skill, so students 

need to be involved in activities in which they learn appropriate norms and language for productive 

participation in scientific discourse and argumentation (Duschl et al., 2007). 

The past decade has seen a remarkable growth in publications investigating scientific discourse and 

argumentation. Kuhn (2010) notes that argumentation has become widely advocated as a framework for 

science education. The idea that argumentation has become both a reform movement and framework for 

science education is supported by growing evidence of substantial benefits of explicit instruction and 

practice on the quality of students’ argumentation and learning (Chin & Osborne, 2010; Kulatunga & 

Lewis, 2013). Evidence from these studies indicates that argumentation can be improved by providing 

professional development to teachers or knowledgeable students (Bricker & Bell, 2009; Bricker & Bell, 

2014; deJong, 2013; Berland, 2009), explicitly teaching students the structure of good arguments, and 

providing students with scaffolds during argumentation that helps them provide evidence for their own 

arguments and critiquing other’s arguments (Kulatunga et al., 2013; Kulatunga and Lewis, 2013).  

In the remainder of this chapter, the type of interaction used by MyST is described along with the 

semantic representation used to support the interaction. The process for developing tutorials is explained 

with a focus on creation and refinement of the model for extracting semantic representations from spoken 

student responses. A new approach is then presented for developing more robust semantic parsers for the 

domain with significantly reduced developer effort. 

Discussion  

The Nature of Tutorial Dialogues between Students and Marni in MyST 

Since 2007, our research has focused on development of MyST, an ITS designed to improve science 

learning of 3
rd

, 4
th
 and 5

th
 grade children through spoken dialogues with Marni, a virtual science tutor. 

Because many elementary school children have difficulty reading at grade level, we decided to develop 

tutoring systems in which students use speech to converse with a virtual tutor. Students in our study 

received eight to ten weeks of classroom instruction in one of four areas of science—measurement, water, 

magnetism and electricity, or variables—using the Full Option Science System (FOSS, 2014). Over the 

course of each FOSS module instruction, students conducted 16 science investigations in small groups. 
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Students made written entries and drawings in science notebooks about their predictions, observations and 

explanations of the science encountered in each investigation. Shortly after each investigation, students 

engaged in spoken dialogues for 15 to 20 minutes with the virtual tutor Marni or with an expert human 

tutor.  In these dialogues, the human or virtual tutors asked open-ended questions about the science 

encountered in the classroom science investigations. The tutors asked students questions about science 

presented in illustrations, animations, or interactive simulations to scaffold learning and help them 

construct accurate and complete explanations. Analyses of dialogues indicate that, during a dialogue of 

about 15 minutes, tutors and students produced about the same amount of speech, around 5 minutes each. 

The main result of the summative evaluation was that, relative to students in classrooms who did not 

receive supplemental tutoring, students who were tutored by Marni and by human tutors achieved 

equivalent learning gains, with moderate to strong effect sizes. Surveys indicated that over 70% of 

students tutored by Marni reported that they were more excited about studying science in the future. 

Details of these experiments are reported in Ward et al. (2011, 2013).   

It is noteworthy that tutoring by both human and virtual tutors produced significant learning gains, 

relative to students who did not receive tutoring, given that all students in the study received classroom 

instruction using a highly respected inquiry-based learning program (FOSS, 2014) that is used by over 1 

million K-8 students annually in the US. These results are consistent with a meta-analysis by Chi (2009), 

which indicates that students whose instruction involves interactive tasks that include collaborative 

discourse and argumentation learn more than students whose learning involves constructive tasks, (e.g., 

classroom investigations and written reports) or active tasks (e.g., classroom Science Investigations). 

Chi’s synthesis of research indicates the critical importance of having students talk about and explain 

science to optimize learning in inquiry-based programs. 

When using MyST, the student’s computer shows a full screen window that contains the virtual tutor 

Marni (a 3D character), a display area for presenting information and a display button that indicates the 

listening status of the system. The agent’s lips and facial movements are synchronized with her speech, 

which is recorded by an experienced science tutor, the voice talent whose phrasing and prosody imbues 

Marni with the personality of a sensitive and supportive tutor. Spoken dialogues involve Marni asking 

open-ended questions about science presented in illustrations, silent animations and interactive 

simulations. Interactive simulations allow students to use a mouse to manipulate variables and observe the 

effects, such as adding additional winds of wire to an electromagnet core and observing the effect on the 

number of washers picked up. The pedagogical role of these media types are discussed in detail in Ward 

et al. (2011). Figure 1 shows a screen shot of the student’s screen for the example interactive.  

 

Figure 1: The student screen contains the avatar Marni, a display area, and a listening indicator. 
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A typical sequence of actions for the tutor would be to introduce a Flash animation (“Let’s look at this.”), 

display the animation, and then ask a question (“What’s going on there?”). Depending on the nature of the 

question and the media, the student may interact with content in the display area, watch a movie, or make 

passive observations. Students wear high quality headphones with a noise-cancelling microphone. When 

ready to speak, the student holds down the space bar. As the student speaks, the audio data are sent to the 

speech recognition system. When the space bar is released, the word string produced by the speech 

recognizer is parsed to produce a set of semantic parses. The set of parses is pruned using session context 

information to a single best interpretation., The new information is added to the session context and a new 

set of tutor actions is generated. The actions are executed and the system again waits for a student 

response. 

The focus of the MyST system is to elicit explanations of science concepts from students. Each 15 to 20 

minute MyST dialogue session functions as an independent learning activity that provides, to the extent 

possible, the scaffolding required to stimulate students to think, reason, and talk about science during 

spoken dialogues with the virtual tutor. The goal of these multimedia dialogues is to help students 

construct explanations that express their ideas. The dialogues are designed so that over the course of the 

conversation with Marni, the student is able to reflect on their explanations and refine their ideas in 

relation to the media they are viewing or interacting with, leading to a deeper understanding of the science 

they are discussing. It is necessary to design dialogues that (1) engage students in conversations that 

provide the system with the information needed to identify gaps in knowledge, misconceptions, and other 

learning problems; and  

(2) guide students to arrive at correct understandings and accurate explanations of the scientific processes 

and principles. A related challenge is to decide when students need to be provided with specific 

information (e.g., a narrated animation) in order to provide the foundation or context for further 

productive dialogue. Students sometimes lack sufficient knowledge to produce satisfactory explanations, 

and must therefore be presented with information that provides a supporting or integrating function for 

learning, such as brief multimedia presentation that explains the key concepts the student was attempting 

to explain.  

MyST tutorials are characterized by two key features: the inclusion of media throughout the dialogue and 

the use of open-ended questions related to the phenomena and concepts presented via the media. Follow-

on questions attempt to build on things the student said. For example, an initial classroom investigation 

about magnets has students move around the classroom exploring and writing down what things do and 

do not stick to their magnets. The subsequent multimedia dialogue with Marni begins with an animation 

that shows a magnet being moved over a set of identifiable objects, which picks up some of the objects 

but not others.  Marni then says: “What’s going on here?”  If the student says: “The magnet picked up 

some of the objects,” Marni might say: “Tell me more about the types of objects magnets pick up.” 

Each tutorial session in MyST is designed to cover a few main points (typically two to four) in a 15 to 20-

minute session with a student. The tutorial dialogue is designed to get students to articulate concepts and 

be able to explain processes underlying their thinking. Tutor actions are designed to encourage students to 

share what they know and help them articulate why they know what they know. For the system (Marni), 

the goal of a tutorial session is to elicit responses from students that show their understanding of a 

specific set of points, or more specifically, to entail a set of propositions. Marni attempts to elicit the 

points by encouraging self-expression from the student. Many dialogue moves are adapted from 

principles of questioning the author (QtA) (Beck & McKeown, 2006). Much use is made of open-end 

questions such as “What do you think is going on here?” One of the developers of QtA, Margaret 

McKeown, worked closely with our development team during development of MyST dialogues. Dr. 

McKeown analyzed annotations of sessions with human tutors trained in QtA dialogue moves, and 

provided feedback that were used to improve subsequent dialogues. Analysis of MyST dialogues (Ward 

et al., 2011; 2013) reveals that concepts expressed by students are recognized at about 85% accuracy. The 
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system fails to recognize about 15% of the concepts correctly expressed by the student. MyST does not 

tell students that they are wrong, but simply moves on to other propositions if the student expressed 

understanding, or continues to discuss the current topic otherwise. This strategy provides for graceful 

dialogues when concept recognition errors occur. 

Semantic Representation 

The MyST dialogue model is based on representing what students are saying about attributes of entities 

and how entities and events in the domain are related. MyST uses the Phoenix system for natural 

language processing and generating tutor moves. Phoenix represents the propositions being discussed as 

semantic frames with role labels similar to other semantic parsing systems such as FrameNet (Baker et al., 

1998) and PropBank (Palmer et al., 2005), but uses role labels specific to the domain of Science. Roles 

represent how entities are related to each other and to predicates (usually a verb or nominalization). 

Semantic frames are used to represent role sets important for the domain. The following example of a 

statement describing movement would be extracted as follows:  

 Electricity flows from the negative terminal through the bulb and to the positive terminal. 

o Frame: DescribeMovement 

o Predicate: Move 

o Theme: Electricity 

o Source: Terminal.negative 

o Goal: Terminal.positive 

o Path: Bulb 

Other examples of frames important in science discourse are the following: 

 Grass is a producer. 

o Frame: ClassMembership 

o Member: Grass 

o Class: Producer 

 The bulbs are not shining because the pathway for electricity to flow has been broken. 

o Frame: CausalRelation 

o Result: 

o Theme: Bulb 

o State: Off 

o Cause: 
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o Predicate: Interrupted 

o Theme: Pathway 

Student responses are extracted by the system into semantic frames. Tutor next moves are selected by 

comparing the frames extracted from student responses to reference frames representing correct role 

assignments. The following sections explain how role extraction is accomplished and how the extracted 

frames are used in generating tutor moves. 

Defining and Extracting Semantic Frames 

The first step in developing a MyST tutorial dialogue is to define the topics to be covered. The 

specification of tutorial semantics begins with creating a narrative. The tutorial narrative is a set of natural 

language statements that express the concepts to be discussed in as simple a form as possible. These do 

not represent the questions that the system asks, but are the set of points that the student should express. 

The narrative represents what an ideal explanation from a student would look like. The narrative 

statements are manually annotated to reflect the desired semantic parse. An example annotation is as 

follows: 

 The current flows from the minus terminal to the plus. 

o Theme: [Electricity] (The current) 

o Predicate: [Move] (flows) 

o Source: from the [_negative] (minus terminal) 

o Goal: to the [_positive] (plus) 

o Which results in the extracted frame: 

o Theme: Electricity 

o Predicate: Move 

o Source: negative 

o Goal: positive 

These parsed statements define the domain of the tutorial. After enumerating the concepts to be discussed, 

the visuals to be used to illustrate scientific vocabulary, materials, and phenomena and are defined. A 

short narrative is written and parsed for each of the media files to be used in the tutorial. The Phoenix 

compiler is used to compile the annotated narratives into recursive transition networks that are used by the 

parser to extract text into semantic frames. 

Student responses are also parsed into the same semantic representations as the narratives. The initial 

patterns are created from the narratives and have all of the roles and entities that will be discussed, but 

only a few ways of expressing them. Over the course of development, the patterns must be expanded to 

cover the various ways students articulate their understandings of the science concepts. In developing the 

MyST system, project tutors were asked to type simulated student input. These inputs were annotated and 

added to the training data for the extraction patterns. Once the initial components for a tutorial have been 
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specified, the task becomes to obtain coverage in the extraction patterns of all of the ways in which the 

semantics are expressed by students. As the system is used, it logs all transactions and records student 

speech. When tutorials are deployed for live use, all session data are uploaded to a server each night. The 

data are processed automatically to assess system confidence in the interpretation of student responses. 

Using an active learning paradigm, low confidence sessions are selected for transcription and annotation. 

Once annotated, the data are added to the training set and system models (acoustic models, language 

models and extraction patterns) are retrained. Periodically, data are sampled for test sets and a learning 

curve is plotted for each module. All elements of this process are automatic except for transcription and 

annotation. 

Generating Tutor Moves 

The virtual tutor has a set of resources to conduct the session dialogue; synthesized prompts, recorded 

prompts, narrations, static visuals, silent animations, narrated animations, and interactive simulations. The 

tutor model controls how the resources for each tutor turn are selected. Features used for move selection 

include a semantic representation of the last prompt, whether the student reply was responsive to the 

prompt, and a comparison between the extracted representation from student responses and the reference 

representation from the narrative. These features generally express whether each target frame role (a) 

hasn’t been addressed, (b) has been prompted for but not answered, (c) has been expressed incorrectly, or 

(d) has been expressed correctly. Boolean expressions of features are used to select the next tutor move. 

Tutor moves are sequences of the basic tutor actions: speak(play a recorded audio file), synthesize(a 

specified word string), flash(execute Flash application), and play(static media file or recorded video). 

Production rules in the form of Boolean expressions of features are associated with a sequence of actions 

to be taken by the tutor if the rule evaluates true. Some example pattern-action rules are as follows: 

# last student response indicated boredom 

Response == “boredom” 

 Action: “synth(So, I have to be entertaining every minute? You try it some time.)” 

 

# Got it all right, give positive feedback and re-state 

Origin == Reference:Origin AND Destination == Reference:Destination 

 Action: “synth(Excellent observations!); 

  synth(So, electricity is flowing from the negative end of the battery 

   and back to the positive end of the battery)” 

 

# origin wrong 

Origin != Reference:Origin 

 Action: “synth(Let’s take a look at something together. Look at the flow of electricity. 

                   What do you notice about which end the electricity is flowing away from?)”  

 

Templates are created for interaction types to make authoring of dialogue interactions more efficient. For 

example, when discussing word definitions, set membership, and causal relations, very similar dialogue 

sequences are used regardless of specific content. This is especially true of the introductory parts of each 

concept, where very open-ended prompts are used. Tell types of moves introduce a concept and present a 

narrated animation. Elicit type moves might make an opening statement to segue into a concept, present a 

silent animation and ask “What’s going on here?” Elicitation of explanation of a causal relationship might 

use a scenario using and interactive simulation. Ask “What do you think would happen if …”, then have 

the student try it in the simulation and then explain their observation.” The specific predicates and entities 

are different, but the interaction pattern is very similar. 
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During initial development and testing of dialogues, synthetic speech is used in the virtual tutor to allow 

easy modification. The application could use synthesis in field use, but we generally choose to have 

prompts recorded by a voice talent before students engage with Marni. This is a viable option since 

prompts for a session are known in advance and we have an efficient procedure for recording them. 

System tools generate the set of sentences to be recorded and a recording application is provided to 

efficiently manage recording and verifying each prompt, as well as the accuracy of the alignment of the 

speech to the movements of Marni’s lips and associating each audio file with the word string. The tools 

also automatically produce a task control file where all synth(word string) actions have been replaced 

with play(recorded file) actions. 

Summary of Current MyST Tutorials Dialogue Development Process 

The primary activities involved in the development of MyST tutorial sessions are developing Flash 

media; authoring feature expressions and associated action sequences; and annotating data for extracting 

semantic representations. Templates of interaction types are used to reduce the effort of creating new tutor 

models. An efficient process is in place for collecting and annotating data and re-training system models. 

Fifty tutorial sessions were developed in four months by a small team (one project manager, two digital 

artists, and two linguistics students). 

That optimistic assessment notwithstanding, substantial effort is required to develop and tune multimedia 

conversational tutorials. Less expensive media can be substituted for Flash animations, but the media is so 

integral to the presentation that we feel the expense justified. The other labor-intensive effort is the 

annotation of extraction patterns. The next section details a proposal for reducing the data and effort 

required for training the semantic extraction model. 

Applying Linguistic Resources to Semantic Extraction 

One of the more costly and time-consuming aspects of developing a tutorial with this model is achieving 

good coverage in the extraction patterns used in parsing. The semantics of the domain are constrained, but 

student responses can vary greatly in the ways they choose to express concepts and terms. An efficient 

process is in place for collecting data and training the system, but the first time the system sees a construct 

it has not seen before, it does not extract it correctly. It still takes time, effort, and data to get good 

coverage of student responses.  

The patterns are used to extract (and normalize) entities into semantic roles, and thus represent both 

patterns for entity recognition and higher-level patterns assigning the entities to roles. Entity patterns 

represent the set of phrases considered to be an acceptable synonym for a term. Electricity could be 

expressed as electricity, energy, power, current, or electrical energy. Coverage of term synonyms from 

annotated data is achieved fairly quickly and easily and can be done by most anyone familiar with the 

domain. The larger problem is the patterns discriminating between possible role assignments. Not only is 

there more disfluency and variability here, annotating them is a more difficult task for someone not 

trained to do it. 

One possibility for increasing robustness of extraction patterns and reducing data (and effort) needed to 

achieve coverage for role assignment is to use output from a domain-independent semantic role labeling 

(SRL) system to help with role assignment. The Proposition Bank (PropBank) provides a corpus of 

sentences annotated with domain-independent semantic roles (Palmer, et al.). PropBank has been widely 

used for the development of machine learning based SRL systems. Pradhan et al. (2005) used the 

representation in open domain question answering and Albright et al. (2013) extended PropBank for 

processing clinical narratives. The idea is not to try to use PropBank output directly to produce the 
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extracted representations, but to map PropBank SRL output onto MyST frames domain-specific entity 

patterns will still need to be applied to produce the canonical extracted form, but this is a much simpler 

task than role assignment and one more suited to non-linguists. 

An initial investigation has been conducted to examine how well the semantic frames used in MyST can 

be produced from PropBank roles. Many of the roles can be mapped directly, such as class membership. 

In some cases, such as causal relations between two events, several PropBank predicates are involved in 

producing the MyST frame. PropBank parses are oriented around a predicate and separate parses are 

produced for each predicate. These need to be unified to produce the MyST frame. An example of a 

Propbank parse that maps directly is as follows: 

All metals are conductors 

 PropBank   MyST 

 Predicate: are   Frame: ClassMembership 

 A1: metals   Member: metals 

 A2: conductors   Class: conductors 
 

And an example of one that is not so direct is: 

When the switch is closed electricity flows 

 PropBank    MyST 

Predicate: flow    Frame: CausalRelation 

A1: electricity    Cause: SwitchState: closed 

TMP: when the switch is closed  Result: ElectricalFlow: on 
 

The MyST patterns produce the SwitchState: closed and ElectricalFlow: on elements. The mapping issue 

is that Propbank treats When the switch is closed as a temporal expression while the MyST frame treats it 

as a pre-condition (the Cause role covers both cause and pre-condition concepts). As the number of 

frames in a MyST tutorial is small, generally less than 20, rule based mapping of Propbank predicates and 

roles to MyST frames seems feasible. 

In MyST, many different related predicates share the same frame. Students could say electricity flows, 

goes, runs, races, zooms, or circles, and the important elements are what is moving, from where, to 

where, irrespective of the choice of verb. The goal is to map PropBank predicates that share similar role 

sets onto a common MyST frame to provide general ways of talking about the event participants e.g., a 

set of patterns for talking about roles in motion events. The following two sentences describe motion in 

two very different domains, but use the same semantic frame for representing the meanings: 

Electricity is flowing from the negative terminal to the positive. 

Predicate: Move 

Theme: Electricity 

Source: from the negative terminal 

Goal: to the positive 

 

The clouds are blowing from the west to the east. 

Predicate: Move 

Theme: clouds 

Source: from the west 

Goal: to the east 
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In MyST, the recognition and clustering of predicates is done by the extraction patterns. As an example, 

the predicate term Move might have synonyms, move, flow, and circle around. This gives no guidance of 

what to do when a new predicate is encountered. For example, suppose a student says Electrons are 

zipping around in a circle, and the system has never encountered the word zipping. The extraction 

patterns do not indicate that zipping is a form of movement. A saving grace of the system is that a 

predicate is not required to extract into a frame. The system produces the set of possible extracted frames 

and uses context to disambiguate between competing alternatives. As long as the role assignments are not 

ambiguous (as in Source and Goal) it is often able to perform the semantic frame extraction correctly. 

Sometimes however, extraction patterns for roles do not cover the construction used by the student. 

Incorporating PropBank parses offers the possibility to save considerable annotation effort by doing role 

assignment in a domain-independent way so that extraction patterns are mostly only required to add 

structure to and normalize entities. It is expected that some MyST frames might not have a useful 

mapping from PropBank roles and will still require extraction patterns, but that most can be mapped from 

PropBank. At the current time, there is no quantitative data to support this, only a pilot investigation. 

Adapting PropBank to Domain and Genre 

Even though PropBank uses a domain-independent representation, machine learning based systems 

trained on it will necessarily be learning aspects of the topic and genre used in the training data. Initial 

PropBank training data were sentences taken from the Wall Street Journal and the Brown Corpus, both 

fluent written text. When PropBank-trained SRL systems were applied to clinical narratives in the 

medical domain, both the genre of dictated notes and idiosyncratic word usage in the medical domain 

were very different from the original training data, which lowered performance (Albright et al., 2013). 

Parser performance was enhanced significantly by annotating a modest amount of data in the new domain 

with PropBank labels. 

None of the available PropBank corpora are a good match to either topic or genre for children’s 

conversational speech on science. There currently is no large corpus available that is appropriate for 

training PropBank parsers for spoken dialogue based science tutorials for children. Boulder Language 

Technologies is beginning the work of annotating data collected in the MyST project to provide such a 

resource, representing over 1000 hours of speech from over 1200 elementary school students. 

Recommendations and Future Research 

While most of the mechanisms in the MyST framework are similar to capabilities that are already 

contained in the Generalized Intelligent Frameworks For Tutoring (GIFT), we believe that the extraction 

and use of domain-specific sematic roles can provide complementary information to the current set of 

features being used. The functions for annotating data, training extraction patterns, and extracting 

semantic frames could easily be integrated into the GIFT framework and the features derived from them 

made available as additional information within the current framework. The tools for selecting data for 

new annotations to add to the training data and evaluating component performance can be used to expand 

the representation as the systems evolve over time. 

Boulder Language Technologies will make all of the components of the MyST system available for 

research use, including the Bavieca Automatic Speech Recognition engine, Phoenix Natural Language 

Processing engine, and a character animation system. Many of these components are trained from data, 

and both supervised and unsupervised training can improve the models. Many projects have benefitted 

from the sharing of data within a research community. An example is the Linguistic Data Consortium, 

which serves as a repository and distribution center for corpora. The availability of corpora reduces the 

entry barrier to new research efforts to improve the technology. When corpora are available, common 
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tasks can be defined and common evaluations conducted to accelerate progress in the field. The 

availability of data tends to attract new researchers. We recommend that providing methods for sharing 

data by GIFT users, including common annotation guidelines and assessment conventions, be considered. 
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CHAPTER 21  Approaches to Reduce Workload and  

Skill Requirements in the Authoring of  

Intelligent Tutoring Systems  
Robert A. Sottilare 

US Army Research Laboratory
 

Introduction 

The effectiveness of intelligent tutoring systems (ITSs) as an instructional tool makes them an attractive 

choice for one-to-one instruction as compared to traditional classroom training (VanLehn, 2011; 

VanLehn, et al., 2005; Lesgold, Lajoie, Bunzo & Eggan, 1988). Limiting factors in their adoption are 

workload and skill requirements. Even for well-defined domains, the authoring process for ITSs is both 

complex and time consuming. A major goal for the Generalized Intelligent Framework for Tutoring 

(GIFT; Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Holden, Goldberg & Brawner) is to 

integrate tools and methods that reduce the time/cost, workload, and skill requirements to author adaptive 

tutoring systems.  

The ITS community has identified several goals associated with ITS authoring processes (Murray, 1999; 

Murray, 2003; Sottilare and Gilbert, 2011; Sottilare, Goldberg, Brawner, and Holden, 2012; Sottilare, 

2013; and Sottilare, 2015). We have organized these goals into four key categories. The chapters in this 

section reinforce these goals across various authoring systems and various ITS genres. Research is needed 

to discover and innovate authoring tools and methods to accomplish the following:  

 decrease the effort required by the author 

 decrease the knowledge required by the author 

 support the organization of domain knowledge  

 enable rapid evaluation of prototypes 

Tools and Methods to Decrease Authoring Burden 

Aleven, McLaren, Sewall, and Koedinger (2006) asserted that it takes approximately 200–300 hours of 

development time to author 1 hour of adaptive instruction. Sottilare (2015) indicated that the progress of 

authoring system capabilities may have reduced this burden to about 100–200 hours, but this is still far 

from being practical for teachers/instructors and course managers who may need to develop new content 

on a weekly or perhaps daily basis. To be agile in meeting changing demands to update domain 

knowledge, the goal for authoring 1 hour of adaptive instruction should about 4 hours (threshold) with an 

objective of 1 hour. 

To meet this lofty goal, we have identified two supporting objectives: 

 create community-based standards for interoperability 
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 create tools to automate large portions of the authoring process and remove the human author 

from the process 

Creating Community-Based Standards for Interoperability 

By either creating or adopting existing interoperability standards for ITSs, we will increase opportunities 

for reuse of essential ITS elements and drive the community’s need for authoring down, thereby reducing 

the authoring burden. In previous sections of this volume, ITS genres (e.g., model tracing, agent-based, 

and dialogue-based) are examples authoring tools with academic, commercial, and governmental origins. 

While there are many more authoring tools, below are four toolsets with active user bases: 

 Cognitive Tutor Authoring Tools (CTAT) produces cognitive modeling and example-tracing 

tutors; developed by Carnegie-Mellon University. 

 Authoring Software Platform for Intelligent Resources in Education (ASPIRE) Authoring 

Tools produces constraint-based online tutors; developed by the University of Canterbury (New 

Zealand). 

 AutoTutor Script Authoring Tools (ASAT) produces dialogue-based tutors; developed by the 

University of Memphis. 

 Generalized Intelligent Framework for Tutoring (GIFT) produces various types of tutors; 

developed by the US Army Research Laboratory (ARL). 

We recommend decreasing the effort to author ITSs by establishing and documenting standards for 

processes, tools, and integration of components. Features for some existing authoring tools such as those 

listed above may be ready-made candidates for ITS standards. Templates for the development of domain 

models and content may also reduce the effort required to author ITSs.  

While we may never reach a single standard ITS, it is possible and beneficial for the community to rally 

around interoperability standards for integration, modular components, and metadata. Interoperability 

standards will support rapid integration of standalone training and education platforms (e.g., serious 

games, virtual simulations, presentation content, and other domain knowledge) with ITSs to promote 

multi-domain training platforms with tailored tutoring. Interoperability standards may also allow for 

movement of modular domain knowledge from one tutoring platform to another. Metadata standards may 

also allow for easier curation (search, retrieval, and archiving) of domain knowledge.  

Finally, we advocate the use of web services as a standard to support integration with external 

capabilities. Web service calls are data driven and therefore largely domain-independent. For example, in 

recent releases of GIFT, ARL implemented calls to external AutoTutor web services. Web services 

available through GIFT support AutoTutor dialogue-based tutoring including latent semantic analysis 

(LSA) of text to support near-real-time analysis of learner essay responses; conversational dialogues 

based on LSA assessments; interfaces to animated agents (e.g., commercial virtual humans); and various 

other tutoring and delivery style mechanisms. The use of web services reduces the author’s workload by 

reducing integration effort to service calls by the ITS. 

Automating the Authoring Process 

By understanding, modeling, and then automating authoring processes, we can lower the authoring load 

and knowledge required to author ITSs. A design goal for GIFT is to be able to provide authoring tools 
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suitable for domain experts who may lack computer programming and instructional design skills. Two 

emerging technologies include automated integration for serious games and ITSs and automated 

authoring of expert models.  

As mentioned previously, the opportunity to automate the integration of games and tutors will combine 

the higher levels of engagement found in serious games with the effective instructional techniques found 

in ITSs. The goal is to reduce authoring by automating the process of developing middleware to link 

serious games and ITSs. Since games can be used across multiple scenarios and training domains, 

providing an integrated game-based tutor will increase reuse and reduce authoring load. 

A second category of emerging technologies is data-mining tools to develop an ITS expert model based 

on the analysis of text-based sources (e.g., how to manuals or web content).  These tools reduce time and 

skill, and thereby the cost to develop domain models, an essential part of the ITS domain, without human 

knowledge of the domain. The accuracy of these current data-mining tools is a limiting factor with respect 

to the amount of authoring saved. 

Chapter 27 (Domeshek, Jensen, and Ramachandran) discusses the concept of bootstrapping to support 

automated authoring. Bootstrapping includes “incremental rule condition generalization and student 

action templates created by demonstration and generalization.” An example of bootstrapping includes 

SimStudent (MacLellan, Stampfer Wiese, Matsuda & Koedinger, 2015), which collect learner behaviors 

and trends to support development of automated learner analytics (e.g., misconception libraries and expert 

models).  

Decreasing the Skill Requirements for Authoring 

Today, ITSs are built by highly skilled, multidisciplinary teams, which may include computer scientists, 

instructional designers, human factors psychologists, learning specialists, and domain experts. In order to 

reduce the skills required by ITS authors, some of the knowledge, skills, and best practices of these 

interdisciplinary team members must be represented in the authoring process by artificial intelligence 

methods. Default decisions are represented in the authoring process to accommodate novices or more 

experienced author preferences. For example, a novice may author a problem-based course and the 

selection of problems may be random and driven by metadata representing each problem’s complexity. 

During instruction this can be used by the domain model to select problems of appropriate complexity 

without the author’s specification of problem order. 

Another authoring tool design goal is to create artificially intelligent job aids (e.g., TurboTax) to guide the 

author through the process and thereby reduce their cognitive load during authoring. For example, authors 

who move from model-tracing to dialogue-based tutors might have a job aid to support their transition. 

Authoring tool user interfaces must be able to recognize the level of experience in using the tool and how 

long since they last used it. Decreasing levels of scaffolding by the job aid should be experienced by the 

author as they become more knowledgeable.  

Regardless of the approach, usability is a key to supporting efficient authoring. Understanding the 

capabilities and limitations of authors is vital. In Chapter 22, Aleven, Sewall, Popescu, van Velsen, and 

Demi advocate a use-driven development process consistent with human-computer interaction and user-

centered design principles. In this approach, user experiences drive development priorities. In Chapter 23, 

Sinatra, Holden, Ososky, and Berkey discuss usability considerations and the effect of user roles. Chapter 

24 (Gilbert and Blessing) examines user experience to describe the design of authoring tools including the 

need for multiple representations of domain knowledge to align with the mental models of the author.  
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Popular approaches to reducing required knowledge for authoring are reviewed in Chapter 25 (Lane, 

Core, and Goldberg). These include such as programming by demonstration, visualization tools, and what 

you see is what you get (WYSIWYG) authoring. Chapter 27 (Domeshek, Jensen, and Ramachandran) 

discusses user-friendly tools that allow subject matter experts or instructional designers to create complex 

knowledge components. 

Supporting the Organization of Domain Knowledge 

While it may not be feasible to have a totally generalized set of authoring tools for all disciplines, it may 

be possible to tailor authoring tool interfaces to meet the needs of specific user disciplines (e.g., 

instructional designers, course managers, researchers, and domain experts) and authoring tasks (e.g., 

domain knowledge organization, development of directed graphs for course, and assessments). Tools to 

aid the user in organizing their knowledge for quick recall and application can result in large authoring 

time savings. Authoring tools to support curation, which includes the search, retrieval, organization, and 

storage of domain knowledge, are critical to efficient development of ITSs. The ability to add metadata 

tags to knowledge components will aid in their organization and retrieval. 

A significant element of domain knowledge is formed by defining objectives, measures, standards, and 

assessments for each concept to be learned. Chapter 26 (Goldberg, Hoffman, and Tarr) examines 

processes in GIFT to author adaptation through a data-driven approach which requires significant domain 

knowledge. As tutors expand into new domains (e.g., psychomotor and social domains), the challenge 

will be to organize domain knowledge for efficient authoring. Chapter 28 (Sottilare, Ososky, and Boyce) 

provides insight into the development of measures and challenges to authoring in the psychomotor 

domain (e.g., sports and marksmanship).   

Enabling Rapid Evaluation of Prototypes 

Our fourth goal is to enable rapid prototyping of adaptive tutoring systems and allow for rapid 

design/evaluation cycles of prototype capabilities. Decreasing the time required to evaluate prototypes 

will result in a more efficient model-test-model cycle and support more efficient authoring of new system 

capabilities (Murray, 1999; Murray, 2003; Sottilare, 2015). To this end, we recommend development of a 

standard testbed methodology as designed in GIFT (Sottilare, Goldberg, Brawner & Holden, 2012). The 

designers of GIFT have adapted their testbed methodology from Hanks, Pollack, and Cohen (1993). 

Elements, models, and methods within the learner module (e.g., transient states, cumulative states, and 

enduring traits), pedagogical module (e.g., instructional strategies), domain module (e.g., instructional 

tactics), and user interface (e.g., source of feedback) may be used to compare and contrast effect with 

alternatives.     

Challenges and Best Practices 

A model of domain knowledge complexity and its significant dimensions are needed to compare and 

contrast authoring tools and their performance. It is currently difficult to compare authoring systems of 

different genres (e.g., dialogue-based tutors vs. cognitive tutors) based on differences and overlapping 

functions within these ITS genres. It is also difficult to compare 1 hour of adaptive instruction when the 

density of adaptive strategies and tactics needed varies from domain to domain. Finally, it is essential to 

expand ITS domains beyond problem-centric tutors to more situated tutoring domains (e.g., scenario-

based instruction). Authoring in various task domains (cognitive, affective, psychomotor, and social) also 

presents challenges in comparing the efficiency of authoring. Until a community-based standard 
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definition of domain knowledge complexity is agreed upon, we should restrict our comparisons to 

authoring systems within the same genre and task domain.  

In response to this need, we put forward a recommended best practice for authoring comparison to 

identify domain knowledge density. We see domain knowledge density as a function of the number 

learning concepts, their associated measures and assessments, and the number of problems and their 

adaptations (e.g., problem steps) or in the case of situated tutors, scenario variables. Scenario variables 

include components within the scenario that can change in response to learner needs (e.g., boredom may 

require an increase in challenge level). Scenario density contributes to domain knowledge complexity and 

all density factors should be normalized to a one hour scale. Other suggested best practices are called out 

in subsequent chapters in this section which will allow us to compare authoring capabilities. 
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Introduction 

In this chapter, we reflect on our 12+ years of experience developing and using the Cognitive Tutor 

Authoring Tools (CTAT), by now a mature and widely used suite of ITS authoring tools. A key reason to 

create ITS authoring tools is to make ITS development easier, easier to learn, and more cost-effective, so 

that, ultimately, more ITSs can help more students learn. CTAT is no exception; it was created with these 

goals in mind. It has gone far in meeting these goals (for a recent update, see Aleven et al., under review), 

even if there is also substantial room for next steps, greater generalization, and a wider use base. Our 

reflections center around generalized architectures for tutoring systems –architectures that support 

relatively easy plug-and-play compatibility of ITS components or whole ITSs. 

We identify eight themes that emerge from our experience with CTAT. We expect our reflections on 

these themes will have relevance to a substantial range of ITS authoring tools and generalized 

architectures, not just CTAT and the Generalized Intelligent Framework for Tutoring (GIFT) (Sottilare, 

Brawner, Goldberg, and Holden, 2012). These themes touch on issues such as use-driven development of 

authoring tools to make sure they address users’ goals and needs, the importance of describing ITSs in 

terms of their tutoring behaviors, advantages of of supporting both programmer and non-programmer 

options within a single ITS authoring tool suite, the versatility of solution space graphs within the process 

of authoring an ITS, three aspects of interoperability that an ITS authoring tools or a generalized ITS 

architecture should support,  and finally, a discussion of how different classes of likely authors of ITSs in 

the near future might have different goals and needs, and what this implies for tool development. Along 

the way, we reflect on the degree to which CTAT could be viewed as a generalized architecture for 

tutoring and how it might be generalized further. We hope our thoughts can inform useful discussion 

within the field regarding ITS authoring tools and generalized ITS architectures.  

A reader wanting get a quick summary might read the section “Overview of CTAT” and then the brief 

summaries marked “Recommendations for GIFT:” at the send of each section. These suggestions are 

meant to be relevant not just to GIFT, but to a wide range of ITS authoring tools and ITS architectures.  

Overview of CTAT 

CTAT is a suite of ITS authoring tools and, at the same time, a factored architecture for developing and 

delivering tutors. Tutors built with CTAT provide various forms of step-level guidance for complex 

problem solving activities as well as individualized task selection based on a Bayesian student model. 

CTAT supports multiple ways of authoring tutors, with multiple technology options for the tutor front-

end and the same for the tutor back-end. CTAT supports deployment of tutors in a wide range of 

configurations and delivery environments. To support this range of authoring and delivery options, it has 

aspects of a generalized tutoring architecture, which we highlight below. 

CTAT is a key component of a more encompassing infrastructure for ITS research and development, 

together with two other main components, the TutorShop and DataShop (Koedinger et al., 2010). In this 

infrastructure, CTAT provides tools for authoring tutor behavior as well as run-time support for tutors. 
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The TutorShop is a web-based learning management system geared specifically toward tutors. Besides 

offering learning management options (e.g., reports presenting tutor data to teachers), it supports a 

number of ways of deploying tutors on the Internet. DataShop is a large online repository for educational 

technology data sets plus a broad suite of analysis tools, designed for use by researchers and geared 

towards data-driven refinement of knowledge component models underlying tutors (Aleven & Koedinger, 

2013).  

CTAT supports two tutor technologies: Using CTAT, an author can create an example-tracing tutor using 

non-programmer methods (Aleven, McLaren, Sewall, & Koedinger, 2009) or can build a rule-based 

Cognitive Tutor either through AI programming (Aleven 2010) or using a non-programmer module called 

SimStudent (Matsuda, Cohen, & Koedinger, 2005, 2015). In a nutshell, an author starts by identifying an 

appropriate task domain and appropriate problem types for tutoring, carries out cognitive task analysis to 

understand the concepts and skills needed for competence in this task domain as well as how students 

learn them, designs and builds a problem-solving interface for the targeted problem type, and authors a 

domain model for the given tutor, either in the form of generalized examples (for an example-tracing 

tutors) or a rule-based cognitive model (for a Cognitive Tutor). An author can build a tutor interface using 

an off-the-shelf tutor interface builder (for Flash, Java, or HTML5) combined with tutor-enabled 

components that come with CTAT. Once a tutor interface is ready, an author creates and edits the domain 

knowledge that the tutor will help students learn, using a variety of tools, depending on the tutor type. 

Obtaining the desired tutor behavior across a range of tutor problems and solution strategies is usually an 

iterative process with multiple edit-test-debug cycles.  An easy way to deploy CTAT tutors is to upload 

them to the TutorShop. This makes them available via the Internet, where they can be used in conjunction 

with the learning management facilities of the TutorShop. Other delivery options are available as well. 

Among CTAT tutors, example-tracing tutors are by far the more frequently authored tutor type. 

 

 

Figure 1: Authoring an example-tracing tutor with CTAT 
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When authoring an example-tracing tutor, an author edits the tutor’s domain knowledge using a tool 

called the Behavior Recorder, shown in Figure 1 (Aleven et al., 2009; Koedinger, Aleven, Heffernan, 

McLaren, & Hockenberry, 2004; Koedinger, Aleven, & Heffernan, 2003). This knowledge takes the form 

of generalized examples captured as behavior graphs, with multiple strategies and common errors 

recorded as paths in the graph. The Behavior Recorder provides many options for creating, editing and 

generalizing a behavior graph, so it supports the desired tutor behavior. It also lets an author attach hints, 

error messages, and knowledge component labels. In addition it supports a variety of useful tutor-general 

functions (i.e., functions shared between example-tracing tutors and Cognitive Tutors), such as cognitive 

task analysis, solution space navigation, and semi-automated regression testing. These domain-general 

functions are discussed further below. 

 

Figure 2: Authoring a rule-based Cognitive Tutor with CTAT 

When authoring a rule-based model for a Cognitive Tutor, the second type of tutor that CTAT supports, 

an author uses tools for editing, testing, and debugging a cognitive model (Aleven 2010), as illustrated in 

Figure 2 These models are written in Jess, a standard production rule language (Friedman-Hill 2003). The 

tools used include an external editor (Eclipse with a plug-in for Jess editing) as well as the following 

CTAT tools: the Behavior Recorder for cognitive task analysis, solution space navigation, and testing, a 

working memory editor for inspecting/editing the contents of working memory, two diagnostic tools for 

debugging cognitive models, the conflict tree and why not window, and a Jess Console that provides a 

low-level command-line interface to the Jess interpreter. Most of these tools are specific to CTAT and are 

not available in standard production role developments. A controlled evaluation study shows these tools 

can substantially reduce the number of edit-test-debug cycles needed for cognitive model development 

(Aleven, McLaren, Sewall, & Koedinger, 2006). SimStudent, a machine learning module integrated with 

CTAT, supports a second, non-programmer, way of authoring a rule-based cognitive model for use in a 

Cognitive Tutor (MacLellan, Koedinger, & Matsuda, 2014; Matsuda et al., 2005, 2015). It supports 

programming-by-tutoring, in which it automatically induces rules from author-provided examples 

(behavior graphs) and author feedback. In this chapter, however, we focus primarily on example-tracing 

tutors. 
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A key difference between example-tracing tutors and model-tracing tutors is that example-tracing tutors 

are practical only for problem types that have no more than a moderately-branching solution space
1
, 

whereas rule-based cognitive tutors can handle problems even with very large solution spaces (e.g., 

Waalkens, Aleven, & Taatgen, 2013). In practice, we have found that this constraint is met often, 

although not always (Aleven et al., under review). For example, model tracing may be more appropriate 

for computer programming and equation solving. There can be other reasons as well to prefer a rule-based 

tutor to an example-tracing tutor. With a rule-based tutor, it can be easier to create small variations of the 

same tutoring behavior within a problem, as might be useful in a research study. Also, sometimes the 

development team may include one or more people who are very facile with production rule writing. 

It is important to point out, however, that in task domains where both approaches are applicable (i.e., no 

more than a moderately-branching solution space), example-tracing tutors and Cognitive Tutors can 

support the exact same tutoring behavior. If that seems a bold claim, consider that when the tutor interface 

for a certain problem type is kept constant, the tutor author has no choice but to author a domain model 

that captures all reasonable student strategies within the given interface, whether it be rule-based or 

example-based domain model. Otherwise, the tutor may flag as incorrect certain correct student behavior, 

namely, correct behavior not captured in the domain model, clearly an undesirable situation. Given a 

domain model that captures the same solution paths, the same essential tutoring behaviors are supported 

within the system’s “inner loop” (VanLehn 2006), namely, immediate feedback, on-demand next step 

hints, error-specific feedback messages. In the outer loop, the system supports individualized task 

selection through Bayesian Knowledge Tracing and Cognitive Mastery (Corbett, McLaughlin, & 

Scarpinatto, 2000; Corbett & Anderson, 1995). 

CTAT strengths are that it is a mature set of ITS authoring tools that support both non-programmer and 

programmer options to tutor authoring. The non-programmer approach is easy to learn and has turned out 

to be useful in a wide range of domains. It may be fair to say that a wider range of tutors has been built 

with CTAT than with any other ITS authoring tool. It appears to make tutor authoring 4-8 times as cost-

effective (Aleven et al., 2009). CTAT’s programmer approach can be used to build tutors for task 

domains in which CTAT’s non-programmer approach is infeasible. CTAT-built tutors support complex 

problem solving with the full range of step-by-step guidance and problem selection options identified by 

VanLehn (2006) in his thoughtful cataloging of tutor behaviors
2
. It builds on and generalizes from the 

experience of developing Cognitive Tutors. CTAT has been shown to be quite general, with tutors built 

for many domains covering a range of pedagogical approaches, including guided invention (Chase, 

Marks, Bernett, & Aleven, under review; Roll, Aleven, & Koedinger, 2010), collaborative learning (Olsen 

et al., 2014), simulation-based learning (Aleven, Sewall, McLaren, & Koedinger, 2006; Borek, McLaren, 

Karabinos, & Yaron, 2009), learning from erroneous examples (McLaren et al., 2012), and game-based 

learning (Forlizzi et al., 2014). Some of these systems required custom modifications of the tool, which 

does not, however, undercut the usefulness of having a tool. Many of these tutors been used in classrooms 

and other educational settings, as evidence of their robustness. Of these tutors, Mathtutor (Aleven, 

McLaren, & Sewall, 2009) and the Genetics Tutor (Corbett, Kauffman, MacLaren, Wagner, & Jones, 

2010) have seen substantial use over the years. In many studies, CTAT tutors were shown to help students 

learn including the Fractions Tutor (Rau, Aleven, & Rummel, 2013, 2015; Rau, Aleven, Rummel, & 

Pardos, 2014) and Lynnette (Long & Aleven, 2013, 2014; Waalkens et al., 2013), each of which been 

used in an elaborate sequence of research studies. CTAT has been used primarily by researchers, 

including researchers from outside of our own institution. A Google users group sometimes helps each 

other on the forum – members of the CTAT staff also answer queries. 

                                                           
1
 Sometimes, example-tracing tutors can handle a large solution space by collapsing multiple paths into a single one, 

using CTAT’s formula language to express how steps depend on other steps. 

 
2
 There is one exception: CTAT does not support end-of-problem reflective solution review. 
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CTAT’s limitations are that it has a built-in pedagogical model for step-level problem-solving support, 

with little to no support for authoring custom tutoring strategies. Even so, a number of tutors have been 

developed with CTAT that support pedagogical approaches other than step-based problem solving, as 

mentioned above. Further, CTAT does not support natural language interactions. So far, CTAT have been 

primarily researchers; CTAT has not been used by teachers to author tutors for their students. Although 

many tutors have been built, only a small number of CTAT tutors are in regular, widespread use in 

schools or other educational institutions. As a final limitation, there is room for improvement, for 

example, if the authoring of very simple interactive activities were simpler and CTAT offered more 

options for interoperability. 

Themes Regarding ITS Authoring Tools 

In the remainder of this chapter, we highlight a number of key themes that emerge from the work on 

CTAT that might be applicable to other ITS authoring tool projects, including GIFT. 

Use-driven Development of ITS Authoring Tools 

A key goal for projects that create ITS authoring tools is to create useful, usable, and efficient tools that 

authors can use to create effective, efficient, and enjoyable learning experiences for students. To achieve 

this goal within the CTAT project, we have consistently followed a use-driven design approach, in line 

with many approaches to Human-Computer Interaction and User-Centered Design. Given that it is 

difficult to know up front exactly what tool functionality will be most useful and how users will use the 

tools, it is important to learn from users and to let the needs and experiences of actual tool users guide 

tool development priorities.  To this end, we have promoted use of CTAT from day one and worked hard 

to hear about and learn from the experiences and needs of actual tool users. We then applied what we 

learned as we iteratively improved and extended the tools. This approach has been exceedingly helpful, 

while also being humbling at times. 

The use-driven design approach requires having a base of motivated users. We have invested in building a 

community of users; in part this can be achieved by making sure the tool is genuinely useful for a wide 

range of users. In addition, we have worked hard to help CTAT users and potential CTAT users in all 

stages of their projects, through workshops, summer schools, a website with tutor examples, 

documentation and tutorials (http://ctat.pact.cs.cmu.edu), and an online user group 

(https://groups.google.com/group/ctat-users), and also by having an organization that can provide 

consulting, can host tutors on the Internet (e.g., in the TutorShop), and sometimes even can make custom 

changes to the tools. We have oftentimes “eaten our own dog food,” meaning that as tool developers we 

have used CTAT in tutor development projects such as Mathtutor, the Fractions Tutor, AdaptErrEx, the 

Genetics Tutor, and a host of others (Aleven et al., 2009; Corbett et al., 2010; McLaren et al., 2012; Rau 

et al., 2013; Rau et al., 2014).  

We have found it to be important to take active steps to gather information from users, such as wish lists 

and feedback regarding their experiences with the tools. To do so, we have frequently polled users, 

closely consulted with users, and solicited feature requests when planning new CTAT releases. We 

frequently asked users about their likes and dislikes in questionnaires at the end of courses or summer 

schools and summer schools on ITSs that we taught. At times, we have also solicited feedback from 

experienced users.  Second, we have often consulted with external researchers who used the tools in their 

research projects and learned from this experience. Oftentimes, these researchers got started with the tools 

when they visited our summer school. Finally, when planning releases, we often solicited requests for 

new features from researchers we knew were using the tools. 
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We made sure that the information we gained from users actually influenced our tool development 

agenda, both when planning new releases and when implementing new features out-of-cycle, in-between 

CTAT releases. For example, user requests for new tool features or tool modifications were the main way 

in which we prioritized new development. This kind of principled prioritization is very important, because 

we always had many more ideas for possible tool extensions than we had capacity to implement. Such is 

the nature of ITS authoring tools. Another useful criterion for feature prioritization was affordability:  

How often will authors use the new feature in the process of creating a tutor and how much more efficient 

will it make their work? 

If there is a downside to use-driven tool development, it may be that it could inadvertently lead to gearing 

the tool towards the needs of certain groups of users at the expense of others, for example, groups that are 

more easily accessible or are more vocal. CTAT and the TutorShop have been honed as they were used to 

support ITS research in schools and other educational settings. Thus, they are somewhat geared towards 

educational researchers as a target group. Possibly, working with other potential users, such as teachers, 

instructors, and professional e-learning developers, may turn up additional requirements for the tool that 

would make it more useful for those groups. In spite of this caveat, the use-driven tool development 

approach has served CTAT well. 

Recommendations for GIFT: Practice use-driven tool development by promoting tool use, learning 

from user experiences, and letting user experiences be a key factor when setting development priorities. 

Since different users have different needs and these needs are not always what the tool developers assume 

they are, this approach may help substantially in creating authoring functionality that is well aligned with 

users’ needs and supports cost-effective tutor development. 

Discuss ITSs and authoring tools in terms of their tutoring behavior 

In discussions about ITS authoring tools, the question often comes up, what kind of tutor can authors 

build with this particular toolkit? Oftentimes, the answer is couched in terms of the underlying 

technology, for example, constraint-based tutors v. example-tracing tutors v. model-tracing tutors.  As a 

contrasting perspective, following VanLehn (2006) we have often found it useful to focus on the behavior 

of tutoring systems. VanLehn cogently argues that, although there is a bewildering variety in ITS 

architectures, there is much greater regularity in the behavior of systems. In this behavior, we can discern 

meaningful dimensions for comparison. For example, many ITSs can fruitfully be viewed as providing 

step-level guidance as students work through challenging problem scenarios; step-level guidance can be 

broken down further, as illustrated in VanLehn’s cataloguing of inner loop behaviors. This viewpoint 

extends to authoring tools:  It is fruitful to discuss and compare ITS authoring tools in the first place in 

terms of the tutoring behaviors that can be created with these tools. VanLehn provides a foundational 

taxonomy of tutoring behaviors that is helpful in this regard. 

This is not to say that ITS architecture is unimportant and should not be discussed. Quite the contrary, 

architecture is important, in particular in discussions about component re-use and interoperability.  

Ultimately, however, architecture is a means to an end; it is about how to realize particular tutoring 

behaviors in software that support effective student experiences and/or learning outcomes. Discussions 

about technology or architecture can be more focused when it is clear what tutoring behaviors are 

supported and whether the systems or architectures being compared support the same set of behaviors or 

different sets of behaviors.  Sometimes, the same behaviors can be realized with different technologies. 

For example, among CTAT-using projects we know of two instances where tutors originally developed as 

rule-based Cognitive Tutors were later re-implemented, without loss of tutor behavior, as example-tracing 

tutors: the Mathtutor and Genetics Tutor projects, discussed above (Aleven et al., under review). At other 

times, more complex behaviors require a more complex architecture (e.g., Waalkens et al., 2013). 
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Sometimes, connections between architecture and behavior are not dictated by the architecture. For 

example, Cognitive Tutors typically provide instant feedback on problem-solving steps (Anderson, 

Corbett, Koedinger, & Pelletier, 1995) and constraint-based tutors typically provide feedback on demand 

(Mitrovic et al., 2006).  It appears, however, that this difference is not dictated by their main architectural 

difference, the use of a rule-based model versus a constraint-based model. It is a pedagogical choice by 

their developers.  

In comparisons of tutor types (e.g., Kodaganallur, Weitz, & Rosenthal, 2005; Mitrovic, Koedinger, & 

Martin, 2003), for example regarding authoring efficiency, it is important to take into account differences 

in tutor behaviors. Suppose it was found in a well-executed empirical study that building tutors with tool 

A is more efficient that with tool B. What do we conclude? It depends on the sets of tutoring behaviors 

that the respective tools support. Maybe tool A supports only simple tutors, whereas B supports many 

sophisticated tutoring behaviors. Conversely, perhaps tool A is more efficient and supports a wider range 

of tutoring behaviors than B.   

While VanLehn’s (2006) taxonomy of tutoring behaviors is very useful, it may be time to update it with a 

fine-grained set of categories. We see some further distinctions both for the inner loop (i.e., within-

problem guidance offered by the tutoring system) and the outer loop (i.e., between-problem pedagogical 

decisions). For example, inner loops can differ vastly in their complexity (e.g., in whether they can 

recognize alternative strategies for solving the same problem or even in whether they support multi-step 

problems or only single-step problems). These distinctions are not made in VanLehn’s taxonomy, but are 

likely to be useful in comparing tutors and tools and in thinking about ITS architectures (e.g., (Waalkens 

et al., 2013). Also, tutors both in their inner loop and outer loop also differ substantially in the range of 

student characteristics they adapt to (student knowledge growth, affect, and so forth). VanLehn’s 

taxonomy is agnostic to these differences as well. A slightly more fine-grained taxonomy may be helpful 

especially as the number of tools for building online instruction, including “learning by doing” or 

“activities,” is likely to grow enormously in the years to come. 

Recommendations for GIFT: Clarify the tutoring behaviors supported in GIFT tutors in terms of 

VanLehn’s (2006) taxonomy; this clarification will make it easy to understand for ITS researcher and 

developers to understand what kinds of tutors can be built with GIFT and where the strengths and 

limitations are of the GIFT authoring environment. Indicate where VanLehn’s taxonomy needs to be 

extended or needs to be more fine-grained, based on the experience developing GIFT and developing 

tutors with GIFT. That is, clarify what features authorable within GIFT tutors are missing from 

VanLehn’s (2006) taxonomy or are more naturally described at a slightly finer grain size than is currently 

done in this taxonomy. A more elaborate, fine-grained taxonomy will benefit the GIFT and ITS 

communities as it may help support meaningful discussion characterizing tutors and authoring tools in 

terms of behavior. 

Support Both Non-Programmer and Programmer Options for Authoring 

The experience with CTAT provides a perspective on the value of integrating, within a single ITS 

authoring tool suite, multiple authoring methods and ITS technologies – and by extension, of the value of 

certain ways of making tools interoperable. As mentioned, CTAT supports both programmer and non-

programmer options to tutor authoring.  Example-tracing tutors can be authored without actual coding, 

through drag-and-drop interface building and programming-by-demonstration. By contrast, creating rule-

based cognitive models requires AI programming in the Jess production rule language
3
. As an additional 

                                                           
3
 As mentioned, with SimStudent, rule-based models can be created without programming, an approach to tutor 

authoring that may well have a bright future. 
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way in which programming can be used when creating a CTAT tutor, an author can program custom 

behaviors either in the tutor interface, the tutor’s domain model, or in the tools themselves. For example, 

when using a Flash interface, an author could program custom behaviors in Actionscript without changing 

CTAT. When building an example-tracing tutor, the author can write functions in Java or Javascript to 

augment CTAT’s formula language, without changing CTAT proper. Likewise, when creating a rule-

based model, an author can write functions in the Jess language, again without altering CTAT proper. 

Providing multiple tutor paradigms within a single tool suite has substantial benefits. It makes it easier for 

an author, authoring team, or organization to select the option (i.e., tool and tutoring paradigm) that best 

fits the requirements for a given project, without having to switch to a different tool suite. The simpler 

and more efficient paradigm (e.g., example-tracing tutors) could be used for simpler tutor problems, the 

more complex paradigm (e.g., Cognitive Tutors) only when the situation calls for it. Alternatively, the 

simpler and more efficient paradigm could be used to create quick prototypes, say with less than complete 

within-problem guidance, and the more complex technology for the full-blown tutor. Even within a given 

tutor development project, a different technology could be used for different tutor units or tutor problems. 

Also, in the course of a project, it may sometimes be useful to switch from one technology to the other, 

for example, as the project team’s understanding of the task domain for which tutoring is provided 

evolves. (Examples are discussed below.) What stays constant across these options, ideally, is not just the 

tool suite but also the delivery options. To the extent that the different tutoring options share tools within 

the tool suite, authors need to learn fewer tools (e.g., in CTAT, the interface builder and some of the 

Behavior Recorder functionality are shared across tutor types). Similarly, to the extent that the tools have 

been designed to support a similar tutor development process across tutor technologies, there is less to 

learn for an author. Finally, it may be substantially easier, given a single tool suite, to create tutors with a 

consistent look and feel and interaction style, even when – within the tool suite – a different technology is 

used for the tutor front end or back end. The different tutor types may be consistent in other ways as well, 

such as the logging format, the information they communicate to the LMS, and the underlying 

implementation language (useful when authors want to modify the tool itself).  

These potential advantages have been illustrated in CTAT to a degree. In practice, CTAT’s non-

programmer option (example-tracing tutors) has been far more popular than we anticipated. By now many 

more example-tracing tutors have been built with CTAT than rule-based tutors (perhaps 50 times as 

many). The relative popularity of example-tracing tutors may reflect the fact they are easier to learn and 

more cost-effective (4-8 times more so, compared to historic estimates of tutor development (Aleven et 

al., 2009). It may also reflect the fact that CTAT’s primary audience so far has been educational 

researchers or researchers in the learning sciences, who often are not programmers. Finally, in many 

domains, there is a substantial range of pedagogically-desirable problems with moderately branching 

solution spaces – which are within the realm of example-tracing tutor development. The same 

phenomenon seems to be true as well in some non-CTAT ITSs such as ASSISTMents (Heffernan & 

Heffernan, 2014) and Wayang Outpost, (Arroyo et al., 2014), which have limited capacity to support 

multiple solution paths within any given problem.  

Some projects with CTAT illustrate the utility of having multiple tutor options within a single tool suite. 

Two major ITS projects transitioned from rule-based cognitive tutor technology to example-tracing tutor 

technology, both supported by CTAT, namely, Mathtutor (Aleven et al., 2009) and the Genetics Tutor 

(Corbett et al., 2010).  In both instances, the main reason for switching was that example-tracing tutors 

can easily be made accessible over the Internet. In both instances, a large number of tutor units could be 

re-implemented as example-tracing tutors while duplicating the tutor behavior, although a small number 

of tutor units could not (i.e., required a rule-based model), due to having a large solution space. These two 

conversion projects are the main reason for the claim above that there is a large class of pedagogically-

desirable problems that does not have a large solution space. For example, the Mathtutor problems were 

created based on a principled pedagogy (Koedinger, 2002), not because they were amenable to 
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development as example-tracing tutors.  In a third project, the converse happened: We originally built the 

Lynnette equation-solving tutor as an example-tracing tutor, but later re-implemented it as a rule-based 

Cognitive Tutor, so as to have greater flexibility in recognizing student strategies (Long & Aleven, 2014).  

These three projects illustrates that one advantage of offering multiple tool options within a given tool 

suite, is that it facilitates the transition from one tutor type to the other. 

A key idea behind both CTAT and GIFT is to support multiple ITS technologies with associated 

authoring tools within an integrated development infrastructure. It is interesting to consider how much 

further that idea might be pushed within CTAT. It may well be very useful to integrate more tool/tutor 

options, both at the high end and the low end of complexity of tutoring behavior. At the low end, an 

author may want to create, for example, multiple choice questions, perhaps with a small amount of 

adaptivity depending on student answers. CTAT does not support this simple authoring task in a simple 

way. If a tool could be integrated with CTAT that makes the authoring of simple activities more cost-

effective, this tool could serve as a gentle introduction and a gentle slope towards authoring more 

complex activities. Likewise, towards the high end of complexity, one could foresee integrating 

conversational agents (Adamson, Dyke, Jang, & Rosé, 2014; Kumar & Rose, 2011; Rus, D’Mello, Hu, & 

Graesser, 2013; VanLehn et al., 2007) and other types of ITSs, such as constraint-based tutors (Mitrovic 

& Ohlsson, 1999).  These higher-end options may contribute to making more effective tutors with greater 

impact on student learning, within the same tool suite. Greater integration therefore is a worthy goal; it 

raises interesting interoperability questions, discussed below.  

Recommendations for GIFT: Continue to work on creating a generalized architecture and on 

accommodating a wide spectrum of tool options. A key advantage of doing so is that GIFT have more 

options to match the tool with the particular educational objectives that they are authoring for, which may 

lead to greater cost-effectiveness or greater effectiveness (e.g., stronger learning outcomes by students), 

or both. 

Recordable and Editable Behavior Graphs as a Central Representational Tool 

In CTAT, behavior graphs are a central representational tool. Behavior graphs and the associated 

Behavior Recorder tool serve many useful functions within CTAT. In this section, we focus on the tutor-

general authoring functions of behavior graphs, as opposed to their role of capturing domain knowledge 

in example-tracing tutors, which is specific to one tutor type. These tutor-general functions include aiding 

in cognitive task analysis, planning of the development of a tutor’s domain model, recording of solution 

paths for use during testing, navigation within the solution space of a tutor problem (somewhat akin to 

book marking), and semi-automated testing. In CTAT, these functions have proven to be useful during the 

development process of both example-tracing tutors and Cognitive Tutors, evidence that they are general 

across tutor types. It seems likely that these Behavior Recorder functions could be equally useful in the 

development of other tutor types and in other ITS authoring tools.  

A behavior graph captures problem-specific problem-solving behavior targeted in the instruction – that is, 

problem-solving behavior that the tutor will help students learn. Behavior graphs capture step-by-step 

solutions to problems, where appropriate with multiple paths within any given problem
4
. They may also 

capture common errors that students make, marked as such by the author. A given behavior graph is 

                                                           
4
 Behavior graphs do not capture pedagogical knowledge, they capture ways in which tutor problems can be solved 

(i.e., problem-solving knowledge). A recent chapter by Pavlik, Brawner, Olney, and Mitrovic (2013) likens behavior 

graphs to “programmed instruction.” This analogy is inaccurate in that the graphs in programmed instruction capture 

pedagogical decisions but behavior graphs capture problem-solving knowledge (see also Aleven et al., under 

review). 
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specific to a given problem and a given tutor interface. CTAT’s Behavior Recorder tool makes it easy to 

create and edit behavior graphs. To record a graph, all an author needs to do is demonstrate the behaviors 

in the interface. Behavior graphs are well-aligned with a variety of theoretical frameworks on ITSs, 

including the notion that ITSs capture complex, multi-step problems solving with multiple strategies 

within a given problem, Anderson et al.’s (1995) notions of making thinking visible and reducing 

cognitive load by supporting step-by-step reasoning with feedback, and with VanLehn’s (2006) notion of 

step-based tutoring. 

With respect to the tutor-general functions of behavior graphs, first, behavior graphs are a tool for 

cognitive task analysis in support of tutor design and curriculum design. A behavior graph can help a tutor 

author identify strategies, common errors, and knowledge components, perhaps aided by student data
5
. 

That is, after creating one or more behavior graphs, an author may consider what knowledge is involved 

in each step in the given graph and which steps may involve the same knowledge components. This in 

turns may help an author think about how to structure the tutor’s domain knowledge model (e.g., a rule-

based model in the case of a Cognitive Tutor) and possibly even in planning how to implement it, for 

example by considering which sequence of problems should drive development or which paths in a graph 

should be implemented first. Knowledge component analysis aided by behavior graphs may also help in 

making decisions about curriculum and structuring problem sets, for example, decisions about the order in 

which to introduce new knowledge components. A graph may even prompt re-thinking and re-designing 

of a tutor interface. For example, when certain steps in a graph turn out to involve multiple knowledge 

components, an author may decide to break down the step into smaller steps in the tutor interface. These 

functions are not specific to any given type of tutors, because the only assumption that is made is that 

mapping out the solution space of a problem is useful. Hand-drawn behavior graphs were used in the 

process of developing rule-based Cognitive Tutors prior to CTAT. Behavior  graphs have also long been 

used as tools by cognitive scientists (e.g., (Newell & Simon, 1972)).   

A second key function of behavior graphs and the Behavior Recorder is to aid testing, both the frequent 

within-problem testing that happens during development as well as regression testing when a domain 

model has been modified or re-structured in some way.  Importantly, a behavior graph makes it easy for 

an author to navigate the solution space of a given problem during the development of the tutor’s domain 

model. By clicking on a state in the behavior graph, an author can advance the tutor to the given state, 

which saves time during testing and debugging, compared to having to enter the steps manually in the 

interface. For example, in Cognitive Tutor development, when testing the rules for step 17 in a problem, 

there is no need, after each edit, to enter steps 1 through 16 by hand in the interface.  The savings add up 

especially if one considers that often multiple edit-test-debug cycles are needed. 

In addition, after more extensive edits to a tutor’s domain model (e.g., a rule-based cognitive model), the 

graph for a given problem can be used as a semi-automated test case for regression testing, as it captures 

problem-solving steps that the tutor should recognize as correct. In CTAT, graphs can be used for this 

purpose by issuing the CTAT command “Test Cognitive Model on All Steps.” CTAT reports on whether 

the tutor is capable of recognizing as correct, all solution paths captured in the behavior graph and 

recognizing as incorrect, the various errors captured (and marked as such) in the behavior graph. A useful 

idea that we never came around to implementing is to support batch regression testing in CTAT, by 

having the tool test a tutor’s domain model on a large collection of behavior graphs all at once.  

                                                           
5
 Although automated or semi-automated approaches to constructing or refining cognitive models from data are 

becoming more powerful and prevalent (e.g., Aleven & Koedinger, 2013), we nonetheless continue to recommend 

collecting some data early on during the process of tutor development, before log data can be collected for these 

(semi-)automated approaches. These data could include for example think-aloud protocols of novices and 

intermediates in the domain solving tutor problems on paper (Baker, Corbett, & Koedinger, 2007; Lovett 1998). 



 

273 

Finally, as perhaps an unexpected twist on tutor-general use of behavior graphs, example-tracing tutors, 

which use behavior graphs as their main representation of domain knowledge, could be used as early 

(throw-away) prototypes of other types of (more sophisticated) tutors, such as rule-based Cognitive 

Tutors built with CTAT. In fact, in the early days of CTAT, when we started to create the example-

tracing technology, we originally conceived of example-tracing tutors in this manner.  

In sum, behavior graphs serve many useful tutor-general functions in CTAT and could conceivably do so 

in other authoring tools as well, if/when the Behavior Recorder were integrated with these tools. We offer 

some thoughts on how this might be done below. More generally, behavior graphs can be viewed as 

unifying different tutoring technologies, not just example-tracing tutors and Cognitive Tutors but also, for 

example, constraint-based tutors (Mitrovic & Ohlsson, 1999) and ASSISTMents (Heffernan & Heffernan, 

2014), since solving problems of moderate to somewhat high complexity is common to all. 

Recommendations for GIFT: Integrate the Behavior Recorder so behavior graphs can aid in the 

development of GIFT tutors. This integration will make the tutor-general Behavior Recorder authoring 

functionality (support for cognitive task analysis, solution space navigation, testing, and early 

prototyping) available for GIFT authoring, potentially making it more efficient. 

Support for Interoperability through the Tool/Tutor Communication Interface 

A key requirement for creating a generalized architecture for ITS research and development, such as 

CTAT and GIFT, is interoperability and re-use of ITS components. By component interoperability we 

mean that it is relatively easy to use different instantiations of the same functional module within the 

overall architecture. Therefore, a key issue is: how can we define useful functional modules and interfaces 

between these modules that allow for general plug-and-play compatibility? Such compatibility has many 

advantages. For example, it would make it much easier to assemble an ITS out of components as building 

blocks and would facilitate research into how best to implement or combine typical ITS modules. In this 

section we focus on one particular form of interoperability that has been central in Cognitive Tutors and 

has been adopted in CTAT right from the start, adherence to Ritter and Koedinger’s (1996) tool/tutor 

interface. It is not a new idea but one whose proven usefulness may not be widely known.  

The main idea is to concentrate tool/interface functionality on the one hand and tutor functionality on the 

other in separate modules, and define a messaging protocol (or API) between these two modules (Ritter & 

Koedinger, 1996). By the tool/interface Ritter and Koedinger mean what in CTAT is called the “tutor 

interface” and what also has been called the “environment module” in older ITS literature, that is, the 

interface or environment in which the student solves problems with guidance from the tutor. The 

tool/interface is conceptualized not merely as an interface (i.e., a GUI in which to enter problem-solving 

steps), but more broadly as a tool that is useful in the given task domain, capable of calculations and 

inferences that are useful for practitioners, such as a spreadsheet or simulator. The pedagogical goal is 

often not that students learn to do themselves what the tool does for them, but rather that they learn to use 

the tool as tool or learn from applying the tool (e.g., concepts or processes in a simulator). The tutor 

component is the rest of the tutoring system, with its outer loop and inner loop functionality, in 

VanLehn’s (2006) terms. The tutor’s responsibility is to guide students with respect to their current 

problem-solving goals, using the available tools, in a way that helps learning. In practice, it is not always 

easy to draw a clear line between tool and tutor functionality; nonetheless, the separation of tool and tutor 

is very useful. 

The main driver behind Ritter and Koedinger’s (1996) separation was to provide tutoring within a number 

of existing problem-solving environments, while re-using the existing tutoring technology, the Cognitive 

Tutor, without modification. For example, they developed prototypes that provide tutoring within Excel 
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and Geometer’s Sketchpad, hooked up a simulator and argument diagramming system (Koedinger, 

Suthers, & Forbus, 1999), and in a later project provided tutoring within Excel (Mathan & Koedinger, 

2005). They were able to hook up the tutor backend without modification (though they needed to develop 

a new cognitive model for the given task domain) and with relatively minimal changes to the problem-

solving environments. This same idea is also being pursued in other ITS authoring tool efforts, such as 

xPST (Blessing, Devasani, & Gilbert, 2011). 

CTAT implements and rigorously adheres to its own version of the tool/tutor interface, documented at 

http://ctat.pact.cs.cmu.edu/index.php?id=tool/tutor. The tool/tutor interface has been highly useful over 

the lifespan of the project. First and foremost, CTAT has long offered multiple options for the tutor 

module and the tool module (i.e., the tutor back end and front end, respectively). CTAT supports 

example-tracing tutors and Cognitive Tutors as tutor back end (“tutor engines” in CTAT parlance) and 

Java, Flash, and HTML5/Javascript as interface technologies. Due to the tool/tutor interface, these options 

are interoperable: each tutor option can be combined with each tool option. Therefore, an author can 

select the interface option that best supports the intended student interactions, without being constrained 

in the choice of tutor engine. Conversely, an author can select the tutor engine option that best matches 

the domain, without being forced into a specific interface option. Also, having multiple interface options 

helps deliver tutors on multiple platforms and has made it possible, over the years, to support the use of a 

range of different off-the-shelf interface builders (DreamWeaver, Netbeans, IntelliJ, Eclipse, and Flash). 

As a second main advantage, CTAT tutors have been built for a number of external problem-solving 

environments, such as a thermodynamics simulator called CyclePad (Aleven et al., 2006), a chemistry 

simulator called the Vlab (Borek et al., 2009), and most recently, Google sheets. A third advantage is that 

adherence to the tool/tutor communication protocol has the useful side effect that it implements a logging 

capability, as it is the message traffic between tool and tutor that is being logged. Finally, and perhaps 

most importantly, the tool/tutor separation has helped us keep up with developments in web technologies. 

Over the years, we have moved from Java (still supported), to Actionscript 2, to a new look-and-feel in 

Actionscript 2, to Actionscript 3, and to HTML5/Javascript. Due to the rigorous tool/tutor separation in 

the CTAT architecture, these conversions (though extraordinarily labor-intensive) were at least somewhat 

manageable, as the tutor back-end was not affected.  

CTAT uses Ritter and Koedinger’s tool/tutor messaging protocol with a few small extensions. For 

example, we added untutored actions –student actions in the tutor interface that the tutor module needs to 

know about but does not need to respond to right away, in contrast to the more typical tutored student 

actions. For example, in the Fractions Tutor (Rau et al., 2013), built with CTAT, untutored actions are 

used in an interactive interface component for representing fractions as circles. A student may partition a 

circle into a number of equal pieces equal to the denominator. Oftentimes, this action can be untutored – 

no need for the tutor to provide feedback until the student submits the fraction. However, if the student 

asks for a hint before submitting the fraction, the hints can be more apropos if they can take into account 

into how many pieces the circle has been divided. We are also considering broadening the tool/tutor 

interface such that the state of the tool or a tool component can be communicated to the tutor.  This 

facility may support tutoring in dynamic environments such as games and simulations. 

A limitation of the tool/tutor approach to ITS component interoperability may be that it can be fruitful to 

distinguish more components within an ITS architecture than just a tool and a tutor component. For 

example, it may be helpful to break down the tutor component into various subcomponents, such as a 

learner model, pedagogical module, and so forth. Other possibilities may include supporting Ritter’s 

notion of multiple tutor agents (Ritter, 1997), separating the inner loop and outer loop (as is done in 

CTAT, see below), or standardizing the API between the student model and other tutor components. A 

further limitation may be that the tool/tutor interface does not capture a number of other desirable aspects 

of interoperability, such as interoperability with tutor-general authoring tools such as the Behavior 

Recorder (see above) or with LMSs and platforms for e-learning or MOOCs (see below).  
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Recommendations for GIFT: Support a version of Ritter and Koedinger’s (1996) tool/tutor interface 

within GIFT. Implementing the tool/tutor interface could bring the same advantages to GIFT that it has 

had for CTAT, for example, the mixing and matching of a tool/interface module and a tutor engine, 

assuming multiple options would be offered for each. Supporting the tool/tutor interface may also 

facilitate hooking up external components, such as simulations or problem-solving environments. Further, 

supporting the tool/tutor interface could make it possible to hook external tutor engines into GIFT, if they 

were made to adhere to the tool/tutor protocol. Generally, these options would enhance the utility of GIFT 

as a generalized ITS architecture and would be a significant step forward for ITS research and 

development. 

Interoperability with External Tools and Services 

In this section, we consider a different from of interoperability, namely, interoperability with external 

tools and services that are useful or necessary when ITSs are used in real educational settings. 

Specifically, we look at interoperability with ITS logging services (namely, DataShop, Koedinger et al., 

2010) and interoperability with LMSs, MOOC platforms, and other courseware. These aspects of 

interoperability have to some degree been realized in CTAT. The integration with DataShop has proven 

its value many times.  

First, a key form of interoperability in CTAT and many other ITSs is interoperability with tutor log 

services and related analysis tools for tutor log data. Tutor log data is an invaluable resource for research 

and development of tutors. For example, it can be used to gain detailed insight into a tutor’s effectiveness, 

to analyze and refine a tutor’s knowledge component model (e.g., Aleven & Koedinger, 2013; Koedinger, 

Stamper, McLaughlin, & Nixon, 2013), generate hints (Stamper, Eagle, Barnes, & Croy, 2013), or 

support re-design of a tutor unit that results in more effective or efficient student learning (Cen, 

Koedinger, & Junker, 2007; Koedinger et al., 2013). This form of data-driven refinement of ITS is well 

on its way to becoming standard practice in ITS research and development. All CTAT tutors log in 

DataShop format, without special measures by the author. DataShop provides a web-based data repository 

plus analysis tools (learning curves, error reports, model fitting to evaluate knowledge component models, 

etc.). It has also become an important source of data sets for secondary analysis, for example by 

researchers in the EDM community. The log data is essentially a dump of the tool-tutor message stream 

(see the previous section; see https://pslcdatashop.web.cmu.edu/dtd).  

Second, it is important for ITSs to be interoperable with standard e-learning platforms, MOOC systems, 

and LMSs, for example, to support automated tutoring at scale and in online courses. An easy and general 

path towards such integration may be to make tutors adhere to existing e-learning interoperability 

standards, such as SCORM (Sharable Content Object Reference Model, http://www.adlnet.gov/scorm/) 

and LTI (Leaning Tools Interoperability, http://www.imsglobal.org/lti/). First, we have extended CTAT 

so that tutors built in CTAT can be saved in SCORM 1.2 compliant form. The SCORM 1.2 format is 

sufficient for embedding CTAT tutors in for example Moodle, a widely used (open-source) e-learning 

platform (Rice 2011). Our students have implemented a range of prototypes of Moodle courses with 

embedded CTAT tutors. Second, CTAT tutors are now LTI 1.1-compliant. We have used this form of 

integration to field a simple CTAT tutor in an EdX MOOC “Data Analytics for Learning,” by Ryan 

Baker, Carolyn Rose, and George Siemens (fall 2014). This pilot study demonstrates the feasibility of the 

technology integration (Aleven et al., 2015). In this form of integration, in contrast to the SCORM 

integration, CTAT tutors are served from the TutorShop, meaning its functionality (e.g., teacher reports 

and individualized problem selection based on a learner model). The downside is that we are not taking 

advantage of the MOOC’s servers’ ability to support very large numbers of learners, unless the TutorShop 

is installed on these servers. 
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Additional steps are needed for tutor use in existing MOOCs and e-learning platforms to be fully robust, 

scalable, and effective. For example, ITSs produce a wealth of analytics – how can we make more 

learning analytics available in the LMS and its dashboard? How can we embed adaptive problem 

selection in LMS?  These key functions are not available in standard LMSs.  Different approaches are 

needed in the LTI versus the SCORM integration. One approach would be for existing LMSs or MOOC 

platforms to better accommodate tutors, perhaps through plugins. A related idea is to keep the TutorShop 

in the loop, as it is in our initial CTAT/EdX integration, and to make it possible for the MOOC or external 

LMS to better take advantage of TutorShop functionality.  

Recommendations for GIFT:  (1) Support DataShop logging in GIFT, perhaps as one of multiple possible 

logging options. Having GIFT tutors log in this format will make it easy to make GIFT datasets available 

in DataShop to the EDM community and will make it possible to analyze GIFT data sets using the 

DataShop tools (e.g., the tools for KC model analysis and refinement). (2) Make it possible to deploy 

tutors in existing LMSs, perhaps through SCORM or LTI integration. This may well be an important step 

in order for GIFT to be adopted in higher education. In general, the more delivery options GIFT can 

support, the more widespread the tool may become. 

Other Potentially Useful Forms of ITS Component Interoperability  

We briefly mention two additional issues regarding interoperability that may be useful in ITS 

architectures, and consider their potential costs and benefits. The first interoperability issue is inner/outer 

loop separation. To recall, under VanLehn’s (2006) definitions, in ITSs the inner loop is responsible for 

within-problem guidance, the outer loop is responsible for problem selection and other between-problem 

pedagogical decisions. Currently, the CTAT/TutorShop architecture separates the inner loop and the outer 

loop; all communication between them goes through the student model. A key question is whether and 

why this separation is useful.  

Before we answer this question, let us first briefly elaborate on how the inner loop, outer loop, and 

student model are implemented in CTAT/TutorShop. The inner loop (also referred to as tutor engine or 

tutoring service, with example tracing and model tracing as options) provides within-problem guidance, 

with step-level correctness feedback, hints, and error messages. The inner loop is also responsible for 

updating the student model, in line with VanLehn’s (2006) notion.  The student model captures a 

student’s mastery of targeted knowledge components (see e.g., Aleven & Koedinger, 2013). The inner 

loop computes these mastery estimates using the Bayesian knowledge-tracing algorithm (Corbett & 

Anderson, 1995). In addition, the inner loop generates a fair amount of student history information, 

essentially raw data about past performance. Both the student model and the student history are stored in 

the TutorShop database. The student history is used primarily for report generation in the TutorShop. The 

outer loop offers various task selection options, namely, adaptive problem selection or Cognitive Mastery 

(Corbett et al., 2000), fixed problem sequence, or random. The adaptive option makes use of the mastery 

estimates in the student model to select problems that require unmastered knowledge components. As 

mentioned, the inner loop and outer loop communicate solely through the student model.  CTAT also 

offers some ways in which authors can use the student model information in the inner loop to 

individualize instruction, although this is a relatively new feature that has not been used in classrooms. 

The main advantage of the inner/outer loop separation is that the different inner and outer loop options 

can be used in mix-and-match manner, as the student model (the communication between the loops) does 

not change. For the inner loop, an author can choose between example tracing and model tracing as 

options. For the outer loop, the TutorShop offers a choice (for any given problem set) between adaptive 

problem selection, fixed problem sequence, or random. The student model is the same, regardless of these 

choices. Also, somewhat philosophically, defining the student model as the information (and exactly the 



 

277 

information) that is shared between the inner and outer loop seems right to us – if nothing else, it offers 

useful clarity and modularity. We do not see any downside to the inner/outer loop separation based on our 

specific experiences with the CTAT/TutorShop architecture.   

A limitation of the CTAT/TutorShop architecture is that while an author can select different outer loop 

options, there are no facilities for authoring new outer loop options. For example, an author may want to 

implement a problem selection method based on factors other than knowledge component mastery, for 

example, metacognition (Aleven, Roll, McLaren, & Koedinger, 2010), affect (D’Mello & Graesser, 

2014), effort (Arroyo et al., 2014), or interest (Walkington 2013). As another example, an author may 

want to apply game design principles, such as varying the challenge level based on the need to 

decompress every once in a while. Also, an author may want her tutor to jump back, when appropriate, to 

pre-requisite units. And so forth. Currently, new outer loop options can be created only through code 

modification of the TutorShop, but there is no API documentation or easy access to relevant parts of the 

code to facilitate this. Outer loop authoring is likely to lead to the requirement that the author has more 

control over the content of the student model and the methods for updating (whether in the inner loop or 

outer loop). Thus, in a generalized tutoring architecture, it seems important to support authoring options 

for outer loop task selection, student model, and methods for updating it.  

Recommendations for GIFT: Describe how the inner and outer loop are related; what information do 

they share and how is this information passed back and forth? Describe inner and outer loop options that 

are supported as-is by the tool suite; describe the process and tools for authoring outer loops, student 

model, and student model updates. Describing the inner loop and outer loop options will make it easier 

for potential authors to understand GIFT’s capabilities. It may also help ITS researchers and developers 

understand to what degree the separation of inner loop and outer loop, with the student model as 

communication, generalizes. 

Who is the Author? 

In this final section, we offer some speculative thoughts as to the degree to which different categories of 

potential ITS authors might have different needs, calling for different tool features. Our thoughts on this 

issue are no doubt colored by our specific experience:  Although over the years we have interacted with 

many different CTAT users, CTAT has been widely used primarily educational researchers.  

We see four broad classes of users for ITS authoring tools. The first category of authors are researchers of 

various kinds, including students, faculty, and professional researchers in areas such as education, 

ITS/AIEd, other kinds of educational technology, machine learning and educational data mining, and so 

forth. A second category of authors are teachers and instructors, in primary, secondary, and post-

secondary education. These users want to create tutors for use in their own courses, perhaps helped by 

tech-savvy research assistants. The third category are professional e-learning developers, of which by 

now a very wide variety exists, in industry, government, the military, higher education, and even in 

primary and secondary education. A fourth category of authors may be volunteers who contribute their 

time and acquired ITS authoring ingenuity to websites where ITSs are freely available (e.g., Assistments 

(Razzaq et al., 2009), Mathtutor (Aleven et al., 2009)) and perhaps other institutions using ITSs. As 

mentioned, CTAT has been used mainly by the first category of users. The ASSISTMents authoring tools 

have been used mainly by the second (teachers) and to a lesser degree by the fourth (volunteers), the 

Carnegie Learning tools by the third (professionals) (Blessing, Gilbert, Ourada, & Ritter, 2009).  To 

simplify the discussion, it may make sense to distinguish between only two classes of users, occasional 

authors (categories 1, 2, and 4) versus professional authors (category 3). Let us consider the assumed 

goals and needs of these two groups of ITS authors. 
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Our professional author might have a master’s degree from an educational technology program and may 

have some knowledge of the research literature around ITSs as well as the use of data analytics in 

education. She may have some programming experience though not a strong CS background. Professional 

authors may often be driven by the goal to make their company’s e-learning product better. Although 

ITSs have a proven track record in improving student learning (Ma, Adesope, Nesbit, & Liu, 2014; Pane, 

Griffin, McCaffrey, & Karam, 2013; Steenbergen-Hu & Cooper, 2013, 2014; VanLehn 2011), research-

based evidence may not (yet?) be a strong factor in the market place, nor is being able to say that a 

product has intelligent tutoring technology embedded in it. The main draw for professional authors may 

therefore be the support for personalization and adaptivity that ITSs offer. Some professional authors may 

be interested in trying to document learning gains attributable to the use of ITS technology in their 

products, at least if the tool makes that very easy to do.  

We might surmise further that professional authors often cover whole courses or whole curricula.  When 

they consider adding ITS technology to an existing course, they may have data up front that could help 

them in identifying where the course is not effective and where an ITS might help strengthen it.  They 

likely have time to invest in learning the ins and outs of the tool. Although for all categories of users, it is 

important that the initial cut at the tutors they build are very effective, professional authors may have 

greater latitude than other authors to iterate on the tutors that they author with the tool, informed by 

analytics obtained from the tutors. For professional authors, the ITS authoring tool may be one of a range 

of tools that they use in their daily practice. They have high expectations with respect to robustness and 

functionality offered, but are not scared away by having to download and install software. More than 

other categories of authors, they have knowledge of instructional design and research-supported learning 

principles that they can bring to bear as they design tutors. Importantly, professional authors are typically 

bought in to a specific e-learning platform, whether proprietary or publicly available. Thus, the tutors they 

author must be compatible with and easily deployed within this platform. They also need to have a look 

and feel that is compatible with that of the company’s platform.  

Occasional authors are a very diverse group. The often have the goal of making make a difference in the 

education of their own students, of students in the organization in which they are volunteering, or of 

students in general (e.g., by doing research on tutors). Occasional authors are driven by various specific 

needs: they may have observed a particular learning hurdle within their own course that their students 

have a hard time clearing. They may want to be able to spend less time grading homework for their 

students and more time providing timely feedback or discussing specific challenges, informed by a clear 

picture of what students are already good at and where the remaining learning hurdles are. They may want 

to make sure their students do well on standardized tests. ITS analytics and reports can provide that 

information (e.g., (Arroyo et al., 2014; Kelly et al., 2013; Segedy, Sulcer, & Biswas, 2010) ). They may 

have been tasked to address a particular learning issue on the website to which they are contributing as 

volunteer. They may see a good opportunity to address an educational research question in the context of 

an existing ITS or by building a new one, typically for challenging subject matter. For them, ITS 

development may be a point solution to a specific educational problem, often a hard educational problem. 

They may have found the tool online or heard about the tool and want to try it out.  

Occasional authors want to get started with the tool really quickly, without having to invest much time in 

installation and configuration. They want to have their tutors online, accessible to students, really quickly. 

They are willing to watch some YouTube videos showing how best to use the tool. Some occasional 

authors may even be willing to attend a week-long summer school but many others prefer to learn by 

themselves, in their own time and on their own schedule. Occasional authors do not have an e-learning 

platform in which to deploy their tutors. Therefore, the ITS authoring environment must provide seamless 

integration between authoring and deployment.  
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Should ITS authoring tool developers try to cater to these categories of authors within a single ITS 

authoring tool? In our opinion this is an important unresolved issue in the field of AIEd. It can be 

difficult, within a single tool, to make authoring simple artifacts really simple while also offering the 

possibility to author very complex artifacts. Generalized ITS authoring architecture, such as GIFT or 

CTAT, may be a good way of approaching this challenge, as a range of tools could be plugged in. 

Recommendations for GIFT: Support a range of authors. Keep on generalizing! 

Conclusions 

We presented eight themes that emerge from our 12+ years of experience building CTAT, using CTAT, 

and assisting others as they use CTAT. CTAT has been used by over 600 authors to build a wide and 

diverse range of tutors. The themes are meant to be relevant not just to CTAT and GIFT; they touch on a 

range of issues that are relevant to other ITS authoring tools and ITS architectures as well.  

 

First, in our experience, the use-driven development of authoring tools is key to ensuring that the tools 

address users’ main goals and needs. This strategy entails learning from users’ experiences, being driven 

by their needs when prioritizing development, providing services to help users get started with the tools, 

and supporting them through education, consulting, an online discussion forum, and tutor hosting 

services. Second, it is often useful to describe and compare ITS authoring tools in terms of the tutoring 

behaviors that they support, following a recommendation by VanLehn (2006). For example, clarity 

regarding which tutoring behaviors are supported may facilitate discussions about authoring efficiency 

and interoperability. Third, supporting both programmer and non-programmer ITS authoring within a 

single ITS authoring tool suite can be advantageous. It enables the ITS author to use a simpler tool to 

build simpler tutors and more complex tools to build more complex tutors, while staying within the same 

tool suite. Fourth, solution space graphs (or behavior graphs, as they are called in CTAT) can be used to 

support a variety of authoring functions that may be useful across a range of ITS authoring tools. Fifth, 

tool/tutor separation as defined by Ritter and Koedinger (1996) supports a form of ITS component 

interoperability that has proven to be useful in multiple projects. It involves separating the tutor front end 

(“tool”) and back end (“tutor”) with standardized communication between them. In CTAT, this separation 

has multiple advantages. It makes it possible for an author to mix and match front-end and back-end 

technology options and to provide tutoring within existing interfaces or simulators, after doing the 

programming necessary to make them adhere to the tool/tutor messaging protocol. Further, this separation 

has greatly facilitated keeping the tools up-do-date with changing web technologies. Sixth, it is useful if 

an ITS authoring tool can be interoperable with existing components such as tutor log analysis services 

(e.g., DataShop) and standard MOOC or e-learning platforms (e.g., EdX or Moodle). Instrumenting ITS 

authoring tools so they support for DataShop logging, a general format for ITS log data makes it possible 

to use the DataShop analysis tools for knowledge modeling and iterative tutor improvement, and make 

tutor data sets available to the EDM community for secondary analysis. Further, making ITS authoring 

tools adhere to e-learning standards such as SCORM and LTI facilitates the use of tutors in many contexts 

and may help spread ITS technology. Seventh, it may be useful to explore advantages of inner loop and 

outer loop, with the learner model as communication between them. Eighth, different categories of ITS 

authoring tool users have different needs; specific ITS authoring tools may need to target particular 

categories, although generalized architectures with pluggable tools can cater to a very broad audience. 

We hope our thoughts can inform useful discussion within the field regarding ITS authoring tools and 

generalized ITS architectures. Interoperability and generalized architectures may be key in making ITS 

technology spread. 
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The Challenges of Being “Generalized” 

One of the most unique and challenging aspects of the design of the Generalized Intelligent Framework 

for Tutoring (GIFT) can be found in its name: “Generalized.” The main goal of GIFT is to provide a 

framework that allows for the creation of domain-independent intelligent tutoring systems (ITSs). 

Additionally, GIFT includes functionality that can result in using it as an experimental testbed (for 

experiments in many domains) or to specifically analyze the impact of changing out different intelligent 

tutoring components (Sottilare, Graesser, Hu & Holden, 2013). While having these goals leads to a 

system with a great amount of flexibility, it also leads to very important design challenges
6
.  

User Roles in Gift 

The traditional components and modules of ITSs are present within the design of GIFT; however, special 

care was taken to make sure that they remain domain-independent. The domain module of GIFT is the 

only one that is specific to the content that an individual is intending to teach (Sottilare, Brawner, 

Goldberg & Holden, 2012). The individual who is authoring adaptive feedback can write specific rules to 

link assessments of learner state to the domain. By following this design goal, GIFT can successfully be 

used to create domain-independent ITSs, which allow users to bring their own content and plug it into the 

system. However, while this design meets the requirement of providing a generalized system for creating 

ITSs, additional design decisions should be made to guide the different functionalities and user roles that 

are created by GIFT’s flexibility. 

There are three main categories of individuals who interact with GIFT: 

 Students 

 Authors 

 Researchers/analysts 

In most cases, students will only encounter an exported tutor that has successfully been designed with 

GIFT. Authors will work with the full version of GIFT and its authoring tools. They can design both 

adaptive and non-adaptive course content using GIFT, and then ultimately export their tutors for student 

use. Researchers will also work with the full version of GIFT; however, their goals may be different than 

authors’ goals. There are a wide range of disciplines that may engage with research using GIFT. 

Researchers may use GIFT to run psychology experiments (Sinatra, 2014), or they may be testing specific 

configurations of an intelligent tutor to discover what the best learning outcome will be. Researchers in 

varying disciplines may have different expectations and design requirements for studies that they wish to 

use GIFT to run. While GIFT does have a number of different user interfaces, it currently does not have 

ones that are dedicated to specific types of users. Part of the challenge of this generalized system is 

                                                           
6
 As a note to orient the reader, at the time of the writing of this chapter the latest version of GIFT was GIFT 2014-2. 
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deciding how and when to make divisions. Namely, what types of interfaces should individuals interact 

with? What types of authoring tools should they have access to? How should we sub-divide groups of 

authors? Should we break users down into beginner and advanced users? 

Authoring Tools in Gift 

An area of GIFT that has made great strides toward becoming more user-friendly is its authoring tools. In 

early versions of GIFT the authoring tools were primarily a set of extensible markup language (XML) 

editors that allow for creation of elements of ITSs such as course files, sensor files, and adaptive feedback 

files (domain knowledge files or DKFs). While these tools have carried over to later versions of GIFT, 

newer versions are also being developed. The GIFT Authoring Tool (GAT) is ultimately being developed 

to be the one-stop course development tool that provides the individual access to all of the tools that they 

will require while creating their intelligent tutor. The early iterations of the GAT include a new user 

interface with drop-down menus, and explanations/prompts that explain the different elements that 

individuals can add to their courses. Additionally, a new DKF authoring tool debuted with GIFT 2014-2. 

This tool makes the complex process of creating adaptive feedback more straightforward for both new 

and returning GIFT users. See Figure 1 for the original Course Authoring Tool (CAT) and Figure 2 for 

the same course loaded in the GAT. 

 

Figure 1. A course loaded in the XML editor style course authoring tool 
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Figure 2. The same course loaded in the new GAT 

For future development of GIFT, it is important to start establishing the user groups that are likely to 

interact with it, and how their login experiences should be different. For instance, for a student, it is 

important that once a tutor is installed, they know where to click to get it to successfully run. 

Additionally, it is important for an author to login to the system and be presented with an authoring tools 

menu, as opposed to the student login as was present in early versions of GIFT. One place to start in 

regard to determining what type and level of user groups to design for is to examine other ITS authoring 

tools that exist. Many of these tools have chosen to go with what-you-see-is-what-you-get (WYSIWYG) 

style authoring tools and have offered users templates for commonly used features (Brawner & Sinatra, 

2014). These features allow for both advanced and beginning users to interact successfully with their 

systems. Additionally, it would be advantageous for GIFT’s designers to examine established usability 

principles and to try to make future changes to their interfaces consistent with usability guidelines. By 

lining up the design of authoring tools and user interfaces with established usability principles the system 

should become easier to use. Further, this ease of use will lead to increased adoption of the system by new 

users.  

Understanding Usability Principles and Designing for the User Experience 

The previous section illustrated how designing a system with only functionality in mind is just one of 

many critical elements in supporting users of that system. For instance, developing a complex software 

application such as GIFT to provide an efficient, easy to use, and pleasurable experience is a daunting 

task. Moreover, creating a positive experience for multiple user groups (i.e., students, authors, 

researchers) adds additional complexity. To that end, this section takes a closer look at usability principles 

and heuristics. This section also examines the role of utility and usability in support of the overall user 

experience. 

Consider Jordan’s (2000) three-level hierarchy of consumer needs for a product: functionality, usability, 

and pleasure. The base level, functionality, declared that “a product will be useless if it does not contain 

appropriate functionality; a product cannot be usable if it does not contain the functions necessary to 

perform the tasks for which it is needed” (p. 5). The next level, usability, stated that “once people had 

become used to having appropriate functionality, they then wanted products that were easy to use” (p. 6). 

Pleasure is the highest level in Jordan’s hierarchy, which declared that “having become used to usable 

products, it seems that inevitable that more people will soon want something more…products that bring 

not only functional benefits, but also emotional ones” (p. 6).  
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As described above, GIFT provides the functionality required to create an adaptive course. Therefore, 

GIFT has utility for that purpose. Sharp and colleagues (2007) described utility as “the extent to which the 

product provides the right kind of functionality so that users can do what they need or want to do” (p.22). 

That definition closely aligns with Jordan’s (2000) first level of functionality in the hierarchy of consumer 

need. Utility is an important, complementary attribute to usability. Thus, software that is usable, and 

allows the user to achieve their desired goals might be described as useful (Nielsen, 2012).  

Current development efforts in GIFT include improving the usability of the system for our target user 

groups. By comparison, usability is “the extent to which a product can be used by specified users to 

achieve specified goals with effectiveness, efficiency, and satisfaction in a specified context of use” (ISO 

9241-11; Jordan 1998). Similarly, Nielsen (2012) operationalized usability as methods for “improving 

ease-of-use during the design process.” Nielsen (2012) further characterized usability by the following 

five components: 

Learnability: How easy is it for users to accomplish basic tasks the first time they encounter the 

design? 

Efficiency: Once users have learned the design, how quickly can they perform tasks? 

Memorability: When users return to the design after a period of not using it, how easily can they 

reestablish proficiency? 

Errors: How many errors do users make, how severe are these errors, and how easily can they 

recover from the errors? 

Satisfaction: How pleasant is it to use the design?  

These attributes can be measured through objective and subjective data in order to discover problems 

improve the overall usefulness of a product or system. With respect to GIFT, improving upon the 

usability of the current system by reducing the time, skill, and effort required to create and manage 

adaptive course content should contribute to a positive user experience with the system. 

User experience, then, relates to how a user feels about the overall interaction with the target system. User 

experience is described as “a person’s perceptions and responses that result from the use or anticipated 

use of a product, system, or service” (ISO 9241-210). User experience links the two highest levels in 

Jordan’s (2000) hierarchy (usability and pleasure) and indicates users’ responses to interaction with a 

particular system. These responses are complicated in nature as they are a combination of (a) users’ 

individual perceptions of the system in terms of their attitudes, motivations, and individual needs; (b) 

characteristics of the system, such as purpose, functionality, and usability; and (c) contextual 

dependencies in terms of task and environment situations (Norman, 2002). User experience goals are 

more subjective in nature and can include elements evaluating the degree to which as user perceives the 

technology as satisfying, enjoyable, engaging, motivating, aesthetically pleasing, cognitively stimulating, 

supportive of creativity, etc. (Sharp et al., 2007). Negative perceptions of frustration, annoyance, and 

boredom exhibited by a technology are also metrics that can be used to capture user experience.  

Design Principles  

Creating a positive user experience for the different types of GIFT users outlined in this chapter requires, 

in part, careful consideration of design for usability, aesthetics, and symbolism. Here, principles are 

highlighted that help guide and inform those design goals. Don Norman, an academic in the fields of 

cognitive science and design and usability engineering, identified the first set of design principles for 
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interaction design. Don Norman’s “Principles of Design” include visibility; feedback; constraints; 

mapping consistency; and affordance (Norman, 2002).  

Visibility  

The visibility principle is based on the notion that usability and learnability are enhanced when the user 

can readily see available options and commands. Most options and commands, especially key functions, 

should not be hidden, but should be visible and placed in a logical order. Sometimes complex systems, 

such as GIFT, may have too many functions to visually represent all of them at once. One suggestion for 

complex systems is to consider using drop-down/pull-down menus for functions that are not always 

needed. The function will be out of sight, but will easily be available as needed. When considering the 

different user roles of GIFT, all visible options and commands should only pertain to key functions for 

the specific role.  

Feedback  

Feedback pertains to the system providing adequate confirmation of actions being performed by the user. 

Feedback can be provided with any combination of messages, sounds, highlighting, and/or animation. It 

is important to provide feedback immediately to the user about the successful or unsuccessful results of 

their actions. Norman (2002) suggests that there are two types of feedback as system can perform: 

activational feedback (i.e., evidence that a control was activated successfully, such as a button is pressed 

or a menu option is selected) and behavioral feedback (i.e., evidence that the activation or adjustment of 

the control has now had some effect in the system). The GIFT Monitor Module is one interface in which 

activational feedback is provided. The interface was designed to provide diagnostic information related to 

the operational status of GIFT components. In that interface, active (i.e., running) modules are indicated 

with a green icon, while red icons indicate modules that are offline (modules can easily be restarted from 

the same interface). Similarly, with respect to behavioral feedback, when XML data are validated with the 

GIFT authoring tools, the system lets the user know when the validation is complete or if a file needs to 

be inspected for errors. This feedback could be improved, for instance, by indicating the specific line(s) 

within an XML file in which an error was detected. Finally, from the student perspective, GIFT provides 

continuous feedback on their actions and sequences the learning material accordingly.  

Consistency  

Sharp, Rogers, and Preece (2007) described consistency as “designing interfaces to have similar 

operations and use similar elements for achieving similar tasks” (p. 32). Consistency is critical for 

learnability because it helps users recognize and apply existing patterns when new situations arise. 

Inconsistency can have a negative impact on user perceptions, especially when things do not work the 

way the user thinks they should. Attention to consistency can inspire user’s confidence in the system by 

supporting the impression that the system design is logical and rational. Many of GIFT’s tools are 

consistent within release versions. However, the interface of GIFT slightly changes between releases 

(resulting from continuous development and improvement), which may lead to inconsistency between 

releases, and ultimately, user confusion. For instance, GIFT 2014-2 moved the authoring tools to a control 

panel that is independent from the primary startup program; further, the reasoning behind this change has 

not been presented to the user. As such, it is important to be cautious of interface redesign and provide 

users with proper information on future changes and the reasons behind those changes.  
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Constraints  

Constraints prevent invalid data from being entered or invalid actions from being performed. Having 

proper constraints prevents system errors and system failures. There is a desired balance between 

providing users with flexibility and implementing constraints to ensure system reliability. GIFT designers 

have done a sound job of providing constraints; however, as GIFT continues to expand, keeping control 

of these constraints can be difficult. That difficulty in balancing flexibility and constraints will increase as 

GIFT begins to incorporate new functionality and interfaces.  

Affordances  

Affordances refer to inherent visual traits of an object that suggest how to interact with it. For example, 

chairs afford sitting, however the surface of a school desk does not. One can consider everything that 

users interact with in the system (i.e., buttons, scrollbars, the mouse and keyboard, etc.) as an affordance. 

The GIFT program has many affordances, such as tooltips, throughout the application. Additional tooltips 

and on-demand prompts are recommended to support usability. For example, after GIFT is installed, a 

new user might ask, “What is next? How do I start GIFT?” The new user might not know, for example, to 

launchActiveMQ.bat and launchMonitor.bat to start GIFT. Placing shortcut icons for different tools on 

the desktop is one recommendation for improving access to authoring, student, and researcher interfaces. 

Other Rules for Designing User Interfaces 

Norman’s design principles helped pave the way for designing systems from a usability and user-centered 

perspective. These design principles complement each other and serve as the basis for human-centered 

design. Other relevant sets of guidelines to consider in usability / user experience design include the 

following:  

 Jakob Nielsen’s “10 Usability Heuristics for User Interface Design” include visibility of the 

system status; match between the system and the real world; user control and freedom; 

consistency and standards; error prevention; recognition rather than recall; flexibility and 

efficiency of use; aesthetic and minimalist design; help for users recognize, diagnose, and recover 

from errors; and help and documentation (Nielsen, 2005). 

 Ben Shniederman’s “Eight Golden Rules of Interface Design” include strive for consistency; 

enable frequent users to use shortcuts; offer informative feedback; design dialogue to yield 

closure; offer simple error handling; permit easy reversal of actions; support internal locus of 

control; and reduce short-term memory load (Shneiderman, Plaisant, Cohen & Jacobs, 2009). 

The common principles within each of these sets of guidelines are: visibility, consistency, and feedback. 

The prevalence of these principles further emphasizes their importance for system design, development, 

and implementation. As GIFT’s user interface continues to evolve, each of these principles will be of 

critical importance in order to positively influence each of the user experiences that GIFT provides. 

Connections/Recommendations for GIFT 

Since GIFT has become well established and gone through many iterations of design, it is an ideal time to 

consider a heuristic/expert usability evaluation of GIFT. Those evaluations, also known as usability 

audits, are conducted by usability experts. Those evaluations are used to identify issues with the user 

interface and generate recommendations based on industry standards and best practices. The findings of 
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heuristic evaluations may also be used to develop testing with actual users from populations of interest, to 

examine their expectations of how to navigate and interact with the system. 

 

In order to conduct these usability analyses, it is important not to lose sight of GIFT’s different user 

groups. The skill levels and user requirements will vary between groups. For example, instructional 

designers and subject matter experts may have different expectancies regarding authoring tools and 

navigation of the system. Additionally, the functions that are used by an author who is instructing a class 

may vary greatly from the tools that are used by a researcher. One of the most important questions that it 

is necessary for GIFT to answer is what level of support they want to provide for each type of user. For 

instance, design for usability may result in an open-ended experience for an advanced user, while a novice 

user may benefit from a wizard-like experience.  

One “non-invasive” way to start designing for users with less experience is through supplementary 

materials that can assist the beginning user with the system. One of these supplementary materials would 

be to include a simple “how-to” guide to assist users upon their initial download of the system. While 

GIFT currently has readme files, they should be examined/rephrased to streamline and clarify the 

processes that the user needs to take to initially begin working with the system. Creating an introductory 

set of brief directions on how to open the system, how to access specific interfaces, and complete basic 

tasks would help beginner users learn the system without resorting to trial-and-error methods. While the 

user is interacting with the system, it would be beneficial if there was a detailed help function that users 

could click on that would bring up directions for the tool they are interacting with, complete with a 

searchable version of the documents. With respect to authoring tools, new users may benefit from a few 

simple example courses, which can be quickly modified to generate unique course content. This approach 

would be easier than creating an entirely new course. Additionally, templates can be generated that 

require less work from the user, but are aimed at specific tasks that an instructor or researcher may want 

to engage in with the system. 

As GIFT moves toward designing distinct user experiences for its user groups, we offer Figure 3 as a 

suggestion of functions that will be most relevant to students, authors, and researchers. 

 Student Author Researcher 

Student/Participant Login 

Interface 
X   

GIFT Authoring Tool  X X 

Survey Authoring System  X X 

Event Reporting Tool   X 

Figure 3. Tools and interfaces that are most relevant to different user groups. 

Students will primarily interact with the login interface, whereas authors and researchers will use more 

advanced features. Of these advanced features, the GAT and Survey Authoring System are very relevant. 

However, these systems may be used with very different purposes by authors and researchers, 

respectively. Further, while the author may extract some survey data using the Event Reporting Tool 

(ERT), a researcher is much more likely to interact with it for an extended period of time and use many of 

its functions. As GIFT’s design and functionality continue to move forward, it is important to think in 
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terms of the types of users that will interact with it and their desired goals with the system. Keeping these 

groups and their expectations in mind will lead to improved interface design, positive user experiences, 

and the continued growth of the GIFT community.  
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Motivation 

Imagine that you, an expert in technology and in the learning sciences, have decided to help your 

colleagues pass on their expertise to others by helping them build intelligent tutors systems (ITSs). Your 

expert colleagues can be in only one place at a time, and an ITS would multiply the impact of their 

expertise better than an online video, since an ITS can personalize the instruction. ITSs have 

demonstrated significant learning gains in a variety of disciplines, after all (Anderson, 1989; Koedinger, 

1997; Lesgold, Lajoie, Bunzo & Eggan, 1992; Ritter, Kulikowich, Lei, McGuire & Morgan, 2007; 

VanLehn, et al., 2005), so this approach makes sense.  

As you reflect on who these “expert colleagues” really are, you decide to focus on science, technology, 

engineering, and mathematics (STEM) topics, since the US has a dire need for more STEM expertise 

(Institute of Medicine, National Academy of Sciences & National Academy of Engineering, 2007), and 

since a wide variety of people have expertise that they would like to share with others, you’d like to focus 

on four kinds of experts: university faculty, K12 teachers, professional instructional designers and 

trainers, and high school students. Some of these experts will be reflective practitioners (Schön, 1983), 

who will bring a rich conceptual repertoire to the design of the tutor, while others will lack a conceptual 

model of the domain, much less the tutoring process. For this reason it is critical that the authoring tools 

be intelligent, i.e., able to adapt to the author.  

You include the students as experts because you know that students can learn so effectively through the 

process of teaching and peer-mentoring (Biswas, Leelawong, Schwartz, Vye & The Teachable Agents 

Group at Vanderbilt, 2005; Crouch & Mazur, 2001), as well as from design-based activities (Kolodner, et 

al., 2003; Resnick, et al., 2009; Vattam & Kolodner, 2011). In fact, you realize, the process of formalizing 

knowledge into a particular representation can change the representation, so it would be worth studying 

all of your experts along the way, both to see if you can learn more about the basics of their conceptual 

change and to make sure that the tools you provide don’t force undesired conceptual change on them. You 

know from Don Norman (1988) that a gap between your experts’ expectations of your tools and their 

actual experiences with them will make the tools feel unnatural and frustrate your colleagues. Also, only 

the K12 teachers have actually received significant instruction on how to teach, so the authoring tools 

would have to incorporate good pedagogy implicitly, and the tutors that result from these tools would 

need to be evaluated for learning gains.  

You then search the Internet for existing authoring tools for creating ITSs, and the results are 

disappointing. You find a summary of previous ITS authoring tools (Murray, Blessing & Ainsworth, 

2003), but it offers more of a history than a guide to available tools. One chapter (Murray, 2003b) does 

offer lessons learned and guidance for the design of the ideal authoring tool; you’ll keep that in mind. 

There are more recent search hits for ITS authoring tools, but most are academic papers, not software 

that’s usable right now. Plus, some are all constrained to a specific domain, e.g., authoring algebra tutors. 

In terms of actual existing tutor authoring tools that you can sit down and use, six systems float to the top: 

Cognitive Tutor Authoring Tools (CTAT) (Aleven, Sewall, McLaren & Koedinger, 2006), the Extensible 

Problem-Solving Tutor (xPST) (Gilbert, Blessing & Kodavali, 2009), Authoring Software Platform for 

Intelligent Resources in Education (ASPIRE) (Mitrovic, et al., 2009), SimStudent (Matsuda, Cohen, 
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Sewall, Lacerda & Koedinger, 2007), ASSISTments (Razzaq, et al., 2009), and the Generalized 

Intelligent Framework for Tutoring (GIFT) (Sottilare, 2012).  

As you examine these systems more carefully, however, you realize that none of them meet your desires 

entirely. The tools take different approaches to enabling the author to input and structure her knowledge. 

Some have a graphical user interface (GUI)-based system and some have what looks more like 

programming source code. Some might be easy for your experts to use to create simple problems, but 

require more computational thinking for more complex ones or for creating tutors that apply more 

generally. You find a comparison of the usability of CTAT and xPST (Devasani, Gilbert & Blessing, 

2012), pointing out pros and cons to GUI vs. text-based approaches to tutor authoring, depending on the 

domain. That analysis suggests that the ideal ITS authoring tool, much like Adobe Dreamweaver or 

Microsoft Visual Studio, with both code views and views of the interface, should have multiple 

representations of content with which to interact. But the comparison article omits discussion of experts’ 

individual differences. Surely two of your colleagues, even if they were experts in the same domain, 

might have different preferences of the kind of software they would like to use to represent their 

knowledge.  

Delving more deeply into these authoring tools makes you realize the wide variety of interfaces for which 

ITSs have been built: equations and graphs, geometry and other diagrams, traditional desktop software 

applications, written text, virtual reality simulations for maintenance and repair, and Socratic dialogue, to 

name a few. You now realize that it would be best if there were a set of ITS authoring tools that could 

create tutors for all of these different interfaces, while catering to the individual differences of your 

colleagues and the needs of the particular knowledge domain. While that sounds like a significant 

challenge, you remember Don Norman’s vision for the invisible computer (Norman, 1998), and his 

prescient early call for replacing a PC with many “information appliances” that would work for us while 

not burdening our minds or daily work. In effect, today’s Internet cloud and mobile apps have begun to do 

that. App users seem happy to alternate the information representations with which they engage, when the 

representation feels natural for the chosen task. Therefore, you reason, the perfect ITS authoring tools 

would offer an invisible authoring system, one that allows your expert colleagues to, in effect, teach a 

computer what they know without getting in the way, just as naturally as a musician plays a composition 

into the iPad GarageBand app. Too bad those tools don’t exist yet.  

Introduction 

A chapter in this volume by Blessing et al. offers a detailed comparison of the ITS authoring tools 

mentioned above. This chapter, in contrast, uses a user-experience lens to characterize the challenge of 

designing the ideally appropriate authoring tools to address the above scenario. Creating authoring tools 

that could meet this challenge would serve two purposes: (1) make it easier and faster to create ITSs much 

like the ones that exist today, and (2) create a framework that will lead to fundamentally better tutors in 

terms of pedagogy. 

Definitions 

To maintain clarity, we offer the following description of an intelligent tutor, its components, and the 

terms we are using. Shute (1994) notes that all ITSs contain the following: an expert model that contains 

the expert’s knowledge; a student model that records what the student has learned (skills); and a 

pedagogical model that enables the tutor to react appropriately to the student’s behavior. Other 

researchers note that the fourth critical component is the interface or problem-solving environment 

(Corbett, Koedinger & Anderson, 1997), which may be an off-the-shelf, third-party system or a 
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customized interface just for a particular tutor. To use standardized terminology proposed by Van Lehn 

(2006), the “task domain” is the discipline and content being taught, a “task” is a challenge assigned to a 

student or students, and tasks can be broken down into “steps.” Finally, ITSs vary in the generality of 

their expert models. Some are example-tracing tutors, focusing on providing feedback around one specific 

example task. When we say “tutor,” we intend the more general tutor, which contains knowledge that can 

be applied across many tasks of the same kind.  

Extending the authoring task analysis described by Ritter, Blessing & Wheeler (2003), Table 1 contains 

the authoring tasks typically required to create a tutor. These steps are not strictly ordered; they typically 

are completed iteratively.  

Table 2: Tasks of Authoring a Tutor 

Characterize the Learning 

Environment 

What are the possible actions or states of the learner’s environment that need 

to be noted by the tutor? What objects will the learner manipulate, and what 

actions are permitted? 

Organize the Curriculum What topics and skills needed to be learned? Are there subskills?  

Characterize the Learning 

Activities 

What are the steps the learner needs to take, generally speaking? How do 

those steps demonstrate the skills that need to be learned, i.e., what is the 

mapping between steps taken and skills?  

Describe Good Tutoring What does a right answer look like? What are frequent wrong answers? How 

do you evaluate a learner’s answer? What hints should be given if help is 

requested? What feedback should be given when the learner makes incorrect 

choices, and under what circumstances should it be given?  

An Author’s User Interfaces 

The ideal user interfaces (UIs) that the expert will use to accomplish the above authoring tasks will likely 

vary between tasks and may vary by individual author, if the author’s preferences for knowledge 

representation are known. Figure 8 illustrates example UIs that might be used.  

The Wizard Dialog asks the expert a series of questions to refine the structure of the tutor, e.g., “Do your 

tasks have one right answer?” or “In your task domain, do students practice a task many times, 5–15 

times, or fewer than 5 times?” The Wizard Dialog is essentially an expert system to narrow down to the 

most appropriate tutor structure.  

The Decision Tree facilitates the creation of branching IF…THEN predicates. The idea of predicates and 

a predicate hierarchy is based on the original ACT-R inspired tutors, built using production rules 

(Anderson, Boyle, Corbett & Lewis, 1990), as well as on Carnegie Learning, Inc.’s SDK authoring tool 

(Blessing, Gilbert & Ritter, 2006; Blessing, Gilbert, Ourada & Ritter, 2009b).  

The Click & Annotate UI works similarly to Camtasia or other software for making instructional screen-

capture videos, in which the expert highlights elements of the interface and adds specific instructions. 

This UI would be particularly helpful for creating tutors on diagrams (e.g., free-body diagrams, 

blueprints, or geometry proofs) and with tutors on software applications.  

The natural language scripting UI allows the expert to define a set of nouns (objects), adjectives 

(properties), and verbs (relationships), and then use natural language to describe conditions and 

interactions. In a game-based tutor, for example, an expert who is interested in guiding the student to stay 

close to the walls when exploring unknown corridors might write:  
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“Stay-close-to-wall” means the Player’s location is near a wall of the 
corridor. “Near” means closer than 10% of the width of the corridor. 

 

This approach uses principles of Applescript (2007) and Tutorscript (Blessing, et al., 2006), a language 

used with Cognitive Tutors at Carnegie Learning, Inc. A similar idea is proposed in the form of Natural-K 

(Jung & VanLehn, 2010).  

The visual programming UI is similar to those used by Alice (Pausch, et al., 1995), Scratch (Resnick, et 

al., 2009), and Greenfoot (Henriksen & Kölling, 2004). The expert is given a set of primitives and 

operators and assembles them as blocks. This UI will be particularly useful for defining characteristics of 

the interface state, e.g., which components of a simulation are powered on, or the positions of entities 

within a serious game. One approach to tutoring based on game state is described in our previous work 

(Devasani, Gilbert, Shetty, Ramaswamy & Blessing, 2011; Gilbert, Devasani, Kodavali & Blessing, 

2011).  

This list of UIs is not exhaustive. Other UIs not depicted, for example, include a state transition graph, 

like the CTAT behavior graph (Aleven, et al., 2006), as well as a UI for constructing natural language 

parses and phrase classifiers, such as the Concept Grid (Blessing, Devasani & Gilbert, 2012; Devasani, 

Aist, Blessing & Gilbert, 2011). And of course plain source code or extensible markup language (XML) 

Figure 8: Different user interfaces are appropriate for different authoring tasks.  
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is a possibility. Other new forms of UIs will become appropriate as new kinds for tutors arise, e.g., 

interfaces to allow conditions based on a student’s affect or motivation.  

A tutor would likely be created using a combination of these UIs. A tutor template would be a particular 

configuration of UIs designed to help create a tutor of a specific kind. As mentioned above, Norman’s 

information appliances are the inspiration, so that the ideal ITS authoring system becomes an invisible 

collection of tools well designed for their purposes. Just as mobile phone users are familiar with switching 

between an email app, a calendar app, and a contacts app, which all share data, tutor templates will 

provide an optimal configuration of UIs for a given task domain, and that the backend will allow 

appropriate data sharing across them. In addition, a Template Recommender could be created, an expert 

system that will recommend templates to tutor authors based on a Wizard-style interview about the 

discipline and learning goals. 

GIFTscript 

While natural language scripting is mentioned above, it is worth considering it in more detail because of 

the power of allowing an expert to use her own language to create a tutor. Statements like the above 

“stay-close-to-wall” include the definition of new concept (stay-close-to-wall) and of a new condition 

(“near”). It assumes that the objects “corridor” and “wall” have been defined elsewhere and that a 

property “width” is associated with “corridor” (perhaps inherited from a parent object such as “object”). 

The approach suggests an object hierarchy with properties assigned to the objects that could be 

considered adjectives, e.g., a generic “building” object might have properties of “height,” “location,” and 

“dimensions” that could be inherited by child objects “house,” “wall,” “store,” etc. Those child objects 

could in turn have specialized properties. This approach is taken by Carnegie Learning’s tutor authoring 

tools (Blessing, et al., 2006), but user interfaces don’t take advantage of natural language to author these 

hierarchies on the fly. And, working with inheritance hierarchies requires a degree of computational 

thinking (Wing, 2008) that our target users probably do not all have.  

We suggest that if users could think of their knowledge domain in terms of scenarios, tasks, and concepts 

(or perhaps skills), an interactive language-based authoring tool might be able to be created, which creates 

the aforementioned object hierarchy more naturally. Since there is interest in developing the perfect 

authoring tools for GIFT, we call this language GIFTscript.  

GIFTscript would be integrated with the other UIs described above by using text editing boxes that check 

GIFTscript syntax. Special visual indicators on the boxes would indicate to the user that (1) GIFTscript is 

available, (2) that syntax is violated, and (3) that valid GIFTscript is present. Also, these text boxes will 

support auto-completion and color coding, much like Visual Studio. A mockup of a sample interface is 

provided in Figure 2 as illustration. In this example, using some of the primitives already extant in GIFT, 

you could imagine script such as  

“Avoid Location {x}” means player location is far from {x} location.  

The interface would recognize that the user had defined a new condition called Avoid Location. It would 

also recognize noun phrases (objects) such as “player location” and “location,” and if it didn’t recognize 

those noun phrases, it would ask the user to define them. In this example, it recognizes a new adjectival 

phrase, “far from,” and asks for a definition. The user might use some known objects to define it:  

“far from” means distance > than 20 ft. 
  

Then, using the new Avoid Location condition, the author could write rules such as 
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If the Player does not avoid location enemy bunker then remind, “Stay a 
safe distance from the enemy.”  
 

 

The critical feature of a UI featuring GIFTscript is offering a usable visualization of the objects and 

structures resulting from this approach.  

Authoring Tool as Research Tool 

Just as many creators of learning technologies are studying the misconceptions of their learners and 

getting usability feedback via educational data mining techniques and the use of embedded or stealth 

assessment (Shute & Ventura, 2013; Shute, Ventura, Bauer & Zapata-Rivera, 2009), it will be valuable if 

ITS authoring tools are themselves instrumented with click-stream logging similar embedded 

assessments. Using these methods, authors’ own conceptual change can be monitored, especially if 

combined with a pre- and post-assessment of the author’s understanding of the domain. Even without 

such assessments, however, an unsupervised learning classification method could be used to cluster 

different authors as to their approaches to knowledge representation, and perhaps, the interface elements 

could be personalized to each author’s style. Also, it has been found useful in previous studies of 

authoring tools, e.g., Blessing, Gilbert, Ourada, and Ritter (2009a) to monitor the time spent by the author 

in different components of the authoring system. These usage profiles can be used to broadly characterize 

authors as experts or novices and perhaps give intelligent tutoring-style feedback to the authors 

themselves on the task of authoring.  

Recommendations and Future Research 

To create a mapping between types of tutors and appropriate UIs for authoring, it will be important to 

create a taxonomy of tutor types. The larger categories of tutor interfaces might be, for example, 

diagrams, equations, text, procedures, and cases. Each larger category might have subcategories, e.g., 

text-based tutors categorized by focus on short-answer responses, longer text passages, English language 

learning, reading, or Socratic dialogue. While other researchers have provided overviews of the gamut of 

intelligent tutors (Murray, 2003a; Sottilare, 2012; VanLehn , 2006), they have not focused on categorizing 

Define Condition

OK Cancel

"Avoid Location {x}" means player location 
is far from {x} location. 

New condition "Avoid Location {x}" defined. 

Please define "far from".

Figure 9: Mockup of interactive dialogue box for editing GIFTscript.  
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tutors by the kind of authoring approach required, or by the knowledge representation required of an 

expert author. A taxonomy effort such as this might lead to a table as shown in Figure 3, which could then 

guide the creation of the ideal invisible authoring tools, for GIFT or other tutoring systems.  

 

Research questions remain that are worth exploring. Are there noteworthy individual differences in UI 

preferences among experts in the same field? How does authoring with a given UI affect an expert’s own 

understanding of his expertise? What effect does the choice of a tutor’s authoring UI have on student 

learning? Does having natural UIs for authoring improve the quality of the resulting tutor?  
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Introduction 

Educational technologies have come to play an important role in advancing the science of learning. By 

consistently applying a set of pedagogical policies (and not getting tired while doing so), educational 

technologies can be used to address precise questions about how people learn and how to best help them. 

The resulting findings often answer important questions about human learning, which, in turn, can 

positively influence the design of future educational technologies or even possibly educational practices. 

A second way learning science researchers seek to have impact is by getting the technology in the hands 

of as many learners as possible. Unfortunately, with more users come more requirements, and therefore, 

additional questions educational software designers need to address. For example, can a system be 

tailored to the specific needs of a class, teacher, or individual learner? Can it be used in a new task 

domain? Is it possible to reorganize or create new course content? Can the pedagogical approach and/or 

content embedded in the system be adjusted or even replaced? Sadly, but understandably, software that is 

created for lab studies or specific end-user needs do not often address these questions. If the aim is to “go 

big,” then it is no longer feasible to create one system suited for all needs tools for configuring and 

creating content are a requirement.  

In this chapter, we focus on intelligent tutoring systems (ITSs), an instance of educational technology that 

is often criticized for not reaching its full potential (Nye, 2013). Researchers have debated why, given 

such strong empirical evidence in their favor (Anderson, Corbett, Koedinger & Pelletier, 1995; D’Mello 

& Graesser, 2012; VanLehn et al., 2005; Woolf, 2009), intelligent tutors are not in every classroom, on 

every device, providing educators with fine-grained assessment information about their students. 

Although many factors contribute to a lack of adoption (Nye, 2014), one widely agreed upon reason 

behind slow adoption and poor scalability of ITSs is that the engineering demands are simply too great. 

This is no surprise given that the effectiveness of ITSs is often attributable to the use of rich knowledge 

representations and cognitively plausible models of domain knowledge (Mark & Greer, 1995; Valerie J. 

Shute & Psotka, 1996; VanLehn, 2006; Woolf, 2009), which are inherently burdensome to build. To put it 

another way: the features that tend to make ITSs effective are also the hardest to build. The heavy reliance 

on cognitive scientists and artificial intelligence (AI) software engineers seems to be a bottleneck. 

This issue has led to decades of research geared toward reducing both the skills and time to build 

intelligent tutors. The resulting ITS authoring tools serve different educational goals, but generally seek 

to enable creating, editing, revising, and configuring the content and interfaces of ITSs (Murray, Blessing 

& Ainsworth, 2003). A significant challenge lies in the accurate capture of the domain and pedagogical 

expertise required by an ITS, and many authoring tools focus on eliciting this knowledge. Unfortunately, 

as ITS technology has evolved, the authoring burden has increased rather than decreased, and so the 

tension between usability of an authoring tool and the sophistication of the target ITS knowledge 

representation is substantial.  

In this chapter, we focus on the problem of reducing the technical knowledge required to build ITSs (only 

one of many possible goals for authoring tools). We review the important historical attempts that most 

directly sought to open up the creation of ITSs to nonprogrammers (like educators) as well as more recent 

work that addresses the same goal. We review popular approaches, such as programming by 
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demonstration, visualization tools, and what you see is what you get (WYSIWYG) authoring, and 

summarize the limited experimental evidence validating these approaches. The central questions driving 

this review are (1) In what ways have researchers sought to make authoring more intuitive and accessible 

to nonprogrammers? (2) For what purposes have these tools been developed? (3) What components of an 

ITS have they addressed? and (4) How have researchers evaluated these approaches and what have they 

learned about intuitive authoring? The chapter ends with suggestions for future research, including 

identifying ways to empirically understand the sophistication vs. ease-of-authoring tradeoff, leveraging 

more findings from the human-computer interaction (HCI) community, and addressing the glaring gap in 

authoring research as it relates to learning management systems (LMSs). 

The Problem 

What makes ITSs so difficult to create? ITSs provide the fine-grained support necessary for deep learning 

unlike most traditional computer-aided instructional systems (VanLehn, 2011), but this ability requires 

greater complexity (VanLehn, 2006). We use the Generalized Intelligent Framework for Tutoring (GIFT) 

architecture, shown in Figure 1, as a general model of the complex system of interconnected components 

typically present in an ITS, and the end product of ITS authoring. The specific requirements, roles, and 

complexities of each component are described elsewhere (Sottilare, 2012), but some of the more 

prominent components in terms of authoring include the following: 

 The learner module tracks the learner’s state over the course of a session. The learner module 

updates performance measures based upon assessments of learner activities, and may estimate 

changes in understanding, acquisition of skills and learner emotions. 

 The pedagogical module makes the instructional decisions that drive the tutor’s behavior. These 

decisions can vary in scope from topic and problem selection to deciding whether to give 

feedback and the content and style of this feedback.  

 The domain module handles domain-specific responsibilities such as assessing learner problem 

solving and providing help. This module may use general information about the target task and 

any associated simulation as well as rely upon problem-specific data.  

 The tutor-user interface provides the communication channel(s) between learner and tutor, such 

as speech, text, visualizations, etc. It defines the scope of potential tutoring interactions. 
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Figure 1. Overview of the GIFT architecture (Sottilare, 2012). 

It is typical for authoring tools to focus on specific components that are most important or relevant for the 

target ITS. This approach also makes the process more viable as authors focus their attention on a few 

components while the rest may remain unchanged from problem to problem, or domain to domain. By 

starting with the GIFT framework, which seeks to maximize generality, rather than a specific system, the 

full range of possible targets for an ITS authoring tool is more apparent. 

ITS Authoring Tools: Goals And Tradeoffs 

In two broad and thorough reviews of the field (Murray, 1999, 2003), two (of the many) take-away 

messages are that authoring tools (1) have been developed with a wide variety of goals in mind and for 

many different categories of users, and (2) present a huge space of tradeoffs both in terms of their own 

implementation and those that must be addressed by authors using the system. Authoring success stories, 

such as Cognitive Tutor Authoring Tools (CTAT) (Aleven, McLaren, Sewall & Koedinger, 2006) and 

REDEEM (Ainsworth et al., 2003), always impose a reasonable level of constraints on their authors and 

make assumptions so that tasks can stay manageable. 

Murray (2003) identifies five typical goals for authoring tools, roughly in order of importance or 

predominance (p. 509): 

(1) Decrease the effort required to build an ITS (e.g., time, cost). 

(2) Decrease the “skill threshold” for building ITSs. 
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(3) Support authors in the articulation of domain or pedagogical knowledge. 

(4) Enable rapid prototyping of ITSs. 

(5) Rapidly modify and/or prototype with the aim of evaluating different approaches. 

Systems in category (1) can include those built for cognitive scientists and programmers. For example, 

CTAT (Aleven, et al., 2006) includes two primary methods for tutor creation, the first of which involves 

creating and debugging production rule-based cognitive models directly. CTAT includes a variety of tools 

for organizing, testing, watching, and editing cognitive models, all designed for users with high levels of 

technical skill. The second type of authoring uses example-tracing, which is described below and more 

directly addresses Murray’s second goal.  

Category (1) stands in direct contrast to (2), which involves lowering the bar on what authors need to 

know or be able to do. Typically, authoring tools that seek to do this have the aim of allowing teachers, 

subject-matter experts, and other educators to create ITSs to address their own needs. Category (2) is the 

focus of this chapter how have researchers attempted to “simplify,” or at least remove some of the 

more technically onerous aspects of building ITSs? Goals in categories (3) through (5) are in many ways 

orthogonal to (1) and (2). Articulating domain and pedagogical knowledge (3) is a requirement for ITSs 

and can be accomplished with no specialized tools, tools for technically skilled authors, or tools for 

nonprogrammers. Similarly, the rapid creation of ITSs and variations on existing ITSs for the purposes of 

testing or running experiments can also be accomplished regardless of the tools used.  

Of course, whatever purposes an authoring tool is intended to serve will directly impact the design. In 

turn, the design of any content-creation tool (e.g., word processors, presentation software) involves 

tradeoffs. In the case of ITS authoring tools, a variety of tradeoffs are apparent. One tension is that 

complexity in one area of authoring can introduce difficulties in other areas. For example, a tool could 

allow authors to create a custom graphical user interface (GUI) for their ITS. However, the underlying 

ITS has no idea what the controls (e.g., text boxes and menus) of the GUI mean, Thus, either the author 

has to develop a knowledge representation and link it to the GUI, or develop a model in terms of GUI 

actions (e.g., example-tracing in CTAT). A second tension that arises is between the complexity of an 

authoring tool and ease of use. For example, the full power of cognitive modeling is available in CTAT, 

but requires programming skills and the resulting cognitive models can be onerous. In general, the greater 

the expressive power provided by an authoring system, for any module, the more complicated other 

components become to build. Therefore, we find a distinct tradeoff between this expressive power and the 

ease at which authoring can be accomplished.  

In the remainder of this chapter, we focus our attention on techniques researchers have used to reduce the 

skills needed in order to build ITSs (category (2) from the list above). A tradeoff made in most of these 

examples is increased authorability but reduced sophistication of the underlying tutors that are built. In 

other words, the assumptions made and steps taken to “simplify” the authoring process have generally led 

to simpler models. This is not necessarily true in all of the cases below, however. SimStudent (Matsuda et 

al., 2013) and Authoring Software Platform for Intelligent Resources in Education (ASPIRE) (Mitrovic et 

al., 2009), for example, use machine learning techniques to infer more than what the authoring activities 

provide on the surface. Another common tradeoff is simplifying the process by limiting what the author 

can create or change. For example, REDEEM (Ainsworth, et al., 2003) uses a “courseware catalogue” as 

a starting point, and SitPed (Lane, Core, et al., in-press) starts with pre-constructed scenarios.  
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Approaches to Building Intuitive Authoring Tools 

The AI-heavy components of an ITS (domain module, pedagogical module, learner module) generally 

require detailed information from authors. This type of ITS authoring is similar to the task of knowledge 

engineering, which was widely recognized as onerous and a possible impediment to the growth of expert 

systems. The general challenge of capturing or eliciting knowledge from subject matter experts was 

recognized early, leading to a great deal of research focused on the knowledge elicitation problem 

(Hoffman, Shadbolt, Burton & Klein, 1995). ITSs share this problem, but with the additional burden of 

needing to address issues related to pedagogy that is, how to present information, assess learners’ 

knowledge, deliver feedback, and so on. Thankfully, ITSs often do not require such heavy-duty models as 

fully elaborated expert systems, and solutions that go beyond basic computer-aided instruction but not as 

far as a fully-fledged ITS still have a great deal of value. For example, the ASSISTments approach 

provides teachers with authoring tools to create, share, and deploy step-by-step example problems that 

approximate ITS behaviors by providing step-level support for a learner without the need for traditional 

student modeling, expert modeling, and so on (Heffernan & Heffernan, 2014).
7
 

Although many authoring tools indirectly lower the skill threshold needed to build a tutor, either through 

hiding implementation details or automating steps, the systems included in this review are systems that 

prioritize usability. A requirement for inclusion is that a system be explicitly built for and tested with 

nonprogrammers who are either instructors or subject-matter experts in an educational role. A second 

requirement is that the authoring tool supports the population of ITS-like components (see Figure 1) via 

interaction with the author. The end result of the authoring process is a learning system that performs at 

least some of the behaviors from the standard definition of a tutoring system (VanLehn, 2006). 

A final dimension we highlight is Murray’s (2003) distinction between performance and presentation 

roles that an ITS can play. An ITS that focuses on performance typically assesses the learner during 

problem solving (or other form of practicing a skill) and provides feedback and scaffolding. This is 

perhaps the most common role of an ITS given that they often help learners during homework. An 

authoring tool that addresses the presentation of content is geared toward a more direct instructional role, 

such as that played by educational videos in massive open online courses (MOOCs) or flipped 

classrooms. The presentation of content can be made highly adaptive based on learner behaviors and 

embedded assessments, and so there are many opportunities to go beyond what simple videos or reading 

can achieve. Historically, many ITSs sought to play both roles and use shared models between the two to 

increase the level of personalization (Brusilovsky, 2012). The distinction between authoring for 

performance or presentation (or both) is used in the discussion that follows. 

Authoring for Content Delivery 

REDEEM (Ainsworth, et al., 2003) represents one of earliest and most successful attempts to put 

authoring tools in the hands of teachers. Using intuitive interfaces, REDEEM walks authors through a 

workflow that operates primarily on existing content so that a generated ITS can later present it adaptively 

to learners. In addition, authors can increase interactivity in the resulting lessons by creating questions 

and identifying “reflection points” that allow the system to know when students should spend more time 

processing the material. REDEEM most directly supports non-technical authors in the following ways: 

1. REDEEM provides a well-defined workflow with integrated stages that are all clearly defined for 

authors so that they understand the overall process and end result. 

                                                           
7
 Although ASSISTments does include elaborate records of student performance used in service of helping 

instructors assess their students’ learning. 
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2. It adopts a slider-based approach to allow authors to specify parameters such as suitability of 

resources for learners, and amount of student choice. 

3. Instructional strategies are expressed in ways that are familiar to authors (who are instructors).  

The REDEEM workflow takes authors through three distinct phases: (1) describe the course material by 

organizing and marking content with structural annotations, (2) define the kinds of learners who will use 

the resulting ITS, and (3) describe how the system should teach those learners with the content articulated 

during step 1. REDEEM assumes the availability of a “courseware catalogue,” which consists primarily 

of reading content. For this content, authors are asked to identify sections, label the content in sections 

along various dimensions (e.g., how difficult or familiar it will be to students), and finally describe 

relations between sections (e.g., section B is an application of the concept described in section A). These 

relationships help the system build a semantic representation of the course content, which is then used by 

the resulting ITS to adapt instruction. In addition, authors also create interactive content such as multiple 

choice and fill-in-the-blank questions. The second step for REDEEM authors is to create a base of learner 

types (based on the author’s discretion), while the third is the “glue” that brings these steps together. 

To complete their ITS, authors must define a body of tutoring strategies that ultimately tell a REDEEM 

ITS how to use the annotated content. A slider metaphor is used to configure the details of the tutoring 

strategies. For example, if a teacher wants to allow the ITS to engage in practice with the learner, they can 

define this strategy by using a series of sliders to set the parameters appropriately (Figure 2). The strategy 

includes information about when to use it, how to deploy it, and how to provide help. Although there is a 

cap of 20,000 different strategies, authors tend to create about 7 per tutor (Ainsworth, et al., 2003, p. 213).  

 

Figure 2. Creating a teaching strategy in REDEEM (Ainsworth, et al., 2003). 
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REDEEM has undergone multiple evaluations showing that teachers can use the system to create tutors, 

and that they find it easy to use. In addition, tutors created with REDEEM have been compared against 

computer-aided instruction (CAI) counterparts. These studies have demonstrated a significant difference 

in learning outcomes with effect sizes as large as 0.76 for REDEEM vs. 0.36 for CAI systems with the 

same content (Ainsworth & Fleming, 2006).  

Generalizing from Examples 

One important skill instructors and subject matter experts share is that they can solve problems in the 

domain in which they teach or work. This observation was made in ITS authoring as well as in the areas 

of expert systems and programming (Cypher & Halbert, 1993). Authoring by demonstration seeks to 

leverage this observation by allowing instructors and experts to simply show the authoring system how 

students should solve problems instead of forcing instructors and experts to explicitly encode domain 

knowledge. Given a sufficient number of examples, the authoring tool will develop a generalized model 

of the skill that can be used in an ITS. 

Building on the work in expert systems and programming-by-demonstration, Blessing (2003) was one of 

the pioneers in applying this idea to building an ITS. His Demonstr8 authoring system could generate an 

ACT-style tutor for arithmetic based on authors solving problems. ACT Tutors have expert models 

consisting of production rules capable of solving problems, and learner actions are continually compared 

against this model through a process called model tracing. Demonstr8 creates such an expert model by 

attempting to determine the rationale behind steps in solved examples and create rules that apply across 

examples. However, an author must first create an underlying knowledge representation such that 

Demonstr8 can generalize from the author’s behavior. For example, authors need to define the concept of 

a column of numbers as well as basic arithmetic operations such as subtracting two digits. It is also the 

case that the underlying model cannot be hidden from the author who may need to adjust production rules 

as well as specify details such as goals and subgoals. 

It is worth noting a similar approach adopted in DISCIPLE (Tecuci & Keeling, 1998). Here, the domain is 

history and the task is to determine whether a source is relevant to a specific research assignment, and 

why or why not. Only the GUI and the specialized problem solver are specific to the target domain/task. 

To define the target task, an educator with help from a knowledge engineer first builds an ontology. The 

next step is developing a set of problem-solving rules; in this case, the rules determine whether a source is 

relevant based on properties of the source and the research assignment. The general approach is for the 

educator to teach the authoring system through demonstration (i.e., providing a correct answer), limited 

explanation (e.g., pointing out a relevant feature), and feedback. In the case of feedback, the system 

generates new examples and the educator helps debug the rules when incorrect results appear. The 

educator must then extend the set of natural language generation templates allowing the system to 

generate tutoring guidance from the underlying knowledge representation. The resulting history ITS was 

highly rated in surveys from an experiment with students and teachers, and the domain module was 

judged highly accurate by an external expert. 

ASPIRE (Mitrovic, et al., 2009) is an authoring tool developed at the University of Canterbury for the 

construction of tutors that use constraint-based modeling as the primary method for knowledge 

representation. Constraints are fundamentally different from production rules in that they encode 

properties that must hold in solutions rather than generate problem solving steps. Constraints, when 

violated by a student’s solution, capture teachable moments in which constraint-based tutors can help. 

Authors are required to create constraints, feedback messages, problems, and if necessary, a user 

interface. Although different from production rules, constraints are still a form of knowledge 

representation and building a constraint base for an ITS requires a certain level of technical skill. 
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ASPIRE’s predecessor, Web-Enabled Tutor Authoring System (WETAS) (Mitrovic, Martin & 

Suraweera, 2007), supported users with some technical expertise while ASPIRE falls into the category of 

systems built for nonprogrammers seeking to automate some of the more complex tasks of building ITSs 

with machine learning.  

To build a constraint-based tutor with ASPIRE, authors must perform three steps, none of which require 

programming skills: (1) design a (text-based) interface, (2) build a domain ontology (Figure 3), (3) create 

problems and solutions in the interface. ASPIRE can use the ontology to automatically generate syntactic 

constraints corresponding to domain requirements. For example, an instructor might require students to 

specify a lowest common denominator (e.g., the student must type a number into the relevant location in 

the GUI). Semantic constraints model the correctness of the answer. Authors are required to specify 

alternate solutions, and ASPIRE automatically generates semantic constraints accommodating these 

variations (Mitrovic, et al., 2009). Perhaps the most burdensome step in creating an ASPIRE tutor lies in 

the creation of a domain ontology, which has the potential to become overly complex. However, as can be 

seen in Figure 3, the process is simplified in that only basic hierarchical relationships are needed (such as 

specialization). 

 

Figure 3. The ASPIRE ontology editor, used in the automated generation of constraints  

(Mitrovic, et al., 2009) 

When compared to a hand-authored domain model, ASPIRE was found to generate all of the same 

syntactic constraints and covered 85% of the semantic. A larger pilot evaluation of a tutoring system 

generated by ASPIRE with a subject-matter expert author (and nonprogrammer), showed that it produced 

significant learning gains and that learners followed expected learning curves (Mitrovic et al., 2008). 
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Authoring by Constructing Elaborated Examples 

One of the most prominent efforts to provide authoring tools for non-experts is CTAT at Carnegie Mellon 

University. CTAT provides tools for building two kinds of tutoring systems: example-tracing tutors, 

which involve problem-specific authoring but no programming (Aleven, McLaren, Sewall & Koedinger, 

2009), and cognitive tutors, which require AI programming and the development of a problem-

independent cognitive model of the target skill(s) (Anderson, et al., 1995). The work on Cognitive Tutors 

shows there is room for improvement in authoring tools for ITS programmers. For Cognitive Tutors, 

CTAT has been shown to reduce development time by a factor of 1.4 to 2 (Aleven, et al., 2006). 

In keeping with the goals of our chapter, we focus on non-programmers and example-tracing tutors. For 

example-tracing tutors, early evaluations of efficiency gains using CTAT are also impressive: a reduction 

in development costs by a factor of 4 to 8 over traditional estimates on ITS development (Aleven, et al., 

2009). Example-tracing tutors are created by demonstration. The appeal, therefore, is that an author can 

create solution models by simply solving problems in ways that learners might. This is accomplished in 

CTAT by defining a specific problem, solving it, and then expanding the resulting solution in ways so 

that other common problem solving actions can be recognized, such as alternate solutions and common 

misconceptions. These different problem-solving steps form a behavior graph such as the one on the right 

side of Figure 4. Learners take actions by manipulating a GUI (left side of Figure 4) and the tutoring 

system matches these actions to nodes in the behavior graph. The graph branches as authors specify a 

variety of correct and incorrect approaches to solving the problem. 

 

Figure 4. An authored example in CTAT for stoichiometry (Aleven, et al., 2009). 

Example-tracing does not require a machine-readable ontology defining the domain and there is no 

machine learning that must be debugged by the author. However, this knowledge-light approach means 

that authors must annotate steps in the behavior graph with hint and feedback messages as well as links to 

the learner module (e.g., taking this step provides evidence that the learner understands a certain domain 

concept). This annotated behavior graph contains all the information needed for the ITS to assess learner 

actions and provide step-level feedback. 

The Situated Pedagogical Authoring (SitPed) project at the University of Southern California (Lane, 

Core, et al., in-press) focuses on problem-solving through conversation (e.g., a therapist talking to a 

client) using simulated role players. Using SitPed, authors create an ITS by doing the following: 
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 Specifying paths through the problem space by simultaneously solving problems (either correctly 

or intentionally incorrectly) and indicating the relevant skills and misconceptions. 

 Pausing during problem solving to create hints and feedback messages associated with the current 

situation. 

Like the case of example-tracing tutors, authors work in the same learning environment that learners use. 

Thus, SitPed falls roughly into the category of WYSIWYG authoring tools (Murray, 2003) because 

authors are constantly reminded of what the resulting learning experience will be like. In the case of 

SitPed, demonstration is not simply a technique to hide technical details. Simulated conversations and 

simulations in general allow learners to explore a wide space of possibilities, and it can be difficult for 

authors to visualize the learner’s perspective unless they are also working through examples in the same 

simulation. 

One of the difficulties in building an ITS for a simulated role play is that simulated role players can be 

implemented in a variety of ways. The initial version of SitPed targets branching conversations. At each 

step in the conversation, learners are selecting utterances from a menu and the virtual role player consults 

a tree to lookup its response and the next set of menu items. This tree simply contains the lines of the 

conversation as well as the associated animations corresponding to performance of the role player lines. 

In branching conversations, it is necessary for the author to play through all branches of the tree and link 

each possible learner choice to the skills and misconceptions of the domain. This process is illustrated in  

Figure 5. Although the goal is to recreate the learner experience as much as possible, authors need to be 

able to see relevant context (e.g., the dialogue history in the middle) and make annotations corresponding 

to the skills and common mistakes of the domain which we refer to as tasks (via the menu labeled “Task 

List”). This exhaustive exploration of the possibilities is necessary because of the difficulty of 

automatically understanding the dialogue well enough to identify skills such as active listening. For 

simulated role players with models of dialogue and emotion, more scope for generalization may be 

possible based on expert conversations. 
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Figure 5. The SitPed Authoring domain tagging screen (Lane, Core, et al., in-press). 

SitPed also provides a tool to create simple, hierarchal task models (similar to those created in GIFT), 

which form the basis for the linking screen shown in Figure 5. The full workflow requires an author to (1) 

create a task list; (2) load a scenario file (these are authored in a commercial product called Chat Mapper, 

an editor designed specifically for tree-based branching stories; (3) run through the scenario as many 

times as needed to annotate the possible student choices; (4) create hints and feedback content during 

those runs; and  

(5) test the final product out in a “student” view that recreates the actual learning experience (with no 

additional tools visible). In step 5, authors also have the option to activate the assessment engine and see 

how the authored model classifies each action (i.e., positive, negative, or mixed) with respect to the task 

list. 

A study of SitPed was conducted in 2014 that consisted of two phases. In the first phase, a set of 11 

domain experts were split across three authoring conditions: full SitPed (as described), SitPed Lite 

(hypertext-only with no graphics or sound), and a specialized spreadsheet. Authors were given scenario 

data and asked to annotate it both with appropriate tasks (as well as known or likely misconceptions) and 

tutor messages. In the second phase, the data sets generated from each condition were used to create three 

separate tutoring systems (randomly using one of the data sets from each corresponding group). Initial 

results from phase 1 suggest that authors in the SitPed conditions generally wrote longer feedback 

messages and created more links to the task list in their authored models, but covered far less of the 

scenario space. Although the results of phase 2 are still being analyzed at the time of this writing, initial 

results suggest that learners in all three conditions demonstrated learning gains with trends in favor of 

SitPed (Lane, Core, et al., in-press). 

Our final example of an authoring tool that leverages examples (or equivalently, demonstrations) is 

actually a more recent addition to CTAT. SimStudent (Matsuda, Cohen & Koedinger, 2014; Matsuda, et 

al., 2013) extends work started with Demonstr8 to pursue the holy grail of authoring: deriving cognitive 

models (or more generally, expert models with rich representations) based on demonstration of the skill. 

SimStudent uses inductive logic programming to infer production rules interactively with an author. That 

is, as an author interacts with SimStudent, the author is tutoring the system an author can simply 

show SimStudent what to do at any point or it can let SimStudent perform problem solving steps. In the 

latter case, the author gives feedback to confirm or correct the emerging model. SimStudent creators have 

demonstrated that the interactive approach produces higher levels of accuracy in the resulting models 

(Matsuda, et al., 2014). Similarly, the use of induction allowed the resulting model to go beyond the 

examples used to train it (MacLellan, Koedinger & Matsuda, 2014). By adding the element of teaching a 

model (versus simply demonstrating and letting the system observe), there seems to be a payoff in terms 

of how close the resulting models can get to a hand-authored cognitive model.  

Authoring by Demonstration in Simulation-Based Learning Environments 

Other key ITS authoring efforts have leveraged ideas from programming by demonstration and authoring 

with examples. In the area of simulation-based ITS authoring tools, RIDES was a pioneering effort that, 

among a wide variety of other capabilities, included demonstration as a method for extracting tutoring 

content (Munro, 2003; Munro et al., 1997; Munro, Pizzini, Johnson, Walker & Surmon, 2006). RIDES 

provided authors the ability to build their own interfaces and show how to use them in a specialized 

demonstration mode. In addition, RIDES had a rich language for modeling physical systems, identifying 

expert pathways through the system, and authoring pedagogical feedback. The system incorporates 

simulation along with other instructional materials to support procedural learning. RIDES has been used 
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to develop tutors for a variety of domains, including diagnosis of faulty electronic systems and shipboard 

radar tracking.  

A more recent instance of authoring by demonstration, being used in a simulated environment, is the 

Extensible Problem Specific Tutor (xPST) (S. Gilbert, Devasani, Kodavali & Blessing, 2011). By seeking 

to capture programming by demonstration in simulated, 3D environments, xPST is unique in its use of 

freely explorable 3D environments combined with authoring. The system allows authors to link tutoring 

behaviors to events in a 3D environment to enable the detection of key events (such as recognizing that a 

step in a procedure has been taken) and then tutoring at those times by delivering hints and feedback. 

While xPST does not involve authoring directly inside the 3D environment, a web interface is available 

that has been tested with nonprogrammers who have been able to successfully create tutors for specific 

skills (S. B. Gilbert, Blessing & Kodavali, 2009).  

Themes 

In this review of authoring systems that have specifically built to be accessible by nonprogrammers, a few 

key themes emerge that both highlight the limitations imposed by addressing this audience, and the key 

areas for future research that we address in our conclusions. Although the systems discussed in this 

chapter have seen some limited successes, they remain largely in the research and prototype categories 

with much to be desired in terms of ease of use and accessibility. This seems to be one stable, and 

undesirable, status of the field (Devasani, 2011; Murray, et al., 2003), although authoring ITS-like 

interactions have seen dramatic adoption rates (Heffernan & Heffernan, 2014). In nearly every system 

reviewed here, authors are not spared the inherent complexity of ITS creation (with SimStudent and 

ASPIRE standing out as possible exceptions). Authors must organize and annotate the vast space of 

possible learner actions given a specific problem (e.g., example-tracing tutors and SitPed), or alternatively 

create the complex pedagogical policies needed for ITS decision-making (e.g., REDEEM and xPST). It 

could be argued that this inherent complexity is unavoidable. In the rest of this section, we summarize 

these issues by highlighting three themes that emerge from the review. 

Theme One: Leveraging of Intuition and Existing Skillsets 

All of the authoring tools in this review seek, to varying degrees, to leverage intuitive and simplified 

elicitation methods such as providing examples or using basic ontology creation tools. The two primary 

categories of approaches reviewed are (1) intuitive interfaces for capturing domain and pedagogical 

knowledge and (2) leveraging of an author’s existing skillsets and knowledge, such as solving problems 

in the targeted task domain. Developing GUIs (both for the learner by an author and for the author by a 

software engineer) are general challenges for authoring systems (Murray, 2003); however, the specific 

challenge of developing an interface for nonprogrammers is at its core a HCI problem. Interfaces matter, 

and they matter to a very large degree when system designers ask non-technical audiences to create highly 

technical content. The second approach, and one that shows up in several different forms in the reviewed 

systems, is to ask authors to do what they already know how to do: solve problems. Whether it is creating 

examples, demonstrating a task, or interactively walking through a problem space emulating a learner, 

this path to building tutors is showing significant promise. Evaluations cited in this review suggest that 

nonprogrammers can do this, and that they can produce models with reasonably good accuracy.  

Theme Two: Tradeoff Between ITS Sophistication and Methods of Elicitation 

A closely related theme is the fundamental tradeoff that occurs when a system limits the expressive power 

of the author (which is a subset of the full space of tradeoffs outlined by Murray (2003, p. 518)). Of 
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course, limiting expressive power is necessary to simplifying knowledge elicitation (barring a profound 

discovery in the knowledge elicitation field). For example, REDEEM provides a wide array of easy-to-

understand sliders and a logical workflow while allowing authors to create “simple” tutors. Similarly, 

SitPed supports authors in navigating a large problem space by working in the learner’s environment, but 

does not produce an expert representation with the richness of most traditional ITSs. But emerging 

research that leverages machine learning techniques is beginning to close this gap. Both SimStudent and 

ASPIRE go one step further by attempting to build cognitive models and constraint bases from simplified 

interactions with an author. These are important advances in the field that directly address known 

shortcomings. The primary limitation is that these approaches are currently limited to fairly simple task 

domains that involve symbol manipulation (although important ones, including algebra and arithmetic). 

This is a typical progression in AI and so we suspect future work will push this research into new task 

domains and uncharted spaces. 

Theme Three: Focused Outputs from Authoring and Carefully Chosen Pedagogical 

Goals 

Authoring tools naturally tend to narrow the problem in appropriate ways to help authors complete the 

task and produce a usable system. In other words, authoring tools for nonprogrammers may never allow a 

single author to create an end-to-end tutor for any task domain imaginable, but they can certainly operate 

in defined spaces and allow authors to tailor existing systems for their particular needs. For example, 

xPST provides tools for problem-specific tutoring (i.e., a new model for each new problem) and example-

tracing is similar in that respect. In these cases, generalized ITSs are not the goal the goal is to offer step-

level help and assess learner actions in specific situations. The norm for nonprogrammer authoring is 

populate only the ITS modules (see Figure 1) that matter most given specific pedagogical aims. 

Conclusions 

The overarching contribution of work on authoring tools for nonprogrammers thus far is that it provides 

proof-of-concepts that simplify authoring environments, and can be used to produce usable tutors. There 

continues to be limited studies on the products of authoring tools in terms of teaching and learning 

efficacy since most studies look at either time to create content, or the completeness of a produced model. 

Simple success at building a tutor is also an important, but limiting measure.  

But, it is true that more studies are being conducted with authoring tools. REDEEM has been the focus of 

a long list of evaluations, even comparing performance against CAI counterparts (and outperforming 

them). Along those lines, SitPed’s two-phase study model seeks to link authoring affordances to 

differences in learning. These are promising trends that will lead to better authoring tools that do not 

simply make authoring easier, but also nudge authors to make decisions that are in line with known 

principles of learning and effective pedagogy. This large and growing body of work supports the notion 

that serious attention is being paid to nonprogrammers and scalability issues and suggests that the field as 

a whole recognizes the problem with having effective ITSs in the world, but only seeing limited adoption.  

There are still significant gaps in the research as a whole, however. Very few, if any of the systems 

reviewed here have treated the act of authoring as a cognitive skill. Although Murray (Murray, 2003) 

suggests that authoring tools could do a better job teaching authors how to author, the skill itself is largely 

treated as a black box. Highly relevant work on automated cognitive task analysis tools, such as DNA 

(Valerie J Shute & Torreano, 2003), has had an influence on ITS authoring tools, but there is still much 

room for improvement in modeling and supporting processes, decisions, and the creativity inherent in 

good authoring (which is a form of teaching, as evidenced by SimStudent). 
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With respect to the implications for the future of the GIFT architecture, it seems clear that a truly general 

system for non-technical audiences is not likely to bear fruit. Rather, given the nature of the systems built 

thus far and reviewed here, a more productive vision for GIFT would likely lie in creating specialized 

versions of GIFT for broad domain categories. For example, the history of cognitive tutors (Anderson, et 

al., 1995) and also with CTAT, many (but not all) of the systems focus on symbol manipulation tasks, 

such as geometry proofs, equation solving, stoichiometry, and so on. The commonality between a class of 

domains can be a powerful force in the world of authoring since it can support reuse of formalisms, 

pedagogy, and even interfaces. While GIFT is currently built around standards for formalizing assessment 

and pedagogy in any domain, a goal should be to provide tools that differentiate authoring across 

cognitive, affective, and psychomotor domains. The real challenge of authoring however is removing the 

required programming component to establish real-time assessment functions. As of now, all authoring is 

completed in GIFT’s domain knowledge file (DKF) where a hierarchical representation of a domain is 

linked to specific condition classes authored for determining performance on an “at-”, “above-”, and 

“below-expectation” rating. Having a situated interface that enables an author to establish performance 

criteria while building out scenarios and problem sets is recommended.  

A second, but related possible implication for GIFT from this work is the idea of building tools for 

building authoring tools (in the spirit of “compiler compilers” popular in the early years of computer 

science). In other words, designing a pipeline from engineers to end-users who face specific authoring 

tasks could further spread the work of building ITSs and expedite the production of ITSs that meet real 

needs. The problem would still exist for extracting rich knowledge from a non-programmer, but the 

engineer in the loop design could select the best methods given the task domain and the pedagogical 

goals, then produce tools that meet the need (e.g., authoring by example for practice support, or adaptive 

presentation of content using multiple-choice quizzes). The benefit is that GIFT already has many of the 

tools in place for programmers, so building customization tools and easily adjusted interfaces could imply 

an authoring tool generator is not far off. The open source nature of GIFT supports this approach, but 

buy-in is required from the ITS community as a whole so that the authoring tools, processes, and methods 

evolve as more systems are established using the GIFT architectural dependencies. 

A final recommendation for GIFT that emerges from this review highlights the need for a longer-term 

vision for the future of authoring tools. GIFT is equipped with a number of important capabilities that 

address the needs of educators and researchers. This combination could play a major role in bringing 

together the creation of ITSs with authoring tools and evolving them to both improve (in terms of their 

ability to promote learning) and be shared within a community. In the spirit of the ASSISTments project 

that has brought together unprecedented numbers of teachers to create, share, and evaluate content 

(Heffernan & Heffernan, 2014), GIFT could provide the underlying tools that allow authors to create 

ITSs, collect important data such as pre- and post-test scores, physiological data, and usability data, to act 

as the hub for a living cycle of growth and improvement of user-generated ITSs. The vision of an 

instructor creating content then reviewing the aggregated results of days-worth of usage to then make 

adjustments and improvements to the content, is a powerful one for GIFT developers to consider. It is 

understood that future GIFT developments are focused on pushing authoring to a collaborative, web-

based interface that uses customized tools to remove low-level programming for establishing the modules 

to deliver an ITS for a domain. The initial focus is on authoring environments to remove the burden of 

building out XML files that GIFT runs on. To make GIFT more extensible, a focus needs to address 

learning and training effectiveness tools to assess the effect of authored pedagogical approaches and their 

influence on performance outcomes. A sought after goal would be to establish probabilistic modeling 

approaches that can use reinforcement learning techniques to automatically adjust pedagogical policies 

based on outcomes across a large dataset of learners interacting with the system. This in turn introduces 

further complications when it comes to authoring tools, in that new techniques would be required to build 

out these policies when an individual is void of this knowledge and understanding.  
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In sum, research on authoring tools for nonprogrammers is making a great deal of progress and producing 

useful results. There is much room for continued improvements and, sadly, ITS authoring tools still fall 

way behind those of commercially viable CAI authoring tools (Murray, 2003). Researchers should 

continue to engage in more studies on authoring and focus on accuracy of produced models, usability of 

tools, and increase efficacy studies that link authoring affordances to learning outcomes. In addition, an 

issue not addressed in this review but of high importance the need for greater emphasis on multi-party 

authoring. It is unlikely that one person will be qualified to do end-to-end authoring, and so explicit 

support for collaboration and workspaces is definitely needed. Authoring researchers should seek to 

provide explicit support for good pedagogy and the targeting the right level of complexity for desired 

learning outcomes. Together, and with general frameworks like GIFT to underlie them, it is likely that 

authoring tools for ITSs will continue to close the gap between research and real-world needs. As newer 

technologies, such as tablets and immersive games, work their way into educational technologies more 

deeply, authoring tools will evolve to meet those needs and research should be conducted to inform these 

inevitable trends. 
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Introduction 

The Generalized Intelligent Framework for Tutoring (GIFT) is a modular architecture built upon 

standardized tools and methods to support personalized instruction across an array of computer-based 

training applications (Sottilare, Brawner, Goldberg & Holden, 2013). With an emphasis on 

personalization, GIFT requires a domain-agnostic pedagogical structure to support the authoring and 

delivery of varying instructional techniques that can be executed within any learning environment (Wang-

Costello, Goldberg, Tarr, Cintron & Jiang, 2013). From an implementation standpoint, this pedagogical 

framework requires authoring functions that enable a system developer to configure strategy types to 

specific domain calls and a runtime component that supports strategy execution in real-time based on 

learner model inputs. During an initial market survey to address this requirement, no open-source solution 

was recognized that provides adaptive course-flow capabilities based on both individual differences 

across learners and historical and real-time performance metrics. The goal is to establish functions in 

GIFT that determine what information to present, how best to present it, what assessments to deliver, how 

best to grade them, and what guidance to provide and how best to moderate it.  

To facilitate this need, the Engine for Management of Adaptive Pedagogy (EMAP) was developed. The 

EMAP is a pedagogical architecture built around GIFT standards to support the authoring and delivery of 

adaptive course materials that function on both an inner-loop and outer-loop capacity (Goldberg et al., 

2012; VanLehn , 2006). It is structured around David Merrill’s Component Display Theory (CDT; 

Merrill, 1994) and is designed to support adaptive instruction based on the tenets of knowledge and skill 

acquisition. The framework is designed to assist with two facets of lesson creation. First, it is designed to 

serve as a guiding template for subject matter experts when constructing intelligent and adaptive course 

materials that adhere to sound instructional design principles. And second, it serves as a framework to 

support instructional strategy focused research to examine pedagogical practices and the influence of 

individual differences on learning outcomes. As such, the EMAP required the development of authoring 

tools to support the types of functions and data calls linked to its implementation. In this chapter, we 

define a notional authoring workflow using the EMAP. We highlight the varying authoring tools and 

processes required for implementing individualized instruction along with the instructional system theory 

informing its design. In addition, we highlight intended use cases of the EMAP across two distinctly 

different application environments: (1) EMAP for support of experimentation within the learning sciences 

research community and (2) EMAP for support of course development across instructional designers and 

educators in a classroom or distributed setting. This is followed by a description of future work involving 

the EMAP to support automated creation of learning materials through the use of reusable learning 

objects and large ontological representations of domains and courses.  

The Engine For Management Of Adaptive Pedagogy (EMAP) 

The EMAP enhances GIFT through a set of authoring tools and runtime components that enable 

customized personalization across multiple instructional strategy types. The goal is to provide a means for 
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instructors and course developers to build highly individualized lesson interactions that manage the 

student experience based on configured learning paths and real-time performance. In addition, the EMAP 

serves as an automated lesson manager when a learning event is executed in a self-regulated environment. 

It is currently being built to manage the delivery of information and course materials, perform assessment 

related practices to determine an individual’s knowledge and skill for a set of concepts linked with a 

domain, manage the delivery of real-time guidance and interventions found to support learning outcomes, 

and direct remediation paths based on performance. 

The pedagogical framework is intended to support the various interactions that occur when an individual 

is learning a new topic or skill. This includes the design of actionable logic that determines for every 

domain of instruction (1) what material to present, (2) how best to assess knowledge and skill linked to a 

task and set of competencies, and (3) what guidance and feedback practices most reliably impact 

subsequent performance outcomes. The goal is to establish a data-driven pedagogical model that adapts 

strategy execution based on the type of learner the interventions moderate most appropriately. To make 

this a manageable problem space, the first steps associated with the EMAP design was identifying a 

generalized framework to support its function that is grounded in sound instructional system design (ISD) 

theory. In the following subsection, we highlight the ISD tenets informing the EMAP’s implementation 

and the constraints and limitations associated with the selected approach. 

Instructional Design Informing EMAP Development 

The EMAP design was the resulting outcome of a collaborative project between the US Army Research 

Laboratory (ARL) and the Institute for Simulation and Training (IST) at the University of Central Florida. 

The task was to define a generalized pedagogical framework that enables the execution of instructional 

strategies and interventions that are personalized to a given learner and are based on prior empirical 

evidence supporting their utility. Another goal was to establish a simplistic pedagogical framework that 

accounts for the multiple interactions associated with learning a new domain, on a general level. The 

simplistic approach is desired for two reasons: (1) to ease the authoring burden on the course developer in 

an effort to reduce their workload associated with intelligent tutoring system (ITS) creation and (2) to 

establish a lesson flow that focuses on domain relevant information that can support adaptive remediation 

loops.  

Following an extensive review of literature focused on instructional system design and pedagogical 

strategy implementations within computer-based learning environments, the team selected David 

Merrill’s component display theory (CDT) to serve as the guiding framework to formalize the EMAP 

requirements around (Wang-Costello, Goldberg, Tarr, Cintron & Jiang, 2013). The CDT was originally 

constructed as a way to simplify theories and models of instruction around a set of core interactions a 

learner engages in when mastering a new domain (Merrill, 1994). For our efforts, the CDT served as a 

simplistic framework to organize instructional strategy research that would ultimately inform the 

development of the EMAP’s domain independent structure. 

The CDT breaks learning down into four fundamental presentation forms that focus on content and 

presentation modes. These instructional conditions, known as CDT’s Presentation Forms, provide the 

basic building blocks for the instructional strategies present in the EMAP. CDT indicates two paths when 

it comes to content as depicted in the Primary Presentation Forms (Figure 1): Content can be presented 

(expository); or the instructor asks the student to remember or use the content (inquisitory). The content 

can represent a general case (generality) or it can represent a specific case (instance). Therefore, 

instruction can be divided into four categories: Expository generality present a general case (Rule); 

Expository instance present a specific case (Example); Inquisitory generality ask the student to 

remember or apply the general case (Recall); and Inquisitory instance ask the student to remember or 
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apply the specific case (Practice). These four categories can be used as high-level metadata descriptors to 

label training content, with each category applying different pedagogical practices inherent to the learning 

process. Therefore, instructional strategies can be explicitly defined and categorized within each 

component of the CDT. This association allows an instructional designer to understand what a piece of 

content is intended to provide in a lesson context (i.e., this video y provides an example for enabling 

objective x), and further instructional strategies can be defined to inform when this piece of material is 

most suitable for use. With a framework for organizing content and applying metadata descriptors, a 

model is required to determine selection criteria and to perform conflict resolution.  

Content 

Mode 

CDT Model 

The Primary Presentation Forms 

Generality Rule Recall 

Instances Example Practice 

 Expository Inquisitory 

  Presentation Mode 

 

Figure 1. The CDT model 

Addressing Individual Differences in the EMAP 

With the CDT serving as a generalized pedagogical framework for course construction, the next task was 

building empirically driven condition statements for the delivery of instructional materials that account 

for individual differences across a set of learners. The initial construction was facilitated through the 

creation of an algorithm in the form of a decision tree that informs adaptation based on general learner 

characteristics. Specifically, the decision tree informs the selection of instructional strategies based on 

known information about the learner (e.g., learner motivation, learning style, previous experience, etc.) 

and the logic is established using the Pedagogical Configuration Authoring Tool (PCAT), which is 

described in detail below. The resulting strategies were identified through an extensive literature review 

of empirically based research in an attempt to produce a list of commonly applied techniques found to 

reliably impact learning outcomes.  

While many strategies were investigated across the learning sciences community, and many themes 

recognized, the studies often were limited to single domains and learning environments. The summary of 

this work can be seen across two publications produced during the execution of the described effort (see 

Goldberg et al., 2012; Wang-Costello et al., 2013). As a result, establishing a truly generalized 

pedagogical manager requires future research in an attempt to study the effect of strategies on outcomes 

and how those specific instructional techniques transfer to different learning environments. In this vein, 

the EMAP was designed to support both the creation of customized learning applications in addition to 

providing tools to support robust instructional strategy focused research. The aim for such work is to 

inform the learning community as a whole and to inform future GIFT developments. In order for GIFT 

and the EMAP to become widely accepted, its application must be easy to learn and apply. In the next 

section, we highlight the various authoring processes developed to support EMAP functions and how the 

tools are designed for use when building out adaptive GIFT managed courses. 
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Gift Authoring Tools to Support EMAP Functions 

A number of authoring processes have been established to support the various pedagogical functions 

made available by the EMAP. In this section, we introduce the environments currently in place to 

implement specific configurations that the EMAP operates on. These include (1) the PCAT, (2) the 

Survey Authoring System (SAS), (3) the Metadata Authoring Tool (MAT), and (4) the Course Authoring 

Tool (CAT). Each tool serves a different purpose in building out the adaptive logic associated with a 

lesson using Merrill’s CDT to structure interaction and assessment types. It is important to note that each 

tool is currently implemented within an open-source extensible markup language (XML) editor that has 

pre-established schemas. These tools are not intended to be the final authoring interfaces, as each process 

is being converted into web-based tools designed around usability principles and heuristics to support 

ease of interaction. However, with that said it is important to understand the underlying logic informing 

the EMAP, as it will support a better applications of its method. 

Pedagogical Configuration Authoring Tool 

The PCAT is an interface component designed for linking learner relevant information with metadata that 

drives pedagogical decisions in GIFT. One important note to mention is the domain independent nature of 

what is authored in the PCAT. More often than not, systems tightly couple pedagogy with the domain, 

providing little reuse for future developmental efforts. The EMAP differs from this description in that the 

authoring process is based on generalized tools and methods that translate across domain applications, 

including the pedagogical strategies the system acts upon (Goldberg et al., 2012). As seen in Figure 1, a 

developer interacting with the PCAT defines learner model attributes they want GIFT to use for 

moderating adaptive practices. This is accomplished by linking a set of content descriptors with a given 

attribute across each of the established CDT quadrants represented in GIFT. These descriptors are a 

collection of metadata tags that are machine actionable and provide generalized information associated 

with content and guidance that can be used to configure system interactions in real time. The metadata 

currently in use is based on the learning object metadata (LOM; Mitchell & Farha, 2007) standard put in 

place by the Institute for Electrical and Electronics Engineers (IEEE). This provides a set of high level 

categories (e.g., interactivity type, difficulty, skill level, coverage, etc.) and value ranges (i.e., skill level is 

broken down into novice, journeyman, and expert) that inform characteristics for a type of interaction. 

As an example, one can see in Figure 2 that personalization is moderated by an individual’s prior 

knowledge, self-regulatory ability, motivation, and grit. When establishing these variables, a current 

assumption is that the learner model has a historical representation of these measures or that the system 

has a means for collecting inputs to inform classification. Continuing with this example, a developer has 

the ability to define the attributes that dictate varying pedagogical techniques based on the CDT quadrant. 

For the Rules and Examples quadrants, an author’s primary function is to define ideal types of content 

with relation to the individual differences variable that moderates it selection. For instance, you can see 

specific metadata tags linked with the learner attribute Motivation and the value Low. For this type of 

learner, the PCAT will look for Rules associated content that has tags marked as visual, animations, and 

low interactivity. The tags currently referenced are based on the previously mentioned instructional 

strategies literature review we conducted. These configurations are informed by prior instructional 

strategy focused research, but their true utility as a generalized strategy needs further verification and 

validation.  
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Figure 2. GIFT’s PCAT 

While Rules and Examples primarily focus on information delivery, the Recall and Practice quadrants are 

focused on assessment, guidance, and remediation. The Recall quadrant is unique because it focuses on 

knowledge elicitation through an automatically generated quiz. To enable this capability, there are two 

additional authoring processes that take place in the SAS. First, one builds a bank of concept questions to 

generate a recall assessment from. Second, one uses the CAT to configure assessment scoring outcomes 

that determine if one advances to practice or if a remediation loop is triggered. Each process is covered in 

more detail below.  

In the Practice quadrant, an author establishes adaptive configurations associated with the difficulty and 

complexity of a scenario, along with timing and specificity configurations linked to concept assessments 

being managed during run-time. The PCAT is unique because it differentiates the type of pedagogy 

associated with different types of interactions tied to learning a new topic or domain. This enables 

personalization on a number of facets linked to instruction, such as modifying delivery of content based 

on prior knowledge/experiences and learning preferences to focusing guidance and remediation around 

knowledge gaps and impasses recognized during assessment. While the PCAT establishes configurations 

of learner information with pedagogical technique, the MAT is set up to build metadata files that 

associate with a specific learning material or training application. 
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Metadata Authoring Tool (MAT) 

The MAT (Figure 3) is an interface component in GIFT that provides a simple function; it allows one to 

tag existing training content with concept-dependent metadata that is acted upon by the EMAP. While the 

PCAT enables an ITS developer to build configurations between learner model data and metadata 

descriptors linked with pedagogical techniques, the MAT is established to build files that link metadata 

with actual content that can be delivered for learning purposes. When in an EMAP managed lesson, a 

learner is directed through defined branching points, called Merrill’s Branching, that associate with the 

four quadrants of the CDT. When a learner starts instruction in the Rules quadrant, the PCAT produced 

file is referenced for determining the type of content to search for based on a learner’s individual profile 

and the type of metadata their models inform. Next, the EMAP searches through the various files 

generated in the MAT, for a given lesson, and looks for the closest match with respect to the number of 

descriptors for a given learning material and the ideal match informed by the PCAT. As such, the MAT is 

a very important tool as it allows an author and system developer to label their content in a controlled 

fashion that is then moderated autonomously by the EMAP during run-time.  

 

Figure 3. GIFT’s MAT 

As the MAT is based on EMAP theory and design, it provides multiple input fields that relate to how the 

pedagogical model operates. These input fields are used to create a GIFT metadata file that when 

collocated with any number of additional metadata file instances, can be mined during course execution to 
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determine what material to present to a learner. Figure 3 provides a screenshot of the MAT authoring 

environment and displays input entries for a specific PowerPoint used in medic training. The initial 

activity for a developer is to provide a reference to the learning material that is being described with 

metadata attributes. The MAT allows the author to select whether additional features are needed when the 

content is delivered such as concept assessments and useful instructional strategies. Next, the author is 

responsible for entering the quadrant of the CDT this material most appropriately belongs to. This is a 

drop-down menu that allows one to enter whether the referenced item associates with rules, examples, 

recall, or practice. This is followed by designating the concepts that are covered for a referenced item. 

This entry is very important as each Merrill’s Branch Point functions on specific concepts defined when 

building out the GIFT course file (this will be explained in more detail when presenting GIFT’s CAT).  

Once concepts are identified, it is up to the interfacing developer to begin adding LOM tags that best 

describe the piece the material in question. In the example above, one can see that the author entered tags 

that inform a learning object’s interactivity, content style, difficulty/skill level, and the amount of user 

control. An individual author can tag a learning object with as many descriptors as they deem appropriate. 

With metadata in place to support the delivery of lesson materials and objects across the various EMAP 

quadrants, an author also has the ability to author concept based assessment prompts for presentation in 

the Recall quadrant. These assessment questions are developed in the Survey Authoring System. 

Survey Authoring System (SAS) 

When an individual installs the latest version of GIFT, that user is given access to the SAS. The SAS was 

developed for two primary purposes: (1) to collect learner relevant information through surveys that are 

used to update learner model attributes for the purpose of adaptation and (2) to deliver knowledge 

assessments in the form of questions that can be automatically scored for updating competency states and 

reporting performance across a set of learning objectives and concepts. In terms of the EMAP, both 

functions are highly relevant. Firstly, if one defines configurations in the PCAT that act on learner trait 

information such as motivation or grit, the SAS allows a developer to present validated questionnaires 

and surveys that can be used to classify that individual learner. These functions are described in more 

detail in the provided GIFT documentation once downloaded and many examples are made available to 

work from. 

For the purpose of this chapter, we focus on how the SAS is used to support the Recall quadrant in the 

EMAP by assembling and delivering a set of questions for determining competency and informing 

remediation paths. The SAS was modified to support the EMAP by providing a “check on learning” 

function through the assessment of knowledge states across a set of predefined concepts for a lesson. A 

course developer would start interaction in the SAS by building out a bank of questions that are of 

relevance to the topic of instruction. As can be seen in Figure 4, GIFT’s SAS provides a web interface to 

author the question, the answer type, and scoring weights that are used in determining knowledge states. 

A new field added to the question building process is defining a set of associated concepts the specific 

item informs. For EMAP purposes, this field is very important as it is used in defining the specific 

question bank that will be used within the Recall quadrant interactions. One can also define the difficulty 

level of a question in the properties filed, as a course developer can configure the number of questions to 

be administered for a difficulty level across a specified concept as well.  
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Figure 4. GIFT’s SAS question creation interface 

Following question generation, a course developer is then required to build the context for which the 

generated items will be acted upon. This is achieved by establishing the specified concept question bank 

the EMAP will operate on within the SAS’s survey context interface window (Figure 5). The survey 

context is referenced by GIFT’s CAT, which is described next, and is used to identify the questionnaires 

in the database that are referenced during course construction, as well as establishing question banks that 

are used for Recall assessment purposes. In the SAS survey context interface, the author has the ability to 

add concept question banks by selecting a specific concept that was established during question 

generation. If the author selects a question bank for “Some Concept A,” then all questions that have an 

“Associated Concept” property field with that particular entry will be included in the designated bank. If 

one is using the EMAP to deliver a lesson on three concepts, this is where one organizes separate 

questions banks for each concept, thus providing a granular approach to assessment for the purpose of 

moderating personalized and performance driven remediation. For each concept question bank, an author 

has an option of building in multiple questions of varying difficulty so as to avoid assessment on the same 

question sets (i.e., imagine only 1 question existed for a concept, it would always be presented in a pre-

test, 1st recall and 2nd/3rd recall after remediation for the same learner each time the concept was taught). 

Based on this, it is recommended a user author multiple questions across each concept so as to maintain 

random assessment selection.  
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Figure 5. GIFT’s SAS survey context interface for the EMAP 

One can also see that this survey context includes four independent questionnaires that are linked to the 

context name that is used when creating a lesson or course. For this instance, the identified surveys are 

used at the beginning of a lesson to update learner model attributes that are acted upon by the EMAP 

quadrants as configured in the PCAT. With an established EMAP configuration completed in the PCAT, 

an array of course materials and objects with associated metadata files, and the construction of question 

banks for check-on-learning practices, the next step a course developer takes is using the CAT to build 

out a sequence of interactions and transitions that will guide a learner automatically through lesson 

materials.  

Course Authoring Tool (CAT) 

The GIFT CAT is the final authoring interface a course developer interacts with once all of their materials 

and assessments have been appropriately configured for EMAP run-time. It is in this environment that an 
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author designates the sequence of interaction a learner will experience for a specific lesson. The lesson is 

composed of defined transitions that dictate what is presented next (see GIFT documentation for a full list 

of available transitions and their associated descriptions). The transitions of interest for the EMAP are 

Present Survey and Merrill's Branch Point. The Present Survey transition enables an author to select a 

questionnaire present in the SAS that will be delivered to a learner at any point in the course flow. For 

EMAP purposes, a course developer might call for surveys upfront to collect information on learner 

model attributes, such as measuring an individual’s motivation for a topic and applying a pre-test 

assessment to establish initial performance states that can dictate lesson flow. This requires an author to 

designate a survey context present within the SAS that determines what surveys and concept question 

banks are made available (Figure 6). These referenced surveys can then be selected when a Present 

Survey transition is entered. As one can see in Figure 6, a motivation survey and knowledge pre-test are 

both entered as individual transitions to start the lesson. A pre-test is unique because it can be used to 

modify a user’s experience within a lesson. An author can specify performance criteria for bypassing 

components of instruction based on outcomes associated with this pre-test.  

 

Figure 6. GIFT’s CAT 

With defined surveys used to inform learner attributes and a pre-test to gauge initial knowledge levels, the 

next step for an author is establishing Merrill Branch Points. These branch point transitions are managed 

by the configurations established in the PCAT and MAT, as described above. Within the CAT, the author 

selects specific concepts used to build the quadrants of the CDT for a given branch point. Within a single 

course, one can define multiple branch point transitions. In figure 6, one can see two branches were 

entered, covering a total of three concepts to be instructed. Once the author has selected the concepts a 

branch point associates with, the author then has the opportunity to configure interactions across the 

quadrants of the CDT. The CAT configurations allow a user to deselect certain quadrants that would be 

bypassed when a learner enters that branch transition. In Figure 7, one can see the visual breakdown of 

the quadrants where the practice field was not checked, thus bypassing that interaction.   
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Figure 7. GIFT’s CAT: Merrill’s Branch Point Transition 

The last configurations an author can make within the CAT is specifying what will be delivered to a 

learner within the Recall quadrant of the CDT (Figure 8). Once a user specifies the survey context 

referenced in the SAS and the concepts a Merrill’s Branch Point is used to manage, the next step is 

defining the number of questions to deliver for knowledge state assessment purposes and the scoring rules 

that determine the state value to communicate out to the learner module. When defining the number of 

questions to deliver, the inputs are used to identify matches within the established question banks that are 

built in the survey context interface within the SAS. It first looks for questions linked to a concept and 

then it looks for metadata values used to classify a difficulty ranking. In the example in Figure 8, the user 

inputs the delivery of 1 question for the associated concepts across all three difficulty levels of easy, 

medium, and hard.  
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Figure 8. GIFT’s CAT: Recall Assessment Scoring Rules 

Below the question types, the assessment rules are defined. In the current state of the EMAP 

development, assessment rules are simple condition statements linked to the number of questions a 

learner gets scored correctly. These condition statements are important because they are used to determine 

if the learner proceeds out of the Recall quadrant and into the Practice quadrant, if that interaction is 

available, or if a learner triggers a Remediation Loop. Remediation Loops work in the same fashion for 

the Recall and Practice quadrants. It is triggered by a form of assessment across both the knowledge and 

skill states maintained in GIFT’s learner model. If a concept is scored at “below expectation” or “at 

expectation” the EMAP initiates remediation by routing the learner to a Rule or Example quadrant for the 

presentation of additional learning objects.   

The selected path of remediation is based on the performance state resulting from an administered 

assessment. For “below expectation” outcomes, the user is delivered both Rule and Example materials 

focused on the specific concept found below criteria. For “at expectation” outcomes, the user is delivered 

just Example materials before a follow-on assessment. In the event that multiple forms of content exist for 

a single concept, an algorithm has been established that performs conflict resolution for initial content 

selection as well as secondary remediation selection. This is important, as an author can build in multiple 

representations of a single concept, thus providing more options to personalize a lesson around. All 

remediation paths are reconfigurable. The current prioritization logic in place is as follows: 

(1) If possible, don’t present domain content that has already been presented. 



 

331 

(2) Maximize the needed coverage of concepts by selecting the fewest content to present at that time.  

(3) Maximize the appropriateness of the content by selecting the best match of EMAP learner state 

attributes to the available metadata attributes.  

(4) If available, use the content’s paradata (i.e., usage data about learning resources) to trim the 

number of content choices that cover the same set of needed concepts. 

(5) Choose randomly from the content choices that cover the same set of needed concepts. 

The EMAP’s Intended Function 

When designing the EMAP, two primary end-users were considered. These included traditional educators 

and training developers that would use the EMAP toolsets to author adaptive courseware materials they 

could distribute across classes and training organizations, and it included researchers and scientists within 

the learning sciences community that have interest in adaptive instruction, individual differences, and 

pedagogical heuristics. Making the distinctions between these two user groups is important because it will 

dictate the primary authoring tools they will interact with. 

The EMAP for Educators and Training Developers 

The main difference between these two user sets is their interest and background associated with 

individual differences based research. A simple assumption with our design is that the primary group of 

educators and training developers building course materials with the EMAP will not be experts in 

pedagogical theory and practice, thus placing an emphasis on GIFT to accommodate this lack of 

knowledge. In fact, for this specific user group, the goal is to have an empirically driven pedagogical 

configuration established within the PCAT that would require no manipulation. It will have support for all 

the learner attributes available within GIFT along with pedagogical strategies to implement for a given 

learner across the type of interactions experienced within the CDT quadrants.  

As the goal of the EMAP is to support streamlined creation of personalized educational content, the 

primary interactions this user group will engage in are housed within the MAT, SAS, and CAT. As 

mentioned before, the PCAT will be off limits to these individuals because it will be operated in a default 

capacity as it is intended to be empirically driven. However, a primary responsibility of these authors is to 

tag available content, practice scenarios, and assessments with LOM descriptors that the PCAT is 

configured around. A training developer will need to create a metadata descriptor file for each piece of 

content and associate those files with the various quadrants of the CDT. As these authors are assumed to 

be experts in the field they are building a course around, their main responsibility is bringing appropriate 

materials to use for instruction and to set them up so that GIFT can manage their delivery. 

Following interaction in the MAT, an author is then responsible to use the SAS to establish the surveys 

that will be used to inform learner model attributes. An author is also then responsible to build concept 

question banks that are ultimately used for pre-/post-test assessments as well as checks-on-learning 

conducted within the Recall quadrant. Following, this class of authors would then interact in the CAT to 

build out the sequence of transitions a learner would progress through, including the number of Merrill’s 

Branch Points to be experienced. Once interaction in the CAT is complete, this user group can then run an 

EMAP managed course and distribute it as required. 
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The EMAP for the Learning Sciences Research Community 

When considering the authoring experience across the EMAP tools for the learning sciences community, 

an assumption is that this user group is interested in the creation of experimental groups for the intentions 

of running studies to support feedback and individual differences based research. The main differences 

between these individuals and educators/training developers are that the learning sciences researchers will 

interact heavily with the PCAT to build out specific configurations in support of their research questions. 

This involves modifying current attributes available in the EMAP as well as adding additional variables 

with the goal of assessing its effectiveness in informing adaptive pedagogical approaches. Within the 

PCAT, an author references a learner model attribute as well as metadata descriptors associated with the 

ideal type of content to deliver to that specific learner. For research purposes, the learning sciences user 

group will be responsible for adding and removing available attribute tags for both the learner model and 

metadata variables and associated values. Each of the available tags are referenced in an enumeration file 

in GIFT’s source code that can be modified to support the type of learner attribute and metadata a 

researcher desires the EMAP to act on. These files can be located at the following directory off of GIFT 

root: GIFT\src\mil\arl\gift\common\enums\MetadataAttributeEnum.java and 

GIFT\src\mil\arl\gift\common\ enums\LearnerStateAttributeNameEnum.java. For each of the attributes 

represented in the learner state attribute enumerations file, a user will need to author an additional .java 

file that specifies the available tags made available for that variable when manipulating the PCAT 

authoring tool. Many examples are available to work from in the GIFT\src\mil\arl\gift\common\enums\ 

folder. Following any manipulation within GIFT’s source code, that user will need to recompile the 

program to update variables available in the authoring process.  

In implementing the EMAP for support in the learning sciences research community, there are also a 

couple more assumed dependencies associated with the authoring tools. While an author will be required 

to modify enumeration files in the source code to introduce variables of interest not currently supported in 

the baseline version of GIFT, an author will also be required to make additions in the SAS for the purpose 

of collecting individual differences metrics used to inform variable states that dictate strategy selection. In 

addition, GIFT also supports tracking and inferring upon affective based data for the purpose of 

diagnosing cognitive and emotional states experienced during a learning event. None of the current 

EMAP configurations are built to support acting on this type of assessment. The PCAT would need to be 

modified for this very purpose, along with identifying required classifiers that would be developed within 

the learner and sensor modules of GIFT. 

Future Work 

In its current baseline state, the EMAP provides an automated lesson manager for a GIFT course with 

some caveats. For example, the course author has but only one option for a “check on learning” within the 

Recall CDT quadrant and that is an assessment composed of items selected at runtime from a designated 

question bank. Other forms of knowledge assessment could be given, such as creating a static pre-

authored survey useful for research settings in which the consistency across users is desired or using 

AutoTutor (Nye, Graesser & Hu, 2014) web services integrated with GIFT. Using AutoTutor allows 

GIFT to hold a conversational discourse in natural language between one or more agents and the learner. 

This interaction can be used to elicit a learner’s comprehension of prior instructed concepts in their own 

words, which provides evidence for deeper understanding of a concept and its relationships.  

As additional EMAP functionality and content type support is expanded, GIFT can increasingly serve as 

the course delivery medium for third party applications such as Tools for Rapid Development of Expert 

Models (TRADEM; Brown, Martin, Ray & Robson, 2015). TRADEM is designed to rapidly assist in the 

transformation of domain content repositories into a hierarchical expert model. Ultimately, the user can 
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select to export the model into a simple GIFT course containing a Merrill’s branch point course transition. 

The course package includes at least one Rule and one Example based auto-generated, metadata tagged 

PowerPoint with slides that contain the information found in the expert model. In a future release of 

TRADEM, it will automatically populate the SAS question bank with a set of questions related to the 

course concepts, which will be used in the Recall CDT quadrant’s “check on learning.” Overall, this 

process will enable GIFT authors to quickly generate a simple course given a content repository 

containing many different files in numerous formats. 

Continuing with the theme of auto-generated EMAP informed courses, one might have or want to build 

an ontology representation of domain concepts and objectives where learning objects can be embedded. 

Such an ontology would represent the knowledge and skills associated with a given domain, while also 

providing direct linkages to content/problems/scenarios that can be used to instruct and assess those 

associated concepts. In this manner, GIFT plans to leverage the a concept applied in the SCALE program 

(Spain et al., 2013) where the leaf nodes in an established ontology related to land navigation are linked 

with reusable learning objects (RLOs) such as images, PDFs, question banks, training scenarios, etc. 

Using an ontology with established learning objects can be informed by EMAP relevant metadata 

descriptors, thereby exposing those assets to the data mining used during GIFT course execution. All of 

this would facilitate an educator to easily, and in some cases autonomously, build courseware that is 

adaptive and linked with an ontology. A possible issue with this approach is controlling inputs and 

performing semantic reasoning that allows linking concepts that are the same but labeled differently 

possibly due to different data sources, authors, organizations (e.g., “map reading,” “reading a map,” “read 

map,” “understanding a map,” etc.). 

Finally, as mentioned above, another major push with the EMAP is translating its authoring processes 

into an intuitive web-based interface that creates a transparent workflow of establishing all configurations 

required to run an adaptive GIFT managed lesson. This will require the application of human factors 

informed design that adheres to heuristics identified in the usability literature. Creating this authoring 

workflow will require extensive research focused on formative evaluations that create iterative 

development cycles to make the user experience as seamless as possible.  

Conclusion 

In this chapter, we presented the tools and methods formalized through the development of GIFT’s 

EMAP. Authoring adaptation in GIFT is dependent on the functions made available in the pedagogical 

module. The EMAP was built as an instructional framework that guides pedagogical authoring and 

implementation within GIFT. The eMAP is structured around David Merrill’s CDT and is designed to 

support adaptive instruction based on the tenets of knowledge and skill acquisition. The framework is 

designed to assist with two facets of lesson creation. First, it is designed to serve as a guiding template for 

subject matter experts when constructing intelligent and adaptive course materials that adhere to sound 

instructional design principles. Second, it serves as a framework to support instructional strategy focused 

research to examine pedagogical practices and the influence of individual differences on learning 

outcomes. We also described the fundamental components that make up the EMAP, followed by the 

authoring workflow associated with its implementation.  
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Introduction 

Intelligent tutoring system (ITS) authoring tools aim to lower the cost of code and content development, 

maintenance, and reuse. We discuss three techniques for cost-containment: tiering, layering, and 

bootstrapping. Our discussion focuses on the critical task of assessment authoring for situated tutors 

(Schatz, Oakes, Folsom-Kovarik and Dolletski-Lazar, 2011). Situated tutors are a class of ITSs where 

training is conducted in a scenario-playing experiential environment with intelligent adaptive instruction, 

including micro-adaptation within scenarios and/or macro-adaptation across scenarios (Shute, 1993). 

Exercise environments are often quite complex—e.g., simulations of helicopter flight controls, ship battle 

stations, sensor suites, or command and control systems—and often include components for interacting 

with simulated teammates, customers, or adversaries. Student assessment is complicated by the nuances 

of the domain and task, the need to track activity in such complicated simulations, and the need to 

generate simulation behaviors to create particular learning opportunities. Based entirely on the data and 

cues available from the training environment, automated assessment mechanisms are responsible for 

producing judgments of performance at a fidelity that meets training objectives by being sufficiently 

comparable to human instructor assessments. The complexity of the assessment mechanism in this kind of 

environment often translates to significant development costs, and thus the need for authoring techniques 

aimed at reducing costs by structuring the process, component, and content development tasks. 

A tiered structure of authoring tools offers a way to tailor knowledge elicitation and engineering for 

different classes of experts, ranging from those with domain expertise or instructional knowledge, to 

authors with skills in domain or task modeling, logical and symbolic reasoning, basic scripting, or even 

advanced programming. A layered approach to modeling allows for composition of model components. It 

promotes reuse of general knowledge where feasible, while allowing for context-specific knowledge to 

fill gaps as needed. A bootstrapping approach involves generalizing assessment knowledge from specific 

instances to scenario-independent mechanisms. Bootstrapping techniques we have applied include 

incremental rule condition generalization and student action templates created by demonstration and 

generalization. 

These techniques fit an ITS development approach emphasizing incremental example-driven evolution 

over upfront complete model development. We aim to gain the advantages of rapid/cheap initial 

capability while still ensuring that instructional unit costs taper over time. We describe our experience 

building ITS authoring tools that embody approaches to tiering, layering, and bootstrapping. 

Related Research 

Tiered authoring is an intuitive solution to the challenge of ITS authoring and, not surprisingly, has been 

implemented in one form or another by a variety of authoring tools. Murray (1999) discusses meta-

authoring tools as a potentially effective approach to addressing the usability and power trade-off. Meta-

authoring tools are a means for creating special-purpose authoring tools using general-purpose authoring 

tools. The latter are designed to be applicable to a wide variety of domains and support several types of 

pedagogical approaches and thus would present a larger degree of authoring complexity. The idea is that 
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highly skilled authors could use these tools to create special-purpose authoring tools that are targeted at a 

specific domain and a subset of pedagogical styles (Qiu & Riesbeck, 2005; Hsieh, Halff & Redfield, 

1999). Limiting the scope of the tool in this manner makes it possible to design these authoring tools to be 

more usable and less demanding in terms of authoring skills. Meta-authoring is an example of the tiered 

authoring approach that we discuss below. For a more recent example, Nye, et al. (2014) describe a tool 

that uses a tiered approach for augmenting web content with AutoTutor-like dialogues.  

Layered authoring of ITS content is primarily intended to enable and promote reuse. This fits one of the 

authoring tool methods enumerated by Murray (1999). However, given our bias toward example-driven 

situated tutor development, we focus on reuse across scenarios rather than across entire tutor applications. 

Layering is not aimed at reusing preexisting media or courseware as in REDEEM (Major, Ainsworth & 

Wood, 1997) or the Shareable Content Object Reference Model (SCORM) standard (ADL, 2009), nor is 

layering primarily concerned with reusing computational or user interface components (e.g., as in 

SIMQUEST; deJong et al., 1998). Layering, as presented here, would not make sense in the context of 

authoring a fully general domain model capable of solving any problem the tutor might pose to a student. 

Bootstrapped acquisition of domain knowledge has been gaining traction in recent years. A common 

approach is to use machine learning algorithms to learn initial domain knowledge and refine it on an 

ongoing basis (Kumar, Roy, Roberts & Makhoul, 2014; Aleven, McLaren, Sewall & Koedinger, 2006). 

More recently, SimStudent advances the concept even further where the ITS is an active learner, i.e., it 

learns from an initial set of demonstrated solutions and refines its knowledge by actively validating it on 

examples while asking for feedback and help, much like a student. Another bootstrapping approach is 

limited to using student performance data to improve a tutor’s assessment or student modeling knowledge 

while the initial knowledge itself is handcrafted (Baker, Corbett & Aleven, 2008; Barnes & Stamper, 

2008). However, such bootstrapping is primarily envisioned as an automated process, whereas we 

emphasize the more pragmatic approach of keeping authors in the loop to deal with the commonly 

required representational shifts. 

Discussion 

Tiered Authoring 

The challenge of ITS authoring lies in developing user-friendly tools that allow subject matter experts or 

instructional designers to create complex pieces of knowledge. The targeted authors typically do not 

possess the kinds of computational/logical modeling skill required to create the knowledge that informs 

ITSs. This skill gap is often too large to be bridged by authoring tools. One way to reduce this gap is to 

limit the complexity (breadth and/or depth) of knowledge provided to the tutor, thereby reducing 

modeling complexity. However, this comes at the cost of reducing the “intelligence” of the ITS. An 

alternative is to partition the space of the knowledge to be authored into sections that can be authored by 

different people with different skillsets. One approach is to partition the knowledge into modules, each of 

which might require a different skill set for authoring. For example, an author with expert modeling skills 

may author performance assessment rules while an instructional designer might configure the pedagogy. 

An alternative way to partition is to develop tiers of knowledge with one tier combining and specializing 

another. Templates are an example of intermediary structures or abstractions that can be combined 

together and instantiated to capture the knowledge required for assessment and tutoring. A tiered 

approach to authoring provides a way to divide and distribute the task so as to match the skillset and 

knowledge of the variety of contributors collaborating on the ITS. 

The EarthTutor ITS and authoring tool illustrates this approach. This ITS was designed for NASA to 

teach remote sensing image processing, a domain in which students analyze satellite data using an image 



 

337 

processing application. The objective of EarthTutor is to teach students to use image processing tools by 

completing exercises related to specific questions about an image. EarthTutor structures an exercise as a 

series of cards, each containing interactive behaviors embedded in HTML pages. The interactive 

behaviors consist of questions and real-world tasks the student must complete in the host application. 

Embedded in these behaviors is the logic for monitoring the student’s actions, presenting feedback, and 

updating the student model.  

EarthTutor provides a tiered tool suite for authoring these behaviors. At the foundational level, advanced 

authors use a graphical flow chart tool to combine ITS and host-application primitives into hierarchies of 

reusable parameterized assessment behaviors. A novice tier authoring tool, then, allows less skilled 

authors to use previously defined flow charts from the behavior library to create interactive cards for 

exercises. The novice tool enables authors to select behavior templates from the behavior library, 

instantiate their parameters, and embed them in a card with other HTML content. Adding an instantiated 

template to a card indicates (1) that the flow chart linked to the template should be executed when the 

card is displayed, and (2) that the student interface should replace the template with a user interface (UI) 

component (defined by the advanced author in the flow chart). This approach allows novice authors to 

tailor tutoring behaviors to their own pedagogical needs using parameters, but the interface is reduced to 

what you see is what you get (WYSIWYG) HTML and simple forms. This novice tier tool also lets 

authors define a hierarchical course structure in which a course contains labs and labs contain cards. The 

author can set properties for the courses, labs, and cards such as prerequisites and student modeling 

parameters. 

This two-tiered authoring architecture allows subject matter experts to create image processing exercises 

with automated intelligent tutoring support by piggybacking on the more advanced authors who populate 

the behavior library. Since the templates are designed to be reusable objects, the work invested in creating 

them can be amortized over many exercises. 

Figure 11 shows the authoring interface for creating behavior templates. In this example, the author has 

specified the steps for opening a specific image file using the application’s menu. Executing this behavior 

will show the student the necessary steps to find and open a file, monitor their actions, and provide 

feedback if they open the wrong file.  
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Figure 11. Flowchart behavior templates are created in EarthTutor’s expert authoring interface. 

Figure 12 shows a novice author creating a card for an exercise and embedding previously created 

behavior templates, including the one for opening a file using the menu. Here, the author has written 

introductory text and selected two behavior templates, including the one shown above for opening a file. 

The author has instantiated these templates using simple form-based graphical user interfaces (GUIs). 

When this card is shown to the student, the templates will be replaced by the GUI that shows the steps for 

opening a file, and student activity will be monitored as specified in the flowchart above.  
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Figure 12. HTML exercise cards are created in the novice authoring interface by instantiating behavior 

templates. 

We are using this tiered authoring approach for an ITS being developed to train Navy Information 

Technology (IT) support staff (ITADS). This is a simulation-based ITS designed to provide hands-on 

experience with troubleshooting skills and maintenance procedures. The knowledge required for 

automated assessment of performance—especially for troubleshooting exercises—requires complex 

modeling and will be constructed by developers or very advanced authors. Once the assessment 

knowledge has been modeled, less advanced authors will create scenarios that reference this model and tie 

to frozen sets of virtual machines supporting the simulation. Using simple form-based editors, novice 

authors can edit student-visible text associated with the scenario and with the model-linked coaching; they 

can also copy and adapt expert-developed scenarios. The ITS is also designed to use Socratic dialogues as 

a pedagogical strategy for coaching students. We take a tiered approach to authoring these dialogues as 

well. Advanced authors use a dialogue authoring tool to create a variety of dialogue structures. Novice 

authors copy and modify dialogues using form-based editors. 
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Layered Authoring 

Tiering primarily addresses the provision of different authoring tools for different kinds of content most 

efficiently created by different kinds of authors. The prototypical approach of templating allows a higher 

volume of content to be generated more quickly by lower-skilled authors, guided and constrained by 

patterns established by higher-skill (and more expensive) authors. Layering, in contrast, focuses on 

picking apart a single kind of content (or at least a single view of content that may be composited from 

related elements) into pieces that have different scopes of applicability or levels of generality. The object 

is to achieve more reuse of authored content. 

Our prototypical example of layering comes from a system that entwines simulation, assessment, and 

potential tutor interventions into a composite authoring view of linked content. Our Medical Emergency 

Team Tutored Learning Environment (METTLE) ITS teaches diagnosis, emergency response, and task-

specific coordination appropriate for responding to chemical, biological, and radiological attacks. The 

target trainee is an emergency room physician. In a scenario based on an anthrax attack, the doctor is 

coached through an initial diagnostic session with a mystery patient in their emergency room (ER). The 

web-based system supports text-based diagnostic interviewing, media-based physical examination, and 

form-based ordering of tests and treatments. A cast of other characters can be consulted or may intervene 

during the scenario, including an ER nurse, a hospital administrator, and staff members at ERs of other 

nearby hospitals. The tutor provides proactive and reactive hints and feedback, and can also carry out 

extended Socratic dialogues to review diagnostic logic. 

METTLE adopts a theater metaphor in which an exercise scenario is viewed as a sort of dynamic play. A 

METTLE scenario has a cast, each member of which is assigned a set of behaviors that we think of as 

“lines” in a nonlinear “script,” to be used when triggered by student activity or other scenario events. 

These behaviors can vary across the scenes of the scenario and based on the state of the character. Lines, 

then, can be assigned by role, scenario, scene, or state, (or, in the most flexible case, based on some 

combination of those factors). Lines can include (1) a cue (trigger conditions), (2) a response (the 

character’s scripted actions), (3) side-effects on scenario or character state, and (4) contextual tutor 

evaluations and comments (including hints, prompts, and feedback). 

METTLE allows for composition of scripts and even individual script lines from different sources. For 

instance, a set of default behaviors can be defined that apply to any character in any situation (e.g., how to 

handle greetings, farewells, and small talk), while a more specific set of behaviors can be defined for 

some particular class of simulated characters (e.g., how any character assigned the “patient” role should 

respond to diagnostic questions). For the patient role, we defined a basic set of several hundred default 

script lines, providing a reusable set of named rules with cues and “normal” responses covering many 

standard diagnostic interview questions, examination actions, diagnostic tests, and so on.  

When scripting any particular patient for any particular scenario, a subset of these default rules can be 

extended with situationally important responses, state changes, and tutoring. For instance, a patient with 

anthrax really only differs from a normal healthy adult on a small set of key diagnostic indicators. 

Authors can compose scenario-appropriate diagnostic question/answer script lines by taking the trigger 

from the role-general form of the behavior (the question stays the same), while overriding the response to 

fit the scenario (the answer is tuned to fit the results that would be expected for an anthrax patient). 

Entirely new rules can be added for behaviors that only make sense in the context of the scenario (or 

some scene or character state). For instance, if an important aspect of the case is how the patient got the 

disease, then a back-story can be introduced with a set of custom question and answer behaviors bearing 

on their recent activities, who they were with, and how those people are faring. 
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Consider a pair of example behaviors used in the anthrax scenario. First, there is a standard diagnostic 

interview question—appropriate in cases where the underlying issue might be an infectious disease—that 

checks if anyone else the patient knows is suffering from a similar problem. In the generic patient script 

there is a line named Complaint-Others that is specified with cues such as “Do you know anyone else 

with the same symptoms?” and a default answer of “No.” In the anthrax scenario, this is an important 

question and so additions and modifications are layered onto the default behavior. For starters, its answer 

is overridden so that the patient says: “Yeah, my cousin John has come down with some fluey thing since 

we last saw each other. My wife says his wife took him to Memorial Hospital today.” The triggering of 

this behavior is tied to a curriculum point labeled ED-Diagnosis-Infection and in the anthrax scenario a 

proactive prompt is associated to be used by the tutor if this behavior has not been triggered 5 minutes 

into the scenario: “You might consider asking whether Ryan knows anyone else who has what he has.” 

Our second example is a totally new script line introduced for this scenario. Once it is revealed that the 

patient’s cousin is also sick, there should be a follow-up line of questioning about the cousin. 

Accordingly, this scenario introduces a new line named Others-Cousin-When with cues that include 

“When did you last see your cousin?” eliciting the answer “We went to a basketball game together with 

another friend of mine maybe 5 or 6 days ago.” 

These examples illustrate composition of aggregate scripts from behaviors defined at different layers such 

as for generic characters, generic patients, and some particular patient in a scenario. They also illustrate 

composition of individual script lines from fragments defined at different layers, such as a 

question/answer behavior defined for generic patients being overridden with an answer appropriate to a 

particular patient and associated tutoring interventions. 

METTLE behaviors are composed from an extensible application-specific rule condition/action language. 

Extensions to that language can be viewed as an expert level authoring tier similar to EarthTutor’s 

advanced authoring of behavior templates. In addition, it might turn out that different tools are 

appropriate for different layers, or that different classes of authors are best suited to providing different 

layers of content. Nonetheless, when it comes to building up behaviors in layers, the primary issue is not 

division of labor, but rather content reusability—across exercises, courses, and possibly even domains. 

Bootstrapped Assessment 

Bootstrapped authoring, as applied to automated assessment, is an incremental development process 

where the cost of authoring is reduced with successive spirals or releases. Starting with example-based 

scenario-specific content and training mechanisms, authors incrementally generalize to create 

successively more reusable components. Each iteration offers cost savings over the last, coupled with 

wider reusability for the next.  

Before proceeding to examples, we explicate what we mean by generalized assessment mechanisms in the 

context of a situated tutor. A common tradeoff in designing automated assessment is the choice between 

an example-based or model-based approach. Example-based assessment makes inferences from the case-

specific conditions that apply in a particular scenario, without regard for how the same concepts would 

appear or be assessed in other scenarios. Because example-based assessment mechanisms can be 

essentially hard-coded with unique knowledge associated with a specific scenario, learner, or context, 

they are often easy to rapidly prototype. This can be very productive for the early stages of development 

when requirements are still being refined. However, as the number of scenarios grows, the example-based 

approach must be essentially replicated for each new scenario.  

In contrast, a model-based approach seeks to capture more general knowledge that reduces the cost of 

authoring new scenarios. In the broadest sense, an assessment model attempts to represent knowledge, 
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skills and aptitudes (KSAs) and how they’re applied in scenarios, without relying on unique scenario-

specific knowledge. In practice, there are numerous approaches to model-based assessment, ranging from 

those that represent recurring but recognizable constraints on good performance, to those that aim to 

represent a comprehensive space of possible actions together with the underlying cognitive states that 

produce those actions. Regardless of the precise formulation, we emphasize the goal of scenario-

independence. On one hand, the effort required to achieve scenario-independent assessment doesn’t easily 

scale down to the early development stages where prototyping is useful. So in the short term of initial 

prototyping, a purely model-based approach is inherently more costly and time-consuming to implement 

than a purely example-based approach. However, in the longer term, a generalized assessment model 

reaps authoring cost benefits precisely because of the scenario-independence. A generalized model can 

also theoretically be abstracted further, to shed the specific constraints of a given simulation or exercise 

environment, and yield cost savings for transitions to other platforms. 

Given the practical benefits of example-based methods in the short run and model-based methods in the 

long run, the bootstrapping approach seeks a transition from the former to the latter in the course of 

assessment authoring. This combines the expedient of an example-based approach for early development, 

with the future authoring benefits and cost savings associated with a generalized model. The concept of 

bootstrapped content authoring can be applied over successive development spirals of a scenario-based 

ITS, in tandem with expansions in either or both the collection of scenarios or the core ITS assessment 

capabilities.  

This bootstrapping approach was employed in the development of a game-based trainer for the Army’s 

US Military Academy (USMA) at West Point, called Intelligent Game-based Evaluation and Review 

(InGEAR). InGEAR is integrated with a tactical decision-making game called Follow Me, which is used 

at West Point to teach small unit leader tactics in dynamic, experiential scenarios. The project objective 

was to extend the reach of instructors and allow self-directed learning for cadets using the game 

environment. Before InGEAR was developed, Follow Me was used entirely with facilitated classroom 

learning, where all performance assessment and feedback in exercises was the province of human 

instructors. The USMA instructional staff designed an existing set of scenarios to exercise tactical 

concepts with varying degrees of difficulty, and assessed cadets’ performance by applying accumulated 

knowledge of scenario dynamics. For InGEAR, this existing scenario knowledge provided an excellent 

baseline for a rapid prototyping effort in the first spiral of development. Example-based assessments were 

developed within 4 months of the project start, following the lead of established instructional knowledge. 

One of the benefits of rapid prototyping in this manner is that it produces a useable training capability 

early on. However, with InGEAR the objective was to deliver scenario-independent mechanisms that 

could assess the same tactical concepts when relevant in future scenarios to be created or modified by the 

USMA instructional staff after the InGEAR development effort. The combination of short-term 

prototyping goals and long-term project goals motivated a bootstrapping evolution from an initial set of 

example-based assessments to an eventual set of generalized scenario-independent assessments using a 

constraint-based model. 

An example of this evolution involves the assessment of cover and concealment in tactical movement. 

Initially with existing Follow Me scenarios used at West Point, instructors were so intimately familiar 

with the terrain and enemy positions that they could immediately point to good and bad areas of cover and 

concealment. Following this lead, the initial example-based assessments in the first spiral used scenario-

specific annotations to score areas of terrain, applying a figure of merit for the quality of cover and 

concealment in significant areas. This was easy to develop quickly, and it provided a sample working 

assessment to review with instructors (along with automated feedback and other capabilities). It also 

served as an effective primer for the development team to quickly gain an understanding of the domain, 

which facilitated the ongoing collaboration with both the USMA staff and the developer of Follow Me. 
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However, this example-driven approach could not be easily extended to future scenarios, so the next 

spiral required a more general model-based approach to assessing cover and concealment. 

In order to develop a scenario-independent assessment for cover and concealment, the methodology was 

to review existing scenarios where the tactical principles were applied, and to abstract the key concepts 

across settings. From that, a mechanism could be constructed to reason about the merits of a tactical 

position with respect to those concepts, in any given scenario. The key concepts in this case involve 

visibilities in relation to actual or likely enemy positions, and visibilities in specific terrain (e.g., the 

inherent level of exposure on a ridgeline versus a wooded area). For this application, the game 

environment already dynamically calculates visibilities between units and between terrain positions. The 

screenshot in Figure 13 shows an example of terrain visibility in the game (represented as a pixelated 

overlay) from the position of a particular machine gun unit (also shown with its sector of fire as a wedge 

shaped graphic).  

 

Figure 13. The Follow Me game shows machine gun section visibilities and sectors of fire. 

During an exercise, instances of detection by enemy units trigger game notifications, contributing to half 

of the generalized assessment for cover and concealment. However, it is more complex to implement a 

real-time assessment of the quality of a position in terms of terrain exposure. To support such assessment, 

we constructed an authoring utility to pre-process the terrain database for any given scenario by 

generating exposure scores for all positions (represented as terrain tiles). These scores can then be used 

during execution for real-time assessment, without requiring heavy processing during the exercise and 

without requiring explicit manual instructor annotation of the terrain in authoring. The resulting 

generalized assessment for cover and concealment was scenario-independent, with minimal requirements 

on authors seeking to activate this assessment for a new scenario. From a methodological standpoint, the 

implementation benefited from the earlier knowledge acquired with the example-based implementation, 

which accelerated the development of the subsequent more general mechanism. As a further benefit, the 

general assessment’s performance could be compared with the earlier example-based versions as well. 
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For each scenario-independent assessment implemented for InGEAR, the final step to support authoring 

was to produce a specification for the parameters required to configure and apply the assessment 

mechanism in a scenario. In some cases, the parameters are thresholds for time, distances, survivability, 

or other factors that instructors determine will delineate performance standards (such as pass/fail). In 

other cases, the parameters involve a simple specification of a game artifact, such as an objective area to 

be secured as part of a tactical task. 

Recommendations and Future Research 

The three approaches discussed in this chapter, tiering, layering, and bootstrapping, hold promise for 

addressing the trade-off of power vs. usability in the design of authoring tools, while enabling cost-

savings through content reuse and restructuring. Further research is required to build such tools and 

validate them for a variety of ITSs. The Generalized Intelligent Framework for Tutoring (GIFT) can 

facilitate this research by providing a unified framework for collaboration on this research. 

GIFT provides a decomposition of typical ITS functionality that aligns well with a range of applications 

and capabilities. For instance, the architecture presented by Ragusa, Hoffman, and Leonard (2013) has 

many broad correspondences to the architecture of the ITADS system mentioned earlier: both separate 

management/monitor functions from the tutor user interface, which is separate from any simulation/game 

modules (which are linked to the ITS through an interface module); both have user management and 

learning management modules; and both have domain, learner, and pedagogy modules.  

Domain knowledge—specifically performance assessment rules—can be specified in the GIFT 

framework within extensible markup language (XML) domain knowledge files (DKFs). GIFT provides a 

Domain Knowledge File Authoring Tool (DAT), an XML editing tool for creating and editing these rules. 

The DKF—and its associated DAT—provide a means to define assessments and state transitions. 

Assessments use a hierarchy of tasks, concepts, and conditions to cover runtime performance assessment 

(during exercises) and scoring rules (aggregate after-exercise scores). State transitions itemize changes 

in learner state that are of interest (including, of course, assessed performance states), each with a list of 

strategies the tutor might use to respond to those changes.  

Within GIFT’s general module breakdown and domain modeling framework, we see several possible 

extensions that might support tiering, layering, and bootstrapping. 

An obvious way to support tiered authoring within this framework is to allow parameterized rules and 

create a GUI-based authoring tool in addition to the DAT for novice authors to instantiate parameters. 

Another useful capability would be to support multiple simultaneous authors so that the task of rule 

creation can be distributed more fluidly. With these changes, expert authors could create complex logic 

while novice authors could create simpler rules. This capability should be supported by associated 

integration and testing tools for the overall set of rules. A more advanced approach might be to provide 

the capability to create flowcharts representing branching sequences of assessments and state transitions 

(e.g., to represent procedural tasks). An expert tier authoring tool could be developed for creating such 

flowcharts as a part of a DKF specification, while a novice tier authoring tool supported selection and 

instantiation of templates. 

Layered authoring, as exemplified in METTLE, could also be introduced into the GIFT framework. One 

challenge here is our example’s relatively tight coupling between simulation/game construction, 

assessment authoring, and tutor intervention specification. However, if it is most natural for a scenario-

focused author to think about exercise behavior, performance evaluation, and coaching in tandem then 

authoring tools should provide a view that couples those structures, even though an underlying 
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architecture might divide the simulation/game from the assessment engine from the tutor utterances. At 

the same time, the tools should provide a view that helps authors understand the contextually composited 

form of a behavior or rule, even though it combines new and reused pieces from different scopes. Again, 

this view should be available irrespective of how the generic underlying ITS architecture wants to divide 

up the included, reused, and overridden bits of knowledge. 

Bootstrapped assessment authoring may also be facilitated with the GIFT framework, by adding structure 

for regression testing, to be integrated with the analysis testbed methodology. Naturally if assessment 

mechanisms will undergo an evolution as they are incrementally generalized, then some form of 

regression testing is desirable to verify that the assessment results from a generalized mechanism match 

those produced from earlier example-based assessments in a battery of specific scenarios. The GIFT 

framework may be an effective place to introduce such testing artifacts, because its domain module is 

designed to consume assessment outputs from an instrumented exercise environment, while being 

abstracted from the internals of the implementation in the environment. This inherently supports the 

abstraction between the GIFT domain module and pedagogical module. This same abstraction is relevant 

to a potential additional function for the GIFT analysis testbed methodology, which seeks to refine and 

validate learning outcomes in different conditions, such as an authored tutor versus traditional classroom 

learning. This comparison methodology would be useful for validating an evolving assessment approach 

developed in a bootstrapping fashion—to compare an initial baseline of example-based assessment 

mechanisms to subsequent more generalized iterations or spirals 
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CHAPTER 28  Expanding Authoring Tools to Support 

Psychomotor Training Beyond the Desktop 
Robert A. Sottilare, Scott J. Ososky, and Michael Boyce 

US Army Research Laboratory
 

Introduction 

Today, intelligent tutoring systems (ITSs) are generally authored to support desktop training applications 

with the most common domains being mathematics, computer programming, and physics. The success of 

using game-based platforms (e.g., Virtual BattleSpace 3 and VMedic) to train the cognitive aspects of 

military tasks (e.g., problem solving and decision making for land navigation, force-on-force battle 

tactics, and combat casualty care) have also demonstrated the efficacy of games as desktop training 

platforms when combined with measures of success and sufficient feedback to the learner.  

In recent years, implementations of game-based tutors (Goldberg, Sottilare, Brawner & Holden, 2012) 

using the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 

2012; Sottilare, Goldberg, Brawner & Holden, 2012) have demonstrated adaptive tutoring for desktop 

training applications similar to those shown in Figure 14. Measures of tutor-learner interactions shown in 

Figure 14 may or may not be available during psychomotor tasks being trained in the operational 

environment (e.g., embedded training or training in the wild). A goal is to integrate GIFT with more 

dynamic virtual simulations to support more natural learner interaction associated with the psychomotor 

elements of training tasks and thereby promote higher transfer of skills to the operational environment.  

This chapter begins to explore how authoring systems might be enhanced to support tutoring beyond the 

desktop for more dynamic physical tasks. 

 

Figure 14. Prototypical elements of a desktop tutor-user interface 
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As their name suggests, adaptive training systems (e.g., ITSs) offer more flexibility during instruction. 

Instruction is tailored to the needs and preferences of individual learners. Given the variability of learner 

attributes across the general population, this creates a greater demand for domain content authoring to 

support tailored training experiences. Finding efficient methods to create new content and to reuse 

existing content (e.g., training content in existing training simulations) is a critical element in making 

adaptive training affordable and ubiquitous (Sottilare, 2015). Tools and methods are needed to automate 

large portions of the authoring process. Before we can automate the authoring process, we first need to 

define the authoring process for domain modeling and then examine what is unique about authoring for 

psychomotor domains.  

Expert models (sometimes called ideal student models), scenario generation, content curation (search, 

retrieval, and selection), and learner assessment are all candidates for automating authoring processes. In 

order to operationalize automated authoring processes for psychomotor tasks, first we need to represent 

the dimensions of and then define measures for those tasks.  

Modes of Psychomotor Tasks and their Impact on Authoring  

In examining modes of dynamic interaction, we begin by modeling the type and degree of physical 

interaction. The degree of physical interaction in training as compared to how it is performed in the 

operational environment may impact transfer or the degree to which knowledge and skills developed in 

training are used in the operational environment. The authoring processes for all training environments 

include the development of the following: 

 instructional goals, objectives, and concepts to be learned 

 directed graphs to represent paths through the training material represented by concepts, 

assessments, and instructional decisions based on learning theory  

We have defined four levels of physical interaction in support of adaptive training: static, limited 

dynamic, enhanced dynamic, and full dynamic. Each is discussed in terms of its ability to support training 

in the psychomotor domain and its impact on the authoring process. 

Static Tutoring Mode for Low Dynamic, High Cognitive Tasks 

Static training environments (e.g., desktop computer training; see Figure 14) allow the learner to train for 

primarily cognitive tasks with little dynamic interaction. Desktop environments are unsuitable for training 

purely physical tasks, but may be used to reinforce knowledge acquisition during the rules, examples, and 

recall quadrants defined by component display theory (CDT; Merrill, Reiser, Ranney, and Trafton, 1992).  

Since the training tasks associated with desktop environments are primarily cognitive, the authoring 

process is primarily focused on delivering content to facilitate decision making and problem solving in 

the form of scenarios or graded problem sets (e.g., easy, moderate, difficult). There is much less focus on 

capturing any physical learner data or measures other than those needed to classify learner performance, 

engagement, cognitive load, and emotional states. These states are used to drive instructional decisions by 

the ITS. 

This mode is most closely aligned with authoring processes common to traditional ITSs to support 

tutoring in mathematics, physics, and computer programming. No assessments are required to compare 

and contrast detailed physical movements of the learner to an expert model. Cognitive task analyses may 
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be required to develop a cognitive model to assess and compare the learner’s decision-making and 

problem-solving processes relative to those of an expert.  

Limited Dynamic Tutoring Mode 

Limited dynamic tasks allow for full gestures and limited motion in a restricted area determined by the 

range of the sensors. Movement and tracking of the learner from standing positions to kneeling, sitting, or 

supine positions is supported so the range of physical tasks is broader than in static tasks. A prototype was 

developed in 2014 by SRI for the US Army Research Laboratory to support limited dynamic training 

(Figure 15) through multimodal sensing and tailoring of instruction driven by GIFT. The sensor suite 

(hardware and algorithms) included a Microsoft Kinect to support gesture and pose estimation, a high-

resolution web camera to support assessment of emotional states based on facial markers and gaze 

estimation, and a microphone to provide speech interaction and support stress evaluation via tonal 

analysis.    

 

Figure 15. Prototype for a limited dynamic training environment 

Limited dynamic environments support hybrid (cognitive, affective, psychomotor) tasks where a larger 

degree of interaction with the training environment and other learners is critical to learning, retention, and 

transfer to the operational environment. Decision-making and problem-solving tasks may be taught easily 

in a limited dynamic mode along with tasks requiring physical orientation (e.g., land navigation), but 

certain aspects of the environment are difficult to reproduce (e.g., running over uneven terrain). Small 

unit training scenarios may be possible by reproducing the individual training suites in Figure 15 and 

combining them in a shared synthetic environment.  
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The impact on authoring is the assessment of physical actions, which may include tracking of fine motor 

movements for some tasks (e.g., interaction with equipment). The ability of the ITS to track, assess, and 

respond to learner movements becomes critical to supporting training in a limited dynamic mode, and 

authoring in this mode is correspondingly more complex than in the static mode. This difficulty increases 

dramatically for team-level tasks where there is a high degree of interdependence in pursuing goals. In the 

team scenario, models for team processes (e.g., coordination, communication, and leadership) and team 

states related to performance and learning must be developed and then assessed in real time during 

training. 

Enhanced Dynamic Tutoring Mode 

Enhanced dynamic environments support tasks where freedom of movement and a high degree of 

interaction with other learners are critical to learning, retention, and transfer to the operational 

environment. Building clearing and other team-based tasks may be taught easily in an enhanced dynamic 

mode. The impact of this mode on the authoring process is similar to the limited dynamic mode, but more 

complex based on the higher degree of movement in the training environment (e.g., live, augmented 

reality, or mixed reality). This requires sensors with greater ranges or networks of sensors. As with the 

limited dynamic mode, authoring is complicated in team-based scenarios where multiple learners must be 

tracked over wider ranges in instrumented spaces. Team processes and states must also be modeled in this 

mode. 

Full Dynamic Tasks in the Wild 

Full dynamic mode transfers tutoring to the operational environments and could also be called embedded 

training or training in the wild. Tutoring would go with the learner wherever the learner goes. Full 

dynamic mode is critical to support tasks where a very high degree freedom of movement and a high 

degree of interaction with other learners are critical to learning, retention, and transfer to the operational 

environment.  

It is anticipated that psychomotor and social tasks may be best taught in full dynamic mode or an 

environment more closely resembling the operational environment. Research has shown that retrieval of 

learned information is better when the original learning context is reinstated during task performance and 

that contextual dependencies also extend to perceptual-motor behavior (Ruitenberg, De Kleine, Van der 

Lubbe, Verwey, and Abrahamse, 2012). This supports the notion that a misalignment between physical 

dynamics in training tasks will slow transfer of psychomotor skills during operations, and that a better 

alignment of the physical aspects of training tasks with how they will be performed on the job will result 

in more efficient transfer of motor skills. 

Authoring is complicated in this mode as sensor-based assessments of motor movements are currently 

limited to location. Sensor suites will need to be developed to support more detailed assessments of 

position, location, orientation, and other physical states. 

Measuring Learner Performance in the Psychomotor Domain 

Sometimes called the doing or action domain, tasks in the psychomotor domain are associated with 

physical tasks (e.g., marksmanship and sports like golf, baseball, and soccer) or manipulation of a 

tangible interface (e.g., driving or piloting vehicles and remotely piloting a vehicle), which may include 

physical movement, coordination, and the use of the motor skills along with cognitive elements (e.g., 
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decision making and problem solving). Simpson’s psychomotor taxonomy (1972, Figure 16) lists seven 

levels of psychomotor skill development from perception (low) to origination (high).  

 

Figure 16. Simpson’s (1972) psychomotor domain 

Psychomotor tasks encompass physical movement, coordination, and the use of the motor-skill areas. The 

development of these skills requires practice and is measured in terms of speed, precision, distance, 

procedures, or techniques in execution. While this domain is well represented in military training, 

research is needed to build adaptiveness into these training systems and thereby optimize deep learning. A 

goal of this research is to reduce the time to competency to allow time for over-training and deeper 

learning experiences which transfer more efficiently to the operational environment. 

For each type of physical task and associated training scenario, we can represent measures of skill 

development in a similar hierarchical fashion. In its simplest form, training is about asking learners to 

perform a task (with associated goals) under specific conditions (environment) to an established set of 

standards (measures), and finally, provide feedback about their performance to support improved learning 

and potential for greater performance in the future. Associated with each task is a set of required skills. 

By way of example, let’s examine a land navigation task: 

 Task: plan and navigate a route from point A (east) to point B (west) 

 Associated goals: determine one’s position on a map at 30 minute intervals as one navigates 

from one position (point A) to another (point B) 

 Measures: note the variance between actual position and marked position on the map at each  

30-minute interval and the time to complete course 

 Conditions: consists of a single individual learner wearing a global positioning system (GPS) 

tracker walking on hilly, forested terrain with restricted visibility; no watch or compass is 

available 

 Performance Standard: navigate course in 3 hours or less  

 Physical Skills Required: demonstrate endurance, speed, and balance for navigating over 

uneven terrain 

 Cognitive Skills Required: demonstrate map reading, assessment of position based on 

landmarks, and the position of the sun 
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We examine a land navigation task in terms of physical behaviors and cognitive skills starting with low 

skills and working toward examples of high skills. In terms of Simpson’s psychomotor domain, we also 

observe specific goals and measures that might be required to support interactive tutoring beyond the 

desktop (e.g., in an operational environment as embedded training or in the wild as part of a distributed 

learning application). Across all of the levels of psychomotor development, we have identified the need to 

capture performance-related behaviors (e.g., observing and organizing), but we also discuss the 

challenges and potential impact on the authoring process.  

An ITS must be able to acquire data about the learner’s choices and use these data to assess progress 

toward goals as measured against an expert model or other standard established for the task under 

training. The author must be able to identify and acquire key behavioral measures at each level of the 

psychomotor taxonomy. The author must also be aware of and manage cognitive load, and specifically, 

working memory during instruction (Sweller, Van Merrienboer & Paas, 1998). Sottilare & Goldberg 

(2012) suggest that comprehensive modeling of the learner during instruction is key to successfully 

managing cognitive load by either injecting difficulties during tutoring to engage the learner or reducing 

difficulty so the learner can realize success. ITSs will require the ability to distinguish one psychomotor 

level from another to determine progress of the learner based on either expected results based on past 

performance, on organizational standards, or in comparison to the expert behaviors described in the ITS 

expert model.  

Perception 

Perception is the “organization, identification, and interpretation of sensory information in order to 

represent and understand the environment” (Schacter, 2011). In our example task, land navigation, the 

learner is taking in information about the terrain and observing the position of the sun, and using to this 

information to estimate current position and choose future actions (e.g., routes). Perception behaviors 

include, but are not limited to choosing, describing, detecting, and differentiating (Simpson, 1972) based 

on sensory input and judgment. While we may not be able to directly observe the “interpretation of 

sensory information,” we can track the resulting behaviors stemming from decision making (e.g., learner 

moves off to the left toward the road below). Greater insight may also be teased out through reflect 

dialogue with the ITS. 

Set 

Sometimes called mindsets or dispositions, set includes mental, physical, and emotional dispositions that 

predetermine a person’s response to current conditions (Simpson, 1972). In the case of our land 

navigation task, the learner is assumed to have prerequisite skills (e.g., map reading), which drive 

reactions to current conditions. Since these cognitive skills are needed to successfully complete the task, 

these are part of the mental set. A learner’s motivation and enthusiasm to complete the task is part of the 

emotional set, and finally, the physical set might include a readiness to complete the task based on 

sufficient sleep and nutrition. Each of these dispositions can either enable or inhibit the learner’s ability to 

perform. Set behaviors include starting, displaying, reacting, responding, and volunteering (Simpson, 

1972). It is likely that long-term modeling of learner experiences can provide insight to the learner’s 

mental disposition based on meeting prerequisites for the task under training. Specific behavioral 

measures to determine emotional disposition may include semantic and/or tonal analysis of learner 

responses. Finally, the physical set may be determined through query or physiological sensing. 
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Response 

During the response stage of learning complex tasks, models are critical in skill development. It may be 

useful to the learner to observe others successfully performing the task of determining position based on 

the position of the sun at various times of day to determine direction. Trial and error through guided 

practice allows the learner to apply knowledge (e.g., heuristics) and eventually reduce errors as the learner 

develops enhanced mental and physical models. This assumes time is available to support discovery 

learning. In the case of land navigation, the learners may use the sun throughout the day to determine that 

they are traveling west toward point B. Over time, they will become more skilled at judging the time of 

day, and thereby the position of the sun and its relationship to a westerly course. Response behaviors 

include assembling, measuring, decomposing, manipulating, fixing, mixing, and organizing (Simpson, 

1972). It is likely that measures of response will be domain-specific.  

Mechanism 

During the mechanism stage, learned responses are now habitual and physical movements can be 

performed with a growing degree of confidence. In our land navigation example, learners running over 

uneven terrain the first time would be slower and more deliberate in their movements, while learners who 

have practiced and habituated this skill will run more easily and with much less conscious thought. This 

reduces the cognitive workload during this action and allows this resource to be applied to other elements 

of the task. Mechanism behaviors include many of the same behaviors as in response, but are displayed at 

a higher level of automaticity (Simpson, 1972). Measures of mechanism will be similar to response, but 

the speed and accuracy of learner actions will have increased based on deliberate practice.  

Complex Overt Response 

During the complex overt response stage, the learner displays highly skillful performance of physical 

actions that involve complex movement patterns. At this level of proficiency, the learner does not 

hesitate, and is accurate and highly coordinated. They perform required actions with a minimum 

expenditure of energy. In our land navigation example, the ability to move easily and almost effortlessly 

over uneven terrain has developed to a high level of confidence and speed. Complex overt response 

behaviors include many of the same behaviors as in response and mechanism, but are displayed at a 

higher level of automaticity (Simpson, 1972). Measures of complex overt response will be similar to 

mechanism and response, but the speed and accuracy of learner actions will have increased based on 

deliberate practice. 

Adaptation 

In adaptation, the learner’s skills are so well developed that the learner can change movement patterns to 

fit special requirements or unexpected situations. As the term adaptation suggests, the learner’s behaviors 

include changing, altering, rearranging, reorganizing, revising, and varying movement to meet new 

situations that may never been encountered by the learner previously (Simpson, 1972). In our land 

navigation example, the learner could encounter obstacles (e.g., near vertical paths and rivers) in route to 

point B that may require adaptation of the more basic “moving over uneven terrain” skill. Physical pattern 

recognition will be needed for the ITS to recognize standards (most likely) physical actions and their 

variants. 
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Origination  

During origination, the learner arranges, combines, composes, develops, designs, and creates. With an 

emphasis on creativity based on highly developed skills, the learner crafts new movement patterns to fit a 

particular scenario, a set of conditions, or a specific problem (Simpson, 1972). Again, physical pattern 

recognition will be needed for the ITS to recognize standards (most likely) physical actions and their 

variants, but the ITS will also need to recognize when physical behaviors have evolved to become 

sufficiently different to be classified as “new.” 

Implications for Authors and GIFT 

This chapter has examined the expansion of authoring in support of tutoring in psychomotor domains. 

The primary implications for authoring in the psychomotor domain are in developing mode-specific 

measures and sensor suites (hardware and algorithms) to support the assessment of individual motor 

movements, team processes, and team states. There are many opportunities for research to support these 

challenges. For example, research is needed to support assessments of fine motor movements at a 

distance. Likewise, opportunities to evaluate commercial tools (e.g., smart glasses) to provide instruction, 

feedback, and enhanced interaction between the learner and the environment should also be pursued. 

An examination of the expansion of authoring, however, would not be complete without addressing the 

impact that those new methods, tools, and technologies may have on the authoring experience from a 

user-perspective. While automated authoring processes are a goal of ITSs, in general, it is likely that the 

burden of physically creating the tutor will fall to human hands for the foreseeable future. The act of 

creating an intelligent tutor, whether through computer programming or a guided user interface, is a 

process with which many potential authors (e.g., subject matter experts, training facilitators) may be 

unfamiliar. Developing an artificially intelligent tutor represents a new content creation activity, one for 

which new human mental models are required. ITS authoring shares some superficial similarities with 

other content creation activities such as developing a slide deck designing a web page. Though, there are 

aspects of tutor creation are unique to ITSs (e.g., content selection based on learner model) for which new 

authoring processes must be defined. By extension, the nature of the psychomotor domain presents a 

specific set of challenges in authoring tutors for learners in dynamic environments as well as the testing 

and evaluation of those tutors.  

Authoring for Different Interfaces 

Instructional content is typically authored with PC-based software tools; courses created with those tools 

are usually accessed by learners using PC-based hardware (as evidenced by low dynamic trainers). More 

sophisticated creation tools support cross-platform compatibility to access course content on phones and 

tablets. However, if adaptive tutoring is to truly move beyond the desktop, then tutor authoring tools must 

also accommodate non-traditional interfaces, such as embedded systems, augmented reality, or haptic 

systems. 

Recall the land navigation example. In full dynamic mode, for instance, learners are moving through in an 

open environment. The constraints dictate that no watch or compass is available. Learners must also 

attend to environmental features and reference area maps. The characteristics of the land navigation task 

represent potential limitations for the author with respect the type of content and communication that can 

be delivered to the learner — it may not be practical or appropriate to add a smartphone to the learner’s 

physical and cognitive load. Therefore, authors must identify an appropriate modality by which 

instructional interventions may be communicated to the learner, as well as determine how to implement 

that solution with their tutor creation tools. Traditional software tutor authoring tools will need to extend 
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their functionality be able to create content for and interoperate with available devices that may be 

embedded with learners in the field. Research will also be needed to attend to the usability of authoring 

tools, concurrent with the development of new functionality.  

Authoring for Different Environments  

Real-world environments introduce new constraints such as noise, glare, temperature, or physical 

obstacles. Those environments features vie for the attention of the learner and represent constraints that 

authors must consider when developing adaptive tutors.  

For instance, examine the interaction with the talking avatar shown in Figure 1. The author may desire to 

carry the avatar interaction into a dynamic environment in order to create a consistent narrative across 

various stages of training. In developing an enhanced dynamic component to the land navigation course, 

the author plans to use an augmented reality headset for use in daytime and nighttime scenarios, including 

simulated night vision capabilities. The author realizes learners’ visual bandwidth may be overloaded 

with information from the task itself and decides to use auditory communication for instructional 

interventions without the visual avatar component.  

Even at this stage in the design, additional decisions must be made. The author can push auditory 

messages to the learner at the point of need, but risks the learner being unable to attend to the message 

while moving about. Alternatively, the author can notify the learner that guidance is available (i.e., pull), 

at the risk of the learner ignoring the guidance or listening to it when it is no longer useful. Thus, as 

training environments increase in approximation of real-world settings, authors will need to consider how 

features of the training environment impact the design of the tutor. 

Test and Evaluation of Psychomotor Domain Tutors  

Current GUI-based tutor authoring tools leverage visual design interfaces that allow authors to preview 

course content (from the learner’s perspective) as it is being created. This method of content creation has 

been referred to as what you see is what you get (WYSIWYG) and is the common method of content 

creation for documents, slide decks, and web pages. That method is somewhat inadequate for creating 

training in dynamic environments, which may include unique hardware interfaces and complex physical 

environments, described in the previous sections, respectively. Authors, however, will still require the 

means to review and update training material to ensure, for example, sensors and communication between 

the learner and tutor function as intended or that branches of the tutor are accessed based on 

corresponding learner models.  

Suppose that the author(s) in the land navigation example decided to overlay an interactive avatar in the 

augmented reality display. The author, designing the course from a desktop computer, must make some 

decisions regarding the size, position, and transparency of the physical avatar within the learner’s display. 

The avatar must be configured in such a way that it provides an instructional benefit to the learner, while 

not detracting from necessary information in the visual field. The author might reference literature to 

determine the configuration, go through a testing process with pilot users, or make an educated guess and 

hope for the best. To that end, authoring tools can support authors by embedding best practices into 

GIFT’s development interfaces to allow authors to work from a series of default options.  

The cornerstone of adaptive tutoring is instructional interventions and branching content based on learner 

data. Authors may also want to know if their interventions are triggered at the correct moments within the 

course, as well as trace the tutor content model to ensure that all permutations of the content are reachable 

under intended learner states. To test those elements of the tutor within a static environment, an author 

might simply need to answer a pre or post-test survey with the desired responses and examine the result. 
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Testing the same tutor functionality in the land navigation example by creating GPS and other physical 

sensor data is labor intensive and potentially impractical. Therefore, a robust set of GIFT authoring tools 

should also include the capability to automatically simulate sensor data in order to generate a set of 

learner states to test the adaptive portions of the tutor.  

Finally, the value of an adaptive tutor will be diminished without mechanisms by which the effectiveness 

of the tutor can be evaluated. The degree to which training for psychomotor tasks is effective may be 

dependent upon the level of physical interaction (i.e., mode). Further, the data required to assess the 

effectiveness of the training may overlap with the data collected for the learner model. There are 

opportunities to minimize effort by building training effectiveness hooks into authoring tools, thus 

creating a more comprehensive solution. Enabling authoring tools in GIFT with a forward-looking 

perspective toward training effectiveness may also create opportunities to embed data collection tools into 

live (non-training) performance assessments. Such features may provide an easier path to expanding 

authoring tools in support of psychomotor tasks beyond training into transfer tasks and long-term skill 

development.  
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technology research of the growing user community. He manages and contributes support for the GIFT 

community through various mediums including the GIFT portal (www.GIFTTutoring.org), annual GIFT 

Symposium conferences, and various technical exchanges. In addition, he excels in integrating third-party 

capabilities such as software and hardware systems that enable other organizations to integrate GIFT into 

their training solutions.  
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Heather Holden 

Heather K. Holden, PhD, is an Assistant Professor in the School of Information Technology for Mount 

Washington College. She is a former researcher for the LITE Lab within ARL-HRED. The focus of her 

research is in AI and ITS application to education and training; technology acceptance; and human-

computer interaction. Dr. Holden’s doctoral research evaluated the relationship between teachers’ 

technology acceptance and usage behaviors to better understand the perceived usability and use of job-

related technologies. Her work has been published in the Journal of Research on Technology in 

Education, the International Journal of Mobile Learning and Organization, the Interactive Technology 

and Smart Education Journal, and several relevant conference proceedings. Her PhD and MS were 

earned in information systems from the University of Maryland, Baltimore County. Dr. Holden also 

possesses a BS in computer science from the University of Maryland, Eastern Shore. 

Tanner Jackson 

G. Tanner Jackson is a research scientist in the Research and Development Division at Educational 

Testing Service (ETS) in Princeton, NJ. Tanner received a PhD degree in cognitive psychology in 2007 

and a MS degree in cognitive psychology in 2004—both from UofM. He also received a BA degree in 

psychology from Rhodes College in 2001. After completing a Postdoctoral Fellowship at UofM (2008–

2011), he continued his research as an Assistant Research Professor within the Learning Sciences Institute 

at ASU (2011–2013). His current work at ETS focuses on innovative assessments and student process 

data. His main efforts involve the development and evaluation of conversation-based formative 

assessments (through ETS strategic initiatives) and game-based assessments (working in collaboration 

with GlassLab). Additionally, he is interested in how users interact with complex systems, and leverages 

these environments to examine and interpret continuous and live data streams, including user interactions 

across time within an assessment system. 

Matthew E. Jacovina 

Matthew E. Jacovina is a Postdoctoral Scholar working with Dr. Danielle McNamara in the Science of 

Learning and Educational Technology Lab (SoLET). He received his PhD in cognitive psychology in 

2011 working with Dr. Richard Gerrig at Stony Brook University and subsequently worked as a 

Postdoctoral Fellow with Dr. David Rapp at Northwestern University. He studies the cognitive processes 

that guide comprehension and communication, focusing on situations in which success is complicated by 

mismatches between discourse content and prior knowledge, preferential biases, or time pressure. He is 

interested in how individual differences influence success in these situations, and how educational 

technology can leverage these understandings to individualize and improve learning. He is currently 

working on the optimization of iSTART-2 and Writing Pal, game-based tutoring systems teaching 

reading and writing strategies. 

Randy Jensen 

Randy Jensen is a group manager at Stottler Henke Associates, Inc., working in training systems since 

1993. His research areas include adaptive training, distributed learning, game-based training, behavior 

modeling, and NLP. He has led projects to develop ITSs and automated after-action review tools for the 

Army, Air Force, Navy, and Marines. Recent work includes a model-based performance assessment 

capability for training troubleshooting skills in an ITS for the US Navy. He also recently led the 

development of a game-based trainer for small unit tactical decision-making at the United States Military 
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Academy at West Point. Mr. Jensen holds a BS with honors in symbolic systems from Stanford 

University. 

Lewis Johnson 

Dr. Lewis Johnson co-founded Alelo in 2005 as a spinout of the University of Southern California. Under 

his leadership, Alelo has developed into a major producer of innovative learning products focusing on 

communication skills. Alelo has developed courses for use in a number of countries around the world, all 

using the Virtual Role-Play method. Dr. Johnson is an internationally recognized leader in innovation for 

education and training. In 2012, he was keynote speaker at the International Symposium on Automated 

Detection of Errors in Pronunciation Training in Stockholm. In 2013, he was keynote speaker at the 

International Association of Science and Technology for Development (IASTED) Technology Enhanced 

Learning Conference and the SimTecT conference, and was co-chair of the Industry and Innovation Track 

of the Artificial Intelligence in Education (AIED) 2013 conference. In 2014, he was keynote speaker at 

the International Conference on Intelligent Tutoring Systems, and was Distinguished Lecturer at the 

National Science Foundation. When not engaged in developing disruptive learning products, Lewis and 

his wife Kim produce Kona coffee in Hawaii. 

Irvin Katz 

Irvin R. Katz is Director of the Cognitive Sciences Research Group at ETS in Princeton, NJ. He earned a 

PhD in cognitive psychology from CMU in 1988. In addition to ETS, he has held positions at Keio 

University in Yokohama, Japan; the US Bureau of Labor Statistics; the US Census Bureau; and George 

Mason University. Throughout his 25-year career at ETS, he has conducted research that applies and 

develops theories of cognitive learning and reasoning to issues of educational assessment. Dr. Katz is also 

a human-computer interaction practitioner with more than 30 years of experience in designing, building, 

and evaluating software for research, industry, and government. The Cognitive Science Research Group 

that he directs comprises 12 scientists who conduct research and development at the forefront of 

educational assessment, using cognitive theory in the design of assessments, building cognitive models to 

guide interpretation of test-takers’ performance, and researching cognitive issues in the context of 

assessment. Moving beyond traditional (e.g., multiple-choice) tests, the group investigates reliable and 

valid assessment (both summative and formative) using innovative, highly interactive digital 

environments such as online games, virtual labs or other simulations, and human-agent conversation-

based interactions. 

Ken Koedinger 

Dr. Kenneth Koedinger is Professor of Human-Computer Interaction and Psychology at CMU. His 

research has contributed new principles and techniques for the design of educational software and has 

produced basic cognitive science research results on the nature of student thinking and learning. Dr. 

Koedinger is a co-founder of Carnegie Learning (carnegielearning.com <http://carnegielearning.com>) 

and the CMU Director of LearnLab (learnlab.org <http://learnlab.org>). LearnLab is supporting Big Data 

investigations in education and, more generally, leverages cognitive and computational approaches to 

support researchers in investigating the instructional conditions that cause robust student learning. See 

pact.cs.cmu.edu/ koedinger.html <http://pact.cs.cmu.edu/koedinger.html> for more information. 
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H. Chad Lane 

H. Chad Lane is an Associate Professor of Educational Psychology and Informatics at the University of 

Illinois, Urbana-Champaign (UIUC). His work focuses on the application of AI and entertainment 

technologies to educational problems. He has published over 40 papers in areas including educational 

games, pedagogical agents, scaffolding/feedback, and virtual environments for learning. Prior to joining 

UIUC, he was the Director for Learning Sciences Research at the USC ICT. He received his PhD in 

Computer Science in 2004 from the University of Pittsburgh where he studied intelligent tutoring systems 

and the learning sciences. In 2013, Chad served as the Program Co-Chair for the 16th International 

Conference on AIED. He also serves on the executive committee of the AIED Society (an elected 

position), as an associate editor for several major educational technology journals, and as an advisor for 

the NSF Cyberlearning CIRCL center. More information is available on his website: http://hchadlane.net.  

James Lester 

James C. Lester is Distinguished Professor of Computer Science and Director of the Center for 

Educational Informatics at North Carolina State University. His research focuses on transforming 

education with technology-rich learning environments. Using AI, game technologies, and computational 

linguistics, he designs, develops, fields, and evaluates next-generation learning technologies for K-12 

science, literacy, and computer science education. His work on personalized learning ranges from game-

based learning environments and ITSs to affective computing, computational models of narrative, and 

natural language tutorial dialogue. The adaptive learning environments he and his colleagues develop 

have been used by thousands of students in K-12 classrooms throughout the US He received his BA 

(Highest Honors, Phi Beta Kappa), MSCS, and PhD in computer science from the University of Texas at 

Austin. He received his BA in history from Baylor University. He has served as Editor-in-Chief of the 

International Journal of Artificial Intelligence in Education and Program Chair for the International 

Conference on Intelligent Tutoring Systems, the International Conference on Intelligent User Interfaces, 

and the International Conference on Foundations of Digital Games. The recipient of a NSF CAREER 

Award, he is a Fellow of the Association for the Advancement of Artificial Intelligence (AAAI). 

Marcia Linn 

Marcia C. Linn is Professor of Development and Cognition, specializing in S&T in the Graduate School 

of Education, UC Berkeley. She is a member of the National Academy of Education and a Fellow of the 

American Association for the Advancement of Science (AAAS), the American Psychological 

Association, and the Association for Psychological Science. She has served as President of the 

International Society of the Learning Sciences, Chair of the AAAS Education Section, and on the boards 

of the AAAS, the Educational Testing Service Graduate Record Examination, the McDonnell Foundation 

Cognitive Studies in Education Practice, and the NSF Education and Human Resources Directorate. 

Awards include the National Association for Research in Science Teaching Award for Lifelong 

Distinguished Contributions to Science Education, the American Educational Research Association 

Willystine Goodsell Award, and the Council of Scientific Society Presidents first award for Excellence in 

Educational Research. 

Danielle S. McNamara 

Danielle S. McNamara is a Professor in the Psychology Department at ASU and director of the Science of 

Learning and Educational Technology laboratory. She focuses on educational technologies and 

discovering new methods to improve students’ ability to understand challenging text, learn new 
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information, and convey their thoughts and ideas in writing. Her work integrates various approaches and 

methodologies including the development of game-based ITSs (e.g., iSTART, Writing Pal), the 

development of NLP tools (e.g., iSTART, Writing Pal, Coh-Metrix, the Writing Assessment Tool), basic 

research to better understand cognitive and motivational processes involved in comprehension and 

writing, and the use of learning analytics across multiple contexts. More information about her research 

and access to her publications are available at soletlab.com. 

Noboru Matsuda 

Dr. Noboru Matsuda is research faculty at the Human-Computer Interaction Institute at CMU. His 

primary research interest is in an application of cutting-edge technologies to build an effective learning 

technology for all students. To achieve this goal, Dr. Matsuda studies the transformative theory of 

advanced educational technology as well as cognitive theories of learning and teaching. Dr. Matsuda 

received a PhD in intelligent systems from the University of Pittsburgh in 2004. Dr. Matsuda has 

developed a number of ITSs in math (arithmetic, geometry theorem proving and algebra equations), C 

language, and the formal specification language Z. In recent years, Dr. Matsuda has been leading the 

SimStudent project (www.SimStudent.org) where the research team develops an AI that learns problem-

solving skills through guided-problem solving (aka peer tutoring) and worked-out examples (aka learning 

by self-explanation). Applications of SimStudent include (1) developing an innovative authoring system 

for cognitive tutors by using SimStudent as an intelligent apprentice that learns subject matter knowledge 

from authors, (2) understanding the theory of learn by teaching by using SimStudent as a synthetic peer 

that students can teach, and (3) advancing theory of learning by running simulations using SimStudent. 

Camillia Matuk 

Camillia Matuk is Assistant professor of Educational Communication and Technology at New York 

University’s Steinhardt School of Culture, Education, and Human Development. Her interests are in the 

design of technologies for teaching, learning, and collaboration. Recently, she has been involved in 

researching how tools within online learning environments can support classroom science inquiry, and 

how they can encourage teachers to design and refine their instruction. Matuk has a PhD in learning 

sciences from Northwestern University, an MSc in biomedical communications from the University of 

Toronto, and a BSc in biological sciences from the University of Windsor. She completed a postdoctoral 

fellowship with the TELS center at UC Berkeley. 

Tanja Mitrovic 

Dr. Antonija (Tanja) Mitrovic is a full professor and the Head of the Department of Computer Science 

and Software Engineering at the University of Canterbury, Christchurch, New Zealand. She is the leader 

of Intelligent Computer Tutoring Group (ICTG). Dr. Mitrovic received her PhD in computer science from 

the University of Nis, Yugoslavia, in 1994. Prof. Mitrovic is president of the International Society of 

Artificial Intelligence in Education. She is an associate editor of the following journals: International 

Journal on Artificial Intelligence in Education, IEEE Transactions on Teaching and Learning 

Technologies, and Research and Practice in Technology Enhanced Learning (RPTEL). Dr. Mitrovic’s 

primary research interests are in student modeling. ICTG has developed a number of constraint-based 

intelligent tutoring systems in a variety of domains, which have been thoroughly evaluated in real 

classrooms, and proven to be highly effective. These systems provide adaptive support for acquiring both 

problem-solving skills and meta-cognitive skills (such as self-explanation and self-assessment). Although 

most of the ITSs developed by ICTG support students learning individually in areas such as database 

querying (SQL-Tutor), database design (EER-Tutor and ERM-Tutor), and data normalization (NORMIT), 
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there are also constraint-based tutors for object-oriented software design and collaborative skills, various 

engineering topics (thermodynamics, mechanics), training to interpret medical images and language-

learning. ICTG has also developed the Authoring Software Platform for Intelligent Resources in 

Education (ASPIRE), a full authoring and deployment environment for constraint-based tutors. Recent 

research includes affect-aware tutors and motivational tutors. She has authored over 200 peer-reviewed 

publications. 

Bradford Mott 

Bradford Mott is a Senior Research Scientist in the Center for Educational Informatics at North Carolina 

State University. He received his PhD in computer science from North Carolina State University, where 

his research focused on intelligent game-based learning environments. His research interests include AI 

and human-computer interaction, with applications in educational technology. In particular, his research 

focuses on game-based learning environments, intelligent tutoring systems, computer games, and 

computational models of interactive narrative. His research has been recognized with best paper awards 

and he has contributed to several award-winning video games, including one that received a game of the 

year award. He has many years of software development experience from industry, including extensive 

experience in the video game industry, having served as Technical Director at Emergent Game 

Technologies where he created cross-platform middleware solutions for Microsoft’s Xbox and Sony’s 

PlayStation video game consoles. 

Tom Murray 

Dr. Tom Murray is a Senior Research Fellow in School of Computer Science at the University of 

Massachusetts Amherst. His current research areas include supporting social deliberative skills in online 

contexts, and text analytics for cognitive developmental levels. He has also published in the areas of ITS 

authoring tools, adaptive hypermedia, intelligent learning environments, and knowledge engineering. He 

is also publishes papers in the field of integral theory on embodied epistemology, contemplative dialogue 

practices, and applied ethics. Murray has degrees in educational technology (EdD, MEd), computer 

science (MS), and physics (BS). He is on the editorial review boards of two international journals, the 

International Journal of Artificial Intelligence in Education and Integral Review (as an Associate Editor). 

Benjamin Nye 

Benjamin D. Nye is a research assistant professor at UofM at the IIS. His current focus is on ITS 

architectures, with a focus on lowering barriers to developing and adopting ITS technology. His primary 

research project is the ONR STEM Grand Challenge, where he is researching natural language tutoring 

modules called sharable knowledge objects (SKOs). He is also involved in cognitive agent-based 

architectures. His thesis topic was “Modeling Memes: A Memetic View of Affordance Learning,” which 

examined memes theoretically and computationally through a model that synthesized Shannon 

Information Theory and Observational Learning from Bandura’s Socio-Cognitive Learning Theory. 

Brent Olde 

Dr. Brent Olde is a Lieutenant Commander in the US Navy. He is currently assigned as a Program Officer 

and Division Deputy at ONR’s Human & Bio-Engineered Systems Division. He manages several S&T 

programs; primarily Live, Virtual, and Constructive (LVC) training; Unmanned Aerial Systems (UAS) 

Selection, Interface, and Training; and STEM ITSs. He received his undergraduate degree at the 

University of Missouri - Columbia and his PhD in experimental psychology at UofM. Upon completion 
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he was commissioned as a Lieutenant in the US Navy, completed primary flight training in 2003, and was 

designated an US Navy AEP. He has completed tours at NAVAIR 1.0, Program Manager (PMA205 - 

Training Systems); NAVAIR 4.6, Human Systems Research and Engineering Department; Naval 

Postgraduate School, Assistant Professor; and Naval Aerospace Medicine Institute (NAMI), Fleet Support 

Division Officer. 

Andrew Olney 

Andrew Olney is presently an Associate Professor in the Institute for Intelligent Systems/Department of 

Psychology at UofM and Director of the IIS. Dr. Olney received a BA in linguistics with cognitive 

science from University College London in 1998, an MS in evolutionary and adaptive systems from the 

University of Sussex in 2001, and a PhD in computer science from UofM in 2006. His primary research 

interests are in natural language interfaces. Specific interests include vector space models, dialogue 

systems, unsupervised grammar induction, robotics, and ITSs. Dr. Olney frequently serves as program 

committee member and journal reviewer in the fields of cognitive science, AI, and education. Together 

with his collaborators, Dr. Olney has been awarded $9.3 million from federal funding agencies including 

the NSF, the Institute for Education Sciences, and the DoD. His research has been featured in WIRED 

Magazine, the New York Times, the Wall Street Journal, the Discovery Science Channel, and BBC Radio 

4. Dr. Olney was awarded first place in an international robotics competition for the PKD Android 

(AAAI, 2006) and received the Early Career Research Award from UofM. 

Scott Ososky 

Dr. Scott Ososky is a Postdoctoral Research Fellow at the STTC within ARL-HRED. His current research 

examines mental models of adaptive tutor authoring, including user experience issues related to tools and 

interfaces within the adaptive tutor authoring workflow. His prior work regarding mental models of 

human interaction with intelligent robotic teammates has been published in the proceedings of the Human 

Factors and Ergonomics Society, HCI International, and SPIE Defense & Security annual meetings. Dr. 

Ososky received his PhD and MS in modeling & simulation, as well as a BS in management information 

systems from the University of Central Florida. 

Philip Pavlik 

Philip I. Pavlik Jr. is currently an Assistant Professor of Psychology at UofM’s IIS. Dr. Pavlik received a 

BA from the University of Michigan in Economics and a PhD from CMU where he studied cognitive 

psychology with John Anderson (developer of the Adaptive Control of Thought—Rational (ACT-R) 

cognitive modeling system) and received a neuroscience certificate from the Center for the Neural Basis 

of Cognition. With Anderson, Pavlik has pioneered changes in the ACT-R theory that have allow his 

research to use this theory to quantitatively optimize the learning of information for tasks such as 

flashcard learning. From this foundation, his work with Ken Koedinger has developed to focus on 

problem solving, schema learning, optimal transfer, effects of motivational constructs, and student 

strategy use. His methodologies include theory development, experimentation, mathematical modeling, 

and educational applications. Pavlik has received more than 2.2 million dollars in grant awards from the 

Institute for Educational Sciences,  NSF, and other sources. 

Octav Popescu 

Octav Popescu is a Senior Research Programmer/Analyst in CMU’s Human-Computer Interaction 

Institute, where he is in charge of TutorShop, the learning management system part of the CTAT project. 
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He has more than 25 years of experience working on various projects involving natural language 

understanding and ITSs. He holds an MS in computational linguistics and a PhD in language technologies 

from CMU. 

Charles Ragusa 

Charles Ragusa is a senior software engineer at Dignitas Technologies with over 14 years of software 

development experience. After graduating from University of Central Florida with a BS in computer 

science, Mr. Ragusa spent several years at SAIC working on a variety of R&D projects in roles ranging 

from software engineer and technical/integration lead to project manager. Noteworthy projects include the 

2006 DARPA Grand Challenge as an embedded engineer with the CMU Red Team, program manager of 

the SAIC Common Driver Trainer (CDT)/Mine Resistant Ambush Protected (MRAP) Independent 

Research & Development (IR&D) project, and lead engineer for Psychosocial Performance Factors in 

Space Dwelling Groups. Since joining Dignitas Technologies in 2009, he has held technical leadership 

roles on multiple projects, including his current role as the principal investigator for the GIFT project. 

Sowmya Ramachandran 

Dr. Sowmya Ramachandran is a Research Scientist at Stottler Henke Associates where her work focuses 

on the application of AI and machine learning to improve education and training. She leads research and 

development of ITSs and ITS authoring tools for a diverse range of military and civilian domains. Dr. 

Ramachandran headed the development of ReadInsight, an intelligent tutor for teaching reading 

comprehension skills to adult English speakers. She also led the development of an intelligent tutor for 

training Tactical Action Officers in the Navy. This system uses NLP technologies to assess and train 

tactical action officers (TAOs) and is currently in operational use at the Surface Warfare Officers School. 

She is currently leading the development of an ITS for training US Navy Information Systems 

Technicians in troubleshooting and maintenance skills. Dr. Ramachandran holds a PhD from The 

University of Texas at Austin. For her dissertation, she developed a novel machine learning technique for 

constructing Bayesian network models from data. 

Steven Ritter 

Steven Ritter is Chief Scientist at Carnegie Learning. Dr. Ritter received his doctorate in cognitive 

psychology from CMU and worked with John Anderson and others to develop and evaluate the ITSs that 

became the basis for Carnegie Learning’s products. He was one of the co-founders of Carnegie Learning. 

Dr. Ritter is the author of numerous papers on the design, architecture, and evaluation of educational 

technology and served on the education board of the Software and Information Industry Association. His 

evaluation work has been recognized by the What Works Clearinghouse as fully satisfying their 

requirements for rigorous evaluation. In his role as chief scientist, Dr. Ritter directs all projects regarding 

research on the effectiveness of Cognitive Tutor products and guides development projects focused on 

improving the effectiveness of mathematics curricula. Dr. Ritter also serves as Chief Product Architect, 

setting the direction of future Cognitive Tutor products. 

Jonathan Rowe 

Jonathan Rowe is a Research Scientist in the Center for Educational Informatics at North Carolina State 

University. He received the PhD and MS degrees in computer science from North Carolina State 

University. He received the BS degree in computer science from Lafayette College. His research is in the 

areas of AI and human-computer interaction for advanced learning technologies, with an emphasis on 
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game-based learning environments. He is particularly interested in intelligent tutoring systems, user 

modeling, educational data mining, and computational models of interactive narrative. He has led 

development efforts on several game-based learning projects, including Crystal Island: Lost Investigation, 

which was nominated for Best Serious Game at the Unity Awards and Interservice/Industry Training, 

Simulation and Education Conference (I/ITSEC) Serious Games Showcase and Challenge. His research 

has also been recognized with several best paper awards, including best paper at the Seventh International 

Artificial Intelligence and Interactive Digital Entertainment Conference and best paper at the Second 

International Conference on Intelligent Technologies for Interactive Entertainment. 

Andrew R. Ruis 

A.R. Ruis is a member of the Epistemic Games Group at the Wisconsin Center for Education Research 

and a fellow of the Medical History and Bioethics Department at the University of Wisconsin-Madison. 

He received his BS and BA from the University of California, Davis, and his MA and PhD from the 

University of Wisconsin-Madison. 

Jonathan Sewall 

Jonathan Sewall is a Project Director in the Human-Computer Interaction Institute at CMU. For the last 

11 years, he has been the technical lead on the CTAT project, which aims to create tools that speed the 

development of ITSs. Mr. Sewall has more than 32 years of experience in system design, development, 

integration and testing. His technical expertise includes Java, C, JavaScript, C++, HTML and other 

programming languages. His career experience has included developing software for the Joint Chiefs of 

Staff’s strategic missile warning system; debugging network software, training operators and handling 

problems in the Internet’s Network Operations Center; designing and building a data base system for 

personal computer application distribution; creating a system to automate oil terminal operations; and 

building server software for retrieving and displaying electronic medical records. His roles have ranged 

from system tester to software debugger to designer to project manager. 

Dylan Schmorrow 

Dr. Schmorrow is the Chief Scientist at Soar Technology (SoarTech) where he is leading the 

advancement of research and technology tracks to build intelligent systems for defense, government, and 

commercial applications that emulate human decision making in order to make people more prepared, 

more informed and more capable. He has led numerous initiatives that transformed promising 

technologies into operational capabilities and he successfully transitioned several significant prototypes to 

operational use. His past service includes the Deputy Director, Human Performance, Training, and 

BioSystems at the Office of the Secretary of Defense, Program Manager for DARPA, Research Scientist 

and Branch Head at the Naval Air Warfare Center, Chief Scientist for Human-Technology Integration at 

the Naval Research Lab, Assistant Professor at the Naval Postgraduate School, Program Officer at ONR, 

and Executive Assistant to the Chief of Naval Research. He received a commission in the US Navy in 

1993 as a Naval aerospace experimental psychologist and completed naval flight training in 1994. He 

retired as a US Navy Captain in 2013 after twenty years of service where he was both an aerospace 

experimental psychologist and an acquisition professional leading research and development programs. 

David Shaffer 

David Williamson Shaffer is a Professor at the University of Wisconsin-Madison in the Department of 

Educational Psychology and a Game Scientist at the Wisconsin Center for Education Research. Before 
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coming to the University of Wisconsin, Dr. Shaffer taught grades 4–12 in the United States and abroad, 

including 2 years working with the Asian Development Bank and US Peace Corps in Nepal. His MS and 

PhD are from the Media Laboratory at MIT, and he taught in the Technology and Education Program at 

the Harvard Graduate School of Education. Dr. Shaffer was a 2008–2009 European Union Marie Curie 

Fellow. He studies how new technologies change the way people think and learn, and his most recent 

book is How Computer Games Help Children Learn. 

Anne Sinatra 

Anne M. Sinatra, Ph.D. is a Research Psychologist and Adaptive Tutoring Scientist in the LITE Lab 

within ARL-HRED. The focus of her research is in cognitive psychology, human factors psychology, and 

adaptive tutoring. She has specific interest in how information relating to the self and about those that one 

is familiar with can aid in memory, recall, and tutoring. Her dissertation research evaluated the impact of 

using degraded speech and a familiar story on attention/recall in a dichotic listening task. Her post-

doctoral work examined the self-reference effect and personalization in the context of computer-based 

tutoring. Her work has been published in the journal Interaction Studies, and in the conference 

proceedings of the Human Factors and Ergonomics Society and Human-Computer Interaction 

International. Prior to her current position, Dr. Sinatra was a Visiting Assistant Professor of Cognitive 

Psychology at Stetson University and completed 2 years as an Oak Ridge Associated Universities/ARL 

Post-Doctoral Fellow in ARL’s LITE Lab. Dr. Sinatra received her PhD and MA in applied experimental 

and human factors psychology, as well as her BS in psychology from the University of Central Florida. 

Erica L. Snow 

Erica L. Snow is a graduate student in the Department of Psychology and the Learning Sciences Institute 

at ASU. Her academic background includes a psychology BS (2007) and a cognitive psychology MA 

(2014). She is currently pursuing a doctoral degree in the area of cognitive science. Her current research 

explores the interplay of students’ learning outcomes, learning behaviors, and individual differences 

within ITSs and educational games. She is particularly interested in how methodologies from AI, 

educational data mining, and learning analytics can be applied to discover patterns in students’ logged 

interactions with computer-based learning environments. 

Ronald Tarr 

Ronald W. Tarr is a Senior Research Faculty Member at the University of Central Florida and Program 

Director of the Research in Advanced Performance Technologies and Educational Readiness (RAPTER) 

Lab at the Institute for Simulation and Training (IST). He leads a team of interdisciplinary researchers 

who function as analysts, planners, integrators and designers of the advanced applications of simulation 

and learning technologies for enhancing human performance.  

Robert Taylor 

Robert Taylor is a Senior Research Software Engineer in the Center for Educational Informatics at North 

Carolina State University. His primary focus is designing and implementing game-based learning 

environments and intelligent cyberlearning systems that leverage video game and cloud-based computing 

technologies. His work includes creating cutting-edge AI research platforms and deploying software 

systems of commercial-quality and scalability. Thousands of students across the United States have used 

these adaptive learning environments for STEM education in elementary school classrooms. He received 

his ME and BS degrees in engineering mathematics and computer science from the University of 
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Louisville. The majority of his career has focused on designing and implementing commercial software 

solutions that range in scale and complexity from mobile applications to enterprise-class software. His 

professional interests include video game technologies, content authoring tools, ITSs, and AI 

technologies.   

Martin van Velsen 

Martin van Velsen is a Senior Research Engineer in the Human-Computer Interaction Institute and 

graduate student in the Language Technologies Institute at CMU. He is the lead visualization developer 

for the CTAT authoring research group. Martin also works full time on research projects of a wildly 

varied nature, some which are: neurosurgery simulations, large-scale AI architectures, virtual humans, 

and training simulations. He serves as technical adviser to many leading specialists in the field of serious 

games, simulations, and digital entertainment. As a digital storytelling expert, he serves as research 

consultant to various entertainment companies including Disney Research and Paramount Pictures. He 

has been a speaker and panel host for various entertainment technology gatherings. Most recently, he took 

part as a panelist at the PAX East gaming convention, but he has also organized such scientific forums as 

a panel on Authoring Interactive Narrative at the Stanford Spring Symposium. Over the last 18 years, he 

has been responsible for shepherding open-ended research projects toward viable products that can be 

deployed by such organizations as DARPA, Air Force Research Laboratory, and ONR. Finally, he is an 

award-winning artist, published fiction author, engineer, and a researcher in the field of interactive 

narrative. 

Wayne Ward 

Dr. Wayne Ward is Principal Scientist and Chief Financial Officer at Boulder Language Technologies, 

Inc. He received a BA in mathematical science and psychology at Rice University and an MA and PhD in 

psychology at University of Colorado. He is also a Research Professor at the Computational Language 

and Education Research Center for the University of Colorado. Previously, he was appointed as a 

Research Computer Scientist at CMU. Dr. Ward developed and maintains the Phoenix system, a parser 

and dialogue manager designed specifically for semantic information extraction from spoken dialogues in 

limited domains. Phoenix is distributed as freeware by Boulder Language Technologies and by CMU. Dr. 

Ward then led the effort to incorporate these and additional technologies into the Virtual Human Toolkit, 

a toolkit for developing conversational systems using animated agents. 

Diego Zapata-Rivera 

Diego Zapata-Rivera is a Senior Research Scientist in the Cognitive and Learning Sciences Center at ETS 

in Princeton, NJ. He earned a PhD in computer science (with a focus on AI in education) from the 

University of Saskatchewan in 2003. His research at ETS has focused on the areas of innovations in score 

reporting and technology-enhanced assessment (TEA) including work on adaptive learning environments 

and game-based assessments. His research interests also include evidence-centered design, Bayesian 

student modeling, open student models, conversation-based tasks, virtual communities, authoring tools, 

and program evaluation. Dr. Zapata-Rivera has produced over 100 publications including journal articles, 
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