Design Rec?mmendations
or
Intelligent Tutoring Systems

Volume 3
Authoring Tools & .
Expert Modeling Techniques |

Intélligent
1 L,.luTll’é ,

Edited by:
Robert Sottilare
Arthur Graesser

Xiangen Hu
Keith Brawner

A'BoolsintineRelaptive Tutoring Series

Desigh Recommendations
for
Intelligent Tutoring Systems

Volume 3

Authoring Tools and Expert Modeling
Techniques

Edited by:

Robert A. Sottilare
Arthur C. Graesser
Xiangen Hu

Keith Brawner

A Book in the Adaptive Tutoring Series

Copyright © 2015 by the U.S. Army Research Laboratory

Copyright not claimed on material written by an employee of the U.S. Government.
All rights reserved.
No part of this book may be reproduced in any manner, print or electronic, without written
permission of the copyright holder.

The views expressed herein are those of the authors and do not necessarily reflect the views
of the U.S. Army Research Laboratory.

Use of trade names or names of commercial sources is for information only and does not imply endorsement
by the U.S. Army Research Laboratory.

This publication is intended to provide accurate information regarding the subject matter addressed herein. The
information in this publication is subject to change at any time without notice. The U.S. Army Research
Laboratory, nor the authors of the publication, makes any guarantees or warranties concerning the information
contained herein.

Printed in the United States of America
First Printing, June 2015

U.S. Army Research Laboratory
Human Research & Engineering Directorate
SFC Paul Ray Smith Simulation & Training Technology Center
Orlando, Florida

International Standard Book Number: 978-0-9893923-7-2

We wish to acknowledge the editing and formatting contributions of Carol Johnson and Deeja Cruz, ARL

Dedicated to current and future scientists and developers of adaptive learning technologies

CONTENTS

Introduction i
Section I: Perspectives of Authoring Tools and Methods 1
Chapter 1 Challenges to Enhancing Authoring Tools and Methods for Intelligent
Tutoring Systems 3
Chapter 2 Theory-based Authoring Tool Design: Considering the Complexity of
Tasks and Mental Models 9
Chapter 3 One-Size-Fits-Some: ITS Genres and What They (Should) Tell Us About
Authoring Tools 31
Chapter 4 Generalizing the Genres for ITS: Authoring Considerations for
Representative Learning Tasks 47
Section II: Authoring Model-Tracing Tutors 65
Chapter 5 A Historical Perspective on Authoring and ITS: Reviewing Some
Lessons Learned 67
Chapter 6 Authoring Example-based Tutors for Procedural Tasks 71
Chapter 7 Supporting the WISE Design Process: Authoring Tools that Enable
Insights into Technology-Enhanced Learning 95
Chapter 8 Authoring Tools for Ill-defined Domains in Intelligent Tutoring
Systems: Flexibility and Stealth Assessment 109
Chapter 9 Design Considerations for Collaborative Authoring in Intelligent
Tutoring Systems 123
Chapter 10 Authoring for the Product Lifecycle 137

Section III: Authoring Agent-Based Tutors 145

Chapter 11 Authoring Agent-based Tutors 147
Chapter 12 Design Principles for Pedagogical Agent Authoring Tools 151
Chapter 13 Adaptive and Generative Agents for Training Content Development 161
Chapter 14 Authoring Conversation-based Assessment Scenarios 169
Chapter 15 Authoring Networked Learner Models in Complex Domains 179
Section IV: Authoring Dialogue-Based Tutors 193
Chapter 16 Authoring Conversation-based Tutors 195
Chapter 17 ASAT: AutoTutor Script Authoring Tool 199
Chapter 18 Constructing Virtual Role-Play Simulations 211
Chapter 19 Emerging Trends in Automated Authoring 227
Chapter 20 Developing Conversational Multimedia Tutorial Dialogues 243

Section V: Increasing Interoperability and Reducing Workload and

Skill Requirements for Authoring Tutors 255
Chapter 21 Approaches to Reduce Workload and Skill Requirements in the
Authoring of Intelligent Tutoring Systems 257
Chapter 22 Reflecting on Twelve Years of ITS Authoring Tools Research with
CTAT 263
Chapter 23 Usability Considerations and Different User Roles in the Generalized
Intelligent Framework for Tutoring 285
Chapter 24 Invisible Intelligent Authoring Tools 293
Chapter 25 Lowering the Technical Skill Requirements for Building Intelligent
Tutors: A Review of Authoring Tools 303
Chapter 26 Authoring Instructional Management Logic in GIFT Using the Engine

for Management of Adaptive Pedagogy (EMAP) 319

Chapter 27 Tiering, Layering and Bootstrapping for ITS Development 335
Chapter 28 Expanding Authoring Tools to Support Psychomotor Training Beyond
the Desktop 347

Biographies 357

Index 375

INTRODUCTION

Robert A. Sottilare®, Arthur C. Graesser?, Xiangen Hu?,
and Keith W. Brawner' , Eds.

U.S. Army Research Laboratory - Human Research and Engineering Directorate
University of Memphis Institute for Intelligent Systems®

This book is the third in a planned series of books that examine key topics (e.g., learner modeling,
instructional strategies, authoring, domain modeling, impact on learning, and team tutoring) in intelligent
tutoring system (ITS) design through the lens of the Generalized Intelligent Framework for Tutoring
(GIFT) (Sottilare, Brawner, Goldberg & Holden, 2012; Sottilare, Brawner, Goldberg & Holden, 2013).
GIFT is a modular, service-oriented architecture created to reduce the cost and skill required to author
ITSs, manage instruction within ITSs, and evaluate the effect of ITS technologies on learning,
performance, retention, and transfer.

The first two books in this series, Learner Modeling (ISBN 978-0-9893923-2-7) and Instructional
Management (ISBN 978-0-9893923-0-3), are freely available at www.GIFTtutoring.org and on Google
Play.

This introduction begins with a description of tutoring functions, provides a glimpse of authoring best
practices, and examines the motivation for standards in the design, authoring, instruction, and evaluation
of ITS tools and methods. We introduce GIFT design principles discuss how readers might use this book
as a design tool. We begin by examining the major components of ITSs.

Components and Functions of Intelligent Tutoring Systems

It is generally accepted that an ITS has four major components (Elson-Cook, 1993; Nkambou, Mizoguchi
& Bourdeau, 2010; Graesser, Conley & Olney, 2012; Psotka & Mutter, 2008; Sleeman & Brown, 1982;
VanLehn, 2006; Woolf, 2009): the domain model, the student model, the tutoring model, and the user-
interface model. GIFT similarly adopts this four-part distinction, but with slightly different corresponding
labels (domain module, learner module, pedagogical module, and tutor-user interface) and the addition of
the sensor module, which can be viewed as an expansion of the user interface.

(1) The domain model contains the set of skills, knowledge, and strategies/tactics of the topic being
tutored. It normally contains the ideal expert knowledge and also the bugs, mal-rules, and
misconceptions that students periodically exhibit.

(2) The learner model consists of the cognitive, affective, motivational, and other psychological
states that evolve during the course of learning. Since learner performance is primarily tracked in
the domain model, the learner model is often viewed as an overlay (subset) of the domain model,
which changes over the course of tutoring. For example, “knowledge tracing” tracks the learner’s
progress from problem to problem and builds a profile of strengths and weaknesses relative to the
domain model (Anderson, Corbett, Koedinger & Pelletier, 1995). An ITS may also consider
psychological states outside of the domain model that need to be considered as parameters to
guide tutoring.

(3) The tutor model (also known as the pedagogical model or the instructional model) takes the
domain and learner models as input and selects tutoring strategies, steps, and actions on what the
tutor should do next in the exchange. In mixed-initiative systems, the learners may also take
actions, ask questions, or request help (Aleven, McClaren, Roll & Koedinger, 2006; Rus &
Graesser, 2009), but the ITS always needs to be ready to decide “what to do next” at any point
and this is determined by a tutoring model that captures the researchers’ pedagogical theories.

(4) The user interface interprets the learner’s contributions through various input media (speech,
typing, clicking) and produces output in different media (text, diagrams, animations, agents). In
addition to the conventional human-computer interface features, some recent systems have
incorporated natural language interaction (Graesser et al., 2012; Johnson & Valente, 2008),

http://www.gifttutoring.org/

speech recognition (D’Mello, Graesser & King, 2010; Litman, 2013), and the sensing of learner
emotions (Baker, D’Mello, Rodrigo & Graesser, 2010; D’Mello & Graesser, 2010; Goldberg,
Sottilare, Brawner, Holden, 2011).

The designers of a tutor model must make decisions on each of the various major components in order to
create an enhanced learning experience through well-grounded pedagogical strategies (optimal plans for
action by the tutor) that are selected based on learner states and traits and that are delivered to the learner
as instructional tactics (optimal actions by the tutor). Next, tactics are chosen based on the previously
selected strategies and instructional context (the conditions of the training at the time of the instructional
decision. This is part of the learning effect model (Sottilare, 2012; Fletcher & Sottilare, 2013; Sottilare,
2013; Sottilare, Ragusa, Hoffman & Goldberg, 2013), which has been updated and described below in
more detail in section titled “Motivations for Intelligent Tutoring System Standards” in this introductory
chapter.

Principles of Learning and Instructional Techniques, Strategies, and Tactics

Instructional techniques, strategies, and tactics play a central role in the design of GIFT. Instructional
techniques represent instructional best practices and principles from the literature, many of which have
yet to be implemented within GIFT at the writing of this volume. Examples of instructional techniques
include, but are not limited to, error-sensitive feedback, mastery learning, adaptive spacing and repetition,
and fading worked examples. Others are represented in the next section of this introduction. It is
anticipated that techniques within GIFT will be implemented as software-based agents where the agent
will monitor learner progress and instructional context to determine if best practices (agent policies) have
been adhered to or violated. Over time, the agent will learn to enforce agent policies in a manner that
optimizes learning and performance.

Some of the best instructional practices (techniques) have yet to be implemented in GIFT, but many
instructional strategies and tactics have been implemented. Instructional strategies (plans for action by the
tutor) are selected based on changes to the learner’s state (cognitive, affective, physical). If a sufficient
change in any learner’s state occurs, this triggers GIFT to select a generic strategy (e.g., provide
feedback). The instructional context along with the instructional strategy then triggers the specific
selection of an instructional tactic (an action to be taken by the tutor). If the strategy is “provide
feedback,” then the tactic might be to “provide feedback on the error committed during the presentation
of instructional concept ‘B’ in the chat window during the next turn.” Tactics detail what is to be done,
why, when, and how.

An adaptive, intelligent learning environment needs to select the right instructional strategies at the right
time, based on its model of the learner in specific conditions and the learning process in general. Such
selections should be taken to maximize deep learning and motivation while minimizing training time and
costs. Authoring Tools was the theme of the third advisory board meeting of the collaboration between
(1) the Human Research and Engineering Directorate (HRED) of the U.S. Army Research Laboratory
(ARL) and (2) the Advanced Distributed Learning Center for Intelligent Tutoring Systems Research &
Development (ADL CITSRD) in the Institute for Intelligent Systems (11S) at the University of Memphis.
The purpose of this volume is to provide a succinct illustration of some commonly used authoring tools
and associated principles of authoring tool design.

The following are examples of successful authoring tools:

e The Authoring Software Platform for Intelligent Resources in Education (ASPIRE) (Mitrovic, et
al., 2009), created by the Intelligent Computer Tutoring Group at the University of Canterbury in

New Zealand, employs domain experts to create constraint-based tutors through the generation of
domain model supplemental information from interactions with the system. Such information is
then processed by an expert user who has familiarity with the constraint language.

e The AutoTutor Authoring Tools were created by the University of Memphis 1IS. These tools
allow a user to configure AutoTutor conversational scripts via a desktop or web-based interface,
and have made recent efforts to simplify the authoring process to a level which the student can
have input. The AutoTutor Script Authoring Tool (ASAT) is compatible with the GIFT authoring
suite and can be shared as sharable knowledge objects (SKOs) (Nye, Hu, Graesser, and Zhigiang,
2014)).

e The Cognitive Tutor Authoring Tools (CTAT), developed by Carnegie Mellon University, are
one of the longest running and most successful toolsets. CTAT allows authors to link tutoring
knowledge to a graphical user interface (GUI) with little programming effort and demonstrate
model solutions rapidly. Recently efforts have taken steps to automate authoring through a
process of demonstration by an expert with a project called SimStudent (Matsuda, Cohen, and
Koedinger, 2015), resulting in an expert model.

e The GIFT Authoring Tools, created by ARL and increasingly by the GIFT user community, are
open source. GIFT was created to realize the US Army Learning Model (ALM) self-regulated
learning capability and to reduce the time/cost/skill needed to author ITSs. Currently, the GIFT
authoring tools consist of a series of developer-oriented, XML-based editing tools (e.g., Course
Authoring Tool (CAT), Survey Authoring System, Domain Knowledge File Authoring Tool
(DAT), and Pedagogy Configuration Authoring Tool (PCAT)), which are being integrated with a
single simplified web-based authoring tool known as the GIFT Authoring Tool (GAT). These
tools have been used to create a variety of tutors in a variety of domains of instruction (e.g.,
casualty care, cryptography, solving logic puzzles, and construction equipment use). The design
goal for the GAT is to provide ITS authoring capabilities, which can be used by domain experts
with little or no knowledge or skill in either computer programming or instructional system
design to produce highly effective and efficient ITSs (Sottilare, 2013).

e The Situated Pedagogical (SitPed) authoring tool, created by the University of Southern
California, focuses heavily on preview-based authoring, where a non-technical author can
simulate the experience of a student while simultaneously demonstrating actions and statements
to the tutor. This model blends the authoring components of an expert model, pedagogical action,
and virtual human creation in order to gain efficiency.

There are a number of barriers to making authoring tools usable by the general public. The main barriers
are:

e Specialized skills (e.g., computer programming, understanding of instructional design) are
required to master existing authoring tools.

e Time and cost to author ITSs using existing authoring tools is high due to the complexity of ITSs
and deficiencies in the usability of current authoring tools.

e Time required to retrieve and organize authoring content is high.

e Standards for ITS authoring are non-existent, yielding extremely low interoperability between
authoring toolsets.

Members of the third advisory board were selected because their research fills many of these gaps and
provides more sophisticated authoring strategies for GIFT. More specifically, researchers on the board
have made major advances for model-tracing, agent-based, and/or dialogue-based ITSs in three thematic
subcategories: (1) simplified user interfaces, (2) methods for curation of data (retrieval, storage, and
organization), and (3) development of authoring job aids. Research in these subcategories is destined to
move the horizon of authoring tools from the laboratory to the classroom through the creation of easy to
use systems built on standardized design principles. Our goal was to elicit input from members of this
advisory board and the authors of this book to shape ITSs authoring standards.

Motivations for Intelligent Tutoring System Standards

An emphasis on self-regulated learning has highlighted a requirement for point-of-need training in
environments where human tutors are either unavailable or impractical. ITSs have been shown to be as
effective as expert human tutors (VanLehn, 2011) in one-to-one tutoring in well-defined domains
(e.g., mathematics or physics) and significantly better than traditional classroom training environments.
ITSs have demonstrated significant promise, but 50 years of research have been unsuccessful in making
ITSs ubiquitous in military training or the tool of choice in our educational system. This begs the
question: “Why?”

Part of the answer lies in the fact that the availability and use of ITSs have been constrained by their high
development costs, their limited reuse, a lack of standards, and their inadequate adaptability to the needs
of learners. Educational and training technologies like ITSs are primarily researched and developed in a
few key environments: industry, academia, and government including military domains. Each of these
environments has its own challenges and design constraints. The application of ITSs to military domains
is further hampered by the complex and often ill-defined environments in which the US military operates
today. ITSs are often built as domain-specific, unique, one-of-a-kind, largely domain-dependent solutions
focused on a single pedagogical strategy (e.g., model tracing or constraint-based approaches) when
complex learning domains may require novel or hybrid approaches. Therefore, a modular ITS framework
and standards are needed to enhance reuse, support authoring, optimize instructional strategies, and lower
the cost and skillset needed for users to adopt ITS solutions for training and education. It was out of this
need that the idea for GIFT arose.

GIFT has three primary functions: authoring, instructional management, and evaluation. First, it is a
framework for authoring new ITS components, methods, strategies, and whole tutoring systems. Second,
GIFT is an instructional manager that integrates selected instructional theory, principles, and strategies for
use in ITSs. Finally, GIFT is an experimental testbed used to evaluate the effectiveness and impact of ITS
components, tools, and methods. GIFT is based on a learner-centric approach with the goal of improving
linkages in the updated adaptive tutoring learning effect model (Figure 1; Sottilare, 2012; Fletcher &
Sottilare, 2013; Sottilare, 2013; Sottilare, Ragusa, Hoffman & Goldberg, 2013).

Vi

individual learner states)
* cognition (engagement)
individual learner measures « affect (motivation)

* hehavioral » physical (fatigue) — measures & states

= physiological * knowledge and skilf

* traits & preferences * performance . .

- retention and transfer tutor planning and action processes
f B \
|
informs influence Instructional ,a,0nc0s instructional
!es;;::r — J:g;:.;r strafeqy — = —) tactic
selection selection
instructional
confext
T modify scenario or problem
interact with learner (e.q., assessments, feedback, encouragement, reflective prompts)

Figure 1. Updated adaptive tutoring learning effect model

A deeper understanding of the learner’s behaviors, traits, and preferences (learner data) collected through
performance, physiological and behavioral sensors, and surveys will allow for more accurate evaluation
of the learner’s states (e.g., engagement level, confusion, frustration). This will result in a better and more
persistent model of the learner. To enhance the adaptability of the ITS, methods are needed to accurately
classify learner states (e.g., cognitive, affective, psychomotor, social) and select optimal instructional
strategies given the learner’s existing states. A more comprehensive learner model will allow the ITS to
adapt more appropriately to address the learner’s needs by changing the instructional strategy (e.g.,
content, flow, or feedback). An instructional strategy better aligned to the learner’s needs is more likely to
positively influence their learning gains. It is with the goal of optimized learning gains in mind that the
design principles for GIFT were formulated.

This version of the learning effect model has been updated to gain understanding of the effect of optimal
instructional tactics and instructional context (both part of the domain model) on specific desired
outcomes including knowledge and skill acquisition, performance, retention, and transfer of skills from
training or tutoring environments to operational contexts (e.g., from practice to application). The feedback
loops in Figure 1 have been added to identify tactics as either a change in instructional context or
interaction with the learner. This allows the ITS to adapt to the need of the learner. Consequently, the ITS
changes over time by reinforcing learning mechanisms.

GIFT Design Principles

The GIFT methodology for developing a modular, computer-based tutoring framework for training and
education considered major design goals, anticipated uses, and applications. The design process also
considered enhancing one-to-one (individual) and one-to-many (collective or team) tutoring experiences
beyond the state of practice for ITSs today. A significant focus of the GIFT design was on domain-
dependent elements in the domain module only. This is a design tradeoff to foster reuse and allows ITS
decisions and actions to be made across any/all domains of instruction.

vii

One design principle adopted in GIFT is that each module should be capable of gathering information
from other modules according to the design specification. Designing to this principle resulted in standard
message sets and message transmission rules (i.e., request-driven, event-driven, or periodic
transmissions). For instance, the pedagogical module is capable of receiving information from the learner
module to develop courses of action for future instructional content to be displayed, manage flow and
challenge level, and select appropriate feedback. Changes to the learner’s state (e.g., engagement,
motivation, or affect) trigger messages to the pedagogical module, which then recommends general
courses of action (e.g., ask a question or prompt the learner for more information) to the domain module,
which provides a domain-specific intervention (e.g., what is the next step?).

Another design principle adopted within GIFT is the separation of content from the executable code (Patil
& Abraham, 2010). Data and data structures are placed within models and libraries, while software
processes are programmed into interoperable modules. Efficiency and effectiveness goals (e.g.,
accelerated learning and enhanced retention) were considered to address the time available for military
training and the renewed emphasis on self-regulated learning. An outgrowth of this emphasis on
efficiency and effectiveness led Dr. Sottilare to seek external collaboration and guidance. In 2012, ARL
with the University of Memphis developed advisory boards of senior tutoring system scientists from
academia and government to influence the GIFT design goals moving forward. Advisory boards have
been held each year since 2012 resulting in volumes in the Design Recommendations for Intelligent
Tutoring Systems series the following year. The learner modeling advisory board was completed in
September 2012 and Volume 1 followed in July 2013. An advisory board on instructional management
was completed in July 2013 and Volume 2 followed in June 2014. The authoring tools advisory board
was completed in June of 2014 and Volume 3 is planned for publication in May or June 2015. Future
boards are planned for domain modeling, learner assessment, team training, and learning effect
evaluations.

Design Goals and Anticipated Uses
GIFT may be used for a number of purposes, with the primary ones enumerated below:

1. An architectural framework with modular, interchangeable elements and defined relationships to
support stand-alone tutoring or guided training if integrated with a training system

2. A set of specifications to guide ITS development
3. Aset of exemplars or use cases for GIFT to support authoring, reuse, and ease-of-use

4. A technical platform or testbed for guiding the evaluation, development/refinement of concrete
systems

These use cases have been distilled down into the three primary functional areas, or constructs:

authoring, instructional management, and the recently renamed evaluation construct. Discussed below are
the purposes, associated design goals, and anticipated uses for each of the GIFT constructs.

GIFT Authoring Construct
The purpose of the GIFT authoring construct is to provide technology (tools and methods) to make it

affordable and easier to build ITSs and ITS components. Toward this end, a set of XML configuration
tools continues to be developed to allow for data-driven changes to the design and implementation of

viii

GIFT-generated ITSs. The design goals for the GIFT authoring construct have been adapted from Murray
(1999, 2003) and Sottilare and Gilbert (2011). The GIFT authoring design goals are as follow:

o Decrease the effort (time, cost, and/or other resources) for authoring and analyzing ITSs by
automating authoring processes, developing authoring tools and methods, and developing
standards to promote reuse.

o Decrease the skill threshold by tailoring tools for specific disciplines (e.g., instructional designers,
training developers, and trainers) to author, analyze, and employ ITS technologies.

o Provide tools to aid designers/authors/trainers/researchers in organizing their knowledge.

e Support (structure, recommend, or enforce) good design principles in pedagogy through user
interfaces and other interactions.

e Enable rapid prototyping of ITSs to allow for rapid design/evaluation cycles of prototype
capabilities.

o Employ standards to support rapid integration of external training/tutoring environments (e.g.,
simulators, serious games, slide presentations, transmedia narratives, and other interactive
multimedia).

o Develop/exploit common tools and user interfaces to adapt ITS design through data-driven
means.

e Promote reuse through domain-independent modules and data structures.
e Leverage open-source solutions to reduce ITS development and sustainment costs.

e Develop interfaces/gateways to widely-used commercial and academic tools (e.g., games,
sensors, toolkits, virtual humans).

As a user-centric architecture, anticipated uses for GIFT authoring tools are driven largely by the
anticipated users, which include learners, domain experts, instructional system designers, training and
tutoring system developers, trainers and teachers, and researchers. In addition to user models and GUISs,
GIFT authoring tools include domain-specific knowledge configuration tools, instructional strategy
development tools, and a compiler to generate executable ITSs from GIFT components in a variety of
formats (e.g., PC, Android, and IPad).

Within GIFT, domain-specific knowledge configuration tools permit authoring of new knowledge
elements or reusing existing (stored) knowledge elements. Domain knowledge elements include learning
objectives, media, task descriptions, task conditions, standards and measures of success, common
misconceptions, feedback library, and a question library, which are informed by instructional system
design principles that, in turn, inform concept maps for lessons and whole courses. The task descriptions,
task conditions, standards and measures of success, and common misconceptions may be informed by an
expert or ideal learner model derived through a task analysis of the behaviors of a highly skilled user.
ARL is investigating techniques to automate this expert model development process to reduce the time
and cost of developing ITSs. In addition to feedback and questions, supplementary tools are anticipated to
author explanations, summaries, examples, analogies, hints, and prompts in support of GIFT’s
instructional management construct.

GIFT Instructional Management Construct

The purpose of the GIFT instructional management construct is to integrate pedagogical best practices in
GIFT-generated ITSs. The modularity of GIFT will also allow GIFT users to extract pedagogical models
for use in tutoring/training systems that are not GIFT-generated. GIFT users may also integrate
pedagogical models, instructional strategies, or instructional tactics from other tutoring systems into
GIFT. The design goals for the GIFT instructional management construct are the following:

e Support ITS instruction for individuals and small teams in local and geographically distributed
training environments (e.g., mobile training), and in both well-defined and ill-defined learning
domains.

e Provide for comprehensive learner models that incorporate learner states, traits, demographics,
and historical data (e.g., performance) to inform ITS decisions to adapt training/tutoring.

e Support low-cost, unobtrusive (passive) methods to sense learner behaviors and physiological
measures and use these data along with instructional context to inform models to classify (in near
real time) the learner’s states (e.g., cognitive and affective).

e Support both macro-adaptive strategies (adaptation based on pre-training learner traits) and
micro-adaptive instructional strategies and tactics (adaptation based learner states and state
changes during training).

e Support the consideration of individual differences where they have empirically been documented
to be significant influencers of learning outcomes (e.g., knowledge or skill acquisition, retention,
and performance).

e Support adaptation (e.g., pace, flow, and challenge level) of the instruction based the domain and
learning class (e.g., cognitive learning, affective learning, psychomotor learning, social learning).

e Model appropriate instructional strategies and tactics of expert human tutors to develop a
comprehensive pedagogical model.

To support the development of optimized instructional strategies and tactics, GIFT is heavily grounded in
learning theory, tutoring theory, and motivational theory. Learning theory applied in GIFT includes
conditions of learning and theory of instruction (Gagne, 1985), component display theory (Merrill, Reiser,
Ranney & Trafton, 1992), cognitive learning (Anderson & Krathwohl, 2001), affective learning
(Krathwohl, Bloom & Masia, 1964; Goleman, 1995), psychomotor learning (Simpson, 1972), and social
learning (Sottilare, Holden, Brawner, and Goldberg, 2011; Soller, 2001). Aligning with our goal to model
expert human tutors, GIFT considers the intelligent, nurturant, Socratic, progressive, indirect, reflective,
and encouraging (INSPIRE) model of tutoring success (Lepper, Drake, and O’Donnell-Johnson, 1997)
and the tutoring process defined by Person, Kreuz, Zwaan, and Graesser (1995) in the development of
GIFT instructional strategies and tactics.

Human tutoring strategies have been documented by observing tutors with varying levels of expertise. For
example, Lepper’s INSPIRE model is an acronym that highlights the seven critical characteristics of
successful tutors:. Graesser and Person’s (1994) 5-step tutoring frame is a common pattern of the tutor-
learner interchange in which the tutor asks a question, the learner answers the question, the tutor gives
short feedback on the answer, then the tutor and learner collaboratively improve the quality of (or
embellish) the answer, and finally, the tutor evaluates whether the learner understands the answer. Cade,

Copeland, Person, and D’Mello (2008) identified a humber of tutoring modes used by expert tutors,
which hopefully could be integrated with ITS.

As a learner-centric architecture, anticipated uses for GIFT instructional management capabilities include
both automated instruction and blended instruction, where human tutors/teachers/trainers use GIFT to
support their curriculum objectives. If its design goals are realized, it is anticipated that GIFT will be

widely used beyond military training contexts as GIFT users expand the number and type of learning
domains and resulting ITS generated using GIFT.

GIFT Evaluation Construct
The GIFT Analysis Construct has recently migrated to become the GIFT Evaluation Construct with an
emphasis on the evaluation of effect on learning, performance, retention and transfer. The purpose of the
GIFT evaluation construct is to allow ITS researchers to experimentally assess and evaluate ITS
technologies (ITS components, tools, and methods). The design goals for the GIFT evaluation construct
are the following:

e Support the conduct of formative assessments to improve learning.

e Support summative evaluations to gauge the effect of technologies on learning.

e Support assessment of ITS processes to understand how learning is progressing throughout the
tutoring process.

e Support evaluation of resulting learning versus stated learning objectives.
e Provide diagnostics to identify areas for improvement within ITS processes.

e Support the ability to comparatively evaluate ITS technologies against traditional tutoring or
classroom teaching methods.

e Develop a testbed methodology to support assessments and evaluations (Figure 2).

.L Modify learner model
Learner i
Model GIFT

Performance, retention,
enhanced skills, etc

Domain- Experimental Empirical
> specific x;:éern;nen al P Evaluation of
knowledge ystem Learning Outcomes
Tutorvs. Traditional Tutoring
Interventionvs. Non-Intervention
Comparison of learnermodels
Instructional Comparison of instructional tactics
Strategies Ablative tutoring studies
T Optimize strategies
Adapt content

Figure 2. GIFT evaluation testbed methodology

Xi

Figure 2 illustrates an analysis testbed methodology being implemented in GIFT. This methodology was
derived from Hanks, Pollack, and Cohen (1993). It supports manipulation of the learner model,
instructional strategies, and domain-specific knowledge within GIFT, and may be used to evaluate
variable in the adaptive tutoring learning effect model (Sottilare, 2012; Sottilare, Ragusa, Hoffman, and
Goldberg, 2013). In developing their testbed methodology, Hanks et al. reviewed four testbed
implementations (Tileworld, the Michigan Intelligent Coordination Experiment [MICE], the Phoenix
testbed, and Truckworld) for evaluating the performance of artificially intelligent agents. Although agents
have changed substantially in complexity during the past 20-25 years, the methods to evaluate their
performance have remained markedly similar.

The authors designed the GIFT analysis testbed based upon Cohen’s assertion (Hanks et al., 1993) that
testbeds have three critical roles related to the three phases of research. During the exploratory phase,
agent behaviors need to be observed and classified in broad categories. This can be performed in an
experimental environment. During the confirmatory phase, the testbed is needed to allow more strict
characterizations of agent behavior to test specific hypotheses and compare methodologies. Finally, in
order to generalize results, measurement and replication of conditions must be possible. Similarly, the
GIFT analysis methodology (Figure 2) enables the comparison/contrast of ITS elements and assessment
of their effect on learning outcomes (e.g., knowledge acquisition, skill acquisition, and retention).

How to Use This Book

This book is organized into five sections:
I. Perspectives of Authoring Tools and Methods
Il. Authoring Model-Tracing Tutors
I1l. Authoring Agent-Based Tutors
IV. Authoring Dialogue-Based Tutors

V. Increasing Interoperability and Reducing Workload and Skill Requirements for Authoring
Tutors

Section |, Perspective of Authoring Tools and Methods, describes a variety of approaches to authoring
ITSs and discusses their capabilities, limitations, and potential impact on learning. Section Il, Authoring
Model-Tracing Tutors, examines authoring tools for model-tracing tutors (sometimes referred to as
example-tracing tutors), which are based on a problem representation stored in a behavior graph with
problem-solving steps and specific methods handling alternative student behaviors. Emerging model-
tracing tutoring authoring technologies are discussed with respect to how GIFT should be enhanced to
make authoring of model-tracing tutors easier and more efficient. Section Ill, Authoring Agent-Based
Tutors, discusses authoring processes guided by intelligent software agents. Section 1V, Authoring
Dialogue-Based Tutors, focuses primarily on interactive conversational tutors where virtual humans guide
instruction. Finally, in Section V, we address the need for tools and methods to increase interoperability
between authoring toolsets, and also reduce the knowledge and skill needed to author ITSs. A goal for
GIFT is to reduce the skill and time needed to author ITSs to a point where domain experts can author
ITSs without computer programming and instructional design knowledge/skills.

Chapter authors in each section were carefully selected for participation in this project based on their
expertise in the field as ITS scientists, developers, and practitioners. Design Recommendations for

Xii

Intelligent Tutoring Systems: Volume 3 Authoring Tools is intended to be a design resource as well as
community research resource. Volume 3 can also be of significant benefit as an educational guide for
developing ITS scientists, as a roadmap for ITS research opportunities.

References

Aleven, V., McLaren, B., Roll, I. & Koedinger, K. (2006). Toward meta-cognitive tutoring: A model of help seeking
with a cognitive tutor. International Journal of Artificial Intelligence in Education, 16, 101-128.

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. Journal
of the Learning Sciences, 4, 167-207.

Anderson, L. W. & Krathwohl, D. R. (Eds.). (2001). A taxonomy for learning, teaching and assessing: A revision of
Bloom’s Taxonomy of Educational Objectives: Complete edition. New York : Longman.

Baker, R.S., D’Mello, S.K., Rodrigo, M.T. & Graesser, A.C. (2010). Better to be frustrated than bored: The
incidence, persistence, and impact of learners’ cognitive-affective states during interactions with three
different computer-based learning environments. International Journal of Human-Computer Studies, 68,
223-241.

Cade, W., Copeland, J. Person, N., and D’Mello, S. K. (2008). Dialogue modes in expert tutoring. In B. Woolf, E.
Aimeur, R. Nkambou & S. Lajoie (Eds.), Proceedings of the Ninth International Conference on Intelligent
Tutoring Systems (pp. 470-479). Berlin, Heidelberg: Springer-Verlag.

D’Mello, S. & Graesser, A.C. (2010). Multimodal semi-automated affect detection from conversational cues, gross
body language, and facial features. User Modeling and User-adapted Interaction, 20, 147-187.

D’Mello, S. K., Graesser, A. C. & King, B. (2010). Toward spoken human-computer tutorial dialogues. Human
Computer Interaction, 25, 289-323.

Elson-Cook, M. (1993). Student modeling in intelligent tutoring systems. Artificial Intelligence Review, 7, 227-240.

Fletcher, J.D. and Sottilare, R. (2013). Shared Mental Models and Intelligent Tutoring for Teams. In R. Sottilare, A.
Graesser, X. Hu, and H. Holden (Eds.) Design Recommendations for Intelligent Tutoring Systems: Volume
| - Learner Modeling. Army Research Laboratory, Orlando, Florida. ISBN 978-0-9893923-0-3.

Gagne, R. M. (1985). The conditions of learning and theory of instruction (4th ed.). New York: Holt, Rinehart &
Winston.

Goldberg, B.S., Sottilare, R.A., Brawner, K.W. & Holden, H.K. (2011). Predicting Learner Engagement during
Well-Defined and Ill-Defined Computer-Based Intercultural Interactions. In S. D’Mello, A. Graesser, , B.
Schuller & J.-C. Martin (Eds.), Proceedings of the 4th International Conference on Affective Computing
and Intelligent Interaction (ACII 2011) (Part 1: LNCS 6974) (pp. 538-547). Berlin Heidelberg: Springer.

Graesser, A.C., Conley, M. & Olney, A. (2012). Intelligent tutoring systems. In K.R. Harris, S. Graham & T. Urdan
(Eds.), APA Educational Psychology Handbook: Vol. 3. Applications to Learning and Teaching (pp. 451-
473). Washington, DC: American Psychological Association.

Graesser, A. C., D’Mello, S. K., Hu. X., Cali, Z., Olney, A. & Morgan, B. (2012). AutoTutor. In P. McCarthy & C.
Boonthum-Denecke (Eds.), Applied natural language processing: Identification, investigation, and
resolution (pp. 169-187). Hershey, PA: 1GI Global.

Graesser, A. C. & Person, N. K. (1994). Question asking during tutoring. American Educational Research Journal,
31, 104-137.

Hanks, S., Pollack, M.E. & Cohen, P.R. (1993). Benchmarks, test beds, controlled experimentation, and the design
of agent architectures. Al Magazine, 14 (4), 17-42.

Johnson, L. W. & Valente, A. (2008). Tactical language and culture training systems: Using artificial intelligence to
teach foreign languages and cultures. In M. Goker & K. Haigh (Eds.), Proceedings of the Twentieth
Conference on Innovative Applications of Artificial Intelligence (pp. 1632-1639). Menlo Park, CA: AAAI
Press.

Krathwohl, D.R., Bloom, B.S. & Masia, B.B. (1964). Taxonomy of Educational Objectives: Handbook Il: Affective
Domain. New York: David McKay Co.

Lepper, M. R., Drake, M. & O’Donnell-Johnson, T. M. (1997). Scaffolding techniques of expert human tutors. In K.
Hogan & M. Pressley (Eds), Scaffolding learner learning: Instructional approaches and issues (pp. 108-
144). New York: Brookline Books.

Litman, D. (2013). Speech and language processing for adaptive training. In P. Durlach & A. Lesgold (Eds.),
Adaptive technologies for training and education. Cambridge, MA: Cambridge University Press.

Xiii

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2015). Teaching the teacher: tutoring SimStudent leads to more
effective cognitive tutor authoring. International Journal of Artificial Intelligence in Education, 25(1), 1-34.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal
of Artificial Intelligence in Education, 10(1), 98-129.

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of
the art. In Murray, T.; Blessing, S.; Ainsworth, S. (Eds.), Authoring tools for advanced technology learning
environments_(pp. 491-545). Berlin: Springer..

Merrill, D., Reiser, B., Ranney, M., and Trafton, J. (1992). Effective Tutoring Techniques: A Comparison of Human
Tutors and Intelligent Tutoring Systems. The Journal of the Learning Sciences, 2(3), 277-305

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & McGuigan, N. (2009). ASPIRE: an
authoring system and deployment environment for constraint-based tutors. International Journal of
Artificial Intelligence in Education, 19(2), 155-188.

Nkambou, R., Mizoguchi, R. & Bourdeau, J. (2010). Advances in intelligent tutoring systems. Heidelberg: Springer.

Nye, B., Hu, X., Graesser, A. & Cai, Z. (2014). Autotutor In The Cloud: A Service-Oriented Paradigm For An
Interoperable Natural-Language Its. Journal of Advanced Distributed Learning Technology, 2(6), pp 49-63.

Patil, A. S. & Abraham, A. (2010). Intelligent and Interactive Web-Based Tutoring System in Engineering
Education: Reviews, Perspectives and Development. In F. Xhafa, S. Caballe, A. Abraham, T. Daradoumis
& A. Juan Perez (Eds.), Computational Intelligence for Technology Enhanced Learning. Studies in
Computational Intelligence (Vol 273, pp. 79-97). Berlin: Springer-Verlag.

Person, N. K., Kreuz, R. J., Zwaan, R. A. & Graesser, A. C. (1995). Pragmatics and pedagogy: Conversational rules
and politeness strategies may inhibit effective tutoring. Cognition and Instruction, 13(2), 161-188.

Picard, R. (2006). Building an Affective Learning Companion. Keynote address at the 8th International Conference
on Intelligent Tutoring Systems, Jhongli, Taiwan. Retrieved from
http://www.its2006.0rg/ITS_keynote/ITS2006_01.pdf

Psotka, J. & Mutter, S.A. (1988). Intelligent Tutoring Systems: Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Rus, V. & Graesser, A.C. (Eds.) (2009). The Question Generation Shared Task and Evaluation Challenge. Retrieved
from http://www.questiongeneration.org/.

Simpson, E. (1972). The classification of educational objectives in the psychomotor domain: The psychomotor
domain. Vol. 3. Washington, DC: Gryphon House.

Sleeman D. & J. S. Brown (Eds.) (1982). Intelligent Tutoring Systems. Orlando, Florida: Academic Press, Inc.

Soller, A. (2001). Supporting social interaction in an intelligent collaborative learning system. International Journal
of Artificial Intelligence in Education, 12(1), 40-62.

Sottilare, R. & Gilbert, S. (2011). Considerations for tutoring, cognitive modeling, authoring and interaction design
in serious games. Authoring Simulation and Game-based Intelligent Tutoring workshop at the Artificial
Intelligence in Education Conference (AIED) 2011, Auckland, New Zealand, June 2011.

Sottilare, R., Holden, H., Brawner, K. & Goldberg, B. (2011). Challenges and Emerging Concepts in the
Development of Adaptive, Computer-based Tutoring Systems for Team Training. Interservice/Industry
Training Systems & Education Conference, Orlando, Florida, December 2011.

Sottilare, R.A., Brawner, K.W., Goldberg, B.S. & Holden, H.K. (2012). The Generalized Intelligent Framework for
Tutoring (GIFT). Orlando, FL: U.S. Army Research Laboratory Human Research & Engineering
Directorate (ARL-HRED).

Sottilare, R. (2012). Considerations in the development of an ontology for a Generalized Intelligent Framework for
Tutoring. International Defense & Homeland Security Simulation Workshop in Proceedings of the I3M
Conference. Vienna, Austria, September 2012.

Sottilare, R., Ragusa, C., Hoffman, M. & Goldberg, B. (2013). Characterizing an adaptive tutoring learning effect
chain for individual and team tutoring. In Proceedings of the Interservice/Industry Training Simulation &
Education Conference, Orlando, Florida, December 2013.

Sottilare, R. (2013). Special Report: Adaptive Intelligent Tutoring System (ITS) Research in Support of the Army
Learning Model - Research Outline. Army Research Laboratory (ARL-SR-0284), December 2013.

VanLehn, K. (2006) The behavior of tutoring systems. International Journal of Artificial Intelligence in Education.
16(3), 227-265.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring
systems. Educational Psychologist, 46(4), 197-221.

Woolf, B.P. (2009). Building intelligent interactive tutors. Burlington, MA: Morgan Kaufmann Publishers.

Xiv

SECTION |

PERSPECTIVES OF
AUTHORING TOOLS
AND METHODS

R. Sottilare, Ed.

cuarrer 1 Challenges to Enhancing Authoring Tools and
Methods for Intelligent Tutoring Systems

Robert A. Sottilare
US Army Research Laboratory

Introduction

This chapter highlights a vision for intelligent tutoring system (ITS) authoring capabilities with respect to
the major challenges or barriers to their adoption. A variety of authoring tools for ITSs have emerged,
flourished, and gone extinct over the last 25 years. A few authoring toolsets, which have been introduced
in Chapter 1 of this book, continue to evolve. Outside the growing number of commercial tools, two sets
of authoring tools have found an active user community to sustain them. Carnegie Mellon University’s
Cognitive Tutor Authoring Tools (CTAT; Koedinger, Aleven & Heffernan, 2003) and the AutoTutor
Authoring Tools (University of Memphis; Graesser et al., 1999) have a long history and remain viable
today. Others like the Authoring Software Platform for Intelligent Resources in Education (ASPIRE;
Mitrovic et al., 2009) are a bit more recent and still other authoring tools like the Generalized Intelligent
Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012) and the Situated
Pedagogical Authoring (SPA; University of Southern California, 2013) tools are newer still. Each of these
tools has different scope (e.g., authoring for model-tracing, agent-based, or dialogue-based tutors) and a
different set of learning theories (e.g., component display theory) that drive their design. A short
description of each follows for comparison.

CTAT now has a set of authoring tools for both cognitive and example-tracing tutors. The CTAT
authoring process requires definition of a task domain along with appropriate problems. CTAT was
developed to support problem-based task domains. It may be more difficult to support the authoring of
scenario-based tutors where problem-solving processes are less linear and multiple paths to success are
the norm. In order to develop a domain model, a cognitive task analysis is required to understand how
students learn the required concepts and evolve their skills. CTAT requires familiarity with the Java
Expert System Shell (JESS) production rule language. The authoring tools for example-tracing tutors do
not require any programming. CTAT is currently available as binary (executable) code.

The AutoTutor Authoring Tools are used to develop interactive tutors where students are taught through
natural language discourse. AutoTutor was developed to support specific domains (e.g., Newtonian
physics and computer literacy). As the name suggests, the AutoTutor Script Authoring Tool (ASAT) is a
tool within the AutoTutor framework used to create AutoTutor scripts. ASAT-X is an extensible markup
language (XML)-based tool. The ASAT-V tool is used to view and test AutoTutor visual scripts created
by Microsoft Visio. Conversation rules can be very challenging for instructors, course managers, and
domain experts. However, the AutoTutor Lite authoring interface is more intuitive. The tools are
available as binary code.

ASPIRE is an authoring environment for developing constraint-based ITSs, which can be used by
instructors to author ITSs to supplement their courses. ASPIRE supports authoring of the domain
knowledge. The use of this knowledge is key to development of the domain model which is the most
complex and time-consuming part of an ITS to develop. ASPIRE uses automation and intelligent support
to guide authors through the authoring process. In ASPIRE, authoring consists of seven steps
(aspire.cosc.canterbury.ac.nz/ ASPIRE-Author.php), some of which are beyond the capabilities of
instructors, course managers, and domain experts without the intervention and support of the artificial
intelligence (Al)-based scaffolding. A goal of ASPIRE is to allow non-computer scientists to author 1TSs.

The SPA Tools support the definition of learning objectives, the development of learner measures and
assessments, and the design appropriate feedback and scaffolding for reflection and self-directed learning.
The goal of SPA is to simplify the process of creating knowledge for automated assessment and feedback
in virtual environments and, like AutoTutor, is targeted at training domains where virtual humans play an
active role in tutoring. The developers of the SPA tools assert that authoring in an environment that
closely emulates the learner’s experience eases the technical burdens usually encountered with ITS
content creation and improves authoring efficiency. SPA is not available to the public at this time.

The GIFT authoring tools currently consist of several separate open-source authoring tools (e.g., course,
domain knowledge file, pedagogy configuration, survey) to support various elements of the authoring
process. A unifying GIFT Authoring Tool (GAT) is being developed as of the publication of this volume
along with cloud-based versions of the entire GIFT. A usability evaluation will drive the development of
an intelligently guided authoring experience. The GIFT authoring tools differ from the other authoring
tools discussed here in that the GIFT tools have been integrated with external toolsets like the ASAT to
support dialogue-based interactions, which can be triggered by GIFT-based tutors, and the Student
Information Models for Intelligent Learning Environments (SIMILE) to support assessments where
serious games are linked to ITSs. GIFT also provides a tool for automatically evaluating the hierarchical
relationships between concepts in text-based material to support rapid development of expert models and
other domain knowledge for use in the authoring process. A goal of the GIFT authoring tools is to allow
development of effective ITSs by domain experts with little or no knowledge of computer programming
or instructional design. This toolset is intended to support authoring across multiple task domains, but will
continue to explore opportunities to leverage and integrate existing toolsets. The GIFT authoring tools,
along with the rest of the GIFT software (source code), are freely available at www.GIFTtutoring.org.

A Vision for Authoring Capabilities

While it is obvious that we may never realize a single authoring toolset for ITSs, we continue to strive for
authoring toolsets that are easy to access and use, and support authoring in multiple task domains
(cognitive, affective, psychomotor, and social) resulting in a variety of ITSs (constraint-based, model-
tracing, dialogue-based, agent-based). For these reasons, our vision is for a shell tutor or architecture
where a variety of ITSs can support training in a variety of task domains.

Customized interfaces are needed to support improved usability novice, journeyman, and expert level
authors. To support ease of use, intelligent agents would be used to guide human authors through the
process where automation is not practical. The authoring process for this ideal toolset would also be
heavily focused on process automation to reduce the burden of content and domain knowledge
development to maximum extent possible. Usability and automation in the authoring process are
discussed in more detail below.

Enhancing the Usability of Authoring Tools

We chose to examine the authoring process as a domain in which the author is being tutored with respect
to best practices and the final ITS product. Using Nielsen’s (1994) 10 usability heuristics, we discuss how
authoring tools might be improved to support tailored interaction with authors of varied capabilities. We
begin by examining the visibility of system status. In guiding the authoring process, the system should
keep authors informed about the impact of their decisions on the final product, and feedback should be
provided in a timely manner.

http://www.gifttutoring.org/

Next, we examine the match between system and the real world. If the author has a background in
instructional design, it is desirable to use words, phrases, and concepts familiar to that author and provide
information and guide steps in a natural and logical order based on knowledge of the process. What we
are describing here is a tailored interface based on a user model that describes their capabilities and
preferences.

Another desirable characteristic for our authoring tool interface is centered on user control and freedom.
The ideal authoring system should support easy undo and redo functions without having to through
multiple steps. For our purposes, this means the authoring system will be required to track previous
authoring states in much the same way that Microsoft Office products save previous states of Word,
PowerPoint, and Excel in memory. Given the ITS authoring process is more complex than an Office
document, the specific schema to determine what to keep in memory and how often to update the model
will require some research.

Consistency and standards should be realized across all user interface elements. Words, situations, and
actions should mean the same thing throughout the user interface. Our authoring interface should also
have mechanisms for error prevention either by alerting the author through error messages or by checking
for errors through agents and then presenting confirmation options to the author before allowing the
author to commit to an action. If an action is not permitted, then it would be desirable to have a rule to
exclude it. If errors occur, the authoring system should help the users recognize, diagnose, and recover
from errors. This should include as a minimum some help messages and documentation. Documentation
should be easy to search, focused by the author’s context (where they are in the process), and include a
list of concrete steps.

An intelligent troubleshooting mechanism is a desirable authoring tool feature and should include
constructive options to solve the problem as well as identify it. One option to develop a library of
common errors is to collect user interaction data over time (big data) and mine that data to identify and
document common errors and solution options. User-generated content (social media) may be another
option for evaluating the effectiveness of solutions.

The recognition rather than recall heuristic states that the user interface should minimize the author’s
memory load by making objects, actions, and options visible. The author should not have to remember
where a control is or what the next step is in the process. Standards should be developed for ITS authoring
controls/objects. Where there are universal graphics for controls (e.g., undo), these symbols should be
used instead of creating new, ITS-unigue symbols.

Next, we examine the flexibility and efficiency of user interfaces for authoring ITSs. The interface should
be sensitive to different types of users, their capabilities, and their limitations. Authoring tools should be
able to select default conditions for novice users who may not understand the impact of these decisions.
The selections made by the system are not seen by the novice user, but may be selected and changed by
more experienced authors. Authoring tools should also be able to support shortcuts for frequent actions.

Finally, authoring user interfaces should be aesthetic and minimalistic. They should not contain irrelevant
information, which contributes to extraneous cognitive load and reduces available resources for
processing germane and intrinsic workload. Every extra bit of information competes with the relevant
information and diminishes their relative visibility to the author. It may be useful for future authoring
systems to reveal additional information to the user when the object, action, or option becomes relevant
based on where the author is in the process.

Automation to Enhance Reuse and Reduce Authoring Burden

While the usability discussion above focused on the author’s interface with the author tools, this section
argues the merits of automation to take the human out of the authoring loop and support the search,
retrieval, curation, and development of content and other domain knowledge. Metadata standards are
needed to tag content objects for reuse. Intelligent search methods would use this metadata to find,
retrieve, and curate appropriate content to support instructional objectives set by the author. Intelligent
search would reduce the workload and skill needed to author effective ITSs.

Another area of reuse may be in the design and publishing of standard interface specifications for ITSs.
As part of its architectural description, GIFT has published an interface control document, which
describes how to push and pull data from GIFT and support real-time interaction with external training
platforms (e.g., serious games, virtual simulations). If we describe adaptive training systems in terms of
interactions between the learner, the training environment, and intelligent agents within the ITS, being
able to reuse external training platforms in conjunction with an ITS reduces the burden of creating a
problem space for each individual training scenario, but still allows for an Al to drive instructional
decisions and provide tailored training.

Automatic authoring techniques would also allow authors to create content without humans in the loop.
For example, GIFT currently has an authoring tool to rapidly develop expert models, which can
automatically analyze a text-based corpus and generate a hierarchical representation of the concepts in
that corpus. This can be used to generate an expert model and other domain knowledge thereby reducing
the authoring burden.

Influence on GIFT Authoring Tool Design

As noted, the major challenges for the ITS authoring process are the time, cost, and skill needed to author
effective ITSs. Based on the usability heuristic and automation discussions above, we have identified
goals for the GIFT authoring tools as follows:
o Develop an authoring tool user interface that supports Nielsen’s usability heuristics and allows
instructors and course managers to develop effective ITS without knowledge of computer
programming and instructional design.

e Create tools and methods to identify best authoring practices through the mining of user-
generated content.

o Develop and publish GIFT metadata standards to support the search, retrieval, and curation.
o Develop search, retrieval, and curation tools to support the reuse of appropriate domain content.

e Examine the end-to-end process to identify the cost of developing ITSs and examine
opportunities to automate elements of the authoring process where practicable.

o Create automated authoring tools and validate their performance.

Perspectives on Authoring Tools and Methods

The following chapters in this section discuss various perspectives on authoring tool. In Chapter 2, Dr.
Tom Murray discusses a theory-based approach to authoring tool design. Dr. Murray is well known for
his work in ITS authoring having conducted extensive reviews of authoring tools (Murray, 1999; Murray,
2003). In Chapter 3, Dr. Benjamin Bell compares and contrasts authoring tools for different ITS genres.
Finally, in Chapter 4, Drs. Benjamin Nye, Benjamin Goldberg, and Xiangen Hu discuss design
considerations for authoring tools across various tutoring/training domains.

References

Graesser, A. C., Franklin, S., Wiemer-Hastings, P. & The Tutoring Research Group. (1998). Simulating smooth
tutorial dialog with pedagogical value. In Proceedings of the American Association for Artificial Intelligence
(pp. 163-167).

Koedinger, K. R., Aleven, V. & Heffernan, N. T. (2003). Toward a rapid development environment for cognitive
tutors. In Proceedings of the 11th International Conference on Artificial Intelligence in Education, AIED 2003
(pp. 455-457).

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & McGuigan, N. (2009). ASPIRE: an
authoring system and deployment environment for constraint-based tutors. International Journal of Artificial
Intelligence in Education, 19, 155-188.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal
of Artificial Intelligence in Education, 10(1), 98-129.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated analysis of the state of the
art. In T. Murray, S. Blessing & S. Ainsworth (Eds.), Authoring tools for advanced technology learning
environments (pp. 491-545).

Nielsen, J. (1994). Usability Engineering (pp. 115-148). San Diego: Academic Press.

Sottilare, R. A., Brawner, K. W., Goldberg, B. S. & Holden, H. K. (2012). The Generalized Intelligent Framework
for Tutoring (GIFT). Orlando, FL: U.S. Army Research LaboratoryHuman Research & Engineering Directorate
(ARL-HRED).

University of Southern California. (2013). Situated Pedagogical Authoring (SPA). Playa Vista, CA: Institute for
Creative Technologies (ICT).

cuartEr 2 Theory-based Authoring Tool Design:
Considering the Complexity of Tasks and Mental Models

Tom Murray
School of Computer Science, University of Massachusetts

Introduction

In this chapter, | propose some theoretical foundations for future authoring tool design, focusing on
operationalizing the construct of complexity—for tool, task, and user. Intelligent tutoring systems (ITSs)
are highly complex educational software applications used to produce highly complex software
applications. ITS authoring tools are major undertakings and to redeem this investment it is important to
anticipate actual user needs and capacities. | propose that one way to do this is to match the complexity of
tool design to the complexity of authoring tasks and the complexity capacity of users and user
communities. Doing so entails estimating the complexity of the mental models that a user is expected to
build in order to use a tool as intended. This chapter presents some exploratory ideas on how to
operationalize the concept of complexity for tool, task, and user. | draw from the following theories and
frameworks to weave this narrative: complexity science, activity theory, epistemic forms and games, and
adult cognitive developmental theory (hierarchical complexity theory).

ITS Authoring Tool Design Tradeoffs

This chapter builds on earlier work (now over a decade old) describing the “state of the art” in ITS
authoring tools research and development (R&D) (Murray, 2003). It does not provide any updates on the
state of R&D in this field", but rather takes a perpendicular tact to look at some fundamental issues in
authoring tools design. We start with a review of the design tradeoffs in creating ITS authoring tools.

ITSs are highly complex educational software applications (or learning environments) that can include the
following components: user interface (which might include a simulated phenomenon or task
environment), Expert Knowledge Model (of the task and/or knowledge), learner knowledge model,
pedagogical model, and curriculum model (also collaborative learning environments may include group-
level aspects of any of these) (see Woolf, 2010). For several decades developers and researchers have
been investigating the possibilities for creating ITS authoring tools because these are hoped to (1) reduce
the effort and cost of building or customizing ITSs, and (2) allow non-programmers, including teachers
and domain experts (and even students), to participate fully or partly in building or customizing ITSs
(Murray et al., 2003; Aleven et al., 2006; Suraweera et al., 2010; Constaintin et al., 2013; Ainsworth et
al., 2003; Ritter & Blessing, 1998).

There are many design tradeoffs involved—the primary one being that, in general, the easier or more
efficient a tool is to use, the more simplistic or constrained are the ITSs that can be built from it. Trivial
examples at two extremes are a tool that allows the author to select among checkboxes and lists to order
and toggle and sequence features and curriculum items in an otherwise fixed system vs. a tool that is so
complicated and multi-featured that building an ITS with it is not much easier than traditional software
programming. One can imagine a design tradeoff space (a triangle) among usability, depth, and flexibility
(see Murray, 2004). Depth, which refers to the structural or casual depth of any of the ITS models (listed

! For more recent work in the field, see Aleven & Sewall, 2010; Cristea, 2005; Olsen et al. 2013; Specht, 2012;
Suraweera et al., 2010; Mitrovic et al. 2009; Sottilare et al., 2012, 2014; and the chapters in this edited book

above), is usually at odds with flexibility, which is the ability to author a diversity of types of ITSs.
Usability is usually at odds with both depth and flexibility, i.e., a system that facilitates building deep
models or many types of models tends to be more powerful yet less usable. A main theme of this chapter
is to provide some rough metrics to help with these design tradeoffs.

Toward Theoretical Foundations

Unlike educational software (including ITSs), whose user audience is relatively well defined and known,
the target users of authoring tools are less well defined and understood (unless the tool is intended for in-
house use by a few specialized personnel, in which case, it has limited value as a research case study or
data source). The main point of authoring tool (academic) research is to produce results that are
generalizable to questions of ITS creation/customization related to production efficiency and accessibility
by a non-trivial cohort of potential authors. That is, descriptions of new systems and innovations should
be framed in terms of results, principles, or lessons learned that are relevant for other projects. Though
efficiency is an important concern, | focus on usability in this chapter.

We can draw from the standard literature on usability for tool design principles, which is important but
relatively straightforward, but in addition there are some more theoretical issues specific to authoring
tools (of any sort, not just for ITSs) that | find quite interesting. Influenced by topics I have studied since
my early papers on the subject, | have come to believe that a key issue is in how one matches the
complexity of the authoring task to the complexity of the tool and the complexity capacity of the target
user. Thus, in the bulk of this chapter, | sketch some preliminary considerations and principles that,
though quite speculative, are intended to initiate inquiry in this direction.

Taking a more theoretical approach to ITS (or any) authoring tools is rarely if ever done, but my goal here
is to point toward possible theoretical foundations for the (sub-) field. “Theory” can sometimes refer to a
mere conceptual framework (without any underlying causal theory), but here I mean cognitive, social,
epistemological, and/or information science theories that provide theoretical underpinnings. These areas
of foundational theory (especially the learning and cognitive sciences) are now routinely considered in the
design of ITSs and other educational software, but are rarely brought into discussions about the design or
use of authoring tools.

Design science and usability theory draw on socio-cognitive theories to explore the relationships between
the design of artifacts and the needs, capabilities, and limitations of intended users (and other
stakeholders) (see Oja, 2010; Norman, 1988; Nielsen, 1993). Originally, these theories were in response
to the (now more accepted) realization that domain experts (those who are not instructors), traditional
software architects, and academics all historically have difficulty predicting or imagining the needs and
limitations of the average software user and the average real-life task scenario (or difficulty predicting the
range of users and task scenarios). Thus software design, and artifact design, in general, is increasingly
understood as needing (1) empirical trial-and-error development, (2) the skills of rigorous empathy and
imagination to put oneself in the shoes of a range of types of users and situations, and (3) some basis in
underlying psycho-socio-technical theory (Brown & Campione, 1996; Cobb et al., 2003).

As mentioned, user-centered design (#1, 2 above) is important but may not lend itself to scholarly
advances in authoring tools, but a more theoretical perspective should constitute a contribution to
authoring tool design. The notion of assessing and coordinating complexity among tool, task, and user is a
central theme in this particular theoretical exploration. In what follows, I first reflect on the factors
leading to my 1999 article on authoring tools. | then consider some challenges facing authoring tool
researchers today. Then, in the remainder of the chapter, | propose some theoretical foundations for future

10

authoring tool design. As mentioned, | draw from the following theories and frameworks to weave this
particular theoretical narrative:

o Complexity in software design

e Activity theory

e Epistemic forms and games, and

e Adult cognitive developmental theory (i.e., hierarchical complexity theory).

Theories of complex software design are used to emphasize some of the issues, because ITS authoring
tools are complex artifacts designed to produce complex artifacts. Complexity science also helps us
operationalize what is meant by complexity in general. Activity theory, which highlights the relationships
between an artifact and its usage-tasks, usage-rules, and community of practice, provides an orientation
and basic vocabulary for the task of ITS design by various types of users in an authoring role. We can ask
whether a tool and its “rules” of use afford the accomplishment of a particular task for a particular class of
users. Much of the process of matching tool/task complexity to user (and community) complexity
capacity revolves around the complexity of the mental models that a user is expected to build in order to
use a tool as intended. Colin’s work on epistemic forms and games provides a highly useful framework
for talking about this tool-rule-user match in holistic terms at the right level of granularity. At this point,
we have a framework for describing many sources of complexity in tools, tasks, and users (cognition or
mental models), but no good way to order or coordinate these types of complexity. For that, we draw on
hierarchical complexity theory and related theories of adult cognitive development to suggest this order as
a final step in matching the complexity of an authoring tool to the complexity capacity of its target users.

Challenges Facing Authoring Tool Research Today

Predicting Future Flying Machines

ITS authoring tool research is in an interesting socio-techno-historical position. Intelligent tutors, despite
30 years of R&D, are not yet common in mainstream education or training, though a few notable systems
have achieved wide-spread use (Koedinger et al., 1997; Heffernan & Heffernan, 2014; Graesser et al.,
2005; VanLehn et al. 2005; Mitrovic, 2012; Johnson et al., 2008; Sitaram & Mostow, 2012). This may be
a completely appropriate development and adoption arc for a technology this complex and innovative,
and we have every reason to believe that the results of ITS (and more generally advanced technology
learning systems (ATLS)) research will continue to influence on-the-ground, computer-mediated learning.
However, authoring tool researchers are in the awkward position of developing the cart before the horse,
or worse yet, developing the cart-factory before the horse. It is as if, as the Wright brothers were
experimenting with the first airplanes, a group of researchers and academics were observing on the side,
working out how to design airplane factories that would make airplane production efficient and flexible.
As those first manned flight contraptions were being developed, it would have been difficult to predict
what future flying machines would look like, never mind what the market would be like or how to best
mass-produce and easily customize them for typical users.

Of course, ITS work is well beyond its first prototypes, so this analogy is stretched. Still, authoring tool
designers work under considerable uncertainty as to what types of systems will find their way to
substantial use and benefit from the scale and flexibility that authoring tools enable. However, we are
talking about software here, not equipment manufacturing. Building abstractions and design tools is a

11

natural impulse in software design (procedural-, data-, and knowledge-abstraction are basic computer
science principles; see Abelson & Sussman, 1983). As indicated in the history of my own projects, it can
be beneficial to build authoring tools merely to facilitate local or small-scale R&D projects. A company
that makes a decent profit on one single piece of widely used software (say, an ITS) would benefit from
building authoring tools to customize and enter content for the ITS. However, the less generic the system,
the more difficult it is to frame research questions and findings (especially after others have mapped out
the territory).

Old vs. New Conceptions of ITSs

The original understanding of computational “intelligence” in ITSs involved mostly modeling and
knowledge representation tasks (or challenges)—Ilearner, domain, and instructional models. The more
deeply cognitive science understands knowledge and learning (or finds how little it does understand), the
more difficult these modeling tasks appear for authentic situated tasks. In general, the most successful
ITSs are those focusing on knowledge that is the easiest to represent, including declarative facts and
procedural steps (simple skills, which create complexity as they are combined). Yet developments in
learning theory increasingly emphasize the importance of less representable forms of knowledge, such as
metacognition, conceptual understanding, problems solving, open-ended inquiry, collaboration,
communication, argumentation, hypothetical and analogical thinking, etc.

The more basic forms of knowledge (fact, skills, and concept-map-like relationships) continue to have
fundamental importance as building blocks for more sophisticated skills, but the more exciting work in
ITS/ATLS has been moving into a wide variety of areas that do not involve “deep modeling” of
knowledge or expertise. These new research trends include recognizing and responding to affect; using
big data to classify and predict learner behavior (without trying to create runnable models per-se);
wearable gadgets; immersive experiences; natural language understanding and production; gamification;
and socialmediafication. For a project to be considered “ITS” research, it no longer requires
computational intelligence per se, but only the inclusion of some state-of-the-art computational
technology (or leading-edge techno-socio-psycho theory). While the idea of a generic ITS framework
requires some commonality of basic components and/or representational frameworks, the scope of ITSs is
becoming increasingly diverse, and overarching frameworks are increasingly difficult to envision.
However, once could counter that as diversity increases, so does the number of projects, so that the actual
impact of designing generic frameworks still serves a significant (if smaller percentage-wise) potential
user base.

Toward Design Theories

Authoring tools are still essential for scale-up, wide adoption, and easy customization of learning systems,
though each may need to be specific to a very specific genre of instructional systems. If so, authoring tool
design may become more of an engineering challenge than a research area. However, there are still
important theoretical issues that can be investigated, which we explore next.

Engineering challenges involve figuring out how to apply general theories, methods, or principles to
specific contexts. These challenges are no less arduous and important, as design principles tend to be
rather abstract, and nailing down “how the rubber meets the road” in each context can be the bulk of the
work. Also, because theory must ground in and remain responsive to actual examples, ideally there is an
ongoing dialogue allowing general principles to be informed by the various methods that have been used
to apply them to practical contexts.

12

Software Usability and Complexity

Usability and Managing Software Development Risks

Bracketing the above concerns, let’s assume that ITSs of some sort will indeed become mainstream and
that authoring tools will become increasingly important—a safe bet, | think. Other than tools designed for
in-house use by highly trained specialists, authoring tools, by their nature, must be usable by some
anticipated user audience. As mentioned, with any tool there are context-specific usability concerns that
can be worked out through good design practices (prototyping, early feedback from authentic users, etc.),
but here I look at very general usability concerns, having to do with the complexity of these systems.

ITSs are complex software applications and full-featured ITS authoring tools can be an order of
magnitude larger and more complex—ijust as a machine designed to build many types of lamps is much
more complex than a lamp (though the machine itself may be relatively easy for the end-user/author to
use, its interiors will be more complex). Next, we look to the literature on the design and usability of
complex software systems for advice relevant to ITS authoring tool design. This is a first step in
imagining a more theory-driven approach to authoring tool design.

Design tasks such as authoring ITSs fall under the “ill-defined” and “wicked” problems characteristic of
real-world projects (Conklin, 2005; Mirel, 2004). In his treatment of usability of complex systems, Oga
(2010) defines complex software development in terms of Mirel’s definition of complex problem-solving,
which involves “ill-defined situations; vague or broad goals; large volumes of data from many sources...
nonlinear, often uncharted analytical paths; no pre-set entry or stopping points; many contending
legitimate options; collaborators with different priorities; [and] ‘good enough’ solutions with no one right
answer.” Chilana et al. (2010) give three additional factors that contribute to the complexity of designing
usable software: domain-specific terminology, every situation is unique, and limited access to domain
experts. ITS/ATLSs and their authoring tools certainly have all these characteristics.

Oja contends that Nielson’s classic usability heuristics are even more critical for complex software
development (Nielson, 1994). Nielson’s usability heuristics include reification (visualizing key
abstractions and relationships; minimizing working memory load); user control and freedom (not
constraining user actions any more than is necessary); flexibility in outcomes (allowing for variations in
style and needs); match between system and the real world (using the vocabulary and mental models users
already have); assistance with helping users recognize, diagnose, and recover from errors; and efficiency
of use.

Echoing the heuristic to “match between system and the real world,” Johnson (2006) analyzed software
usability failures in the healthcare sector that imposed significant financial and acceptance burdens within
that sector and found that “many usability problems stem from the inability of suppliers and
manufacturers to anticipate [user] requirements.” The educational technology R&D community is poised
to create ITS authoring tools that could be used on a large scale. As the investment in authoring tools
increases, there is a corresponding increased “risk” that investment in design, outreach, etc., will
outweigh the benefits if the tools do not directly meet the needs of a wide variety of users (or if the ITSs
build with the tools do not reach a large number of learners).

Figure 1 illustrates the type of risk management and risk reduction principles increasingly being used in
software and other industries.? Additional investments in software can follow the “80/20” rule, where

2 Image adapted from “Risk Management in the (Bio)Pharmaceutical and Device Industry,” L Huber &
Labcompliance Inc., http://www.labcompliance.com/tutorial/risk/default.aspx?sm=d_a.

13

perfecting the last 10% or 20% can take a disproportionate amount of effort. Meanwhile, the return on
user value gets proportionately less. The goal is to find the sweet spot where risk is acceptably low and
expected value is relatively high (“optimum” in Figure 1). To mitigate this risk, usability principles
recommend both empirical and theoretical grounding: i.e., usability evaluation and user-feedback from
authentic contexts done “early and often;” and a good theoretical understanding of the user and task.
Complexity is a useful construct for operationalizing Johnson’s “[ability] of suppliers and manufacturers
to anticipate [user] requirements,” but the construct needs better definition for this to happen—which is
what we hope to contribute to here.

Optimum

Failure/Error
Risk

Figure 1: Cost vs. value in software risk assessment

Complexity Science and Information Theory

Next we branch away from complexity in software and usability theory to consider how complexity is
theorized in more general terms. Complexity science points to various methods for measuring complexity,
which are all related to the amount of information contained in an object, system, or process, with
“information” being closely related to the concepts of difference, discernibility, and degrees of freedom.
Information and communication theories also quantify information (even “meaning™) in terms of entropy,
randomness, chaos, “surprise,” and “shortest possible description” (Grinwald & Vitanyi, 2003). There are
many individual metrics that contribute to overall complexity, including the number and diversity of
components and their structural or functional relationships (Benbya & McKelvey, 2006). Complexity
science also deals with time-based phenomena: change, feedback loops, self-organization, evolution, and
emergence in dynamic systems—so-called “complex adaptive systems.”

Campbell (1988) describes three sources of complexity: number of dimensions of information, the rate of
information change, and the number of alternatives associated with each dimension (i.e., information
diversity). We modify and generalize this scheme as in Figure 2, using the categories of structural,
dynamic, and perspectival complexity.

14

» Structural complexity
— No. of properties

* Dynamic complexity
— Loops, Feedback, recursion i
relationships (“non-linearity”) T =
» Perspectival complexity N N
— Multiplicity/alternatives, uncertainty/ T
hypotheticals
— Variables, decision spaces
— Stakeholders

— No. of parts £-
— No. of types of parts >
— No. of relationships ¢
— No. of types of relationships oo ‘8 3
— No. of steps
-3

Figure 2: Sources of system complexity

For structural complexity, other things being equal, systems are more complex if they have more parts
(e.g., an ant colony or a huge Lego project); more types of parts (e.g., a car or human anatomy); more
properties in each part; more relationships or constraints among the components (internally and with the
external environment); and more types of relationships. In particular, one-to-one mappings (relationships)
are the simplest, one-to-many mappings are more difficult, and many-to-many mappings are most
complex to manage and conceptualize.

In addition to these structural dimensions (which are metaphorically space-like), systems whose
properties, relationships, and objects change over time are more complex (the dynamic or temporal
dimension). Dynamic complexity can be represented in terms of the laws, rules, mechanisms, or
influences that create change in a system. Not only change but feedback loops and nonlinear dynamics, all
outside our scope to elaborate on, come into play here.

As indicated above, complexity is related to information intricacy, space of possibility, and even
“meaning,” and thus is not simply an objective property of systems, but has a quasi-subjective component
that involves human context, activity and the reasons for doing the complexity analysis. In software,
information systems and usability analysis, there are cognitive and epistemic considerations. Bystrom &
Jérvelin’s analysis of task complexity includes factors such as repetitively, analyzability, a-priori
determinability, number of alternative paths, outcome novelty, number of goals and conflicting
dependencies, uncertainties between performance and goals, number of inputs, and time-varying
conditions of task performance (1995, p. 5). Zhang et al.’s (2009) “epistemic complexity” measures
complexity in terms of the movement from facts to explanations and from unelaborated to elaborated
knowledge—both of which indicate increasing depth and complexity. Epistemic complexity includes
measurement of the “diversity” and “messiness” one encounters in a situation (Bereiter & Scardamalia,
2006). Thus concepts of nuance/subtlety, abstraction/ generalization, uncertainty/ambiguity must be
considered.

Therefore, in Figure 2, we have the third category “perspectival” complexity, which is complexity due to
multiplicity and uncertainty, including conflicting goals or subtasks; diverse perspectives among
stakeholders; stochastic randomness and indeterminacy; and vagueness and uncertainty in any of the
structural or dynamic elements (measuring these would be more heuristic than the other two complexity
factor types). Perspectival factors relate as much to subjectivity and the nature of cognition as to the
objective nature of the artifact.

15

Usability Complexity and Runnable Artifacts

In terms of software systems, specifically authoring tools, the factors mentioned above can be applied to
the software artifacts (code and interface), development (programming or authoring), or the complexity of
use (the user interface understanding and the mental model a user must acquire to understand a system).
Theoretically, each of the sources of complexity in Figure 2 could be enumerated or estimated and
combined to measure the complexity of a system (its code, interface, task, etc.) toward the goal of
comparative analysis of the complexity of systems.

Software tools and applications allow us to make and improve things, which we call “authoring.”
Artifacts that “run” or behave dynamically are, of course, more difficult to author. With authoring tools
and educational software such as Scratch and StarLogo, and scripting languages in Office applications,
the line between programming and using software is increasingly blurred. ITS authoring can fall
anywhere along a spectrum of complexity from customizing parameters and choosing content to creating
teaching strategies, which is closer to software programming.

ITSs are dynamic systems that must be run to test them. They have multiple learning paths and it is
intractable to test every possible student behavior. Unpredictable behaviors inevitably occur in complex
software (which is why rigorous testing is important). The simplest systems have predicable paths with
little interaction or parameterization, such as scripts and story-board-type procedural flows. If an
authoring tool allows branches, if/then rules, procedures, loops, parameterized subroutines, or recursion
(in rough order of difficulty), the level of authoring complexity jumps dramatically. The author is
essentially doing software programming. Writing and debugging computer programs is a complex task
requiring special skill and tools. Without these skills, and even with them, it can be quite difficult to
determine the source of a run-time software bug.

Creators of authoring tools that allow authors to enter into this level of task complexity must (1) not
underestimate the complexity of the task or overestimate the skill of the typical user, and (2) provide real
debugging and tracing tools for the systems to be viable. One of Neilsen’s (1994) “Top 10~
recommendations for usability is to “help users [authors in this case] recognize, diagnose, and recover
from errors.” This can be as simple as providing an Undo feature for authored content, but for systems
with dynamic complexity special tools are needed to trace and debug procedural representations.

Like most software systems, ITSs should be designed in user-participatory feedback loops, where, as
Benbya & McKelvey note, “the critical factor in all information systems is continual change” (20086, p.
20). This might even imply that viable authoring tools should have some sort of “version control”
subsystem.

The above discussion suggests factors that could be considered in characterizing the complexity of
software tasks and interfaces. It is implied that for some tasks, such as version control and debugging,
there is a need for special skill such as knowledge engineering. Thus it is also important to consider the
“complexity capacity” of users and communities of practice—and for this we turn next to activity theory.

Activity Theory—Users, Tasks, Tools, and Communities

We borrow concepts from activity theory, which stresses the mediating role of tools (artifacts) and their
usage rules in collective human activity and development (Jonassen & Rohrer-Murphy, 1999; Stahl,
2006; Engestrom et al., 1999). Here rules indicate the (sometimes implicit) skills, understandings, and
habits held by a community of practice. Thus, we can frame our exploration of authoring tool usability in
terms of the interaction between users, tools, rules, and tasks. We can ask whether a tool and its “rules” of

16

use afford the accomplishment of a particular task for a particular class of users. Clearly, our users are
authoring tool users and the task is to design or customize an ITS; later we introduce “epistemic
forms/games” as a way to describe the rules of use.
Figure 3 illustrates these factors in activity theory terms (adapted from Jonassen & Rohrer-Murphy 1999;
Engestrom et al. 1999). Thus, from our focus on the concept of complexity, we must consider the
following:

e Task and rule complexity (user activity methods and goals)

e Tool (artifact) complexity

e Socio-cognitive complexity (community of practice and division of labor)
We are concerned with the match between the following:

e User vs. tool complexity

e Task vs. user complexity

e Community of practice vs. tool complexity

[
e/|\@ -

e e e

Figure 3: Activity theory

When we speak of users, we are really speaking of users in particular roles. This distinction is important
when we begin to speak of the complexity capacity of a user (or type of user). We are not referring to a
person’s general ability to handle complexity, but to one’s ability within a certain role (ITS author,
content developer, tester, etc.), which might depend more on training and experience than on innate
intellectual sophistication.

Campbell notes that there are several approaches to assessing complexity: as a subjective psychological

experience of the user, as an objective measure of the task, and as an interaction between subjective and
objective elements (1988, pg. 44). While measuring complexity in terms of user (author) experience is

17

important, methods for doing so are outside our scope here. However, we describe methods for describing
user capacity, and we assume that, on average, complexity capacity is closely related to the complexity
experience of the user (they will be frustrated or confused if their complexity capacity in a particular role
is mismatched for the task). In the prior section, we outlined specific methods for assessing task and tool
complexity objectively (though perhaps heuristically as estimations). Our eventual goal is to assess the
match (or interaction) between user capacities and the measures of tool/task complexity (user capacities is
roughly estimated, while tool/task complexity affords a more objective measurement).

Note that in the prior section tool and task complexity were treated together. Unlike simple tools such as a
hammer, for which the task a tool is used for (e.g., building a barn) is usually much more complex than
the tool itself, for most software tools, the complexity of the tool features can stand as a fair indication of
the complexity of the task. This is, of course, not strictly true, as building an ITS involves much more
than using an authoring tool (e.g., applying learning theory, paper mock-up design, etc.), but for
simplicity we assume that the complexity analysis given above of artifacts (tools) maps well to
complexity analysis of tasks. Task-related issues of how the tool is used and learned are categorized in
rules or community of practice (COP) elements of activity theory, rather than with the artifact.

Epistemic Complexity and Complexity Capacity

Oja quotes Haynes and Kannampallil (2004) who say that “complex software applications require great
cognitive skill, integration of knowledge from various areas, and advanced instruction and learning; thus,
it is not surprising that ‘screen deep’ interfaces to such systems may not yield the best results in terms of
usability.” This is one reason why understanding the intended user is so important—because making a
tool more easy to use, i.e., “usable,” may dumb it down too much for some users or tasks, and decrease
“user control and freedom” and “flexibility and efficiency of use” (from Nielson’s model) for those
contexts. Oja (2010) noted, “As Mirel [2004] points out, most current HCI practices concentrate on ease
of use or simplifying the work, and this may lead to ‘producing good designs but for the wrong
problems’” (p. 3800). The design goal is thus to make tools “operationally simple, while intellectually
sophisticated and nuanced” (Mirel, 2004).

“Cognitive complexity” is one term used to describe a person’s capacity to perform complex mental or
behavioral tasks. Cognitive complexity involves not only the number and complexity of the objects and
relationships as described above, but also the ability to perceive nuances and subtle differences, i.e., it can
involve both integrative and differentiating capacities (Mirel, 2004). Jordan uses the term “complexity
awareness” for “a person’s propensity to notice...that phenomena are compounded and variable, depend
on varying conditions, are results of causal processes that may be...multivariate and systemic, and are
embedded in processes [that involve non-simple information feedback loops]” (2013, p. 41). As
mentioned above, Zhang et al. (2009) use the term “epistemic complexity,” which includes an
understanding of underlying reasons, theoretical explanations, or hidden mechanisms within phenomena.
In what follows, | use the term “complexity capacity” to remind us that cognitive complexity required for
a task is about the context and role a person is in, and depends on experience in addition to any general
complexity “intelligence” they may have.

In the exploratory discussion of software usability and complexity, | enumerated many factors and it
remains for future work to determine how these factors are operationalized, weighted, and combined in
any overall complexity metric (a process that may be quite context-specific, as complexity components
will have different weights for different situations). As we move from characterizing the complexity of
tools (artifacts like software) and tasks (in this case authoring) to that of users, my approach continues to
be preliminary and suggestive, with many details remaining to be worked out beyond this chapter. Let’s
assume, for simplicity, that we have worked out the details of a scheme such as the one described in prior

18

sections of this chapter, have devised a method to characterize task/tool complexity level, and have
collapsed the dimensionality of analysis to rate tasks/tools on a scale of low/medium/high complexity.
How might we map this to user (or community of practice) complexity capacity? Table 1 illustrates what
such a mapping might look like, showing types of authors, benefits, and problems typical of each author
type, and the level of design complexity one can typically expect in the authoring task.

Table 1 Authoring tool user roles and complexity capacity estimates

Roles Benefits Problems Complexity

(tool use roles) (of that role) Capacity for ITS
(of that role) Design

Teachers Practical experience Not good at articulating or LOW

PRACTICAL abstracting expertise

Domain Experts and Auth. tool infers the A fixed instructional MED

content developers instructional methods method

PARTIAL

Instructional designers Know learning theories and Rare; not trained in MED

and learning theorists research knowledge engineering

THEORETICAL

Knowledge engineersand Know the tools; are May not know what it is like MED-HIGH

ITS developers sometimes also plugged into to teach or learn the material

EXPERIENCED user testing

Computer scientists and Complexity capacity. Don’t “it’s intuitively obvious to HIGH

have to build to a real user

the casual observer...”

software developers

(ACTUAL?!) base.

Teachers have on-the-ground experience of the needs of students and classroom situations, and, while
their input should be included in the iterative design process, they cannot be expected to have the skill,
nor the time, to use (or learn how to use) complex authoring tools. Domain experts and content
developers are more typically used to define knowledge and expertise, though they may have little
practical or theoretical knowledge of pedagogy. Instructional designers and learning theorists bring
different sources of pedagogical knowledge and epistemological knowledge (understanding how
knowledge is structured), though they will often not have the time to dedicate to a steep tool learning
curve.

For all of the above user types, the task of representing knowledge in a computationally usable fashion
may be foreign—while knowledge engineers are trained in exactly that task. It is only with this level of
skill and higher that we can expect sophisticated authoring tasks to be managed. Most user communities
do not have people with knowledge engineering (or ITS design) skills, meaning that users at this level are
usually part of a dedicated ITS design team, which would only exist in an academic lab, a company
dedicated to building learning systems, or an educational organization large enough to form such a team
to be shared widely (e.g., a university or city school district).®

® Note that this specific scheme is suggestive and meant to illustrate a framework rather than the “content” of the
framework—i.e., I do not need to make a strong argument here that, e.g., “domain experts and content developers”
have a limited or “fixed” understanding of instructional methods, as is given in the Table. Of course, the roles in the

19

The final category of users in Table 1 is computer scientists and software developers. This category
connotes the unfortunate yet understandable fact that many ITS authoring tools never see a robust user
community and are only used within the confines of the team or organization that built the tool. This
stakeholder group tends to be the most sophisticated in terms of designing complex structural and
procedural models. The benefit is that more powerful ITSs can be built, but the drawback is that without
usability input from “real” users, the tools may be too complex to expect many others to pick up, and the
tool designers may be out of touch with the needs of intended users.

In authentic contexts, the actual “capacity” of a user to use a tool to accomplish a task depends on
“community of practice” considerations as well as the potential complexity capacity level of the
individual (see Figure 3). These considerations include (1) opportunities, investment, and incentives in
training; (2) community of practice peer and mentor support; and (3) time available to author. Thus, even
if a user, say, an unusual teacher, has a high level of generic complexity capacity, in order to successfully
make use of an ITS authoring tool that person would need to be able to invest time in the learning curve,
have the support of peers and superiors in adopting this new technology, and have the ongoing time
available to do the authoring (along with other job responsibilities). Contexts satisfying these conditions
are indeed rare.

In addition, for newly introduced artifacts, there is a dynamic, often evolutionary, interplay between
artifacts (their design), the standard and novel ways that artifacts are put to use, and the human capacities
enabled by artifacts. That is, new tools create new capacities, which create new possibilities and new
goals/tasks, around which new (or improved) communities of practice develop—all of which, in turn,
prompt new innovations (tools) to continue the cycle. Benbya & McKelvey (2006, p. 14) refer to the “co-
evolutionary” aspects and “adaptive tension” of the “complex adaptive” socio-technological systems and
discuss the problem of “accumulating requirements.” So, an important community-of-practice question is,
How effective are the feedback and development learning loops between users, trainers, and designers?

Thus far | have described what a tool/task/user complexity mapping scheme might look like, without
saying much about the nature of user cognitive complexity. A user’s understanding of tools, tasks, and
methods can be described in terms of the mental models one has of these things (Gentner & Stevens,1983;
Johnson-Laird, 1983). Mental models are cognitive representations of external systems that include
structures and processes that a person simulates (runs or visualizes) mentally. One task of the authoring
tool is to help the user construct a valid mental model of the ITS building blocks, range of configurations,
and design steps that the authoring tool affords.

Oja notes that “cognitive engineering (Gersh et al., 2005) and learner-centered design (Soloway et al.,
1994) focus on improving system-human cognitive fit and allowing users to construct better mental
models (knowledge) of the system” (p. 3801), and that “reification is the basis for successful
communication and the establishment of a shared goal in human-computer collaboration™ (p. 3803). Thus,
it is important that the authoring tool interface accurately and powerfully reify the structures, objects,
constraints, decision rules, and procedures involved in authoring, so that authors can build correct mental
models and can use these mental models to coordinate the various steps and roles within a design process.
The complexity of mental model that is supported in the authoring tool should match the complexity
capacity of the user.

Collins and Ferguson’s work on “epistemic forms” provides a valuable link between task/tool complexity
and the user’s complexity capacity in terms of the mental models that the user must construct and

table can be combined in any individual, but it would be rare that, for example, a classroom instructor would also be
a learning theorist or knowledge engineer.

20

maintain. Their concept of “epistemic games” also anticipates the community-of-practice element of
activity theory. I discuss epistemic forms and games next.

Epistemic Forms and Games

Collins and Ferguson (1993) first articulated the concepts of epistemic games and epistemic forms (see
also, Morrison & Collins, 1994; Shaffer, 2006). Epistemic forms are “target structures, like mental
models, that guide inquiry” and are “recurring forms that are found among theories in science and
history.” Epistemic games are “general purpose strategies for analysing phenomena in order to fill out a
particular epistemic form” that are shared within a community of practice (Collins and Ferguson, 1993, p.
25). Example epistemic forms include lists, hierarchy or tree structures, tables, networks, if-then rules,
and constraint-based systems. They are “generative frameworks with slots and constraints on filling in
those slots,” and in this sense are like domain-independent scripts, templates, or grammars that specify the
structural properties of a phenomena. They serve as commonly understood mental models for
understanding tasks and tools.

The theory of epistemic forms/games considers not only the structure of information, but also the ways
(i.e., games) communities use, understand, and build knowledge using that structure. For example,
perhaps the simplest epistemic form is the list. Knowing how to play an epistemic game includes knowing
its constraints, strategies, and moves. For the “list game,” this includes knowing how to add, remove,
combine, split, and arrange (classify, filter, or sort) items, and knowing when the “list form” is most
appropriate for a particular problem or inquiry. This framing is compatible with activity theory, which
highlights the interplay between cognition, artifact design, and communities of practice.

Morrison and Collins (1994) coined the term “epistemic fluency” to refer to the ability to use and choose
appropriately among the repertoire or ecology of epistemic games available within a community of
practice. Epistemic games are rarely used in isolation and are combined with other games as well as
transformed into other games, as when one representation (a concept network) is seen as more appropriate
than another (a table). Tables can be seen as composed of lists; even more complex forms might combine
tables with networks (e.g., a network of tables, or a table of networks). Table 2 lists some epistemic
forms/games mentioned by Collins and Ferguson (1993).

Table 2 Epistemic forms and games (mental models)
(Collins & Furgeson, 1993)

list street map

matrix or table org. chart

molecular model musical score
periodic table timeline

web page menu cause/effect diagram
X-y graph network

pert chart relational database
binary tree sentence diagram
floor plan term paper outline

Epistemic games can be framed in terms of the key questions driving an inquiry. Knowing an epistemic
game includes knowing how to evaluate whether it is being played well. Example quality/validity criteria
for the list game include coverage (is anything missing?), similarity (do the items belong together, or
should they be split into two lists—apples and oranges?), distinctness (are the items actually different?),
and perspicuity (is it sufficiently short, simple, efficient, and understandable?). Vibrant communities of
practice can be creating, tweaking, and evolving, and mashing up their epistemic games.

21

Authoring Tool Epistemic Forms

Epistemic forms/games allow for a compact method of classifying tool/task complexity. In our original
discussion of artifact complexity, | suggested that one could enumerate the number and types of parts,
properties, relationships, etc., in a system. This may be useful to do but also quite cumbersome.
Meanwhile, epistemic forms serve well as a first-pass description of the complexity of end-user software
systems. Epistemic forms also address one difficult issue in the characterization of an artifact, which I call
the “dimension compression problem:” it may not be difficult to classify and compare artifacts along any
single dimension (as in Figure 2), but we have little guidance thus far on how to combine and prioritize
the many dimensions into a single (or simple) complexity characterization. Epistemic forms are holistic
and representationally efficient in that they incorporate many of these dimensions into each category.

In discussing authoring tools, | am interested specifically in design activities or design games (a term not
used by Collins and colleagues). In all epistemic games, one of the evaluation criteria is whether one’s
product (use of the epistemic form) is understandable or meaningful to others within one’s community,
while design games are distinguished by the additional need to assess how understandable and useable the
product will be to users (who belong to a community related to but different from the designer
community). Thus, the set of design game quality/validity criteria is extended to a group that requires
some cognitive empathy (and design/test iterations) to serve well.

In surveying a set of 14 authoring tools mentioned in Murray et al. (2003), one can clearly see a set of
epistemic forms that are repeated numerous times throughout most of these systems. This list of forms is
not be surprising—they are seen in most software tools, as shown in Figure 4. The basic elements include
check boxes and choice lists; sliders, dials, and meters; graphical networks and trees; and interactive
hierarchical and tabular textual representations. As discussed, to compare across and within any class of
epistemic forms (say, a hierarchical menu system), we can use the elements suggested in the earlier
discussion of complexity science, i.e., the complexity of an interface and task includes the number and
diversity of such elements and the degree of their inter-relationship or coupling in an overall system.

» Defining your teaching strategies

Strategy name
| Practice
z Testing styles
New hypothesis) (_Edw_) (Delete..) (Co S &]
Teacher choice &g ' 4 [Student choice ® Fill in the blar
. Lots of teaching o} 43} ot of testing I™ Categorical
L Tests persed o i frest at end ¥ True/False
- Stan goe Rashi Authoring Tool
Answers deducf CHD A sy [Prosomton] [ove. T
! =
I Ln(solhn! S e 1| iy
W etemp is 95.6 de ' Lots of feedb et
| Eleciroe dencien i s s P
[Al compy —— e -l
1 Statics 1 O 22 - it i
— = S
O actor Dscomposition O o | [emmme | e |] —
Voctors - - ~
roes Equdl & posite ' V| me———— L =
: Stat. orcas 2+ Wsctors (] e
C @éf" [eyep— < R e] ™ oo o e
T P e
4 o T —— e s
T,pesa*;;"‘c I 1 e I‘
#rd Law Bistnos Forons 3t 3 g — = -
: draling O
- .- - oonm Forces Wright v. Mass
gprpresfy. Contusion o 4
o9 / Compressible Body @ Ridgid Body v
=/ Tension Foross v
O\Tensian niusion FB0 yve Eqsationa
R v ‘\FKJ ham* Forpds nalsquhs\

Figure 4: Epistemic forms in authoring tools

22

Intuitively, one can roughly compare or rate the complexity of epistemic forms. Lists, sliders, and
checkboxes are simpler than hierarchies, tables, and concept networks, which are, in turn, simpler than the
complex systems/mental models that are composed of dynamic the interactions among many simple sub-
components. Hierarchical complexity theory offers a more rigorous and more theory-based foundation for
rating and comparing complexity components, and it was developed to apply to human tasks and skills.
Next, | explore HCT as the last theoretical territory of exploration in my journey to link several
interdisciplinary fields.

Hierarchical Complexity and Skill/Task Development

Above | drew from information/systems theories and socio-technology theories (activity theory and
usability theory) to suggest ways to characterize the complexity of systems in general terms. Epistemic
forms provide a way of ameliorating the “dimensionality issue” by enumerating common forms that are
more intuitive and ready-to-hand than a list of low-level complexity dimensions. But we are still far from
a guantitative or semi-quantitative method for combining the factors involved to be able to make
comparative complexity judgments. To move in this direction, | draw from an area of cognitive/learning
science that is has significant implications for learning theory and ATLS design in general, yet, curiously,
is rarely referenced in these fields: Neo-Piagetian developmental theories. Cognitive developmentalists
(Neo-Piagetian theorists) have undertaken a deep study of complexity, because human development and
learning can be described in terms of “qualitative differences in mental complexity” relative to various
tasks, skills, or life contexts (Kegan, 1994, p. 152).

The key insight is that development, and complexity in general, advance through both horizontal and
vertical (“hierarchical””) movement, and do so through a particular alternating or spiraling pattern.* The
structure and nature of horizontal growth is different than the structure and nature of vertical growth.
Vertical growth is more quantized or punctuated, and the vertical leaps involve particular challenges. If
we frame authoring tool features, tasks, and epistemic games in terms of vertical and horizontal
differences in complexity, we have additional tools for comparing complexity, and we gain insight into
why certain forms may be particularly difficult for users to learn.

Neo-Piagetian (adult) developmental theories go beyond early developmental work (e.g., Piaget, Perry,
Kohlberg) to add a hierarchical “structural perspective in analyzing changes in the organization of
“actions and thought” (Fischer & Yan, 2002, p. 283). These theories propose underlying representations
for skills and suggest rules for the transformation of skills to higher-level skills.> These theories apply
principles from complexity science to human cognition and behavior, which can be easily mapped onto
artifacts (tools). As stated by Commons & Pekker, “Theories of difficulty have generally not addressed
the hierarchical complexity of tasks. Within developmental psychology, notions of hierarchical
complexity have come into being in the last 20 years. [...] a model of hierarchical complexity, which
assigns an order of hierarchical complexity to every task regardless of domain, may help account for
difficulty” (2009; p. 2).

Horizontal increases in complexity involve adding more of what already exists to an object, process, or
structure (more parts, relationships, steps, etc.—adding more “bits” of information without adding new
structural emergence). Commons suggests that increases in the horizontal complexity of tasks (which he
calls the “classical” model of information complexity) are analogous to increases in cognitive load

* These developmental models are discussed in more detail in the appendix in Murray (2015).

® Fischer’s Skill Theory (Fisher, 1980; Fisher & Yan, 2002) and other Neo-Piagetian models, including Commons’
Hierarchical Complexity Model (Commons & Richards1984, Commons et al. 2008), Kegan’s stage model (1994,
1982); and Cook-Greuter’s ego development model (2000, 2005).

23

(Commons & Pekker, unpublished). Horizontal growth can also be roughly compared to Piaget’s
assimilation, as it adds new knowledge in the form of existing structures (Piaget, 1972). Vertical growth
relates to accommodation, in which new structures are created to understand the world in new ways.
Horizontal growth tends to be continuous, while vertical growth follows a more discrete model and occurs
after a sufficient amount of horizontal growth allows for a reorganization at the next higher level.

Vertical increases in complexity lead to a new level or stage by applying an operation upon, or
“coordinating and transforming,” the objects of the lower layer. Each artifact or skill at a given
hierarchical level consolidates a set of items at the lower level into a single whole, transcending and yet
including them. Completely new properties and concerns arise at each level (a phenomena called
emergence). Examples of increasing levels of hierarchical complexity include the development (or
evolution) from words to sentences; addition to multiplication; single celled to multi-celled organisms;
concrete to formal operational concepts; using to designing an artifact; and doing a task to managing
others doing it.

There are numerous operations that can produce the next hierarchical level. Examples include abstraction
and generalization operate on lower-level objects to create higher-level ones; compilation or aggregation
can create higher-level units; steps are combined together to create processes; going “meta” (“thinking
about thinking™); and moving from static to dynamic systems or linear dependency to mutual dependency
also involve hierarchical transformations. Kegan notes that increasing complexity and sophistication
moves (vertically) from entities to processes, from static to dynamic systems and from dichotomous to
dialectical relationships (Kegan, 1994, p. 13).

Horizontal growth also follows a pattern in natural systems including human learning. The sequence is
from single objects, to multiple independent objects, to multiple interacting objects, to massively
interconnected object, and finally to an emergent whole that transitions to the next hierarchical level. It
makes intuitive sense that it is easy to learn a few more words (horizontal), but the leap to speaking
sentences is comparatively momentous (which is not to say that it comes online all of a sudden, i.e.,
children produce quasi-sentences first). Furthermore, this difference is quantitative. If we wanted to
measure language complexity, we can count the size of vocabulary and the length of words, but no
amount of increase in vocabulary will “equal” the shift from words to sentences.

Hierarchical complexity (which is Commons’ term; other developmentalists use different terms)
contributes to our analysis of authoring tool complexity in several ways. First, it ameliorates the
“dimensionality issue” by providing another tool for organizing the plethora of complexity dimensions,
i.e., according to horizontal and vertical differences in complexity, toward our goal of coordinating the
complexities of tool vs. task vs. user and in our goal of comparing two (or more) tools (or tasks, or types
of users). Second, because it is primarily a learning or developmental theory, it provides important
insights into the effort and prerequisite knowledge a new user needs to use an authoring tool. Vertical
growth is typically more difficult than horizontal growth, and the emergence of a new level of
organization often comes with some disequilibrium or dissonance, which, in turn, means there can be
resistance or hesitancy.

Now, we can begin with a rough characterization of the level of software tool complexity that a
hypothetical user already has, and then ask whether the features and tasks of an authoring tool represent
horizontal or vertical types of learning for the skill acquisition learning curve. We must not assume that
new user skill level can be increased in any sort amount of time with something like a training
intervention if vertical learning is involved.

24

Hierarchical Complexity and Epistemic Forms

The analysis of tool/task/user complexity can proceed in basically two directions: more rigorous
gualitative analysis and more heuristic quantitative analysis (though any analyses will probably combine
gualitative and quantitative methods). For my purposes, | focus on heuristic estimations. My goal is to
either start with a particular authoring tool/task and identify the communities of practice and training
needs that will match the tool/task; or, starting with a target user group, design the tool/task to match the
estimated complexity of a community of practice. One can use the concepts introduced in this chapter,
including the dimensions of complexity, types of epistemic forms, and the distinction between horizontal
and vertical differences in complexity, to make subjective shoot-from-the-hip assessments and inform
design discussions as is usually done in software design. Alternatively, and left for others to carry
forward, one can use these concepts to construct detailed quantitative metrics and formulas for calculating
task/tool/knowledge complexity—but such is not necessary to make solid progress in matching
tools/tasks to users.

Morrison and Collins (1994) mention the “epistemic complexity” of epistemic forms and games, but they
do not define it precisely. What | contribute here is an attempt to link epistemic games to cognitive
developmental theory in an attempt to create a grounded framework for assessing the relative complexity
of epistemic forms/games, which then provides a framework for describing the complexity of authoring
tool features. These epistemic forms can be sequenced according to complexity level modeled on the
levels mentioned in hierarchical complexity theory, as shown in Table 3.

Table 3 Epistemic forms organized by complexity level

Epistemic Form for Tool/Task/Mental Model Complexity Level

e Text information fill-in boxes Simple objects

e Lists, choices, sliders, and check boxes

o Forms, schemas, or templates Abstractions and mappings
e Tables and matrices

e Hierarchies and trees

e Scripts (with branches) Formal systems

e Equations and Boolean logic

e Structural models: concept networks, boxology diagrams

e Causal and constraint models (and using variables) Dynamic systems

e Behavioral/procedural models: If/ithen and rule-based procedural
representations

e (Authoring of) decision trees, Bayesian nets, etc.

e Coordination of dynamic modules, e.g., complex interactions between Architectures and ecosystems
expert, student, teaching modules, and dynamic use scenarios. (systems of dynamic systems)

e Design that takes into account emergent and chaotic interactions.

As a final step, in Figure 5, | link these complexity levels to the low/medium/high level of complexity
associated with different categories of users from Table 2. Again, this mapping is a heuristic estimation
that is intended to illustrate the type of analysis; no strong claims are made for the specific mappings.

25

Complexity Design
pu— Capacity

LOW

MED

MED

T Y i @% — MED-HIGH

= Ay % HIGH

Figure 5: Complexity levels of epistemic forms

Discussion

Beginning with a summary of my article on ITS authoring tool design, | described some of the challenges
facing authoring tool designers and researchers today. Consonant with this Special Issue’s theme of
personal retrospectives on classic papers, | also included a narrative look at what brought me to authoring
tools work and mentioned that my academic journey since then has included interdisciplinary tributaries
outside of ITS and educational technology per se. The invitation to write this chapter has given me the
happy opportunity to apply new frames of reference to an old topic. The reader hoping for definitive
answers to questions about software complexity may have been disappointed—what | have done is
exploratory theorizing to help frame important questions by suggesting certain theories, principles, and
concepts amenable to ITS authoring tool R&D.

In this chapter, | have explored some theoretical bases for assessing the appropriateness of ITS authoring
tools, and any type of software artifact, to intended user communities. The analysis is based on general
notions of complexity from complexity science and hierarchical complexity theory. The importance of
considering tools, tasks, user capacity, and community of practice in an integrated way was supported
through the inclusion of the models of activity theory and epistemic forms.

Matching tool/task complexity to user/community complexity capacity is important because authoring
tools are complex and expensive to build, and, using a “risk analysis” framework, we can say that the
more expensive a system is to build, the larger the risk if user needs and capacities are not understood and
anticipated. The design goal is to find the sweet spot where risk is acceptably low and expected value is

26

relatively high. Oja’s (2010) study of improving usability in complex software systems concludes that
systems should anticipate that projects usually involve a variety of roles and areas of expertise, and that
interfaces should allow for the “distribution of tasks according to participant strengths” (p. 3800). Thus,
the goal is not so much to match the affordances of an authoring tool to an intended user type, but
anticipate the range of user types involved in an ITS design and build tools that clearly meet the needs of
each design role. Also, and plans for large scale adoption of authoring tools should include plans for
learning and peer-mentoring within specific communication pathways in communities of learning.

The inclusion of complexity science and theories of dynamic systems in our narrative supports a bigger
picture consideration of authoring that considers not only how tools should be built to match user
capacities, but the reciprocal evolution of tools and human capacities over longer periods of time. As
Jerome Bruner notes “through using tools, man changes himself and his culture...human evolution is
altered by man-made tools” (1987). Thus, tools can not only support the construction of advanced
learning systems, but might also be designed to help users (especially instructors) more deeply understand
and incorporate leading-edge learning theories and mental models of the learning process (or build more
adequate mental models of their content domain). We can move beyond seeing authoring tools primarily
in terms of time and effort savings and consider their role in empowering content and pedagogy experts,
including teacher, and in terms of propelling the evolution of computer-mediated learning in general.

References

Abelson, H. & Sussman, G. J. (1983). Structure and interpretation of computer programs. MIT Press, Cambridge,
MA.

Ainsworth, S., Major, N., Grimshaw, S., Hayes, M., Underwood, J., Williams, B. & Wood, D. (2003). REDEEM:
Simple Intelligent Tutoring Systems from Usable Tools. Chapter 8 in Murray, T., Blessing, S. &
Ainsworth, S. (Eds.). Authoring Tools for Advanced Technology Learning Environments. Springer:
Netherlands.

Aleven, V. & Sewall, J. (2010, June). Hands-on introduction to creating intelligent tutoring systems without
programming using the cognitive tutor authoring tools (CTAT). In Proceedings of the 9th International
Conference of the Learning Sciences-Volume 2 (pp. 511-512). International Society of the Learning
Sciences.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The cognitive tutor authoring tools (CTAT):
Preliminary evaluation of efficiency gains. In Intelligent Tutoring Systems (pp. 61-70). Springer Berlin
Heidelberg.

Benbya, H. & McKelvey, B. (2006). Toward a complexity theory of information systems development. Information
Technology & People, 19(1), 12-34.

Bereiter, C. & Scardamalia, M. (2006). Education for the knowledge age: Design-centered models of teaching and
instruction. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp.
695-713). Mahwah, NJ: Lawrence Erlbaum Associates.

Brown, A. L. & Campione, J. C. (1996). Psychological theory and design of innovative learning environments: On
procedures, principles, and systems. In L. Schauble & R. Glaser (Eds.), Innovations in learning: New
environments for education (pp. 289—-325). Mahwah, NJ: Lawrence Erlbaum Associates.

Bruner, J. (1987/2004), ‘Life as Narrative’, Social Research, 71: 691-710.

Bystrom, K. & Jérvelin, K. (1995). Task complexity affects information seeking and use. Information processing &
management, 31(2), 191-213.

Campbell, D. J. (1988). Task complexity: A review and analysis. Academy of management review, 13(1), 40-52.

Chilana, P. K., Wobbrock, J. O. & Ko, A. J. (2010, April). Understanding usability practices in complex domains. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 2337-2346). ACM.

Cobb, P., Confrey, J., diSessa, A. Lehrer R. Schauble, L. (2003). Design experiments in educational research.
Educational Researcher. Jan/Feb 2003; 32, 1.

Collins, A. & Ferguson, W. (1993). Epistemic forms and epistemic games: Structures and strategies to guide
inquiry. Educational Psychologist, 28(1), 25-42.

27

Commons, M. L. & Richards, F. A. (1984). A general model of stage theory. In M. L. Commons, F. A. Richards &
C. Armon (Eds.), Beyond formal operations: Late adolescent and adult cognitive development,(pp. 120-
141). New York: Praeger.

Commons, M. L. & Pekker, A. (2009, unpublished). Hierarchical complexity and task difficulty.
http://dareassociation.org/papers.php. Accessed Monday, November 30, 2009.

Commons, M. L. & Pekker, A. (2008). Presenting the formal theory of hierarchical complexity. World Futures:
Journal of General Evolution 64(5-7), 375-382.

Commons, M. L., Trudeau, E. J., Stein, S. A., Richards, F. A. & Krause, S. R. (1998). Hierarchical complexity of
tasks shows the existence of developmental stages. Developmental Review, 18, 238-278.

Conklin, J. (2005). Wicked Problems & Social Complexity. Chapter 1 of Dialogue Mapping: Building Shared
Understanding of Wicked Problems, Wiley.

Constantin, A., Pain, H. & Waller, A. (2013). Informing the Design of an Authoring Tool for Developing Social
Stories. In Human-Computer Interaction—INTERACT 2013 (pp. 546-553). Springer Berlin Heidelberg.

Cook-Greuter, S. R. (2000). Mature ego development: A gateway to ego transcendence. J. of Adult Development,
7(4), 227-240.

Cook-Greuter, S.R. (2005). Ego Development: Nine levels of increasing embrace. Available at www.cook-
greuter.com.

Cristea, A. (2005). Authoring of Adaptive Hypermedia. Journal of Educational Technology & Society, 8(3).

Engestrom, Y., Miettinen, R. & Punamaki, R.-L. (Eds.). (1999). Perspectives on activity theory. New York:
Cambridge University Press.

Fischer, K. (1980). A theory of cognitive development: The control and construction of hierarchies of skills.
Psychological Review, 87(6), 477-531.

Fischer, K. & Yan, Z. (2002). The development of dynamic skill theory. In Conceptions of development: Lessons
from the laboratory, 279-312.

Gentner, D. & Stevens, A. (Eds.). (1983). Mental models. Hillsdale, NJ: Lawrence Erlbaum Assoc.

Gersh, J. R., McKneely, J. A. & Remington, R. W. Cognitive Engineering: Understanding Human Interaction with
Complex Systems. Johns Hopkins APL Technical Digest, 26, 4 (2005), 377-382.

Graesser, A.C., Chipman, P., Haynes, B.C. & Olney, A. (2005) AutoTutor: An intelligent tutoring system with
mixed-initiative dialogue. IEEE Transactions in Education, 48, 612-618

Grinwald, P. D. & Vitanyi, P. M. (2003). Kolmogorov complexity and information theory. With an interpretation in
terms of questions and answers. Journal of Logic, Language and Information, 12(4), 497-529.

Haynes, S. R. & Kannampallil, T. G. (2004). Learning, Performance, and Analysis Support for Complex Software
Applications. Proc. of the 3rd Ann. Workshop on HCI Research in MIS, 30-34.

Heffernan, N. & Heffernan, C. (2014). The ASSISTments Ecosystem: Building a Platform that Brings Scientists and
Teachers Together for Minimally Invasive Research on Human Learning and Teaching. International
Journal of Artificial Intelligence in Education. 24 (4), 470-497.

Johnson, W. L. & Valente, A. (2008, July). Tactical Language and Culture Training Systems: Using Acrtificial
Intelligence to Teach Foreign Languages and Cultures. In AAAI (pp. 1632-1639).

Johnson-Laird, P.N. (1983). Mental models: Towards a cognitive science of language, Inference, and consciousness.
Cambridge, MA: Harvard University Press.

Johnson, C. W. (2006). Why did that happen? Exploring the proliferation of barely usable software in healthcare
systems. Quality and Safety in Health Care, 15, i76-i81.

Jonassen, D. & Rohrer-Murphy, L. (1999). Activity theory as a framework for designing constructivist learning
environments. Educational Technology, Research & Development, 47 (1), 61-79.

Jordan, T., Andersson P. & Ringnér, H. (2013). The Spectrum of Responses to Complex Societal Issues: Reflections
on Seven Years of Empirical Inquiry. Integral Review, February 2013, Vol. 9, No. 1.

Kegan, R. (1982). The Evolving Self. Harvard University Press.

Kegan, R. (1994). In over our heads: The mental demands of modern life. Cambridge, MA: Harvard University
Press.

Koedinger, K. R., Anderson, J. R., Hadley, W. H. & Mark, M. A. (1997). Intelligent tutoring goes to school in the
big city. International Journal of Artificial Intelligence in Education (IJAIED), 8, 30-43.

Kumar, P., Samaddar, S. G., Samaddar, A. B. & Misra, A. K. (2010, June). Extending IEEE LTSA e-Learning
framework in secured SOA environment. In Education Technology and Computer (ICETC), 2010 2nd
International Conference (Vol. 2, pp. V2-136). IEEE.

Mirel, B. (2004). Interaction Design for Complex Problem Solving. San Francisco, CA: Morgan Kaufman.

28

Mitrovic, A. (2012). Fifteen years of Constraint-Based Tutors: What we have achieved and where we are going.
User Modeling and User-Adapted Interaction, vol. 22(1-2), 39-72, 2012.

Mitrovic, A., Martin, B. Suraweera, P., Zakharov, K., Milik, N., Holland, J., McGuigan, N. (2009). ASPIRE: an
authoring system and deployment environment for constraint-based tutors. Artificial Intelligence in
Education, vol. 19(2), 155-188, 2009.

Mizoguchi, R. and Murray, T. (Eds.) (1999); Proceedings of “Ontologies for Intelligent Educational Systems,”
Workshop at AIED-99, LeMans France, July 1999.

Morrison, D. & Collins, A. (1995). Epistemic Fluency and Constructivist Learning Environments. Educational
Technology, 35(5), 39-45.

Murray, T. & Woolf, B. (1992). Tools for Teacher Participation in ITS Design. In Frasson, Gauthier & McCalla
(Eds.) Intelligent Tutoring Systems, Second Int. Conf. , Springer Verlag, New York, pp. 593-600.

Murray, T. (1996, May). Having It All, Maybe: Design Tradeoffs in ITS Authoring Tools. In Intelligent Tutoring
Systems: Third International Conference, ITS 96, Montreal, Canada, June 12-14, 1996. Proceedings (Vol.
1086, p. 93). Springer.

Murray, T. (1999). Authoring Intelligent Tutoring Systems: Analysis of the state of the art. Int. J. of Al and
Education. Vol. 10 No. 1, pp. 98-129.

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of
the art. In Authoring tools for advanced technology learning environments (pp. 491-544). Springer:
Netherlands.

Murray, T., Blessing, S. & Ainsworth, S. (Eds) (2003). Authoring Tools for Advanced Technology Learning
Environments: Toward cost-effective adaptive, interactive, and intelligent educational software. Springer:
Netherlands.

Murray, T. (2004). Design Tradeoffs in Usability and Power for Advanced Educational Software Authoring Tools.
Educational Technology Journal, Sept-Oct 2004, pp. 10-16.

Murray, T. (2015). Coordinating the Complexity of Tools, Tasks, and Users: Toward a Theory-based Approach to
Authoring Tool Design,” to appear in the International Journal of Artificial Intelligence and Education,
Vol. 25.

Nielsen, J. (1994, April). Enhancing the explanatory power of usability heuristics. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (pp. 152-158). ACM.

Nielsen, J. Usability Engineering. Boston, MA: AP Professional (1993).

Norman, D. (1988). The Design of Everyday Things. Doubleday: NY.

Oja, M. K. (2010). Designing for collaboration: improving usability of complex software systems. In CHI 10
Extended Abstracts on Human Factors in Computing Systems (pp. 3799-3804). ACM: Chicago.

Olsen, J. K., Belenky, D. M., Aleven, V. & Rummel, N. (2013, January). Intelligent Tutoring Systems for
Collaborative Learning: Enhancements to Authoring Tools. In Artificial Intelligence in Education (pp. 900-
903). Springer Berlin Heidelberg.

Piaget, J. (1972). The principles of genetic epistemology. Basic Books, NY.

Ritter, S. & Blessing, S. (1998). Authoring tools for component-based learning environments. Journal of the
Learning Sciences, 7(1) pp. 107-132.

Shaffer, D. W. (2006). Epistemic frames for epistemic games. Computers & Education, 46(3), 223-234.

Sitaram, S. & Mostow, J. (2012, May 23-25). Mining Data from Project LISTEN’s Reading Tutor to Analyze
Development of Children’s Oral Reading Prosody. In Proceedings of the 25th Florida Artificial Intelligence
Research Society Conference (FLAIRS-25), 478-483. Marco Island, Florida.

Soloway, E., Guzdial, M. & Hay, K. E. Learner- centered design: the challenge for HCI in the 21st century.
Interactions, 1, 2 (1994), 36-48.

Sottilare, R. A., Brawner, K. W., Goldberg, B. S. & Holden, H. K. (2012). The generalized intelligent framework for
tutoring (GIFT). Orlando, FL: US Army Research Laboratory—Human Research & Engineering
Directorate (ARL-HRED).

Sottilare, R., Graesser, A., Hu, X. & Goldberg, B. (2014). Design Recommendations for Intelligent Tutoring
Systems: Volume 2: Instructional Management. U.S. Army Research Laboratory Human Research &
Engineering Directorate.

Specht, M. (2012). E-Learning Authoring Tools. In Encyclopedia of the Sciences of Learning (pp. 1111-1113).
Springer US.

Stahl, G. (2006). Group Cognition: Computer Support for Building Collaborative Knowledge. Cambridge, MA:
MIT Press.

29

Suraweera, P., Mitrovic, A. & Martin, B. (2010). Widening the knowledge acquisition bottleneck for constraint-
based tutors. International Journal of Artificial Intelligence in Education, 20(2), 137-173.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., ... & Wintersgill, M. (2005). The Andes
physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education,
15(3), 147-204.

Woolf, B. & McDonald, D. (1984). Design issues in building a computer tutor. IEEE Computer, Sept. 1984.

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-
learning. Morgan Kaufmann.

Zhang, J., Scardamalia, M., Reeve, R. & Messina, R. (2009). Designs for collective cognitive responsibility in
knowledge-building communities. The Journal of the Learning Sciences, 18(1), 7-44.

30

cuarter 3 One-Size-Fits-Some: I'TS Genres and’'What They
(Should) Tell Us About Authoring Tools

Benjamin Bell
Agru Research and Technology, LLC

Introduction

The process of creating sophisticated Intelligent Tutoring System (ITS) can be costly, complex, and
tedious, and relies on collaborative expertise from multiple disciplines. Authoring tools streamline and
accelerate the construction of ITS by providing a framework within which an author can design a learning
system. Some authoring systems are general-purpose tools that provide an author with a great deal of
leeway. Others embody a set of assumptions about what the authored product will look like and how it
will behave. However, the authoring tool ecosystem has evolved with little discussion of ITS genres and
the desired properties of tools supporting authoring within each genre. Instead, authors of instructional
software often determine a priori what the authoring tool(s) will be and then commence the design
process informed by a combination of past experience, online research, discussion with colleagues, and
product availability.

I hypothesize that authors seldom think about the genre of the learning system they wish to create and
even more seldom use that genre as a filter in selecting the appropriate tools. Moreover, even the author
who engages in this deliberative process is unlikely to find authoring tools that are explicitly aligned with
specific genres of ITS.

In this chapter, | discuss the characteristics of ITSs that can be used to derive a set of genres, and the
relationships between those characteristics and desired properties of ITS tools corresponding to each. |
use examples of authoring tools to contrast general-purpose and specialized tools, and illustrate the utility
of aligning authoring tools to corresponding genres.

Related Research

This chapter discusses various genres of ITSs and what they have to say about ITS authoring tools. The
purpose is not to propose an exhaustive ontology of tutoring systems, but highlight how fundamental
properties of tutorial interactions and simulations influence thinking about authoring tools.

Why ITS Categories Matter

Numerous ontologies have been proposed for characterizing ITS. Since this chapter explores the influence
of ITS genres on authoring tools, the properties relevant to this discussion are not those focusing on the
user experience so much as those governing the design and construction of an ITS (though these are often
related). I can go further and suggest that instructional strategies similarly do not define what genre an
ITS should be identified with, so much as how they are built (though these too are related). Put another
way, the relevant distinguishing characteristics of an ITS are related to the questions “how do | build
one?” and “what’s hard about that?”.*

! Murray (2003) proposes as a fundamental question “who should author ITS?” which is an important question but
less relevant to characterizing ITS categories.

This is not a radical departure from traditional ITS research by any means. A view of ITSs that has
endured for four decades and remains influential today identifies the three elements of an ITS as (1) the
expert model (domain knowledge), (2) the student model (knowledge about the user), and (3) the tutor
(knowledge of teaching strategies) (Hartley & Sleeman, 1973). This decomposition factors in neither user
experience nor instructional strategies, but is essentially an architectural blueprint. Researchers thus
generally converged around the general notion that building an ITS was a process of creating, more or
less independently, expert models, student models, and tutoring strategies (Burns & Capps, 1988).

Debate about specific approaches generally focused within each of these three components. A good deal
of research has resulted in an array of theoretical frameworks that remain vigorously investigated to this
day. Reviews of expert modeling appear in Ahuja & Sille (2013); Paviotti, Rossi & Zarka (2012); and
Sani & Aris, (2014). For a review of student modeling, see Pavlik, Brawner, Olney & Mitrovic (2013). A
review of tutoring strategies is presented in Sottilare, DeFalco & Connor (2014).

An extension to the canonical ITS model has acknowledged the interface between the user and tutor as an
integral component (Miller, 1998; Sottilare, 2012). Interface as used here refers to how the user and tutor
interact, not simply to how the display appears. Miller (1998) distinguished two principal metaphors for
this interaction: first-person interfaces, where the user directly manipulates displayed objects; and second-
person interfaces, which allow the user to command actions. First-person interfaces can provide the user
with a feeling of working directly with the domain. This interface metaphor is a natural way for a user to
engage in a simulation because changes in the system, process, environment, or device being simulated
can be effected in a manner that resembles the physical world. That this type of interaction raises
guestions about authoring tools should be clear (I discuss this later).

In a second-person interface, a user commands actions to an implicitly or explicitly represented agent.
Agency is thus delegated to the system through what can be an abstraction (e.g., a menu), an embodiment
of a person (e.g., a depiction of a tutor), or some other representation of a non-human but still interactive
entity (e.g., a helpful paper clip). The modality of this interaction can vary. Basic interface controls
provide a (usually) graphically oriented palette of user commands (such as “skip,” “go back,” or “help”).
These commands are distinctive from controls embedded within the simulated environment (a steering
wheel, a syringe, etc.). Menus are another common means to embody an abstraction of an agent, and have
evolved to be highly context-dependent.

The basic elements governing the interaction between the user and tutor thus appear to have become
established in the canonical ITS (Sottilare, 2012). However, answering the questions “how do | build
one?” and “what’s hard about that?” has become less straightforward as ITSs have grown less
homogeneous. This heterogeneity among ITSs matters, in part, because of the implications for authoring
tools. In the next section, I briefly discuss two genres, linked with first- and second-person metaphors,
respectively, and a third that borrows from both traditions. These are representative of the last few
decades of ITS research that have been influential in the technology-mediated learning community. For
purposes of discussion, | label the first two simulation-based learning and discourse-based learning. The
third genre, which adopts elements of both first-person and second-person interfaces, is labeled situation-
based learning. Although the terms “simulation” and “situation” are related, | draw an important
pragmatic distinction between a computational simulation (of a device, process, system or environment)
and a collection of situations that a learner could encounter through taking actions or asking questions—
where each circumstance itself is static but where the overall user experience could feel dynamic.” The

ZFor instance, a finite state machine could occupy both simulation and situation paradigms, but since a state has
inspectable, static properties, for our purposes such an architecture fits more within the situation-based learning
genre.

32

discussions that follow are summary in nature; the reader is referred to more comprehensive reviews cited
in each section.

Simulation-Based Learning

The emergence of desktop simulation and its rapid trajectories toward greater fidelity and lower cost have
created rich opportunities for automated learning while raising fundamental questions for the ITS
community. The general construct of a simulated world is captured in the term reactive environment
(Shute & Psotka, 1996) to describe an ITS in which “the system responds to learners’ actions in a variety
of ways that extend understanding and help change entrenched belief structures using examples that
challenge the learner’s current hypotheses.” (p. 579). As a result of much research into the teaching
potential of simulations, the canonical ITS has expanded to include a simulated environment. Researchers
have used various labels to describe such components (and the encapsulating tutoring system), including
environment module (Burton, 1988), microworld (Frederiksen & White, 2002), simulation-centered tutor
(Munro, et al., 1997), or discovery learning environment (\Veermans, van Joolingen & de Jong, 2000).

Although a simulator is not in itself a tutoring system, there has been significant progress in the use of
desktop simulation to advance learning objectives in ITSs, particularly those employing games. The
pervasive presence of this approach is reflected in the literature, which discusses, alternately, embedding
a simulation within a tutor (Jong & van Joolingen, 1998; Towne & Munro, 1988) and embedding a tutor
within a simulation (Rickel & Johnson, 1999; Fowler, Smith & Litteral, 2005; Wray, Woods & Priest,
2012; Bell, Johnston, Freeman & Rody, 2004; Bell, Jarmasz & Nelson, 2011). Since this distinction is
largely an implementation question and not a theoretical one, the term “intelligent game-based learning
environment” is often used to refer to a pairing of simulation and tutoring capabilities, irrespective of
system architecture (Lester, Lobene, Mott & Rowe, 2014).

Discourse-Based Learning

The prevalent metaphor for driving second-person interfaces is discourse. Improved capabilities for
natural language interaction have enabled more conversational forms of this kind of interaction. Also,
remarkable gains in speech recognition have yielded second-person interfaces that support spoken
discourse between a user and the agent that is interpreting and carrying out the user’s instructions. In this
regard, technology has caught up with the visions of earlier ITS researchers, exemplified by Miller’s
observation that “the image of an interface as a ‘second person’ agent working for the user is perhaps
most clearly captured by a natural language interface” (1998, p. 155).

Discourse as a tutorial strategy is intended to operate in an ITS much like it does when practiced by a
skilled human tutor (Van Lehn, 2011). Using discourse as a tutoring technique is distinct from using
discourse to train the skills related to engaging in discourse (e.g., in language training, see Johnson &
Valente, 2008). In discourse-based learning, the tutor uses conversation and its varied constructs
(questions, answers, reflection, rhetoric) to elicit thought, reasoning, problem solving, and question-
posing from the student.

This chapter does not survey the literature on dialogue-based tutors though recent reviews appear in
Brawner & Graesser (2014) and Rus, D’Mello, Hu & Graesser (2013). Instead, | use as an exemplar an
influential and representative body of research in dialogue-based tutors led by Graesser and colleagues
called AutoTutor and its variants (Graesser, et al., 2004; Graesser, Chipman, Haynes & Olney, 2005;
D’Mello & Graesser, 2012). AutoTutor embodies a theory of dialogue-based instruction based on
authentic (human) tutoring behaviors. The theory has evolved from proposing numerous dialogue moves
(e.g., question, prompt, correct, hint) (Graesser, et al., 1999; Graesser, et al., 2001) to proposing an

33

integrative dialogue model called Expectation and Misconception Tailored (EMT) (Graesser, et al.,
2012). AutoTutor thus offers a useful example for my discussion later of how authoring tools address
discourse-based ITS.

Situation-Based Learning

The third example of an ITS genre fits neither wholly within first-person interfaces nor wholly within
second-person interfaces. Situation-based learning though has great contemporary importance and
addresses a conceptual flaw in traditional ITS models that did not call for any sort of authentic context—
the requirements for a user model, domain model, and tutoring strategies (and later, an interface) did not
implicate a need for setting instruction against a backdrop relevant to the target skills and knowledge.
Learning sciences researchers though recognized that instructional systems could be more effective when
coupled with circumstances in which the user naturally encounter, learn, and apply the skills and
knowledge being taught.

Collins, Brown & Newman (1989) describe natural alignment of how people learn with the use of an
authentic context in which to embed learning. They use the term cognitive apprenticeship to describe the
application of traditional apprenticeship learning to class instruction, which they argue is especially
relevant to learning higher-order metacognitive skills and problem-solving strategies as employed by
expert practitioners. Situated learning theory (Brown, Collins & Duguid, 1989) asserts that learning in
context is more consistent with how people acquire knowledge and skills as supported by research in
education and cognitive science. The authors “argue that approaches such as cognitive apprenticeship that
embed learning in activity and make deliberate use of the social and physical context are more in line with
the understanding of learning and cognition that is emerging from research” (Brown, Collins & Duguid,
1989, p. 32). Bransford and colleagues (1990) present a framework for anchored instruction that makes
the role of an authentic context explicit by structuring learning through realistic, complex problems
embedded within a narrative. Another body of research influenced by these contextual approaches yielded
a long series of ITS conforming to a framework called goal-based scenarios (GBS) (Schank, Fano, Bell &
Jona, 1994).

Although these theories differ in surface features, they share the essential principles of goal-driven
inquiry in pursuit of authentic, complex and ill-defined problems (Bell & Zirkel, 2001), embedded within
a fictional narrative context (Riedl & Young, 2014). The shared emphasis on creating an authentic context
for learning, and for embedding instruction within a suitable culture of practice, has implications for ITS
authoring as discussed later.

Implications for ITS Authoring Tools

In the previous section | presented three representative ITS genres that have each emerged from, and
altered the canonical ITS model. This section considers the authoring process and its challenges in the
more contemporary context of ITS genres as they have evolved in recent research. In his analysis of ITS
authoring tools, Murray (1999) proposed distinguishing those that are pedagogy-oriented (supporting the
sequencing and teaching of generally static content) from those that are performance-oriented (enabling
interactive environments with opportunities to learn and apply skills and get feedback). Murray (2003)
identified four categories of pedagogy-oriented ITS authoring tools: curriculum sequencing and planning,
tutoring strategies, multiple knowledge types, and intelligent/adaptive hypermedia; and three specific
categories of performance-oriented ITS authoring tools: device simulation and equipment training,
domain expert system, and special purpose.

The three categories mentioned previously do not neatly align with Murray’s categories, but are useful for
contextualizing the present discussion. Simulation-, discourse-, and situation-based learning, while not

34

intended as an elaborated ontology, are used here to organize a brief consideration of how ITS tools can
best support the authoring process along with a few select exemplars.

Intelligent Tutoring Demands Intelligent Authoring

The act of constructing an ITS has been viewed largely as the assembly and integration of disparate but
interacting components, where “traditional intelligent tutoring systems (ITSs) are typically constructed
out of four primary components or modules: the user interface, expert model, student model, and
instructional module” (Jona & Kass, 1997, p. 39), and ITS authoring tools have evolved largely along
these lines (Macmillan, Emme & Berkowitz, 1988; Murray, 2003; Murray & Woolf, 1992; Russell,
Moran & Jordan, 1988; Brawner, Holden, Goldberg & Sottilare, 2012). To support construction of each
of these modules, authoring tools came to “consist of specialized editors for building each component
(i.e., a user interface builder, expert model editor, etc.)” (Jona & Kass, 1997, p. 39).

More recently, work being done under the Generalized Intelligent Framework for Tutoring (GIFT)
initiative has called for authoring support of five functions: user models, domain knowledge, instructional
strategies, user-tutor interfaces, and integrating tutor components (Sottilare, 2012). In calling attention to
integrating components, GIFT researchers explicitly acknowledge the importance of and the challenges
surrounding the integration of ITS components.

GIFT and its precursors are thus generally aligned with a software engineering approach to supporting the
process of creating complex ITS components. However it is also important to consider the underlying
learning principles that are implicitly adopted or explicitly enforced by an authoring tool architecture and
to examine how an ITS authoring tool provides support to an author in properly adhering to those learning
principles.

In previous work, we suggested that authoring tools that observe this component-oriented approach “are
too general to serve as a specification for a piece of educational software, and are too general to be of
much help in guiding a designer in creating such software” (Bell, 2003, p. 349). Lack of specificity
though could have implications for ITS tools beyond just limiting their utility. Kass & Jona (1997) argue
that “while the idea of modular, interchangeable components sounds quite appealing from a software
engineering perspective, we’re skeptical about the educational validity of this idea, and of the implicit
model of learning which underlies it” (p. 39). In other words, authoring tools premised solely on a
software engineering approach may lack a theoretical basis for guiding the creation of effective
instruction.

An alternative is to think about ITS tools as a general label for the space of discrete, specific, and
standalone authoring environments, each conforming to a different teaching architecture (instructional
approach). One benefit to this approach is that there is arguably a wide range of categories of ITSs, so this
approach avoids the problem of how to create a truly supportive and sound “universal” tool. Another
benefit is that the enormous range of potential actions and interactions, which a universal tool would need
to support the authoring of, would require vast representational knowledge capturing the structure of what
users do when engaging with ITS. With tools that are specific to an instructional architecture, the
representational challenges become far more tractable. Third, an ITS tool specific to an instructional
architecture is in principle more capable of providing informed authoring guidance than a tool that, by
necessity, could offer guidance in only very general terms. An ITS authoring tool built with a specific
instructional approach in mind can thus avoid sacrificing value as an intelligent guide in the name of
generality.

35

This sort of approach does not come without some cost: research, analysis, and validation is required in
order to derive teaching architectures that are viable (meaning, ITS tools could effectively support
authoring) and effective (meaning, ITS created from such tools could have instructional utility). There is
therefore a dual process that “entails creating a fully designed and implemented teaching architecture
along with a special-purpose tool for instantiating that architecture in a variety of domains” (Jona & Kass,
1997, p. 39).

In the next sections, | revisit the three categories introduced previously (learning driven by simulations,
by discourse, and by situations) and discuss implications for authoring tools that embody the notion of
category-tailored ITS authoring.

Implications of Simulation-Based Learning for ITS Authoring

The first-person interface metaphor was introduced previously as the basis for a great deal of productive
research that has explored the instructional potential of simulations as powerful environments for tutoring
systems. The process of authoring an ITS in this category is unlikely to conform very closely with the
general model of ITS authoring, so it is also unlikely that a general-purpose tool is the ideal authoring
environment. One challenge faced by the ITS author is how to structure event sequences and transitions to
achieve the desired learning outcomes. Open-word simulations do not ensure that learning objectives are
achieved (or even encountered); a helpful tool should coach the ITS author in exercising some measure of
controls expressed in frameworks such as Guided Experiential Learning (Clark, Yates, Early & Moulton,
2010). So here we see a need for ITS authoring tools to “understand” simulation in a way that diverges
from traditional authoring.

For instance, in a simulation-driven ITS the nature of the student model may not be along the traditional
lines of a separate, explicit module. Student models are useful for recognizing what a user’s goals are in
selecting a course of action (Greer & Koehn, 1995; Whitaker & Bonnell, 1990) and identifying typical
error modes a user may be displaying (Burton & Brown, 1978; Brown & VanLehn, 1988; Brusilovsky,
1994). However, exploratory environments enabled by simulation can reduce the reliance on a student
model, if not eliminate the need entirely. Student models emerged as a means to interpret and track
student actions and intentions. A simulation though can be seen as a dynamic record of a user’s path,
since the state of the simulated world at any moment in time is attributable to the user’s intentions and
how the user effected change in the world in service of those intentions. The environment thus can reveal
how far toward some defined objective the user has progressed and what the user has done correctly or
erroneously (Livak, Heffernan& Moyer, 2004). This is a simplification but expresses the basic argument
that | can elaborate with a brief example.

Consider a flight simulator embedded within an ITS designed to train Air Force student pilots in proper
radio communications procedures. A student model could be developed that cues a tutor to recognize
what goals a user is pursuing (reducing power, extending flaps, and lowering the gear signals a goal to
land) and what behaviors might be attributable to a common type of error (e.g., failing to report gear
down at a required position in the pattern). However, the simulation, as a realistic, doctrinally correct
model, knows (in some sense) what reducing power, deploying flaps, and lowering the gear signals in
terms of intent; it also knows that failing to communicate at a mandatory reporting point is an error. The
simulation would therefore be able to cue the tutor to derive an appropriate intervention, such as
commanding the synthetic instructor pilot to tell the user, “you need to make a gear-down call.” One is

36

left to conclude that either there is no student model in this instance or that the student model is not a
separate module but is embedded in the simulated world (the environment and the agents that occupy it).?

Either way, one consequence of an ITS that provides a rich set of affordances through which a learner
explores and influences the environment is that the construct of a separate student model becomes less
relevant. It can also be problematic, since an “open world” simulation of any reasonably complex
phenomenology greatly complicates encapsulating all possible solution paths in a model (Derry & Lajoie,
1993). Derry and Lajoie (1993) present five additional factors that cast doubt on the learner modeling
paradigm:

(1) learner error patterns, or bugs, cannot be fully pre-determined;

(2) the presentation of static content and feedback is antithetical to principles of tutorial dialogue;
(3) reflection and diagnosis should be performed by the learner, not the tutor;

(4) learner modeling is technically very difficult; and

(5) the assumptions on which most modeling approaches are based are applicable to procedural
learning, whereas the emphasis should be on critical thinking and problem solving.

What does this say about authoring tools? Though much contemporary ITS research adopts as an
assumption the requirement for a student model, we can say at the very least that the need for a student
model is governed by the instructional objectives of the ITS. And the capabilities of simulation-based
learning ITSs can often reduce, or eliminate, the need for a student model. So to support ITS authoring,
tools should support tagging and tracking the user’s actions in order to correlate user activity with the
state of the world, in support of feedback and assessment.*

More broadly, a capability that should be characteristic of tools for authoring ITSs in this genre is to help
the author define states of the world and transitions in the world that correspond to instructionally
significant events. How simulations can be controlled to achieve a desired instructional outcome has been
the subject of much research. “Open world” learning environments require structure to align the
interaction with instructional objectives. Lane & Johnson (2008) discuss the need for guided practice, to
make more tractable the problem of managing tutoring given the additional dimensions of time and
movement that simulations add to ITS. Guided Experiential Learning (Clark, Yates, Early & Moulton,
2010), mentioned previously, proposes a structured, seven-step process to ensure an instructionally
effective sequence is observed in using discovery learning environments.

Constraining simulations in instructionally meaningful ways has enabled much recent work that blends
instructional strategies and simulation-driven ITS. Researchers have been investigating methods for
identifying “teachable moments” (Havighurst, 1952) during exploratory interactions. One technique is to
align the content (i.e., the target skills and knowledge) to a user’s goals and then employ the user’s
behaviors to trigger the presentation of the corresponding content (Mall, et al., 2014). Another is to
modulate responses provided through the simulation (e.g., through animated agents) to increase or
decrease feedback and advance the instructional aims of the interaction (Lane & Johnson, 2008). Related
to this approach is the explicit modification of the world state to condition the environment for addressing
specific learning objectives (Magerko, Stensrud & Holt, 2006).

® This example was taken from a simulation-driven learning environment developed for US Air Force pilot training
(Bell, Bennett, Billington, S., Ryder & Billington, 1., 2010).

* A simulation scenario can be an objective and complete assessment rubric as numerous researchers have observed
(Schank, 2001; Fowlkes, Dwyer, Oser & Salas, 1998; Bell, et al., 2010).

37

Although these techniques show promise, there remains the question of how to incorporate them into
authoring tools. Creating the simulation environment itself is not the province of an ITS authoring tool,
simulation construction is a complex and distinctive process and demands a different skill set and
correspondingly tailored suite of tools. Instead, ITS authoring should evolve to allow training developers
to integrate tutoring with simulations.

Implications of Discourse-Based Learning for ITS Authoring

The second-person interface metaphor discussed previously has cultivated a rich body of research
exploring the interactions between a user and an ITS. The central challenges faced by an author of a
dialogue-driven ITS are unique to this genre and thus would be optimally overcome by an authoring tool
that understands discourse-based learning.

One obvious way in which creating discourse-driven ITS diverges from the traditional model (and thus
from traditional notions of authoring tools to support that model) is the blurring of any distinction
between the “tutor module” and the “interface module.” Tutoring knowledge can be encapsulated directly
within the discourse space and in how that space is traversed (by dialogue events triggering state
transitions). Not all discourse models operate precisely in this way but the challenges of the authoring
process largely remain across implementations. A model introduced previously that illustrates the novel
requirements for authoring discourse-driven ITS is AutoTutor. The process of creating AutoTutor
applications implicitly merges the tutoring and interface modules, and requires that an author develop a
well-elaborated conversation space.

Among the authoring challenges that set this ITS genre apart from the other two examples is that the
dialogue must be structured to completely address the intended learning objectives. It also follows that a
tool to support this kind of authoring should embody whatever dialogue theory the author is
implementing. In other words, creating an AutoTutor application is best supported by an ITS authoring
tool that understands the expectation and misconception-tailored (EMT) discourse model, so that the tool
can effectively coach an author in structuring the dialogue in a way that ensures the instructional
objectives are achieved.

An example of such a tool is the AutoTutor Authoring Tools (ASAT), designed to support authors in
creating the underlying rules to achieve the intended tutoring dialogue (Graesser et al., 2004). Similar
tools have been developed to support the authoring of ITS implemented via a related framework called
AutoTutor Lite (Wolfe, et al., 2013). A salient characteristic of these tools relevant to the current
discussion is that they explicitly embody an instructional theory and are therefore able to support the ITS
author. The authoring tool guides the author by presenting the elements of the dialogue that have to be
defined and the actions and transitions that make the dialogue dynamic and instructionally relevant.

Implications of Situation-Based Learning for ITS Authoring

As discussed, situation-based learning is somewhat of a hybrid, adopting both first- and second-person
interface elements. In this section, | consider the process of authoring this kind of ITS and present
examples of ITS tools developed to support the process. Situation-based learning can be, and usually is,
implemented as a network or graph of states (each corresponding to a situation the user has arrived at
through actions taken). Authoring a branching simulation requires defining the state space, creating the
transitions among states, and elaborating each state. The mechanics can be relatively straightforward. The
challenge is more in developing a coherent and compelling narrative that squarely addresses the learning
objectives of the ITS. As a result, the creation of a branched-simulation ITS has often been coincident
with the evolution of an authoring tool used to support that ITS or its immediate progeny. For instance,

38

early work by Ohmaye (1998) in creating a language tutor yielded an architecture and authoring tool for
developing dialogue-driven branched simulations that was further refined by Guralnick (1996) and Jona
(1998).

This approach has been generally referred to as outcome-driven simulation, a term coined by Christopher
Riesbeck at Northwestern University in 1994 that “refers to a class of applications where users adopt a
role in a fictional scenario, and where the decisions and action that the user takes moves the scenario
forward in time to new situations that are relevant to the pedagogical objectives” (Gordon, 2004, p. 230).

This simple architecture can create quite vivid user experiences, creating the impression of a dynamic
simulation, and continues to be employed to both create learning applications and to develop authoring
tools tailored to supporting this genre of ITS. Gordon (2004) described a process to support authoring and
its application to leadership training for US Army officers. A related authoring tool based on this
architecture was developed along with several applications to support cultural awareness training
(Deaton, et al., 2005). This approach remains widely used to this day. For instance, a suite of medical
training applications is being developed around an outcome-driven simulation ITS authoring tool (King,
Scott, Davidson & Bope, 2014).

This work is related to the goal-based scenario (GBS) framework introduced previously (Schank, Fano,
Bell & Jona, 1994). The GBS research team proposed five categories of ITS, named for the principal
activity anchoring learning: advise, investigate and decide, run, script, and persuade (Jona & Kass, 1997).
The research team then developed specialized ITS authoring tools to support the construction of GBS
within each specific category, and conducted numerous evaluations and user trials (e.g., Bell, 1998).
These authoring frameworks continued to evolve, and today several tools are in use that support authoring
of GBS as well as specific sub-categories of these situation-based ITS (e.g., investigate and decide; see
Bell, 2003; Dobson, 1998; Dobson & Riesbeck, 1998; Riesheck & Dobson, 1998).°

These variants share an approach to instruction effected through the states and transitions. Tutoring is
implicitly represented in the states and transitions defined by the author, and dynamically engages the
user as states are traversed, with transitions triggered by the user’s decisions and actions.

What these examples of authoring tools tell us is that outcome-driven simulation is created through an
authoring process that is distinctive from the traditional ITS component approach. Outcome-driven
simulation as an instance of situation-based learning has advantages in terms of facilitating authoring and
ensuring instructional goals are achieved. This approach “demonstrates that training experiences in virtual
reality environments need not be constrained by the modeling limitations of current constructive
simulations, and that by focusing on specific decision situations we can design immersive training
environments that are tightly structured around training goals” (Gordon, 2004, p. 237).

Discussion

This chapter illustrates that ITS as a research enterprise has matured and diversified, reflecting a broader
theme of this volume, which similarly segments the ITS space (though along different lines—maodel-
tracing, agent-based, and dialogue-based). The categories themselves are less important than the question
of authoring tools, and specifically, whether we should strive to create a universal ITS tool or
acknowledge the diversity of ITS and develop authoring tools specific to different types.

® The GBS Tool and commercial variants are developed and marketed by Socratic Arts, www.socraticarts.com.

39

This call for distinctive authoring tools is not meant to suggest that different domains call for different
tools. Authoring tools should be agnostic with respect to domain; whether an author wishes to teach about
combat casualty care or playground etiquette is not the issue—the how is more determinant than the what.
It does not even matter greatly whom the intended audience is. As Murray (2003) points out, “the key
differences among ITS authoring systems are not related to specific domains or student populations, but
to the domain-independent capabilities that the authored ITSs have.” (p. 495).

While the domain itself may not be a factor in authoring tool design, research being conducted within the
GIFT community is drawing an important distinction between well-defined and ill-defined domains. The
implication is that “with a two-dimensional approach to domain definition, instructional strategies can be
specified based on the component characteristics identified within the domain designation” (Goldberg,
Holden, Brawner & Sottilare, 2011). So at least at this high level, we see a trajectory for GIFT to support
distinctive authoring processes based on domain.

GIFT researchers also call for specificity at the domain level when authoring assessments. “The
fundamental problems of domain dependent components are how to assess student actions, how to
respond to instructional changes, how to respond to requests for immediate feedback, and an interface
which supports learning” (Goldberg, Holden, Brawner & Sottilare, 2011). However, the GIFT framework
manages these differences through domain modeling tools, which allow for author-customized and
domain-specific feedback and assessment but which do not present distinctive approaches to instruction.

A dimension more discriminating for authoring tools than domain is instructional approach. An assertion
drawn from this chapter is that ITS tools should (and do) embody a specific instructional theory to
supports authoring ITS that also embody that theory (e.g., Adenowo & Patel, 2014; Aleven, McLaren &
Sewall, 2009; Gordon, 2004; Ramachandran & Sorensen, 2007). The GIFT framework takes a more
generic approach than authoring in specific ITS genres—ITS authors instead “can use GIFT to author
strategies aligned with a particular instructional theory” and “have access to libraries of strategies that are
tailored to the user and can be used to develop timely feedback mechanisms.” (Sottilare, Goldberg,
Brawner & Holden, 2012). GIFT thus seeks a best-of-both-worlds solution, by offering a generic suite of
authoring tools while supporting the construction of ITS in a range of instructional traditions.

Where the GIFT approach diverges from proponents of theory-specific ITS authoring tools is not so much
in the availability of strategies but in the knowledge that the authoring tool can bring to bear in helping
the author to properly select and apply those strategies. As an analogy, consider the difference between a
website that lists airline routes and schedules and an experienced travel agent. The GIFT approach can
offer a library of tutoring strategies that provides the savvy ITS author with flexibility but which does
little to support a novice ITS author (for instance, a subject matter expert) in creating effective instruction.

Recommendations and Future Research

The mission of GIFT is more than supporting authoring—GIFT is oriented around providing three
services: authoring of components, management of instructional processes, and an assessment
methodology (Sottilare, Goldberg, Brawner & Holden, 2012). This volume’s focus on authoring tools
provides a range of perspectives on tutoring approaches and how to best support authors in creating
effective ITS.

GIFT is addressing a difficult problem during a time of rapid change. The convergence of ITS with
immersive games, for instance, creates numerous authoring challenges, such as how to support the
creation of reactive agents characteristic of ITS and proactive agents characteristic of simulations
(Brawner, Holden, Goldberg & Sottilare, 2012). Such trends are blurring long-standing boundaries. The

40

blending of tutoring and gaming is likely to raise questions about the relative importance of a tutor in an
ITS (and implications for authoring tool design). Jona & Kass (1997) may have anticipated the
ascendance of gaming in questioning the assumption “that the central component of a learning
environment is the tutor, and that the critical learning events are interactions between the learner and the
tutor.” They assert instead that “this view is not compatible with what many who study education and
human learning have found. For example, many progressive educators would argue that the most
important aspect of a learning environment is a complex, realistic activity in which the learner becomes
engaged, and not the tutoring received” (p. 39, original emphasis).

GIFT, in fulfilling the vision of technology that is generalizable and integrated, is promoting modularity,
reuse and broad applicability (Sottilare, Goldberg, Brawner & Holden, 2012). It remains to be seen
whether this approach is theory-neutral or an aggregation of multiple theories. Also, some might question
whether an ITS authoring tool (which is intended to support the creation of end-products grounded in
some instructional theory) can even be theory-neutral. As observed by Jona & Kass (1997): “The mix and
match approach is not theoretically neutral with regard to the questions of what really drives learning, and
what are the central features of a learning environment” (p. 39).

I conclude by revisiting the general aims of an authoring tool. Reducing the effort needed to produce ITS
can include the following:

e assuming responsibility for mechanical aspects of the task;
o furnishing predefined elements that an author can package together to suit a particular need; and
e guiding the author.

GIFT in its early stages has established a promising framework for supporting some of the mechanical
aspects of ITS construction (Sottilare, Goldberg, Brawner & Holden, 2012). Accelerating the authoring
process with predefined elements has more numerous and nuanced dimensions. There is some appeal to
thinking of authoring as aligning old components in new ways; however, authors would require visibility
into the properties of these components, what can be customized, and how to link them. There are
numerous metaphors that might inspire novel approaches to addressing this need. For instance, preparing
a new dish is something people generally do by adapting a recipe that not only lists the ingredients but
also instructs in how the ingredients are to be combined and even what substitutions might be tried.
Applying this metaphor to GIFT, we can envision a library of completed ITSs, each cataloging its
components, their properties, and instructions on adapting each for reuse. As this framework becomes
populated with more content, GIFT will advance in its support for providing such predefined elements
and libraries that ITS authors can incorporate and adapt. It should be emphasized, however, that simply
making a large collection of ITS components available to an author is not sufficient; in the cooking
analogy, it is more akin to roaming the aisles of a grocery store than to browsing a recipe book.

It is just this sort of guidance for the author that will require increased attention. As the research reviewed
in this chapter suggests, an authoring tool should have some understanding of what the author wishes to
create and be able to offer useful and specific support. The forms such support take can vary from
recommendations about low-level dialogue elements to presenting a worked example similar to the
author’s intended ITS (as recommended in Hsu & Moore, 2011) and supporting its incremental adaptation
(which we term guided-case adaptation, see Bell, 1998).

The needs remains for ongoing evaluation, of GIFT’s authoring tools and of the products emerging from

authors using the framework. As the ranks of GIFT contributors continue to expand, greater opportunities
will become available to study how GIFT supports ITS authoring, and ITS will emerge that will provide

41

researchers with artifacts to evaluate. The instructional effectiveness of products created using GIFT will
provide formative direction to the evolution of the framework, and will ultimately be a persuasive
indicator of the value of GIFT to the ITS community.

References

Adenowo, A. A. A., and Patel, A. M. (2014). A metamodel for designing an intelligent tutoring systems authoring
tool. Computer and Information Science, 7(2), 82-98.

Ahuja, N.J., and Sille, R. (2013). A Critical Review of Development of Intelligent Tutoring Systems: Retrospect,
Present and Prospect. International Journal of Computer Science Issues, Vol. 10, Issue 4, No 2, July 2013.

Aleven, V., McLaren, B. M., and Sewall, J. (2009). Scaling up programming by demonstration for intelligent
tutoring systems development: An open-access website for middle-school mathematics learning. IEEE
Transactions on Learning Technologies, 2(2), 64-78.

Bell, B.L. (1998). Investigate and Decide Learning Environments: Specializing Task Models for Authoring Tool
Design. The Journal of the Learning Sciences, 7(1), 65-105.

Bell, B. (2003). Supporting Educational Software Design with Knowledge-Rich Tools (2003). In T. Murray, S.
Blessing, and S. Ainsworth (Eds.), Authoring Tools for Advanced Technology Learning Environments:
Toward cost-effective adaptive, interactive, and intelligent educational software. Kluwer Academic
Publishers: Dordrecht, Netherlands.

Bell. B., Billington, S., Bennett, W., Billington, 1., and Ryder, J. (2010). Performance gains from speech-enhanced
simulation in military flying training. Journal of Defense Modeling and Simulation, 7(2), 67-87.

Bell, B., Jarmasz, J., and Nelson, I. (2011). Development of Scenario-Based Pre-deployment Counter-1ED Training.
In Proc. of Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), Dec, 2011.

Bell, B., Johnston, J., Freeman, J., and Rody F. (2004). STRATA: DARWARS for Deployable, On-Demand
Aircrew Training. In Proc. of the Interservice/Industry Training, Simulation, and Education Conference
(I/ITSEC), December, 2004.

Bell, B.L., and Zirkel, J. (2001). “Goal Directed Inquiry via Exhibit Design: Engaging with History through the
Lens of Baseball”. Journal of Interactive Learning Research, 12(1), 3-39.

Bransford, J.D., Sherwood, R.D., Hasselbring, T.S., Kinzer, C.K., and Williams, S.M. (1990). Anchored instruction:
Why we need it and how technology can help. In D. Nix and R. Sprio (Eds), Cognition, education and
multimedia. Hillsdale, NJ: Erlbaum Associates.

Brawner, K. and Graesser, A.C. (2014). Natural Language, Discourse, and Conversational Dialogues within
Intelligent Tutoring Systems: A Review. In R. Sottilare, A. Graesser ,X. Hu and B. Goldberg (Eds.), Design
Recommendations for Intelligent Tutoring Systems: Volume 2 Instructional Management. US Army
Research Laboratory.

Brawner, K., Holden, H., Goldberg, B., Sottilare, R. (2012). Recommendations for Modern Tools to Author
Tutoring Systems. In Proc. of the Interservice/Industry Training, Simulation, and Education Conference
(I/ITSEC), December, 2012.

Brown, J.S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture of learning. Educational
Researcher, 8(1), 32-42.

Brown, J. S., and VanLehn, K. (1988). Repair theory: A generative theory of bugs in procedural skills. In A. Collins
& E. E. Smith (Eds.), Readings in Cognitive Science (pp. 338-361). Los Altos, CA: Morgan Kaufmann.

Brusilovsky, P. (1994). The Construction and Application of Student Models in Intelligent Tutoring Systems.
Journal of Computer and Systems Sciences International, 32(1), 70-89.

Burns, H.L., and Capps C.G. (1988). Foundations of intelligent tutoring systems : an introduction. Martha C. Polson,
J. Jeffrey Richardson. Foundations of Intelligent Tutoring Systems, Hillsdale, N.J.: Lawrence Erlbaum
Associates, pp.1-19.

Burton, R.R. (1988). The environment module of intelligent tutoring systems. In Polson, M.C. and Richardson, J.J.
(Eds.), Foundations of intelligent tutoring systems. Hillsdale: Lawrence Erlbaum Associates.

Burton, R. and Brown, J. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive
Science, 2, 155-191.

Clark, R. E., Yates, K., Early, S., and Moulton, K. (2010). An analysis of the failure of electronic media and
discovery-based learning: Evidence for the performance benefits of guided training methods. In K. H.

42

Silber & R. Foshay (Eds.), Handbook of Training and Improving Workplace Performance (Vol. I:
Instructional Design and Training Delivery), pp. 263-329. New York: Wiley and Sons.

Collins, A., Brown, J.S., and Newman, S.E. (1989). Cognitive apprenticeship: Teaching the crafts of reading,
writing, and mathematics. In L. B. Resnick (Ed.) Knowing, learning, and instruction: Essays in honor of
Robert Glaser (pp. 453-494). Hillsdale, NJ: Lawrence Erlbaum Associates.

Deaton, J., Barba, C., Santarelli, T., Rosenzweig, L., Souders, V., McCollum, C., Seip, J., Knerr, B. and M. Singer
(2005). Virtual environment cultural training for operational readiness (VECTOR). Journal of Virtual
Reality, 8(3) (May 2005), 156-167.

Derry, S. J., and Lajoie, S. P. (1993). A middle camp for (un)intelligent instructional computing: An introduction. In
S. P. Lajoie and S. J. Derry (Eds.), Computers as cognitive tools (pp. 1-11). Hillsdale, NJ: Lawrence
Erlbaum Associates

D’Mello, S. K. and Graesser, A. C. (2012). AutoTutor and affective AutoTutor: Learning by talking with cognitively
and emotionally intelligent computers that talk back. ACM Transactions on Interactive Intelligent Systems,
2(4), 23: 1-38.

Dobson, W. (1998). Authoring Tools for Investigate-and-Decide Learning Environments. Ph.D. Dissertation,
Northwestern University Department of Computer Science, Evanston, IL, June, 1998.

Dobson, W., and Riesbeck, C.K. (1998). “Tools for Incremental Development of Educational Software Interfaces”.
In CHI ‘98. Conference Proceedings on Human Factors in Computing Systems, 384-391.

Fowler, S., Smith, B., and Litteral, D.J. (2005). A TC3 Game-based Simulation for Combat Medic Training. In
Proc. of Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), Dec, 2005.

Fowlkes, J. E., Dwyer, D., Oser, R. L. & Salas, E. (1998). Event-Based Approach to Training (EBAT). The
International Journal of Aviation Psychology, 8 (3), 209-221.

Frederiksen, J., and White, B. (2002). Conceptualizing and constructing linked models: Creating coherence in
complex knowledge systems. In P. Brna, M. Baker, K. Stenning and A. Tiberghien (Eds.), The Role of
Communication in Learning to Model. (pp. 69-96). Mahwah, NJ: Erlbaum.

Goldberg, B.S., Holden, H.K., Brawner, K.W., and Sottilare, R.A. (2011). Enhancing Performance through
Pedagogy and Feedback: Domain Considerations for ITSs. In Proc. of Interservice/Industry Training,
Simulation, and Education Conference (I/ITSEC), Dec, 2011.

Gordon, A.S. (2004). Authoring branching storylines for training applications. In Proceedings of the 6th
International Conference of the Learning Sciences (ICLS ‘04). pp 230-237.

Graesser, A., Chipman, P., Haynes, B. and Olney, A. (2005). AutoTutor: An intelligent tutoring system with mixed-
initiative dialogue. IEEE Transactions on Education, 48(4), 612-618.

Graesser, A., D’Mello, S., Hu, X, Cai, Z., Olney, A. and Morgam, B. (2012). AutoTutor. Applied natural language
processing: Identification, investigation, and resolution. Hershey, PA: IGI Global.

Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A. and Louwerse, M. M. (2004).
AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods, Instruments and
Computers, 36(2), 180-192.

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W. & Harter, D. (2001). Intelligent tutoring systems with
conversational dialogue. Al Magazine, 22(4), 39.

Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P. and Kreuz, R. (1999). AutoTutor: A simulation of a
human tutor. Cognitive Systems Research, 1(1), 35-51.

Greer, J. and Koehn, G.M. (1995). The peculiarities of plan recognition for intelligent tutoring systems (1995). In
Proc. of the IJCAI Workshop on the Next Generation of Plan Recognition Systems, pp. 54-59, 1995.

Guralnick, D. (1996). Training systems for script-based tasks. Ph.D. dissertaton, The Institute for the Learning
Sciences, Northwestern University.

Hartley, J. R., and Sleeman, D. H. (1973). Towards more intelligent teaching systems. International Journal of Man-
Machine Studies, 2, 215-236.

Havighurst, R. J. (1952). Developmental tasks and education. New York: David McKay.

Hsu, C-H, and Moore, D. R. (2011). Formative research on the Goal-based Scenario model applied to computer
delivery and simulation. The Journal of Applied Instructional Design, 1(1), 13-24.

Johnson, L. W. and Valente, A. (2008). Tactical language and culture training systems: Using artificial intelligence
to teach foreign languages and cultures. In Proceedings of the Twentieth Conference on Innovative
Applications of Artificial Intelligence (pp. 1632-1639). Menlo Park, CA: AAAI Press.

Jona, M (1998). Representing and Applying Teaching Strategies in Computer-based learning-by-doing Tutors. In
R.C. Schank (Ed.), Inside Multi-media Case Based Instruction. Malwah, NJ: Lawrence Erlbaum
Associates.

43

Jona, M.K., and Kass, A.M. (1997). A Fully-Integrated Approach to Authoring Learning Environments: Case
Studies and Lesson Learned. In Intelligent Tutoring System Authoring Tools: Papers from the 1997 Fall
Symposium, Technical Report FS-97-01, AAAI, P. 39.

Jong, T. de, and van Joolingen, W.R. (1998). Scientific discovery learning with computer simulations of conceptual
domains. Review of Educational Research, Vol. 68 No. 2, pp. 179-201.

King, K.S., Scott, R., Davidson, M., and Bope, E. (2014). Branching Simulation Designs for Virtual Patients.
Presented at the MedBiquitous Conference, Baltimore, MD.

Lane, H.C. and Johnson, W.L. (2008). Intelligent Tutoring and Pedagogical Experience Manipulation in Virtual
Learning Environments, in D. Schmorrow, J. Cohn & D. Nicholson (Eds), The PSI Handbook of Virtual
Environments for Training and Education: Developments for the Military and Beyond. Praeger Security
International: Westport, CN.

Lester, J., Lobene, E., Mott B. & Rowe, J. (2014). Serious Games with GIFT: Instructional Strategies, Game Design,
and Natural Language in the Generalized Intelligent Framework for Tutoring. In R. Sottilare, A. Graesser
,X. Hu and B. Goldberg (Eds.), Design Recommendations for Intelligent Tutoring Systems: Volume 2
Instructional Management. US Army Research Laboratory.

Livak, T., Heffernan, N. T. & Moyer, D. (2004) Using cognitive models for computer generated forces and human
tutoring. Presented at the 13th Annual Conference on Behavior Representation in Modeling and Simulation.
Simulation Interoperability Standards Organization, Arlington, VA.

Macmillan, S., Emme, D., and Berkowitz, M. (1988). Instructional Planners: Lessons Learned. In Psotka, J.,
Massey, L.D., and Mutter, S.A. (Eds.), Intelligent Tutoring Systems, Lessons Learned. Lawrence Erlbaum:
Hillsdale, NJ.

Magerko, B., Stensrud, B. and Holt, L. S. (2006). Bringing the schoolhouse inside the box - A tool for engaging,
individualized training. Paper presented at the 25th Army Science Conference, Orlando, FL.

Mall, H., Martin, E., Robson, R., Ray, F., Veden, A., and Robson, E. (2014). In Search of the Teachable Moment. In
Proceedings of the 2014 Interservice/Industry Training, Simulation, and Education Conference.

Miller, J. R. (1988). The role of human-computer interaction in intelligent tutoring systems. In M. C. Polson and J.J.
Richardson (Eds.), Foundations of Intelligent Tutoring Systems. Hillsdale, N.J.: Lawrence Erlbaum
Associates, pp. 143-189.

Munro, A., Johnson, M.C., Pizzini, Q.A., Surmon, D.S., Towne, D.M., and Wogulis, J.L. (1997). Authoring
Simulation-Centered Tutors with RIDES. International Journal of Artificial Intelligence in Education,
1997(8), 284-316.

Murray, T. (1999). Authoring Intelligent Tutoring Systems: An analysis of the state of the art. International Journal
of Artificial Intelligence in Education (IJAIED), 1999, 10, pp.98-129.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools. In T. Murray, S. Blessing, and S.
Ainsworth (Eds.), Authoring Tools for Advanced Technology Learning Environments: Toward cost-
effective adaptive, interactive, and intelligent educational software. Kluwer Academic Publishers:
Dordrecht, Netherlands.

Murray, T. and Woolf, B.P. (1992). A Knowledge Acquisition Tool for Intelligent Computer Tutors. SIGART
Bulletin, 2, 9-21.

Ohmaye, E. (1998). Simulation-based language learning: an architecture and a multimedia authoring tool. In R.C.
Schank (Ed.), Inside Multi-media Case Based Instruction. Malwah, NJ: Lawrence Erlbaum Associates.

Paviotti, G., Rossi, P.G., and Zarka, D. (2012). Intelligent Tutoring Systems: An Overview. Lecce: Pensa
Multimedia, Italy.

Pavlik, P.1. Jr., Brawner, K., Olney, A., and Mitrovic, A. (2013). A Review of Student Models Used in Intelligent
Tutoring Systems. In R. Sottilare, A. Graesser ,X. Hu and H. Holden (Eds.), Design Recommendations for
Intelligent Tutoring Systems: Volume 1 Learner Modeling. US Army Research Laboratory.

Ramachandran, S., and Sorensen, B. (2007). From Simulations to Automated Tutoring. Proceedings of the Fifteenth
Conference on Medicine Meets Virtual Reality (MMVR 2007), Long Beach, CA.

Rickel J., and Johnson, W.L. (1999). Animated agents for procedural training in virtual reality: perception,
cognition, and motor control. Applied Artificial Intelligence 1999(13): 343-82.

Riedl, M.O. and Young, R.M. (2014). The Importance of Narrative as an Affective Instructional Strategy. In R.
Sottilare, A. Graesser ,X. Hu and B. Goldberg (Eds.), Design Recommendations for Intelligent Tutoring
Systems: Volume 2 Instructional Management. US Army Research Laboratory.

Riesbeck, C.K., and Dobson, W. (1998). Authorable Critiquing for Intelligent Educational Systems. In Proceedings
of the 1998 International Conference on Intelligent User Interfaces, January 6-9, 1998, San Francisco, CA.

44

Rus, V., D’Mello, S., Hu, X. and Graesser, A. C. (2013). Recent advances in intelligent systems with conversational
dialogue. Al Magazine, 42-54.

Russell, D., Moran, T.P., and Jordan, D.S. (1988). The Instructional Design Environment. In Psotka, J., Massey,
L.D., and Mutter, S.A. (Eds.), Intelligent Tutoring Systems, Lessons Learned. Lawrence Erlbaum:
Hillsdale, NJ.

Sani, S., and Aris, T.N.M. (2014). Computational Intelligence Approaches for Student/Tutor Modelling: A Review .
In Proceedings of the 2014 Fifth International Conference on Intelligent Systems, Modelling and
Simulation. Langkawi, Malaysia: IEEE.

Schank, R.C. (2001). Designing World Class E-Learning: How IBM, GE, Harvard Business School, and Columbia
University Are Succeeding at E-Learning. New York: McGraw-Hill.

Schank, R.C., Fano, A., Bell, B.L., and Jona, M.Y. (1994). The Design of Goal Based Scenarios. The Journal of the
Learning Sciences, 3(4), 305-345.

Shute, V. J., and Psotka, J. (1996). Intelligent tutoring systems: Past, present, and future. In D. Jonassen (Ed.),
Handbook of research for educational communications and technology (pp. 570-600). New York, NY:
Macmillan.

Sottilare R. (2012). Considerations in the development of an ontology for a Generalized Intelligent Framework for
Tutoring. International Defense and Homeland Security Simulation Workshop, in Proceedings of the 13M
Conference. Vienna, Austria, September 2012.

Sottilare, R.A., DeFalco, J.A., and Connor, J. (2014). A Guide to Instructional Techniques, Strategies and Tactics to
Manage Learner Affect, Engagement, and Grit. In R. Sottilare, A. Graesser ,X. Hu and B. Goldberg (Eds.),
Design Recommendations for Intelligent Tutoring Systems: Volume 2 Instructional Management. US Army
Research Laboratory.

Sottilare, R.A., Goldberg, B.S., Brawner, K.W., and Holden, H.K. (2012). A Modular Framework to Support the
Authoring and Assessment of Adaptive Computer-Based Tutoring Systems (CBTS). In Proc. of
Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), Dec, 2012.

Towne, D.M., and Munro, A. (1988). The Intelligent Maintenance Training System. In Psotka, Massey, and Mutter
(Eds.), Intelligent Tutoring Systems, Lessons Learned. Hillsdale, NJ: Lawrence Erlbaum.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutoring systems and other tutoring
systems. Educational Psychologist, 46(4), 197-221.

Veermans, K., Joolingen, W.R. van, and de Jong, T. (2000). Promoting Self-Directed Learning in Simulation Based
Discovery Learning Environments Through Intelligent Support. Interactive Learning Environments, 8, 257-
277: Taylor and Francis.

Whitaker , E.T., and Bonnell, R.D. (1990), Plan recognition in intelligent tutoring systems. In Proceedings of
Intelligent Tutoring Media, 1(2), 73-82.

Wolfe, C. R., Widmer, C. L., Reyna, V. F., Hu, X., Cedillos, E. M., Fisher, C. R., and Weil, A. M. (2013). The
development and analysis of tutorial dialogues in AutoTutor lite. Behavior Research Methods 45(3), 623-
36.

Wray, R. E., Woods, A., and Priest, H. (2012). Applying Gaming Principles to Support Evidence-based Instructional
Design. In Proceedings of the 2012 Interservice/Industry Training, Simulation, and Education Conference,
Orlando.

45

http://myweb.fsu.edu/vshute/pdf/shute%201996_d.pdf

46

charter 4 Generalizing the Genres for I'TS: Authoring
Considerations for Representative Learning Tasks

Benjamin D. Nye', Benjamin Goldberg?, Xiangen Hu*?
YUniversity of Memphis, 2ARL-LITE Lab,*Central China Normal University

Introduction

Compared to many other learning technologies, intelligent tutoring systems (ITSs) have a distinct
challenge: authoring an adaptive inner loop that provides pedagogical support on one or more learning
tasks. This coupling of tutoring behavior to student interaction with a learning task means that authoring
tools need to reflect both the learning task and the ITS pedagogy. To explore this issue, common learning
activities in intelligent tutoring need to be categorized and analyzed for the information that is required to
tutor each task. The types of learning activities considered cover a large range: step-by-step problem
solving, bug repair, building generative functions (e.g., computer code), structured argumentation, self-
reflection, short question answering, essay writing, classification, semantic matching, representation
mapping (e.g., graph to equation), concept map revision, choice scenarios, simulated process scenarios,
motor skills practice, collaborative discussion, collaborative design, and team coordination tasks. These
different tasks imply a need for different authoring tools and processes used to create tutoring systems for
each task. In this chapter, we consider three facets of authoring: (1) the minimum information required to
create the task, (2) the minimum information needed to implement common pedagogical strategies, (3)
the expertise required for each type of information. The goal of this analysis is to present a roadmap of
effective practices in authoring tool interfaces for each tutoring task considered.

A long-term vision for ITSs is to have generalizable authoring tools, which could be used to rapidly create
content for a variety of ITSs. However, it is as-yet unclear if this goal is even attainable. Authoring tools
have a number of serious challenges from the standpoint of generalizability. These challenges include the
domain, the data format, and the author. First, different ITS domains require different sets of authoring
tools, because they have different learning tasks. Tools that are convenient for embedding tutoring in a
3D virtual world are completely different than ones that make it convenient to add tutoring to a system for
practicing essay-writing, for example. Second, the data produced by an authoring tool need to be
consumed by an ITS that will make pedagogical decisions. As such, at least some of the data are specific
to the pedagogy of the ITS, rather than directly reflecting domain content. As a simple example, if an ITS
uses text hints, those hints need to be authored, but some systems may just highlight errors rather than
providing text hints. As such, the first system actually needs more content authored and represented as
data. With that said, typical ITSs use a relatively small and uniform set of authored content to interact
with learners, such as correctness feedback, corrections, and hints (VanLehn, 2006). Third, different
authors may need different tools (Nye, Rahman, Yang, Hays, Cai, Graesser & Hu, 2014). This means that
even the same content may need distinct authoring tools that match the expertise of different authors.

In this chapter, we are focusing primarily on the first challenge: differences in domains. In particular, our
stance is that the “content domain” is too coarse-grained to allow much reuse between authoring tools.
This is because, to a significant extent, content domains are simply names for related content. However,
the skills and pedagogy for the same domain can vary drastically across different topics and expertise
levels. For example, algebra and geometry are both high school level math domains. However, in
geometry, graphical depictions (e.g., shapes, angles) are a central aspect of the pedagogy, while algebra
tends to use graphics very differently (e.g., coordinate plots). As such, some learning tasks tend to be
shared between those subdomains (e.g., equation-solving) and other tasks are not (e.g., classifying
shapes).

47

This raises the central point of our chapter: the learning tasks for a domain define how we author content
for that domain. For example, while algebra does not involve recognizing many shapes, understanding the
elements of architecture involves recognizing a variety of basic and advanced shapes and forms. In total,
this means that no single whole-cloth authoring tool will work well for any pair of algebra, geometry, and
architectural forms. However, it also implies that a reasonable number of task-specific tools for each
learning task might allow authoring for all three domains. To do this, we need to understand the common
learning tasks for domains taught using ITSs and why those tasks are applied to those domains. In the
following sections, we identify and categorize common learning tasks for different ITS domains. Then,
we extract common principles for those learning tasks. Finally, we suggest a set of general learning
activities that might be used to tutor a large number of domains.

What is a Learning Task?

Before we begin, it is important to define what we mean by a learning task. Functionally speaking, a
learning task is an activity designed to help the participant(s) learn certain knowledge or skills. Any
learning task has a three essential parts:

(1) Task State (St) - the context and status of the task,
(2) Task Interface (Iy) - the representation used to present the task and its available actions,

(3) Task Goals (G7) - importance or value given to states or state trajectories, which may be stated in
the task, given prior to the task (e.g., by a teacher), or chosen by the learner.

A directed learning task, such as one run by a teacher or an ITS (as opposed to an undirected sandbox
activity), also has complementary parts related to the instructor’s control over the system:

(1) Pedagogical State (Sp) - the context and status relevant to pedagogical decision making,
(2) Pedagogical Interface (Ip) - the pedagogical actions available during a task, and
(3) Pedagogical Goals (Gp) - importance or value given to reaching certain pedagogical states.

The relationships between these parts are noted in Figure 1. From an ITS authoring standpoint, both the
task and the pedagogical model need to be authored. In this representation, the pedagogical state includes
the task goals, task state, and the learner’s state (e.g., a student model). In this respect, the pedagogical
state is more complex than the task state. However, excluding the learner’s internal state (which is only
observable through the history of task interactions) and the task goals (which are typically not changed
during a given task), the pedagogical state is by definition less complex than the task state. Considering a
task as a Markov decision process, the pedagogical state trajectory Sp cannot consider any more
information from the task beyond its trajectory of task states (St). In most cases, the representation of the
pedagogical state is far simpler and based on features sets such as classifying good/bad answers,
identifying specific misconceptions or bugs, and other assessments that reduce even rich environments
(e.g., 3D simulators) into streams of simpler features that form the pedagogical state used for triggering
interventions such as hints (Kim et al., 2009; Nye, Graesser & Hu, 2014; VanLehn, 2006).

48

! Goals
Tutor/ITS . Pedagogical
! Interface :

Pedagogical

Figure 1: Tasks and pedagogy

This implies that ITS authoring should be greatly constrained by the learning task. At face value, it seems
like there might be exceptions: a tutor for metacognitive skills might need to know almost nothing about
learner’s performance on their primary learning task, if it only suggests self-reflection and an unassessed
summarization. However, it can be argued that such a task-agnostic tutor has that capability only because
it generates its own learning tasks (e.g., journals for summarization, delays for self-reflection). This has
two implications:

e First, it implies that all ITS authoring is tied to a specific set of tasks.

e Second, it implies that multiple learning tasks may be interleaved or even occurring
simultaneously.

In simulation-based training for complex tasks, such as flight simulators or cross-cultural competencies,
working on multiple tasks simultaneously might even be a major part of the pedagogy (Silverman,
Pietrocola, Nye, Weyer, Osin, Johnson & Weaver, 2012). So long as interactive feedback on each
learning task is independent (i.e., feedback on one task does not directly impact the pedagogical state of
other tasks), authoring for such tasks can typically be done independently as well.

So then, this is what we mean by a learning task from an authoring standpoint: (1) a task with a distinct
pedagogical state, (2) whose dynamics during that task are mainly or wholly derived from the task state,
and (3) which includes the actions performed by the learner (or learners). Moreover, as simplifying
assumptions, we posit that the pedagogical goals and problem goals remain static for the typical ITS
learning task. For example, even in complex training environments, switching the task goals typically
implies ending a task and starting a new one. The counterexample to this case would be a learning task
specifically targeting the learner’s skills at goal-setting or adapting to changing task goals. Such tasks are
uncommon and no major authoring tools target such tasks. Finally, we assume that changes to the learner
during an ITS task (e.g., learning, affect changes) are primarily influenced by and observable based on
interactions with the task interface. If they were not, this would be problematic: the ITS would have little
ability to tell if its interventions are effective if some external factors are causing learning and/or task
performance (e.g., a second user helping). With that said, such confounds are possible, such as when

49

multiple users share an ITS intended for one user (Ogan, Walker, Baker, Rebolledo Mendez, Jimenez
Castro, Laurentino & de Carvalho, 2012). However, as no known authoring tools develop ITS content for
such situations, these are also considered edge cases that we exclude from this analysis authoring learning
tasks for ITSs.

A Review of Authoring-Relevant Characteristics of Learning Tasks

Significant literature focuses on taxonomies of learning tasks and the types of knowledge they are
designed to convey to a learner. Notable examples include Bloom’s Taxonomy and its revisions (Bloom,
1956; Anderson, Krathwohl, Airasian, Cruikshank, Mayer, Pintrich, Raths & Wittrock, 2000), guidelines
for learning activities and resources (R. Clark, 2002; R. Clark & Mayer, 2011), and theories of different
types of knowledge components involved in learning (Koedinger, Corbett & Perfetti, 2012). These three
perspectives each look at a different facet of learning tasks: (1) the task activity (Bloom, 1956), (2) the
pedagogical goals for the learning task (R. Clark, 2002), and (3) the knowledge components theorized to
encode the knowledge (Koedinger et al., 2012). Figure 2 shows different possible combinations of
learning tasks and pedagogical goals.

Remember Understand Apply Analyze Evaluate Create

2?;:7:?“ Fact Concept Process Procedure Principle Metacognition

Figure 2: Combinatorial combinations for learning tasks and pedagogical goals

Bloom’s taxonomy is the most widely used taxonomy to label learning tasks and has undergone a number
of revisions (D. Clark, 2014). Bloom’s revised taxonomy (2000) of cognitive knowledge considers six
levels: remembering (e.g., list facts), understanding (e.g., summarize in own words), applying (e.g., solve
a math problem), analyzing (e.g., identify a statistical trend), evaluating (e.g., select the best-value car for
an average consumer), and creating (e.g., build a robot for some task out of parts). Ruth Clark (2002)
presented a complementary taxonomy for different types of knowledge associated with pedagogical goals
for learning tasks, which built on Merrill (1983). Her categories included facts (unique instances),
concepts (classes of instances), processes (representations of how a system works), procedures (steps to
reach a task state), and principles (causal relationships and general dynamics).

In addition to these pedagogical goals, metacognitive knowledge can also be a pedagogical goal: where
the learner gains understanding or skills to monitor their own cognitive state or learning (Biswas, Jeong,
Kinnebrew, Sulcer & Roscoe, 2010; Azevedo, Johnson, Chauncey & Burkett, 2010; Goldberg & Spain,
2014). While metacognitive knowledge may fall into other categories, it can involve learning to monitor
an additional information channel other than the task state (i.e., their own mental state). As such, at least
some types of metacognitive learning are probably qualitatively different than other types of knowledge
(possibly closer to affective or psychomotor skills).

Koedinger et al. (2012) looked at the next step for learning activities, which was the cognitive
components relevant to assessment and cognitive encoding of knowledge. They considered four facets for
encoding knowledge: the task feature dynamics (static vs. variable), the required learner response (static
vs. variable), the relationship between task features (explicit vs. implicit), and the availability of a
rationale (e.g., a “why” justification for the relationship between features). These different categorizations

50

determine when a learner would need to encode, such as a rule (e.g., y*x = x*y) or simply an association
(e.g., x and y were observed together).

Considering these approaches to categorizing learning activities, key facets emerge for different learning
tasks. These fall into three design concerns: pedagogical goals (what the student should learn), task design
(the learning environment and its affordances), and task interface (how the task is represented and
presented). Together, these concerns constrain the pedagogical interface for how an ITS interacts with
learners and what needs to be authored.

Task Dynamics

A major constraint on ITS authoring is the dynamics of the task state itself. For example, some learning
tasks are static and have no dynamic features (e.g., memorizing a shape or a fact). Koedinger et al. (2012)
highlighted the distinction between tasks whose features are static (e.g., the same across all instances)
versus those that are variable (e.g., some features vary across instances, requiring the learner to generalize
across them). We further subdivide variable tasks into a few types, as shown in Figure 3. In our
conceptualization, three types of variation can occur in the state of a task. The first type, which we call
variable instance, is across presented tasks, such as presenting a series of pictures and requiring the
learner to identify which ones contain triangles. Other variable tasks change during the process of solving
the task. The second type, reactive, is a task whose state changes due to the learners’ actions (e.g., step-
by-step equation solving). In the third type, time-varying, the task state changes over time regardless of
user input (e.g., a video or simulation that unfolds over time). When the task is both time-varying and
reactive to user input, we consider it interactive (e.g., a 3D game world).

Static

Task State

il Reactive
Variability Variable
Instance Time-Varying

Figure 3: Different types of task variability

These distinctions constrain authoring: static tasks are not typically taught by ITSs at all, because many
are rote learning that respond equally well to simpler drill-and-practice methods. However, some
intelligent systems, such as Pavlik et al.’s (2007) FaCT system, improve recall-type tasks by optimizing
spacing effects and the sequence of instance presentations. Static tasks that do not change based on user
input are limited to interventions such as highlighting salient features, demonstrating how to find the right
solution, responding to a single answer from the learner, or presenting different tasks (e.g., learning
prerequisites). It is still possible to adapt to the learner’s responses, such as with systems that provide
hints and retry attempts in response to wrong answers on multiple choice questions (Conejo, Guzman, de-
la Cruz & Millan, 2006). However, most ITSs tend to focus on reactive and interactive tasks, because
learner actions during the task allow a greater ability to target feedback and hints.

Task Assessment

A second major constraint is how well can the ITS measure progress toward pedagogical goals. Since
tasks are used to assess learning, measuring progress toward pedagogical goals requires measuring
progress toward task goals. In many ways, the ability to measure such progress distinguishes between
well-defined and ill-defined domains (Fournier-Viger, Nkambou & Nguifo, 2010; Nye, Bharathy,

51

Silverman & Eksin 2012). Any task has two possible levels of introspection: the value for the task state
and the value of learner actions. When the goals are known, it is often possible to infer the value of
actions from the state if the outcomes are predictable, but this is not always (e.g., due to competing goals
to choose between). Table 1 categorizes different combinations of knowing the value of states and the
value of learner actions. Knowing the value of states allows measuring good outcomes, while knowing
the value of actions allows measuring good process.

Table 1: Measures for task goal progress

_ Action Values Known Action Value Unknown

State Utilities Can evaluate all actions and Know the value of states, but can’t
Known suggest good solution paths surely deduce what actions do
Ex. Economic decisiontree Ex. Stock market simulation

State Transition Can rank statesrelativelyand can Know better/worse changes, but
(SELIEELIGTATTI suggest next step or bug fix. can’t suggest concrete actions
Ex. Solving an Algebra problem Ex. Automated essay assessment

State Values Can detect good/bad actions, but lll-defined task, due to emergent
Categorical can’t rank improvement dynamics or subjective values
Ex. Going out of bounds in a race Ex. Building a better world

If a state utility function is available, all states and transitions between states have a known value. For a
completely measurable task, the relative value of actions is also known, such as a well-formed economics
problem where some actions lead to more profit than others. In other cases, the ultimate impact of actions
is uncertain (e.g., a chaotic system like the stock market), but good outcomes can still be measured.
Generative simulations with emergent behavior often have this quality (Nye et al., 2012).

When an ITS can detect improvements between states but can’t evaluate states exactly, then state
transition gradients are known. So long as the relationship between learner actions and transitions is
known (e.g., problem-solving in algebra), formative assessments such as model tracing and example
tracing can be used (Aleven et al., 2006). When specific learner actions cannot be evaluated easily (e.g.,
editing a learner’s essay), ITSs can still provide feedback on the task state. Design-based ITSs often use
this approach, such as essay-writing ITS that can assess an essay and suggest guidelines to improve the
state of the essay (Roscoe & McNamara, 2013). Likewise, when relative value of overall task states is
unknown, it is sometimes still possible to assess learner actions. This approach to measurement considers
the process, rather than the outcomes. Constraint-based ITSs are often applied to these kind of tasks
(Mitrovic, 2003). If it is impossible to assess the quality of either the task state or the learner’s actions, the
task is ill-defined.

In general, when considering Figure 2, higher levels of Bloom’s Taxonomy tend to involve tasks closer to
the bottom and right of Table 1. The ability to measure progress on task goals is the first constraint on ITS
authoring, since it directly constrains the types of feedback and interventions available to the ITS. If it is
impossible to evaluate the quality of actions, it is impossible to provide a “correction” or suggest a
concrete “next step” action. As such, there is no need to author one. As such, more complex tasks and
generative models tend to offer fewer affordances for authoring traditional 1TS content, and tend to rely
on the natural dynamics of the simulation to provide reactive feedback (i.e., intelligent environments,
rather than intelligent tutors).

52

Task Interface

The interface of the task consists of how it is presented to the learner and of how the learner presents
input. More generally, task interfaces are part of the communication module of a classical four-
component ITS diagram (Woolf, 2010). They are the input and output with the learner for the learning
task. Typical inputs to an ITS include discrete selections (e.g., multiple choice), continuous selections
(e.g., manipulating sliders for a simulation), formal representations (e.g., math equations, graphs),
freeform input (e.g., natural language, freehand sketches), and controlling an avatar (e.g., 3D worlds). The
modality of learner input is a further constraint on authoring: the pedagogical interface needs to turn input
from the task into something actionable. Ironically, this means that feature-rich inputs, such as natural
language, are typically simplified into much simpler representations such as discrete selections (e.g.,
good/bad answers). The representation of the user input is the final major constraint on authoring.

Interventions
(Tactics)

Difference Modify
Reaction Task State &

Recognition
| Ack ‘ | Feedback | Similar \ Next Steps || Solutions I
ck. eedbac Example \/
Worked
i i Solziisns
‘ Error Detect H Score H Correction H Explanation ‘

Figure 4: Common interventions for an ITS

Based on the pedagogical features extracted from the task state and user input, the ITS needs to author
various interventions. When extending an ITS to new learning tasks, these interventions are typically a
major focus for authoring. When, why, and how the ITS applies its pedagogical strategies and tactics is
the main repository of an author’s domain pedagogy expertise. Figure 4 displays a variety of options for
an ITS to intervene during a task. The most rudimentary of these is to recognize a difference between a
detected state and some other state (e.g., “You seem to like chocolate ice cream more than the average
learner.”). Since this response assigns no specific value judgment, it can be used for entirely ill-defined
domains by using techniques such as novelty detection (Markou & Singh, 2003). It is also possible to
modify the task state or features even for tasks that lack clear assessments of state or action value, such as
through random perturbations. However, typically an ITS changes the state of a task to make it easier or
harder (elastic difficulty). This is done by reducing the degrees of freedom (fewer options), completing a
task step, or increasing the salience of important task features (e.g., highlighting). Another approach is to
react in response to user input. Even if no assessment can be made for that input, their input can always
be acknowledged (Ack). While this might seem like a weak tactic, it is often used to prompt learners to
self-reflect, write in a journal, or mark the start or completion of other metacognitive activities.

On well-defined tasks, ITS tactics often take the form of various types of feedback or modeling effective
solution paths (VanLehn, 2006). Feedback is a response to a user action that either presents an answer or
otherwise modifies the task state. Common feedback methods include reacting to errors or good answers
(binary assessments), scoring (continuous or ranked assessments), corrections (providing a fix to the
answer), and explanations (stating why an answer is right or wrong). Modeling a good answer or solution
path is also common. It can be used as feedback or provided at some point during the task state (e.g.,
provide the worked solution if the user cannot solve the problem). A few types of modeling are possible,
including presenting the solution to a similar task example, providing the next step(s) to the current task,
or providing a good final solution for the student to look at (e.g., a good essay on the same topic they are

53

trying to write about). If the full set of steps and the solution is provided, then the intervention was a
worked solution.

The authoring effort for these types of feedback varies significantly. Meaningful corrections and
explanations require a much deeper connection to domain pedagogy than simpler feedback such as
detecting the existence of errors. Likewise, adding explanations to modeling interventions greatly
increases authoring effort, because it moves beyond simply assessing task performance and starts to
model how a human teacher or instructor might correct student errors or explain the process of working
on the task. However, this authoring effort probably supports some of the most effective ITS tutoring
behaviors, since it is ideally based on the expertise accumulated from hundreds of hours of human
teaching interactions.

Discussion: Common Learning Tasks and Tools

Based on these task features, it is possible to break down a variety of common ITS learning tasks and
examine how their distinguishing characteristics are reflected in their authoring tools. Three types of tasks
can be considered: well-defined tasks (mostly reactive to user input, values for user actions can be known,
user inputs are formal and decidable), less-well-defined tasks (highly interactive, freeform input, lack
well-defined goals etc.), and task sandboxes (e.g., complex simulators used to build pedagogical tasks).

Well-Defined Tasks

Table 2 lists common, well-defined learning tasks. Two salient learning activities and pedagogical goals
for each class of task are noted. With that said, specific tutors may use different types of scaffolding to
use the same task to focus on different pedagogical goals and activities, so there can be significant
variation on these. In terms of pedagogy, well-defined tasks probably allow the widest set of
interventions: because the task state and user input allow clear assessments and have constrained solution
paths, the ITS has a fairly clear view of the task and associated pedagogical state.

The most established ITS tasks center on multi-step problem-solving, such as step-by-step math or
physics (Ritter, Anderson, Koedinger & Corbett, 2007; Aleven, McLaren, Sewall & Koedinger, 2006;
VanLehn et al., 2005), diagnosing systems and repairing them (Lajoie & Lesgold, 1989), and building
dynamical system models (Biswas et al., 2010; lwaniec, Childers, VanLehn & Wiek, 2014). Step-by-step
problem-solving tasks can also be presented in 2D or 3D worlds (Rowe, Shores, Mott & Lester, 2011).
Step-by-step problem-solving ITSs tend to author hints and feedback that is conditional on the current
task state and the current action (or actions). They also typically provide a full bottom-out worked
solution when needed. In-game worked solutions are not common for ITS with avatar input (e.g., 3D
worlds), though sometimes recorded cut-screen/video solutions are available. The specific ITS
intervention content that is presented is typically tied to general rules that are shared across many task
examples (e.g., hints related to the commutative property of addition). As such, authoring these tasks
tends to require authoring: (1) A well-defined state representation (e.g., a chess board), (2) a set of
domain rules that transform state (e.g., piece move rules), (3) a goal state for the task, (4) a set of expert
rules that rely on features of the task state, (5) sometimes buggy rules that represent specific
misconceptions to remedy, and (6) templates for feedback and hints that are associated with certain task
states or production sequences. In some cases, authoring the task interface is also part of the ITS tool set.
The Cognitive Tutor Authoring Tools (CTAT; Aleven et al., 2006) offers an example of fairly mature
tools for problem-solving tasks.

Authoring tools for these tasks focus on defining ideal and buggy production rules that can be used to
classify task states and learner behavior as they complete the task (Aleven et al., 2006). Ideal production

54

rules can be used to identify points for positive feedback on a good action or provide hints about good
next steps for a problem. These ideal next steps are inferred by evaluating the chains of actions required
to reach the task goal (i.e., solution). Similarly, buggy rules can be used to detect specific misconceptions
for the learner when they perform certain sequences of actions. Instance-based authoring can be used to
infer these rules instead of explicit authoring, through systems such as SimStudent (Matsuda, Cohen &
Koedinger, 2014). Feedback and hints tend to be provided through parameterized templates that can refer
to task features. A simpler approach to authoring these tasks involves forcing the learner to stay on a
linear or simple branching example-tracing approach, with hints that are specific to certain states or
transitions in a problem template (Razzaq, Patvarczki, Almeida, Vartak, Feng, Heffernan & Koedinger,
2009). At least for certain mathematics topics, tutoring a single solution strategy (or even a single path) is
nearly as effective as a more complex structure (Waalkens, Aleven & Taatgen, 2013; Weitz, Salden, Kim
& Heffernan, 2010).

As such, two alternatives exist to rule authoring: (1) instance-based inference and (2) template-specific
tutoring. In the first case (e.g., SimStudent), rules are inferred from expert (and perhaps non-expert)
solution paths. This requires an authoring tool that shows a complete interface to the problem, as well as
an external judgment of the user’s expertise level. This allows skipping explicit rule authoring. In the
second case, task templates can be authored with tutoring associated with specific task paths. This type of
authoring is also used for other tasks (e.g., constrained choice dialogues with branching), so it is a
valuable general-purpose authoring interface in its own right. Much like making inferences across
multiple instances, an authoring tool for integrating tutoring templates with task paths also needs to give
the author a good view of the task state that is similar to the student’s view.

Table 2: Common well-defined ITS tasks

Task Activities Pedagogy Variability State Action Task Interventions to
(Top-2) Goal (Top-2) Values Values Inputs Author
Feedback (Any),
Step-By- Apply, Procedure, . Gradients/ Formal Ne>§t S_teps,
L Reactive Known . Similar
Step Math Understand Principle Ranks Expression Example

Worked Solution

Feedback (Any),
Diagnosis & Analyze, Process, Reactive or Gradients/ Formal Next Steps,
Repair Apply Procedure Interactive Ranks Known Model Similar
Example,
Worked Solution
Feedback (Any),
Dynamical Create, Procedure, Reactive or Utility or K Formal NeS>§t S_:eps,
Systems Analyze Process Interactive Gradients nown Model imitar
Example,
Worked Solution
. Feedback (Error
o Understand, Concept, . Discrete '
Classifying Analyze Process Static Category Known Selection Correct, Expl.),

Similar Example

Discrete/ Feedback (Error,
Static Category Known Continuous Correct, Expl.),
Selection Similar Example

Analyze, Process,

Bug Detect Understand Concept

55

Feedback (Any),

Represent- Understand, Concept, . Gradients/ Formal
. Reactive Known Next Steps,
ation Map Apply Process Ranks Models Worked Solution
. Feedback (Any),
l(\:/loancg?atvise Ur';\drc]a;s tigd’ Concept Reactive Grgg:]ir;ts/ Known Ilz\;l)cr)ggl Next Steps,
P y Worked Solution
Constrained Analyze, Process, Reactive or Utility or Discrete
Choice Evaluate Principle Interactive Gradients Known Choice Feedback (Any)

A second major class of problems includes pattern matching and classification of examples, such as
biological taxonomies (Olney et al., 2012), or identifying errors in a complex task, such as bugs in a
computer program (Carter & Blank, 2013). These ITSs tend to provide hints and feedback based on the
difference in features between the chosen classification and the ideal one, with strong use of explanation
but seldom presenting a step-by-step process. A third class of well-defined ITS tasks includes building
formal semantic models from freeform representations (e.g., concept map revision) and converting
between different well-defined representations, such as from a graph to an equation (Olney et al., 2012).
These also tend to keep track of the difference in features between the current and ideal models, but can
also suggest next-step changes because the model can be modified.

Authoring tools for these tasks tend to rely on defining ontologies, concept maps, or other structures that
define the features of classes and examples. Each instance in a task can be authored by tagging its features
or class memberships, after which hints, counter-examples, or other feedback need to be created. If the
pedagogy goals also include following a certain step-by-step process to make classification distinctions,
authoring may also require tutoring similar to branching example tracing. Across these types of tasks, a
simplified ontology class and instance editor could be quite effective, if it provided clear intervention
templates to target differences or similarities between patterns.

Finally, there are constrained choice problems, such as ITS-supported multiple choice or branching
dialogues (Kim et al., 2009). These can actually be quite varied, but tend to provide interventions that are
either dependent only on the current state (e.g., a hint for choosing the wrong answer) or that are
exhaustively defined by a branching state path. This means that authoring such tasks tends to be easier up-
front than a problem-solving ITS, but harder to reuse for related tasks. In general, authoring these tasks
should be similar to linear example-tracing. However, because the tasks may involve fewer general
principles that repeat across examples, the authoring is likely to have more explanations and need fewer
templates and parameters.

Less-Well-Defined Tasks

lll-defined and less-well-defined tasks are presented in Table 3. These tasks tend to be less-well-defined
because either the goals are not fully defined, the inputs require natural language processing or are
otherwise not formally evaluable, or the task requires the learner to produce a full artifact before it can be
evaluated. Structured argument tasks, such as those used for law (Pinkwart, Ashley, Lynch & Aleven,
2009) or policy (Easterday & Jo, 2014), work similarly to causal concept map tasks. However, they differ
because the goals for argumentation are not always well-defined (i.e., the learner must first choose what
to argue). As such, authoring typically requires generating an extensive formal model of free-text sources.
This model may be hand-authored or extracted from the associated reference texts. Learners will then
need to generate explanations that are logically or causally consistent with the underlying formal model,
while supporting the argument goal that the learner has selected. These ITSs tend to also require a
reusable set of hint and error-correction templates (e.g., for different logical inconsistencies). For specific
common misconceptions, rules or constraints may also be used to trigger explanations or modeling

56

behavior (e.g., presenting an analogous case or example). Case-based reasoning is one mechanism for
identifying similar examples (Kolodner, Cox & Gonzéalez-Calero, 2005) and can also be used as a
pedagogical strategy for these domains.

The next category of tasks requires the user to create significant artifacts, such as essays or computer
programs (Roscoe & McNamara, 2013; Kumar et al., 2013). These ITSs tend to calculate an overall
quality score, based on a number of calculated features that it can highlight or give hints for improvement.
However, unlike an ITS for algebra, these tutors cannot explicitly correct most problems (e.g., a
programming ITS typically cannot fix the learner’s code). ITS authoring for these tasks requires defining
a set of features that are used to determine quality of the task artifact. Typically, this training is done
using supervised learning or hand-authoring. Tutoring often focuses on feedback and hints related to
specific features that need improvement for the artifact, as well as an overall quality score.

Table 3: Common less-well-defined ITS tasks

Task Activities Pedagogy Variability State Action Task Interventions to
(Top-2) Goal (Top-2) Values Values Inputs Author
Structured Evaluate, Principle, Reactive Gradients Varies Formal Fsiti)drgacEI;(IIE;irr(]))r,
Argument Analyze Concept /Ranks Model COre, EXP '
Similar Example
Mixed Feedback (Error
Functional Create, Procedure, Reactive Gradients Not Formal Score. Ex Iain)7
Coding Understand Concept /Ranks Known and core, EXp '
Similar Example
Freeform
Feedback (Score,
Essay Create, Procedure, Reactive Gradients Not Freeform Explain),
Writing Analyze Concept /Ranks Known (NLP) Similar
Example
. Concept, . Gradients Not Freeform Feedback (Score,
Summaries Understand Process Reactive /Ranks Known (NLP) Explain)
Expectation Understand, Concept, Interactive Gradients Known Freeform Fe?\(ljé))icg,[gﬁ:y)’
Coverage Analyze Principle /Ranks (NLP) Worked Solution
Short Understand, Concept, Reactive/ Gradients Known Freeform Feedback (Any),
Answer Analyze Fact Interactive /Ranks (NLP) Similar Example
Difference
Open Sglf- Understand Concept, Static Not Not Freeform Recog.,
Reflection Process Known Known
Acknowledge
Choice Evaluate, Process, Interactive Utility or Not Freeform Feedback (Any),
Search Analyze Principle Gradients Known or Avatar Similar Example
. . Difference
(Ssec;[glr;gand Evaluate, Principle, Interactive Not Not (F?)/ri::lsor Recog.,
L Analyze Process Known Known Similar
Priorities Freeform)
Example

57

The next set of less-well-defined ITS focus on helping the learner understand, analyze, and evaluate
information. They include self-reflection, expectation coverage tasks (Graesser, Chipman, Haynes &
Olney, 2005), summarization and paraphrasing tasks (McNamara, Levinstein & Boonthum, 2004), and
short-answer tasks. All of these tasks focus on helping the learner understand semantic content and its
relationships. Open self-reflection tasks focus on the metacognitive practice of reflecting on the content.
As such, in many cases the quality of content is not assessed (e.g., a journaling task). Instead, ITS content
focuses on encouraging the habit of self-reflection. In general, many metacognitive tutors focus on
building habits, such as encouraging question-asking or hint button use (Azevedo et al., 2010; Roll,
Aleven, McLaren & Koedinger, 2011). Open self-reflection tasks and other content-agnostic tasks tend to
require little content authoring, and often require only a set of simple prompt and acknowledgement
templates. These reflection prompts can be triggered by task events or even by general timers.

Expectation coverage tasks unfold over many dialogue turns, which assume a part-whole relationship for
multiple expectations as part of a full explanation. As such, these ITS must detect multiple related
subtopics and provide feedback and hints on each one. Short answer tasks are even more constrained, and
their answers tend to be binned into good answers, specific misconceptions, or general bad answers.
Expectation coverage tasks tend to contain short answer tasks inside of them, when specific knowledge
needs to be assessed. A variety of authoring representations exist for evaluating semantic statements,
which fall into three main categories: instance-based authoring, feature authoring, and grammar-based
authoring. Instance-based authoring involves generating various classes of answers (i.e., good/bad), which
are then used to match against using various algorithms. Feature-based authoring involves creating special
features, such as regular expressions or keywords that capture key defining features between different
types of answers. Finally, grammar-based authoring involves developing domain-specific parsers that
extract domain-relevant relationships from the text.

In all cases, these techniques are used to bin learner answers into specific speech act categories, which
can then be associated with feedback, hints, or modeling interventions. Summarization tasks work
similarly, but require the learner to rephrase a passage. A successful summary requires the answer to have
similar semantics, but dissimilar surface features (i.e., it cannot be identical). These tend to focus on
understanding the content, but their quality tends to be rated on a continuous scale, because there are
competing feature sets. In addition to assessments of learner input, rules are also required to allow the
dialogue to progress naturally. In general, a limited set of templates can be sufficient to handle typical
ITS tasks. While there are some indications that different levels of knowledge might benefit from
different dialogue interactions (Nye et al., 2014), similar logical rules for managing dialogue interactions
can cover a variety of domains.

Task Sandbox Environments

As a final task category, open-ended searches and decision-points for choices are common, particularly in
virtual worlds and scenario-based learning. These include looking for a satisfactory or optimal set of
actions to some learning task. In many cases, the action sets vary by context and are not known a priori. If
the quality of choices can be ranked or their component features ranked, the ITS can provide feedback,
hints, and explanations about the quality of actions (Kim et al., 2009; Sottilare, Goldberg, Brawner &
Holden, 2012). However, for a simulation, this information may only be available after the completion of
a scenario. The next level of complexity occurs when the task goals are not fully defined, but must be set
or prioritized by the learner. For subjective or “wicked” tasks where actions change how goals are
understood, goal selection tasks are almost unavoidable (Nye et al., 2012). This tends to occur almost
exclusively in simulations or design tasks, where defining and monitoring goals are a major part of the
tasks and learning content. These tasks tend to be very hard to tutor directly and sometimes rely on
detecting certain common or uncommon patterns, which are then brought to the attention of the learner.

58

For complex simulations, many current pedagogical methodologies focus on after-action review
procedures. These tend to include a mixture of artifact evaluation (i.e., considering metrics collected from
a simulation run) and self-reflection. After-action reviews have historically been facilitated by a human-
in-the-loop and are geared toward focused reflection and knowledge elicitation. The underlying task
consists of a series of choices and decision points in a specific scenario, which are translated to
overarching learning objectives. These choices are then considered similarly to other types of learning
tasks, such as following procedural rules while receiving feedback about deviations from desired
performance.

Rather than being more complicated to author, the pedagogy for complex choice tasks is often as simple
(or simpler) than highly constrained domains such as mathematics. This is because well-defined domains
give many opportunities for clear pedagogical interventions: the state of the task is fully known,
completely based on the learner’s inputs, and allows immediate feedback. By comparison, a game-based
task requires game messages that are sent to assessment models that infer the pedagogical state. As a
result, ITS authoring is limited to the data made available by a task interface that was not originally
intended to offer pedagogically useful assessments (e.g., a 3D game engine). As such, an additional
authoring layer needs to convert the raw task state into a much more pedagogical state. This requires an
operational task analysis and authoring tools that transform various task events into pedagogically useful
assessments. This extra assessment layer makes complex environments more difficult to author, which
ultimately limits the interventions that can be authored (e.g., hints and feedback).

While serious games and simulation-based training environments can alleviate this problem in the
development phase, many do not. In fact, simulation-based training solutions have increasingly moved
toward commercial and open-source game engines to reduce production costs, such as Virtual Battle
Space 3 (VBS3), Unity, and the Unreal Game Engine. These sandbox authoring environments enable
developers to build complex task scenarios for both individuals and collaborative/team-based interactions.
However, the data generated by these systems follow generic protocols for distributed delivery, such as
distributed interactive simulation (DIS) and high-level architecture (HLA) that lack any concept of
pedagogy or semantics (Hofer & Loper, 1995; Kuhl, Dahmann & Weatherly, 2000).

The best solution so far to this problem has been to explicitly build a layer of metrics onto the task
environment, which are then consumed by the ITS as its pedagogical state. Basically, a simpler task state
is constructed from features in the task sandbox, which is then linked to assessments. For example,
Generalized Intelligent Framework for Tutoring (GIFT) provides a generalized architecture that can
consume game-message traffic and use this to infer pedagogical conditions linked to a concept hierarchy
(Sottilare et al., 2012). Much of the data captured associate with entity state (i.e., avatars, non-player
characters, weapons, machines, vehicles, etc.) location, movement, and action. In short, much of the task
state is too low-level or downright irrelevant to ITS behavior. A subset of these data are continuously
communicated to GIFT and routed to the domain knowledge file (DKF) for managing assessment
practices. The DKF is where an author structures: the concept hierarchy associated with a set of tasks,
how data are integrated into a concept assessment, and how those data are managed at runtime.
Assessments can be authored directly within a DKF or it can be supported by an external assessment
engine, such as the Student Information Models for Intelligent Learning Environments (SIMILE;
Goldberg, 2013), where the DKF acts by routing data to the appropriate concept assessments (Figure 5).

59

Simile Workbench e

Rule Neme communicate with casualty End Concept Default Assessment
Transition Conditions
Argument Operator Right Hand Argument Conditional Operator

v |20 | Y
== v | true l a8

v | false | None

v |20 | &&
> [tue I &&

v | true | None

Add New Condition
Left Hand Argument Argument Operator -

Right Hand Argument Conditional Operator | None »

Concept Level At Expectation v | |Add New Condition

Default/Transition States

Figure 5. SIMILE workbench with authored assessments for vMedic

However, the reverse direction (i.e., offering specific interventions) has the same complications.
Conditions need to consider both the real-time performance and user intention, as well as the possible
actions that are available to the user (which must also be relayed to the ITS, to enable suggestions). In
GIFT’s current use-cases, this information includes tagged locations for the user’s position in the
environment, the set of entities and objects that are around the user, what entities the user can currently
observe, the actions available, and the timers related to task execution.

For example, consider the task of “maintaining cover” while patrolling a compound, which requires time,
location, and entity state data. Waypoints and areas of interest are defined around the compound wall so
that the player can be tracked to monitor patrol progress. An author can then define assessments based on
if the user has reached certain waypoints within a specific timeframe. In addition, if a scenario author
determines that a user should adjust their entity’s state within specific areas of interest, such as adjusting
their stance from standing to kneeling due to a wall being low, then the author can associate assessments
to inform student action in relation to performance criteria. By knowing this context, it is also possible to
deliver real-time feedback based on the actions and current assessment information.

To further complicate the issue, these types of interactive environments are excellent for collaborative and
team-based learning events. From the ITS perspective, this requires additional modeling dependencies
that associate interaction and intention with team oriented skills and attributes. While there is extensive
literature on what makes effective teams and effective team training approaches (Salas et al., 2008), how
to establish these practices in an automated fashion is a challenge. Beyond modeling individualized tasks
and how interaction in a virtual environment can infer competencies, additional assessments must analyze
group-level data that is aggregated across a set of users. These assessments include team cohesion, trust,
communication, and shared cognition. While this field is a wide-open research area, architectures like
GIFT must be designed to facilitate the type of modeling techniques that are based on trends across users
rather than within users. In terms of authoring, the challenge is taking available data and translating them
to team-based inferences that can designate performance across a set of concepts. In addition, how to
react to these assessments needs to be explored, such as how interventions are handled and how they are
communicated to a team.

60

Recommendations and Future Research

Across this book, examples and lessons learned for authoring each type of learning task are discussed. By
identifying common learning tasks in ITSs, it should be possible to develop general authoring interfaces
that make authoring for each type of task intuitive and effective. In some cases, highly effective authoring
models already exist and might serve as exemplars for task-specific authoring tools in generalized ITSs
such as GIFT. Ideally, these authoring tools should collect information in ways that are familiar to
instructors and other domain pedagogy experts. Form-based authoring, example-based authoring, and
supervised tagging are all reasonable approaches that are particularly attractive.

However, there are also learning tasks that do not yet have well-established techniques that allow non-
technical domain experts to easily author content. For example, authoring real-time assessments for
complex tasks remains more of an art than a science. At least some of this authoring involves mapping
simulation or virtual world events to pedagogical features. For this type of authoring, even if game worlds
had integrated pedagogical tools, a tool to easily map raw simulation data to metrics may be hard to use
by the domain experts, even if it is well designed. Similarly, authoring for ITS tasks with multiple
learners is a poorly understood area. For example, team-based tutoring requires assessment and
intervention at multiple levels (e.g., individual and group). Further research on such tasks and exploration
of different types of authoring approaches may be needed before good examples of such authoring tools
become clear.

References

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The cognitive tutor authoring tools (CTAT):
Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley & T. Chan (Eds.) Intelligent Tutoring
Systems (ITS) 2006 (pp. 61-70). Springer Berlin Heidelberg.

Azevedo, R., Johnson, A., Chauncey, A. & Burkett, C. (2010). Self-regulated learning with MetaTutor: Advancing
the science of learning with MetaCognitive tools. In M. S. Khine & I. M. Saleh (Eds.) New Science of
Learning (pp. 225-247). Springer New York.

Biswas, G., Jeong, H., Kinnebrew, J. S., Sulcer, B. & Roscoe, R. D. (2010). Measuring Self-Regulated Learning
Skills through Social Interactions in a teachable Agent Environment. Research and Practice in Technology
Enhanced Learning, 5(2), 123-152.

Carter, E. & Blank, G. D. (2013). An Intelligent Tutoring System to Teach Debugging. In H. C. Lane, K. Yacef, J.
Mostow & P. Pavlik (Eds.) Artificial Intelligence in Education (AIED) 2013 (pp. 872-875). Springer Berlin
Heidelberg.

Clark, D. (2014). Bloom’s taxonomy of learning domains. Retrieved August, 26, 2014.

Clark, R. C. (2002). Applying cognitive strategies to instructional design. Performance Improvement, 41(7), 8-14.

Clark, R. C. & Mayer, R. E. (2011). E-learning and the science of instruction: Proven guidelines for consumers and
designers of multimedia learning. John Wiley & Sons.

Conejo, R., Guzmén, E., de-la Cruz, J. L. P. & Millan, E. (2006). An empirical study about calibration of adaptive
hints in web-based adaptive testing environments. In V. Wade, H. Ashman & B. Smyth (Eds.) Adaptive
Hypermedia and Adaptive Web-Based Systems (pp. 71-80). Springer Berlin Heidelberg.

Easterday, M. W. & Jo, I. Y. (2014). Replay Penalties in Cognitive Games. In S. Trausan-Matu, K. Boyer, M.
Crosby & K. Panourgia (Eds.) Intelligent Tutoring Systems (ITS) 2014 (pp. 388-397). Springer Berlin
Heidelberg.

Fournier-Viger, P., Nkambou, R. & Nguifo, E. M. (2010). Building intelligent tutoring systems for ill-defined
domains. In R. Nkambou, R. Mizoguchi & J. Bourdeau (Eds.) Advances in Intelligent Tutoring Systems
(pp. 81-101). Springer Berlin Heidelberg.

Goldberg, B. & Spain, R. (2014). Creating the Intelligent Novice: Supporting Self-Regulated Learning and
Metacognition in Educational Technology. In R. Sottilare, A. Graesser, X. Hu, and B. Goldberg (Eds.)
Design Recommendations for Intelligent Tutoring Systems, Vol. 2: Instructional Management (pp. 109-
134). U.S. Army Research Laboratory.

61

Goldberg, B. (2013). Explicit Feedback Within Game-Based Training: Examining the Influence of Source Modality
Effects on Interaction. Ph.D., University of Central Florida.

Graesser, A. C., Chipman, P., Haynes, B. C. & Olney, A. (2005). AutoTutor: An intelligent tutoring system with
mixed-initiative dialogue. IEEE Transactions on Education, 48(4), 612-618.

Hofer, R. C. & Loper, M. L. (1995). DIS today [Distributed interactive simulation]. Proceedings of the IEEE, 83(8),
1124-1137.

Iwaniec, D. M., Childers, D. L., VanLehn, K. & Wiek, A. (2014). Studying, teaching and applying sustainability
visions using systems modeling. Sustainability, 6(7), 4452-4469.

Kim, J. M., Hill, Jr, R. W., Durlach, P. J., Lane, H. C., Forbell, E., Core, M., ... & Hart, J. (2009). BiLAT: A game-
based environment for practicing negotiation in a cultural context. International Journal of Artificial
Intelligence in Education, 19(3), 289-308.

Koedinger, K. R., Corbett, A. T. & Perfetti, C. (2012). The Knowledge-Learning-Instruction framework: Bridging
the science-practice chasm to enhance robust student learning. Cognitive Science, 36(5), 757-798.

Kolodner, J. L., Cox, M. T. & Gonzélez-Calero, P. A. (2005). Case-based reasoning-inspired approaches to
education. The Knowledge Engineering Review, 20(03), 299-303.

Kuhl, F., Dahmann, J. & Weatherly, R. (2000). Creating computer simulation systems: an introduction to the high
level architecture. Prentice Hall PTR Upper Saddle River.

Kumar, A. N. (2013). Using Problets for problem-solving exercises in introductory C++/Java/C# courses. In IEEE
2013 Frontiers in Education Conference (pp. 9-10). IEEE Press.

Lajoie, S. P. & Lesgold, A. (1989). Apprenticeship Training in the Workplace: Computer-Coached Practice
Environment as a New Form of Apprenticeship. Machine-Mediated Learning, 3(1), 7-28.

Markou, M. & Singh, S. (2003). Novelty detection: a review- part 1: Statistical approaches. Signal Processing,
83(12), 2481-2497.

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (Online First). Teaching the Teacher: Tutoring SimStudent Leads to
More Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education, 1-
34.

McNamara, D. S., Levinstein, I. B. & Boonthum, C. (2004). iISTART: Interactive strategy training for active reading
and thinking. Behavior Research Methods, Instruments & Computers, 36(2), 222-233.

Merrill, M. D. (1983). Component Display Theory. In C. M. Reigeluth (Eds.), Instructional Design Theories and
Models: An Overview of their Current States (279-333). Hillsdale, NJ: Lawrence Erlbaum.

Mitrovic, A. (2003). An intelligent SQL tutor on the web. International Journal of Artificial Intelligence in
Education, 13(2), 173-197.

Nye, B. D., Bharathy, G. K., Silverman, B. G. & Eksin, C. (2012). Simulation-Based training of ill-defined social
domains: the complex environment assessment and tutoring system (CEATS). In S. A. Cerri, W. J.
Clancey, G. Papadourakis & K. Panourgia (Eds.) Intelligent Tutoring Systems (ITS) 2012 (pp. 642-644).
Springer Berlin Heidelberg.

Nye, B. D., Graesser, A. C. & Hu, X. (2014). AutoTutor and Family: A review of 17 years of natural language
tutoring. International Journal of Artificial Intelligence in Education, 24(4), 427-4609.

Nye, B. D., Rahman, M. F., Yang, M., Hays, P., Cali, Z., Graesser, A. & Hu, X. (2014). A tutoring page markup
suite for integrating Shareable Knowledge Objects (SKO) with HTML. In Intelligent Tutoring Systems
(ITS) 2014 Workshop on Authoring Tools, (pp. 1-8). CEUR.

Ogan, A., Walker, E., Baker, R. S., Rebolledo Mendez, G., Jimenez Castro, M., Laurentino, T. & de Carvalho, A.
(2012). Collaboration in Cognitive Tutor use in Latin America: Field study and design recommendations.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1381-1390).
ACM.

Olney, A. M., D’Mello, S., Person, N., Cade, W., Hays, P., Williams, C., ... & Graesser, A. (2012). Guru: A
computer tutor that models expert human tutors. In S. A. Cerri, W. J. Clancey, G. Papadourakis & K.
Panourgia (Eds.) Intelligent Tutoring Systems (ITS) 2012 (pp. 256-261). Springer Berlin Heidelberg.

Pavlik Jr., P. 1., Presson, N., Dozzi, G., Wu, S., MacWhinney, B., Koedinger, K. R. (2007). The FaCT (Fact and
Concept Training) System: A New Tool Linking Cognitive Science with Educators. In McNamara, D.,
Trafton, G. (eds.) Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society,
pp. 397—402. Lawrence Erlbaum: Mahwah.

Pinkwart, N., Ashley, K., Lynch, C. & Aleven, V. (2009). Evaluating an intelligent tutoring system for making legal
arguments with hypotheticals. International Journal of Artificial Intelligence in Education, 19(4), 401-424.

62

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, M., Heffernan, N. T. & Koedinger, K. R. (2009). The
Assistment Builder: Supporting the life cycle of tutoring system content creation. IEEE Transactions on
Learning Technologies, 2(2), 157-166.

Ritter, S., Anderson, J. R., Koedinger, K. R. & Corbett, A. (2007). Cognitive Tutor: Applied research in
mathematics education. Psychonomic Bulletin & Review, 14(2), 249-255.

Roscoe, R. D. & McNamara, D. S. (2013). Writing pal: Feasibility of an intelligent writing strategy tutor in the high
school classroom. Journal of Educational Psychology, 105(4), 1010.

Roll, 1., Aleven, V., McLaren, B. M. & Koedinger, K. R. (2011). Improving students’ help-seeking skills using
metacognitive feedback in an intelligent tutoring system. Learning and Instruction, 21(2), 267-280.

Rowe, J. P., Shores, L. R., Mott, B. W. & Lester, J. C. (2011). Integrating learning, problem solving, and
engagement in narrative-centered learning environments. International Journal of Artificial Intelligence in
Education, 21(1), 115-133.

Salas, E., DiazGranados, D., Klein, C., Burke, C. S., Stagl, K. C., Goodwin, G. F. & Halpin, S. M. (2008). Does
team training improve team performance? A meta-analysis. Human Factors: The Journal of the Human
Factors and Ergonomics Society, 50(6), 903-933.

Silverman, B. G., Pietrocola, D., Nye, B., Weyer, N., Osin, O., Johnson, D. & Weaver, R. (2012). Rich socio-
cognitive agents for immersive training environments: case of NonKin Village. Autonomous Agents and
Multi-Agent Systems, 24(2), 312-343.

Sottilare, R. A., Goldberg, B. S., Brawner, K. W. & Holden, H. K. (2012). A modular framework to support the
authoring and assessment of adaptive computer-based tutoring systems (CBTS). In Interservice/Industry
Training, Simulation and Education Conference (I/ITSEC) 2012.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education,
16(3), 227-265.

VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., ... & Wintersgill, M. (2005). The Andes
physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education,
15(3), 147-204.

Waalkens, M., Aleven, V. & Taatgen, N. (2013). Does supporting multiple student strategies lead to greater learning
and motivation? Investigating a source of complexity in the architecture of intelligent tutoring systems.
Computers & Education, 60(1), 159-171.

Weitz, R., Salden, R. J., Kim, R. S. & Heffernan, N. T. (2010). Comparing worked examples and tutored problem
solving: Pure vs. mixed approaches. In S. Ohlsson & R. Catrambone (Eds.) Proceedings of the Thirty-
Second Annual Meeting of the Cognitive Science Society (pp. 2876-2881).

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-
learning. Morgan Kaufmann.

63

64

SECTION |1

AUTHORING MODEI -
TRACING TUTORS

Xiangen Hu, Ed.

66

cuarrer 5 A Historical Perspective on Authoring and ITS:
Reviewing Some Lessons Learned

Benjamin D. Nye® and Xiangen Hu"?
'University of Memphis, “China Central Normal University

Introduction

This section discusses the practices and lessons learned from authoring tools that have been applied and
revised through repeated use by researchers, content authors, and/or instructors. All of the tools noted in
this section represent relatively mature applications that can be used to build and configure educationally
effective content. Each tool has been tailored to address both the tutoring content and the expected
authors who will be using the tool. As such, even tools which support similar tutoring strategies may use
very different interfaces to represent equivalent domain knowledge. In some cases, authoring tools even
represent offshoots where different authoring goals led to divergent evolution of both the authoring tools
and the intelligent tutoring systems (ITSs) from a common lineage. Understanding how these systems
adapted their tools to their particular authoring challenges gives concrete examples of the tradeoffs
involved for different types of authoring. By reviewing the successes and challenges of the past, the
chapters in this section provide lessons learned for the development of future systems.

Authoring Tools for Adaptive and Data-Driven Systems

In general, for ITS authoring tools, discussion often centers on tools for creating content, such as new
problems or new dialogues that interactively help the learner step-by-step. While these are a key part of
the authoring process, mature authoring tools tend to cover a wider array of authoring and configuration
options. These activities range from small activities like selecting HTML pages to larger tasks such as
manually selecting or sequencing curriculum topics. In other cases, the problem is not so much authoring
as versioning: maintaining and updating content in a reliable way. Within this section, all of these
activities are considered as facets of the larger authoring lifecycle.
This lifecycle typically includes the following steps:

(1) Creating initial content module (e.g., a problem),

(2) Interacting with module like a student,

(3) Revising the module,

(4) Selecting and composing modules for inclusion in a given curriculum,

(5) Collecting data on student interaction, and

(6) Revising module based on collected data.
From the standpoint of content quality, each of these steps contributes to development of effective
tutoring and learning. Efficient tools for certain stages of this lifecycle may be less effective for other

stages. For example, while a series of simple may be efficient for entering the initial content, that same
interface would not necessarily make it easy to find and correct a specific field during the revision step.

67

As such, all systems must make choices about the authoring activities that receive the most support, often
based on the types of expected authors. With this in mind, the chapters in this section describe a variety of
approaches to authoring.

In Chapter 6, Blessing, Aleven, Gilbert, Heffernan, Matsuda, and Mitrovic discuss different approaches to
“Authoring Example-based Tutors for Procedural Tasks.” This chapter discusses the convergence of
multiple lines of authoring tools for step-based problem solving tutors toward example-based authoring.
Example-based authoring, also sometimes called instance-based authoring, provides an interface where
the author builds tutoring content and student support (e.g., hints) for an individual example or limited
class of parameterized examples. By comparison, traditional authoring techniques often required
implementing a full set of explicit domain rules. A number of advantages for such tutors are provided,
which are evident in the authoring tools presented. For some systems, such as ASSISTments and
Cognitive Tutor Authoring Tools (CTAT), this approach was chosen to lower barriers to authoring so that
instructors could develop ITS content. For other systems, such as the Extensible Problem-Solving Tutor
(XPST), the approach allows tightly integrating tutoring with a wide variety of content, ranging from 3D
games to web pages. Finally, in systems such as Authoring Software Platform for Intelligent Resources in
Education (ASPIRE) and SimStudent, algorithms are used to generalize domain rules and constraints that
enable the ITS to tutor a wider variety of problems than were explicitly authored. Particularly since
domain content experts are much more likely to be able to author examples than create formal
representations of their rules, this approach is appealing for well-defined procedural tasks.

In Chapter 7, Matuk, Linn, and Gerard describe the authoring capabilities of the Web-based Inquiry
Science Environment (WISE) system. While WISE is does not currently focus on adaptive elements, the
system has a strong focus on both theory-based (the knowledge-integration framework) and data-driven
development and revision of content. This system demonstrates the potential reach of a well-designed
system designed around teachers, with over 10,000 teachers registered to use WISE. Their main
principles are to provide tools accommodate a range of abilities, allow users to reuse, revise, and extend
what others have made, reporting student data as evidence to inform revision, and allowing flexibility for
authors to repurpose the system for their goals. Compared to many authoring systems, WISE strongly
supports later parts of the authoring lifecycle (i.e., selecting content and data-driven revision).

In Chapter 8, Jacovina, Snow, Dai, and McNamara describe the authoring tools for iISTART-2 and
Writing Pal. These systems use natural language processing techniques to support reading comprehension
strategies and essay-writing skills, respectively. Authoring tools within these systems are novel in a few
ways. First, the tools explicitly contain distinct features that are intended for researchers (e.g.,
randomizing the use of a certain feedback strategy) versus for teachers (e.g., modifying or selecting
content). In general, authoring in these systems attempts to mirror the student experience with the system
but with buttons to edit content or behavior. Second, the tools are being designed to allow authoring
behavior that is associated with stealth assessments, such as feedback or experimental activities.
Compared to other systems in this section, this work explores the potential for collecting and applying
rich metrics on student behavior (e.g., the narrativity of a student’s essays).

In Chapter 9, Charlie Ragusa outlines the design principles of the Generalized Intelligent Framework for
Tutoring (GIFT) authoring tools, which are currently being used by multiple groups to integrate tutoring
into environments as varied as 3D worlds and PowerPoint presentations. A major focus of this chapter is
the need and development of collaborative authoring tools: frameworks that allow multiple authors with
complementary expertise to contribute effectively. These processes are essential, since the knowledge
needed to author an ITS tends to be spread across multiple experts.

Finally, in Chapter 10, Steve Ritter describes practices related to authoring and refining ITS content
across the lifecycle of a commercial product, based on practices used by the widely used Cognitive Tutor

68

system. This chapter focuses significantly on methods to leverage student data to improve an ITS over
time. The discussion revolves around the types of changes that are often necessary (e.g., parameters,
design of the tasks, content) and methods to determine the changes (e.g., manually, automatically
calculated, crowdsourced). Versioning issues are noted with data-driven models, such as data becoming
less-applicable if the design of the task has changed. Also, suggestions are made for which types of
changes are best suited for certain methods (e.g., certain parameter changes can be automatically rolled
out). These issues reflect the realities of balancing data-driven design with a regularly-used product that
must also behave reliably for users on a day-to-day basis.

Themes and Lessons Learned

Across these chapters, some common themes emerged for systems that have matured to reach wider user
bases. Strong themes included the following:

(1) User-Centric Design: Authoring tools that are tailored for the specific authors who are intended to
use them. In some cases, building multiple tools that serve qualitatively different types of authors.
Both systems with wide user bases of authors (ASSISTments and WISE, both with >1k teachers)
strongly focused on serving the common needs of teachers, which include being able to modify
and add content. This was also a significant theme for multiple other systems (e.g., ISTART-2).

(2) Workflows: In some cases, multiple tools and qualitatively different approaches are used to build,
refine, and enhance different parts of a system. The GIFT discussion focuses extensively on
collaborative authoring. The Cognitive Tutor product lifecycle discussion also describes a multi-
faceted authoring process.

(3) Constraints: Authoring tools constrain the author (by design). For each of the systems with large
student user bases (Cognitive Tutor, ASSISTments, and WISE, all with > 75k students),
authoring and configuration was often significantly constrained. In many cases, this was to
simplify the authoring process. However, systems may also attempt to limit certain types of
configurations or authoring that are not pedagogically sound within the system. This raises the
issue that sometimes the options that are not given for authoring can be as important as those that
are.

(4) Content vs. Adaptivity: Different authoring tools and processes emphasize different parts of the
content authoring cycle, with systems for teachers tending to support simple content creation
revision (WISE, iSTART-2 for teachers, ASSISTments) and systems with stronger use by the
research community providing more tools for training step-based adaptivity (CTAT, SimStudent,
GIFT, ASPIRE).

(5) What You See Is What You Get (WYSIWYG): Nearly all of the systems in this chapter describe
methods to quickly view the content after it is authored, incrementally and iteratively (CTAT,
SimStudent, xPST, ASSISTments, iISTART-2, WISE, ASPIRE). By allowing authors to see what
they are creating in real time, these tools enable a more direct authoring process.

(6) Generalization Algorithms: While some of these systems use complex formal representations
(e.g., ontologies, production rules), the field has taken steps toward authoring using examples. As
such, research on methods to identify general principles or rules from examples has become an
important topic (SimStudent, ASPIRE).

69

(7) Versioning and Maintaining Content: For systems with large user bases, these chapters touched
on the complexities and advantages of maintaining a large system, such as supporting modified
content, tracking its evolution, and retaining only content with signs of effectiveness evident in
the student data (Cognitive Tutor and WISE).

Based on these lessons learned, a few areas of focus emerge. First, support for example-based authoring
and other WYSIWYG approaches is probably essential to help instructors author new ITS-tutored
activities. Second, collecting and presenting centralized data about an existing repository of tutoring
modules (such as GIFT’s domain knowledge files) could significantly improve the ability and confidence
of authors trying to select tutoring for an activity. These data could also be used for versioning that tracks,
maintains, and prunes the set of recommended tutoring modules over time (an issue that is explored in
Chapter 6). Finally, this work implies that multiple authoring interfaces are needed to support the research
community versus instructors. With these shifts, GIFT could expand its user base and also increase the
effectiveness of content over time. More generally, these are lessons that authoring tools for ITS and other
learning technologies should follow to ensure that their systems are easier to author, effective for learners,
and can be revised and maintained over time.

70

cuarTEr 6 Authoring Example-based Tutors for

Procedural Tasks

Stephen B. Blessing”, Vincent Aleven?, Stephen B. Gilbert®, Neil T. Heffernan*,
Noboru Matsuda?, Antonija Mitrovic®
Y University of Tampa; 2 Carnegie Mellon University; * lowa State University;
*Worcester Polytechnic Institute; > University of Canterbury

Introduction

Researchers who have worked on authoring systems for intelligent tutoring systems (ITSs) have
examined how examples may form the basis for authoring. In this chapter, we describe several such
systems, consider their commonalities and differences, and reflect on the merit of such an approach. It is
not surprising perhaps that several tutor developers have explored how examples can be used in the
authoring process. In a broader context, educators and researchers have long known the power of
examples in learning new material. Students can gather much information by poring over a worked
example, applying what they learn to novel problems. Often these worked examples prove more powerful
than direct instruction in the domain. For example, Reed and Bolstad (1991) found that students learning
solely by worked examples exhibited much greater learning than those learning instruction based on
procedures. By extension then, since tutor authoring can be considered to be teaching a tabula rasa tutor,
tutor authoring by use of examples may be as powerful as directly programming the instruction, while
being easier to do.

Several researchers have considered how examples may assist programmers in a more general sense (e.g.,
Nardi, 1993; Lieberman, 2001). This approach, referred to as “programming by example” or
“programming by demonstration,” generally involves the author programmer demonstrating the
procedure in the context of a specific example and then the system abstracting the general rules of the
procedure on the basis of machine learning or other artificial intelligence (Al) techniques. The balance in
such systems is between its ease of use versus its expressivity. A system may be easy to use, but lack
expressive power and thus generality. At the other extreme (e.g., a general-purpose programming
language), a system can be very expressive and thus generalizes to new situations readily, but lacks ease
of learning. Of course, as an author gets more used to a tool, regardless of initial complexity, the tool
becomes easier. The balance between ease of use and expressivity lies with tutor authoring tools as much
as it does in the more general case of programming by example.

Some researchers who build authoring systems for ITSs have leveraged this general approach, using
examples as a major input method for the ITS. Five such systems are discussed here: Authoring Software
Platform for Intelligent Resources in Education (ASPIRE), ASSISTments, Cognitive Tutor Authoring
Tools (CTAT), SimStudent, and the Extensible Problem-Solving Tutor (XPST). All of these systems use
examples in at least some important aspect of tutor creation. A main goal in using examples is to ease the
authoring burden, to both speed up the authoring of ITSs and enable authoring for a wider variety of
people. All five systems build tutors for procedural-type tasks, where each step of the task is reasonably
well defined and student answers tend to be easily checked. The tutors built by these systems have been
deployed in a wide variety of such tasks (e.g., math, chemistry, genetics, statistics, and manufacturing, to
name a few). However, some of the systems can also tutor on non-procedural tasks (e.g., ASPIRE). The
type of tutoring interaction mediated by these tutors is typically in the pattern of constraint-based and
model-tracing tutors. That is, each student step is checked for correctness, with help and just-in-time
messages available.

71

A short description of each of these five systems follows. After these discussions, the general implications
for such an example-based method for tutor creation conclude the chapter.

The Authoring Systems

ASSISTments

ASSISTments is a web-based tutoring system started from work on CTAT (discussed below), and
developed at both Carnegie Mellon University (CMU) and Worcester Polytechnic Institute (WPI). It is a
platform, hosted at WPI, which allows sharing of content between teachers. The platform is domain
neutral. ASSISTments gives students problems, and there are content libraries for many disparate subjects
including mathematics, statistics, inquiry-based science, foreign language, and reading, but 90% of the
content is in mathematics. Each item, or ASSISTment, consists of a main problem and the associated
scaffolding questions, hints, and buggy messages.

Early work on this system (circa 2004) required programmers to build content, but soon this was
untenable, so a graphical user interface (GUI)-based authoring tool was developed to enable other people,
such as teachers and other researchers, to create content in quantity. Figure 1 shows the tutor and
authoring screens for the same problem (Razzaq et al., 2009). Somewhere around 2011,the total amount
of content created by non-WPI personnel began to outnumber that created by WPI personnel.

PRAEXE - Item 19 G-2003(Congruent triangles) cdic name Main Problem 1 Content Developer View
Scaffolding strategy Scaficld

Details View Problem Test Drive New Copy Which side of tri

Problem Type: | Standard problem r Hint strategy Hint

Skdlls of Problem: Which expression ...

X 6.EE.A.2c-1 - Substitution]

X B.G.A2 - Describe transformation sequence Hint strategy Hint Student View
HNow, the perimete...

Tag Skills to Problem Hint strategy Hint

Assignment: Problem FPSAEXE

53 Hew Main Problem PR
Probiem i0: 2 R
= = Triangles ASC and DEF are congruent. The perimeter of triangie AB The Main Problem
FomSzes - B J U & |iZ = A. B- | @ & =B i ngruent. peri triangt
= What is the length of side DF in triangle DEF?
B E
Triangles ABC and DEF are congruent. The perimeter of triangle ABC is 23| B iciees
What is the length of side DF in triangle DEF? A - & D F
B E
X inches
A = C n F X Sarry, try 2gain: "6” i not correct
2x
Submit Answer

lsave Problem Body Problem ID; PRAEXE - 4464 Comment on this prablem
‘which side of triangle ABC has the same length as side OF of tnangle DEFT
Problem Type: | Algebra E
& £ | 15t Scaffold
Angwers What's chis? ™~
Common wrong answers for this probdem: A C 1] g
5 (897/5023)
8 {323/5023)
16 (308/5023) Congruent traingles means triangles whese cermesponding sides are egual n Hi
lergth. 1 int
v 10 Commert on this hint
X 5 Youare almost right, but remember that OF is twice x.
x 7.5 Many people think that but that is not true. Remember that the "< term n
thought of as 1x. o
X 2x You are on the right track. First find x then double it. wAS
¥ AL Yes- you need to find AC. But what s the numerical value for ACT Hint: Sol B
AL

X 16 We see you multiplied the 8 by two to try to get to the “2x" term, but you
equation to solve for x.

A Buggy Message |

x Side AB corresponds to side DE of tnangle DEF, not DF. Try 2gain, please.

| Hew Answer Submit Amswer Show hirt 2 of 3

Figure 1. ASSISTments interface.

This is possible because we created an authoring tool that makes it easy to build, test, and deploy items, as
well as for teachers to get reports. We have a gentle slope for authors in that they can use our

72

QuickBuilder to just type in a set of questions and associated answers. In that sense, they have created a
simple quiz, where the one hint given would just tell them the answer. For those that want to add further
hints to the questions, that step is easy and is part of the QuickBuilder. If they want to create scaffolding
questions or feedback messages for common wrong answers, they have to invoke the ASSISTment
Builder, requiring a steeper learning curve. While there is a steeper learning curve, we have shown that
going through the work of creating scaffolding questions can be very helpful for the lower knowledge
students (Razzaq & Heffernan, 2009), but that does not mean that everyone creating content in
ASSISTments needs to create both a scaffolding version and a hint version.

This gives teachers the opportunity to create problems specific to their school, for differentiated
instruction, or to work with their textbook. All content created by any user can he viewed by, but not
edited by, any other user that has the problem number. This makes sharing easy and prevents teachers
from having to worry that their content could get “graffiti”’ on it.

We are exploring a new way of adding content with teachers in Maine. The teacher types in something
like the following, “Do #7 from Page 327,” so the students have to open their textbook to page 327 to see
the seventh question on that page (in doing it this way, the teachers are not violating the copyright of the
publisher by duplicating the problem). Teachers can elect for students to receive correctness only
feedback or additional tutoring on the homework. The content created around these texts is driven by the
teachers and can be shared by anyone using that book. Inspired by Ostrow and Heffernan (2014) that
showed video hint messages were more effective that a text version that used the same words, we funded
seven teachers to make video hint messages, posted on YouTube or SchoolTube. We are just starting a
study to examine the effectiveness of this.

The variabilization feature of the ASSISTments builder allows an author to design one problem and then
have many problems created that assess the same skill. This was key to our getting our Skill Builders
running. Skill Builders are problem sets that allow a student to keep doing problems until they reach the
proficiency threshold, which by default its three correct in a row but can be set by the author. Any teacher
that wants to change that simply makes their own copy and changes it.

Figure 2 shows the interface for a variablized assistment. Authors can variablize the hint messages,
scaffolding questions, and feedback messages. Authors have to write tiny programs of interconnected
variables, which do things like randomly changing the numbers used in the problems. Skill builders are
much harder to create, and only a few teachers do this themselves, but WPI has created several hundred
for topics from 4th to 10th grade mathematics. Well over half of the teachers use our skill builders.

Font Sizes - B F W & |1 {E A-H-|~° G EB B- ||+ 3 x x |@&

What is the length of the hypotenuse of the right triangle shown below, given the length of leg a to be %w{sidel} feet and
length of leg b to be %v{side2} feat.

Round your answer to the nearest tenth place.

Figure 2. This is a variablized problem on the Pythagorean Theorem.

73

The authoring tool for ASSISTments has a gentle usability slope. Many teachers start using
ASSISTments by first using content WPI created, but most of them soon use the extensibility of the tool
to write their own questions. Most of these questions will be what we call “naked,” or the lacking of
scaffolding hints, as that takes more time to create. We do have some authors that have used the tool to
create large libraries of content. For instance, one teacher successfully made hundreds of Advanced
Placement (AP) statistics questions with extensive hints.

CTAT

Examples are used extensively in CTAT, a widely used suite of authoring tools (Aleven, McLaren, Sewall
& Koedinger, 2009; Aleven, Sewall, McLaren & Koedinger, 2006; Koedinger, Aleven, Heffernan,
McLaren & Hockenberry, 2004). CTAT supports the development of tutors that provide individualized,
step-by-step guidance during complex problem solving. These tutors provide ample assistance within a
problem, such as feedback on the steps, next-step hints, and error feedback messages. They also support
individualized problem selection to help each individual student achieve mastery of all targeted
knowledge components. Therefore, these tutors support most of the tutoring behaviors identified by
VanLehn (2006) as characteristic of ITSs. Over the years, many tutors have been built with CTAT in a
very wide range of domains (Aleven et al., 2009; under review). Many of these tutors have been shown to
be effective in helping students learn in actual classrooms.

CTAT supports the development of two kinds of tutors: example-tracing tutors, which use generalized
examples of problem-solving behavior as their central representation of domain knowledge, and model-
tracing tutors (or Cognitive Tutors), which use a rule-based cognitive model for this purpose (Aleven,
2010; Aleven, McLaren, Sewall & Koedinger, 2006). Example-tracing tutors are an innovation that
originated with CTAT; this tutoring technology was developed as part of developing CTAT; cognitive
tutors on the other hand have a long history that pre-dates CTAT (e.g., Aleven & Koedinger, 2007;
Anderson, Corbett, Koedinger & Pelletier, 1995; Koedinger, Anderson, Hadley & Martk, 1997). These
two types of tutors support the same set of tutoring behaviors. The main difference is that rule-based
cognitive tutors are more practical when a problem can be solved in many different ways (Waalkens,
Aleven & Taatgen, 2013). CTAT supports three different approaches to authoring (Figure 3). Example-
tracing tutors are built with a variety of end-user programming techniques, including building an interface
through drag-and-drop and then programming by demonstration within that interface, where the author’s
actions are recorded as paths in a behavior graph (Figure 4; the behavior graph is on the right). Rule-
based tutors on the other hand can be built in CTAT either through rule-based cognitive modeling, a form
of Al programming (Aleven, 2010) or through programming by automated rule induction by a module
called SimStudent, which is described in the next section.

Authorin
Method 9 Tutor Type

Cautious, manual
generalization of

Programming by examples .| Example-Tracing
Demonstration Tutor

Full, automated generalization
of examples (rule induction by
SimStudent)

Rule-Based Model-Tracing
Coghnitive Tutor
Modeling

Figure 3. Tutor types and ways of authoring in CTAT

74

Figure 4. Author using CTAT (right) and Flash (left) to create an example-tracing tutor.

Examples figure prominently in each of these three authoring approaches. These examples take the form
of behavior graphs, which capture correct and incorrect problem-solving behavior for the problems that
the tutor will help students solve. A behavior graph may have multiple paths, each capturing a different
way of solving the problem. Put differently, a behavior graph represents the solution space of a problem.
Behavior graphs go at least as far back as Newell and Simon’s (1972) classic book Human Problem
Solving, a foundational work in cognitive science. An author can easily create behavior graphs using
CTAT, by demonstrating how to solve problems in the tutor interface. A tool called the Behavior
Recorder records the steps in a graph. CTAT also offers tools with which an author can generalize a
behavior graph, expanding the range of problem-solving behavior that it represents.

Examples serve many different purposes in CTAT. In all three of CTAT’s approaches to tutor authoring,
examples (i.e., behavior graphs) function as a tool for cognitive task analysis. They help an author map
out the solution space of the problems for which tutoring is to be provided, think about different ways a
problem might be solved, and develop hypotheses about the particular knowledge components needed and
how these components might transfer across steps. In addition, behavior graphs serve various separate
functions in each of the authoring approaches. First, in example-tracing tutors generalized examples are
the tutor’s domain knowledge. The author generalizes the examples in various ways to indicate the range
of student behaviors that the tutor will deem correct, so the tutor can be appropriately flexible in
recognizing correct student behavior (Aleven, McLaren, Sewall & Koedinger, 2009). Also, in the
common authoring scenario that many problems of the same type are needed, an author can turn a
behavior graph into a template and create a table with specific values for each problem. Second, in
building rule-based cognitive tutors by hand, the examples help in testing and debugging. They help
navigate a problem’s solution space (e.g., authors can jump to any problem-solving state captured in the
graph, which is useful when developing a model from scratch), they serve as semi-automated test cases,
and they can be used for regression testing (i.e., making sure that later changes do not introduce bugs).
Lastly, in SimStudent, author-demonstrated examples are used to automatically induce production rules
that capture the tutor’s problem-solving behavior (more detail on this process can be found in the
SimStudent section below).

75

As mentioned, example-tracing tutors use generalized examples (behavior graphs) to flexibly interpret
student problem-solving behavior. The tutor checks whether the student follows a path in the graph. Once
the student commits to a path, by executing one or more steps on that path, the example-tracer will insist
that the student finishes that path, that is, that all subsequent actions are all on at least one path through
the graph. Students are not allowed to backtrack and try an alternative problem-solving strategy within the
given problem in order to keep them moving forward. Within this basic approach, CTAT’s example tracer
is very flexible in how it matches a student’s problem-solving steps against a behavior graph. First, the
example tracer can handle ambiguity regarding which path the student is on and when the steps that the
student has entered so far are consistent with multiple paths in a graph. In such situations, the example
tracer will maintain multiple alternative interpretations of student behavior until subsequent student steps
rule out one or more interpretations. The example tracer also can deal with variations in the order of steps.
That is, the student does not need to strictly follow the order in which the steps appear in the graph. An
author can specify which parts of a behavior graph require a strict order and which steps can be done in
any order. Even better, an author can create a hierarchy of nested groups of unordered and ordered steps.
Further, steps can be marked as optional or repeatable. The example tracer can also deal with variations of
the steps themselves. An author has a number of ways to specify a range of possibilities for a particular
steps, including range matches, wildcard matches, regular expressions, as well as an extensible formula
language for specifying calculations and how a step depends on other steps. Thus, in CTAT example-
tracing tutors, a behavior graph can stand for a wide range of behavior well beyond exactly the steps in
the graph in exactly the order they appear in the graph. Authors have many tools that enable them to
specify how far to generalize. When an author wants to make behavior graphs for many different but
isomorphic problems, CTAT provides a “Mass Production” approach in which an author creates a
behavior graph with variables for the problem-specific values and then, in Excel, creates a table with
problem-specific values for a range of problems. They can then generate specific instances of the template
in a merge step. This template-based process greatly facilitates the creation of a series of isomorphic
problems, as are typically needed in tutor development.

Our experience over the years, both as developers of example-tracing tutors and consultants assisting
others in developing example-tracing tutors, indicates that this type of tutor is useful and effective in a
range of domains. It also indicates that the example-tracing technology implemented in CTAT routinely
withstands the rigors of actual classroom use. Examples of example-tracing tutors recently built with
CTAT and used in actual classrooms are Mathtutor (Aleven, McLaren & Sewall, 2009), the Genetics
Tutor (Corbett, Kauffman, MacLaren, Wagner & Jones, 2010), the Fractions Tutor (Rau, Aleven &
Rummel, 2015; Rau, Aleven, Rummel & Pardos, 2014), a version of the Fractions Tutor for collaborative
learning (Olsen, Belenky, Aleven & Rummel, 2014; Olsen, Belenky, Aleven, Rummel, Sewall &
Ringenberg, 2014), a fractions tutor that provides grounded feedback (Stampfer & Koedinger, 2013), the
Stoichiometry Tutor (McLaren, DeLeeuw & Mayer, 2011a; 2011b), AdaptErrEx (Adams et al., 2014;
McLaren et al., 2012), an English article tutor (Wylie, Sheng, Mitamura & Koedinger, 2011), Lynnette, a
tutor for equation solving (Long & Aleven, 2013; Waalkens et al., 2013), and a tutor for guided invention
activities (Roll, Holmes, Day & Bonn, 2012). We have also seen, in courses, workshops, and summer
schools that we have taught, that learning to build example-tracing tutors with CTAT can be done in a
relatively short amount of time. Generally, it does not take more than a couple of hours to get started, a
day to understand basic functionality, and a couple more days to grasp the full range of functionality that
this tutoring technology offers. This is a much lower learning curve than that for learning to build
cognitive tutors with CTAT. Authoring and debugging a rule-based cognitive models is a more complex
task that requires Al programming. Example-tracing tutors on the other hand do not require any
programming. In our past publication (Aleven, McLaren, Sewall & Koedinger, 2009), we estimated,
based on data from projects in which example-tracing tutors were built and used in real educational
settings (i.e., not just prototypes) that example-tracing tutors make tutor development 4-8 times more
cost-effective: they can be developed faster and do not require expertise in Al programming. Echoing a
theme that runs throughout the chapter, we emphasize that building a good tutor requires more than being

76

facile with authoring tools; for example, it also requires careful cognitive task analysis to understand
student thinking and students’ difficulties in the given task domain.

In sum, the CTAT experience indicates that the use of examples, in the form of behavior graphs that
capture the solution space of a problem, is key to offering easy-to-learn, non-programmer options to ITS
authoring. Thinking in terms of examples and concrete scenarios is helpful for authors. So is avoiding
actual coding, made possible by the use of examples. The experience indicates also that the same
representation of problem-solving examples, namely, behavior graphs, can serve many different purposes.
This versatility derives from the fact that behavior graphs are a general representation of problem-solving
processes. As such, they may be useful in a range of ITS authoring tools, not just CTAT, since many ITSs
deal with complex problem-solving activities.

SimStudent

SimStudent is a machine-learning agent that inductively learns problem-solving skills (Li, Matsuda,
Cohen & Koedinger, 2015; Matsuda, Cohen & Koedinger, 2005). At an implementation level,
SimStudent acts as a pedagogical agent that can be interactively tutored. SimStudent is a realization of
programming by demonstration (Cypher, 1993; Lau & Weld, 1998) in the form of inductive logic
programming (Muggleton & de Raedt, 1994). SimStudent learns domain principles (i.e., how to solve
problems) by specializing and generalizing positive and negative examples on how to apply, and not to
apply, particular skills to solve problems.

At a theory level, SimStudent is a computational model of learning that explains both domain-general and
domain-specific theories of learning. As for the domain-general theory of learning, SimStudent models
two learning strategies: learning from examples and learning by doing (Matsuda, Cohen, Sewall, Lacerda
& Koedinger, 2008). Learning from examples is a model of passive learning in which SimStudent is
given a set of worked-out examples and it silently generalizes solution steps from these examples. There
is no interaction between the “tutor” and SimStudent during learning from examples, except that tutor
provides examples to SimStudent. Learning by doing, on the other hand, is a model of interactive,
tutored-problem solving (i.e., cognitive tutoring) in which SimStudent is given a sequence of problems
and asked to solve them. In this context, there must be a “tutor” (i.e., author) who provides tutoring
scaffolding (i.e., feedback and hints) to SimStudent. That is, the “tutor” provides immediate flagged
feedback (i.e., correct or incorrect) for each of the steps that SimStudent performs. SimStudent may get
stuck in the middle of a solution and ask the “tutor” for help on what to do next. The “tutor” responds to
SimStudent’s inquiry by demonstrating the exact next step.

As for the domain-specific theory of learning, SimStudent can be used as a tool for student modeling to
advance a cognitive theory of learning skills to solve problems for a particular domain task. Using the
SimStudent technology, researchers can conduct simulation studies with tightly controlled variables. For
example, to understand why students make commonly observed errors when they learn how to solve
algebraic linear equations, we conducted a simulation study. An example of a common error is to subtract
4 from both sides of 2x-4=5. We hypothesized that students learn skills incorrectly due to incorrect
induction. We also hypothesized that incorrect induction might more likely occur when students carry out
induction based on weak background knowledge that, by definition, is perceptually grounded and
therefore lacks connection to domain principles. An example of such weak background knowledge is to
perceive “3” in 5x+3=7 as a last number on the left-hand side of the equation, instead of perceiving ‘+3’
as a last term. To test these hypotheses, we controlled SimStudent’s background knowledge by replacing
some of the background knowledge (e.g., the knowledge to recognize the last term) with weak
perceptually grounded knowledge (e.g., the knowledge to recognize the last number). We trained two
versions of SimStudent (one with normal background knowledge and the other one with weak

77

background knowledge) and compared their learning with students’ learning. The result showed that only
SimStudent with weak background knowledge made the same errors that students commonly make
(Matsuda, Lee, Cohen & Koedinger, 2009).

So far, we have demonstrated that SimStudent can be used to advance educational studies for three major
problems: (1) intelligent authoring, (2) student modeling, and (3) teachable agent. For intelligent
authoring, SimStudent functions as an intelligent plug-in component for CTAT (Aleven, McLaren, Sewall
& Koedinger, 2006; Aleven, McLaren, Sewall & Koedinger, 2009) that allows authors to create a
cognitive model (i.e., a domain expert model) by tutoring SimStudent on how to solve problems. The
intelligent authoring project was started as an extension of prior attempts (Jarvis, Nuzzo-Jones &
Heffernan, 2004; Koedinger, Aleven & Heffernan, 2003; Koedinger, Aleven, Heffernan, McLaren &
Hockenberry, 2004).

In the context of intelligent authoring, the author first creates a tutoring interface using CTAT, and then
“tutors” SimStudent using the tutoring interface (Figure 5). There are two authoring strategies, authoring
by tutoring and authoring by demonstration, and each corresponds to two learning strategies mentioned
above, i.e., learning by doing and learning from worked-out examples, respectively. We have showed that
when the quality of a cognitive model is measured as the accuracy of solution steps suggested by the
cognitive model, authoring by tutoring generates a better cognitive model than authoring by
demonstration (Matsuda, Cohen & Koedinger, 2015). It is only authoring by tutoring that provides
negative examples, which by definition tell SimStudent when not to apply overly general productions,
and negative examples have the significant role in inductively generating a better quality cognitive model.

File Edit View Graph Cognitive Model Sim. Student Tools Window Help | Student

Tutor Type: = Simulated St... % | Author Mode = De... & | ForJava Student Interfaces Equation Transformation Messages

« Variable Viewer (Skills Console fBehavlor Graph Editor 2 (Siart State Edito] 4 » ¥ # O x]

@ Graph 1 x

2x+1 = 53

[e =
1. dorminTable3_C1R1, subtract 1 =
1
subtract simSt
statel

3. dorminTablel_CI1R2, 2x
1

subtract-typein simst
Problem is Solved

state2 |

[SimStudent is asking for a hint

5. dorminTable2_CI1R2, 4-3x

1 I'm stuck. | don't know what to do next. Please show me what to do.
subtract-typein simst

oK

state3

Ordered state3 [p1 Simulated Student |1 interpretation

Figure 5. Authoring using SimStudent with the assistance of CTAT

SimStudent also functions as a teachable agent in an online learning environment in which students learn
skills to solve problems by interactively teaching SimStudent. The online learning environment is called
the Artificial Peer Learning environment Using SimStudent (APLUS). APLUS and a cognitive tutor share
underlying technologies. In fact, APLUS consists of (1) the tutoring interface on which a student tutors

78

SimStudent; (2) a cognitive tutor in the form of the meta-tutor that provides scaffolding for the student on
how to teach SimStudent and how to solve problems; and (3) a teachable agent (SimStudent), with its
avatar representation. The combination of CTAT and SimStudent allows users to build APLUS for their
own domains. In this context, SimStudent plays a dual role: (1) a tool to create a cognitive model for the
embedded meta-tutor and (2) a teachable agent.

Examples, in the context of the interaction with SimStudent, are major input for SimStudent to induce a
cognitive model. SimStudent learns procedural skills to solve target problems either from learning by
doing or learning from worked-examples. SimStudent generalizes provided examples (both positive and
negative) and generates a set of productions that each represents a procedural skill. The set of productions
become a cognitive model that can be used for cognitive tutoring in the form of a cognitive tutor or a
meta-tutor in APLUS.

An empirical study (Matsuda et al., 2015) showed that to make an expert model for an algebra cognitive
tutor, it took a subject matter expert 86 minutes for authoring by tutoring SimStudent on 20 problems
whereas authoring by demonstration with 20 problems took 238 minutes. A more recent study showed
that authoring an algebra tutor in SimStudent is 2.5 times faster than example-tracing while maintaining
equivalent final model quality (MacLellan, Koedinger & Matsuda, 2014). We are currently conducting a
study to validate the quality of production rules. In the study, we actually use a SimStudent-generated
cognitive model for an algebra cognitive tutor to model trace real student’s solution steps. A preliminary
result shows that after tutoring SimStudent on 37 problems, the model tracer correctly model traces 96%
of steps that students correctly performed. At the same time, the “accuracy” of detecting a correct step
(i.e., the ratio of the correct positive judgement, judging a step as correct, to all positive judgement) was
98%.

ASPIRE

The Intelligent Computer Tutoring Group (ICTG; http://www.ictg.canterbury.ac.nz/) has developed many
successful constraint-based tutors in diverse instructional domains (Mitrovic, Martin & Suraweera, 2007;
Mitrovic, 2012). Some early comparisons of constraint-based modeling (Ohlsson, 1994) to the model-
tracing approach have shown that constraint-based tutors are less time-consuming to develop (Ohlsson &
Mitrovic, 2007; Mitrovic, Koedinger & Martin, 2003), but yet require substantial expertise and effort. The
estimate of time per constraint for Structured Query Language (SQL)-Tutor, the first and biggest
constraint-based modeling (CBM) tutor developed (Mitrovic, 1998), was 1 hour per constraint, with the
same person acting as the knowledge engineer, domain expert, and software developer. In order to
support the development process, ICTG developed an authoring shell, the Web-Enabled Tutor Authoring
System (WETAS; Martin & Mitrovic, 2002). Studies with novice ITS authors using WETAS had shown
that the authoring time per constraint on average was 2 hours (Suraweera et al., 2009), but the authors still
found writing constraints challenging.

ASPIRE (http://aspire.cosc.canterbury.ac.nz/) is a general authoring and deployment system for
constraints-based tutors. It assists in the process of composing domain models for constraint-based tutors
and automatically serves tutoring systems on the web. ASPIRE guides the author through building the
domain model, automating some of the tasks involved, and seamlessly deploys the resulting domain
model to produce a fully functional web-based ITS.

The authoring process in ASPIRE consists of eight phases. Initially, the author specifies general features

of the chosen instructional domain, such as whether or not the task is procedural. For procedural tasks, the
author describes the problem-solving steps. This is not a trivial activity, as the author needs to decide on

79

the approach to teaching the task. The author also needs to decide on how to structure the student
interface and whether the steps will be presented on the same page or on multiple pages.

The author then develops the domain ontology, containing the concepts relevant to the instructional task.
The purpose of the domain ontology is to focus the author on important domain concepts; ASPIRE does
not require a complete ontology, but only those domain concepts students need to interact with in order to
solve problems in the chosen area. The ontology specifies the hierarchical structure of the domain in
terms of sub- and super-concepts. Each concept might have a number of properties and may be related to
other domain concepts. The author can define restrictions on properties and relationships, such as the
minimum and maximum, number of values, types of values, etc. The ontology editor does not offer a way
of specifying restrictions on different properties attached to a given concept, such as the number of years
of work experience should be less than the person’s age. It also does not contain functionality to specify
restrictions on properties from different concepts, such as the salary of the manager has to be higher than
the salaries of employees for whom they are responsible. However, these restrictions are not an obstacle
for generating the constraint set, as ASPIRE generates constraints not only from the ontology, but also
from sample problems and their solutions. Figure 6 shows the domain ontology for the thermodynamics
tutor, which is defined as a procedural task. In this tutor, the student needs to develop a diagram first and
later compute unknowns using a set of formulas.

Home ‘ Domain H Ontology H Problem Structure H Student Interface H Problem Editor H Syntax Constraints H Semantic Constraints || Domain functions || Test Constraints H Deployment ‘ Logs

Domain Ontology (Domain - Thermodynamics-exp)

=~ B | [&

Adiabatic compression
Adiabatic expansion

Isothermal compression

Isochoric pincrease
Isochoric pdecrease

e T
SpecialValue
isobaric compression

{ Iscthermal expansion_{

CtherProperties

Formula

StateUnknown i3 e L TranstionFormula

TransitionUnknawn

+‘.“

Stat % * Adiabatic +

SteteSpecialProperty

{ Puninown } { Tuninown_} { pettalExpression |

+ W-Unknown + % @-Unknown ’Iﬁ

\
{ sothermatvorc }

4] 1 IHD

Description ‘An isothermal expansion is a constant temperature transistion where pressure decreases and volume increases Abstract [_] Siots

MName Type Min Max
BwW Float -
P |W-unit String =
P |W-unknown Boolean False False
L[] Float
P | C-unit String —{
L fa) L Deonl Cal. Cal. bl 8

Powered byAS ¥ EE

Figure 6: The ontology of Thermo-Tutor

In the third phase, the author defines the problem structure and the general structure of solutions,
expressed in terms of concepts from the ontology. The author specifies the types of components to show
on the student interface and the number of components (e.g., a component may be optional or can have

80

multiple instances). On the basis of the information provided by the author in the previous phases,
ASPIRE then generates a default, text-based student interface, which can be replaced with a Java applet.
ASPIRE also provides a remote procedure call interface, allowing for sophisticated student interfaces to
be built, such as an Augmented Reality interface (Westerfield, Mitrovic & Billinghurst, 2013). Figure 7
shows the Java applet allowing students to solve problems in Thermo-Tutor (Mitrovic et al., 2011).

Next Problem Give Me a Problem Help Change ITS Exit TTS
|Problem 1 |Feedback
Draw the described thermodynamic cycle
2 moles of nitrogen initially at 1,000,000 Pascals and 600 K (state 1) are expanded adiabatically to 100,000 Pascals (state 2). The gas is then Almost there - still a few errors

heated via an isochoric process to 600 K (state 3). Finally the gas is isothermally compressed back to the original state 1. though.

A property of a state is empty but
not unknown. Did you forget to

|Solution warkspace select the "unknown" checkbox?
() stete | sochoric | 43 lsobaric | . Isathermal | Sy Adiabstic @ Undo | Doe Diagram Completed ou can correct your slution and
press 'Check Answer' again, or try
getting some more feedback.
=]
@ Would you like to have another go?
3.1
Cl2en
@
2 v
Transition Work Heat Delta U State Temperature Volume Pressure
2-3 1 800 K

3-1 100000 Pa

I [£] Set State 2 Values R 1000000 Pa
Property Value Units Unknown
Label 12

Pressure 100000 o u

Volume] | Ddel ~
- — nswer
Temperature |:

sowsrsd oy ASF RE

Figure 7: A screenshot from Thermo-Tutor showing the applet

In the fifth phase, the author adds sample problems and their correct solutions using the problem solution
interface. ASPIRE does not require the author to specify incorrect solutions. The interface enforces that
the solutions to adhere to the structure defined in the previous step. The author is encouraged to provide
multiple solutions for each problem, demonstrating different ways of solving it. In domains where there
are multiple solutions per problem, the author should enter all practicable alternative solutions. The
solution editor reduces the amount of effort required to do this by allowing the author to transform a copy
of the first solution into the desired alternative. This feature significantly reduces the author’s workload
because alternative solutions often have a high degree of similarity.

ASPIRE then generates syntax constraints by analyzing the ontology and the solution structure. The
syntax constraint generation algorithm extracts all useful syntactic information from the ontology and
translates it into constraints. Syntax constraints are generated by analyzing relationships between concepts
and concept properties specified in the ontology (Suraweera, Mitrovic & Martin, 2010). An additional set
of constraints is also generated for procedural tasks, which ensure the student performs the problem-
solving steps in the correct order (also called path constraints).

Semantic constraints check that the student’s solution has the desired meaning (i.e., it answers the
guestion). Constraint-based tutors determine semantic correctness by comparing the student solution to a
single correct solution to the problem; however, they are still capable of identifying alternative correct
solutions because the constraints are encoded to check for equivalent ways of representing the same
semantics (Ohlsson & Mitrovic, 2007; Mitrovic, 2012). ASPIRE generates semantic constraints by
analyzing alternative correct solutions for the same problem supplied by the author. ASPIRE analyses the

81

similarities and differences between two solutions to the same problem. The process of generating
constraints is iterated until all pairs of solutions are analyzed. Each new pair of solutions can lead to either
generalizing or specializing previously generated constraints. If a newly analyzed pair of solutions
violates a previously generated constraint, its satisfaction condition is generalized in order to satisfy the
solutions, or the constraint’s relevance condition is specialized for the constraint to be irrelevant for the
solutions. A detailed discussion of the constraint-generation algorithms is available in (Suraweera,
Mitrovic & Martin, 2010).

XPST

When an author uses the XPST system to create a model-tracing style tutor (e.g., Koedinger, Anderson,
Hadley & Mark, 1997) for a learner, the author bases the instruction on a particular example. The
example needs to already be in existence—xPST does not provide a way to create that example. Rather,
that example comes from previously created content or is based on third-party software. This aspect of the
system is contained in its name—problem-specific tutor. Very little generalization is done from the
example. Broadly speaking, the instruction that the author creates is appropriate only for that one
example. While this limits the ability for the instruction to be applied in multiple instances, it allows for a
more streamlined and simplistic authoring process, opening up the possibility of authoring tutors to a
wider variety of people, e.g., those who do not possess programming skills.

To quickly explain the first word in the XPST name, extensible, that ability comes from two different
aspects. First, XPST can be extended in terms of the types of learner answers it can check. XPST’s
architecture compartmentalizes these “checktypes,” and it is easy for a programmer to add additional ones
and make them available to xPST authors. Second, and more importantly, XPST can be extended in terms
of the interfaces on which it can provide tutoring. Like other ITSs (such as seen in CTAT, or see Blessing,
Gilbert, Ourada, and Ritter, 2009; Ritter & Koedinger, 1996), XPST’s architecture makes a clear
separation between the learner’s interface and the tutoring engine. The architecture contains a TutorLink
module that mediates the communication between these two parts of the system. The learner’s interface
can in theory be any existing piece of software, as long as a TutorLink module can translate the actions of
the learner in the interface into what xPST understands, and then the module needs to communicate the
tutoring feedback back to the learner’s interface (e.g., a help message or an indication if an answer is right
or wrong). More information concerning this type of communication can be found elsewhere (Gilbert,
Blessing & Blankenship, 2009).

Allowing the learner interface to be existing software, given the proper TutorLink module, opens up
many possibilities in terms of what to provide tutoring on and how that tutoring manifests itself. We have
written TutorLink modules for Microsoft .NET programs, the Torque 3-D game engine, and the Firefox
web browser. Regardless of the interface, the authoring interaction is similar: a specific scenario is
created within the context of the interface and instruction on completing that scenario is authored in
XPST. To explain how examples are used to create tutoring in XPST, we illustrate the process using the
Firefox web browser as the interface. In this case, the TutorLink module operates as a Firefox plug-in.
This allows any webpage to contain potentially tutorable content, where the student is provided with
model-tracing style feedback. In one project, we had authors, which included non-programmer
undergraduates, use a drag-and-drop form creation tool to easily create custom homework problems for a
statistics tutor (Maass & Blessing, 2011). Countless webpages already exist that could be used for
instruction. In another project, we used a webpage from the National Institutes of Health (NIH) to create
activities involving DNA sequencing.

To provide a specific example, imagine an author wanted to create instruction on how to search using a
popular article database, the American Psychological Association’s (APA) PsychINFO, to find research

82

papers, so that students become better at information literacy. The webpage already exists, with all the
widgets (the entry boxes, radio buttons, and pull-down menus) in place. The Firefox plug-in allows the
author to write a problem scenario (e.g., to find a particular paper using those widgets) that will appear in
a sidebar next to the already established page, and then the author writes instruction code that will ensure
that the learner uses the page appropriately, providing help when needed, so that the learner finds the
correct article. The author does their work on the xPST website (http://xpst.vrac.iastate.edu). This website
provides a form to create a new problem, where the instruction to the existing webpage (in this case,
http://search.proquest.com/psychinfo/advanced/), the sidebar’s problem scenario, and the tutor “code”
that contains the right answers and help messages can all be entered. While the code does have some of
the trappings of traditional programming, those are kept to a minimum.

Figure 8 shows some of the code that would be used to create this PsychINFO tutor. This code in
conjunction with the author-supplied scenario is in essence the example. The existing webpage provides
the means by which the learner will work through the example (via the entry boxes and drop-down
menus), and what is seen in Figure 8 is the information needed by xPST to provide tutoring. The code has
three main sections: Mappings, Sequence, and Feedback. The Mappings map the interface widgets onto
the names that the xPST tutor will use. The Firefox plug-in provides the names of the widgets for the
author as the author begins to create the scenario. The Sequence is the allowed orderings for how the
learner may progress through the problem. The syntax allows for required and optional parts, along with
different kinds of branching. The Feedback section is where the author indicates the right answer for a
widget, and the help and just-in-time messages that might be displayed for incorrect responses. Once
authors have entered in enough code to see results, they can click the “Save and Run” button and
immediately see the results of the xPST tutor. Figure 9 shows the tutor running the PsychINFO site with
the code shown in Figure 8. This code is specific to this problem scenario, but could easily be copied and
modified in order to create a different problem. In such a way an author could quickly create a short 5-6
problem homework set to provide practice to students concerning information literacy.

800 xPST: Extensible Problem-Specific Tutor
J :: xPST: Extensible Problem-Speci... u + l
I'\</'I P | @ xpst.vrac.iastate.edu/tutor/formprocedura/7TutoriD=380 & [(B~ Google
E iGoogle [] News ~ [_|MacSites ~ [Entertainment =~ [_| Univ Tampa ~ Facebook | | Cpanel A\ Garmin
¥P5T Hint Done Instructions Observe Help
Mame of the Tutor John Anderson in Cognitive Science
URL of page to tutor on http:/ /search.proquest.com/ psycinfo/advanced Redirect?
Sidebar Content Produce a list of artieles that John R. Anderson, professor of psychology at Carnegie
Mellon University, has published in the journal Cognitive Science.
xPST File mappings

{

initial."; }

fieldsSelect {

................ et "Author — AU";

Timbe "Ooloss bkho s;esccmsedose £iald £aeom ke mess !

Figure 8. Authoring interface for xPST.

83

006 Advanced Search - PsycINFO - ProQuest P

(] Advanced Search - PsycINFDVf u + L

I\4/\ search.proquest.com/psycinfo/advanced ¢ [(B~ coogle Q) (8| [B-] [- | 71855
[} iGoogle [] News = [~ MacSites ~ [*] Entertainment ~ (] Univ Tampa ~ Facebook { | Cpanel A Garmin
xPST Hint Done Instructions Observe Help
Tutor ® Q, searching: 1 database ¥ 4 Recent searches | D Selected items | 4§ My Research | Exit
Produce a list of articles that John R. Anderson, « All databases | Social Sciences databases Preferences | English = | Help
professor of psychology at Carnegie Mellon University,
has published in the journal Cognitive Science.) = AMERICAN
Pl U(_ uest PSyCI N FO é;g PSYCHOLOGICAL
WL Assooanon
Basic Search | Advanced © | About
Hint X

Advanced Se

John R. Anderson is the Author, so select that from
Look Up Citation | the top drop down.

Thesaurus | Field codes | Search tips

V/ anderson, john r in Anywhere
AND 3 |() in | Anywhere
anp_s) Close < Previous Hint [13 in [Anywhere

ElAddaraw | Ref Search | Clear form

Figure 9. The example-based tutor running on the Psychlnfo site.

We have examined the way non-programmers have learned to use xPST (e.g., Blessing, Devasani &
Gilbert, 2011). Despite the text-entry method for instruction, non-programmers have successfully used
XPST to create new tutors. In Blessing, Devasani, and Gilbert (2011), five such authors spent roughly 30
hours on average learning the system and developing 15 statistics problems apiece. Keeping in mind that
all the problems had a similar feel to them, the endpoint was the ability to create one of the problems,
which contained about 10 minutes of instruction, in under 45 minutes.

Conclusions

We start our conclusions by comparing the above systems on five dimensions: (1) their heritage,
(2) practical concerns such as teacher reporting, (3) the authoring process, (4) how they generalize
examples, and (5) their approach to cognitive task analysis. We finish by making recommendation to the
Generalized Intelligent Framework for Tutoring (GIFT) architecture based on our observations.

Heritage

Four of these five systems (ASSISTments, CTAT, SimStudent, and xPST) share a common heritage, the
ACT Tutors that John Anderson and his colleagues developed over the course of many years (Anderson,
Corbett, Koedinger & Pelletier, 1995). The researchers created these tutors to fully test the ACT Theory
of cognition, and they covered a few different domains, including several programming languages and
many levels of mathematics. The most direct descendant of the ACT Tutors existing today are the
commercial tutors produced by Carnegie Learning, Inc., which cover middle and high school math.

Despite this common heritage of the present systems, they were developed independently. Each of us felt
that the authoring tools created to support the ACT Tutors (the Tutor Development Kit for the original set
of tutors (Anderson & Pelletier, 1991) and the Cognitive Tutor Software Development Kit for Carnegie
Learning’s tutors (Blessing, Gilbert, Ourada & Ritter, 2009)), while powerful, were not approachable by
non-programmers or non-cognitive scientists. We realized that in order for ITSs to be more prevalent,
authoring needed to be easier. In our own labs, we developed separate systems that mimicked the
behavior of the original ACT Tutors, because that had proved so successful, but without the programming

84

overhead that prior tools required. As seen in our descriptions above and our discussion here, these
systems contain some similarities, but differ in important ways as well.

ASPIRE, the one system that does not have a connection to the ACT Tutors, originated with Ohlsson’s
work on a theory of learning from performance errors (Ohlsson, 1996). This led to the development of
CBM (Mitrovic & Ohlsson, 1999), in which the tutor’s knowledge is represented as a set of constraints,
as opposed to the production-based representation of the ACT Tutors. In this way, the tutor’s knowledge
represents boundary points within which the solution lies. Having multiple systems that descend from
multiple sources provides credence to the idea that the general technique of programming by
demonstration and the use of examples is a useful and powerful one for the creation of ITSs.

Practical Concerns

There are scientific concerns as to what knowledge representations are most valuable to use to reflect how
humans think (e.g., Ohlsson’s constraints-based theory vs. Anderson’s production rules). However, there
are also practical concerns. For example, which tools prove easier to use might drive adoption, not
necessarily those that produce the most learning. As another somewhat practical concern, some of the
authoring methods discussed above may allow authors to more easily add complexity to their content over
time. For instance, after assigning a homework question, a teacher may see that an unanticipated common
wrong answer occurs, and the system needs to allow the teacher to write a feedback message that
addresses that common wrong answer quickly.

While this chapter has focused on author tools for the content, an equally important element has to do
with reporting. Some of these tools, such as ASSISTments and CTAT offer very robust ways to report
student data. There is a possible tradeoff on the complexity and adaptability of the content, and the ways
we report to instructors. We need easy ways that report information to the instructors and content creators.
The reports to these classes of people should be focused differently than the types of reports to
researchers. For instance, if a researcher has used ASSISTments’ tools to create a randomized controlled
experiment (see sites.google.com/site/neilheffernanscv/webinar for more information concerning this
feature) embedded in a homework, perhaps comparing text hints versus video hints, the reports that the
teachers receive should be different than the reports that the researchers receive.

The Authoring Process

The method by which authors create tutors in these systems varies along at least two different, though
somewhat related, dimensions: (1) how the instruction is inputted and (2) how much of the process is
automated. With regard to how the instruction is inputted, this varies from a method that is more
traditional coding as in XPST, to a method that is more graphical in nature, such as CTAT’s behavior
graph. ASSISTment’s QuickBuilder and ASSISTment Builder techniques seem to be a bit of a midpoint
between those two methods of input. Devasani, Gilbert, and Blessing (2012) examined the trade-offs
between these approaches with novice authors building tutors in both CTAT and xPST within two
different domains, statistics and geometry. Relating their findings to Green and Petre’s (1996) cognitive
dimensions, they argued that the GUI approach has certain advantages, such as eliminating certain types
of errors and the fact that visual programming allows for a more direct mapping. A more text-based
approach has the advantages of flexibility in terms of how the authoring is completed and the ability to
capture larger tutors that contain more intermediate states and solution paths more economically (what
Green and Petre termed “diffuseness” and “terseness™). That flexibility may also translate into easier
maintenance of those larger tutors.

85

The systems also differ in how much of the process is automated. This is also related to the amount of
generalizability that the systems are able to perform, discussed below. In both ASSISTments and xPST,
very little, if anything, is automated. ASPIRE and SimStudent have some degree of automation, in terms
of how they induce constraints or productions. This automation eliminates or reduces greatly some of the
steps that the author would otherwise have to do in order to input the instruction. CTAT is the middle
system here, as it does have some mechanisms available to the author to more automatically created
instruction (e.g., using Excel to more quickly create problem sets that all share similar instruction). As in
any interface and systems design, these two dimensions play off each other in terms of what advantages
they offer the author, between ease-of-use and generalizability.

Generalization of Examples

The discussed authoring technologies are diverse: they help authors create different kinds of domain
models that can be used for adaptive tutoring. Some help authors create a collection of questions and
answers with knowledge of feedback (ASSISTments, the example-tracing version of CTAT, and xPST),
whereas others provide scaffolding to create the domain model either in the form of constraints (ASPIRE)
or production rules (the model-tracing version of CTAT and SimStudent).

Some of the discussed approaches rely on the author’s ability for programming while providing
elaborated scaffolding to facilitate the programming process and ease the author’s labor (ASSISTments,
CTAT, xPST). In xPST, there is no generalization of examples at all. In CTAT, the author specifies the
behavior graphs that includes both correct and incorrect steps, and also provides feedback on steps and
hints. Furthermore, the author generalizes examples by adding variables and formulas that express how
steps depend on each other or how a given vary, by relaxing ordering constraints, and by marking steps as
optional or repeatable. In ASSISSTments, some variabilization is possible. In those two cases, the
authoring system does not generalize examples on its own; this task is left to the author.

On the other hand, ASPIRE and SimStudent deploy Al technologies to generate the domain model given
appropriate background knowledge. ASPIRE, for example, generates constraints given the domain
ontology developed by the author and example solutions. SimStudent uses the given primitive domain
skills to generate a cognitive model from a set of positive and negative examples provided by the author.
The difference between ASPIRE and SimStudent is not only in the formalism in which domain
knowledge is represented, but also in the kind of examples they use. ASPIRE requires the author to
specify only the alternative correct solutions for problems, without any feedback or further elaborations
on them. SimStudent requires immediate feedback on steps (when inducing production rules in the
learning by doing mode) or a set of positive and negative examples.

All five authoring systems discussed in this chapter share a common input for tutor authoring—example
solutions. Different techniques are used for different purposes to generalize or specialize the given
examples. It must be noted that all these five authoring systems share a fundamentally comparable
instructional strategy for procedural tasks, step decomposition (i.e., force students to enter a solution one
step at a time). ASPIRE differs from this requirement, as it can also support non-procedural tasks, in
which the student can enter the whole solution at once. With the exception of ASPIRE, which provides
on-demand feedback, the other authoring systems provide immediate (or semi-immediate) feedback on
the correctness of the step performed, and just-in-time hint on what to do next.

Cognitive Task Analysis

Performing a cognitive task analysis (CTA) has been shown to be an effective means of producing quality
instruction in a domain (Clark & Estes, 1996). CTA involves elucidating the cognitive structures that

86

underlie performance in a task. Another aspect of CTA is to describe the development of that knowledge
from novice to expert performance. The more ITS authors (or any other designers of instruction)
understand about how students learn in the given task domain, what the major hurdles, errors, and
misconceptions are, and what prior knowledge students are likely to bring to bear, the better off they are.
This holds for designing many, if not all, other forms of instruction, regardless of whether any technology
is involved.

The space of cognitive task methods and methodologies is vast (Clark, Feldon, van Merriénboer, Yates &
Early, 2007). Some of these techniques have been applied successfully in tutor development (Lovett,
1998; Means & Gott, 1988; Rau, Aleven, Rummel & Rohrbach, 2013). Two techniques that have proven
to be particularly useful in ITS development, though not the only ones, are think-aloud protocols and a
technique developed by Koedinger called difficulty factors assessment (DFA; Koedinger & Nathan,
2004). DFA is a way of creating a test (with multiple forms and a Latin-Square logic) designed to
evaluate the impact on student performance of various hypothesized difficulty factors. Creating these tests
is somewhat of an art form, but we may see more data-driven and perhaps crowd-based approaches in the
future. Baker, Corbett, and Koedinger (2007) discussed how these two forms of cognitive task analysis
can help, in combination with iterative tutor development and testing to detect and understand design
flaws in a tutor and create a more effective tutor. Interestingly, in the area of ITS development, manual
approaches to CTA are more and more being supplemented by automated or semi-automated approaches,
especially in the service of building knowledge component models that accurately predict student learning
(Aleven & Koedinger, 2013). CTA is important to ITS development, as it is for other forms of
instructional design. The more instruction is designed with a good understanding of where the real
learning difficulties lie, the more effective the instruction is going to be. ITSs are no exception. This point
was illustrated in the work by Baker et al. (2007) on a tutor for middle school data analysis—CTA helped
make a tutor more effective. Outside the realm of ITSs, this point was illustrated in the redesign of an
online course for statistics, using CTA, where the redesigned course was dramatically more effective
(Lovett, Myers & Thille, 2008).

Given the importance of CTA in instructional design, we should ask to what degree ITS authoring tools
support any form of CTA and in what ways they are designed to take advantage of the results of CTA to
help construct an effective tutor and perhaps make tutor development more efficient. For example, one
function of the behavior graphs used in CTAT is as a CTA tool. The other authoring tools described here
make use of CTA in various ways as the author creates a tutor. Although mostly implicit in their design,
the authoring systems depend on authors having performed an adequate task decomposition in their initial
interface construction, sometimes referred to as subgoal reification (Corbett & Anderson, 1995). Without
the author having enabled the learner to make explicit their thought processes as they use the tutor, then
attempts at assessing their current state of knowledge or addressing any deficiency will be greatly
diminished. Therefore, before beginning the writing of any help or just-in-time messages, it is crucial to
have the student’s interface support the appropriate tasks needed to be performed by the student.

As mentioned, CTA is supported in CTAT, as the easily recorded behavior graphs. A behavior graph is a
map of the solution space for a given problem for which the tutoring-system-being-built will provide
tutoring. In other words, it simply represents ways in which the given problem can be solved. CTAT
provides a tool, the Behavior Recorder, for creating them easily. Behavior graphs help in analyzing the
knowledge needs, support thinking about transfer, and thereby guide the development of a cognitive
model.

As a representation of the solution space of a problem, behavior graphs are not tied to any particular type
of tutor and are likely be useful across a range of tutor authoring tools, especially those addressing
tutoring for problems with a more complex solution space. For example, they may be helpful in tools for
building constraint-based tutors. They may be less useful in the ASSISTments tool, given ASSISTments

87

strongly constrains the variability of the problems’ solution space, with each problem essentially having
one single-step path and multi-step path, the latter representing the scaffolded, version.

As the CTAT author creates a behavior graph, an xPST author begins to construct the task sequence and
goal-nodes in XPST pseudo-code. In both cases, these authoring steps are a reflection of the tasks and
knowledge components that the author is indicating as needed in order for a learner to do the task.
ASPIRE has the author identify those tasks upfront, before the author creates the examples, based on the
ontology that the author creates. SimStudent’s induction of the task’s rules depends on the representation
being used, so the author’s CTA is important in shaping what the learned rules will look like.

After the author has created the first version of the tutor and students have gone through its instruction,
some of these systems have features that enable the authors to iterate the design of the tutor using student
log files to inform a CTA and a redo of the tutor. ASSISTments, CTAT, and SimStudent all have robust
ways for researchers and teachers to examine learner responses and adapt their tutor’s instruction
accordingly. ASSISTments produces a report showing learners’ most common wrong answers, and also
allows students to comment on the problems. SimStudent has a tool to validate its cognitive model by
model-tracing through student log data to ensure correct functioning. Initial work has shown that this
improves the quality of the model, though additional work will have to be performed to see how much it
improves student learning.

Recommendations for GIFT

Having reviewed the challenges and benefits of example-based tutor authoring, we offer suggested
features for GIFT so that it may also benefit from this approach. We begin with a brief summary of its
architecture from the authoring perspective. GIFT is closer to ASPIRE than the other tools, in that its
tutors can be viewed as a collection of states to be reached or constraints to be satisfied, without a
particular procedural order to be followed. While sequencing can be achieved through conditions and
subconditions, GIFT’s core is designed around states. In particular, in GIFT’s domain knowledge file
(DKF) editor, typically used for authoring, there are tasks, which have concepts, which, in turn, have
conditions, which, in turn, trigger feedback (Figure 10). The tasks are collections of states to be achieved.
The concepts (with possible subconcepts) are analogous to learner skills used. Concepts are designed as
learned if their conditions and subconditions are met. There is not a specific analogy to a procedural step
that a learner might take, but a DKF condition is similar. If a step is taken, a condition is likely met. Note
that the feedback assigned to be given when a condition is met is chosen from a menu of possible
feedback items. Thus, a given feedback item can be reused easily by the author in multiple conditions.

Task
L Concept <+—— a skill to be mastered
Condition <+— an interface state to be achieved
I: L Feedback
Concept
L Condition
L Feedback

Figure 10: GIFT’s DKF format, typically used for authoring

Conditions might be based on whether a certain time has passed in the simulation, or whether the learner
has reached a specific location or state. At this early point within GIFT’s development, there is not any
way to combine conditions in its DKF authoring module, e.g., if the learner does X (Condition 1) while

88

also in location Y (Condition 2), then perform a particular action. However, it does have an additional
authoring tool, SIMILE, that works more like a scripting engine in which authors write explicit if...then
code, in which this is possible.

In GIFT there is not a natural way to represent a procedural solution path or branching at a decision point
such as in CTAT or xPST. Software applications that manage the passage of time (e.g., video editing
suites or medical systems monitoring patient data), aka “timeline-navigators” (Rubio, 2014), typically
have a timeline and playhead metaphor as part of their user interface. An analogous interface is
recommended for GIFT to indicate to the author the current status of the internal condition evaluations,
though it would not likely map cleanly onto a linear timeline, since GIFT looks for active concepts and
then evaluates their conditions. Whenever conditions are true, they generate feedback, which may
accumulate across multiple conditions. While it is feasible with significant management of the conditions
to create a sequence with branching points, the underlying architecture does not make this a natural task
for an author. Also, GIFT does not differentiate between forms of feedback, such as hints, prompts, or
buggy messages based on incorrect answers.

This state-based and less procedural approach makes GIFT much better adapted to tutors on simulations
that enable multiple complex states, such as game engines. A 3D game engine scenario, with multiple live
player entities and some game-based non-player characters, is difficult to frame as a procedural tutor and
is better approached as a network of noteworthy states (Devasani, Gilbert, Shetty, Ramaswamy &
Blessing, 2011; Gilbert, Devasani, Kodavali & Blessing, 2011; Sottliare & Gilbert, 2011). Game engines
often have level editors that allow almost WYSIWYG editing and scripting by non-programmers. These
could be an inspiration for GIFT. However, since GIFT is essentially an abstraction layer used to describe
conditions and states within such a system, enabling the author to visualize the learner’s experience
within the simulation while simultaneously understanding the current state of the tutor is a complex
challenge for which that are not many common user interface precedents. Currently within GIFT, it is
difficult to preview and debug the learner’s experience using the tutor or to easily encode a particular
example into GIFT. The CTA of a tutoring experience (described above) must first be created separately
and then be transformed to match GIFT’s state-based condition architecture. Once authored, this
architecture also makes it difficult to conduct quality assurance testing. The condition-based tutor can be
complex to test because the author must think through all possible combinations of states that might
generate feedback.

In terms of example-based authoring, a given GIFT tutor is essentially one large example; there is no
particular mechanism for generalization. However, GIFT is highly modular, so that elements of a given
tutor such as the feedback items can be re-used in other tutors. The features of the aforementioned
tutoring systems that promote generalization of rules and easy visualization of the learner’s experience via
the authoring tool would be ones for GIFT to emulate.

References

Adams, D. M., McLaren, B. M., Durkin, K., Mayer, R. E., Rittle-Johnson, B., Isotani, S. & Velsen, M. V. (2014).
Using erroneous examples to improve mathematics learning with a web-based tutoring system. Computers
in Human Behavior, 36, 401 - 411. doi:10.1016/j.chb.2014.03.053}

Aleven, V. (2010). Rule-Based cognitive modeling for intelligent tutoring systems. In R. Nkambou, J. Bourdeau &
R. Mizoguchi (Eds.), Studies in Computational Intelligence: Vol. 308. Advances in intelligent tutoring
systems (pp. 33-62). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-14363-2_3

Aleven, V. & Koedinger, K. R. (2013). Knowledge component approaches to learner modeling. In R. Sottilare, A.
Graesser, X. Hu & H. Holden (Eds.), Design recommendations for adaptive intelligent tutoring systems
(Vol. I, Learner Modeling, pp. 165-182). Orlando, FL: US Army Research Laboratory.

89

Aleven, V., McLaren, B. M. & Sewall, J. (2009). Scaling up programming by demonstration for intelligent tutoring
systems development: An open-access web site for middle school mathematics learning. IEEE
Transactions on Learning Technologies, 2(2), 64-78

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The Cognitive Tutor Authoring Tools (CTAT):
Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley & T. W. Chan (Eds.), Proceedings of
the 8th International Conference on Intelligent Tutoring Systems (pp. 61-70). Berlin: Springer Verlag.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2009). A New Paradigm for Intelligent Tutoring
Systems: Example-Tracing Tutors. International Journal of Artificial Intelligence in Education, 19(2), 105-
154.

Aleven, V., McLaren, B. M., Sewall, J., van Velsen, M., Popescu, O., Demi, S. & Koedinger, K. R. (under review).
Toward tutoring at scale: Reflections on “A new paradigm for intelligent tutoring systems: Example-tracing
tutors.” Submitted to the International Journal of Artificial Intelligence in Education.

Aleven, V., Sewall, J., McLaren, B. M. & Koedinger, K. R. (2006). Rapid authoring of intelligent tutors for real-
world and experimental use. In Kinshuk, R. Koper, P. Kommers, P. Kirschner, D. G. Sampson & W.
Didderen (Eds.), Proceedings of the 6th IEEE international conference on advanced learning technologies
(ICALT 2006) (pp. 847-851). Los Alamitos, CA: IEEE Computer Society

Anderson, J. R. & Pelletier, R. (1991). A development system for model-tracing tutors. In Proceedings of the
International Conference of the Learning Sciences, 1-8. Evanston, IL.

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The
Journal of the Learning Sciences, 4(2), 167-207.

Baker, R. S. J. d., Corbett, A. T. & Koedinger, K. R. (2007). The difficulty factors approach to the design of lessons
in intelligent tutor curricula. International Journal of Artificial Intelligence and Education, 17(4), 341-369.

Blessing, S. B., Devasani, S. & Gilbert, S. (2011). Evaluation of webxpst: A browser-based authoring tool for
problem-specific tutors. In G. Biswas, S. Bull & J. Kay (Eds.), Proceedings of the Fifteenth International
Artificial Intelligence in Education Conference (pp. 423-425), Auckland, NZ. Berlin, Germany: Springer.

Blessing, S. B., Gilbert, S., Ourada, S. & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International
Journal for Artificial Intelligence in Education, 19, 189-210.

Clark, R. E. & Estes, F. (1996). Cognitive task analysis. International Journal of Educational Research. 25(5). 403-
417.

Clark, R. E., Feldon, D., van Merriénboer, J., Yates, K. & Early, S. (2007). Cognitive task analysis. In J. M. Spector,
M. D. Merrill, J. J. G. van Merriénboer & M. P. Driscoll (Eds.), Handbook of research on educational
communications and technology (3rd ed.). (pp. 577-93). Mahwah, NJ: Lawrence Erlbaum Associates.

Corbett, A. T. & Anderson, J. R. (1995). Knowledge decomposition and subgoal reification in the ACT
programming tutor. Artificial Intelligence and Education, 1995: The Proceedings of AI-ED 95.
Charlottesville, VA: AACE.

Corbett, A., Kauffman, L., MacLaren, B., Wagner, A. & Jones, E. (2010). A cognitive tutor for genetics problem
solving: Learning gains and student modeling. Journal of Educational Computing Research, 42(2), 219-
239.

Cypher, A. (Ed.). (1993). Watch what | do: Programming by demonstration. Cambridge, MA: MIT Press.

Devasani, S., Gilbert, S. & Blessing, S. B. (2012). Evaluation of two intelligent tutoring system authoring tool
paradigms: Graphical user interface-based and text-based. Proceedings of the 21st Conference on Behavior
Representation in Modeling and Simulation (pp. 54-61), Amelia Island, FL.

Devasani, S., Gilbert, S. B., Shetty, S., Ramaswamy, N. & Blessing, S. (2011). Authoring Intelligent Tutoring
Systems for 3D Game Environments. Presentation at the Authoring Simulation and Game-based Intelligent
Tutoring Workshop at the Fifteenth Conference on Artificial Intelligence in Education, Auckland.

Gilbert, S. B., Blessing, S. B. & Blankenship, E. (2009). The accidental tutor: Overlaying an intelligent tutor on an
existing user interface. In CHI ‘09 Extended Abstracts on Human Factors in Computing Systems.

Gilbert, S., Devasani, S., Kodavali, S. & Blessing, S. B. (2011). Easy authoring of intelligent tutoring systems for
synthetic environments. Proceedings of the 20th Conference on Behavior Representation in Modeling and
Simulation (pp. 192-199), Sundance, UT.

Green, T. R. G. & Petre, M. (1996). Usability analysis of visual programming environments: A ‘cognitive
dimensions’ framework. Journal of Visual Languages and Computing, 7, 131- 174.

Jarvis, M. P., Nuzzo-Jones, G. & Heffernan, N. T. (2004). Applying Machine Learning Techniques to Rule
Generation in Intelligent Tutoring Systems. In J. C. Lester (Ed.), Proceedings of the International
Conference on Intelligent Tutoring Systems (pp. 541-553). Heidelberg, Berlin: Springer.

90

Koedinger, K. R. & Nathan, M. J. (2004). The real story behind story problems: Effects of representations on
quantitative reasoning. The Journal of the Learning Sciences, 13(2), 129-164.

Koedinger, K. R., Aleven, V. & Heffernan, N. (2003). Toward a rapid development environment for cognitive
tutors. In U. Hoppe, F. Verdejo & J. Kay (Eds.), Proceedings of the International Conference on Artificial
Intelligence in Education (pp. 455-457). Amsterdam: 10S Press

Koedinger, K. R., Anderson, J. R., Hadley, W. H. & Mark, M. A. (1997). Intelligent tutoring goes to school in the
big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. & Hockenberry, M. (2004). Opening the door to non-
programmers: Authoring intelligent tutor behavior by demonstration. In J. C. Lester, R. M. Vicario & F.
Paraguacu (Eds.), Proceedings of seventh international conference on intelligent tutoring systems, ITS 2004
(pp. 162-174). Berlin: Springer.

Lau, T. A. & Weld, D. S. (1998). Programming by demonstration: An inductive learning formulation Proceedings of
the 4th international conference on Intelligent user interfaces (pp. 145-152). New York, NY: ACM Press

Li, N., Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2015). Integrating Representation Learning and Skill
Learning in a Human-Like Intelligent Agent. Artificial Intelligence, 219, 67-91.

Lieberman, H. (2001). Your wish is my command: Programming by example. San Francisco, CA: Morgan
Kaufmann.

Long, Y. & Aleven, V. (2013). Supporting students’ self-regulated learning with an open learner model in a linear
equation tutor. In H. C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.), Proceedings of the 16th
international conference on artificial intelligence in education (AIED 2013) (pp. 249-258). Berlin: Springer

Lovett, M. C. (1998). Cognitive task analysis in service of intelligent tutoring system design: a case study in
statistics. In B. P. Goettl, H. M. Halff, C. L. Redfield & V. Shute (Eds.) Intelligent Tutoring Systems,
Proceedings of the Fourth International Conference (pp. 234-243). Lecture Notes in Computer Science,
1452. Berlin: Springer-Verlag.

Lovett, M., Meyer, O. & Thille, C. (2008). JIME-The open learning initiative: Measuring the effectiveness of the
OLI statistics course in accelerating student learning. Journal of Interactive Media in Education, 2008(1).

Maass, J. K. & Blessing, S. B. (April, 2011). Xstat: An intelligent homework helper for students. Poster presented at
the 2011 Georgia Undergraduate Research in Psychology Conference, Kennesaw, GA.

MacLellan, C., Koedinger, R. K. & Matsuda, N. (2014). Authoring tutors with SimStudent: An evaluation of
efficiency and model quality. In S. Trausen-Matu & K. Boyer (Eds.), Proceedings of the International
Conference on Intelligent Tutoring Systems (pp. 551-560). Switzerland: Springer.

Martin, B. & Mitrovic, A. (2002). WETAS: a web-based authoring system for constraint-based ITS. In: P. de Bra, P.
Brusilovsky and R. Conejo (eds) Proc. 2™ Int. Conf on Adaptive Hypermedia and Adaptive Web-based
Systems AH 2002, Malaga, Spain, LCNS 2347, 543-546.

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2005). Applying Programming by Demonstration in an Intelligent
Authoring Tool for Cognitive Tutors AAAI Workshop on Human Comprehensible Machine Learning
(Technical Report WS-05-04) (pp. 1-8). Menlo Park, CA: AAAI association.

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (in press). Teaching the Teacher: Tutoring SimStudent leads to
more Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education.

Matsuda, N., Lee, A., Cohen, W. W. & Koedinger, K. R. (2009). A computational model of how learner errors arise
from weak prior knowledge. In N. Taatgen & H. van Rijn (Eds.), Proceedings of the Annual Conference of
the Cognitive Science Society (pp. 1288-1293). Austin, TX: Cognitive Science Society.

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2008). Why tutored problem solving may
be better than example study: Theoretical implications from a simulated-student study. In B. P. Woolf, E.
Aimeur, R. Nkambou & S. Lajoie (Eds.), Proceedings of the International Conference on Intelligent
Tutoring Systems (pp. 111-121). Heidelberg, Berlin: Springer.

McLaren, B. M., Adams, D., Durkin, K., Goguadze, G., Mayer, R. E., Rittle-Johnson, B., . .. Velsen, M. V. (2012).
To err is human, to explain and correct is divine: A study of interactive erroneous examples with middle
school math students. In A. Ravenscroft, S. Lindstaedt, C. Delgado Kloos & D. Hernandez-Leo (Eds.), 21st
century Learning for 21st Century Skills: 7th European Conference of Technology Enhanced Learning, EC-
TEL 2012 (pp. 222-235). Berlin, Heidelberg: Springer. doi:10.1007/978-3-642-33263-0_18

McLaren, B. M., DeLeeuw, K. E. & Mayer, R. E. (2011a). Polite web-based intelligent tutors: Can they improve
learning in classrooms? Computers & Education, 56(3), 574-584.

McLaren, B. M., DeLeeuw, K. E. & Mayer, R. E. (2011b). A politeness effect in learning with web-based intelligent
tutors. International Journal of Human Computer Studies, 69(1-2), 70-79. doi:10.1016/j.ijhcs.2010.09.001

91

Means, B. & Gott, S. (1988). Cognitive task analysis as a basis for tutor development: Articulating abstract
knowledge representations. In J. Pstotka, L.D. Massey & S.A. Mutter (Eds.), Intelligent tutoring systems:
Lessons learned (pp.35-57). Hillsdale, NJ: Lawrence Erlbaum Associates.

Mitrovic, A. (1998). Experiences in implementing constraint-based modelling in SQL-tutor. In Goettl, B.P., Halff,
H.M., Redfield, C.L. and Shute, V.J. (Eds.), Proceedings of Intelligent Tutoring Systems, 414-423.
Mitrovic, A. (2012). Fifteen years of constraint-based tutors: What we have achieved and where we are going. User

Modeling and User-Adapted Interaction, 22, 39-72.

Mitrovic, A. & Ohlsson, S. (1999). Evaluation of a constraint-based tutor for a database language, International
Journal of Artificial Intelligence in Education, 10, 238-256.

Mitrovic, A., Koedinger, K. R. & Martin, B. (2003). A Comparative analysis of cognitive tutoring and constraint-
based modeling. In: Brusilovsky, P., Corbett, A., and de Rosis, F. (Eds.) Proceedings of User Modelling,
313-322.

Mitrovic, A., Martin, B. & Suraweera, P. (2007). Intelligent tutors for all: Constraint-based modeling methodology,
systems and authoring. IEEE Intelligent Systems, 22, 38-45.

Mitrovic, A., Williamson, C., Bebbington, A., Mathews, M., Suraweera, P., Martin, B., Thomson, D. & Holland, J.
(2011). An Intelligent Tutoring System for Thermodynamics. EDUCON 2011, Amman, Jordan, 378-385.

Muggleton, S. & de Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of Logic
Programming, 19-20(Supplement 1), 629-679.

Nardi, B. A. (1993). A small matter of programming: Perspectives on end-user computing. Boston, MA: MIT press.

Newell, A. & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-Hall.

Ohlsson, S. (1994). Constraint-based student modelling, in Student modelling: The key to individualized knowledge-
based instruction, 167-189.

Ohlsson, S. (1996). Learning from performance errors. Psychological Review, 103, 241-262.

Ohlsson, S. & Mitrovic, A. (2007). Fidelity and efficiency of knowledge representations for intelligent tutoring
systems. Technology, Instruction, Cognition and Learning, 5, 101-132.

Olsen, J. K., Belenky, D. M., Aleven, V. & Rummel, N. (2014). Using an intelligent tutoring system to support
collaborative as well as individual learning. In S. Trausan-Matu, K. E. Boyer, M. Croshby & K. Panourgia
(Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, I1TS 2014 (pp.
134-143). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66

Olsen, J. K., Belenky, D. M., Aleven, V., Rummel, N., Sewall, J. & Ringenberg, M. (2014). Authoring tools for
collaborative intelligent tutoring system environments. In S. Trausan-Matu, K. E. Boyer, M. Croshy & K.
Panourgia (Eds.), Proceedings of the 12th International Conference on Intelligent Tutoring Systems, ITS
2014 (pp. 523-528). Berlin: Springer. doi:10.1007/978-3-319-07221-0_66

Ostrow, K. & Heffernan, N. T. (2014). Testing the multimedia principle in the real world: a comparison of video vs.
Text feedback in authentic middle school math assignments. In Proceedings of the 7th international
conference on educational data mining (pp. 296-299).

Rau, M. A., Aleven, V. & Rummel, N. (2015). Successful learning with multiple graphical representations and self-
explanation prompts. Journal of Educational Psychology, 107(1), 30-46. doi:10.1037/a0037211

Rau, M. A., Aleven, V., Rummel, N. & Pardos, Z. (2014). How should intelligent tutoring systems sequence
multiple graphical representations of fractions? A multi-methods study. International Journal of Artificial
Intelligence in Education, 24(2), 125-161.

Rau, M. A., Aleven, V., Rummel, N. & Rohrbach, S. (2013). Why interactive learning environments can have it all:
Resolving design conflicts between conflicting goals. In W. E. Mackay, S. Brewster & S. Bagdker (Eds.),
Proceedings of the ACM SIGCHI Conference on Human Factors in Computing Systems (CHI 2013) (pp.
109-118). ACM, New York.

Razzag, L. M. & Heffernan, N. T. (2009, July). To tutor or not to tutor: That is the question. In AIED (pp. 457-464).

Razzaq, L., Patvarczki, J., Almeida, S. F., Vartak, M., Feng, M., Heffernan, N. T. & Koedinger, K. R. (2009). The
assistment builder: Supporting the life cycle of tutoring system content creation. Learning Technologies,
IEEE Transactions on, 2(2), 157-166.

Reed, S. K. & Bolstad, C. A. (1991). Use of examples and procedures in problem solving. Journal of Experimental
Psychology: Learning, Memory, and Cognition, 17, 753-766.

Ritter, S. & Koedinger, K. R. (1996). An architecture for plug-in tutor agents. International Journal of Artificial
Intelligence in Education, 7, 315-347.

Roll, 1., Holmes, N. G., Day, J. & Bonn, D. (2012). Evaluating metacognitive scaffolding in guided invention
activities. Instructional Science, 40(4), 1-20. doi:10.1007/s11251-012-9208-7

92

Rubio, E. (2014) Defining a software genre: Timeline navigators. (Unpublished Master’s thesis). lowa State
University, Ames, IA.

Sottilare, R. and Gilbert, S. B. (2011). Considerations for adaptive tutoring within serious games: authoring
cognitive models and game interfaces. Presentation at the Authoring Simulation and Game-based
Intelligent Tutoring Workshop at the Fifteenth Conference on Artificial Intelligence in Education,
Auckland.

Stampfer, E. & Koedinger, K. R. (2013). When seeing isn’t believing: Influences of prior conceptions and
misconceptions. In M. Knauff, M. Pauen, N. Sebanz & I. Wachsmuth (Eds.), Proceedings of the 35th
Annual Conference of the Cognitive Science Society (pp. 916-919). Berlin, Heidelberg: Springer.
d0i:10.1007/978-3-642-39112-5_145

Suraweera, P., Mitrovic, A. & Martin, B. (2010). Widening the knowledge acquisition bottleneck for constraint-
based tutors. International Journal of Artificial Intelligence in Education, 20(2), 137-173.

Suraweera, P., Mitrovic, A., Martin, B., Holland, J., Milik, N., Zakharov, K. & McGuigan, N. (2009). Ontologies for
authoring instructional systems. D. Dicheva, R. Mizoguchi, J. Greer (eds.) Semantic Web Technologies for
e-Learning. 10S Press, (pp. 77-95).

VanLehn , K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education,
16(3), 227-265.

Waalkens, M., Aleven, V. & Taatgen, N. (2013). Does supporting multiple student strategies lead to greater learning
and motivation? Investigating a source of complexity in the architecture of intelligent tutoring systems.
Computers & Education, 60(1), 159-171.

Westerfield, G., Mitrovic, A. & Billinghurst, M. (2013). Intelligent augmented reality training for assembly tasks.
In: H. C. Lane, K. Yacef, J. Mostow, O. Pavlik (Eds.): Proceedings of the Sixteenth International
Conference of Artificial Intelligence in Education, LNAI 7926, pp. 542-551. Springer, Heidelberg.

Wylie, R., Sheng, M., Mitamura, T. & Koedinger, K. (2011). Effects of adaptive prompted self-explanation on
robust learning of second language grammar. In G. Biswas, S. Bull, J. Kay & A. Mitrovic (Eds.),
Proceedings of the 15th International Conference on Artificial Intelligence in Education, AIED 2011 (pp.
588-590). Springer Berlin Heidelberg. doi:10.1007/978-3-642-21869-9 110

93

94

CuapTER 7 Supporting the WISE Design Process:
Authoring Tools that Enable Insights into

Technology-Enhanced Learning

Camillia Matuk®, Marcia C. Linn? and Libby Gerard?
! New York University; ZUniversity of California, Berkeley

Introduction

Authoring environments not only provide tools to create supports for learning, they can also be
opportunities to better understand the role of technology in learning. The key to achieving their dual
purpose is to support users in reflective cycles of iterative, evidence-based refinement of learning
materials. Doing so can enable users to ask and answer their own questions; encourage them to be more
reflective of their instructional and design practices; and increase their awareness of the relationships
between technology, learning, and instruction. Ultimately, this leads to improved materials that enhance
learning.

This emphasis on supporting design is reflected in Murray’s (2003) goals for contemporary digital
authoring tools. These include lowering the cost of creating learning materials; involving users in the
design of materials; supporting the representation of domain and pedagogical knowledge; facilitating the
implementation of effective design principles; enabling rapid testing and refinement of new ideas; and
producing materials that are reusable by multiple authors. Together, these goals encapsulate a vision of
design that is more accessible, guided, and likely to flourish from the efforts of a community as opposed
to those of an individual.

Authoring tools that support design are especially important for inquiry learning environments, which
benefit from iterative refinement, customization, and a community of users. This chapter discusses four
principles by which the Web-based Inquiry Science Environment (WISE) guides users’ design processes.
These include (1) providing design tools that are accessible by users with a range of abilities; (2) enabling
users to build on the contributions of others; (3) making student data available as evidence to inform
iterative refinement; and (4) allowing ways for users to appropriate the system to advance new goals. We
end by discussing challenges and future directions for the design of similar authoring tools for inquiry-
learning environments. Through examples drawn from the experiences of our network of users, we
illustrate how WISE supports a process of design that also enables new understandings of technology-
enhanced learning.

Related Research

For some time now, there has been a trend in the field of educational technology design toward thinking
of teachers as more than just end-users, but rather as designers of curricula (e.g., Brown, 2009; Brown &
Edelson, 2003; Cviko, McKenney & Voogt, 2014; Edelson, 2002). Indeed, the increasing availability of
usable technologies means that authoring need no longer be a specialized task relegated only to
developers (Dabbagh, 2001), but also one in which researchers and teachers of varying abilities can
participate. Authoring moreover allows users to engage directly in design-based research (Murray 2003),
which allows them to pose and answer their own questions about technology-enhanced learning; reflect
upon their students’ and their own teaching and design practices; and directly change the materials of
their instruction.

95

The authoring of learning environments takes many shapes. It can be as minimal as duplicating existing
materials and making a few textual edits. It can extend to reordering activities, adding features, and
building curriculum and embedded technologies from scratch (Davis & Varma, 2008; Matuk, Linn &
Eylon, under review). Such modifications by users, regardless of their extent, help ensure the materials’
successful implementation and sustainability beyond the original designer’s involvement (McLaughlin,
1976).

Authoring tools for inquiry learning environments are especially crucial. Although the benefits of inquiry
learning are widely acknowledged (NRC, 1996, 2000), conducting inquiry in the classroom is challenging
and benefits from adequate support (Evans, 2003; Settlage, 2003). Whereas several authoring tools
feature all manner of advanced design capabilities, including the ability to create and customize
curriculum materials through remixing, adapting, and sharing with other users (Dabbagh, 2001, Murray,
2003), few of these environments explicitly support inquiry learning (Donnelly et al., 2014). Below, we
present an authoring environment that enables the principled design of science inquiry learning and
instruction.

The Web-based Inquiry Science Environment

WISE (wise.berkeley.edu) is a free, open-source curriculum platform. Integrated tools allow users to
author and customize units, manage student progress, and give feedback on students’ work. The 20 freely
available classroom-tested units—several of which are available in Spanish, Taiwanese, and Dutch, as
well as English—cover challenging topics in the middle and high school science standards. These units
have been refined through years of design-based research, guided by the Knowledge Integration
framework (KI, Linn & Eylon, 2011), a pattern of instruction based in cognitive theories of how students
learn. Units guided by KI engage students in a cycle of activities that includes eliciting their prior ideas,
adding new normative ideas, distinguishing among and organizing those ideas, and reflecting upon and
integrating them into a coherent explanation. WISE has a long history of improving students’ science
learning and an extensive user network of teachers and researchers (Linn & Eylon, 2011). As of Fall
2014, WISE had more than 10,000 registered teachers and 85,000 registered students worldwide (see
wise.berkeley.edu/webapp/ pages/statistics.html for live use statistics).

The units available on the WISE website have undergone cycles of review by experts in curriculum
development, subject matter, and education research (Linn, Clark & Slotta, 2009). Concurrently, the
design of the authoring tools has been iterated as we learn about users’ goals and needs. Our observations
of teachers implementing units in their classrooms, and our formal and informal conversations with
teachers and researchers provide insights into user’s authoring needs. Particularly as the usability of
technology continues to shift authoring away from the developer and into the hands of the end-user,
guestions arise regarding how authoring tools might add value by not only supporting users’ goals, but
also guiding them to follow best practices in design and instruction.

Our work continually aims to balance the pedagogical practices we wish to promote among our users,
with their actual observed practices. This can sometimes present tensions for designers, as teachers’
decisions are by necessity not always driven by their pedagogical ideals. Indeed, when pressed for time or
pressured to cover much content, teachers’ instructional strategies can tend to emphasize content delivery
rather than scaffold inquiry processes (Bell, 1998; Dabbagh, 2001; Murray, 1998); their decisions can
tend to be driven by practical constraints rather than grounded in evidence from students’ work
(Boschman et al., 2014); and their professional insights can tend to remain static and isolated, and fail to
benefit colleagues beyond their local circles.

96

http://wise.berkeley.edu/webapp/pages/statistics.html

At the same time, the system could evolve in beneficial ways if it could be constantly informed by and
updated according to teachers’ expertise.

We contend that authoring tools in support of users’ research and design processes add most widespread
value when their interaction is dialogic: That is, when use of the tools guides users’ pedagogically sound
actions, and when users’ expertise and insights can be harnessed to refine the tools and extend their
benefit to others. Our years of work from this perspective have resulted in the emergence and refinement
of four guiding principles underlying WISE’s authoring technologies:

(1) Provide design tools that are accessible by users with a range of abilities.

(2) Enable users to build on the contributions of others.

(3) Make student data available as evidence to inform iterative refinement.

(4) Allow ways for users to appropriate the system to advance new goals.

Discussion

Provide Design Tools that are Accessible to Users with a Range of Abilities

End-users have unique insights into the local needs of their classrooms and can thus design materials with
greater relevance to learners than can developers. But not all users have the time nor the expertise to
master complicated tools that might otherwise allow them to realize their ideas. Tools that lower the bar
for users of all ability levels can make authoring accessible to a wide audience (Murray, 2003).

Authoring Tools for Customization

WISE makes design accessible to a range of users by providing tools that facilitate the creation and
customization of materials without requiring programming skills. Units are organized as sequences of
steps contained within activities (Figure 1). In building a unit, authors may iterate between creating and
sequencing these nested containers in order to define the flow of tasks, and populating these with content.
Users define individual step types from a drop-down menu, which include an array of question and
response formats, such as multiple choice, open response, object sequences, drawings, concept diagrams,
annotated images, data tables, and graphs. Through a what you see is what you get (WYSIWYG)
interface, users can create and edit textual content, and embed rich multimedia from various sources,
including web-based applications such as simulations, video, images, animations, and interactive
multimedia. These customizations are displayed in real time within a preview mode, which allows users
to test the appearance and functionality of their work from the student’s point of view.

97

WISE = 4 W v Y BB PR

Authoring Tool Edtwo Open Creaw Copy Save Mamage Edit
\nstructions Home Project Project Project Project Art/Files Info

Project Title: What makes a good cancer medicine?: Ok e 1D: 12012 Simple Mode Taggle
Number Steps By: | Activity | Step Term: Edit Step Term (Plural): Steps Edit Logging Level: | High (all Steps) |

Select All select None [Add Activity £ | Add step L] Move t3 | Duplicate | | Delete % Tags (0 Import |0 Icons |0 Hide Steps
k. <

Project Sequence (Active Activities & Steps)

‘D Activity L1 What is Cancer?

7 Steps ‘
] 47 1.1: Meet the scientist! lcon: | Introductory Page * | Max Score: Edit
) = 1.2: Your ideas about cancer Icon: | Idea Basket | Max Score: 0 Show Previous Work Edit
(] 4 L.3: What is mitosis? lcon: | Introductory Page # | Max Score: Edit
() % 1.4: |Fast and slow dividers lcon: | Match & Sequence : | Max Score: 10 Show Previous Work Edit
[} = 1.5:Why do some cells divide fast and otl| Icon: | Reflection Note {pc : | Max Score: 10 Show Previous Work Edit
[¥s 1.6: A definition of cancer Icon: | survey 1 #| Max Score: 10 Show Previous Work Edit
() 4 L7: How fast do cancer cells divide? Icon: | Drawing +| Max Score: |10 Edit
[] Activity 2: The Phases of Cell Division 24 Steps
[4 2.1: Interphase: When cells don't divide Icon: | Introductery Page : | Max Score: Edit
(7] .4 2.2: | Observing cells through the microsce| Icon: [Annotaror :| Max Score Show Previous Work Edit
[.4 2.3: Putting the picture together lcon: | Drawing | Max Score: 10 Edit
] = 2.4: When cells divide lcon: | Reflection Note (pc # | Max Score: 10 Show Previous Work Edit
[[] = 2.5: Do you agree with your partner? Icon: | Reflection Note (pc = | Max Score: 10 Show Previous Work Edit
[| “s 2.6: | The phases of cell division: Scientists| |con: | Survey 1 :| Max Score Show Previous Work. Edit
Editor View: (-)Simple ()Advanced “Refresh As | Type Refresh Now || Edit Hints Save J} Save & Close i Claze. 3
Shuffle answers before next try CHALLENGE QUESTION
@shuffle choices
do NOT shuffle choices TN
Feedback Options
@has inline feedback
does NOT have inline feedback
. . Were you paying attention in the last step? See
Hide Question and Answers after answered correctly if you can answer this question:
Enter the number of answers the student is allowed to choose as correct. Enter '0' to What are the main events in METAPHASE?
allow the student to choose as many as they want. Y |

1 Select the best answer before going to the next

activity!

Edit prompt:

Edit~ Inset v View v Format~ Table v Tools v

{--}
K
>
‘
»
‘
I
Il
(1]
1]
1
‘
i
‘
lil
il

ANSWERS

) The cell's chromosomes line up along the middle of the cell,

() The cell's cytoplasm divides and organelles from the original cell are
distributed equally between each new cell.

Were you paying attention in the last step? See if you can answer this
n

questior) The cell's chromatin shortens and thickens. Centrioles at opposite

ends of the cell begin to extend spindle fibers toward the middle.

What aro the main ovonts in METAPHASE?

) The chromosomes separate and are pulled in opposite directions by
the spindle fibers.

Select the best answer before going to the next activity!

This is attempt #1

Figure 1. These screenshots from the WISE authoring interface show the sequence of steps and activities,
which can be created, copied, imported, and reordered (top); and the WYSIWY G editing interface that
supports text and layout edits, automated feedback, and embedding of rich multimedia.

Becoming familiar with the tools to make these and more complex customizations requires new users less
than 1 hour of training. The time to actually perform those customizations can vary greatly between both
novice and expert authors, but depends mainly on authors’ familiarity with the content, clarity of goals,
and commitment to a design strategy for achieving those goals. For example, minor edits to text,
embedded media, and page formatting, can take just a few minutes to perform and can even be done in
the midst of students’ work on the unit. More complex authoring tasks, however, such as designing
activity sequences, creating new content, and integrating scaffolding tools, require careful alignment of

98

designs to some pedagogical framework. In these cases, it is an author’s general experience having
authored curricula that determines the time costs rather than having authored with particular WISE tools.
Among the core WISE research and design team, these more elaborate designs go through cycles of
review, feedback, and iteration by curriculum designers, content experts, educators, and technologists
(Slotta & Linn, 2009). It may take just several hours to lay the foundation for a new curriculum unit, but it
may take weeks, months, and years to continue to refine it.

The extent to which teachers use these tools to customize depends on various factors. These include
practical considerations, as well as teachers’ attitudes toward technology, assumptions about learning, and
views on their roles as educators (Luehmann, 2002). Some teachers have independently learned to use the
authoring environment to modify the content of given units for their particular classroom needs. One
middle school teacher, for example, used the text editing tools to tailor the prompts in a grade 7 WISE
unit about cell division. Knowing the specific comprehension difficulties of her mainly English-language
learners, she elaborated on the instructions and incorporated hints, keywords, and sentence starters to
guide her students’ responses (Matuk, Linn & Eylon, 2015).

With the proper kind of support, these authoring tools allow teachers to effect powerful changes in their
instruction. During summer professional development workshops, for instance, teachers worked in groups
under the guidance of WISE researchers. Using the authoring tools they made customizations to units,
which subsequently led to improved student learning (Gerard, Spitulnik & Linn, 2010). In this case,
teachers benefited from having time to work with another teacher who taught the same unit during the
prior school year and examine their students’ work to inform customizations. Together, the teachers
shared their classroom experiences with one another and identified places in the unit where students had
difficulty. The teachers then examined their students’ work on an embedded assessment in one of these
challenging spots and students’ work on a pre/posttest. Based on their classroom experiences and analysis
of their students work, teacher negotiated changes for the unit. Importantly, researchers were present to
provide technology support and insights on best practices in inquiry learning design.

Authoring Tools for Research

The ease with which units can be created and modified affords the rapid testing of ideas, and thus, their
use as instruments for research. Researchers often use WISE’s more complicated authoring functions to
construct design experiments to investigate how students learn from technology-enhanced materials
(Murray, 2003). For example, users can incorporate input to the WISE interface from hardware such as
light, temperature, and motion probes. By checking boxes, users can specify navigation constraints
dependent on students’ responses. By selecting steps from a list, they can define nonlinear trajectories
through a unit. Within the authoring interfaces of certain items, users can also compose conditional
automated feedback directly beside students’ possible responses. For other items, users can specify
keywords that, if they were to appear in students’ open responses, would trigger certain kinds of feedback
to be delivered to students.

Using these capabilities, researchers have designed and implemented alternative versions of the same unit
to investigate the value of different instructional approaches. They have explored the impacts of different
kinds of automated feedback on how students revise their drawings (Rafferty, Gerard, McElhany & Linn,
2013), concept diagrams (Ryoo & Linn, 2014), graphs (Vitale, Lai & Linn, 2014), and open-ended
responses (Liu, et al., 2014). They have compared ways of integrating new collaborative technologies into
existing curriculum (Matuk & Linn, 2014), scaffolding students’ understanding of visualizations (Chang,
et al., 2008; Zhang & Linn, 2011), and supporting students’ interpretations of visual evidence (Matuk &
McElhaney, 2014).

99

The availability of several content-free scaffolding tools has allowed researchers to author units across
subject matters in order to investigate their own questions about learning. The Idea Manager, for instance,
a tool that helps students track and share ideas over the course of a unit, has been used to study the
development of students’ ideas about chemistry (McElhaney et al., 2013) and astronomy (Matuk & King
Chen, 2011); and understand the value of exchanging ideas when studying the life sciences (Matuk &
Linn, 2014; Wichmann et al., 2014). Likewise, the Image Annotator, a tool that allows students to label
static and animated visuals, has been used to scaffold students’ observations in chemistry, physics, and
cell biology (Matuk & McElhaney, 2014). In another example, the concept diagramming tool, MySystem,
has been used to study students’ understanding of energy in physics (Swanson, 2010) and biology (Ryoo
& Linn, 2010).

Thus, tools that facilitate creation and customization lower the bar for users of all abilities. They make it
easy for teachers to adapt materials to their particular needs, and they enable researchers to rapidly build
and test ideas in order to investigate questions about learning with technology-enhanced materials. In
these manners, authoring tools allow the educational environment to become a platform for research as
much as a platform for learning and instruction.

Enable Users to Build on the Contributions of Others

Another way that authoring is made more accessible is through the availability of existing resources. The
ability to make use of an array of existing, pre-constructed artifacts offloads much of the workload from
authoring, which allows teachers to focus on teaching and researchers to focus on research.

Indeed, while it is possible to author units from scratch, most users build upon existing, freely available
materials. Authors can search for and clone any publicly available classroom-tested unit, any of their own
privately owned units, and any unit directly shared with them by other users. They may then use these
materials as templates for their own work, importing whole activities or individual steps, along with the
existing resources contained within them. These resources include embedded multimedia, page layouts,
investigation narratives, and assessment items. Tools for inserting, editing, and reordering allow users to
easily remix various given materials for new purposes.

The ability to thus copy and modify units takes advantage of a community’s contributions to make design
more efficient (Recker et al., 2007). One middle school unit on global climate change, for example, has
undergone multiple iterations by different generations of WISE researchers. As new users copied the unit,
they made modifications to the embedded models and scaffolds: They added details to the content and
even re-crafted the narrative to present the ideas from different angles. One version of the unit, for
example, focuses on how the transfer of energy affects the Earth’s temperature, while another examines
the chemical reactions behind the greenhouse effect, and a third version introduces the notion of feedback
loops as an explanation for climate change. It is also possible to merge elements from different units. This
allows authors to quickly create entirely new activity sequences by combining existing tested material,
and then modify these for coherence.

This ability to build on existing materials has moreover permitted systematic refinements to units on
subsequent classroom implementations. Svihla and Linn (2012), for instance, made multiple iterations on
their version of the Global Climate Change unit. Small adjustments made with each classroom
implementation helped to clarify the visualizations, distinguish between concepts, and add structure to
students’ experimentation with a NetLogo simulation. Ultimately, their iterations produced a version of
the unit that resulted in higher learning gains.

The ability to remix existing resources by copying and modifying has also allowed researchers new to
WISE to quickly design and implement their own research projects. In a period of just several weeks, one

100

visiting researcher appropriated a middle school unit on photosynthesis as the context for a study on
collaborative learning. Maintaining the unit’s original simulations, she crafted a new inquiry narrative,
integrated a collaborative tool to scaffold students’ exchanging ideas with their peers, and analyzed
students’ learning based on existing assessment items (Wichmann, et al., 2014).

A strength of WISE is that it allows users to draw from the vast resources available online to compose
coherent and personally relevant investigations (Linn, 2000; Linn & Hsi, 2000). By enabling users to
draw on a user community resource of shared materials, WISE’s authoring environment aids the
refinement of existing designs, encourages the initiation of new research, and increases the variety of
existing materials available for others’ use.

Make Student Data Available as Evidence to Inform Iterative Refinement

Making student work accessible means it can be used as evidence for identifying refinements and
customizations. Indeed, research finds that curriculum customizations informed by students’ work result
in greater learning gains than typical refinements that rely on teacher insights (Ruiz-Primo & Furtak,
2007). By making student evidence accessible in many formats and from various outlets, WISE enables
researchers and teachers to readily use it to guide their revisions or customizations.

For example, most teachers and researchers make use of the grading interface’s basic facilities for
displaying class progress through a unit. These simple bar graphs show the percentage of students who
have completed individual steps in the unit, as well as the percentage of the unit completed by individual
students. With this information, users can make general pacing decisions that include adjusting allocated
class time on subsequent implementations. Users may also obtain a shapshot view of students’ ideas by
browsing submitted responses, filtering these along different dimensions (class period, step in the unit),
and viewing them by individual student or by step in the unit. Most teachers use the “grade by step”
feature to see a range of responses to the same question at one time and use this information to customize
their guidance, class instruction, and the unit accordingly. More experienced users may sort these
responses according to various criteria, such as teacher-assigned or computer-automated score, whether
the teacher had flagged or commented upon the response during grading, the number of revisions students
made, and so forth. They may also view a table of the numbers of students currently working on any
given step and the length of time spent there. Such information has been especially useful to those with
previous experience implementing a given unit. By observing when critical masses of students either
struggle or progress without the benefit of a challenge, teachers can identify where in the unit to adjust
their face-to-face guidance, as well as how to modify the unit’s embedded scaffolds. Each of the functions
above allows users to more closely monitor students’ progress and thinking at both the individual and
group levels, thus informing appropriate modifications to the design of the materials. The My Notes tool
available in the grading interface furthermore permits users to document private reflections that remain
associated with the unit and useful as reference during subsequent implementations.

Researchers can conduct detailed analyses of students’ interactions within the unit by exporting logged
data in the form of a spreadsheet. McElhaney and Linn (2011) analyzed logs of students’ interactions with
a simulation of a car collision in a high school physics unit. By examining the number of students’ trials,
what variables they chose, and how they varied them, the researchers identified categories of students’
approaches to experimentation and the necessary conditions for understanding its nature.

Similarly, Matuk and Linn (2014) used logs of students’ uses of the Idea Manger to identify patterns in

how middle school students shared ideas during a unit on cell division and the effects of these behaviors
on their subsequent explanations of cancer treatment. Given ways to inspect and interpret students’

101

interactions, users can ensure their design refinements are grounded in evidence from students’ work, and
thus, avoid making unfounded design decisions.

Allow Users to Appropriate the System to Advance New Goals

Above, we discussed how WISE’s authoring tools allow units to be adapted to individuals® local needs.
However, there are also tools that allow users to tailor the platform itself for broader audiences and goals.
For example, international researchers have employed WISE’s translation tools to adapt versions of units
from WISE’s public library in Spanish, Taiwanese, and Dutch. These translated units have been featured
in teacher professional development workshops and used by students and teachers in Europe, Asia, and
South America (e.g., Rizzi et al., 2014). They have also served as platforms for users at other academic
institutes to pursue research programs of their own (e.g., Raes, Schellens & de Wever, 2013).

New technologies can also be tested within WISE, given the ability to integrate third-party technologies.
These can include virtual models from Molecular Workbench (Xie et al., 2011) and NetLogo (Wilensky,
1999), which are themselves free, open-source, and customizable. Users can also embed technologies of
their own within WISE’s existing step types.

This is how the Image Annotator was developed: as a basic working version of a tool—programmed in
Actionscript—that allowed students to directly label existing static and animated graphics. Findings from
subsequent classroom pilot tests (Matuk & Linn, 2013, Matuk & McElhaney, 2013) prompted users to
request further features, which led WISE developers to create a dedicated Annotator step based on the
initial prototype. The latest version features authorable elements, including user- rather than developer-
defined images and label colors, prompts for students to elaborate written explanations of their labels,
constraints on the number of labels required, and automated scoring and feedback dependent on students’
responses. Thus, the result of WISE allowing the embedding of user-contributed technologies and ways to
easily test them in classrooms led to the development of a new authorable tool usable by a wide audience
of users both to support and research student learning.

WISE’s open-source license has attracted an even broader base of users, who by their collective efforts,
improve and enrich the system for others. Users have set up unique instances of WISE on their own
servers and are tailoring it for new purposes. At Northwestern University, for example, the Center for
Connected Learning (CCL) and Computer-Based Modeling, led by Uri Wilensky, has chosen WISE as a
platform for delivering a curriculum of NetLogo/HTML5 simulations to teach complex systems. Their
choice was based in their survey of contemporary learning management systems, which found WISE to
be the most fully featured and capable as a platform to support the delivery and data-logging of their
technologies (Wilensky, personal communication). Another research group led by Douglas Clark at
Vanderbilt University has built a novel curriculum-integrated game engine within WISE called SURGE
(www.surgeuniverse.com) and uses it to investigate how games can teach formal concepts of Newtonian
mechanics (Clark et al., 2011). Meanwhile, Jennifer Chiu at the University of Virginia has re-skinned the
WISE platform for a curriculum on engineering design (Chiu & Linn, 2011).

These examples illustrate the value of maintaining WISE on an open-source license. In doing so,
improvements to the system evolve from the expert contributions of a distributed community of users
(Kogut & Metiu, 2001), as uncoordinated developers can propose and select changes that optimize the
system over time (Axelrod & Cohen, 2000).

102

Recommendations and Future Research

This chapter discussed four principles behind the design of WISE’s authoring environment that enable
users to engage in design-related activities for teaching and research. We specifically described how tools
that enable efficient creation and customization can help lower the bar for design by users of all abilities,
and empower them to ask and answer their own questions about technology, learning, and instruction. We
described how the ability to draw upon and remix shared, pre-constructed elements encourages refined
curriculum designs and supports systematic design-based research. We discussed how making student
data available for users to inspect and query can inform design revisions, as well as make visible new
insights into student learning. Finally, we described how the open sourcing of WISE has encouraged other
researchers to use it as a platform for new research programs. Ultimately, users’ contributions enhance the
usefulness of the system for others.

The examples from WISE illustrated how features of authoring environments can support efficient testing
and iteration of new learning tools, materials, and ideas. In doing so, users can be free to ask and answer
their own questions, and to make direct modifications based on their observations—behaviors that
encourage reflective educational practice, and contribute to research insights. Together, these outcomes
can lead to powerful impacts on students’ learning.

Below, we highlight three remaining questions derived from this work and discuss opportunities for
future development.

How Do We Design Tools that Guide Pedagogically Sound Design?

While contemporary authoring environments permit considerably more freedom to design outside set
patterns and structures than did the earlier computer-based instruction systems (Dabbagh, 2001), they also
permit designs that veer from tested pedagogical approaches. Indeed, a number of commercially available
authoring environments support the creation of visually appealing materials. However, when these
environments are not founded on pedagogically oriented design principles, they invite ineptly made, text-
heavy drill-and-practice tasks and few inquiry-oriented activities (Bell, 1998; Dabbagh, 2001; Murray,
1998). This is especially true when teachers feel pressured to cover large amounts of content. A challenge
for developers of authoring environments is thus to balance the tension between allowing users the
freedom to design, while also providing the guidance needed to produce the most effective designs.

Our experiences suggest the most effective guidance to be in face-to-face support, whether this occurs in
informal interactions among fellow teachers and researchers, or organized professional development.
However, features within the authoring environment itself add value by offering timely, in-the-moment
guidance during users’ independent work. In WISE, guidance is implicit in the pre-constructed resources
available to authors, which reflect the underlying Knowledge Integration pedagogy. Existing classroom-
tested units exemplify successful instructional patterns (e.g., predict-observe-explain, response-feedback-
revision, faded scaffolds); and when cloned, these serve as templates upon which new authors can build.
Integrated tools, such as the Idea Manager, are explicit in breaking down the process of eliciting,
organizing, distinguishing, and reflecting upon ideas; and when integrated into a unit, they scaffold
students through these steps. Contrary to the media primitives (e.g., buttons, menus, icons) that
characterize other authoring environments (see Mulholland et al., 2011), these pedagogical primitives
make transparent an underlying pedagogy with assumptions about how students learn and what makes
effective instruction (Murray, 2003).

But how can we ensure that users are actually building upon successful instructional patterns and
avoiding the lethal mutations that occur when customizations detract from the goals of the original design

103

(Haertel, cited in Brown and Campione, 1996)? The solution may be to explore ways to integrate
guidance on effective pedagogical and instructional approaches into various stages of the design process
(Dabbagh, Bannan-Ritland & Silc, 2000).

To aid in the planning stages, WISE might encourage users to thoughtfully approach their instruction by
providing tools to conceptually map the flow of activities and associated resources (cf. learning activity
management system (LAMS), CADMOS, Learning Designer, etc., cited in Conole, 2013). Learning tools
and activity templates might be explicitly connected to outcomes, such that users might select patterns
according to the learning goals they wish to target (e.g., incorporate the Image Annotator tool to develop
students’ observational skills; use a predict-observe-explain task to structure students’ approaches to
experimentation). “Running” the design would result in an evaluation of its predicted success and offer
recommendations for activities, tools, and resources to optimize the design for given constraints (e.g.,
available class time, percentage of English language learners, etc.) and better align it with the goals of
inquiry.

While authoring, shared artifacts might contain embedded guidance in the form of annotations. These
could be contributed by designers, education researchers, and experienced educators; and would offer
authors insights into design rationales and best practices for their use (cf. educative curriculum materials,
Davis & Krajcik, 2005; Davis & Varma, 2008).

Finally, ready access to a database of instructional design principles would allow users guidance on-
demand (e.g., Kali, 2006). Integrating these or similar solutions into the authoring process may help
balance users’ freedom to design with guidance for making pedagogically-sound design decisions.

How Can We Create Authoring Communities that Also Enable the System to Evolve?

As discussed, WISE authors benefit greatly from the ability to build upon others’ contributions. Although
WISE maintains a public database of classroom-tested units, there is currently no way for users to make
their own creations publicly accessible except by directly sharing individual units with known users.
Supporting an open marketplace of artifacts has the potential to allow individuals to build on one
another’s past successes on a large scale (see Morris & Heibert, 2011; Recker et al. 2007). However,
unsupervised exchange also risks introducing contributions that are not aligned with practices known to
be successful.

Whether and how to curate users’ contributions is both a democratic issue, as well as a logistical one.
Allowing users to freely exchange artifacts can foster the social interactions conducive to learning (Lave
& Wenger, 1991; Lerner, Levy & Wilensky, 2010; Vygotsky, 1978; Wenger, 1998), and enrich the
variety of contributions upon which others might draw. At the same time, an open marketplace of artifacts
might decrease its perceived authority, as it would no longer be a resource of tested, theory-based
materials. Yet, curation of such a repository would be costly to maintain. It would require the long-term
commitment of a central individual or group of curators, as well as an effective system for passing down
knowledge of the system to subsequent members.

One compromise is for a consortium of curators to maintain a subset of tested materials separate from a
library for open exchange (cf. Lerner, Levy & Wilensky, 2010). This would offer users both the value of a
trustworthy resource of materials alongside the value of social interactions and richness of community
contributed artifacts. The impact of each for supporting high quality authoring needs to be explored.

104

How Can We Tap into the Vast Amounts of Logged Data to Support Authoring and
Encourage Looking at Students’ Ideas?

Logged data can be valuable for informing authoring decisions. WISE can track fine-grained data on
students’ interactions in WISE, from their responses and revisions within units, to the grades and
feedback received across units and years. Some of this information is accessible through the teacher tools,
which teachers use to inform their current and future instruction (e.g., when to give feedback on particular
items, and to whom). Similarly, the authoring system might channel automated scores and other logged
data to inform specific design decisions. For instance, information documented on past students’
performance on particular items might inform authors of areas requiring revision. Archives of students’
typical ideas on certain topics, and even records of the average time spent completing particular activities,
might help authors see where more or less emphasis would benefit students’ understanding.

These data, along with the annotations and templates contributed by other users, might fuel a
recommender system to guide authors in following sound instructional design principles and tailoring
their designs toward particular needs and goals (Dabbagh, 2000). A further question then becomes how to
design a dashboard that displays these data in ways that make them accessible. What data are most
appropriate and how are they best visualized to guide authors’ design tasks?

In sum, supporting educators and researchers in designing learning environments, especially inquiry-
based ones, can encourage more reflective practice, and ensure the long-term sustainability of materials.
This goal is met when authoring tools follow principles that are sensitive to the design issues faced by
researchers and educators.

Design Implications for GIFT

WISE shares many features in line with the design goals of the Generalized Intelligent Framework for
Tutoring’s (GIFT) authoring construct. Among others, these include tools that decrease the level of effort
and skill necessary to author; allow integration of external media; facilitate rapid prototyping and testing;
enable reuse and adaptation of materials; and rely on an open-source model of development of
maintenance.

Two characteristics of WISE’s efforts might inform the design of GIFT authoring tools. One is that WISE
devotes many resources to creating and making available ready-to-use curriculum materials. Because the
teachers that WISE targets have little time to devote to creating their own curriculum materials, let alone
to learning to use authoring tools, the provision of existing materials encourages and sustains their
engagement, and guides their practice. Units that address specific topics in middle and high school
science curricula draw teachers to use WISE, and provide classroom-tested seed material upon which they
can build when authoring their own customizations (Matuk, Linn & Eylon, 2015).

In seeking similar resources, users self-select as members of a community with specific shared goals. This
allows WISE to build targeted support. Regularly scheduled gatherings bring WISE users together around
mutual questions and challenges. These allow researchers and teachers to exchange insights about
teaching, learning, and technology, and so better understand and appreciate one another’s complementary
roles.

This is related to a second characteristic of WISE, which is that through the concurrent nurturing of a
community of users, teachers are both mentored in their use of the tools, as well as given voice to the
shape those tools. In-class assistance and online support from WISE researchers, as well as regular
organized professional development, serve to orient teachers who are new to WISE. They ensure smooth

105

and positive curriculum implementation experiences with the expectation that this initial guidance will
build teachers’ confidence to author their own customizations for subsequent implementations.

Teacher-researcher partnerships are moreover opportunities for teachers to contribute to designing and
refining the tools of their own practice. Over the years, WISE has developed methods for eliciting
teachers’ insights, and a commitment to incorporating these into new iterations of its technologies (Matuk
et al., 2015). An approach that thus privileges the voice of a user community ensures that the authoring
environment is not prescriptive of researchers’ theoretical ideals. Instead, these ideals continually evolve
with practitioners’ needs and goals, which, in turn, shape and drive the design of the tools.

In conclusion, WISE has found that its success lies beyond merely providing a comprehensive set of tools
to meet the anticipated demands of its users. It also relies upon providing multiple channels of support
and communication among its researchers and teachers. These ensure that the tools remain responsive to
users’ changing needs and are also used to their greatest value.

References

Axelrod, R. and Cohen, M. (2000), Harnessing Complexity: Organizational Implications of a Scientific Frontier,
New York, Free Press.

Boschman, F., McKenney, S. & Voogt, J. (2014). Understanding decision making in teachers’ curriculum design
approaches. Educational Technology Research and Development 62(4), 393-416.

Brown, A. L. & Campioneg, J. C. (1996). Psychological theory and the design of innovative learning environments:
On procedures, principles, and systems. In R. Glaser (Ed.), Innovations in learning: New environments for
education (pp. 289-325). Mahwah, NJ: Erlbaum.

Brown, M. & Edelson, D. (2003). Teacher as design. (Design brief). LeTUS, Evanston, IL.

Chiu, J. L. & Linn, M. C. (2011). Knowledge integration and WISE engineering. Journal of Pre-College
Engineering Education Research (J-PEER), 1(1), 2.

Clark, D. B., Nelson, B., Chang, H., D’Angelo, C. M., Slack, K. & Martinez-Garza, M., (2011). Exploring
Newtonian mechanics in a conceptually-integrated digital game: Comparison of learning and affective
outcomes for students in Taiwan and the United States. Computers and Education, 57(3), 2178-2195.

Conole, G. (2013). Tools and resources to Guide Practice. In H. Beetham & R. Sharpe (Eds.), Rethinking Pedagogy
for a Digital Age: Designing for 21st Century Learning (pp. 78-101). New York: Routledge.

Cviko, A., McKenney, S. & Voogt, J. (2014). Teacher roles in designing technology-rich learning activities for early
literacy: A cross-case analysis. Computers & Education, 72, 68-79

Dabbagh, N. H., Bannan-Ritland, B. & Silc, K. (2000). Pedagogy and Web-based course authoring tools: Issues and
implications. Web-based training, 343-354.

Davis, E. A. & Krajcik, J. S. (2005). Designing educative curriculum materials to promote teacher learning.
Educational researcher, 34(3), 3-14.

Davis, E. A. & Varma, K. (2008). Supporting teachers in productive adaptation. In Y. Kali, M. C., Linn & J.
Roseman (Eds.), Designing coherent science education: Implications for curriculum, instruction, and
policy (pp. 94-122). New York, NY: Teachers College Press.

Donnelly, D. F., Linn, M. C. & Ludvigsen, S. (2014). Impacts and Characteristics of Computer-Based Science
Inquiry Learning Environments for Precollege Students. Review of Educational Research. Retrieved from
http://rer.sagepub.com/cgi/doi/10.3102/0034654314546954

Evans, C. (2003, January). Challenges to successful science inquiry: Finding unifying themes in the multivariate
nature of inquiry models. Paper presented at the annual meeting of the National Association for Research in
Science Teaching, Philadelphia.

Gerard, L. F., Spitulnik, M. & Linn, M. C. (2010). Teacher use of evidence to customize inquiry science instruction.
Journal of Research in Science Teaching, 47(9), 1037-1063.

Kali, Y. (2006). Collaborative knowledge building using the Design Principles Database. International Journal of
Computer-Supported Collaborative Learning, 1(2), 187-201.

106

Lerner, R., Levy, S.T. & Wilensky, U. (2010, August 10-14). Encouraging Collaborative Constructionism:
Principles Behind the Modeling Commons. In J. Clayson & I. Kalas (Eds.), Proceedings of the
Constructionism 2010 Conference. Paris, France.

Luehmann, A. L. (2002). Understanding the appraisal and customization process of secondary science teachers.
Paper presented at the annual meeting of the American Educational Research Association: New Orleans,
LA.

Linn, M. C. (2000). Designing the knowledge integration environment. International Journal of Science Education,
22(8), 781-796.

Linn, M. C., Clark, D. and Slotta, J. D. (2003), WISE design for knowledge integration. Sci. Ed., 87: 517-538. doi:
10.1002/sce.10086

Linn, M. C. & Eylon, B. S. (2011). Science learning and instruction: Taking advantage of technology to promote
knowledge integration. Routledge.

Linn, M. C. & Hsi, S. (2000). Computers, teachers, peers: Science learning partners. Routledge.

Liu, O. L., Brew, C., Blackmore, J., Gerard, L., Madhok, J. & Linn, M. C. (2014). Automated Scoring of
Constructed-Response Science Items: Prospects and Obstacles. Educational Measurement: Issues and
Practice, 33(2), 19-28.

Matuk, C. F. & King Chen, J. (2011). The WISE Idea Manager: A Tool to Scaffold the Collaborative Construction
of Evidence-Based Explanations from Dynamic Scientific Visualizations. In, Proceedings of the 9th
International Conference on Computer Supported Collaborative Learning CSCL2011: Connecting
computer supported collaborative learning to policy and practice, July 4-8, 2011. The University of Hong
Kong, Hong Kong, China.

Matuk, C. F. & Linn, M. C. (2013, April 27 - May 1). Technology Integration to Scaffold and Assess Students Use
of Visual Evidence In Science Inquiry. Paper presented at the American Educational Research Association
Meeting (AERA2013): Education and Poverty: Theory, Research, Policy and Praxis, San Francisco, CA,
USA.

Matuk, C. & Linn, M. C. (2014). Exploring a digital tool for exchanging ideas during science inquiry. In ICLS '14:
Proceedings of the 11th International Conference for the Learning Sciences, Boulder: International Society
of the Learning Sciences.

Matuk, C., Gerard, L., Lim-Breitbart, J. & Linn, M. C. (2015, April 16-20). Gathering Design Requirements During
Participatory Design: Strategies for Teachers Designing Teacher Tools. Paper presented at the American
Educational Research Association Meeting, Chicago, IL, USA.

Matuk, C., Linn, M. C. & Eylon, B.-S. (2015). Technology to support teachers using evidence from student work to
customize technology-enhanced inquiry units. Instructional Science, 43(2), 229-257. DOI:
10.1007/s11251-014-9338-1

Matuk, C. & McElhaney, K. (2014, April 3-7). Investigating a Digital Annotation Tool for Distinguishing Visual
Evidence in Science Inquiry. Paper presented at the American Educational Research Association Meeting,
Philadelphia, PA, USA.

McLaughlin, M. W. (1976). Implementation as mutual adaptation: Change in classroom organization. Teachers
College Record, 77: 339-351.

Morris, A. K. & Hiebert, J. (2011). Creating Shared Instructional Products An Alternative Approach to Improving
Teaching. Educational Researcher, 40(1), 5-14.

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of
the art. In Authoring tools for advanced technology learning environments (pp. 491-544). Springer
Netherlands.

Murray, T. (1998). Authoring knowledge-based tutors: Tools for content, instructional strategy, student model, and
interface design. The Journal of the Learning Sciences, 7(1), 5-64.

National Research Council. (1996). National science education standards. Washington, DC: National Academies
Press.

National Research Council. (2000). Inquiry and the national science education standards: A guide for teaching and
learning. Washington, DC: National Academies Press.

Kogut, B. & Metiu, A. (2001). Open-source software development and distributed innovation. Oxford Review of
Economic Policy, 17(2), 248-264.

Raes, A., Schellens, T. & De Wever, B. (2013). Web-based Collaborative Inquiry to Bridge Gaps in Secondary
Science Education. Journal of the Learning Sciences, 23(3), 316-347.

Rafferty, A. N., Gerard, L., McElhaney, K., Linn, M. C. (2013). Automating Guidance for Students’ Chemistry
Drawings. Proceedings of Formative Feedback in Interactive Learning Environments (AIED Workshop).

107

Rizzi, Iribarren, C., Furman, M; Podesta, M.E & Luzuriaga, M. (2014, November 12-14) Disefio e implementacion
de la plataforma virtual de aprendizaje WISE en el aprendizaje de las Ciencias Naturales. Congreso
Iberoamericano de Ciencia, Tecnologia, Innovacion Y Educacion, Buenos Aires, Argentina.

Ruiz-Primo, M. A. & Furtak, E. M. (2007). Exploring teachers’ informal formative assessment practices and
students” understanding in the context of scientific inquiry. Journal of research in science teaching, 44(1),
57-84.

Ryoo, K. K. & Linn, M. C. (2010, June). Student progress in understanding energy concepts in photosynthesis using
interactive visualizations. In Proceedings of the 9th International Conference of the Learning Sciences-
Volume 2 (pp. 480-481). International Society of the Learning Sciences.

Ryoo, K. & Linn, M. C. (2014). Designing guidance for interpreting dynamic visualizations: Generating versus
reading explanations. Journal of Research in Science Teaching, 51(2), 147-174.

Settlage, J. (2003, January). Inquiry’s allure and illusion: Why it remains just beyond our reach. Paper presented at
the annual meeting of the National Association for Research in Science Teaching, Philadelphia.

Slotta, J. D. & Linn, M. C. (2009). WISE science: Web-based inquiry in the classroom. Teachers College Press.

Svihla, V. & Linn, M. C. (2012). A design-based approach to fostering understanding of global climate change.
International Journal of Science Education, 34(5), 651-676.

Swanson, H. (2010, June). Eliciting energy ideas in thermodynamics. In Proceedings of the 9th International
Conference of the Learning Sciences-Volume 2 (pp. 254-255). International Society of the Learning
Sciences.

Vitale, J., Lai, K. & Linn, M. C. (2014). Dynamic Visualization of Motion for Student-Generated Graphs. In
ICLS’14: Proceedings of the 11th International Conference for the Learning Sciences, Boulder:
International Society of the Learning Sciences.

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Cambridge, MA:
Harvard University Press.

Wichmann, A., Matuk, C., Sato, E., Gerard, L., Madhok, J. & Linn, M. C. (2014, August 18-20). Critiquing Peer-
Generated Ideas during Inquiry Learning. The Biennial Meeting of the EARLI SIG20 Computer Supported
Inquiry Learning, Malmd, Sweden.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and Computer-
Based Modeling, Northwestern University, Evanston, IL.

Xie, C., Tinker, R., Tinker, B., Pallant, A., Damelin, D. & Berenfeld, B. (2011). Computational experiments for
science education. Science, 332(6037), 1516-1517.

Zhang, Z. H. & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations?.
Journal of research in science teaching,48(10), 1177-1198.

108

http://ccl.northwestern.edu/netlogo/

cuarter 8 Authoring Tools for Il-defined Domains
in Intelligent Tutoring Systems: Flexibility and
Stealth Assessment

Matthew E. Jacovina, Erica L. Snow, Jianmin Dai, and Danielle S. McNamara
Arizona State University

Introduction

Intelligent tutoring systems (ITSs) provide customized instruction to students by modeling what students
need to know and what they seem to know, and by providing adaptive feedback and problem sets based
on performance within the system (e.g., Beal, Arroyo, Cohen & Woolf, 2010; Graesser et al., 2004).
Building a successful ITS requires a great deal of time and expertise, which has inspired researchers to
develop authoring tools to aid in their development (Ainsworth & Fleming, 2006; Blessing, 1997,
Marchiori et al., 2012). Authoring tools have empowered instructors, researchers, and designers to create
additional content and modify the ways in which a system responds to different performance and
behaviors. One key goal of authoring tools is to facilitate these design objectives. Although authoring
tools are developed for all stages of ITS development, we focus on tools (and the techniques that enable
such tools) that are designed for researchers and instructors who, ultimately, are the ones who use the
system. Ideally, for example, domain experts should be able to successfully modify a system for their
particular domain even if they lack training as a computer programmer (Murray, 2003).

Notably, not all domains impose the same challenges to the creation and implementation of ITSs and their
authoring tools. Developing a system to provide instruction on algebra is quite different from a system to
teach aesthetic design. One common distinction made by developers of educational technologies is
between well-defined and ill-defined learning problems and domains (Le, Loll & Pinkwart, 2013; Lynch,
Ashley, Pinkwart & Aleven, 2009). Generally, problems in more well-defined domains have a limited
number of solutions, and importantly, those solutions can be objectively predefined (e.g., 2x2=4). By
contrast, problems in ill-defined domains often have multiple solutions and the accuracy or quality of
those solutions can be subjective and on a continuous scale (e.g., the quality of an essay). As such,
building an expert model or tracing students’ progress through a series of problems is different for well-
defined and ill-defined domains. In this chapter, we particularly focus on the needs of researchers and
teachers in the ill-defined domains of reading comprehension and writing, and how those needs can begin
to be addressed by authoring tools and data collection techniques.

The observations and recommendations in this chapter are based on two systems developed in our lab: the
Interactive Strategy Training for Active Reading and Thinking-2 (iISTART-2) and Writing Pal (W-Pal).
Through our discussion, we aim to extract key lessons we have garnered during our development process
and use those lessons learned to provide suggestions for Generalized Intelligent Framework for Tutoring
(GIFT) and other ITSs. Specifically, we first highlight the need for flexibility of content within our
systems. Researchers require the ability to edit system features to test their effectiveness, and teachers
need to add and edit content to better align with their courses. The system features that are made available
to researchers and teachers should be selected to support these particular needs. Next, we highlight the
potential benefits of collecting and analyzing behavioral data beyond what is required for traditional
assessments. By conducting such analyses, researchers can learn about the processes underlying students’
choices and performance. Importantly, these analyses are intended to eventually feed back into system
flexibility, affording more appropriate and timely feedback for a broader range of content. Although our

109

recommendations are not limited to systems for ill-defined domains, they have emerged as particularly
salient topics in our own work.

Related Research

In this section, we first provide a brief overview of each of our systems. We then discuss research related
to scoring student responses using natural language processing (NLP) techniques and stealth assessments.
Ultimately, these are the approaches we suggest here as having some potential to enhance flexibility and
efficacy in tutoring systems, particularly in the context of authoring tools.

ISTART-2 and Writing Pal

The iISTART-2 system is a game-based tutoring system designed to improve high school students’
reading comprehension by providing self-explanation and comprehension strategy instruction (Jackson &
McNamara, 2013; McNamara, Levinstein & Boonthum, 2004; Snow, Allen, Jacovina & McNamara,
2015). Students using iISTART-2 complete a training phase before moving on to the practice phase. The
training phase consists of a series of lesson videos that cover five self-explanation strategies and provide
examples of their use. These lessons provide students with instruction on how to paraphrase texts in their
own words, monitor their understanding of text information, predict what topics and information the text
will next cover, bridge information with previous parts of the text, and elaborate on text information using
prior knowledge. Each lesson video also includes a series of checkpoint questions that reinforce students’
understanding of these strategies.

The practice phase includes a series of practice activities and customization options. From the practice
menu, students can engage with several practice games, check their achievements earned during practice,
or personalize the color of the system of the appearance of an on-screen avatar. The practice games fall
into two categories: generative or identification practice. In generative practice, students read science
texts and self-explain selected target sentences. They receive a score and (in certain activities) feedback
on how to improve their self-explanations. In identification games, students read self-explanations that
have ostensibly been written by other students, with the goal of identifying which of the five self-
explanation strategies were used by the student. Our research indicates that when students receive self-
explanation training in iSTART-2 (and earlier versions, iSTART and iSTART-ME), their self-explanation
quality and comprehension improves when compared to receiving no self-explanation training (e.g.,
McNamara et al., 2004; McNamara, O’Reilly, Best & Ozuru, 2006; McNamara, O’Reilly, Rowe,
Boonthum & Levinstein, 2007).

W-Pal is a game-based tutoring system designed to provide high school students with strategy lesson
training, strategy practice, and holistic writing practice, specifically for prompt-based, argumentative
essays (Allen, Crossley, Snow & McNamara, 2014; Roscoe & McNamara, 2013; Roscoe, Brandon, Snow
& McNamara, 2013). The system includes eight modules that cover topics within prewriting (Freewriting
and Planning), drafting (Introduction Building, Body Building, and Conclusion Building), and revising
(Paraphrasing, Cohesion Building, and Revising). Each of these modules contains a series of lesson
videos covering specific strategies that students are encouraged to use during the writing process.
Examples of the strategies and checkpoint questions are included in these videos.

Students practice using strategies in a variety of practice games that focus students on individual
components of writing (e.g., practicing conclusion paragraphs). Across games, students are given
different tasks, such as generating text, answering multiple-choice questions, or organizing information
by dragging and dropping. The game mechanics, such as points, levels, and bonus activities (e.g., a
Sudoku-like game) are designed to enhance motivation and engagement. Students can also practice

110

writing essays and receive automatic formative feedback. Research from our lab indicates that students’
writing strategy knowledge and writing proficiency improves over time while using the system (e.g.,
Allen, Crossley, et al., 2014; Crossley, Varner, Roscoe & McNamara, 2013).

Flexibility through Natural Language Processing

NLP lies at the core of both iISTART-2 and W-Pal. Within both, we have attempted to develop NLP
algorithms that maintain a certain degree of flexibility within the systems, such that new content can be
added to the systems (e.g., by the teachers) without having to recalculate the algorithms.

In iISTART-2, an NLP algorithm drives the self-explanation scoring using both latent semantic analysis
(LSA; Landauer, McNamara, Dennis & Kintsch, 2007) and word-based measures to provide a score from
0 to 3. The algorithm is designed to assess the quality of the self-explanation in terms of how well
students employed self-explanation strategies, not in terms of their content knowledge. That is, the
comparisons made between the content of the text and students’ self-explanations can detect similarities
but not inaccuracies. One considerable advantage of not scoring quality of content knowledge (which is a
very difficult task) is that any text can be entered into the system and used for practice. The algorithm
assigns a low score when the self-explanation is short or contains irrelevant information and higher scores
when the self-explanation incorporates information from earlier in the text and other relevant information.
Scores from the iISTART algorithm have been shown to be similar to those of human raters (McNamara,
Boonthum, Levinstein & Millis, 2007; Jackson, Guess & McNamara, 2010). Based on these scores and
other factors (e.g., students’ recent history of scores and the strategies they self-report using), students
also receive feedback messages. When students consistently generate high quality self-explanations, they
receive positive feedback. But when students receive lower scores, they might be encouraged to employ
different self-explanation strategies, such as elaborating on what is in the text with what they already
know. Instructors are able to add their own texts to the system that students can then self-explain using
one of the system’s generative practice activities. By adding their own texts, teachers can customize the
content of iISTART-2 to more efficiently fit into their lesson plans. For example, a science teacher might
input and assign several texts on photosynthesis; completing this training will then not only provide
instruction on comprehension strategies for challenging science texts, but also help cover material within
the teacher’s curriculum.

NLP algorithms also drive the scoring and feedback in W-Pal. These algorithms are based on several
linguistic properties of students’ essays, ranging from simple measures such as the total number of words
and paragraphs, to more sophisticated measures such as syntactic complexity and lexical specificity.
Linguistic indices are calculated using both Coh-Metrix (McNamara & Graesser, 2012; McNamara,
Graesser, McCarthy & Cai, 2014) and the Writing Analysis Tool (WAT; McNamara, Crossley & Roscoe,
2013). These algorithms provide students with both summative feedback on their essay (i.e., a holistic
score on 6-point scale) as well as formative strategy feedback. The formative feedback provides students
with actionable suggestions for how to improve the student’s current and future essays. The feedback
messages align with the strategy lesson videos provided within W-Pal. For example, if an essay contains
very few words, feedback messages will likely focus on idea generation. Similar to iSTART-2, the
algorithms in W-Pal are designed to be relatively generalizable; they are not tied to specific prompts. This
allows teachers to add their own essay prompts into the system and create their own assignments for
students.

Stealth Assessments

The ability for a system to provide intelligent feedback and recommendations to students is, in part,
dependent on the quality of the student model and the data that drive that model. Performance measures

111

(e.g., accuracy) are clearly important, but sometimes not sufficient for a system to behave ideally—for
example, they may not successfully detect when a student is sufficiently bored to consider quitting the
system. Additional measures of student behavior and engagement may also be necessary. One way to
covertly capture learning behaviors is through the use of stealth assessment (Shute, 2011; Shute, Ventura,
Bauer & Zapata-Rivera, 2009). Stealth assessments are metrics designed to measure a specific variable
that are discretely woven into a learning task rendering them invisible to the learner. This design allows
these covert measures to assess designated constructs (e.g., engagement, cognitive skills, etc.) without
disrupting students’ flow during learning. Stealth assessments offer an alternative to traditional self-report
or explicit construct measures. Indeed, one advantage of stealth assessments is that they do not rely on
students’ perceptions or memory of the learning task, but instead capture the targeted behavior in real
time as it occurs during learning, thus eliminating the concern of a discrepancy between students’
perceived behavior and observations of their actual behavior (McNamara, 2011). Stealth assessments can
also save valuable time during an experiment or in a classroom. These measures do not have to be
collected separately from the learning task and as such, and do not require extra instruction or time
allocation that can take away from the teacher or ultimate learning task.

There are multiple ways that researchers can create and design stealth assessments (Shute, 2011).
Relevant to this chapter is the use of online data (i.e., log data, language, and choice patterns) as proxies
for learning behaviors. Online data have been used as a form of stealth assessment to measure a multitude
of constructs, such as students’ self-regulatory abilities (Hadwin et al., 2007), amount of exerted agency
(Snow et al., 2015), and gaming behaviors (Baker, Corbett, Roll & Koedinger, 2008). For example,
Hadwin and colleagues (2007) used log data from gStudy to examine variations and patterns in students’
studying; gStudy is software that displays content to learners and tracks, for example, their annotating,
searching, and help-seeking behaviors. The authors were particularly interested in examining how log
data from gStudy could be used to profile students’ self-regulatory abilities compared to traditional self-
report measures. Results from this work revealed that students’ studying habits could be captured by log
data and patterns in these habits were predictive of self-regulation ability. Such promising results
showcase the potential for stealth assessments to influence the behavior of an ITS. Critically, however,
researchers must be careful (and often quite clever) in thinking about which interactions could relate to
important student attributes or abilities, systems must be designed to record this information, and finally,
the information needs to be usefully implemented into the system to make it more adaptive to individual
students.

Discussion

Flexibility for Researchers and Teachers

Our ultimate goal is for iISTART-2 and W-Pal to be widely used by educators to enhance instruction of
reading comprehension and writing. Specifically, one audience is high school teachers and their students.
In order to optimize our systems, while simultaneously better understanding the processes involved with
writing and reading, we also need our systems to be easily used by researchers who want to design
experiments within our systems to answer research questions. Even research questions that are not
directly designed to test the system will inevitably give some indication of system effectiveness and
collect behavioral data from participants’ use. For these reasons, we consider the usability of our system
for researchers and teachers to be a high priority, thus requiring the development of authoring tools to
meet their needs. Table 1 provides a summary of the features we discuss. We note that our estimates of
the difficulty of use are based on anecdotal experiences rather than empirical data.

112

Table 1. Summary of the tools/features discussed in this chapter, including the targeted user for each.

Feature System(s) User(s) Difficulty Comments

Lesson/practice iSTART-2 Researchers* Easy Intuitive: Checkboxes mark available
selection & W-Pal activities

Practice activity W-Pal Researchers Moderate Requires an understanding of how different
appearance groups completion conditions (e.g., completing a

game) will trigger the next appearance group

Performance iSTART-2 Researchers Moderate Requires an understanding of iSTART-2

thresholds scoring

Essay feedback W-Pal Researchers Easy Intuitive: Uses radio buttons

quantity/control

Essay self- W-Pal Researchers Easy Intuitive: Uses radio buttons

assessments

New essay prompts ~ W-Pal Teachers & Easy Intuitive: However, prompts must be for
Researchers persuasive essays

New practice texts iSTART-2 Teachers & Advanced Requires knowledge of how to tag
Researchers appropriate target sentences

* Currently being considered for teachers

Note: Difficulty corresponds to the time required to use the feature competently, not masterfully. We estimate
that “easy” features are immediately usable provided the user has a basic understanding of the system;
“moderate” features require 1-2 hours to learn; “advanced” features require specialized knowledge through
training/tutorials (~3-5 hours).

Before attempting to design a complete set of authoring tools for researchers and teachers, we built
systems that delivered lesson content that covered targeted strategies and practice activities that provided
actionable feedback—that is, more or less complete (essentially hard coded) systems that functioned on
their own. As we tested the success of these systems, building certain tools for our research team was a
practicality; we needed to toggle features on and off to test their relative effectiveness. Moreover, we
wanted researchers without a programming background to be able to set these options for different
students within the system. To meet this need, our programming team developed a web interface through
which researchers can set the parameters for several options. As these selectable features accumulated in
our researcher control panel, the systems became more flexible. Because student accounts are enrolled in
“system classrooms,” each of which has its own settings, researchers can make comparisons between
students in different classrooms.

When possible, settings and features are selectable through a live connection between the authoring tool
and students’ interface. For example, researchers can select which lesson videos and practice activities are
displayed to students. Figure 1 shows the iISTART-2 researcher control panel being used to disable certain
practice games from appearing in students’ practice interface. Importantly, the layout of the authoring tool
for this page matches the layout of the practice interface, with checkboxes indicating which games will be

113

available to students. In W-Pal, a more powerful (though more complex) tool is available that allows
researchers to both select practice activities in each module as well as the order in which the activities are
available to students. Figure 2 shows the tool that researchers use to define practice game “appearance
groups” (i.e., one or more games that appear to students as part of a single group) as well as the
conditions that must be met to advance to the next appearance group. In the depicted example from W-
Pal’s Body Building module, a researcher has created two groups, each with one game. To advance from
the first group to the second, a student must complete the game Fix It: Bodies three times. Researchers
can also define a time requirement for how long students must play a game before advancing (leaving the
time at zero yields no time requirements). Several other settings are available through this tool, such as
the ability to control how students are transitioned from one group to the next once time has expired, or
display pop-up messages to students after completing the appearance group. The appearance group
editing tool is thus useful for controlling students’ practice experience and assessing the relative value of
different games. After completing an appearance group that has been set, researchers see a visual
representation for each group, which is similar to what will be displayed to students. The close alignment
between what is seen by researchers and students renders it easy for researchers to confirm that settings
are correct.

Mini-Games Mini-Games
™ —— T ——
- === Q=
I -
ne0eE Reparl nEoes [fepenl
0 °
Researcher ¢ Strategy Match ¥ Bridge Builder ¥ Strategy Match ¥ Bnidge Builder

Settings

—— S

¥ Balloon Bust ¥ Dungeon Escape Dungeon Escape

: nscen, Rl
Practice +-- - -

Interface N = ' H

Figure 1. Research settings in iISTART-2 and the resulting practice interfaces that are visible to students.

114

Number of Groups. 2 Appearance Group 1

; T S N i G
¥ Fix It Bodies User closes game/lesson window
RoBoCo Automatically close game/lesson window
¢ Automancally close game lesson window after 60 seconds
Body Paragraph Editor : o
Topic and Evidence Writer R 3
C Jefion Conditions After user clicks the game icon
® After user clicks the in-game Start Button Fix It Bodies
Play ume(minutes); 0 Singl .
Games completed. 3 -
e Require continous play until completion of appearance group Group ! Play Time(minutes); 0
¥ | Completion Message Game survey only at completion of appearance group a Group 1 Games Completed: 3
Appearance Group 2 Games Transition to Next Appearance Group
. 2
Fix It: Bodies User closes game/lesson window Appearance Group 2
¥ RoBoCo Automatically close game lesson window St m
* Automatically close game/lesson window after 60 seconds
Body Paragraph Editor 2 . s <o 0bo 0‘:1:‘0 oW
Topic and Evidence Writer 'q %
C letion Conditi After user clicks the game icon el &
® After user clicks the in-game Start Button 0 : n
Play nme(mnutes): 0 Singl Rt o ASF
Games completed: 1 ’ Ay
% S Require continous play until completion of appearance group
¥ | Completion Message Game survey only at completion of appearance group RoBoCo

Group 2 Play Tune(nunutes): 0

submit || Retum Group 2 Games Completed: 1

Figure 2. The appearance group editor in W-Pal and the resulting visual representation of the groups.

As examples of more specialized features, researchers in iISTART-2 can set pop-up messages to trigger
when students do not meet a performance threshold in generative practice games, after which they are
transitioned to a more rigorous practice activity. In Figure 3, a researcher has set the threshold to a score
of 2.0 and applied that threshold to the games Map Conquest and Showdown. With this setting, whenever
students’ average self-explanation quality score is below 2.0 across those games, they receive a pop-up
message that is defined in the editor. After closing the pop-up message, students are transitioned to
Coached Practice, an activity that has fewer game features but provides additional feedback to students.
By using this tool, researchers can assess the effects of alerting students of their poor performance and
prescribing a specific practice activity as a means for improvement—additionally, the specific wording of
the message and the stringency of the threshold can be easily manipulated. In W-Pal, researchers can also
set options that change students’ experiences while practicing; notably, during the process of writing
essays and receiving feedback. These changes are made through the researcher control panel simply by
toggling features on and off, or by selecting among options using radio buttons. For example, researchers
can set whether students self-assess the quality of their essay after submitting it but before receiving
feedback. Researchers also select whether students have control over the number of feedback messages
that they receive about their essay, and the maximum number of messages that they can receive. By
varying these features, researchers can study the optimal conditions for encouraging quality essay
revisions following the delivery of the automated essay feedback.

115

Please select the features you Please select the score threhold you wish to mmplement
wish to mclude a threshhold
score for

.-}';‘emge Self-Explanation Score per Game-Play \ Iup (‘(\llqllcil

e (value range from 0 to 3)
1 Total Score for this Game: 80
BRI Theshold i not met, Transfes Srudent 1o Bighesk T sl for thes ome: N
‘ Message Alert x
¢ Showdown - = 1 You earned: Jonus Total
- e a Your average self-explanation score L 80
== — — was below a 2.0. You will now be +0 80
- ‘" transferred to Coached Practice to
= receive helpful tips on how to improve
= Coached Practice the quality of your self-explanations.
scor:
[v Close
¥ Map Conquest ce to

Back to
Mem

Transfer Option

¥ Allow student to cancel

Comments

Example of self-explanation performance threshold settings.

Assign || Cancel | ¥ Enable Adaptivaty

Figure 3. The self-explanation threshold editor and the pop-up message students receive after not meeting the
performance threshold.

Generally, we consider the numerous options available to be a boon for researchers. We view our
authoring tools as communicative of the features that are potentially important for students. By design, a
researcher who is interested in reading comprehension or writing should be able to set up system
classrooms with different settings and design an experiment using our researcher control panel, with
minimal experience with the system and no programming knowledge. Selecting which system features to
test and in which combination to design an interesting study, of course, requires expertise. However,
some features are obviously more important than others, and we rely on researchers to make careful study
design decisions whenever changing a feature from its default setting.

For teachers, the communicative function of our authoring tools is somewhat different. Options available
through the teacher control panel may be considered as a means to customize the system to best match
course content and classroom needs. When considering many of the features available to researchers, the
goal of optimally setting system options is ambiguous. Disabling games might seem like a sensible
decision if the teacher is under a tight time schedule and if the teacher fears that students will ignore the
goal of learning to write in the context of games. However, our research indicates that eliminating the
motivating features of games will likely decrease performance over the long term (e.g., Jackson &
McNamara, 2013). Therefore, we currently do not include the ability to toggle games on and off within
the teacher control panel. This may change in the future, of course, and teachers always retain their
control over what they do and do not assign to students. Some features, meanwhile, are esoteric and
clearly should be excluded from teachers’ options (e.g., being able to disable certain uses of the word
“game,” which was included for a study in which we did not want to prime students to think of practice as
gaming). Thus, for teachers, we have aimed to build authoring tools around their needs for adapting the
system to their course. This has primarily centered on content creation.

A recent survey found that a majority of teachers prefer to modify the content of educational resources
they obtain, and that they often share the resources they find with colleagues (Hassler, Hennessy, Knight
& Connolly, 2014). Our experiences working with teachers match these findings, and we propose that
flexibility of content is particularly important for ill-defined domains in which skills are often taught in
the context of topics particular to individual classrooms. For example, the persuasive essay writing skills
covered in W-Pal might normally be taught in the context of current events or topics raised by a book the

116

class is currently reading. Teachers may be unlikely to use systems in ill-defined domains that do not
allow them to align practice (i.e., students’ system use) with system content. Because of the NLP
techniques we use to drive our scoring algorithms, however, our systems are able to meet this
considerable challenge (see the previous section on NLP for more information). Figure 4 shows the
interface teachers use to add new argumentative writing prompts into W-Pal. Though plain, this simple
interface allows teachers to create new assignments in W-Pal that receive the same level and quality of
feedback as the prompts built into it. Thus, pasting in an essay prompt and assigning it takes minutes and
provides students, by default, a 25+ minute practice experience (longer if revisions are required).
Similarly, iSTART-2 allows teachers to add texts to the system that can be self-explained in the practice
activities. Although this process is somewhat complicated by the need to define target sentences
(currently, we work directly with teachers wishing to add texts but will add tutorials in the future), it
allows teachers, without an understanding of the algorithms driving feedback, to expand and customize
system content. The NLP underpinnings in both systems are invisible to teachers, allowing them to focus
on adding essay prompts and texts through the simple features available in the teacher control panel.
Learning to adeptly tag target sentences takes many hours, but once mastered, teachers will be able to add
texts in about 30 minutes, completing both the entry and tagging processes; practice with each text will
last 10-30 minutes depending on its length.

Use Existing Prompt ® Create New Prompt

Prompt Label
Promgpt
Tener: | 25 ranubes v | Due Date 3 Tmme: 8 = o = AM v
* Wnite an Essay ONLY ' Require ONE revision for | 10 minstes M Revision for Any Time

¥ Allow pansing

POST Cancel

Figure 4. Interface for adding a new essay prompt in W-Pal.

Stealth Assessments and their Representation in Authoring Tools

An ongoing goal for our systems is to better direct instruction and feedback to each student. Although our
systems currently deliver feedback messages and make recommendations based on students’ current and
past performance, we plan to build richer student models that can respond with greater nuance. For ill-
defined domains, in particular, constructing these models is a challenge that must be supported by copious
data. As we discussed earlier, we are strong proponents of using stealth assessments to help obtain much
information about students in a non-intrusive manner. In our own system designs, we allow students to
make important choices that afford meaningful interaction patterns and generate responses that can be
analyzed using NLP techniques. Essentially, our goal is to build systems that convey rich information
about students through their normal interactions that go beyond what is directly being measured. This
promotes meaningful data mining of system interactions. For example, in one study, we analyzed the

117

degree to which students were ordered or disordered in their interactions with iISTART-2, and found that
more ordered interactions led to better performance (Snow et al., 2015). In another study, we found that
when analyzing the narrativity of students’ writing over a series of several essays, more successful writers
were less rigid in their use of narrative elements (Allen, Snow & McNamara, under revision). In both
studies, we were able to use stealth assessment to measure important student characteristics. In the future,
we will attempt to leverage our ability to monitor these student attributes by using them to drive feedback
messages.

The importance of stealth assessment, however, is not primarily what we wish to push forward (the
virtues of stealth assessment have already been beautifully laid out in a past volume: Ventura, Shute &
Small, 2014). Instead, we suggest that stealth assessments should become more prominent and easier for
researchers (and eventually teachers) to use. The goals are to build better understandings of what stealth
measures are capturing and, subsequently, drive better instruction for students. Eventually, we plan for
our authoring tools to provide examples of the types of measures that are logged by the system and
encourage researchers to consider those measures in conjunction with the other components of their
studies. Over time, we intend this enhanced awareness of stealth measures to improve the understanding
of tutoring systems for reading comprehension and writing. This goal could be particularly important for
all ill-defined domains that already struggle for tractability in scoring and modeling. If a research group,
for example, conducts a study examining impulsivity and writing performance, they could easily compare
impulsivity scores with choice pattern measures, which our systems already measure—this could provide
insight into impulsivity, choice patterns, and their interaction with writing performance. The authoring
tools that researchers use when setting up their studies should make it apparent that these analyses are
possible. When researchers are ready to run the analyses, tools should then provide these data to
researchers in an understandable format. Again, we view it as an important goal of authoring tools to
communicate system features that are pertinent to the needs of researchers.

Teachers, likewise, could benefit from an understanding of some of the stealth assessments that a system
records. Although the system will ideally be using relevant information to guide instruction, keeping
teachers apprised of their students’ system performance can be helpful for letting the teacher know what
is and is not working, and, of course, teachers can often intervene in ways that the system cannot (e.g., a
teacher might assign different work to a student who is struggling with system content). By displaying
certain stealth measures to teachers within their authoring interface, they will also develop a better
understanding of how the system works. Although teachers do not need to understand the intricacies of
how a system’s “intelligence” works, it might also inspire observations about their students’ in-person
behavior as it connects to their system performance. Perhaps an oft-distracted student is particularly
motivated by the game components of reading practice, and a teacher can leverage this information in
other ways. Finally, by empowering teachers with knowledge of how a system works, they are better able
to communicate their feedback and work with designers to improve its ability to function within
classrooms. An obvious issue with displaying this information is that it may be counterproductive; instead
of being enlightening, it may be overwhelming, confusing, and unhelpful. For our own systems, we have
been cautious in adding too much information and have discussed with several teachers the pros and cons
of adding specific pieces of information. Our approach to communicating with teachers about these issues
varies by situation. Some teachers have a strong interest in educational technology and frequently provide
feedback about their desired features and are excited to provide insights about the utility of more
advanced features. In other situations, we ask teachers to fill out short online surveys that include free
response questions asking about how we can improve and what they would like to see added. Based on
information from teachers, we are planning new features, some of which will convey students’ choice
patterns.

118

Recommendations and Future Research

In this chapter, we discussed how stealth assessment techniques undergird our tutoring systems, iSTART -
2 and W-Pal, which operate in the ill-defined domains of comprehension and writing. We specifically
explore how techniques, such as NLP, can be used within the context of authoring tools and ill-defined
domains in which student-generated responses must be scored and for which teachers (or researchers)
may want to add their own content and prompts. Stealth assessments afford researchers the opportunity to
examine and build more nuanced, complete models of student performance and behavior. Thus, for
researchers and teachers, these techniques can help inform authoring tools, acting both as communicative
devices to explain the impact of various features on learning and as means for content to be edited and
added.

GIFT offers a platform to build powerful tutoring systems that can adapt to student needs. Its greatest
strengths are currently most likely to be used by cognitive scientists and programmers who are already
skilled developers. In order for the efficient advancement and proliferation of ITSs in ill-defined domains,
however, we suggest that researchers and teachers must collaborate in system design, particularly to test
and optimize system features. Across the brief time of our using GIFT, it has already made great strides in
becoming easier for non-programmers to author; the example courses available through the GIFT package
can easily be used as models and modified. The exemplified ability to use PowerPoint to present
content—a familiar tool for many researchers and teachers—is an excellent means of affording educators
opportunities to expand course content.

One avenue for expanding GIFT would be the addition of features that allow students to generate written
responses and then receive feedback. Students often experience memory benefits when generating
content, making generative activities educationally desirable (e.g., McNamara & Healy, 1995; Slamecka
& Graf, 1978). To support these features, GIFT might consider incorporating simple NLP techniques (see
Crossley, Allen & McNamara, 2014). NLP algorithms that rely on simple indices such as word counts
and bags of words can go a long way in providing information about a student’s responses. Such
techniques can be effective for many purposes such as scoring responses to short answers, open-ended
guestions, and even, essays. As the framework evolves to more easily provide NLP output and use it to
guide scoring and feedback, more sophisticated techniques can be developed and implemented (Allen,
Snow, Crossley, Jackson & McNamara, 2014). An important goal for more advanced, flexible scoring
and feedback algorithms will be to allow teachers to add their own question content.

Another consideration would be to provide easily understood methods of recording log data during
system use. As we have discussed, the use of stealth assessments during tutoring affords the means to
better understand students’ use of the system and also collect information about the student without
interruptions from surveys or additional assessments. Adding the ability to then implement these data—as
well as linguistic data extracted from student-generated responses—into student models delivers a
powerful tool for researchers. For teachers, displaying the most important and interpretable of these
measures could also be useful to communicate nuances of student performance that might remain hidden
when only traditional performance summaries are provided. Ultimately, the information provided by
stealth assessments such as NLP techniques, can improve systems’ ability to identify when students need
assistance and what specific assistance would be most appropriate.

One exciting aspect about the GIFT project is its potential to empower both research and educational
communities with the ability to build powerful ITSs. Because of the flexible and adaptable nature of the
framework, a wide range of features can be built into systems that cover content in many domains. A
particular hope is that these systems spread, inspiring researchers to test components of various systems
and offering educators the opportunity to provide valuable feedback. Through such a network, combined

119

with the power of stealth assessment techniques such as NLP, even the challenges of ill-defined domains
can be met successfully.

References

Ainsworth, S. & Fleming, P. (2006). Evaluating authoring tools for teachers as instructional designers. Computers in
Human Behavior, 22, 131-148.

Allen, L. K., Crossley, S. A, Snow, E. L. & McNamara, D. S. (2014). Game-based writing strategy tutoring for
second language learners: Game enjoyment as a key to engagement. Language Learning and Technology,
18, 124-150.

Allen, L. K., Snow, E.L., Crossley, S. A., Jackson, G. T. & McNamara, D. S. (2014). Reading components and their
relation to the writing process. Topics in Cognitive Psychology, 114, 663-691.

Allen, L. K., Snow, E. L., and McNamara, D. S. (under revision). The narrative waltz: The role of flexible style on
writing performance. Manuscript submitted to the Journal of Educational Psychology.

Baker, R. S. J. D., Corbett, A. T., Roll, I. & Koedinger, K. R. (2008). Developing a generalizable detector of when
students game the system. User Modeling and User-Adapted Interaction, 18, 287-314.

Beal, C., Arroyo, I., Cohen, P. & Woolf, B. (2010). Evaluation of AnimalWatch: In intelligent tutoring system for
arithmetic and fractions. Journal of Interactive Online Learning, 9, 64 —77.

Blessing, S. B. (1997). A programming by demonstration authoring tool for model-tracing tutors. International
Journal of Artificial Intelligence in Education, 8, 233-261.

Crossley, S. A., Allen, L. K., Kyle, K. & McNamara, D. S. (2014). Analyzing discourse processing using a simple
natural language processing tool. Discourse Processes, 51, 511-534.

Crossley, S. A., Varner (Allen), L. K., Roscoe, R. D. & McNamara, D. S. (2013). Using automated cohesion indices
as a measure of writing growth in intelligent tutoring systems and automated essay writing systems. In H.
C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.), Proceedings of the 16" International Conference on
Artificial Intelligence in Education (AIED) (pp. 269-278). Heidelberg, Berlin: Springer

Graesser, A., Lu, S., Jackson, G., Mitchell, H., Ventura, M., Olney, A. & Louwerse, M. (2004). AutoTutor: A tutor
with dialogue in natural language. Behavior Research Methods, Instruments & Computers, 36, 180 —192.

Hadwin, A. F., Nesbit, J. C., Jamieson-Noel, D., Code, J. & Winne, P. H. (2007). Examining trace data to explore
self-regulated learning. Metacognition and Learning, 2, 107-124.

Hassler, B., Hennessy, S., Knight, S. & Connolly, T. (2014). Developing an open resource bank for interactive
teaching of STEM: Perspectives of school teachers and teacher educators. Journal of Interactive Media in
Education.

Jackson, G. T., Guess, R. H. & McNamara, D. S. (2010). Assessing cognitively complex strategy use in an untrained
domain. Topics in Cognitive Science, 2, 127-137.

Jackson, G. T. & McNamara, D. S. (2013). Motivation and performance in a game-based intelligent tutoring system.
Journal of Educational Psychology, 105, 1036-1049.

Landauer, T. K., McNamara, D. S., Dennis, S. & Kintsch, W. (Eds.). (2007). Handbook of Latent Semantic Analysis.
Mahwah, NJ: Lawrence Erlbaum.

Le, N. T., Loll, F. & Pinkwart, N. (2013). Operationalizing the continuum between well-defined and ill-defined
problems for educational technology. IEEE Transactions on Learning Technologies, 6, 258-270.

Lynch, C., Ashley, K. D., Pinkwart, N. & Aleven, V. (2009). Concepts, structures, and goals: Redefining ill-
definedness. International Journal of Artificial Intelligence in Education, 19, 253-266.

Marchiori, E. J., Torrente, J., del Blanco, A., Moreno-Ger, P., Sancho, P. & Fernandez-Manjon, B. (2012). A
narrative metaphor to facilitate educational game authoring. Computers & Education, 58, 590-599.

McNamara, D. S. (2011). Measuring deep, reflective comprehension and learning strategies: Challenges and
successes. Metacognition and Learning, 3, 1-11

McNamara, D. S., Boonthum, C., Levinstein, I. B. & Millis, K. (2007). Evaluating self-explanations in iSTART:
Comparing word-based and LSA algorithms. In T. Landauer, D. S. McNamara, S. Dennis & W. Kintsch
(Eds.), Handbook of latent semantic analysis (pp. 227-241). Mahwah, NJ: Erlbaum.

McNamara, D. S., Crossley, S. A. & Roscoe, R. D. (2013). Natural language processing in an intelligent writing
strategy tutoring system. Behavior Research Methods, 45, 499-515.

120

McNamara, D. S. & Graesser, A. C. (2012). Coh-Metrix: An automated tool for theoretical and applied natural
language processing. In P. M. McCarthy & C. Boonthum (Eds.), Applied natural language processing and
content analysis: Identification, investigation, and resolution (pp. 188-205). Hershey, PA: IGI Global.

McNamara, D. S., Graesser, A. C., McCarthy, P. & Cai, Z. (2014). Automated evaluation of text and discourse with
Coh-Metrix. Cambridge: Cambridge University Press.

McNamara, D. S. & Healy, A. F. (1995). A generation advantage for multiplication skill and nonword vocabulary
acquisition. In A. F. Healy & L. E. Bourne, Jr. (Eds.), Learning and memory of knowledge and skills (pp.
132-169). Thousand Oaks, CA: Sage.

McNamara, D. S., Levinstein, I. B. & Boonthum, C. (2004). iSTART: Interactive strategy trainer for active reading
and thinking. Behavioral Research Methods, Instruments & Computers, 36, 222-233.

McNamara, D. S., O’Reilly, T., Best, R. & Ozuru, Y. (2006). Improving adolescent students’ reading
comprehension with iISTART. Journal of Educational Computing Research, 34, 147-171.

McNamara, D. S., O’Reilly, T., Rowe, M., Boonthum, C. & Levinstein, I. B. (2007). iISTART: A web-based tutor
that teaches self-explanation and metacognitive reading strategies. In D. S. McNamara (Ed.), Reading
comprehension strategies: Theories, interventions, and technologies (pp. 397-421). Mahwah, NJ: Erlbaum.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated analysis of the state of the
art. In T. Murray, S. Blessing & S. Ainsworth (Eds.), Authoring tools for advanced technology learning
environments (pp. 491-544). Dordrecht, Netherlands: Kluwer Academic Publishers.

Roscoe R, D., Brandon, R, D., Snow, E. L. & McNamara, D. S. (2013). Game-based writing strategy practice with
the Writing Pal. In K. Pytash & R. Ferdig (Eds.), Exploring technology for writing and writing instruction.
(pp. 1-20). Hershey, PA: I1GI Global.

Roscoe, R. D. & McNamara, D. S. (2013). Writing pal: Feasibility of an intelligent writing strategy tutor in the high
school classroom. Journal of Educational Psychology, 105, 1010-1025.

Shute, V. J. (2011). Stealth assessment in computer-based games to support learning. Computer games and
instruction, 55, 503-524.

Shute, V. J., Ventura, M., Bauer, M. & Zapata-Rivera, D. (2009). Melding the power of serious games and
embedded assessment to monitor and foster learning. In U. Ritterfield, M. Cody & P. Vorderer (Eds.),
Serious games: Mechanisms and effects (pp. 295-321). New York, NY: Routledge.

Slamecka, N. J. & Graf, P. (1978). The generation effect: Delineation of a phenomenon. Journal of Experimental
Psychology: Human Learning and Memory, 4, 592-604.

Snow, E. L., Allen, L. K., Jacovina, M. E. & McNamara, D. S. (2015). Does agency matter?: Exploring the impact
of controlled behaviors within a game-based environment. Computers & Education, 26, 378-392.

Ventura, M., Shute, V. & Small, M. (2014). Assessing persistence in educational games. In R. Sottilare, A. Graesser,
X. Hu, and B. Goldberg (Eds.), Design recommendations for intelligent tutoring systems: Volume 2

Instructional management (pp. 93-101). Orlando, FL: U.S. Army Research Laboratory.

121

122

cuarter 9 Design Considerations for Collaborative
Authoring in Intelligent Tutoring Systems

Charlie Ragusa
Dignitas Technologies, LLC

Introduction

Use of eLearning systems has grown dramatically in recent years, driven by demand from government,
educational institutions, and corporations. Technological advancements have facilitated this growth,
including software as a service (SaaS), cloud computing, and an increasing variety of delivery platforms
(e.g., mobiles, tablets, internet-of-things). As Internet access and mobile device usage increase, the next
generation is accustomed to the concept of interactive media for everything from informal information
gathering to formal training.

In comparison to the broader eLearning community, intelligent tutoring systems (ITSs) are still primarily
limited to a research and development context. A key enabler to the widespread adoption of ITSs will be
the existence of robust and easy-to-use authoring tools (Murray, 2003). ITS development has special
challenges compared to a general eLearning system, and development of domain independent ITSs even
more so. Though certainly not trivial, the basics of authoring in many non-ITS eLearning systems are
straightforward, typically involving support for authoring of non-interactive content (e.g., text, pictures,
videos) and simple assessments (e.g., multiple choice). Learner assessment often takes the form of
quizzes or exams, while content is frequently a link to existing media or an attached document. All too
often this results in little more than a migration of offline content such as text books and lecture notes to
an online environment, with the presentation of data enhanced through limited multimedia.

Authoring for an ITS is more demanding because the system is interactive: the difference is analogous to
creating a playable video game instead of a movie. Content and knowledge assessment remain essential,
but ITS-enabled courses require representations of domain knowledge, learner models, expert models,
pedagogical models, conditional and non-linear flow through the material, and various meta-data. For
ITSs equipped with physiological sensors, authoring is needed to adapt to the learner’s affective state.

Due to these complexities, for non-trivial domains, the knowledge and skills required to author effective
instruction often do not reside in a single individual. The best outcome is achieved by collaboration
among some combination of instructional designers, subject matter experts, psychologists, traditional
educators, and software engineers (Nye, Rahman, Yang, Hays, Cai, Graesser & Hu, 2014). This chapter
examines the challenges related to collaborative authoring in general and as they pertain to the
Generalized Intelligent Framework for Tutoring (GIFT; Sottilare, Brawner, Goldberg & Holden, 2012).
Topics include roles and responsibilities, workflow, and software architecture considerations.

As an intelligent tutoring framework, GIFT is unique in that it is open source and domain independent,
includes a sensor framework, and is designed to integrate with external training applications. These
characteristics, along with the author’s familiarity with GIFT, make it well suited for a discussion on
collaborative ITS authoring. Consequently, discussion from this point forward is very GIFT centric. Of
course, many of the ideas should be applicable to collaborative authoring in general.

Related Research

While the literature is replete with publications on eLearning and ITSs, relatively little has been published
on the topic of collaborative authoring for ITSs. Early research on collaborative authoring typically
addressed collaborative authoring of documents. More recently, collaboratively writing documents is
pervasive and most readers should have some experience with collaborative authoring in a variety of
formats such as the following:

e Documents shared via email

e Shared network drives within an organization

e Shared documents on cloud-based drives such as Microsoft OneDrive and Dropbox
e Wiki page authoring, e.g., Wikipedia

e Document workflow tools, such as Microsoft SharePoint

e Google Documents

e Microsoft OneNote and Word

e Content Management Systems

o WebDAV (Whitehead Jr. & Wiggins, 1998)

e Version control systems such as Subversion, Git, or Mercurial

Research on collaborative writing continues; however, only some of this work is relevant for eLearning.
The eLearning industry has published The Ultimate List of Cloud-Based Authoring Tools, which lists over
50 cloud-based elLearning authoring tools (Pappas, 2013). Several tools offer support for collaborative
authoring and some even support branching and interactivity, implying a rudimentary level of intelligent
tutoring. There are a few published reviews of these tools, in some cases comparing many tools (Elkins,
2013), and in other cases, providing more in depth comparison of just two (Tao, 2015). This set of tools
offers some insights for collaborative authoring. First, each tool tends to focus on either web developers
or instructors, and less commonly both. Second, most tools allow authors to create content in ways that is
familiar to them (e.g., translating their PowerPoint slides into an interactive web page). Finally, most
tools focus in building specific learning resources that can be embedded as HTML pages.

Another relevant collaborative authoring environment is Stanford University’s WebProtégé, a free open-
source collaborative ontology development environment for the web (Tudorache, Nyulas, & Noy, 2013).
WebProtégé is particularly interesting because, in addition to being a cloud-based collaborative authoring
environment, it embodies many of the concepts described in this chapter including history and revision
management, built-in discussion support, and interoperability with a desktop version of the Protégé
authoring tool. Much like GIFT, it is a highly technical editor that outputs extensible markup language
(XML) (among other formats). Also, WebProtégé is constructed using the Google Web Toolkit (GWT)

the same platform used to construct GIFT’s web based authoring tools. Assuming the continued
use of GWT by the GIFT team, approaches and techniques used by WebProtégé may be directly
transferrable to future GIFT collaborative authoring tools.

124

Discussion

The current suite of GIFT authoring tools is largely desktop applications (Hoffman & Ragusa, 2014). The
tools allow flexible configuration of the system, but are aimed toward software developers rather than
content experts. Moreover, they were not specifically designed with collaboration in mind. However, each
incremental improvement to the GIFT framework can update these tools, since they are generated
automatically from the XML schemas of GIFT’s configuration files. Additional coding is necessary only
when it is required to implement specialized functions, such as creation of custom dialogues or additional
validation beyond the schema. While these tools do not formally support collaboration, the usual
cumbersome collaboration methods for collaboration are possible: emailing authored files, shared drives,
or a revision control system (e.g., Subversion). The latter approach has the advantage of versioning,
graceful merging of edits, and conflict resolution for when two authors edit the same part of a file.

Though most GIFT tools are desktop applications, a few are web-based. The GIFT survey authoring
system was designed as a web application and recent GIFT releases have introduced web-based tools for

authoring courses and for domain knowledge files. These new tools are a step toward reaching content
experts, but would be more powerful with explicit support for collaboration.

General Considerations

Independent of issues related to collaboration, any new authoring tools should adhere to best practices for
user interface design (Stone, Jarrett, Woodroffe & Minocha, 2005), such as the following:

o Intuitive interfaces that do not surprise users with unusual behavior
¢ Availability of context sensitive help

e Aesthetics

e Input validation

e User-friendly error messages

e Undo/Redo

e Preview capability

These considerations are not discussed in detail, but are noted here for completeness.

Terminology and Authoring Granularity

Currently, GIFT supports authoring and runtime execution at the granularity of a single learner session
which it calls a GIFT “course.” There is no minimum or maximum time associated with a course, but the
working assumption is that a course will be completed in a single learner session, whether it be 5 minutes
or 2 hours or more. Given a single granularity, this is the obvious choice, however, independent of
collaborative authoring concerns, GIFT should expand its capability to support a wider range of
granularities and would be well served by modifying its nomenclature to match current norms. One
suggestion would be to rename the current course construct to “lesson” and repurpose the term “course”
to describe a series of related lessons.

125

A further refinement would be to add an optional intermediate level of granularity that could be used to
define “sections” or “modules” within a course. The precise terminology is perhaps less important than
the support for the hierarchical construct. Despite this suggestion, unless otherwise noted, “course” will
be used throughout the remainder of this chapter to reflect a GIFT course as currently implemented by
GIFT. Collaborative authoring considerations for course/module/lesson hierarchies is left to a future
discussion.

Authoring in the Cloud

GIFT supports both web-based content delivery as well as desktop/fat-client operation. Regardless of the
runtime environment, GIFT authoring can and should be managed as a cloud-based web application.
Cloud deployment is an ideal environment for collaborative authoring (Schneider, 2012). Beyond the
obvious benefits to collaborative authoring of concurrent access by multiple users, cloud infrastructure
typically includes support for several key elements of a collaborative system such as accessibility,
storage, versioning, and scalability. For simple courses that require no other client resources beyond a
web browser, content can remain in the cloud and be fetched by the browser as needed. On a desktop
runtime environment, the course and any resources needed locally can be downloaded and cached as
necessary. For the remainder of this chapter, a cloud-based authoring system is assumed.

Given the assumption of a cloud-based authoring environment, GIFT must move all core authoring
functions to the cloud. Essential functions of the authoring system (ignoring collaboration, for the
moment) include the following:

e Authoring, uploading, and management of content

e Authoring, uploading, and management of GIFT configuration elements/files
e Authoring and management of surveys®

e Publishing authored courses (i.e., making them available for use)

The objective is for authored courses and all required resources to be served from the cloud, and fetched
or downloaded as needed. Courses requiring only a browser and internet connection can be delivered on
demand to the browser from the cloud. Courses using sensors or third-party desktop applications will be
downloaded and cached by the local GIFT runtime, where the user or local administrator will bear some
responsibility for downloading and installing the necessary desktop applications.

It should be noted that some changes suggested here will require changes to the GIFT runtime
environment. As much as possible and practical, existing third-party software (e.g., Java Web Start) that
can be used without license fees or proprietary encumbrances should be leveraged to handle the low-level
details, including security related issues. From the author’s standpoint, the goal is a seamless and
straightforward system. The same cloud application responsible for authoring could then be leveraged for
tools such as report generation.

Resource Management, Projects, and Tool Integration

A typical GIFT course references multiple resources including some combination of the following:

L GIFT uses “survey” as a catch-all term for form-based quizzes, assessments, exams, as well as traditional surveys
(e.g., psychological, biographical, and satisfaction, etc.).

126

e Content (HTML, PDF, PowerPoint, etc.)
e Core GIFT XML configuration files: Course, Domain Knowledge, Meta-Data
e Surveys'

e 3" Party Training Applications including application-specific scenario and configuration files,
such as 3D training simulation data.

e Secondary XML configuration files: Learner and Sensor Configuration

Content and XML configurations currently exist as files. Surveys are managed using a relational database.
To date, third-party training applications have been desktop applications installed on the user workstation
that not directly managed by GIFT. Existing GIFT best practices are to organize content and primary
XML configuration files inside a common subfolder of a designated domain folder for the GIFT
installation. A domain knowledge folder is required, but organization beyond that is not enforced. Rather
than being configured on a per-course basis, secondary XML configuration files have been managed as
part of the GIFT installation.

To facilitate collaboration, GIFT will need to create a project construct to serve as the overarching logical
container for all the resources related to a specific effort. The project is analogous to the best-practice idea
of locating related resources in a common folder, but is more flexible. Resources used by multiple
projects can be stored in a single location and simply referenced by projects as needed. The project
construct also serves to manage the collaboration settings for the project, including the user names of the
collaborators, their roles, and access control specifications. This paradigm has parallels to collaborative
editing tools of compiled documents (such as LaTeX, e.g., www.overleaf.com) or code projects (e.g.,
Cloud9, c9.i0).

GIFT currently uses a distinct editor for each major authoring task. This is true of both the desktop
authoring tools as well as the browser-based authoring tools. The project construct also serves to unify the
tools so that the user experiences the tool suite as a single unified tool with multiple integrated functions.
With the project construct as a framework, two collaboration functions are essential:

e Project creation
e Collaborator management

Project creation means the creation of a new project within the system. Collaborator management is the
infrastructure used to manage collaborators and their roles, permissions, and workflow.

Types of Collaboration

Collaboration can take multiple forms. The most basic forms of collaborative authoring include in-person
reviews where a document is shown on a shared screen and a group reviews and/or edits together.
Another simple collaborative authoring technique is sharing documents via email or a shared document
repository for multiple authors to contribute to or review. In the following sections, more advanced
collaboration modes and related issues are discussed.

127

http://www.overleaf.com/
https://c9.io/

Concurrent Editing

In a concurrent editing environment, multiple authors can edit a shared document in real time. Edits made
by one author appear immediately in the views of the other authors. Well-known commercial applications
supporting concurrent authoring include recent versions of certain Microsoft Office applications,
Microsoft OneNote, Etherpad, and documents in Google Drive. Aside from a few variations, these
applications all work similarly in that they are cloud-based, require sharing of the document with other
collaborators, and allow updates and edits to be seen by other collaborators in real time (if shared with
those collaborators).

Concurrent editing has the obvious advantage of allowing real-time collaboration between two or more
remote authors, which closely mimics working together side-by-side at a single workstation or
whiteboard, especially when paired with an additional voice or chat communication channel to discuss
ideas. This is especially useful for authoring where ideas are not fully developed, and require discussion,
negotiation, and agreement by the authors.

Roles

In the context of intelligent tutoring, collaborative authoring implies a team of two or more individuals
working together to create an intelligent tutor. In some cases, the team members may be peers, in which
case the team may exist for no other reason than to divide the workload or support peer reviews.
However, a more likely scenario is that the team consists of individuals with differing skills and
backgrounds that are brought together to leverage their complementary talents. Thus, before considering
the nature of role-based collaboration, we first define some common roles of potential collaborators.

Key authoring roles include the following:

Instructional System Designer This is a person with experience and/or formal training in the design and
construction of instructional systems. A person in this role is well founded in learning theory and the
application of current technology to the learning process.

Subject Matter Expert Within the context of a given authoring project this is the person with advanced
domain knowledge in the area to be trained. The expertise could be from advanced education in the
area, life experience, or both.

Course Facilitator This is the person(s) that will be responsible for delivering the training to the
end-user (learners). They could be an actual instructor in a blended learning environment or simply a
training coordinator.

Supporting roles include the following:

Educational Psychologist This is a person with an expertise in the science of learning from both a
cognitive and behavioral perspective.

Software Engineer ~ The existence of this role reflects the idea that certain ITS capabilities require
expertise in programming, formal logic, or other specialized skills. Thus, the software engineer’s role
is to manage and/or implement any lower-level system requirements or configuration items that are
either not handled by the authoring tool’s user interface or require strong technical expertise.

128

Experimenter Given that GIFT and other ITSs are often used as research tools, experiments are an
important part of the ecosystem. This role involves implementing an experimental design and
collecting the correct types and quantities of data to satisfy the objectives of an experiment.

Reviewer This is a role that exists to capture and approve learners’ completion or results, with
responsibility for review and approval. An example would be a training compliance officer within a
corporate environment. This role may overlap with other roles, particularly the course facilitator.

Administrator This is a system-level role. Users with administrative privileges have the ability to
configure authoring tool and application-wide settings, perhaps including adding and/or approving
new users to the site and assigning roles.

It’s worth noting that the composition of authoring teams is likely to vary widely from one organization to
another and even from one project to another within an organization. In many cases, a single individual
may support multiple roles, and in other cases, multiple individuals may share the same role.

Additionally, though the set of roles described above may be sufficient for many authoring environments,
the system should not limit users to the roles in this set. Rather the system should support the arbitrary
creation of new roles via assignment of access levels and privileges.

Role-Based Access Control

Controlling access to project resources based on role is valuable for collaborative ITS authoring. It is a
ubiquitous concept in multi-user information technology (IT) systems. Collaborators are assigned one or
more roles on a per-project basis, and their access to resources is constrained by their least restrictive role.
Allowing “read” and/or “write” privileges for each role may be sufficient for most projects, although
“create” and “delete” for management roles may also be required. Such constraints serve to declutter
views and minimize unwanted and potentially costly erroneous operations.

It is worth considering the granularity at which privileges can be set, as too fine a granularity can be
overwhelming for those setting privileges, but too coarse a granularity may leave gaps where a user has
too few or too many privileges. Fine granularity gives the administrator the most control, but coarse
granularity is easier to implement. In places where fine granular control is appropriate, the burden should
be minimized by cascading changes on nested resources and resource elements.

Both the organizational level and the project level of a collaborative authoring system should allow role-
based access control. Roles and permissions established at the organizational level would become defaults
for any new project, but could be customized by the project as needed, simplifying initial setup.

Role-Based Interface Customization

In light of the roles previously described, it is clear that different collaborators may need to interact with
the authoring system in substantially different ways. Some roles have completely non-intersecting skills
and experience, and may author different parts of the course. All portions of the course under
development frequently require input and/or review by more than one user. Displaying content in a form
that is natural to the author or reviewer should be considered a best practice.

Multiple viewers/editors can be built in to the authoring system to provide an intuitive interaction for a
user based upon the role(s). The working assumption is that users with a given role will have similar

129

expectations and technical abilities. For example, many software engineers may prefer editing content as
raw XML, whereas subject matter experts may prefer a graphical drag-and-drop interface.

At a minimum, interfaces must have two modes: one that allows editing and one that is simply for review
where edits are not permitted. For this functionality, the interface would remain effectively the same. This
level of interface customization may be sufficient for some portions of the authoring system, while others
would benefit from fully separate views of the data. There is a trade-off in terms of effort required to
implement additional interfaces and a pay-off in terms of usability of those interfaces. Accordingly,
analysis and input from potential users in each of the target roles must drive the decisions to implement
each additional interface (i.e., build to meet demand).

Workflow

Role-based access controls constrain who and what can be edited, while a workflow typically (though not
always) imposes constraints based on timing, sequencing, and roles. Enterprise document management
systems offer examples of formal document workflows, such as Microsoft SharePoint. GIFT authoring is
currently unconstrained by workflow. Courses can be authored in a top-down or bottom-up fashion, and
any and all aspects of a GIFT course can be edited at any time. If workflow is desired, it must be agreed
upon and managed by the collaborators themselves.

Given the extreme flexibility and generalized nature of GIFT, low-level authoring is unlikely to ever be
constrained by workflow. Nevertheless, implementing support for workflow for high-level authoring
could have several advantages for collaborators, including division of labor, support for review/approval
processes, assignments based on expertise, or enforcement of authoring best practices.

A system of note in this regard is EasyGenerator (www.easygenerator.com), a commercial cloud-based
adaptive system, which supports both collaborative authoring and built-in workflow. In EasyGenerator,
authoring is performed using a didactic approach. Authors first enter learning objectives based on course
goals. After goals and objectives are established, authors enter questions used to evaluate student learning
of goals. Finally, learning content is added/authored. Content can be added separately or it can be tied
directly to a question.

For GIFT, workflow support could be created at one of three different levels. The first and simplest level
would be to provide built-in support for one or more pre-defined workflow templates, analogous to the
EasyGenerator approach. The second level would integrate a workflow engine into the authoring system
and provide a means to upload (or choose from previously uploaded) workflow configurations created
outside of the authoring system. The third, and most sophisticated, approach builds on the second but
includes support for creating the workflow definition within the authoring tool itself.

Before developing any workflow, it is essential to solicit input from the user community. This is
especially true for the first level, given that user-configurable workflow would not be supported. For the
second and third approaches, a key step is to identify a suitable workflow engine. One promising option
in this regard is jBPM (http://www.jbpm.org/), an open-source business process management (BPM)
suite, which includes, among several features and tools, an extensible pure Java workflow engine
supporting the Business Process Modeling Notation specification (www.omg.org/spec/BPMN/2.0/). Of
course, jBPM is just one of many open-source workflow engines that might be applied to this purpose
(for more examples, see java-source.net).

130

http://www.easygenerator.com/
http://www.jbpm.org/
http://www.omg.org/spec/BPMN/2.0/
http://java-source.net/

Inline Support for Collaborator Communication

Support for inline communication is an appreciated feature in many collaborative environments. This
functionality is primarily provided by two modes of communication in current technology. The first
allows real-time conversations/discussions between collaborators with a global real-time chat capability.
Applications such as Google Chat provide this capability and are widely available for no cost. For many
use cases, this may be sufficient; however, there is some advantage to having the capability built in to the
collaborative authoring system. With a built-in capability, a record of the conversation could be saved as
part of the course “project” and then referenced in the future. Also, because the current state of the course
is readily available on their screen, collaborators are able to more easily reference the material they are
discussing.

The second mode of communication is per-element annotations that can be associated with various
aspects of the course. This functionality is seen on the review tab in Microsoft Office products, which
allow “comments” on specific parts of a document. Such a feature enables asynchronous communication
between authors concerning specific aspects. For example, reviewers could use it to note confusion or
mark something needing improvements during the review process.

Should the GIFT team decide to implement support for comments, decisions must be made as to the
appropriate level of granularity. In the case of Microsoft Word, comments can be inserted/attached to
something as small as a single character. However, as a practical matter for GIFT, it may be best to keep
the comments fairly coarse to avoid introducing unnecessary complexity to the authoring tools. There are
also issues about the portability of comments across multiple authoring interfaces for the same data (e.g.,
raw XML vs. a form-based tool).

Social Networking

Collaborative authoring is social by its very nature. However, beyond the obvious, it is uncertain exactly
what role social networking should play. It may be that social networking in the larger sense has more of
a role in the end-user/learner experience than in the authoring process itself. In this case, the authoring
system would clearly require support for configuration of the social networking aspects of the runtime
environment, perhaps on a per-course basis, and could then provide a view into data generated via the
social interactions as a means to inform ongoing course development. Furthermore, it is not uncommon
for instructors to engage with learners in a social learning context, so a mechanism to support this may
also be required. Given the assumption of a cloud architecture, it is easy to envision the instructor’s
interaction being mediated through the authoring system itself, blurring the distinction between the
authoring system and the runtime system.

On the other hand, in the event that GIFT (or any other ITS) is deployed as large-scale SaaS platform,
there may be a role for social networking in authoring. One can imagine, for example, the authoring
system allowing authors from different organizations sharing resources, ideas, etc. Of course, this is
impractical for commercial enterprises based on proprietary intellectual property but fits well with various
open education initiatives. In general, this area has a wide variety of areas for investigation and requires
significant further research.

Version Control and Course Publication

Version control of documents is essential in a collaborative authoring system. The idea is to protect work
progress against inadvertent changes and deletion by saving revisions of the work as it progresses. In the

131

event that unwanted changes or deletions are made, the system provides a mechanism to roll back to an
earlier revision.

GIFT currently manages course configuration and content at the file level, while surveys are managed as
entries in a relational database. The first step for revision management would be to manage revisions at
these same levels. Concurrent editing requires a more sophisticated approach than file-level management.
One approach would be to abandon the notion of files and store configuration and content items as objects
in a database. In this way, revisions can be tracked at more granular levels. This approach also supports
other ideas described in this document such as access constraints, workflow, and comments. For
versioning surveys, database schema changes would be required.

Currently GIFT course authoring and publishing are decoupled. Thus, after authoring, a second explicit
step, using the GIFT export tool, must be taken by the author to export an authored course—a process
which packages up one or more GIFT courses, including copies of required resources, in a form suitable
for distribution. After receiving the distribution, the recipient of the exported course must explicitly
import the course into a GIFT instance.

Once the GIFT authoring tool and GIFT content both reside in the cloud, the distinction between a course
that is under development (i.e., being authored) and one that’s ready for use will be blurred. Courses in-
progress may reside in the same repository and (depending upon the implementation) may actually
reference some of the same shared files. The act of publishing a course then becomes an operation that
provides visibility and access to a particular revision(s) of a set of course resources, rather than the
physical act of copying files. Additional refinements to the course would be saved as later (non-
published) revisions, that can be published if desired.

Course Resource Metadata

A potentially valuable feature for the authoring system would be support for metadata tagging of course
resources. Such a capability is probably best categorized as a like-to-have feature more than a must-have,
but is certainly worthy of consideration. Such a scheme would be useful for capturing and managing
documentation of rationales for key decisions, references for content acquired from third parties and other
data relevant to the authoring process. Having such data stored and available alongside the corresponding
resource could be useful to authors in the same way that inline code comments are useful to computer
programmers. The true value of such metadata is often fully appreciated (either by their presence or their
absence) only when the content is revisited or modified at some point in the future, particularly by a new
author.

Managing metadata at the file level could be done as a sub-element of the project construct and/or as part
of a shared content repository. Approaches for finer grained management vary depending on the resource.
For example, metadata for objects in a database (e.g., surveys) are probably best handled by extending the
database schema appropriately. Given that GIFT already supports metadata tagging of content for
pedagogical purposes, there may be some opportunity for synergy or reuse.

Usability Metrics

Any new authoring system should include support for capturing usability metrics. The objective is to log
user interactions with the authoring system and then, once a sufficient dataset is collected, perform an
analysis on the data to better understand how the system is used. Lessons learned from the analysis can be
applied to improve the application’s user experience in forthcoming releases.

132

At a minimum, the application should be instrumented to capture the following time-stamped data:
e User navigation to the functional areas of the application
e User access to the help system
e Usage errors (e.g., errors caught by input validation)
e Server response times

Finer-grained instrumentation could include detailed logging of user interactions (e.g., mouse clicks) with
widgets contained in the different functional areas. Also, although the value of the help system can often
be inferred from surrounding user interactions, it may be worthwhile to directly ask users of the help
system if the provided help was satisfactory via a simple checkbox conveniently and unobtrusively
located within the help display.

Details about data analysis must be left for another discussion; however, it is worth noting that users must
be tracked individually, rather than collectively, and the analysis should not be viewed as a static data set
but rather should track how user behavior changes over time. Doing so enable inferences to be made
about collaboration as well as how individuals and teams increase in their proficiency over time.

Integration with Third-Party Authoring Tools

GIFT currently has some level of integration with four systems: AutoTutor (Graesser, Chipman, Haynes
& Olney, 2005; Nye, 2013), the Student Information Models for Intelligent Learning Environments
(SIMILE) Workbench (Goldberg & Cannon-Bowers, 2013), Tools for Rapid Development of Expert
Models (TRADEM) (Brown, Martin, Ray, & Robson, 2014), and RapidMiner (Hoffman & Klinkenberg,
2013). None of these authoring tools are integrated seamlessly, but the design of GIFT is meant to support
authoring of ITSs via external (third-party) applications that deliver content and user experiences within
the context of a GIFT course. Indeed, the current version of GIFT includes sample courses that use
AutoTutor, Virtual Battlefield Simulator 2 (VBS2), Tactical Combat Casualty Care Simulation (TC3Sim;
Sotomayor, 2010), PowerPoint, and others. In each case, scenarios and/or content was developed using
the training application’s respective authoring capabilities.

As a matter of practicality, it is not feasible for GIFT authoring tools to integrate with more than a small
subset of possible third-party authoring tools, although these integrations are beneficial. Integration with
third-party tools means that each new release of either system incurs a significant burden of ongoing
testing and maintenance. In addition, many third-party authoring tools exist only as proprietary desktop
applications and very few expose the requisite functionality via an application programming interface
(API), making cloud-based integration difficult if not impossible. Hence, as a general rule, external
authoring tools will not/should not be integrated, but rather should remain as independent tools, the output
of which is used as input to the GIFT authoring system.

A compelling use case driven by either a unique technical capability and/or substantial user demand could
motivate an exception to this rule. Of course, the extent to which such integration can be made seamless
would vary based upon technical feasibility. One of the four systems currently integrated with GIFT,
AutoTutor is an ITS unto itself and offers the most promise in terms of authoring integration.

AutoTutor’s compelling capability is that it provides the ability to engage learners in two-way dialogue

driven by computational linguistics and semantic analysis. Additionally, the AutoTutor runtime has been
integrated with GIFT for some time now. More recently the AutoTutor Script Authoring Tool has been

133

released as a web application (Nye, Graesser, Hu & Cai, 2014), and thus is well suited for integration with
any web or cloud based authoring system for GIFT.

There will likely be increased interest and opportunities for integration with third-party authoring systems
as the GIFT authoring capability matures and its popularity grows. Each potential integration partner
system must be considered based on its merit and weighed against competing opportunities. An
alternative approach might be to make a common plug-in API for third-party authoring tools, though this
might be complex to implement in a cloud-based environment. Since GIFT is an open-source project, this
sort of specialized integration may best be left to third-parties with a vested interest in the success of the
respective authoring system.

Mobile

Without question, GIFT should support mobile learning; however, mobile authoring seems less of a
priority. Desirable though it may be, there are simply too many competing priorities. The work of creating
and maintaining platform specific (i0S, Android, Windows, etc.) apps as well as addressing the concern
for minimizing bandwidth seems like an unnecessary burden at this time.

That said, it would be wise for ongoing ITS authoring development to proceed with a mobile future in
mind. At the very least, developers should be acquainted with mobile best practices so as to architect the
system in such a way as to facilitate migration in the future. Until such time, mobile considerations may
best be limited to designing web pages to render effectively on mobile devices.

Scalability and Cloud Architecture Considerations

Earlier we made the assumption that any collaborative ITS authoring system would be best constructed as
a cloud-based web application. However, the discussion thus far, save for a brief mention of the
advantages of deploying within the cloud, has relied very little on cloud technology per se. In fact, the
only real assumption has been that an authoring tool would be Internet accessible and support multiple
concurrent users. For small-scale use, a traditional web application would be sufficient. In theory, the
entire system could reside on a single host, perhaps augmented by a second host for database operations.

For enterprise-level deployments, more sophisticated architectures are required to take full advantage of
the cloud, especially in the area of scalability. Perhaps the greatest scalability challenge would arise from
offering GIFT (inclusive of the authoring system) as a SaaS platform. In such a case, there would simply
be a single GIFT presence in the cloud, which would scale to meet demand as new organizations and their
users came on board.

To gracefully support this level of scalability, GIFT must be architected for and implemented on a cloud
infrastructure, either platform as a service (PaaS) or infrastructure as a service (laaS). While a detailed
discussion on the implications of these choices is beyond the scope of this chapter (see Mell & Grance,
2011 for an overview), PaaS would allow developers to start at a higher level of abstraction and thereby
accelerate development. The trade-off, of course, is that PaaS ties the application to the chosen platform,
reducing, and perhaps even, eliminating, any hopes for portability. This may be irrelevant for a
commercial enterprise, but may be of some concern for an open-source project such as GIFT. Conversely,
the choice of laaS will tend to maintain a higher level of portability at the expense of development time
and long-term maintenance expense.

A particularly interesting laaS option is OpenStack (www.openstack.org), an open-source laaS platform.
Ignoring the relative merits of OpenStack vs. other laaS options, OpenStack has the unique advantage of

134

http://www.openstack.org/

being available both through commercial OpenStack cloud service providers, while also being deployable
to organization-owned hardware for an internally owned and operated cloud.

Lastly, regulatory and compliance requirements, such as International Traffic in Arms Regulations
(ITAR), must be considered for certain applications by US government agencies and contractors. Amazon
Web Services, for example, offers Amazon Web Services (AWS) GovCloud (2015) to address this
concern. In general, service providers have been expanding to fill these types of spaces, with specialized
support for government needs and also Health Insurance Portability and Accountability Act (HIPAA)
privacy regulations.

The laaS/PaaS choice is just the first of several architectural considerations, where getting the architecture
right is the fundamental design that will determine scalability. The bottom line is that development of any
cloud-based authoring system must be preceded by a thorough analysis of cloud architectures, in light of
current and anticipated system requirements.

Recommendations and Future Research

Future success of advanced ITSs will depend on the availability of collaborative authoring tools. Any
effort to develop the next generation of such authoring tools should be preceded by a thorough analysis
including the following:

e Detailed examination of the design considerations as outlined here,
e Review of analogous tools such as WebProtégé and EasyGenerator, and
e Input from the user community to identify design considerations and priorities.

Once objectives and priorities for the authoring tool are established they must also be put into the larger
context of schedule and budget for the ITS as a whole. Tradeoffs will have to be made between advancing
the capabilities of the ITS itself and advancing the authoring system.

Given the rapid pace of development of GIFT (and presumably other ITSs) authoring tool design should
plan for change. To the greatest extent practical, the authoring system should be built with appropriate
abstractions, perhaps as a framework, so that authoring for new ITS capabilities can be added with
minimal changes to the system as a whole.

Finally, while authoring tools are currently mainly used to support research on ITSs and their capabilities,
a sophisticated collaborative authoring environment could offer a testbed for research on the psychology
of collaboration. Even in the short term, quantitative research studying the performance and efficiency of
the ITS authoring systems is an important direction. As such, moving forward, identification and analysis
of a common set of usability metrics is probably an important step forward.

References

Amazon Web Services. (2015, Mar 20). Retrieved from AWS GovCloud (US) Region - Government Cloud
Computing: http://aws.amazon.com/govcloud-us/

Brown, D., Martin, E., Ray, F. & Robson, R. (2014). Using GIFT as an Adaptation Engine for a Dialogue-Based
Tutor. Proceedings of the Second Annual GIFT Users Symposium (GIFT Sym2), (pp. 163-174).

Easy Generator. (2015, Mar 20). Retrieved from www.easygenerator.com

135

Elkins, D. (2013, January 24). E-Learning Authoring Tool Comparison. Retrieved from E-Learning Uncovered :
http://elearninguncovered.com/2013/01/e-learning-authoring-tool-comparison/

Goldberg, B. & Cannon-Bowers, J. (2013). Experimentation with the Generalized Intelligent Framework for
Tutoring (GIFT): A Testbed Use Case. AIED 2013 Workshops Proceedings Volume 7, (pp. 27-36).

Graesser, A. C., Chipman, P., Haynes, B. C. & Olney, A. (2005). AutoTutor: An intelligent tutoring system with
mixed-initiative dialogue. IEEE Transactions on Education, 48(4), 612-618.

Hoffman, M. & Ragusa, C. (2014). Unwrapping GIFT: A Primer on Authoring Tools for the Generalized Intelligent
Framework for Tutoring. Generalized Intelligent Framework for Tutoring (GIFT) Users Symposium
(GIFTSym2), (pp. 11-24).

Hofmann, M. & Klinkenberg, R. (2013). Rapidminer: Data Mining Use Cases and Business Analytics Applications.
Chapman & Hall/CRC.

Mell, P. & Grance, T. (2011). The NIST Definition of Cloud Computing (800-145). National Institute of Standards
and Technology (NIST).

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of
the art. In T. Murray, S. Blessing & S. Ainsworth, Authoring tools for advanced technology learning
environments (pp. 491-544). Springer.

Nye, B. D. (2013). Integrating GIFT and AutoTutor with Sharable Knowledge Objects (SKO). AIED 2013
Workshop on GIFT, (pp. 54-61).

Nye, B. D., Graesser, A. C., Hu, X. & Cai, Z. (2014). AutoTutor in the cloud: A service-oriented paradigm for an
interoperable natural-language ITS. Journal of Advanced Distributed Learning Technology, 2(6), 49-63.

Nye, B. D., Rahman, M. F., Yang, M., Hays, P., Cai, Z., Graesser, A. & Hu, X. (2014). A tutoring page markup
suite for integrating shareable knowledge objects (SKO) with HTML. Intelligent Tutoring Systems (ITS)
2014 Workshop on Authoring Tools.

Open Source Workflow Engines in Java. (2015, Mar 20). Retrieved from Java-Source.net: java-source.net/open-
source/workflow-engines

Pappas, C. (2013, March 12). The Ultimate List of Cloud-Based Authoring Tools. Retrieved from eLearning
Industry: http://elearningindustry.com/the-ultimate-list-of-cloud-based-authoring-tools

Schneider, P. (2012, June 18). Content Authoring Tools: Cloud-Based or Desktop? Retrieved from Learning
Solutions Magazine: http://www.learningsolutionsmag.com/articles/952/content-authoring-tools-cloud-
based-or-desktop

Sotomayor, T. M. (2010). Teaching tactical combat casualty care using the TC3 sim gamebased simulation: a study
to measure training effectiveness. Studies in health technology and informatics., 154, 176-179.

Sottilare, R. A., Goldberg, B. S., Brawner, K. W. & Holden, H. K. (2012). A modular framework to support the
authoring and assessment of adaptive computer-based tutoring systems (CBTS). Interservice/Industry
Training, Simulation, and Education Conference (I/ITSEC) 2012., Paper No. 12017, pp. 1-13.

Tao, T. (2015, Feb 28). Articulate vs. Captivate: The complete series. Retrieved from Fredrickson Communications:
fredcomm.com/articles/detail/articulate_vs_captivate_comparing_popular_rapid_elearning_development_t
ools

Tudorache, T., Nyulas, C. & Noy, N. F. (2013). WebProtégé: A collaborative ontology editor and knowledge
acquisition tool for the web. Semantic Web, 4(1), 89-99. Retrieved from WebProtege - Protege Wiki:
http://protegewiki.stanford.edu/wiki/WebProtege

Whitehead Jr., E. J. & Wiggins, M. (1998). WebDAV: IEFT standard for collaborative authoring on the Web.
Internet Computing, IEEE, 2(5), 34-40.

136

Chapter 10 Authoring for the Product Lifecycle

Steve Ritter
Carnegie Learning

Introduction

Intelligent tutoring systems (ITSs) and other adaptive learning environments have been developed and
tested for many years, and there is substantial evidence that they can contribute to significantly better
student outcomes (Van Lehn, 2011; Pane et al., 2014). However, such systems have found limited use in
schools and training programs. In part, this reflects a mismatch between the traditional educational
environment, which holds time fixed and aims to teach students as much as possible within that time, and
adaptive systems (and other mastery environments), which aim to allow students to define levels of
student mastery and then provide enough instruction to allow students to reach that level of competency,
however long it takes.

Within the authoring tool community, there is another theory about the relatively slow adoption of
adaptive learning environments: they are too expensive to produce. In the classic volume on such
authoring tools (Murray, Blessing and Ainsworth, 2003), there are two stated reasons for developing
authoring tools: “to reduce development cost, and to allow practicing educators to become more involved
in their creation.” (p. iv). In both of these goals, we have primarily focused on the creation of the
instructional systems (c.f. Blessing, 2003; Razzaq and Heffernan, 2010; Aleven, et al., 2006). Some
systems have focused on reuse of existing systems (Ainsworth, et al., 2003; Ritter and Koedinger, 1996),
but even these take the creation of a new system from existing parts to be their goal.

It is important that authoring tools for intelligent tutoring systems focus on being able to create new
systems quickly and on making authoring accessible to teachers and content experts who are not
sophisticated programmers. But if ITSs are to become widespread and in regular use, they need to also
focus on features that allow these systems to be maintained and improved over time. One of the primary
advantages of ITSs is that they allow us to collect detailed data on student learning, which can help us
improve the educational outcomes of the systems themselves. We call this focus on continual
improvement “authoring for the product lifecycle.”

The Far-Outer Loop

VanLehn (2006) describes tutoring systems as containing an inner loop and an outer loop. The inner loop
relates to the tutor’s behavior at each step of a complex task; the outer loop is responsible for choosing
tasks for a student. In fact, the inner and outer loop description applies more generally to adaptive
systems. Within adaptive systems, inner-loop behavior is responsible for guiding students through a task,
including providing hints and feedback for the student, diagnosing errors and adapting to different
methods of problem-solving that the student might employ. The outer loop helps the system adapt to the
student by assessing the student’s level of knowledge at a higher level. The outer loop sets appropriate
pacing for the student (for example, by assessing mastery and allowing or recommending that the student
progress to the next topic when master is obtained) and picks appropriate tasks for the student to complete
(typically aiming to select tasks that emphasize skills that are within the student’s zone of proximal
development). In this way, tutoring systems adapt both within-task and across tasks.

137

Product-lifecycle authoring introduces an additional form of adaptation, taking place in what could be
referred to as the far-outer loop. This loop encompasses changes to the tutoring system at a timescale
larger than the task level. These changes represent improvements to the system itself that are made based
on data collected from prior users of the system. The goal of a tool focused on authoring for the lifecycle
is to enable rapid and relatively inexpensive responses to data collected from the system, so that future
students using the system will have an improved experience. When considering such a system, we need to
consider the possible changes to the system that can result from this data collection and some models for
how to implement changes to the tutoring system itself.

Types of Data-Based Changes

Our first consideration for product-lifecycle authoring is the type of changes that we might make to
systems based on these data. We consider four types of changes: those affecting system parameters, those
focused on instructional design changes, those addressing content, and those affecting the ability of the
system to be personalized for different types of students. These types of changes differ in the extent to
which they require extensive changes to the system and the extent to which they employ human judgment
(and thus cannot be easily automated).

Parameter Changes

A common type of change to ITSs is to adjust the parameters that control how the system reacts to
students. For example, model-tracing tutors typically assess student knowledge with respect to discrete
skills, also known as knowledge components. The system’s task is to assess each student’s mastery of
each knowledge component. Many tutors perform this task through Bayesian knowledge tracing, which
employs four parameters for each knowledge component (Corbett and Anderson, 1995). Two of these
parameters represent estimates of knowledge: the probability that the student has mastered the knowledge
component prior to instruction and the probability that the knowledge component will be mastered, given
an opportunity (this parameter is basically controlling the ease of learning the knowledge component).
Since knowledge is not perfectly reflected in performance, Bayesian knowledge tracing also uses two
performance parameters: the probability that the student will guess the correct answer (i.e., answer
correctly without having mastered the underlying knowledge) and the probability that the student will
“slip” (i.e., answer incorrectly, even though the student does possess the requisite knowledge). Since each
of the four parameters is considered a probability, each can vary between 0 and 1, although there are
various reasons why particular areas of this four-dimensional problem space may not be used (Beck and
Chang, 2007; Ritter et al., 2009).

Since settings of these parameters control task selection and mastery determination, they are essential
components in implementing the outer loop of a tutoring system. Although the settings of these
parameters is crucial to proper behavior of the system, the parameters are typically based on the intuitions
of the developers in the initial release of a tutoring system. Once data are collected from students, best-
fitting values for these parameters can be found (Cen et al., 2007; Gonzalez-Brenes et al., 2014; Khajah et
al., 2014), and Cen et al. (2007) demonstrated that modifying the system to use the discovered parameters
can produce better outcomes.

Beyond fitting Bayesian parameters within knowledge components is the question of whether the task is
being modeled with the correct set of knowledge components. Decomposing a task into the knowledge
components that best explain learning is also typically done based on intuition (informed by cognitive
task analysis). Here, too, there is a need for empirical refinement. Koedinger et al. (2012) demonstrate
that models found through data-fitting provide significant improvements over the initial intuition-driven

138

model. Thus, authoring systems that manage changes to such parameters over time can provide significant
benefit to a widely used system.

Design Changes

Adjusting knowledge tracing parameters can correct inefficiencies in the way that the tutoring system
navigates the outer loop. If a deficiency in the system involves the inner loop (the nature of the task
itself), changes may require fundamental changes to the task model itself. Dickison et al. (2010) found
that parameter adjustments made on the basis of previously collected data correctly modeled a new
student cohort, except in the case of an instructional unit that had undergone design changes. Since design
changes can negate the validity of changes to knowledge tracing parameters, it is essential that authors
wishing to improve a system be able to understand whether improvements can be achieved through
parameter changes or if they require design changes. In a system maintained for any length of time, there
are always a long list of potential design changes to be made. Some are driven by customer requests;
others by technical changes. If changes are to be made on the basis of the potential for improvements in
the instructional effectiveness of the system, then a lifecycle authoring system needs to provide guidance
to authors that can help prioritize these improvements and predict their likely impact.

While it is difficult to provide general guidance on identifying design errors, Carnegie Learning’s
experience suggests a few heuristics that could be helpful in prioritizing design changes. Internally, we
use an “attention metric,” which combines several indicators of educational ineffectiveness, to which we
(as authors) must direct our attention. The most important relates to “wheel spinning” (Beck and Gong,
2013), the case where students fail to master a skill in what is considered a reasonable amount of time. A
pure mastery learning system will continue to try and instruct such a student, even if no progress is being
made. In our tutors, we terminate instruction on this topic after some period of time and notify a teacher
that the student has failed to master the topic. Instructional topics that produce a large number of such
notifications are strong candidates for redesign. In fact, parameter fitting on such units may be
counterproductive. If a particular unit is not producing improvements in performance, then fitting
parameters based on the data might lead to a near-zero probability of mastering the skill on an
opportunity, which would result in such a system wanting to present even more ineffective instruction to
students.

Another factor we have found useful in our “attention metric” concerns the way that teacher treat units of
instruction. Teachers have control over inclusion of units of instruction within a curriculum, and units that
are often excluded are good candidates for scrutiny. Similarly, teachers can manually skip students past
particular problems, and the record of the frequency of this kind of behavior can indicate that those
problems are perceived to be confusing or otherwise ineffective.

Content Changes

One form of task change within a tutoring system involves changes to the content presented within a task,
rather than the basic structure of the task. Such content changes could be driven by user feedback to the
authors (e.g., ratings of helpfulness or enjoyment of particular activities), or the desire to allow end-users
to customize their system (Heffernan & Heffernan, 2014), increase the number of task contexts, or
increase the variety of contexts.

Depending on the sophistication of the task model and architecture of the overall system, content
authoring might employ general tools that can easily be used by non-programmers, or they might employ
special-purpose tools, whether for programmers or not (Ritter et al., 1998). In a lifecycle authoring tool,
the particular concern for content is in managing the data about particular pieces of content. Such a

139

system needs to track what elements of content are being used and (if available), which receive high or
low ratings from users. A particular concern related to lifecycle content authoring is the issue of problem
morphs. Tutoring systems assume that problems that are modeled with the same knowledge components
and delivered with the same task model are educationally equivalent. A lifecycle authoring system needs
to provide tools to determine whether this assumption is justified. If some problems prove to be
unexpectedly difficult or easy, then either the task model or the knowledge component model will need to
be adjusted.

Personalization

A particularly compelling type of change to a tutoring system is one that personalizes the system such that
different students receive different educational experiences. Such personalization changes would be
warranted, for example, if data showed aptitude-treatment interactions: that a particular tutoring approach
worked well for students with certain characteristics but that a different approach worked best with
students possessing different characteristics. Many people have strong intuitions that aptitude-treatment
interactions are pervasive in education and, particularly, believe that learning styles reflecting a preferred
presentation mode (such as verbal vs. visual) reflect such interactions, but the evidence for this is weak
(Pashler, et al., 2009). More modest forms of personalization do seem to be effective (Ritter et al., 2014).
An important consideration for lifecycle authoring tools would be identifying potential opportunities for
treating individuals or classes of individuals differently within a tutoring system. Yudelson et al. (2014)
describe a technique for identifying whether a tutoring system should treat subclasses of students
differently for the purpose of knowledge tracing.

Models for Applying Changes

The previous section focused on the types of changes that we might want to make to a tutoring system,
based on data collected from that system. Another dimension to be considered in a lifecycle authoring
system is the model for approving and applying such changes to the system. We consider three types of
models. In the “manual” model, the data are analyzed and reviewed by authors before changes are made
to the system. In the “automated” model, the data are collected and analyzed by a stored set of
procedures, and the changes to the system are automatically applied. The “crowdsourced” model
combines aspects of the human judgment applied in the manual model and the programmed changes used
in the automated model. In this case, changes contributed by users can be automatically incorporated into
the system, making users authors. But the model might also have a publishing model where a central
authority approves changes or where users (or particular categories of users) approve changes or control
who has access to the changes. A key issue within each of these models is determining when our
confidence in the data currently collected justifies making changes to be seen for future users. Given the
concerns of personalization and, in some cases, uncertainty about how user populations may change over
time, this is a difficult statistical issue that has not received enough attention.

The Manual Change Model

The manual change model is a model of iterative change with humans (typically learning scientists) in the
loop. In this model, instruction is often instrumented to provide feedback about what elements of
instruction are most effective. Sometimes, A/B tests (randomized field experiments) are employed,
providing data directly relevant to future improvements; other times, more naturalistic data collection is
involved.

140

The Open Learning Initiative (oli.cmu.edu) courses are good examples of how manual iterative
refinement can produce more effective courseware (Thille, 2008). These courses collect extensive data,
from embedded tutors, manipulatives and other embedded activities that provide extensive information
about the effectiveness of various aspects of individual courses. In many cases, it can be relatively easy to
identify areas for improvement in a course, but there is often a large space of potential design
improvements available to remedy the flaws. Instead of relying solely on in-house expertise, the OLI
project aims to develop a community of practice, sharing results on elements of the courses and soliciting
ideas for improvement.

Improvements to Carnegie Learning’s geometry tutor represent another example of the manual change
model (Butcher and Aleven, 2008; Hausmann and Vuong, 2012). Over a period of several years, iterative
improvements in the design of a tutor teaching reasoning about angles in a geometric diagram were
conducted, focused on more closely following research on self-explanation and on the contiguity principle
(Clark and Mayer, 2011). The process involved a series of lab-based and small field design experiments,
which eventually led to large implementations and field evaluations. Results showed that students were
able to reach mastery in less time and with the need to complete fewer problems in the improved version
of the tutor.

The Automated Change Model

The manual change model is quite flexible, potentially leading to a wide variety of changes, but it is
labor-intensive and can take years of effort to produce improvements. The automated change model may
be more limited in its scope, but automated changes are able to be applied much more quickly.

The basic idea behind the automated change model is that one can pre-specify a design space of potential
approaches to instruction (or paramaterizations of approaches). The system is then able to explore the
design space, collecting data on what approaches work best.

Liu et al. (2014a) used Learning Factors Analysis (LFA; Cen, et al., 2007) to automatically discover
knowledge component models that best explained previously collected data from cognitive tutors. In this
process, the author specifies a set of knowledge components that might potentially represent relevant
learning factors. For example, in modeling the ability for students to take the area of geometric figures,
the orientation of a triangle (base parallel to the ground or not) may or may not cause difficulties for some
students. These skills become parameters for potential use in a predictive model. LFA is also able to
“merge” knowledge components to produce new parameters. For example, the LFA model discovered
that computing area “backwards” (calculating one of the linear measures, given the area) was a difficulty
factor for circles but not for rectangles. This parameter results from merging the potential knowledge
components related to particular shapes and to working backwards. In almost all cases, the models found
by LFA were superior to those developed by experienced developers, even after years of manual
refinement. While changes resulting from LFA have not yet been automatically applied to the tutoring
system, it would be straightforward to create a system that did automatically apply the results of such an
analysis. At this point, automatic refinement of this kind requires enough confidence in the technique. It is
likely that such confidence would result from continued demonstrations that such changes not only
produce improvements in model fits but that applying such improvements produce real-world
improvements. Some such randomized field trials are currently underway.

One approach that is inherently fully automated is the use of multi-armed bandit procedures (Liu et al.,
2014b). As with LFA, the multi-armed bandit approach starts with a specification of a design space for
the application. The approach typically works well with large spaces that can be parameterized. The
approach performs a search of the design space in the field, presenting different variants of the

141

educational system to different students. Designs (defined by sets of parameters) that work best (by
whatever metric is able to be used in the field) become probabilistically favored in selection for new
students. Eventually, the system converges on a design that works best for users. One important
consideration in this type of system include balancing the need for exploration of the design space and the
desire to exploit the parameters representing the most effective variant of the system. Implementations of
this kind of system must also be in contexts where it is reasonable to measure effectiveness quickly and
reliably.

One concern with automated change models, particularly in commercial systems, is maintaining some
control and knowledge over the changes made. If we are to rely on automated changes, we need to be
very certain that the changes made will result in better performance, not just for typical students but
across the whole range of students using the system.

The Crowdsourced Change Model

Adaptation to different student populations is a strength of the crowdsourced change model. In this
model, users (or some subset of users) are able to contribute to the improvement of the system, either by
creating new content or providing feedback on existing system content and features. Key to the
crowdsourced change model is the ability to create a community in which users feel rewarded for their
contributions. Variants of this model may be similar to the manual change model (in the case where
suggested changes are centrally curated) or the automated change model (in the case where user-
generated content is automatically provided to other users).

Razzaq et al. (2009) provide an example of a crowdsourced content authoring system. The ASSISTment
Builder is a content authoring system allowing end-users (particularly teachers) to extend ASSISTment
by writing new content. Their goal was to provide a system that is simple to use but also provides some
flexibility in allowing advanced users to variablize content, enabling users to create a large quantity of
items. This new content can be immediately provided to other users, resulting in something like an
automated improvement model. The system also provides a feedback mechanism for users, which
provides a basis for manual improvements in the system. Users are able to point out errors or contribute
suggestions for improvement in particular items.

Aleahmad et al. (2009) similarly describe an open content authoring system, grounded in creating a web-
based authoring community. A particular goal of this system was to encourage a wide variety of items,
which could enable the resulting system to better personalize content to address particular student
interests. The system also contemplated a rating and curation system that would allow the community to
vet content before it was presented to students.

The Lifecycle Authoring System and Implications for the Generalized
Intelligent Framework for Tutoring (GIFT)

If ITSs and other adaptive learning systems are to achieve wide adoption, they will need to be built with
the expectation that they can change over time. Lifecycle authoring systems allow these systems to
capitalize on one of their most important advantages: their ability to collect and make sense of data that
can result in improvement to the systems themselves. The design goals of the Generalized Intelligent
Framework for Tutoring (GIFT) architecture include consideration of the use of data to improve
instructional effectiveness (Sottilare & Holden, 2013), but much work remains to be done in identifying
commonalities in the way this may be done across different tutoring systems and formalizing these
commonalities into standard approaches to system improvement.

142

While different lifecycle authoring systems will take different approaches, all systems need to consider
two basic dimensions: the types of changes that they support and the model for applying such changes.
We would not expect a single system to be designed to support all types of changes and all models. Some
change models seem particularly appropriate for particular types of changes. For example, automated
change models seem particularly suited to parameter changes, since they require a description of the
search space. Crowdsourcing seems particularly suited to content changes, under the assumption that
content creation is a natural domain for end-users, particularly, users who are teachers. Design changes,
on the other hand, may require input from programmers, instructional designers and domain experts,
leading to the likelihood that such changes will be produced with a manual change process. Advance
planning for the types of changes expected to be made in adaptive systems and incorporation of
appropriate models for improvement will allow advanced adaptive instructional systems to become more
mainstream, leading to better educational outcomes.

References

Ainsworth, S., Major, N., Grimshaw, S. K., Hayes, M., Underwood, J. D., Williams, B. & Wood, D. J. (2003).
REDEEM: Simple Intelligent Tutoring Systems From Usable Tools. In T. Murray & S. Blessing & S.
Ainsworth (Eds.) Tools for Advanced Technology Learning Environments. (pp. 205- 232). Amsterdam:
Kluwer Academic Publishers.

Aleahmad, T., Aleven, V. & Kraut, R. (2009). Creating a corpus of targeted learning resources with a web-based
open authoring tool, IEEE Transactions on Learning Technologies, 2(1), 3-9.

Aleven, V., McLaren, B.M., Sewall, J., Koedinger, K.R.: The cognitive tutor authoring tools (CTAT): Preliminary
evaluation of efficiency gains. In Ikeda, M., Ashley, K.D., Tak-Wai, C., eds.: International Conference on
Intelligent Tutoring Systems, Springer (2006) 6170

Beck, J.E. and Gong, Y. (2013). Wheel-Spinning: Students Who Fail to Master a Skill. In Proceedings of the 16th
International Conference on Artificial Intelligence in Education. Memphis, TN. pp. 431-440.

Beck, J. E. and Chang, K. M. (2007). Identifyability: A fundamental problem of student modeling. Proceedings of
the 11th International Conference on User Modeling, pp. 137-146.

Blessing, S.B. (2003) A Programming by Demonstration Authoring Tool for Model-Tracing Tutors. In Murray, T.,
Blessing, S.B. & Ainsworth, S. (Ed.), Authoring Tools for Advanced Technology Learning Environments:
Toward Cost-Effective Adaptive, Interactive and Intelligent Educational Software. (pp. 93-119). Boston,
MA: Kluwer Academic Publishers

Butcher, K. & Aleven, V. (2008). Diagram interaction during intelligent tutoring in geometry: Support for
knowledge retention and deep transfer. In C. Schunn (Ed.) Proceedings of the Annual Meeting of the
Cognitive Science Society, CogSci 2008. New York, NY: Lawrence Earlbaum.

Cen, H., Koedinger, K.R., Junker, B. (2007). Is Over Practice Necessary? Improving Learning Efficiency
with the Cognitive Tutor using Educational Data Mining. In Lucken, R., Koedinger, K. R. and Greer, J.
(Eds). Proceedings of the 13th International Conference on Atrtificial Intelligence in Education, pp. 511-
518.

Clark, R. C. & Mayer, R. E. (2011). E-Learning and the Science of Instruction: Proven Guidelines for Consumers
and Designers of Multimedia Learning (3rd ed.). San Francisco, CA: John Wiley & Sons.

Corbett, A.T., Anderson, J.R. (1995). Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge.
User Modeling and User-Adapted Interaction, 4, 253-278.

Dickison, D., Ritter, S., Nixon, T., Harris, T.K., Towle, B., Murray, R.C.and Hausmann, R.G.M.: Predicting the
Effects of Skill Model Changes on Student Progress. Intelligent Tutoring Systems 2010: 300-302.
Koedinger, K. R., McLaughlin, E. A. & Stamper, J. C. (2012). Automated cognitive model improvement. Yacef, K.,
Zaiane, O., Hershkovitz, H., Yudelson, M., and Stamper, J. (eds.) Proceedings of the 5th International

Conference on Educational Data Mining, pp. 17-24. Chania, Greece.

Dickison, D., Ritter, S., Nixon, T., Harris, T.K., Towle, B., Murray, R.C., Hausmann, R.G.M. (2010). Predicting the
Effects of Skill Model Changes on Student Progress. In Intelligent Tutoring Systems (2), pp. 300-302.

Gonzélez-Brenes, J.P., Huang, Y., Brusilovsky, P. (2014). General Features in Knowledge Tracing: Applications to
Multiple Subskills, Temporal Item Response Theory, and Expert Knowledge. The 7th International
Conference on Educational Data Mining (EDM 2014). London, England

143

Hausmann, R.G.M. & Vuong, A. (2012) Testing the Split Attention Effect on Learning in a Natural Educational
Setting Using an Intelligent Tutoring System for Geometry. In N. Miyake, D. Peebles & R. P. Cooper
(Eds.), Proceedings of the 34th Annual Conference of the Cognitive Science Society. (pp. 438-443).
Austin, TX: Cognitive Science Society.

Heffernan, N. & Heffernan, C. (2014) The ASSISTments Ecosystem: Building a Platform that Brings Scientists and
Teachers Together for Minimally Invasive Research on Human Learning and Teaching. International
Journal of Artificial Intelligence in Education.

Khajah, M., Wing, R. M., Lindsey, R. V. & Mozer, M. C. (2014) Incorporating latent factors into knowledge tracing
to predict individual differences in learning. In J. Stamper, Z. Pardos, M. Mavrikis & B. M. McLaren (Eds),
Proceedings of the 7th International Conference on Educational Data Mining (pp. 99-106).

Koedinger, K.R., Stamper, J.C., McLaughlin, E.A. & Nixon, T. (2013). Using data-driven discovery of better
student models to improve student learning. In H.C. Lane, K. Yacef, J. Mostow & P. Pavlik (Eds.),
Proceedings of the 16th International Conference on Artificial Intelligence in Education, pp. 421-430.

Liu, R., Koedinger, K. R. & McLaughlin, E. (2014a). Interpreting model discovery and testing generalization to a
new dataset. Proceedings of the 6th International Conference on Educational Data Mining, London, UK.

Liu, Y., Mandel, T., Brunskill, E. and Popovic, Z. (2014b). Trading Off Scientific Knowledge and User Learning
with Multi-Armed Bandits. Proceedings of the 6th International Conference on Educational Data Mining,
London, UK.

Murray, T., Blessing, S. & Ainsworth, S. (Eds.) (2003). Authoring Tools for Advanced Technology Learning
Environments. Kluwer Academic/Springer Pub.: Netherlands.

Pashler, H., McDaniel, M., Rohrer, D. & Bjork, R. (2009). Learning styles: Concepts and evidence. Psychological
Science in the Public Interest, 9, 105-119.

Razzaq, L., Parvarczki, J., Almeida, S.F., Vartak, M., Feng, M., Heffernan, N.T. and Koedinger, K. (2009). The
ASSISTment builder: Supporting the Life-cycle of ITS Content Creation. IEEE Transactions on Learning
Technologies Special Issue on Real-World Applications of Intelligent Tutoring Systems. 2(2) 157-166.

Razzaq, L. & Heffernan, N. (2010). Open content Authoring Tools. In Nkambou, Bourdeau & Mizoguchi (Eds.)
Advanced in Intelligent Tutoring Systems.pp 425-439. Berlin: Springer Verlag.

Ritter, S., Anderson, J., Cytrynowicz, M., and Medvedeva, O. (1998) Authoring Content in the PAT Algebra Tutor.
Journal of Interactive Media in Education, 98 (9)

Ritter, S., Harris, T. H., Nixon, T., Dickison, D., Murray, R. C. and Towle, B. (2009). Reducing the knowledge
tracing space. In Barnes, T., Desmarais, M., Romero, C. & Ventura, S. (Eds.) Educational Data Mining
2009: 2nd International Conference on Educational Data Mining, Proceedings

Ritter, S. and Koedinger, K. R. (1996). An architecture for plug-in tutor agents. Journal of Artificial Intelligence in
Education, 7, 315-347.

Ritter, S., Sinatra, A. M. and Fancsali, S. E. (2014). “Personalized Content in Intelligent Tutoring Systems.” In
Design Recommendations for Intelligent Tutoring Systems, vol. 2, pp. 71-78. Army Research Laboratory.

Sottilare, R. A. and Holden, H. K. (2013). Motivations for a Generalized Intelligent Framework for Tutoring (GIFT)
for authoring, instruction and analysis. In AIED 2013 Workshop Proceedings, Volume 7, 1-9.

Thille, C. (2008). Creating open learning as a community based research activity. In liyoshi, T. & Kumar, V. (Ed.),
Opening Up Education: The Collective Advancement of Education through Open Technology, Open
Content, and Open Knowledge. Cambridge, MA. MIT Press.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence and
Education, 16, 227-265.

Yudelson, M.V., Fancsali, S.E., Ritter, S., Berman, S.R., Nixon, T. and Joshi, A. (2014). Better data beats big data.
Proceedings of the 7th International Conference on Educational Data Mining

144

http://www.tommurray.us/atoolsbook/index.html
http://www.tommurray.us/atoolsbook/index.html
http://link.springer.com/chapter/10.1007%2F978-3-642-14363-2_20
http://oli.cmu.edu/wp-oli/wp-content/uploads/2012/05/Thille_2008_Building_Open_Learning.pdf

SECTION |11

AUTHORING
AGENT-BASED
TUTORS

Keith Brawner, Ed.

146

cuartEr 11 Authoring Agent-based Tutors

Keith W Brawner
US Army Research Laboratory

Introduction

The purpose of this introductory chapter is not to raise questions or present recommendations, but to
attempt minor summary of the conversations among the literature. Many of these written works have
revolved around the ideas of identification of authors, establishment of roles, reductions in complexity,
and automation. The artificial intelligence (Al) community has long desired to “democratize Al” through
the use of tools to encode knowledge in expert systems, neural networks, and other items. These efforts
have fallen somewhat short: Al for problem solving purposes remains in the hands of engineers,
scientists, and programmers. The field of intelligent tutoring systems (ITSs) has made somewhat better
progress but has started looking to the agent-based Al world for solutions, making this section timely and
relevant. Before addressing the topic of agents and their authoring, it is helpful to refresh the mental
model of tool software lifecycle.

The Birth of a Tool

Given that necessity is the mother of invention, it is no surprise that the ITS tools, thus far, have been
primarily crafted toward a single system, template, use case, or user category. The creation of a tool is
frequently the last portion of the development of a system, relegated to the end of a project along with
user manuals, training materials, and long-term supporting logistics. The reason for this is simple: tooling
occurs after machining.

There has been little research into ITS tools as a factor of two things. The first is byproduct of being late
in the developmental cycle, while the second is the multi-faceted nature of the tools. ITS authoring tools
naturally involve pedagogical strategy, learning knowledge modeling and assessment, content creation
and supplementation, and other items. Each of these items calls for a somewhat unique solution, and in
this section, | call for a science of the pedagogical authoring process, as it relates to pedagogical agent
creation (Shaffer, Ruis & Graesser, 2015).

The Life and Growth of a Tool

The life of a tool is naturally closely tied to the life of the system. At the time of system creation, there is
usually no tool to speed the process of development. Developers must handcraft each of the system parts,
edit configuration files by hand, and test various configurations for speed and effectiveness. After a
workable solution is found, the work of creating the ITS components can be offloaded to a knowledgeable
user with the appropriate background. This usually occurs with a simplistic tool, such as an extensible
markup language (XML) editor, interface specifier, or simple application programming interface (API)
specification. Projects such as the Generalized Intelligent Framework for Tutoring (GIFT) *AT editing
tools, and the AutoTutor Script Authoring Tool (ASAT) have reached these stages by XML editing
(Brawner & Sinatra, 2014) and script authoring (Nye, Hu, Graesser & Cai, 2014), respectively.

147

Assuming that the system survives long enough to be well used or profitable, such a knowledgeable user
usually has enough of a programming background to automate part of the process, program a workflow,
or otherwise decompose the authoring task into pieces. This allows the task to be performed by less
knowledgeable users such as undergraduate students or interns. Projects for authoring conversational
agent-based tutors such AutoTutor have recently reached this stage (Nye et al., 2015).

The Death of a Tool

Assuming the system survives long enough to reach a modicum of success, the authoring task is
decomposed into component parts and performed by more junior personnel. Such a task is time
consuming but uncomplicated, and automation techniques begin to become attractive time-saving items.
Projects such as SimStudent (MacLellan, Koedinger & Matsuda, 2014) allow mostly automated authoring
through a process of knowledge demonstration. With SimStudent, such knowledge demonstration can be
performed by any user with knowledge of the domain of instruction, but relies upon the extensive
architecture underpinning a simulation of the environment, measurement of actions, and tutoring system
interoperability. Each one of these items could potentially have a tool to aid a category of user in
assembling a system, if the situation is complicated enough to warrant it.

ITS Complicated

One of the themes that repeats itself through the ITS literature conversation is the simple fact that ITSs
are complicated. The word “complicated” is used as a proxy for expensive, time-consuming, difficult to
understand, and other themes. The construction of an ITS currently involves personnel with knowledge of
instructional design, learner modeling, a specific domain, sensors/interfaces, machine learning
interpretation of data streams, and the ability to create a student environment that is able to provide these
assessments and feedbacks. Another author in this section describes the process as requiring “deep and
broad knowledge to manage these constraints, accommodate tradeoffs, and negotiate incompatibilities”
(Shaffer et al., 2015).

One of the goals of the GIFT project is to simplify this expertise required through the creation of
interoperable “modules,” with each of them tasked with the functions above (Learner, Pedagogical,
Sensor, Domain, etc.). In this manner, the hope and plan is to create a module (or module plug-in) only
once, allow it to interoperate, and to extensively reuse it. Such a module could be a plan for instruction,
such as the Engine for Management of Adaptive Pedagogy (Goldberg et al., 2012), or a machine learning
process for interpreting sensor data from game environments and the Microsoft Kinect (Baker, DeFalco,
Ocumpaugh & Paquette). This type of solution, however, raises a new problem: that of generalization.

Generalization

The problem of generalization is a discussion that permeates all conversations where GIFT is involved.
The first book in the Design Recommendations for Intelligent Tutoring series attempted to summarize the
problem of generalizable models of student performance (Sottilare, Graesser, Hu & Holden, 2013), while
subsequent books have addressed domain-general models for instruction (Sottilare, Graesser, Hu &
Goldberg, 2014), and future books intend to address the topics of assessment and teams. In each meeting
to discuss each problem, the question of “how can X be done without explicit and complete knowledge of
Y?” is raised, where X and Y relate to any of the other modules.

148

ITSs, as a category, are intended to cut across all categories of training. ITS authoring, as a category, cuts
across all categories of modules and components. The unique challenges presented are how to construct
tools that generalize to the general purpose of the ITS. In this regard, the authors of this section present
solutions and recommendations for how this may be accomplished for agents (Cohn, Olde, Bolton,
Schmorrow & Freeman, 2015), in complex domains of instruction (Shaffer et al., 2015), during assessing
conversations (Zapata-Rivera, Jackson & Katz, 2015), and with pedagogical and authoring soundness
(Lester, Mott, Rowe & Taylor, 2015).

Agents

One of the reoccurring themes is that, as part of the natural process of replacing a human tutor with a
computer tutor, the computer tutor should be presented in the form of an agent. Agent-based software
technology has struggled with many of the same problems that ITS generalization has: domain-general
behaviors, user behavior recognition, user intention recognition, response planning, management of
specific domain knowledge, etc. (Allen et al., 2000).

The chapters in this section are especially relevant to the agent replacement conversation. The nature of
computer teaching agents is that they can teach more complex domain information, involve deeper
knowledge elicitation (Rus, Stefanescu, Niraula & Graesser, 2014), and generally improve learning
(Graesser, VanLehn, Rosé, Jordan & Harter, 2001). The task of creating such learning agents is difficult
and worthy of discussion in this chapter. The chapters within this section provide timely and relevant
descriptions of authoring tools for agent-based tutors and include descriptions of existing tools and
methods that uniquely support agent-based tutors; emerging technologies for agent-based tutors; and
recommendations for how GIFT should be enhanced to make authoring of agent-based tutors easier/more
efficient.

References

Allen, J., Byron, D., Dzikovska, M., Ferguson, G., Galescu, L. & Stent, A. (2000). An architecture for a generic
dialogue shell. Natural Language Engineering, 6(3&4), 213-228.

Baker, R. S., DeFalco, J. A., Ocumpaugh, J. & Paquette, L. Towards Detection of Engagement and Affect in a
Simulation-based Combat Medic Training Environment.

Nye, B., Hu, X., Graesser, A. & Cai, Z. (2014). Autotutor In The Cloud: A Service-Oriented Paradigm For An
Interoperable Natural-Language Its. Journal of Advanced Distributed Learning Technology, 2(6), pp49-63.

Brawner, K. & Sinatra, A. (2014). Intelligent Tutoring System Authoring Tools: Harvesting the Current Crop and
Planting the Seeds for the Future. Paper presented at the Intelligent Tutoring Systems.

Cohn, J., Olde, B., Bolton, A., Schmorrow, D. & Freeman, H. (2015). Adaptive and Generative Agents for Training
Content Development. In K. W. Brawner (Ed.), Design Recommendations for Intelligent Tutoring Systems:
Authoring Tools (Volume 3). Army Research Laboratory.

Goldberg, B., Brawner, K., Sottilare, R., Tarr, R., Billings, D. R. & Malone, N. (2012). Use of Evidence-based
Strategies to Enhance the Extensibility of Adaptive Tutoring Technologies. Paper presented at the The
Interservice/Industry Training, Simulation & Education Conference (I/ITSEC).

Graesser, A. C., VanLehn, K., Rosé, C. P., Jordan, P. W. & Harter, D. (2001). Intelligent tutoring systems with
conversational dialogue. Al Magazine, 22(4), 39.

Lester, J., Mott, B., Rowe, J. & Taylor, R. (2015). Design Principles for Pedagogical Agent Authoring Tools In K.
W. Brawner (Ed.), Design Recommendations for Intelligent Tutoring Systems: Authoring Tools (Volume 3).
Army Research Laboratory.

MacLellan, C. J., Koedinger, K. R. & Matsuda, N. (2014). Authoring Tutors with SimStudent: An Evaluation of
Efficiency and Model Quality. Paper presented at the Intelligent Tutoring Systems.

149

Nye, B. D., Yang, M., Hays, P., Silva-Lugo, R., Cai, Z., Rahman, M. F., . . . Graesser, A. C. (2015). Rapid, Form-
Based Authoring of Natural Language Tutoring Trialogs. Paper presented at the Generalized Intelligent
Framework for Tutoring (GIFT) Users Symposium (GIFTSym2).

Rus, V., Stefanescu, D., Niraula, N. & Graesser, A. C. (2014). DeepTutor: towards macro-and micro-adaptive
conversational intelligent tutoring at scale. Paper presented at the Proceedings of the first ACM conference
on Learning@ scale conference.

Shaffer, D. W., Ruis, A. R. & Graesser, A. C. (2015). Authoring Networked Learner Models in Complex Domains.
In K. W. Brawner (Ed.), Design Recommendations for Intelligent Tutoring Systems: Authoring Tools
(Volume 3). Army Research Laboratory.

Sottilare, R., Graesser, A., Hu, X. & Goldberg, B. (2014). Design recommendations for intelligent tutoring systems:
Instructional Strategies (Volume 2). www.gifttutoring.org: U.S. Army Research Laboratory.

Sottilare, R., Graesser, A., Hu, X. & Holden, H. (2013). Design Recommendations for Intelligent Tutoring Systems:
Learner Modeling (Volume 1). www.gifttutoring.org: U.S. Army Research Laboratory.

Zapata-Rivera, D., Jackson, T. & Katz, I. R. (2015). Authoring Conversation-based Assessment Scenarios. In K. W.
Brawner (Ed.), Design Recommendations for Intelligent Tutoring Systems: Authoring Tools (Volume 3).
Army Research Laboratory.

150

http://www.gifttutoring.org/
http://www.gifttutoring.org/

cuarter 12 Design Principles for Pedagogical Agent
Authoring Tools

James Lester, Bradford Mott, Jonathan Rowe and Robert Taylor
Center for Educational Informatics, North Carolina State University

Introduction

Pedagogical agents hold great promise for enhancing the learning experience of students within intelligent
tutoring systems (ITSs). There is mounting evidence that ITSs lead to improved student learning (Beal,
Walles, Arroyo & Woolf, 2007; Schroeder, Adesope & Gilbert, 2013) and in some cases, have been
found to be nearly as effective as one-on-one human tutoring (VanLehn, 2011). The timely and
customized advice of ITSs may be further enhanced by the addition of pedagogical agents embodied as
virtual characters that have the ability to motivate students while simultaneously providing
complementary feedback through deictic gestures, motions, and utterances (Lester, Voerman, Towns &
Callaway, 1999; Rus, D’Mello, Hu & Graesser, 2013). Advancing the case for employing pedagogical
agents in tutoring systems is the increase in availability of game engines and graphics hardware capable
of rendering lifelike virtual characters with significantly reduced development effort (Petridis et al.,
2012).

Despite the potential for increased student engagement and the reduced cost of creating lifelike virtual
characters, pedagogical agents have not yet achieved widespread adoption in computer-based learning
environments. A formidable and well-known barrier to building and widely deploying a pedagogical
agent is the complexity and expense associated with instilling the pedagogical agent with domain-specific
knowledge and tutoring strategies (Murray, 2003; Woolf, 2009). Furthermore, an additional complication
in creating an effective pedagogical agent is that the agent must present believable, lifelike behaviors such
that students feel they are observing and interacting with “a sentient being with its own beliefs, desires,
and personality” (Lester & Stone, 1997). Thus, a limiting factor in the widespread deployment of
pedagogical agents is the significant effort and pedagogical agent expertise required to codify knowledge
and behaviors from subject matter experts into the ITS.

An approach to solving this problem is improving the efficiency of codifying expert knowledge by
creating pedagogical agent authoring tools that are tailored for subject matter experts rather than
researchers. However, creating an effective authoring tool for subject matter experts poses two principal
challenges. First, it must facilitate the creation of curricular content for the learning environment by
subject matter experts who are not pedagogical agent experts and are often not software engineers.
Second, it must support the creation or modification of pedagogical agent behaviors without exposing the
complexity of the pedagogical agent itself to the subject matter expert. In practice, a majority of the
design and programming effort expended on pedagogical agents is developing the agent and the learning
environment itself. This often results in the authoring tool being treated as an afterthought, leaving little
time or resources to design and develop authoring tools that are suitable for subject matter experts. Based
on our experience developing a pedagogical agent authoring tool for educators, this chapter identifies
promising authoring tool principles and features that could improve the authoring efficiency of subject
matter experts. To conclude, we reason that the Generalized Intelligent Framework for Tutoring (GIFT)
(Sottilare, Brawner, Goldberg & Holden, 2012) could be used to provide a high-quality implementation of
these authoring tool design principles and, therefore, act as a force multiplier for creating new
pedagogical agent-based tutoring systems that use GIFT.

151

Related Research

Creating authoring tools for building ITSs is receiving ever-increasing attention from the research
community. With a goal of making ITS creation and authoring accessible to subject matter experts who
are not computer scientists, progress is being made in researching approaches to create authoring tools
(Susarla, Adcock, Van Eck, Moreno & Graesser, 2003; Jordan, Hall, Ringenberg, Cue & Rose, 2007) and
automate aspects of pedagogical agents such as dialogue (André et al., 2000; Si, Marsella & Pynadath,
2005; Piwek, Hernault, Prendinger & Ishizuka, 2007) or nonverbal behaviors (Lhommet & Marsella,
2013).

Authoring tools for conversation-based learning environments have focused on assisting non-technical
users in the creation of pedagogical agent dialogues. AutoTutor provides multi-agent conversational
interactions to tutor students using the discourse patterns of a human tutor. AutoTutor has been used
across multiple domains including computer literacy and physics (Graesser, Chipman, Haynes & Olney,
2005). To facilitate the application of AutoTutor to other domains, authoring tools have been developed
to aid subject matter experts in creating dialogue-based tutors, such as the AutoTutor Script Authoring
Tool (Susarla, Adcock, Van Eck, Moreno & Graesser, 2003) and AutoLearn (Preuss, Garc & Boullosa,
2010). Another example of an authoring tool for agent dialogue is TuTalk, which was created to support
the rapid development of agent-based dialogue systems by non-programmers (Jordan, Hall, Ringenberg,
Cue & Rose, 2007). This tool facilitates the authoring of domain knowledge and resources required by the
dialogue agent in the form of artificial intelligence (Al) planning techniques that address high-level goals
of the dialogue system. Similarly, an authoring tool has been created for the Tactical Language and
Culture Training System (TLCTS) that allows subject matter experts to create pedagogical dialogue for a
foreign language learning training system at reduced cost and time (Meron, Valente & Johnson, 2007).

Another approach to improving pedagogical agent authoring is to remove the need for authoring
altogether through the use of automation. In particular, automating the creation of pedagogical agents’
lifelike nonverbal behaviors eliminates a potentially significant amount of authoring effort. Cerebella is a
system that monitors an agent’s utterances (in both text and audio formats) and automatically generates
lifelike nonverbal behaviors such as averting gaze, raising an eye brow, or slumping shoulders (Lhommet
& Marsella, 2013). The automatically generated nonverbal behaviors inferred from the communicative
intent and underlying mental state of the agent can be used as an additional channel of communication
between the pedagogical agent and the student, increasing the agent’s believability as well as students’
engagement. The THESPIAN system reduces the effort to author pedagogical agents by facilitating the
creation of interactive pedagogical dramas (Si, Marsella & Pynadath, 2005). In THESPIAN, the learner
and the pedagogical agents interact with each other as characters within a story. THESPIAN accepts as
input a set of scripts that it uses to automatically generate and adjust agents’ goals to guide their behavior.
Another example of automating pedagogical agent authoring tasks is to convey domain knowledge to the
student through observations of simulated conversations and interactions between agents. The agent
dialogue, character selection, and content rendering tasks would be automatically performed by the
presentation system as described by André et al.(2000). In this approach, information is communicated by
decomposing knowledge into atomic information units that are then conveyed to the student through
verbal and nonverbal interactions between two or more agents.

Authoring of pedagogical agents can be accelerated by leveraging knowledge that has already been
recorded in other forms such as Wikipedia pages, PowerPoint presentations, dialogue scripts, or PDFs.
The Tools for Rapid Automated Development of Expert Models (TRADEM) project parses existing
domain content and automatically generates dialogue, questions, and a script that represents the order of
instruction based on the ordering of the original content (Robson, Ray & Cai, 2013). This system can be
used to create a minimal dialogue-based tutoring system where a pedagogical agent can ask questions and

152

evaluate student answers related to the original content without requiring a subject matter expert to
explicitly author the knowledge or assessments in the ITS (Brawner & Graesser, 2014). Text2Dialogue is
another system that can use existing knowledge represented as text files to produce dialogue that is acted
out by 3D virtual characters (Piwek, Hernault, Prendinger & Ishizuka, 2007). A significant difference
between this approach and the previously described presentation system developed by André et al.(2000)
is that Text2Dialogue can accept textual information as input without presentation goals being defined by
a subject matter expert, which means that dialogue may be generated from existing text files without
requiring annotation by a subject matter expert.

Even though the aforementioned research into implementing, augmenting, and eliminating the need for
pedagogical agent authoring tools holds great promise, there is still an immediate need for effective and
efficient tools that enable subject matter experts to codify knowledge and tutoring strategies as
pedagogical agents without requiring the subject matter experts to possess or acquire programming or
intelligent tutoring expertise.

Discussion

To address the immediate need for effective and efficient authoring tools, we present seven design
principles that are grounded in software engineering practice and have the potential to significantly
improve pedagogical agent authoring tools intended for subject matter experts. We illustrate our
discussion with the CoMPOSER authoring tool, which was developed for non-technical subject matter
experts to author pedagogical agents. We describe our lessons-learned using COMPOSER to create a
pedagogical agent for a widely deployed ITS for upper elementary science education.

Design Principles for Pedagogical Agent Authoring Tools

To make pedagogical agent-based learning environments more widely available, authoring tools must be
designed and implemented that empower subject matter experts to quickly and efficiently populate the
domain knowledge and tutoring strategies used by the pedagogical agent. To this end, creating usable and
efficient authoring tools can be framed as a software engineering problem that may be addressed by
general software design principles. The principles we advocate are well established in software
engineering. Our contribution is discussing how to operationalize these principles in the context of
authoring pedagogical agents. Since the design and implementation of authoring tools directly impacts the
design and implementation of intelligent pedagogical agents (and vice versa), we recommend that the
following pedagogical agent authoring tool design principles be considered at the beginning of a project,
and leveraged in concert with the development of the learning environment, rather than leaving the tool
development for the end of the project, where the tool will be constrained by an existing pedagogical
agent implementation. In this section, we enumerate software design principles and features that should
be considered for inclusion in a subject matter expert-centered pedagogical agent authoring tool.

Adopt a Familiar User Interface Paradigm

From a usability standpoint, the most important feature of an authoring tool is its user interface (Ul).
Ideally, a pedagogical agent authoring tool should present a Ul that is familiar and intuitive for the type of
subject matter expert who is intended to use it. Instead of requiring the subject matter expert to conform
to unfamiliar ITS naming conventions and authoring workflow, the authoring tool should be modeled
after software that the subject matter expert is already comfortable using. For example, if the intended
user of the tool is a K-12 teacher, this type of user is likely very comfortable using Microsoft PowerPoint
to create presentations to be shown in the classroom. Likewise, if the type of subject matter expert is a

153

computer scientist, this user will be comfortable writing code and using an integrated development
environment (IDE), such as Eclipse. Of course, existing Uls and usage paradigms can (and should) be
improved upon; however, instead of starting from scratch when designing an authoring tool, modeling
upon an existing tool leverages decades of real-world usability and efficiency improvements.

Modeling a pedagogical agent authoring tool’s Ul after an existing authoring tool, such as Microsoft
PowerPoint, does not imply that the tutoring knowledge constructs must be as simple as the content in a
typical PowerPoint presentation. This would indeed be challenging since tutoring systems are likely to
require authoring pedagogical strategies or annotating answer correctness, which are features that are not
afforded by the PowerPoint Ul. Instead, this principle implies that the authoring tool should model the
existing tool by using similar naming conventions, presenting similar software features, and mimicking its
workflow. For example, a pedagogy-oriented authoring tool might represent blocks of curriculum
knowledge as “slides” in a PowerPoint-like authoring tool (Figure 1). Likewise, a slide might provide

Look at the diagram below that shows the parts needed to
make a flashlight work. The BATTERI Authoring properties
energy. An electric WIRE runs from o :
the light bulb. Another WIRE runs from the LIGHT BULB to
the end of the other BATTERY.

CreatedDate

Id E
LastModifiedBy |«
ModifiedDate

Name Energy Definition |...|

Revision

Tags that represent skills
associated with this knowledge
(e.g., Next Generation Science
Standards codes)

- +ﬂ- v)

Tags 4-PS3-1 4-PS3-2 |...|

2 Essay Entry
AnswerStarterTg

Height 50

ModelAnswerTexy Power from physi |...

QuestionText What do you thinl |...|

Watermark

EnableFinishedB

LN [EN

EnableTutoring

ReadOnly

\What do you think the word energy means? ‘

Layout
l J 8 Tutor

Curriculum knowledge Finished User Data
represented as a slide ‘

EssayRules
‘ Rules that are applied to evaulate ans
af]

Launches agent-specific

Pedagogical agent dialogue editor \ authoring window for
. advanced users

Members: Broperties:

Please write a scientific explanation. : El Dialog

Use what you have learned to help you [v| DialogMoveType Pump
Please write an answer and then press Level 1

Bl padMate Action

Gesture Pointing

Image —
Repeatable 4

Verbal Please write a scientific explanation.

Figure 1. Slide-based authoring paradigm illustrated by the COMPOSER authoring tool user interface

154

static text or multimedia that is used to convey information to the student, as well as embedded
assessments that are used to gauge student competencies. Slides could be associated with production rules
for teaching the specific concepts and skills represented by the slide, while tags enable the pedagogical
agent to associate students’ performance with an overarching set of knowledge components. Without the
subject matter expert explicitly authoring it, the pedagogical agent could use this metadata and the student
model to determine the next slide to display to the student.

Include Standard Editing Features

Modeling a pedagogical agent authoring tool after a mature software package, such as Microsoft
PowerPoint, suggests the implementation of several software features that are expected and relied upon
by typical software users; however, these features are often nontrivial to implement and have profound
effects on how data are represented, stored, and manipulated within the authoring tool, which is likely to
affect how the data are represented in the ITS itself. For example, copy, cut, and paste features are
expected by users to be available on any data type that can be authored in a tool. This feature may require
deep or shallow copies of data models used to represent curriculum and pedagogical data while
maintaining relationships between the data. Similarly, the undo and redo features enable users to
experiment and quickly repair authoring mistakes. Undo and redo can drastically impact the design and
implementation of the authoring tool itself and, therefore, should not be left as a feature to be added at the
end of project when there is limited time to refactor data models or add revision tracking to the content
being authored.

Support Author Collaboration

A pedagogical agent authoring tool should implement features that allow multiple subject matter experts
to collaborate while authoring domain knowledge and pedagogical strategies. Collaboration has the
potential to increase both the quality and quantity of content available to the ITS. Users have come to
expect and rely upon collaboration features in other contexts. For example, at one extreme, multiple
authors can use web browsers to simultaneously edit a single Google document, presentation, or
spreadsheet. The authors can view each other’s modifications and chat with one another while editing.
Likewise, many content authoring tools enable change tracking to record which author made a change and
when, or allow an author to comment on a piece of content without changing it in the form of a note.
Implementing collaboration in an authoring tool will have significant impacts on the design of data
models, the architecture of the application, and user authorization in regards to who is allowed to access
which data. For example, storing domain knowledge and pedagogical strategies in a cloud-based server
and implementing a web browser-based authoring tool would simplify implementation of collaboration
features. Of course, this decision would need to be considered early in the design of the pedagogical agent
and the authoring tool since it would impact the architecture and implementation of the entire system.

Facilitate Rapid Iteration and Testing

To facilitate refining the domain knowledge and pedagogical agent behaviors, the authoring tool should
support a “rapid iteration” mode where small changes made in the authoring tool can be quickly seen and
interacted with in the context of the ITS. In this mode, the subject matter expert can ideally interact with
the pedagogical agent while editing content in real time or with only a minor delay. This feature allows
the subject matter expert to quickly confirm that content is presented in a visually appealing manner in the
learning environment and that the pedagogical agent behaves in a believable manner while the subject
matter expert is modifying properties or settings that influence the pedagogical agent’s behavior. This
feature could be implemented as a real-time connection to the ITS running as a separate application or the
ITS could be embedded in the authoring tool to provide a what you see if what you get (WYSIWYG)

155

experience. In either situation, the data models would be required to support incremental dynamic updates
and the ITS itself would have to respond to commands from the authoring tool such as navigating to
specific domain content or modify the current state of the pedagogical agent depending on the types of
edits the subject matter expert is making.

Accommodate Novice and Expert Authors

The pedagogical agent authoring tool should support editing methods that are specifically tailored to
novice and expert users rather than presenting a one-size-fits-all Ul. For example, a novice user is likely
to be overwhelmed and discouraged by an authoring tool that exposes too many ITS-specific properties or
settings. Conversely, an expert will be less efficient and will be frustrated by a Ul that repeatedly walks
through a series of basic steps. Therefore, for less frequently used authoring activities, or when authoring
complex knowledge representations or pedagogical agent-specific behavior, the authoring tool should
present a step-by-step wizard interface for novice users and a more direct authoring Ul for expert users.
For example, when authoring rules to evaluate the answer to an essay question, a wizard Ul might ask the
subject matter expert a series of questions that are used to generate a set of rules for evaluating the
answer. On the other hand, an expert user would have the option of bypassing the wizard and authoring
the rules directly. Interestingly, this design principle could be realized by embedding a pedagogical agent
in the authoring tool itself to assist the subject matter expert in authoring content.

Automate Complex and Tedious Tasks

Some aspects of authoring domain knowledge or pedagogical agent behavior may be too complicated,
labor intensive, or tedious for a subject matter expert to accomplish manually using a pedagogical agent
authoring tool. In these situations, the authoring tool should provide automated mechanisms for
generating curriculum content, pedagogical strategies, and pedagogical agent behaviors. This is where the
automatic agent behavior generation techniques, as illustrated by Cerebella (Lhommet & Marsella, 2013),
and automatic dialogue generation methods, as leveraged by THESPIAN (Si et al., 2005), can be used
within the pedagogical agent authoring tool to reduce the authoring load for a subject matter expert.

Another approach to simplify the authoring of knowledge and pedagogical strategies is to assist the
subject matter expert though the use of data mining techniques. Instead of authoring a pedagogical agent
with strategies for every conceivable situation, authoring effort could be placed on the most common
misconceptions or areas where students are showing weakness. In an educational data-mining study by
Merceron and Yacef, student data from a web-based learning environment was mined to inform teachers
about students who were at risk (Merceron & Yacef, 2005). Students were grouped into learner cohorts
using clustering techniques to identify students who were having difficulties. In a similar way, an ITS
could initially be deployed with curriculum content but a relatively primitive pedagogical agent. After
collecting student answers, the data could be mined to identify common misconceptions or domain
knowledge that may require additional scaffolding by the pedagogical agent. The authoring tool would
flag sections of the domain knowledge or identify broader concepts that the subject matter expert should
focus on improving. This would naturally lead to an iterative authoring process where the pedagogical
agent continues to evolve by focusing effort on the issues most relevant to students who are using the ITS.
Using this type of authoring assistance feature has the potential to dramatically reduce the amount of
authoring effort, because the subject matter expert is not required to exhaustively predict and annotate all
possible correct and incorrect answers. On the other hand, the initial iterations of the pedagogical agent
are unlikely to be particularly effective since they will have limited ability to provide remediation to
students who are having difficulty.

156

Avoid the Blank Page

Pedagogical agent authoring tools should assist the subject matter expert in getting started. Starting from
a blank page using an unfamiliar tool can be a daunting task for any author of any skill level. This is
particularly the case for someone who is authoring content for software as complex as a pedagogical
agent-based ITSs. Therefore, authoring tools should provide templates and sample systems that can be
used as starting points for authoring domain knowledge and pedagogical agent behaviors and dialogue. In
addition, allowing subject matter experts to easily share their work with others has the potential to create a
community that can evolve pedagogical agents by starting with another author’s agent and building upon
it rather than starting from scratch.

Importing existing knowledge that is already authored in the form of Microsoft Word documents, web
pages, PowerPoint presentations, databases, or text files is a powerful feature for authoring tools to assist
subject matter experts in quickly moving past the blank page. Taking it several steps further, automated
systems such as TRADEM (Robson et al., 2013) and Text2Dialogue (Piwek et al., 2007) import existing
knowledge and then automatically author agent dialogue, further reducing (or possibly eliminating) the
pedagogical agent authoring load on the subject matter expert.

Lessons Learned from the LEONARDO Digital Science Notebook

For the past four years, our laboratory has been developing a digital science notebook for upper
elementary science education, the LEONARDO CyberPad, which runs on the Apple iPad and within web
browsers on Windows and Mac OS X computing platforms. LEONARDO integrates a pedagogical agent
into a digital science notebook that enables students to graphically model science phenomena. With a
focus on the physical and earth sciences, the LEONARDO PadMate, a 3D embodied pedagogical agent,
supports students’ learning with real-time, problem-solving advice. LEONARDO’S curriculum is based on
the Full Option Science System (Mangrubang, 2004). Throughout the inquiry process, students using the
LEONARDO CyberPad are invited to answer multiple-choice questions, write answers to constructed
response questions, and create symbolic sketches of different types, including electrical circuits. To date,
LEONARDO has been implemented in over 70 elementary school classrooms across the United States.

Continue reading

3 3 and advance
icome Backi i Solar energy powers lots of things, from * B R through the Agenda
alculato ace. You — a » as you Finish.

e lea \

al anels convert light
energy from the sun into electric energy.
This electrical energy can then be
converted into motion energy by a motor
or into other kinds of energy by other
types of converters.

How can solar energy from the sun power
a satellite?

Figure 2. The CoMPOSER tool (left) and CyberPad (right) in rapid iteration editing mode

157

LEONARDO consists of three major components: the CyberPad digital science notebook, the COMPOSER
authoring tool, and a cloud-based server. Fourth and fifth grade elementary students learn about
magnetism, circuits, and electricity using the CyberPad software (Figure 2, right). Subject matter experts
use the ComMPOSER (Figure 2, left) authoring tool to create curriculum content displayed in the digital
science notebook, as well as rules, dialogue, and gestures that drive the pedagogical agent, which is
embodied as a green alien within the CyberPad Ul. The cloud-based server is used to store all curriculum
knowledge, tutoring rules, and student data. During the design and development of the COMPOSER
authoring tool, many of the principles for creating subject matter expert-centered authoring tools were
identified as necessary features or enhancements that would improve the productivity of subject matter
experts.

The LEONARDO project did not originally include the COMPOSER authoring tool in its work plan. The first
year of the project was spent designing and implementing a prototype of the CyberPad application to field
test with fourth and fifth grade students to assess the practicality and ergonomics of using iPads in
elementary school classrooms. During the first year, subject matter experts, who were science education
faculty and graduate students, used Microsoft Word to author all of the curriculum content and
pedagogical agent dialogue. The development team, who were computer science research staff and
graduate students, manually copied the text from the Microsoft Word document into multiple extensible
markup language (XML) documents. The XML documents were then embedded in the CyberPad iPad
application as fixed resources that were then installed on iPads. The agent dialogue and rules were coded
directly into the CyberPad’s source code. Needless to say, this approach to content authoring was highly
inefficient. It was labor intensive and error prone due to the need to repeatedly copy data by hand. In
addition, pedagogical agent rules, dialogue, and gestures were tightly coupled with the contents of the
XML documents making the entire system highly susceptible to syntax and typographical errors.

This initial approach to pedagogical agent authoring for the LEONARDO project had several significant
drawbacks: First, the subject matter experts did not have a means to visualize what the curriculum content
and pedagogical agent dialogue would look like when it was displayed in the CyberPad Ul as they were
authoring content in Microsoft Word. Second, it was extremely slow to make small changes to the content
since it required a development team member to be available to (a) make the change in XML, (b) rebuild
the application, and (c) redeploy the CyberPad application to the iPads. Third, this dependency resulted in
frustration for the subject matter experts and development team members. As a result, the curriculum
content lacked polish, which is typically achieved by making many small changes after the original
content is created. Since making small changes was highly inefficient, these changes were not made due
to lack of resources and time. Using this approach to authoring content, 1 hour of instruction required
more than the estimated 300 hours of development time often cited for ITS authoring (Tom Murray,
2003).

Based on this initial authoring experience and future plans to more than triple the amount of curricular
content and pedagogical agent dialogue, it became imperative to design and implement the COMPOSER
authoring tool in the second year of the project. We started requirements gathering by identifying the
types of subject matter experts who would use the tool in the future: elementary school teachers,
education graduate students, and education faculty. We then proceeded to design COMPOSER’s Ul by
reviewing authoring tools from other areas that our subject matter experts were comfortable using. This
included applications such as Microsoft PowerPoint, Google documents, and Edmodo. In the new system,
curriculum content, agent dialogue, and rules would be stored in a cloud-based server where it could be
directly accessed by both the CoMPOSER tool and the CyberPad application. This approach formed the
basis for the authoring tool principles and features proposed in this chapter.

The CoMPOSER authoring tool improved the authoring workflow for the LEONARDO project in years two
and three by decoupling content authors from the development team. Subject matter experts were

158

empowered to refine curriculum content and pedagogical agent behavior independently of the
development team. In addition, a familiar workflow and editing feature set further improved the
efficiency of subject matter experts. However, since authoring wasn’t considered in the initial design,
these improvements did come at a development cost of refactoring data models, logic, and storage to
make it possible to edit and track small discrete parts of the curriculum.

Recommendations and Future Research

Widespread development and deployment of pedagogical agents in ITSs depends on efficient transfer of
domain knowledge and pedagogical agent dialogue, strategies, and behaviors from subject matter experts
to the tutoring system. Authoring tools hold great promise to facilitate knowledge engineering. However,
it should be emphasized that authoring tools should be tailored to the subject matter expert using features
and workflows that have been proven effective by authoring software from non-ITS domains.

In future work, it will be important to investigate the addition of automation features to assist in the
authoring of pedagogical behaviors and tutoring strategies. In the near term, leveraging educational data
mining techniques to discover prevalent student behaviors, as well as misconceptions, from ITS datasets
could further enhance ITS authoring tools and identify parts of curricula that require additional
scaffolding. Future work should strive to immediately incorporate decades of software engineering
knowledge in the design and implementation of novice and expert Uls to simplify authoring complex
knowledge and underlying ITS mechanisms.

The design principles for pedagogical agent authoring tools presented in this chapter are not specific to
any given tutoring system. Since these authoring tool principles are broadly applicable across ITSs, GIFT
affords a unique opportunity to act as a authoring tool platform where many of these authoring tool design
principles could be implemented once and used by many tutoring systems. This would allow a single
high-quality authoring tool implementation to be established that could then be shared across multiple
tutoring systems, thereby reducing redundant authoring tool design and development effort across
multiple projects while simultaneously raising the quality of the authoring tools based on GIFT. It follows
that this approach has the potential to produce higher-quality pedagogical agent-based learning
environments more quickly and at reduced cost.

References

Beal, C. R., Walles, R., Arroyo, I. & Woolf, B. P. (2007). On-line tutoring for math achievement testing: A
controlled evaluation. Journal of Interactive Online Learning, 6(1), 43-55.

Brawner, K. & Graesser, A. (2014). Natural Language, Discourse, and Conversational Dialogues within Intelligent
Tutoring Systems: A Review. In R. Sottilare, A. Graesser, X. Hu & B. Goldberg (Eds.), Design
Recommendations for Intelligent Tutoring Systems (pp. 189-204).

Graesser, A. C., Chipman, P., Haynes, B. C. & Olney, A. (2005). AutoTutor: An Intelligent Tutoring System With
Mixed-Initiative Dialogue. IEEE Transactions on Education, 48(4), 612-618.

Jordan, P. W., Hall, B., Ringenberg, M., Cue, Y. & Rose, C. (2007). Tools for Authoring a Dialogue Agent that
Participates in Learning Studies. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Artificial Intelligence in
Education: Building Technology Rich Learning Contexts That Work (pp. 43-50). 10S Press.

Lester, J. C. & Stone, B. A. (1997). Increasing believability in animated pedagogical agents. In AGENTS ‘97
Proceedings of the First International Conference on Autonomous Agents (pp. 16-21).

Lester, J. C., Voerman, J. L., Towns, S. G. & Callaway, C. B. (1999). Deictic Believability: Coordinated Gesture,
Locomotion, and Speech in Lifelike Pedagogical Agents. Applied Artificial Intelligence, 13(4-5), 383-414.

Lhommet, M. & Marsella, S. C. (2013). Gesture with meaning. In Intelligent Virtual Agents (pp. 303—312). Springer
Berlin Heidelberg.

159

Mangrubang, F. R. (2004). Preparing elementary education majors to teach science using an inquiry-based
approach: The Full Option Science System. American Annals of the Deaf, 149(3), 290-303.

Merceron, A. & Yacef, K. (2005). Educational Data Mining: a Case Study. In AIED (pp. 467-474).

Meron, J., Valente, A. & Johnson, W. L. (2007). Improving the authoring of foreign language interactive lessons in
the tactical language training system. In Speech and Language Technology in Education (SLaTE2007) (pp.
33-36).

Murray, T. (2003). An Overview of Intelligent Tutoring System Authoring Tools: Updated analysis of the state of
the art. In T. Murray, S. Blessing & S. Ainsworth (Eds.), Authoring Tools for Advanced Technology
Learning Environments (pp. 493-546). Springer Netherlands.

Petridis, P., Dunwell, I., Panzoli, D., Arnab, S., Protopsaltis, A., Hendrix, M. & de Freitas, S. (2012). Game Engines
Selection Framework for High-Fidelity Serious Applications. International Journal of Interactive Worlds,
2012, 1-19.

Piwek, P., Hernault, H., Prendinger, H. & Ishizuka, M. (2007). T2D: Generating Dialogues Between Virtual Agents
Automatically from Text. In Intelligent Virtual Agents (pp. 161-174). Springer Berlin Heidelberg.

Preuss, S., Garc, D. & Boullosa, J. (2010). AutoLearn’s Authoring Tool: A Piece of Cake for Teachers. In
Proceedings of the NAACL HLT 2010 Fifth Workshop on Innovative Use of NLP for Building Educational
Applications (pp. 19-27). Association for Computational Linguistics.

Robson, R., Ray, F. & Cai, Z. (2013). Transforming Content into Dialogue-based Intelligent Tutors. Paper presented
at The Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), Orlando, FL.

Rus, V., D’Mello, S. K., Hu, X. & Graesser, A. C. (2013). Recent advances in intelligent tutoring systems with
conversational dialogue. Al Magazine, 34(3), 42-54.

Schroeder, N. L., Adesope, O. O. & Gilbert, R. B. (2013). How Effective are Pedagogical Agents for Learning? A
Meta-Analytic Review. Journal of Educational Computing Research, 49(1), 1-39.

Si, M., Marsella, S. C. & Pynadath, D. V. (2005). THESPIAN: An Architecture for Interactive Pedagogical Drama.
In AIED (pp. 595-602).

Sottilare, R. A., Brawner, K. W., Goldberg, B. S. & Holden, H. K. (2012). A modular framework to support the
authoring and assessment of adaptive computer-based tutoring systems (CBTS). In Proceedings of the
Interservice/Industry Training, Simulation, and Education Conference.

Susarla, S., Adcock, A., Van Eck, R., Moreno, K. & Graesser, A. C. (2003). Development and evaluation of a lesson
authoring tool for AutoTutor. In AIED2003 supplemental proceedings (pp. 378-387).

VanLehn, K. (2011). The Relative Effectiveness of Human Tutoring, Intelligent Tutoring Systems, and Other
Tutoring Systems. Educational Psychologist, 46(4), 197-221.

Woolf, B. P. (2009). Building Intelligent Interactive Tutors: Student-centered strategies for revolutionizing e-
learning. San Francisco, CA: Morgan Kaufmann.

160

Chapter 13 Adaptive and Generative Agents for Training
Content Development

Joseph Cohn?, Brent Olde?, Ami Bolton?, Dylan Schmorrow® and Hannah Freeman*
! Office of the Secretary of Defense; 2 Office of Naval Research; * SOARTech; * Strategic Analysis, Inc.

Introduction

In this chapter, we provide a vision, based on our combined 40+ years of developing training and
education technologies, for the next stage in training system content development. While this vision is
informed by specific Defense needs gaps and requirements, it is developed in a manner that makes it
broadly applicable to a much wider range of training needs. Our vision treats training content as the
foundation upon which effective training systems are developed and addresses a deep limitation in how
content is developed is developed today. We believe that the limits on content development are a key
factor in preventing the development of large-scale adaptive training systems. Simply put, regardless of
how quickly and accurately a training system can diagnose a student’s performance deficits, the
effectiveness with which the training system can develop and enact remedial strategies relies wholly on
the depth and scope of the content from which specific instances of these strategies can be applied.

We envision an automated capability to generate new, context-appropriate training content with limited
human supervision, based on integrating training system authoring tools with expert system technologies
and using unbounded data sets. A critical enabler of this approach is the ability to deliver training through
student interactions with one or more agents within a simulated training environment. These agents will
accomplish three important training goals. First, by interacting with students in real time, these agents’
behaviors will provide an experiential type of learning, arguably one of the strongest types of learning
strategy. Second, by virtue of interacting with students, these agents will have the ability to assess student
performance against a set of training goals and objectives, and identify specific training deficits. Lastly,
using knowledge about the student’s current state and their desired end-state, these agents will have the
basic information necessary to generate new and appropriate behaviors—an entirely new form of
adaptive content that is not solely dependent on instructor forethought or scripting.

This new capability will replace hand-coded rule sets, automatically generating new and appropriate agent
behaviors from one or more data sources including data captured during live exercises; data captured
from experts operating their systems within a simulated environment; or data provided in a script-like
format. On the basis of one or more of these initial data sets, it should then be possible to reproduce the
behaviors, model them for more general uses, and extend those models to provide new behaviors in a
training environment. This approach will require integrating cognitive modeling approaches with machine
learning techniques to generate tactically authentic behaviors. Cognitive models provide a means of
formally representing the underlying behaviors of interest. Machine learning techniques provide a wide
range of inductive approaches to generalize modeled behaviors to new missions and contexts. Training
objectives, doctrine and tactics, techniques and procedures (TTPs) bound the initial cognitive models and
subsequent machine learning generalization to ensure that new behaviors are tactically authentic and also
responsive to training needs. The resultant behaviors can then be validated as part of a new training
scenario. The need for new approaches for delivering effective training is clear. Using live assets for
training exercises is becoming prohibitively costly, both due to reduced access to live training ranges
(Mehta, 2014) and range space for conducting live training exercises continues to be reduced (or
eliminated; Oslon, 2014). Increased operational tempos, and reduced manpower across the Services,
further limits access to training. Intelligent tutoring systems (ITSs) are meant to address these challenges

161

by providing tailored, adaptive training “on demand” but these approaches often struggle to show a
significant return on investment (O’Connor & Cohn 2010). On the one hand, the very best ITSs, which
mimic the very best student-instructor interactions, are still too costly to develop for large-scale use (Cohn
& Fletcher, 2010). On the other hand, more affordable ITSs offer only pre-scripted training or minimally
adaptive training, which while significantly lower in cost, is also less effective (Woolf, 2009).

Against this backdrop, new combat platforms, like unmanned systems and cyber combat systems, are
being procured to address a new set of threats and challenges to our Nation’s security. These platforms
will require training that is more focused on cognitive skills sets like problem solving, decision making,
multi- tasking, task switching, and mission management, rather than on physical skill sets. This training is
best delivered through interactive and adaptive approaches rather than less personal “one size fits all”
classroom approaches (Vogel-Wolcutt, 2013). O’Connor & Cohn (2010) and Cohn & Fletcher (2010)
suggest that if ITSs are the indicated solution, then key drivers in making this type of training affordable
lie in reducing the amount of effort needed to develop training content, while advancing the level of
training system adaptability.

State of the Art

Adaptive, generative, and modular agents provide a key tool for enabling ITSs, by providing a new
approach for developing and delivering content. In our view, content is the hub through which the spokes
of any training system must be connected. To that end, we explore not only current research in content
development, but, also, current research in other elements of adaptive training systems. Figure 1 provides
one representation of the various elements necessary for developing adaptive training tools, based in part
on Conati (1997), Woolf (2009) and Pardos et al.(2013), with details discussed below.

Tutoring Environment \
Simulated Instructional Environment [Instructor Actions
" Other
Scenarios Students rT
v Content N
. Information to be taught
(Student Monitorin organizedin a tailorable
‘concept ' framework
'L Performance Performance S
Assescment Classifiers -~
Individual Student Model
= Motivation
* Comprehension (Instructional Strateqies
* Recall | * Ingtruction
* Forgetting » Backtracking
. v » Remediation
)

Figure 1: Elements that are critical to delivering effective instruction, mapped onto science and technology
efforts, indicated in “()”: understanding each student’s overall learning needs (Individual Student Model,
Student Monitoring), identifying specific approaches for addressing any learning gaps and building
instructional modules (Instructional Strategies and Instructor Actions), that deliver content using these
approaches (Content) through some hardware or software connection (Tutoring Environment, Interface).

162

Individual Student Models and Student Monitoring

Adaptive tutoring systems are meant to modify their instructional content and delivery to each individual
student’s learning needs (Jeremic et al.2012). This is best accomplished through a student model (Sison &
Shimura, 1998), which integrates into an executable representation as much information about the
individual student as can be reasonably and meaningfully captured, to provide to the tutoring system a
picture of the student’s current “state.” Yet, despite the strong development of numerous, different,
computational approaches to modeling student state, like Bayesian knowledge tracing (Corbett &
Anderson, 1995) and performance factors analysis (Pavlik & Koedinger, 2009), it is becoming
increasingly clear that current approaches may be reaching their upper limits accurately representing
individual student state (Pardos, et al.2013). A critical reason for this may be that information about the
student is often “latent” (Pardo et al.2013) or intangible, like meta-cognition, motivation, and affect
(Desmarais & Baker, 2012).

Instructional Strategies and Instructor Actions

While representing a student’s current learning needs and predicting their future ones is necessary for
effective adaptive training (Clemente, Ramirez & De Antonio, 2011), it is not sufficient. An adaptive
training system, like an expert instructor, must be able to tailor and deliver instruction in a way best suited
to match these learning needs. This includes identifying the different types of strategies that enable
effective instruction (see, for example, Lunenburg & Irby, 2011); establishing a framework for selectively
applying these strategies to different student styles, as well as different student levels of expertise (e.g.,
Koedinger, Corbett & Perfetti (2012)’s “Knowledge—Learning—Instruction Framework,”); and
developing a capability to computationally represent this framework in a way that can be integrated into
an adaptive training system.

Tightly linked to instructional strategies is the method by which these strategies are delivered—the
instructor actions that will impart information using one or more strategies. Simply requiring a training
system to deliver reinforcement says nothing about how that reinforcement should be delivered or the
form that such reinforcement should take. At their most fundamental, these actions should lead to
learning, “...the process by which long-lasting changes occur in behavioral potential as a result of
experience...” (Anderson, 2000). Learning, in turn, is enabled by activating the short- and long-term
memory systems (Anderson, 2000). Consequently, the delivery of these strategies should be done in a
way that durably establishes these memories in a way that also eases their retrieval. Recent work by
Rohrer & Pashler (2014), Pashler et al. (2007) and Karpicke & Roediger (2008) indicates that “enforced
retrieval” of information through a blend of studying, rehearsal, and testing can increase the ease with
which information is stored, maintained, and retrieved.

Content

The cost of developing content is a major challenge to building effective ITSs. One reason for the high
cost of content development is that it is expensive to create the corpus of knowledge that will inform
content. While there are some advances being made on this front, such as Robinson et al.’s (2012)
simulation based knowledge elicitation approach to elicit and model expert behaviors, this approach may
only shift the cost away from content development to environment development. A second reason for the
high cost of content development is that as more content is required for more complex adaptive systems,
the framework (ontology) into which this content is embedded may need to expand pseudo-exponentially,
with corresponding cost (Simperl & Mochol, 2006). Some interesting and new approaches for developing
content include crowdsourcing (Koedinger, McLaughlin & Stamper, 2012; Weld et al.2012) and “big
data” collection (Arroyo & Woolf, 2005) approaches, and the development of new types of knowledge

163

structures (Boyce & Pahl, 2007; Koenig, Lee, Iseli & Wainess, 2009) and associated techniques to
represent these data sets (Pardos & Heffernan, 2010).

Tutoring Environment and Interface

There are many examples of “training systems,” which, lacking the elements indicated in Figure 1, are
little more than practice platforms (Vogel-Walcutt, 2013). As Woolf (2009) suggests, training must be
delivered in an authentic and relevant fashion to be effective. This means that not only must the interface
to the system be “realistic” and transparent and the environment must be engaging, but the content must
also be delivered in a motivating and stimulating fashion. As a result, the veridicality of the training may
be significantly enhanced, leading to better, positive, learning transfer rates (Grossman & Salas, 2011).

Discussion

Our vision for adaptive training systems hinges on developing training content from as wide a range of
sources as possible, making this content adaptive to student needs in real time, and embedding this
content in agents that can deliver this training.

General Approach
The steps necessary to achieving this vision include the following (Figure 2):
o Develop the knowledge structures (ontologies) that will be used to capture source data.

o Define boundaries of behavior patterns that are of interest. This includes identifying what kind of
activities to look for in real entity behaviors.

o Find the behavior patterns of interest using the boundary definitions.
o Develop representative cognitive models from the behavior data.
e Apply doctrine training goals and objectives to define and constrain agent behaviors.

o Use machine learning techniques to generate novel, doctrinally accurate, agents.

Tramlng
System

B

Cognitive Model /
Machine Learning

Data source

Figure 2: General approach for developing adaptive and generative agents. Data are placed into an ontology
(left side). Boundary conditions are identified, based on doctrine or other sources (right side). The ontology

and the boundary conditions are merged using cognitive models, and machine learning techniques evolve and

adapt the represented behaviors to guide the agent (center) which is then integrated into the training system.
Source Office of Naval Research Fact Sheet Unmanned Aerial Systems Interface, Selection & Training Technologies Dynamic Adaptive & Modular entities for UAS (DyAdeM)

164

There are still challenges associated with applying these steps to specific training needs. As instructional
system developers look to use more and varied data sources, fundamentally new types of ontologies will
need to be developed to accommodate these data, which will certainly have a wide range of spatial and
temporal fidelity. Early efforts to build these blended types of ontologies have been used with some
success in the development of cognitive based control systems for autonomous systems (Stacy et al.,
2010) and are now being expanded to include much larger and more varied types of data, including
blending neural, behavioral, and machine-based sources (Cohn et al., 2015). Identifying boundaries for
behavior patterns and discovering behavior patterns of interest is in many ways a big data analytics
challenge, focusing on identifying an often minor signal against a backdrop of seemingly random “noise.”
Modeling and pattern recognition approaches developed in other contexts, such as those used in the
Office of the Secretary of Defenses” Human Social Cultural Behavior Modeling Program (Boiney &
Foster, 2013), could provide a foundation from which to build these techniques. An equally challenging
problem is developing affordable methods for building executable representations (cognitive models)
from these data to generate in real time novel, contextually appropriate, and doctrinally accurate agent
behaviors to drive instruction. Today, building these behaviors requires significant time investment by
scenario authors (Koedinger, et al.2004). In the future, it will be critical to generate these models
autonomously from the source data.

Example Application

Unmanned aerial system (UAS) training represents a new and complex domain that will strongly leverage
modeling and simulation (M&S) solutions to develop embedded and emulated training environments, and
in which agent-delivered content will play a key role for delivering training. Because the kinds of tasks in
operating a UAS involve observing, tracking, and identifying many different types of entities (e.g., blue,
red, and white forces), ITS training for UAS operators requires the integration of hundreds, if not
thousands, of simulated entities into the overall training scenario. Currently, developing these entities
requires significant time and effort, and results in entities whose behaviors are strictly guided, scripted,
and limited based on pre-determined rules that define the entities’ behaviors over the course of the
training scenario. The net result is entities whose behaviors are not realistic, leading to reduced training
effectiveness, yet at the same time require significant effort to create, leading to prohibitively high
authoring costs.

Applying the process described in Figure 2 to this challenge allows us to automate the development of
new behaviors to drive a range of different types of simulated entities, providing an alternative, and
potentially more effective and less costly, solution. The process begins with automating the recognition of
live entity behaviors, captured from various UAS sensor data streams, and transforming those data into
digital representations (Figure 3a). This requires ontologies that can capture both discrete and continuous
data, across representations that can accommodate data with both high and low spatial and temporal
resolution. This provides the foundation from which to model and generate behaviors to drive simulated
entities. Next, the transformed data are bounded by user-specified parameters to create behavior
envelopes, which represent goals and associated constraints. This sets the conditions for developing rules
for generating new behaviors that are related to those captured from the live entity. During a training
exercise, student performance is monitored to detect when goals are either archived or potentially not
achieved, and when constraints are close to being violated. When these conditions are met, machine
learning algorithms are applied to generate new behaviors (Figure 3b).

165

et tracks Interactions

(a) Raw Sensor Inputs (b) Extracted Points (c) Entity-Event Network (d) Activity Patterns

|

e ..'“, .‘;

L ¢) Event boundaries generalized (d) Generalize Behavior
(a) Recognized Activity Pattern () Key events and goal identifie Envelope

/

Figure 3: (a) Automated activity recognition identifies behaviors of live entities (e.g., aircraft, vehicles, people)
to model using pattern recognition techniques applied to real sensor data received from UASs.

(b) Generalized behavior envelopes are then developed from these patterns to provide rules for generating
related behaviors. These rules are applied in response to student performance to deliver adaptive and
generative agent behaviors. Courtesy of Aptima Inc. and SOARTech

Recommendations and Future Research

Extending the Approach

The approach for developing adaptive and generative agents overlays nicely on the different elements that
comprise ITSs (Figure 1). The student models provide one of the functions that drive the agents to seek
new behaviors. Student performance is monitored and assessed, and the outcome of this assessment
provides the basis for either capturing new data or evolving current data sets into new behaviors that can,
in turn, help remediate the student. At the same time, these agents would be able to build, through
continuous interaction with each trainee, dynamic and highly individualized models that could capture
“missing” information, such as latent (Pardos 2013) or affective (Desmarais & Baker, 2012) behaviors.
How this information could be elicited remains to be determined, but one possible solution may lie in
recent advances in the development of classifiers for inferring cognition from brain activity. In these
efforts, individuals are shown a wide array of objects, of different categories, while simultaneously
having their brain activity captured through non-invasive techniques. Using machine learning routines, a
classifier can be built that can then scan brain activity when subjects view a new object and, with some
degree of accuracy, predict what sort of object an individual is looking at (Mitchell, et al., 2004).
Importantly, these classifiers appear to be transferrable to new categories of objects as well as to new
groups of individuals, while maintaining reasonable levels of predictive accuracy (Shinkareva et al.,
2008). In a similar manner, it might be possible to develop generalizable approaches to train classifiers to
detect certain kinds of latent and affective variables. Alternatively, it may be possible to leverage and
adapt machine learning approaches pioneered by the affective computing community (Picard, 1997),
which allow computer systems to adapt their actions to the affective state of the user, inferred through
facial feature recognition technologies. In both instances, a major leap that must be made is to move away
from using physiological or physical based data (brain data or facial expression data) and focus on
behaviors detected only through the student’s interface with the training system.

The resultant, data could support the development of models that would, in turn, guide the development
of content specific instructional strategies to address learning deficits. At the other end of the spectrum,

166

the behaviors that could be driven through this approach provide new opportunities to realize a range of
actions that the ITS can take to deliver instruction. Lunenburg & Irby (2011) identify a set of effective
strategies, like Set Induction, Stimulus Variation, Reinforcement, and Questioning. Precisely how these
strategies could be delivered using this approach also remains to be determined. Lastly, the current
approach is being developed for a specific application, UAS instruction, in which data naturally are
provided in digital format. Extending this approach to other domains in which the data are not inherently
digital, like math or science instruction, will require new approaches for capturing and eliciting data from
expert instructors.

Impact to the Generalized Intelligent Framework for Tutoring (GIFT)

GIFT already provides a strong foundation into which this approach may be integrated, with
modifications potentially required for only a few modules. The GIFT sensor module offers a way for new
data to be captured, although it would need to be extended to include large-scale ontologies and data from
non-traditional sensor sources. The GIFT learner module is analogous to the student modeling and student
monitoring elements (Figure 1), and may require only minor modifications to support the approach
proposed here, allowing it to boot-strap from the output of the agents. The GIFT pedagogical module
would similarly need to be modified to allow for instruction to be delivered via agents, as discussed
above.

References

Anderson, J. (2000) Learning and Memory: An integrated approach. Wiley

Baker, R. S. J. (2007). Modeling and understanding students’ off-task behavior in intelligent tutoring systems. In: M.
B. Rosson and D. J. Gilmore (eds.): Proceedings of the 2007 Conference on Human Factors in Computing
Systems, CHI 2007, San Jose, California, USA, April 28 - May 3, 2007. pp. 1059{1068.

Boiney, J. & Foster, D. (2013). Progress and Promise: Research and engineering for Human Social cultural Behavior
Capability in the U.S. Department of Defense. Accessed on 09 March 2015 from
http://www.mitre.org/publications/technical-papers/progress-and-promise-research-and-engineering-for-
human-sociocultural-behavior-capability-in-the-us-department-of-defense

Boyce, S. & Pahl, C. (2007). Developing domain ontologies for course content. Educational Technology & Society,
10 (3), 275- 288.

Clemente, J., Ramirez, J., & De Antonio, A. (2011). A proposal for student modeling based on ontologies and
diagnosis rules. Expert Systems with Applications, 38(7):8066-8078.

Corbett, A.T., Anderson, J.R., (1995). Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge.
User Modeling and User-Adapted Interaction, 4, 253-278 to Performance Factors Analysis

Cohn, J.V. & Fletcher, D.F. (2010). What is a pound of training worth? Proceedings of the 31st Interservice/Industry
Training, Simulation and Education Conference, Orlando, FL.

Cohn, J.V., Stacy, W., Geyer, A., Squire, P. & O’Neill, E. (2015) Improving Human System Interactions Through a
Neural Cognitive Architecture: A shared context approach (In preparation for submission to Theoretical
Issues in Erognomic Sciences)

Desmarais, M.C & Baker, R.S.J.D. (2012). A Review of Recent Advances in Learner and Skill Modeling in
Intelligent Learning Environments. User Model User-Adapt International, 22:9-38.

Grossman, R. & Salas, E. (2011) The transfer of training: what really matters. International Journal of Training and
Development 15:2 1468-2419.

Karpicke, J.D.& Roediger, H.L.,I11 (2008): The critical importance of retrieval for learning. Science 15, 966—968.

Koedinger, K. R., Aleven, V., Heffernan, N., McLaren, B. & Hockenberry, M. (2004). Opening the door to non-
programmers: Authoring intelligent tutor behavior by demonstration. In J.C. Lester, R.M. Vicari & F.
Parguacu (Eds.) Proceedings of the 7th International Conference on Intelligent Tutoring Systems, 162-174.
Berlin: Springer-Verlag.

Koedinger, K.R.,Corbett, A.T.,& Perfetti,C.(2012).The knowledge-learning-instruction framework: Bridging the
science-practice chasm to enhance robust student learning. Cognitive Science, 36, 757-798.

167

http://www.mitre.org/publications/technical-papers/progress-and-promise-research-and-engineering-for-human-sociocultural-behavior-capability-in-the-us-department-of-defense
http://www.mitre.org/publications/technical-papers/progress-and-promise-research-and-engineering-for-human-sociocultural-behavior-capability-in-the-us-department-of-defense

Koedinger, K. R.; McLaughlin, E. A. & Stamper, J. C. (2012). Automated Student Model Improvement.
International Educational Data Mining Society, Paper presented at the International Conference on
Educational Data Mining (EDM) (5th, Chania, Greece, Jun 19-21, 2012).

Koenig, A. D., Lee, J. J., Iseli, M. R. & Wainess, R. A. (2009). A conceptual framework for assessing performance
in games and simulations. Proceedings of the Interservice/Industry Training, Simulation and Education
Conference, Orlando, FL.

Lunenburg, F. C. & Irby, B. J. (2011). Instructional Strategies to Facilitate Learning. International Journal of
Educational Leadership Preparation, 6(4), n4.

Mehta A. (2014) Under Budget Pressure US Air Force Looks to Live Virtual Constructive Training. Retrieved from
http://www.defensenews.com/article/20140520/TRAINING/305200048/Under-Budget-Pressure-US-Air-
Force-Looks-LVC-Training 18 Nov 2014

Mitchell, T. M., Hutchinson, R., Niculescu, R.S. Pereira, F. Wang, X., Just, M. & Newman, S. (2004). Learning to
Decode Cognitive States from Brain Images. Machine Learning, 57, 145-175.

O’Connor, P.E. and Cohn, J.V. (Eds.) (2010). Human Performance Enhancement in High-Risk Environments. Santa
Barbara, CA: Praeger Security International.

Olson, W. (2014). With deadline looming, agreement uncertain on Hawaii live-fire range Retrieved from
http://www.stripes.com/news/with-deadline-looming-agreement-uncertain-on-hawaii-live-fire-range-
1.284813 18 Nov 2014

Pardos, Z. A., Heffernan, N. T. (2010) Modeling Individualization in a Bayesian Networks Implementation of
Knowledge Tracing. In Proceedings of the 18th International Conference on User Modeling, Adaptation
and Personalization. pp. 255-266. Big Island, Hawaii.

Pashler,H. et al. (2007) Enhancing learning and retarding forgetting: choices and consequences.
Psychonom.Bull.Rev. 14, 187-193

Pavlik, P.1., Cen, H., Koedinger, K.R., 2009a. Learning Factors Transfer Analysis: Using Learning Curve Analysis
to Automatically Generate Domain Models. In: Proceedings of the 2nd International Conference on
Educational Data Mining, 121-130

Robinson, S., Lee, E.P.K. & Edwards, J.E. (2012). Simulation based knowledge elicitation: Effect of visual
representation and model parameters. Expert Systems with Applications, 39(9): 8479-8489

Rohrer, D. & Pashler, H. (2010). Recent research on human learning challenges conventional instructional strategies
Educational Researcher, 39(5) pp. 406-412.

Picard, R. W. (1997) Affective Computing, MIT Press, 0-262-16170-2, Cambridge, MA, USA.

Simperl, E.P.B & Mochol, M. (2006). Cost Estimation for Ontology Development In: Witold Abramowicz (ed.),
Business Information Systems, Proceedings of BIS 2006, Poznan, Poland Retrieved from http://page.mi.fu-
berlin.de/mochol/papers/B1S06.pdf 10 Nov 2014.

Shinkareva, S. V., Mason, R. A., Malave, V. L., Wang, W., Mitchell, T. M. & Just, M. A. (2008). Using fMRI brain
activation to identify cognitive states associated with perception of tools and dwellings. PLoS ONE, 3,
e1394

Stacy E.W., Cohn J.V., Geyer A., Wheeler T.A. (2010) Cognition-based control system for autonomous robots.
Poster: Human Factors and Ergonomics Society 54th Annual Meeting, San Francisco.

168

http://www.defensenews.com/article/20140520/TRAINING/305200048/Under-Budget-Pressure-US-Air-Force-Looks-LVC-Training
http://www.defensenews.com/article/20140520/TRAINING/305200048/Under-Budget-Pressure-US-Air-Force-Looks-LVC-Training
http://www.stripes.com/news/with-deadline-looming-agreement-uncertain-on-hawaii-live-fire-range-1.284813%2018%20Nov%202014
http://www.stripes.com/news/with-deadline-looming-agreement-uncertain-on-hawaii-live-fire-range-1.284813%2018%20Nov%202014
http://page.mi.fu-berlin.de/mochol/papers/BIS06.pdf%2010%20Nov%202014
http://page.mi.fu-berlin.de/mochol/papers/BIS06.pdf%2010%20Nov%202014

cuartEr 14 Authoring Conversation-based Assessment
Scenarios

Diego Zapata-Rivera, Tanner Jackson, and Irvin R. Katz
Educational Testing Service

Introduction

At Educational Testing Service (Princeton, NJ), current research seeks to adapt technologies and
techniques originally developed for intelligent tutoring systems (ITSs) to create innovative forms of
assessment. This chapter focuses on one such project, working from the dialogue-based instruction of
Graesser and colleagues (Graesser, Person & Harter, 2001) to develop a series of “conversation-based
assessments” (CBAs). CBAs use dialogues between automated computer agents and test-takers to help
measure the level of a construct — knowledge and skill in a particular domain — that a test taker
possesses. To date, we have developed prototype CBAs each designed to measure a distinct skill such as
science inquiry (Zapata-Rivera, Jackson, Liu, Bertling, Vezzu & Katz, 2014), formulating and justifying
arguments (Song, Sparks, Brantley, Jackson, Zapata-Rivera & Oliveri, 2014), and reading, listening, and
speaking skills for English language learners (Evanini, So, Tao, Zapata, Luce, Battistini & Wang, 2014).

The assessment, rather than instructional, context for dialogues lead to unique challenges when designing
CBAs. To meet these challenges, we have built authoring tools to support the processes of designing and
developing automated conversations for assessment purposes. These tools include conversation-space
diagrams (Zapata-Rivera et al., 2014), an automated testing tool, and a version of the AutoTutor Script
Authoring Tool (Susarla, Adcock, Van Eck, Moreno & Graesser, 2003), which we call the AutoTutor
Script Authoring Tool for Assessment (ASATA).

Each task within a CBA is defined to measure a particular set of constructs; a conversation-space diagram
shows how evidence (test taker performance) of each construct is collected through various discourse
paths of the conversation. The diagram helps the designers to place recognizable discourse patterns in the
conversations to create authentic-seeming situations. These conversation-space diagrams lead directly to
dialogue scripts in ASATA and test-taker response “scripts” for the automated testing system. These
authoring tools have helped speed up the design and testing of CBAs.

Related Research

As the need for assessing more complex skills increases, more researchers are exploring the use of new
technologies to implement technology-enhanced assessments (TEAS) that can make use of multiple
sources of evidence to support claims about students’ skills, knowledge and other attributes (Invitational
Research Symposium on Technology Enhanced Assessments, 2012; Perrotta & Wright, 2010). Some of
these TEASs include the use of computer simulations (Bennett, Persky, Weiss & Jenkins, 2007; Clarke-
Midura, Code, Dede, Mayrath & Zap, 2011; Quellmalz et al., 2011) and games (Shute, et al., 2009;
Mislevy, et al., 2014). TEAs frequently involve the use of authoring tools to facilitate the design and
implementation process of these systems.

A variety of authoring tools have been implemented and evaluated for ITSs. These tools include authoring

tools for dialogue systems (Susarla, et al., 2003; Butler, et al., 2011), constraint-based tutors (Mitrovic,
Martin, Suraweera, et al., 2009), model-tracing cognitive tutors (Aleven, McLaren, Sewall & Koedinger,

169

2006, Blessing, Gilbert, Ourada & Ritter, 2009) and other problem-specific tutors (Blessing et al., 2009).
An overview of authoring tools in ITSs can be found in Murray (2003). Relevant research also includes
prior work on authoring tools for creating data collection instruments (Katz, Stinson & Conrad, 1997).

Although this prior work provides a guide, the intent of a conversation differs between an ITS and an
assessment, changing also the elements of a dialogue. When a conversation is part of an ITS, the primary
goal is instruction. Graesser’s dialogic framework consists of a computer agent asking a main question of
the human student, then following up with additional questions or prompts if the initial response is
incomplete. Different follow-up questions, prompts, or hints would be offered depending on the specific
way that the initial response is incorrect or incomplete. In the case of assessment, follow-up questions,
prompts, and hints take on a new meaning. Rather than guiding the student to a good answer to the main
guestion, the goal of the assessment is to make sure that any incompleteness in the initial answer reflects
that the student does not know the answer rather than the student simply did not express what he or she
knows. Of course, in an assessment, even if the student answered a question incorrectly or provided an
incomplete answer, the system would not attempt to teach, but rather create situations that help students
elaborate on their initial incomplete or incorrect responses. These sequences of interactions are recorded
(and later scored). Thus, compared with the original AutoTutor framework, the assessment focuses on
incompleteness and in drawing out additional information about student understanding.

Discussion

Traditional authoring tools for dialogue systems assume that authors are familiar with computer natural
language processing techniques (e.g., regular expressions and latent semantic analysis) and have some
computer programming skills (e.g., rule-based and constraint programming). Most of these tools have
been designed to be used by dialogue engineers who have years of experience designing, implementing,
and testing these types of systems. Even though assessment developers are highly skilled at developing
valid assessments using traditional task types, they are not familiar with the use of conversations as
assessment tasks and do not usually have programming experience. In addition, other team members such
as psychometricians, game programmers, research assistants, and research scientists do not necessarily
understand how these CBAs are created and scored.

In order to support the work of assessment developers, a different layer of authoring needed to be
explored. This layer includes support for assessment design concepts and processes (e.g., target
constructs, evidence identification, and scoring). Although we have tried several tools in the creation of
CBAs, such as text documents and chat-like tools to document how dialogue interactions are used to
gather evidence of target constructs, these tools quickly became cumbersome to use and did not include
all the elements required to develop assessment tasks. Conversation-space diagrams were created to
facilitate the authoring of conversational tasks. The next sections describe the process of authoring CBAs.

Authoring CBAs

Building on the principles of evidence-centered design (ECD; Mislevy, Steinberg & Almond, 2003), the
development process of these conversation-based tasks involves an iterative process that starts from a
clear definition of the construct, followed by the identification of the evidence (e.g., types of responses to
particular questions) required to support particular claims about what students know or can do in regards
to each target construct (Figure 1).

170

Construct Definition

'

Evidence Identification

|

Scene Design

¥

Conversation Diagrams &
Scoring Model

|

Script Development &
Testing

|

Conversation Prototype

Figure 1. CBA development process

Scenes are designed in order to create the context where intended conversations can take place and the
evidence needed can be gathered. Scene design elements include the situation or context of the
conversation, main question, conversation moves/patterns, who asks each question, the type of responses
that are intended to be elicited, and how characters respond to each type of response. This information is
represented in a conversation space diagram (see the next section). A scoring model is also developed for
each particular conversation. The scoring model has two components: (1) path-based scoring (partial
credit scores per each relevant construct based on expert judgment) and (2) revised scores based on
additional evidence from human raters or other automated scoring engines. Conversation scripts are
implemented in ASATA based on these conversation space diagrams. These conversation scripts can be
tested within ASATA (text-based interface). Finally, a conversation prototype that includes all the
graphical components, interactive tasks (e.g., simulations) and conversations is produced and used to
collect assessment data. These data are used to refine the various elements of the system in an iterative
cycle.

Conversation Space Diagrams

Conversation diagrams have been designed to facilitate authoring of CBAs (see Figure 2). These
diagrams serve as communication tools to facilitate communication about task design among an
interdisciplinary group of experts that may not share the same location or have the same level of expertise
in particular area. Conversation space diagrams provide a common language for these experts to
collaborate in the CBA design and testing process.

Conversation space diagrams include the definition of the construct that is being assessed along with a
column for each virtual character/real student. Utterances and potential conversational branches are
displayed in the body of the diagram to form conversation paths (including sample user responses). These
paths may involve several turns (i.e., columns of the diagram) depending on the conversation. Paths
within a diagram can be used to represent several types of conversation moves/patterns (e.g., Comparison

171

-> Selection -> Agree/Disagree -> Why?; Define -> Explanation -> Scaffolding -> Rephrase; Irrelevant ->
Rephrase & Ask Again).

Interactions with characters are designed to provide opportunities for assessing the construct(s) of interest.
Each task includes an opening that sets the stage for the interactions with virtual characters and a closing
that concludes the current scene and connects it to the next one. Each scene includes a main question that
is directed to the student. Depending on how the student responds to this question, virtual characters react.

There is usually a predefined set of possible responses: (a) a correct response is usually connected to a
closing statement, (b) partially correct responses are handled in various ways depending on the nature of
the response (e.g., characters may ask for additional information, provide a hint, or restate the question),
(c) irrelevant responses are usually handled by a character showing lack of understanding and restating
the question, (d) no response usually involves a character asking “Are you still thinking?”” and giving the
student additional time, if appropriate, and (e) meta-communicative responses (e.g., “What did you say?,”
“Please repeat”) and meta-cognitive responses (e.g., “l have no idea,” “I am not sure,” “I forgot”) are
handled by repeating the question or rephrasing it.

Each conversational script typically has up to three cycles or opportunities for students to answer different
types of questions related to the main question. If the student does not answer the question after the initial
attempt and follow-up prompts, then a character may provide a closing statement and move the
conversation along to the next scene.

Path information is based on expert judgment and is implemented using regular expressions and rules as
part of the script. Figure 2 shows sample closing statements including path-based scores for the target
constructs. Figure 3 (top) shows a sample rule telling the system that ClosingPathl should be executed if
the student response is classified as Good. A fragment of a regular expressions for a good response is
displayed at the bottom of Figure 3. Path-based scores for target constructs are assigned at the closing
statement.

172

A

Construct |

Valcano 2

Construct:

The following is a conversation space diagram for a conversation among Dr. Garcia, Art (the student agent) and _user_ (the student).

- Data collection (C1): XXXXXXXXX. Make predictions based on dafa (CZ): XXXXXXXXX. Evidence-based reasoning (C3): XXXXXXXXX. Communication (C4): XXXXXKXKK
Context: XXXXXXXXX

Opening Cycle 2 Cycle 3 Cycle 4 Cycle 5 | Closing
Dir. Garcia ”3888388{" Ar I # Dr. Garcia _user_ | | Art || v | |wm] |_user_| | Art || | [|_uaer_| | Arl | | Lity || s]_usar_] | Al] Lily | Dr. Garcia
| think that role ‘ | Closing.r‘Scores }:N If you want, you can
the alert [Explanation change Art's prediction
g ale Mt .
with correct i i
level levidence] supportlrllg evidence, and
should be explanations.
Art, | see | |high B. No
you have | |because lincorrect Scores (C2=3,C3=3)
made a we found lexplanation] = =
prediction | |evidence N g:",:f:; ?g:’r:';f"éz -3
el of high please C3=1.C4=2)
prqwded frequency look at thell/C. No [No
evidence | |events. alert level |[[Explanation]
RESBECE! | ltable. Do
it. We know ou a. ree
from the you ag
with Art?
Could you| |alert table Why or
pleasg fitiE why not? C. [Non-
explain volcano i
the that .
prediction | |shows explanation]
to me? this
should
have an D. Yes. [No
alert level Explanation] [o
of high.
E. Yes
[Explanation
lwith correct
Main Question data pattern] O
F. Irrelevant —
response [
User Response //D
Categories

Figure 2. Fragment of a conversation space diagram for the Volcano scenario (Zapata-Rivera, et al., 2014).
Note: To allow exemplar text to be legible, the text in other boxes was purposefully obscured in this figure.

173

Fules

Media

Answers

-

Text _user_, please look at the alert level table. Do you agree with At? Why or why not?

Speech _user_, please look at the alert level table. Do you agree with Art? Why or why not?

name status response event hasltem prorty frequency — description o
4 | AskMainGuestion MainGuestion hd hd v tue v - -
')5_ AskMainQuestion * | MainGood hd hd hd - - _
! E_ QuestionGoodCritique AskMainQuestion | Main-GoodCritique - 2 - - -
QuestionGood
agent act data
b1 System + | GetRigidPack + | ClosingPath -
2 System | SetStatus w | ClosingPath1 -
3 System GetRule - -
*4 - - -
Question
Question ID 1 ~ Agent Professor -

name

[Good

agent

Professor

Good

keys
Sb[MAjotbl b [Nrlope bib[Nnlsh b wirongllBb ladl[liincomect|[lilsnt comecti[lilsnt comectiMnlot
comect|[lijsnt completely comecti[lijsnt completely comecti[Nnjot completely comecti[lilsnt entirshy
comect|[lilsnt entirely comectl[Nnjot entirely comect[Ddlisagreel[Ddlont agreel[Ddlont agreel[Ddlont
believel[Ddjont believel[Nnjot agreekhouldinesdedinesd|[Dd]ont likel[Ddjort
like,"b[Nnlo"bMb[MNnlope blb[Mnlah bIMwirongl[Bbladllliincomectililsnt comectililsrt
comect[MNnjot comectl[lijlent completely comecti[lilsnt completely comecti[Nnjot completely
comectl[lilsnt entirely comectiflilsnt entirely comect[MNnlet entirely comect/[Ddlisagreel[Ddlont
agreel[Ddjont agreel[Ddjont believel[Ddlont believel[MNnjot agreeishouldineededineed|[Ddlont
likel[Ddjent lilce,\b[Nnle bl [Nnjope b b [Nnjah bW wongl[BbJadlincemect[lilsnt comect[lilsnt
comect|[Mnlot comect|[lilsnt completely comect/[lilsnt completely comect[Nnjot completehy
comect|[lijlsnt entirely comect/[lilsnt entirely comect[Nnjot entirely comect|[Ddlisagreel[Ddjont
agreel[Ddlort agreel[Ddjont believel[Ddlort believel[MNnlot agreeishouldineededineed|[Ddlont
likel[Ddjont like, \b[Nnjo'blb [Nnjopeb[\b[Nnjah \bi[Wwjrongl[BbJadl[iincomect [lijsnt comect [lijsnt

m

Figure 3. Sample rule and regular expression (fragment) in ASATA

AutoTutor Script Authoring Tool for Assessment (ASATA)

ASATA offers many features for creating a variety of conversation-based tasks. Dialogue engineers can
create, test, and revise conversations for tutoring and assessment purposes using the modules available in

ASATA.

ASATA provides conversation authors with a graphical interface that includes modules such as the

following:

e Agents this module is used to define agent characteristics such as name, title, gender, and canned

expressions for predefined categories of responses (e.g., meta-communicative responses);

e Speech Acts

o Rigid Packs

and closing statements);

used to define regular expressions for general categories of responses;

174

used to represent non-interactive conversations among the agents (e.g., opening

e Tutoring Packs determine how agents react to particular student responses, establish thresholds
for classification purposes, and contain linguistic information like regular expressions, text for
latent semantic analysis, expected answers, misconceptions, hints, and prompts;

o Rules Implement conversation sequences (paths); and

e a Testing module that uses a chat-like environment to display the internal state of the system
(e.g., rules fired and matching values) as the user interacts with each conversation.

ASATA shares many of the same features as ASAT. Many of the improvements made to ASAT have
been transferred to ASATA and vice versa. Figure 3 shows some of the components of ASATA.

Automated Testing

Testing CBA scripts can be a time-consuming process of manually entering possible student responses
and observing whether the conversation flows as expected. This process usually requires several iterations
of testing/refining, which becomes a bottleneck for the use of these systems in operational contexts. We
have developed an approach for automated testing of CBAs. This process makes use of sample responses
gathered from an interdisciplinary group of experts and allows for the creation of predefined response
categories that are represented in the form of a conversation diagram. This information is used to create
extensible markup language (XML)-based testing scripts that can evaluate individual responses and
complete sequences (and alternative sequences) of responses (paths). This process has already shown
value by reducing the number of iterations and testing time required in implementing CBAs. The next
section describes some of the results that have been achieved so far using various authoring and testing
tools.

Initial Results

We have implemented CBAs in various areas including English language learning, mathematics, science,
and argumentation during the last two years. Conversation space diagrams for these domains may share
similar components including path structure, conversation patterns, and graphical components (e.g.,
virtual characters and delivery environment). This helps in terms of reducing the cost of CBA
development and improving scalability. For example, it is possible to design a parallel version of a CBA
by reusing and adapting the elements from an existing one. We are currently testing a newly developed
isomorphic environment to an existing CBA and comparing them in terms of their psychometric and other
properties.

By using conversation space diagrams, we have been able to assign work that was done by scientists or
assessment developers to research assistants (e.g., modification of conversation based diagrams,
generation of additional materials, and testing), making better use of resources while still producing high
quality work.

We have collected data on the time required by our team to design and test CBAs across different target
domains. The development can be divided into three different stages based on various authoring tools
available for designing and testing CBAs. Initially, we used text documents and chat tools to create the
scripts before using ASATA to implement them and testing was done manually. Later, we started using
conversation-based diagrams design and ASATA and manual testing. Currently, we are using
conversation-based diagrams, ASATA, and automated testing. The introduction of automated testing of
scripts has made the process of detecting and fixing errors more efficient. Table 1 shows some indicators
of the development and testing process using various types of authoring tools. These data have been

175

collected at different stages of this work. The introduction of conversation based diagrams and automated
testing have increased the efficiency of the process. We continue to make improvements to these tools by
enhancing their usability and integration with other development tools.

Table 1. Development indicators for conversation-based assessments using various authoring tools.

Authoring Tool

) Text Conversation Space Conversational Space
Development Indicator Documents/Chat ~ Diagrams + Diagrams +
tools + ASATA ASATA ASATA +

Automated Testing

Number of scripts 2 8 ~20

developed

Time designing and testing 4-8 weeks 1-4 weeks 1-2 weeks

a new script

Percentage of errors 20%-30% 40%-60% 60%—-80%

identified before data

collection

Time correcting errors 1 week 2-4 days 1-2 days
Next Steps

The conversation space diagram and testing system are distinct components, separate from each other and
ASATA, the latter of which is the way that conversations are implemented. In our current work, we are
combining these three systems into an authoring tool that we call ASAT-V (“V” for visualization).
ASAT-V is a visual programming environment in which an author draws the conversation space diagram
and, for each node, specifies metadata (what is to be said by which agent, for example). Another user of
the system, the dialogue engineer, would add metadata associated with the technical aspects of the
conversation, such as regular expressions and other parameters to ensure that the conversation would
work correctly. The psychometrician might add in scoring metadata associated with scoring. Once the
diagram is created in ASAT-V, it produces files that can be read by the dialogue engine to execute a
dialogue, with no intermediary steps. Additionally, the ASAT-V will produce testing scripts and script
models (tailorable by the author) and execute those scripts to ensure that the conversation flows as
expected.

176

Recommendations and Future Research

Authoring tools such as conversation space diagrams and automated testing modules facilitate the
development and testing process of CBAs. Through our authoring tools, we have been able to reuse
domain-independent structures (e.g., conversation patterns), accelerate the development of CBAs, and
improve communication among the members of our development teams. Conversation-based diagrams
have also helped new members get familiar with these innovative assessment tasks and improved the
acceptance of a new assessment design paradigm. In addition, it has allowed for an effective allocation of
resources so people can do what they know best.

Some recommendations for the Generalized Intelligent Framework for Tutoring (GIFT; Sottilare,
Brawner, Goldberg, and Holden, 2012), and future ITS include the following:

e Develop integrated authoring tools that take into account the needs, knowledge, and attitudes of
particular team members.

o Keep important design information readily available throughout the development process (e.g.,
construct information for assessment tasks)

e Develop technical development infrastructure and representations to help integrate/reuse
components across different CBAs.

o Make use of automated testing tools to help speed-up the development and testing process of
conversation-based systems.

References

Aleven, V., McLaren, B.M., Sewall, J. & Koedinger, K.R. (2009). A New Paradigm for Intelligent Tutoring
Systems: Example-Tracing Tutors. International Journal of Artificial Intelligent in Education. Special Issue
on Authoring Systems, 19(2), 105-154.

Bennett, R. E., Persky, H., Weiss, A. & Jenkins, F. (2007). Problem-Solving in technology rich environments: A
report from the NAEP technology-based assessment project. NCES 2007-466, U.S. Department of
Education, National Center for Educational Statistics, U.S. Government Printing Office, Washington, DC.

Blessing, S. B., Gilbert, S. B., Blankenship, L. A. & Sanghvi, B. (2009). From sdk to xpst: A new way to overlay a
tutor on existing software. In Proceedings of the Twenty-second International FLAIRS Conference (pp.
466-467), Sanibel Island, FL. AAAI Press.

Blessing, S. B., Gilbert, S.B., Ourada, S. & Ritter, S. (2009). Authoring model-tracing cognitive tutors. International
Journal of Artificial Intelligent in Education. Special Issue on Authoring Systems, 19(2), 189-210.

Butler, H., Forsyth, C., Halpern, D., Graesser, A.C. & Millis, K (2012). Secret agents, alien spies, and a quest to
save the world: Operation ARIES! Engages students in scientific reasoning and critical thinking. In R. L.
Miller, R. F. Rycek, E. Amsel, B. Kowalski, B. Beins, K. Keith & B.Peden (Eds.)., Volume 1: Programs,
Techniques and Opportunities. Syracuse, NY: Society for the Teaching of Psychology.

Clarke-Midura, J., Code, J., Dede, C., Mayrath, M. & Zap, N. (2011). Thinking outside the bubble: Virtual
performance assessments for measuring complex learning. In M.C. Mayrath, J. Clarke-Midura & D.
Robinson (Eds.), Technology-based assessments for 21st century skills: Theoretical and practical
implications from modern research. Charlotte, NC: Information Age. 125-147

Evanini, K., So, Y., Tao, J., Zapata, D., Luce, C., Battistini, L. & Wang, X. (2014). Performance of a trialogue-based
prototype system for English language assessment for young learners. Proceedings of the Interspeech
Workshop on Child Computer Interaction (WOCCI 2014), Singapore, September 19, 2014.

177

Graesser, A. C., Person, N. K. & Harter, D. (2001) The Tutoring Research Group: Teaching tactics and dialogue in
AutoTutor International Journal of Artificial Intelligent in Education. 12, 257-279.

Katz, I., Stinson, L.L, and Conrad, F.G. (1997). Questionnaire designers versus instrument authors:; Bottlenecks in
the development of computer administered questionnaires. Fifty-Second Annual Conference of the
American Association for Public Opinion Research, Norfolk, VA. 1029-1034.

Mislevy, R., Oranje, A., Bauer, M., von Davier, A., Hao, J., Corrigan, S., Hoffman, E., DiCerbo, K. & Michael, J.
(2014) Psychometric Considerations In Game-Based Assessment. Retrieved October 5, 2014, from
http://www.instituteofplay.org/wp-content/uploads/2014/02/GlassLab_GBA1_WhitePaperFull.pdf

Invitational Research Symposium on Technology Enhanced Assessments. (2012). Center for K—12 Assessment &
Performance Management at ETS. Retrieved October 5, 2014, from
http://www.k12center.org/events/research_meetings/tea.html

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & McGuigan, N., (2009) ASPIRE: An
Authoring System and Deployment Environment for Constraint-Based Tutors, International Journal of
Artificial Intelligent in Education. Special Issue on Authoring Systems, 19(2), 155-183.

Murray, T. (2003) An Overview of Intelligent Tutoring System Authoring Tools: Updated Analysis of the State of
the Art. Authoring tools for advanced technology learning environments. 491-545.

Perrotta, C. & Wright, M. (2010) New Assessment Scenarios. Retrieved October 5, 2014, from
http://www.futurelab.org.uk/resources/new-assessment-scenarios

Quellmalz, E. S., Timms, M. J., Buckley, B. C., Davenport, J., Loveland, M. & Silberglitt, M. D. (2011). 21st
Century Dynamic Assessment. In M.C. Mayrath, J. Clarke-Midura & D. Robinson (Eds.), Technology-
based assessments for 21st century skills: Theoretical and practical implications from modern research.
Charlotte, NC: Information Age. 55-90.

Shute, V. J., Ventura, M., Bauer, M. |. & Zapata-Rivera, D. (2009). Melding the power of serious games and
embedded assessment to monitor and foster learning: Flow and grow. In U. Ritterfeld, M. J. Cody & P.
Vorderer (Eds.), Serious Games: Mechanisms and Effects. Philadelphia, PA: Routledge/LEA. 295-321.

Sottilare, R., Graesser, A., Hu, X., and Goldberg, B. (Eds.). (2014). Design Recommendations for Intelligent
Tutoring Systems: Volume 2 - Instructional Management. Orlando, FL: U.S. Army Research Laboratory.
ISBN 978-0-9893923-3-4. Available at: https://gifttutoring.org/documents/

Song, Y., Sparks, J., R., Brantley, J. W., Jackson, T., Zapata-Rivera, D. & Oliveri, M. E. (2014) Developing
Argumentation Skills through Game-Based Assessment. In Proceedings of the 10th Annual Game Learning
Society Conference, Madison, WI.

Susarla, S., Adcock, A., Van Eck, R., Moreno, K. & Graesser, A.C. (2003) Development and evaluation of a lesson
authoring tool for AutoTutor. In: Aleven, V., et al. (eds.) AIED 2003 Supplemental Proceedings, pp. 378—
387

Zapata-Rivera, D., Jackson, T., Liu, L., Bertling, M., Vezzu, M. & Katz, I. R., (2014) Science Inquiry Skills using
Trialogues. 12th International conference on Intelligence Tutoring Systems. 625-626.

178

Chapter 15 Authoring Networked Learner Models in
Complex Domains

David Williamson Shaffer', A. R. Ruis’, and Arthur C. Graesser?
University of Wisconsin-Madison, “University of Memphis

Introduction

Education leaders have called for a significant expansion in the use of computer games and simulations,
intelligent tutoring systems (ITSs), and other virtual learning environments in both formal and informal
learning contexts (Graesser, 2013; Honey & Hilton, 2011; Sottilare, Graesser, Hu & Holden, 2013). To
accomplish this will require that curriculum developers be able to author and customize such technologies
for integration into specific curricula, adaptation to local needs, and alignment with changing standards
(Clark, Nelson, Sengupta & D’Angelo, 2009; Honey & Hilton, 2011; Mitrovic et al., 2009). Research on
the development of ITSs has shown that anywhere from 100 to 1000 hours of authoring time are needed
to produce just 1 hour of instruction (Koedinger & Mitrovic, 2009). The substantial time commitment and
expertise required place significant limitations on the creation of sophisticated virtual learning
environments. “Our holy grail,” Vincent Aleven and colleagues have suggested, is “to create cost-effective
tools that non-programmers can use to create and deliver sophisticated tutors for real-world use” (Vincent
Aleven et al., 2009).

Prior studies on authorware development suggest that building such tools is both ambitious and
potentially transformative (Koedinger, Aleven, Heffernan, McLaren & Hockenberry, 2004; Murray,
Blessing & Ainsworth, 2003; Murray, 1999). Recent efforts to design authorware for sophisticated
systems has revealed the many difficulties involved in creating a platform that is rich in features but easy
to use. It is challenging for curriculum developers and instructors to use authoring tools effectively, and
adding additional intelligent features could make it even more challenging (Ainsworth & Grimshaw,
2004; Major, Ainsworth & Wood, 1997). Authoring tools must be able to account for essential
components, such as conversation management, semantic representations, production rules, pedagogical
strategies, and other technical modules (Vincent Aleven, Sewall, McLaren & Koedinger, 2006; Murray et
al., 2003; Woolf, 2010). The curriculum or learning modules created also need to fit theory-driven
constraints, discourse processes, cognitive science, and computer science, as well as the practical
constraints created by state standards, assessments, and education practices. Pedagogical authoring thus
requires deep and broad knowledge to manage these constraints, accommodate tradeoffs, and negotiate
incompatibilities.

The complexity inherent in the pedagogical authoring of virtual learning environments raises a key
guestion: Can authorware systems be designed that facilitate this process without requiring the
curriculum developer to have expertise in computer programming or educational software development?

While progress has been made toward this goal, most sophisticated authoring systems (there are many for
ITSs alone) are used primarily in research contexts. Those that have received broader usage, such as
Cognitive Tutor Authoring Tools (CTAT) and Authoring Software Platform for Intelligent Resources in
Education (ASPIRE), primarily support the development of modules that help students learn to solve
well-formed problems, such as those common in basic mathematics, computer science, or language
acquisition. One notable exception is the AutoTutor Script Authoring Tools (ASAT and ASAT-Lite),
which support intelligent conversational agents in any subject matter (Hu et al., 2009; Nye, Graesser &
Hu, 2015; Cai, Graesser & Hu, this volume). ASAT handles a single human learner who interacts with

179

one or more conversational agents. In this chapter, we discuss the potential to develop authorware for
virtual learning environments in which students work in small teams to solve complex, ill-formed
problems. In particular, we explore the parameters, affordances, and challenges of designing authoring
tools for Syntern, a platform for the development and deployment of virtual internships (Arastoopour,
Chesler & Shaffer, 2014; Bagley & Shaffer, 2009; Chesler et al., 2015; Chesler, Arastoopour, D’Angelo,
Bagley & Shaffer, 2013; Shaffer, 2007). Virtual internships are online learning environments that
simulate professional practica in complex science, technology, engineering, and mathematics (STEM)
domains.

Virtual internships are based on the theory of situated learning (Anderson, Reder & Simon, 1996; Lave &
Wenger, 1991; Sadler, 2009), which suggests that students learn complex thinking best when they have
an opportunity to take consequential action in a realistic setting. In STEM fields, this typically occurs in
the context of an internship or other professional practicum through a process of legitimate peripheral
participation, where novices learn to think like experts by working on problems similar in form to those
of the practice but with reduced intensity and risk (Lave & Wenger, 1991). What distinguishes an
internship from other learning environments is the combination of action, the ability to do authentic work,
and reflection-on-action (Schén, 1983, 1987; Shaffer, 2003), the opportunity novices have to think about
what went well, what did not, and why, and then discuss this with peers and mentors. Virtual internships
simulate the key features of a professional practicum, especially the close mentorship that is critical to
learning in professional contexts (Bagley & Shaffer, 2010; Nash & Shaffer, 2011, 2013; Nulty & Shaffer,
2008).

In a STEM virtual internship, students are presented with a complex, real-world problem for which there
is no optimal solution. Student project teams read and analyze research reports, perform experiments
using virtual tools and analyze the results, respond to the requirements of stakeholders and clients, write
reports and proposals, and present and justify their proposed solutions. During the virtual internship,
students communicate with one another using built-in email and instant message systems. They also
receive directions, feedback, and guidance from non-player characters (NPCs), such as their boss or
company stakeholders, whose actions are controlled by a combination of artificial intelligence (Al) and
human domain managers using scripted material in the simulation. Through flexible scripts and
automated processes, NPCs answer students’ questions, offer suggestions, guide reflective conversations,
facilitate student collaboration, and provide support. The goal of a virtual internship is to provide an
authentic simulation of the internships, practica, and cooperative research experiences with which STEM
professionals are trained in the real world.

In the virtual internship Nephrotex, for example, students work at a fictitious biomedical engineering
company, which has tasked them with designing a new ultrafiltration membrane for use in hemodialysis
equipment. To accomplish this task, students review technical documents, conduct background research,
and examine research reports based on actual experimental data. After these tasks are complete, they
develop hypotheses based on their research, test those hypotheses in the provided design space, and then
analyze the results, first individually and then in teams. Students also become knowledgeable about
consultants within the company who have a stake in the outcome of their designed prototypes. These
consultants value different performance metrics. For example, the clinical engineer is most interested in
biocompatibility and flux, and the manufacturing engineer values reliability and cost. During the last days
of the internship, interns present and justify their final design selections.

Our goal is to develop authorware that allows curriculum developers to design or modify STEM virtual
internships to address different audiences, topics, or purposes without requiring significant expertise in
computer programming or educational software development. We believe this is possible because (a) the
pedagogical foundation is well developed and the design space is constrained, reducing the specialized
knowledge required for pedagogical authoring; (b) the computational module for natural language

180

processing (NLP) is STEM domain general, so it does not require rewriting for new STEM virtual
internships; updates to the semantic coding system automatically propagate to the Al modules; and (c) the
Syntern platform has a modular design consisting of a core application programming interface (API) and
plug-ins, so each component may be added, removed, or modified without affecting other components.
Although we focus on the design of one particular system, the principles of authorware design are
applicable to learning environments in ill-formed domains more generally. Given the relatively small
body of research on the processes with which curriculum developers design content, however, we argue
that a key element of developing such authorware systems is to develop a science of the pedagogical
authoring process.

Related Research

In the past two decades, there has been a proliferation of sophisticated virtual learning environments in
STEM. There are now ITSs that can outperform human teachers on certain tasks, such as determining
student knowledge and identifying student misconceptions (Graesser, Conley & Olney, 2012; Woolf,
2010). STEM educational games, such as Quest Atlantis (Barab et al., 2009; Hickey, Ingram-Goble &
Jameson, 2009), River City (Dieterle, 2009; Ketelhut, Dede, Clarke-Midura & Nelson, 2006), SAVE
Science (Nelson, Ketelhut & Schifter, 2010), Operation ARA (Halpern et al., 2012), and Mission Biotech
(Sadler, Romine, Stuart & Merle-Johnson, 2013), have been shown to help students learn important
STEM concepts and engage more fully with material. And our own work on STEM virtual internships has
shown that computer simulations based on authentic STEM practices help students learn how to solve
problems in the ways that innovative STEM professionals do (Arastoopour et al., 2014; Bagley &
Shaffer, 2009; Chesler et al., 2015, 2013; Shaffer, 2007).

Despite these successes, use of such technologies in education is still quite modest. If ITSs, educational
games and simulations, and virtual internships are so effective, why have they not been more widely
incorporated into learning? There are numerous issues that contribute to this problem, but a key element
is that it is too difficult, too expensive, and too slow to create or modify sophisticated learning
technologies to fit the wide range of learners and learning contexts. Creating authorware that enables
curriculum developers to easily, cheaply, and quickly produce or modify learning technologies, while also
ensuring that the products are pedagogically sound, is thus a crucial requirement for scaling up the use of
such technologies in education. While this research and development effort is still in its early stages,
significant steps have been taken toward this goal.

A number of authorware systems have been developed that allow curriculum developers to construct
virtual learning environments in which students learn to solve problems in a variety of domains. Initial
research on CTAT, for example, found that an example-tracing approach to pedagogical authoring, which
requires no programming ability, cut authoring time by as much as 50% (Vincent Aleven, McLaren,
Sewall & Koedinger, 2006). CTAT is now perhaps the most widely used authoring system for ITSs, and
the gains in efficiency have improved as well. Large-scale CTAT-created tutors used in educational
settings have been built with fewer than 100 hours invested per hour of instruction produced. By
eliminating the need for programming assistance, CTAT can reduce overall development costs by a factor
of 4-8 (Vincent Aleven et al., 2009).

Similarly ASPIRE, an authorware platform for the creation of constraint-based ITSs, has been used to
create a wide range of learning technologies (Mitrovic, 2012; Mitrovic et al., 2009). ASPIRE is domain
agnostic, allowing curriculum designers in any field to author ITSs. This generality is a tremendous
advantage, but it also means that the learning curve is steep for new users and that best results have been
achieved by authors with more advanced technological abilities (Mitrovic, 2012).

181

Of course there are many other authoring tools, as well as other approaches to authorware design. But
there remains a fundamental challenge: in making the authoring process easier and faster, the more
advanced features of cognitive tutors are often lost. Example-tracing systems, for instance, significantly
reduce authoring time and require no programming skill, but the pseudo-tutors produced are not as
dynamic as those that expert programmers can build (Vincent Aleven, Sewall, et al., 2006; Koedinger et
al., 2004). As a result, most of the learning modules that have been produced with accessible authoring
tools help students learn to solve well-formed problems. But many problems with which innovative
professionals engage are ill formed, requiring the kinds of complex thinking that is beyond the capacities
of most systems to teach, unless the system has the capacity for natural language interaction and a
statistical representation of world knowledge (Graesser, D’Mello, et al., 2012; Halpern et al., 2012;
Hilton, 2008; McNamara, Levinstein & Boonthum, 2004; Rotherham & Willingham, 2009; VanLehn et
al., 2007). Given this issue, a key next step in the development of authorware is to enable curriculum
developers, even those with limited technological skill, and design virtual learning environments that
simulate realistic practices or allow students to solve ill-formed or non-routine problems.

Discussion

Virtual internships, and the Syntern platform with which they are developed and deployed, have three key
features that make it possible to develop authorware for curriculum developers who have limited
technological skill: (1) the design space is constrained, (2) the NLP components are STEM domain
general, and (3) the system is modular. Although virtual internships simulate ill-formed domains and
problems, these three elements reduce the scope and complexity of the pedagogical authoring
environment, allowing us to design authoring tools that can scaffold the curriculum development process.
Of course, this limits the range of virtual learning environments that a curriculum developer will be able
to design, but it also ensures that the final product will be functional, pedagogically and structurally
sound, and able to accurately simulate non-routine problem solving in a practice-based context. In what
follows, we first describe the existing Syntern platform. Then, we outline the design of an authorware
system for Syntern virtual internships, and in doing so, we discuss our approach to studying the
pedagogical authoring process itself. Although we focus on one specific system, the principles of
authorware design that we discuss are generalizable to learning environments in ill-formed domains as a
whole.

Syntern, a Modular Development and Deployment Platform for Virtual Internships

The Syntern virtual internship platform (Figure 1) is comprised of six distinct structural elements, which
when combined produce (a) an online user experience that authentically simulates real-world STEM
practices, and (b) a log file that records all the actions and interactions of students and domain managers
in the system for subsequent analysis:

(1) Frameboard. The Syntern frameboard contains the content for each STEM virtual internship and
determines the sequence and structure of activities in the virtual environment. For example,
virtual internships consist of a progression of rooms. Each room consists of three related and
sequential activities: (a) an introduction, in which interns receive a specific task from their
supervisor via email; (b) a sandbox, which contains the tools and resources interns need to
complete the task; and (c) one or more deliverables, or the work output that the supervisor has
asked interns to submit, including a notebook entry documenting their work. The frameboard is
structured as a series of possible actions that the computer-generated NPCs use to interact with
students in the internship. The Syntern system tracks students’ progress through the internship
and presents the human domain manager with context-appropriate choices for NPC action,

182

(2)

@)

(4)

(%)

(6)

including grading rubrics for deliverables that students complete, response options for student
questions, and guide questions for reflective discussions.

Workbench. The workbench provides actual or simulated tools from the STEM domain that help
students solve problems in the field. In the urban planning virtual internship Land Science, for
example, students use a geographic information system to model the effects of land-use changes
on various social, economic, and environmental indicators.

Templates for Automated Mentoring. Syntern uses NLP algorithms to automatically deliver some
content from the frameboard (such as task assignments from the supervisor). During team
meetings, for example, in which student project teams discuss their recent activities with the NPC
mentor and plan their next steps, the system can use the AutoReflect template to determine when
student responses achieve a pre-defined learning objective. This helps the domain manager decide
whether to revoice the response(s) and move on to a new topic or send a follow-up question to
provide further scaffolding. In an engineering design simulation, for example, students may graph
data to get a better sense for how various design choices affect certain performance metrics. After
this activity, one question the NPC mentor may ask during the team meeting is: Based on your
surfactant graph, how did the surfactants perform relative to one another? Because no one
surfactant performs best on all performance metrics in this particular case, the target student
response would be something like: No surfactant performed best on all the design attributes. The
AutoReflect template uses an automated coder (see component five, below) to code student
discourse in real time, alerting the domain manager when a student response achieves this goal.
Of course, questions, targets, and coding criteria must be defined in advance, which requires
experience in both curriculum design and educational technology development.

Assessment Rubrics. The frameboard contains an assessment rubric for every deliverable in the
virtual internship. Assessment criteria are linked to pre-composed responses from the NPC
supervisor. A custom NLP module uses a range of syntactic and semantic criteria, including word
count, sentence complexity, and a domain-specific coding scheme, to determine whether a
deliverable is above threshold, meaning it clearly meets evaluation criteria established by the
rubric. Deliverables that are above threshold are automatically approved by the Syntern system,
and the appropriate response from the NPC supervisor is sent. Deliverables that are not clearly
above threshold are tagged by the system for manual evaluation by the domain manager using the
assessment rubric.

Domain Coder. The automation of functions in a virtual internship is made possible by a domain
coder that uses a combination of keywords and regular expressions to code chat messages, emails,
notebook entries, and students” actions in the system for specific attributes of the domain.

Application Programming Interface. The API ensures that all Syntern elements integrate
seamlessly and allows for easy addition, modification, or removal of modules. The API is
comprised of six core components (Figure 1). The Java 7 Hub governs basic operations and links
content, assessment, and the user experience. The R Project for Statistical Computing (R)
supports NLP and learning analytics tools. The MySQL database holds content from the
frameboard and records the actions of students and domain managers during the virtual
internship. The NLP module uses R and the domain coder to analyze student and mentor
interactions in the system. The learning analytics module evaluates coded discourse, deliverables,
and other activity in the system to determine whether pre-defined learning objectives have been
met. The WorkPro graphical user interface (GUI) simulates an online productivity suite through
which students access resources and tools and interact with NPCs and their project team. The API
thus ensures integration of the frameboard (curriculum content), workbench, automated

183

mentoring templates, assessment rubrics, and domain coder and provides the core architecture
needed to produce a coherent user experience from them.

COLLABORATE
=INATOR
MENTOR
~INATOR
GuiDe-
INATOR
ASsSESS CoDE
=INATOR =INATOR
o 5 ' ™
Assessment :
Rubrics Domain Coder
. A b A
| !
v v
i ™ ' N
; Matural
Learning Lanquage
Analytics guag
L) . Processor
3
REFLECT- Mentaring] SRR
INATOR Templates > G-
— \TJ
Y i N
WORKBENCH- Domain - Java 7 al . al User
INATOR Workbench > Hub User Interface](Experience]
— %,)
___ S
FRAMEBOARD Frameboard i ————————— > MySQL B e e LFIQ
-INATOR File:
| —

-

Existing Syntern System

Figure 3. The existing Syntern virtual internship system and the eight components of the Internship-inator
authorware platform.

With these components, Syntern recreates the key elements of an internship experience in an online
environment. The frameboard and the STEM workbench provide students with the ability to take
consequential action; the frameboard, mentoring templates, and learning analytics (using the assessment
rubrics, domain coder, and NLP) support reflection-on-action; and the learning analytics, user experience,
and log files enable the iterative development of virtual internships.

The Internship-inator, an Authoring System for Syntern Virtual Internships

A key challenge for the development of authorware that would enable curriculum developers to design
STEM virtual internships for the Syntern platform is that we lack a science of the pedagogical authoring
process. In what follows, we describe plans for the Internship-inator, an authorware system for the
Syntern platform. Our goal is not only to design a functional authorware system but to use both the design
process and the resulting tools to study the pedagogical authoring process. Of course, studying one
particular authoring context with a relatively small number of curriculum developers will not support

184

generalization to all pedagogical authoring contexts, but this research will suggest useful directions for
future work.

Developing authorware for the Syntern platform thus merits a systematic investigation of the curriculum
design process and requires iterative prototyping and refinement of the authoring tools. We conceive of
this project as a form of design research (Brown, 1992; Cobb, Confrey, Lehrer & Schauble, 2003;
Confrey, 2006; Kelly, Lesh & Baek, 2008), where initial hypotheses about authorware design, Syntern
modularity, and pedagogical authoring are revised by subsequent research in each area. To do this, we
will work with a core network of early-adopters: STEM curriculum developers who will help us create
initial prototypes of the Internship-inator, use the system to modify and design virtual internships, and
create support materials. To minimize development time and make evidence-based design decisions, we
will develop different components of the authorware system as standalone modules (described in detail
below) and employ a Wizard of Oz (Dow et al., 2005) approach. Rather than building a complete version
of each component initially, we will build a minimum viable version of each tool. Specifically, we will
only automate those processes that need to be run in real time during the content-development process.
Wherever possible, we will use members of the development team to perform functions of the tool in its
early stages, and later build automated systems to replicate and replace the work of these human experts.

Throughout these iterative design cycles, we will collect three kinds of data in order to study the
pedagogical authoring process: (1) focus groups and interviews conducted with the early adopters before
and during the design process and after they have used authorware prototypes will help us understand
their approach to curriculum development, the supports they need to use the authorware effectively, and
their preferences for features, user experience, and so forth; (2) the Internship-inator will document in log
files the actions and interactions of early-adopters while using the authoring tools, giving us a rich record
of authoring behavior for further analysis; and (3) pre/post tests and log files from implementations of
virtual internships modified or created by curriculum developers will provide rich information about the
quality of the learning simulations produced with the Internship-inator. Evaluation of the pedagogical
authoring process will thus encompass investigation of both technology use (e.g., the human-computer
interaction process) and the quality of the content produced.

Collecting these data will allow us to address fundamental research questions about pedagogical
authoring: Are some components of the authorware system more useful for editorial versus creative use?
Are some components used more (or easier to use) in conjunction with others? Which aspects of the
system influence whether, how, and to what extent curriculum developers use different authoring
components? And so forth. For example, we can look at the pattern of use of different authoring
components, including the order in which components are accessed, the frequency and duration of use,
and other log file data, combined with focus groups, to better understand how to sequence and scaffold
the authoring tools within the system to align with pedagogical authoring practices.

We conceive of the Internship-inator as a suite of eight online authoring tools (see Figure 1). For
analytical purposes, we divide the system into content components (the Frameboard-inator and
Workbench-inator), automation components (the Reflect-inator, Assess-inator, Code-inator, and Mentor-
inator), and support components (the Guide-inator and Collaborate-inator).

Content Development Components

(1) Frameboard-inator. The Frameboard-inator will enable STEM content developers to create or
modify content for a virtual internship, including the structure and sequence of activities,
assignments (such as readings or videos), assessments and rubrics, and other content that students
or domain managers will need during the virtual internship. A key challenge is ensuring that
STEM content developers include all of the information that the Syntern system needs to make

185

)

the content function. Thus, the Frameboard-inator will require a GUI that indicates (a) what kinds
of content are required to make each element of the simulation function, and (b) what kinds of
content are acceptable for different portions of the simulation. For example, every room in a
virtual internship begins with an email from the supervisor NPC describing the activities to
follow. Emails have specific properties in the system, so the Frameboard-inator GUI will need to
indicate to the curriculum developer that (a) an email is required to begin a room and (b) what the
constituent components of an email are.

Workbench-inator. The Workbench-inator will provide mechanisms through which curriculum
developers can include problem-solving tools, such as AutoCAD or Matlab, in a virtual
internship. Open-source or editable tools, such as Geogebra or Google Maps, can be connected to
the Syntern API if the curriculum developer has programming expertise. For tools that are not
open-source but that store their output in one of Syntern’s supported file types (including XML,
JSON, YAML, HTML, CSV, TXT, and Properties), the Workbench-inator will provide an
interface that lets the developer tag elements of the file as Syntern readable. (This will also work
in a more limited way for graphics files in JPG, GIF, or PNG format for content such as location,
date, and time.) Finally, the Syntern system will allow students in a simulation to upload any file
as a deliverable. As long as the domain managers have the appropriate program to read the file,
they will be able to assess it using the system’s rubrics. In the first two cases (open source
program or output), the Syntern system would be able to apply automated assessment rules to the
deliverables created. In the third case (proprietary tool or output), the system will store and track
the file, but a human would have to assess its content.

Automation Components

1)

(2)

Reflect-inator. The AutoReflect template makes it easier for domain managers to control
reflective conversations between students and NPC mentors by identifying a set of reflection
topics and, for each topic, specifying (a) a set of prompting questions for the NPC to use, (b) a set
of NLP rules and other components to identify possible appropriate responses to the topic, and (c)
a pre-scripted revoicing of the key ideas about the topic that students should be able to articulate.
While prompting questions (a) and a revoicing (c) are relatively easy for curriculum developers to
construct, NLP rules and other components for identifying candidate answers (b) will be more
difficult. The Reflect-inator will scaffold the construction of these NLP components. For
example, curriculum developers could enter hypothetical answers from students (as well as
incorrect answers, if desired), and from the set of answers and non-answers, the Reflect-inator
would abstract a matching NLP rule. Because of the limited context of students responding to a
specific question in a reflective meeting taking place at a specific point in a specific STEM
simulation, we have found empirically that relatively simple rules can distinguish appropriate
responses from inappropriate responses. We therefore hypothesize that a limited set of model
responses will be sufficient for the system to extract functional rules.

Assess-inator. Assessment rubrics in the Syntern system can automatically determine whether
certain student deliverables are acceptable. The system uses a custom NLP algorithm that
involves three computations: (a) a word type count (the number of unique words used), (b) a
domain code count, and (c) a measure based on four measures from the text analysis program
Linguistic Inquiry and Word Count (Pennebaker, Booth & Francis, 2007). We are also currently
exploring including latent semantic analysis of deliverables to further refine the accuracy of the
automated scoring algorithm (Graesser, Penumatsa, Ventura, Cai & Hu, 2007). The current
algorithm uses six thresholds, which determine whether the deliverable is accepted automatically
or sent to the domain manager for further evaluation. We hypothesize that, as a result, a relatively
small number of sample answers will be required for the Assess-inator to automatically compute

186

appropriate values for these thresholds. The Assess-inator will initially set all thresholds to zero—
which means all deliverables will be reviewed by hand. Log files created when the simulation is
run will include real examples of deliverables and the domain manager’s determination of
whether or not they are acceptable. The Assess-inator will then use these data to adjust the
thresholds automatically and with each subsequent iteration, the Assess-inator can automatically
refine the adjustments over time.

(3) Code-inator. The domain coder uses a combination of keywords and regular expressions to
interpret student-generated chats, emails, notebook entries, and actions in the Syntern system. The
resulting codes are then used by components of the system to automate responses to student
verbal contributions and actions. The domain coder can achieve the level of semantic accuracy
needed to create believable responses because the domain of possible speech acts and actions in the
virtual internship is limited (Graesser & McNamara, 2012; Grishman & Kittredge, 1986; Richard &
Lehrberger, 1982; Rupp, Gustha, Mislevy & Shaffer, 2010). Curriculum developers, however, will
not be able to easily create appropriate sets of keywords and expressions.

(4) We have already developed a tool, the HandCoder/AutoCoder, to create codesets for virtual
internships. This tool takes either manufactured or real examples from the target context (that is,
the STEM virtual internship) and uses a coding loop to create a set of keywords and expressions.
In the coding loop, a user codes a subset of examples from the target context for a given domain
code. These are compared to the existing codeset, and the user is able to adjust the codeset based
on the discrepancies. Further excerpts are hand-coded, and the process is repeated until the
desired level of agreement is reached—typically Cohen’s kappa > 0.69, which is excellent for
automated coding. Two key features support the rapid identification of an appropriate codeset: (a)
the system computes changes in the level of agreement on the fly as keywords are added or
removed from the codeset, and (b) a custom-written algorithm computes the confidence interval
for the level of agreement, thus reducing the number of coded excerpts needed to establish an
acceptable level. This system has been used in several different domains to establish coding
schemes, and we hypothesize that it can be easily adapted for use by curriculum developers.

(5) Mentor-inator. The frameboard for a Syntern virtual internship contains scripted responses from
NPCs that the domain manager can send to students. The Mentor-inator will automatically extend
the range of scripted material by (a) providing an interface through which curriculum developers
can easily add custom responses from previous runs to the frameboard, and (b) updating the
interface through which domain managers access scripted content so that they can manage the
larger number of scripted responses. To do this, the Mentor-inator will automatically extract
composed responses from the log file. Responses that were used multiple times will be
automatically added to the frameboard. Responses that appear only once will be presented with
their surrounding context to the curriculum developer, who can decide whether to include them as
scripts in future implementations.

Support Components

(1) Guide-inator. The Guide-inator will provide templates for curriculum developers to use in
creating support materials for virtual internships, along with an Internship-inator user guide. The
Guide-inator will be designed as a comprehensive interface to the Internship-inator and Syntern
systems, integrating design, support, curricular, and implementation materials for curriculum
developers.

(2) Collaborate-inator. The Collaborate-inator will provide a social networking component to the
Internship-inator system. Curriculum developers and educators will be able to create individual

187

accounts on the system, which will (at their discretion) be linked to their email or other social
media tools. The Collaborate-inator will facilitate content-focused exchanges about the
Internship-inator, Syntern system, and virtual internships. Users will be able to comment on and
link to content directly from the system. The result, we hypothesize, will be a self-sustaining
community of STEM content developers who can share virtual internship designs, curricula, and
experiences. By providing critical feedback and input on one another’s designs, support materials,
and implementation practices, the Collaborate-inator will provide the “real world tips” that our
focus groups suggest education professionals want to supplement formal information about such
systems.

(3) We hypothesize that this suite of authoring tools will enable curriculum developers to design and
modify virtual internships without needing programming experience or extensive training. The
pedagogical framework, the mode of communication (email and chat), and the structure of the
intervention are all relatively fixed, which makes it easier to scaffold the design process and
ensure that the product is pedagogically and structurally sound. The NLP computational module
is STEM domain general, so the semantic coding system can be automatically updated; this
reduces the need for curriculum developers to have expertise in instructional technology design.
The modular design of the Internship-inator has several advantages. First, it will allow curriculum
developers to develop simulations quickly for testing. For example, a functional virtual internship
could be developed from scratch using only the Frameboard-inator; the resulting simulation
would not have automated features, but those could be incorporated more gradually. The initial
time commitment can thus be relatively low if a curriculum developer wants to experiment with
virtual internship design or content. Second, the Internship-inator will allow curriculum
developers to make precise modifications to virtual internships, such as adding resources or
workbench tools, altering scripted content, or expanding the codeset, without altering the rest of
the simulation. Lastly, the system will accommodate different design processes: there isn’t a
single, linear progression that all curriculum developers must follow. Of course, that can be a
disadvantage as well, as it may make the learning curve steeper, but we believe this is a useful
trade-off because it will allow curriculum developers to use the tools in the ways that best fit their
specific needs and design approach.

Recommendations and Future Research

Designing authorware that makes the creation of virtual learning environments easier, cheaper, and faster
is critical for expanding the use of ITSs, educational games, and virtual internships. Most authorware
design research, however, has focused on the technological challenges. We suggest that developing a
science of pedagogical authoring is an equally important but largely neglected aspect of this problem.
Just as there are established sciences that systematically investigate the processes that underlie learning,
writing, design, problem solving, and other human achievements, there needs to be a comparable science
of creating advanced learning environments with authoring tools. This science would need to (a) track the
behavior of authors; (b) identify technological features that promote or impede authors’ progress and the
quality of the final products; (c) collect verbal protocols on the design processes of the authors while
authoring material; (d) modify the features of authoring tools as data are collected; (e) formulate a testable
theory of the authoring process; and (f) identify characteristics of authors that predict authoring quality.
The current lack of a science of the authoring process explains in part why most authoring is
accomplished by experts.

Designers of authoring tools generally agree that it is important to document the many versions of

authored content over time (i.e., the authoring process) and analyze the trajectory of changes: To what
extent are the authors using particular components of the authorware? To what extent are particular

188

learning principles instantiated in the materials that end up being designed? What components are
frequently deleted or modified? But such questions have yet to guide the development of a science of
pedagogical authoring. A key goal of the Internship-inator project is to contribute to the foundation of
such a science. By tracking the actions of curriculum developers who use the authoring tools (log files)
and developing a community of users (Collaborate-inator) from whom we can obtain feedback, we will be
able to study systematically the processes at work in pedagogical authoring.

Our vision is compatible with the Generalized Intelligent Framework for Tutoring (GIFT) architecture
both pragmatically (scaling up) and technically. Scholars are aware of the challenges involved in scaling
up and having an architecture that can handle different media. This level presents no significant problems.
We do see two efforts needed to expand GIFT. First, there needs to be a mechanism to handle groups,
teams, and other collaborations that go beyond the individual learner. The main technical challenge is
organizing the database, grouping individuals, and making systematic claims about individuals, groups,
and organizations. The data stream needs to be time stamped and populated with adequate metadata to
handle multiparty and sometimes multiteam interactions. Second, there needs to be a systematic facility
for handling the authoring analytics. We need to store data on multiple versions of software content and
track the authoring process. This is required to build a science of the pedagogical authoring process.

We have made considerable progress in the design of authorware for sophisticated virtual learning
environments, and there are many projects currently underway that are likely to continue and even
accelerate this progress. To improve uptake of such environments, however, we must develop authorware
that can be used successfully beyond the research context. Aleven and colleagues suggest that our Holy
Grail is to create cost-effective, user-friendly authorware; we suggest that our El Dorado is to develop a
science of the pedagogical authoring process.

Acknowledgements

This work was funded in part by the MacArthur Foundation, the National Science Foundation (DRL-0918409, DRL-
0946372, DRL-1247262, DRL-1418288, DUE-0919347, DUE-1225885, EEC-1232656, EEC-1340402, and REC-
0347000), the Institute of Education Sciences (R305H050169, R305C120001), the Office of Naval Research, and
the Army Research Laboratory. The opinions, findings, and conclusions do not reflect the views of the funding
agencies, cooperating institutions, or other individuals.

References

Ainsworth, S. E. & Grimshaw, S. K. (2004). Evaluating the REDEEM authoring tool: Can teachers create effective
learning environments? International Journal of Artificial Intelligence in Education, 14, 279-312.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. (2009). A new paradigm for intelligent tutoring systems:
Example-tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105-154.

Aleven, V., McLaren, B. M., Sewall, J. & Koedinger, K. R. (2006). The cognitive tutor authoring tools (CTAT):
Preliminary evaluation of efficiency gains. In M. Ikeda, K. D. Ashley & T.-W. Chan (Eds.), Intelligent
Tutoring Systems (pp. 61-70). Berlin, Germany: Springer.

Aleven, V., Sewall, J., McLaren, B. M. & Koedinger, K. R. (2006). Rapid authoring of intelligent tutors for real-
world and experimental use. In R. K. Kinshuk, P. Kommers, P. A. Kirschner, D. Sampson & W. Didderen
(Eds.), Proceedings of the 6th IEEE International Conference on Advanced Learning Technologies (ICALT
2006) (pp. 847-51). Los Alamitos, CA: IEEE Computer Society.

Anderson, J. R., Reder, L. M. & Simon, H. A. (1996). Situated learning and education. Educational Researcher,
25(4), 5-11.

Arastoopour, G., Chesler, N. C. & Shaffer, D. W. (2014). Epistemic persistence: A simulation-based approach to
increasing participation of women in engineering. Journal of Women and Minorities in Science and
Engineering, 20(3), 211-234.

189

Bagley, E. A. & Shaffer, D. W. (2009). When people get in the way: Promoting civic thinking through epistemic
game play. International Journal of Gaming and Computer-Mediated Simulations, 1(1), 36-52.

Bagley, E. A. & Shaffer, D. W. (2010). Stop talking and type: Mentoring in a virtual and face-to-face environmental
education environment. International Journal of Computer-Supported Collaborative Learning.

Barab, S. A, Scott, B., Siyahhan, S., Goldstone, R., Ingram-Goble, A., Zuiker, S. & Warrant, S. (2009).
Transformational play as a curricular scaffold: Using videogames to support science education. Journal of
Science Education and Technology, 18(3), 305-320.

Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges in creating complex
interventions in classroom settings. Journal of the Learning Sciences, 2(2), 141-178.

Chesler, N. C., Arastoopour, G., D’Angelo, C. M., Bagley, E. A. & Shaffer, D. W. (2013). Design of professional
practice simulator for educating and motivating first-year enginnering students. Advances in Engineering
Education, 3(3), 1-29.

Chesler, N. C., Ruis, A. R., Collier, W., Swiecki, Z., Arastoopour, G. & Shaffer, D. W. (2015). A novel paradigm
for engineering education: Virtual internships with individualized mentoring and assessment of engineering
thinking. Journal of Biomechanical Engineering, 137(2).

Clark, D. B., Nelson, B., Sengupta, P. & D’Angelo, C. M. (2009). Rethinking science learning through digital
games and simulations: Genres, examples, and evidence. Proceedings of the National Academies Board on
Science Education Workshop on Learning Science: Computer Games, Simulations, and Education.
Washington, D.C.: National Academies Press.

Cobb, P., Confrey, J., Lehrer, R. & Schauble, L. (2003). Design experiments in educational research. Educational
Researcher, 32(1), 9-13.

Confrey, J. (2006). The evolution of design studies as methodology. In R. K. Sawyer (Ed.), The Cambridge
handbook of the learning sciences (pp. 135-152). New York, NY: Cambridge University Press.

Dieterle, E. (2009). Neomillennial learning styles and River City. Children, Youth and Environments, 19(1), 245—
278.

Dow, S., Maclntyre, B., Lee, J., Oezbek, C., Bolter, J. D. & Gandy, M. (2005). Wizard of Oz support throughout an
iterative design process. Pervasive Computing, 4(4), 18-26.

Graesser, A. C. (2013). Evolution of advanced learning technologies in the 21st century. Theory into Practice,
52(S1), 93-101.

Graesser, A. C., Conley, M. W. & Olney, A. (2012). Intelligent tutoring systems. In K. R. Harris, S. Graham, T.
Urdan, A. G. Bus, S. Major & H. L. Swanson (Eds.), APA educational psychology handbook, Vol. 3:
Application to learning and teaching (pp. 451-473). Washington, D.C.: American Psychological
Association.

Graesser, A. C., D’Mello, S. K., Hu, X, Cai, Z., Olney, A. & Morgan, B. (2012). AutoTutor. In P. McCarthy & C.
Boonthum-Denecke (Eds.), Applied natural language processing: Identification, investigation, and
resolution (pp. 169-87). Hershey, PA: IGI Global.

Graesser, A. C. & McNamara, D. S. (2012). Automated analysis of essays and open-ended verbal responses. In H.
Cooper, P. M. Camic, D. L. Long, A. T. Panter, D. Rindskopf & K. J. Sher (Eds.), APA handbook of
research methods in psychology, Vol. 1: Foundations, planning, measures, and psychometrics (pp. 307—
325). Washington, D.C.: American Psychological Association.

Graesser, A. C., Penumatsa, P., Ventura, M., Cai, Z. & Hu, X. (2007). Using LSA in AutoTutor: Learning through
mixed initiative dialogue in natural language. In T. K. Landauer, D. S. McNamara, S. Dennis & W. Kintsch
(Eds.), Handbook of latent semantic analysis (pp. 243-262). Mahwah, NJ: Erlbaum.

Grishman, R. & Kittredge, R. (1986). Analyzing language in restricted domains: Sublanguage description and
processing. Hillsdale, NJ: Erlbaum.

Halpern, D. F., Millis, K., Graesser, A. C., Butler, H., Forsyth, C. & Cai, Z. (2012). Operation ARA: A
computerized learning game that teaches critical thinking and scientific reasoning. Thinking Skills and
Creativity, 7, 93-100.

Hickey, D., Ingram-Goble, A. & Jameson, E. (2009). Designing assessment and assessing design in virtual
educational environments. Journal of Science Education and Technology, 18(2), 187-209.

Hilton, M. (2008). Research on future skills demands: A workshop summary. Washington, D.C.: National
Academies Press.

Honey, M. A. & Hilton, M. H. (2011). Learning science: Computer games, simulations, and education. Washington,
D.C.: The National Academies Press.

190

Hu, X., Cai, Z., Han, L., Craig, S. D., Wang, T. & Graesser, A. C. (2009). AutoTutor Lite. In Proceedings of the
2009 conference on Artificial Intelligence in Education: Building learning systems that care: From
knowledge representation to affective modelling (p. 802). Amsterdam, Netherlands: 10S Press.

Kelly, A., Lesh, R. A. & Baek, J. Y. (2008). Handbook of design research methods in education. New York, NY:
Routledge.

Ketelhut, D. J., Dede, C., Clarke-Midura, J. & Nelson, B. (2006). A multi-user virtual environment for building
higher inquiry skills in science. American Educational Research Association Annual Conference. San
Francisco, CA.

Koedinger, K., Aleven, V., Heffernan, N., McLaren, B. & Hockenberry, M. (2004). Opening the door to non-
programmers; Authoring intelligent tutor behavior by demonstration. In V. Aleven, J. Kay & J. Mostow
(Eds.), Intelligent tutoring systems (pp. 162—-174). Berlin, Germany: Springer.

Koedinger, K. & Mitrovic, A. (2009). Preface: Authoring intelligent tutoring systems. International Journal of
Artificial Intelligence in Education, 19(2), 103-104.

Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. Cambridge, MA: Cambridge
University Press.

Major, N., Ainsworth, S. E. & Wood, D. . (1997). REDEEM: Exploiting symbiosis between psychology and
authoring environments. International Journal of Artificial Intelligence in Education, 8, 317-40.

McNamara, D. S., Levinstein, I. B. & Boonthum, C. (2004). iISTART: Interactive strategy training for active reading
and thinking. Behavioral Research Methods, Instruments, and Computers, 36(222-33).

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: What we have achieved and where we are going. User
Modeling and User-Adapted Interaction, 22(1-2), 39-72.

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J. & McGuigan, N. (2009). ASPIRE: an
authoring system and deployment environment for constraint-based tutors. International Journal of
Artificial Intelligence in Education, 19(2), 155-188.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the art. International Journal
of Artificial Intelligence in Education, 10, 98-129.

Murray, T., Blessing, S. & Ainsworth, S. (2003). Authoring tools for advanced technology learning environments:
Toward cost-effective adaptive, interactive and intelligent educational software. Berlin, Germany:
Springer.

Nash, P. & Shaffer, D. W. (2011). Mentor modeling: The internalization of modeled professional thinking in an
epistemic game. Journal of Computer Assisted Learning, 27(2), 173-189.

Nash, P. & Shaffer, D. W. (2013). Epistemic trajectories: Mentoring in a game design practicum. Instructional
Science, 41(4), 745-771.

Nelson, B. C., Ketelhut, D. J. & Schifter, C. (2010). Exploring cognitive load in immersive educational games: The
SAVE Science project. International Journal of Gaming and Computer-Mediated Simulations, 2(1), 31-39.

Nulty, A. & Shaffer, D. W. (2008). Digital zoo: The effects on mentoring on young engineers. In International
Conference of Learning Sciences. Urecht, Netherlands.

Nye, B. D., Graesser, A. C. & Hu, X. (2015). AutoTutor and family: A review of 17 years of natural language
tutoring. International Journal of Artificial Intelligence in Education, in press.

Pennebaker, J. W., Booth, R. J. & Francis, M. E. (2007). LIWC2007: Linguistic inquiry and word count. Austin,
TX: LIWC.net.

Richard, K. & Lehrberger, J. (1982). Sublanguage: Studies on language in restricted semantic domains. Berlin:
Walter de Gruyter.

Rotherham, A. J. & Willingham, D. (2009). 21st century skills: The challenges ahead. Educational Leadership, 9,
16-21.

Rupp, A. A., Gustha, M., Mislevy, R. & Shaffer, D. W. (2010). Evidence-centered design of epistemic games:
Measurement principles for complex learning environments. Journal of Technology, Learning and
Assessment, 8(4), 4-47.

Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice. Studies
in Science Education, 45(1), 1-42.

Sadler, T. D., Romine, W. L., Stuart, P. E. & Merle-Johnson, D. (2013). Game-based curricula in biology classes:
Differential effects among varying academic levels. Journal of Research in Science Teaching, 50(4), 479—
499.

Schén, D. A. (1983). The reflective practitioner: How professionals think in action. New York, NY: Basic Books.

Schon, D. A. (1987). Educating the reflective practitioner. San Francisco, CA: Jossey-Bass.

191

Shaffer, D. W. (2003). When Dewey met Schén: Computer-supported learning through professional practices.
World Conference on Educational Media, Hypermedia, and Telecommunications. Honolulu, HI.

Shaffer, D. W. (2007). How computer games help children learn. New York, NY: Palgrave Macmillan.

Sottilare, R., Graesser, A. C., Hu, X. & Holden, H. (2013). Design recommendations for intelligent tutoring systems:
Learner modeling. Orlando, FL: Army Research Laboratory.

VanLehn, K., Graesser, A. C., Jackson, G. T., Jordan, P., Olney, A. & Rosé, C. P. (2007). When are tutorial
dialogues more effective than reading? Cognitive Science, 31(1), 3-62.

Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-
learning. Burlington, MA: Morgan Kaufmann.

192

SECTION IV

AUTHORING
DIALOGUE-BASED
TUTORS

Art Graesser, Ed.

194

cuartEr 16 Authoring Conversation-based Tutors

Arthur Graesser
University of Memphis

Introduction

Conversation-based intelligent tutoring systems (ITSs) attempt to help students learn by holding a
conversation in natural language. Most of the systems consist of dialogues between the human learner and
the computer tutor, who take turns in the conversation. Two or more agents can also hold conversations
with a learner. For example, in trialogues the learner interacts with two agents, such as a tutor and a peer,
or two peers. Trialogues allow the ITS to exhibit conversation skills, for the learner to view, in addition to
advancing the learning of the subject matter. Most of these dialogue-based ITSs also have external media,
such as a picture, table, diagram, or interactive simulation. The designers of conversation-based ITSs need
to worry about the coordination and timing of the conversational turns among the learners, agents, and
dynamic external media. Designers of these ITSs also need to worry about what each agent looks like. An
agent can vary from a minimalist depiction of the human persona (such as a chat message) to a very
realistic depiction, such a fully embodied avatar in a virtual world.

The core of the conversation-based ITSs resides in natural language, discourse, and communication.
There are three basic tasks in these conversation systems: (1) interpret the meaning of the learner’s
language and discourse, (2) assess how these verbal contributions might update the student model on
knowledge, skills, and strategies, and (3) generate tutor dialogue moves that advance the pedagogical
agenda. The authoring tools need incorporate components that accommodate all of these tasks in addition
to creating the agent persona and external media. This is particularly difficult because most designers of
curricula with subject matter expertise have never been trained on the mechanisms that underlie language,
discourse, and communication; instead most of their training is on the subject matter, pedagogy, and
curriculum.

Conversation-based ITS are not able to interpret and intelligently respond to any verbal expression that a
human expresses. One reason is because much of natural language is fragmentary, vague, imprecise,
ungrammatical, and filled with spelling errors. A second reason is that the computer can effectively
handle only input that matches content that it anticipates ahead of time, such as expected good answers,
bad answers, and misconceptions that the author specifies in the curriculum. In essence, the ITS computes
semantic matches between student verbal input and the expected content in the curriculum and student
model. Advances in computational linguistics and statistical models of world knowledge have
impressively increased the accuracy of the semantic matches. However, the author or automated
components need to specify how the expected content is represented; this requires expertise in
computational linguistics, cognitive science, corpus analysis, and perhaps other fields if these
representations are anything other than natural language. In an ideal world, there would be a large suite of
automated utilities in the authoring tool to minimize the burden on the author. But most systems in
current practice require methodical annotation of the curriculum content for semantic match
computations.

The authors need to create the tutorial dialogue moves that get launched under specific conditions in
response to the learner’s contributions. Most conversation-based ITSs have production rules that declare
what an agent says under particular conditions. For example, the tutor agent gives positive feedback
(“That’s correct”) after the learner’s verbal contribution has a high semantic match to a good answer. Or
the tutor agent generates a hint if the semantic match is close but not quite high enough. Unfortunately,

195

computer science expertise is normally needed to set up the production rules in the production systems
that intelligently generate the agents’ discourse moves. The rules get particularly tricky when there are
many conditions to check, when there are links to dynamic external media, and when the timing of
discourse move production is important. Again, one option is for the author to specify this content
meticulously. Visualizations such as Excel tables and chat maps can sometimes help the author. Another
approach is to copy previous production systems that are successful and modify them for specific content.
More advanced methods include machine learning and crowd sourcing methodologies to minimize the
burden on the author.

Chapters

The chapter by Cai, Graesser, and Hu describes its AutoTutor Script Authoring Tool (ASAT) that is used
to develop content for AutoTutor. AutoTutor helps students learn subject matters (e.g., science,
technology, engineering and mathematics (STEM) topics) and skills (e.g., comprehension, scientific
reasoning) by holding a conversation in natural language with conversational agents. The conversations
often refer to components in external media, such as pictures, diagrams, video, and virtual reality
scenarios. Agents can converse with each other in addition to the human learner. The ASAT tool needs to
specify the characteristics of the expected learner input (ranging from mouse clicks to natural language),
the alternative messages produced by the agents under particular conditions, the external media, and the
flow of the conversation. The AutoTutor Conversation Engine (ACE) is responsible for evaluating the
student input, updating the learner’s performance scores, selecting a new set of conversational messages,
and sending all of this back to the learning system. The learner’s verbal input is compared with expected
input through semantic matching algorithms that can accommodate language that is often ungrammatical,
vague, imprecise, and filled with spelling errors. This chapter describes some new visualization tools in
ASAT-V that help the author create the content and production rules in such complex and multifaceted
conversations.

The chapter by Ward and Cole describes the processes and tools for authoring content in an ITS called
My Science Tutor (MyST). This virtual science tutor engages children in spoken dialogues to help them
construct explanations of science phenomena that are presented in illustrations, animations, and
interactive simulations in a curriculum that incorporates science standards (Full Option Science System).
The chapter describes an iterative process of recording, annotating, and analyzing logs of natural language
from sessions with students, which, in turn, update the automated tutor model. A major challenge in all
conversational systems lies in representing and extracting the semantics of student language, which, in
turn, guides selecting tutor actions. The chapter describes some computational linguistics tools, natural
language corpora, and machine learning methods that help the author create content for new material.

In the chapter by Johnson, there is a focus on virtual role-play simulations in which learners perform roles
similar to what they would perform in real life. Virtual role play is a category of training that is
particularly well suited to interpersonal skills. It has been applied to training foreign language, cross-
cultural skills, negotiation, motivational interviewing, and customer service. Processes and tools are
described for creating such simulations. The development process has distinct phases, including
background sociocultural research, instructional design, scenario authoring, media production, and quality
assurance. The authoring tools need to handle the creation of agents, social scenarios, conversational
discourse, and other dimensions of a rich social environment. Johnsons authoring tools are selected or
developed to handle all phases and attributes of these simulations. Multiple types of expertise are needed
in those who author these learning environments so it is unlikely that a single author could handle all
dimensions of these simulations. Expertise in the natural language component is distinctively different
than the other levels, but one important message is that cultural sensitivity must be integrated with the
language and dialogue.

196

The chapter by Olney, Brawner, Pavlik, and Koedinger describes some new trends in the authoring
process that can potentially improve the quality, speed, and cost of ITS authoring. These new alternatives
have additional layers of automation that attempt to reduce some of the authoring tasks, and in some
cases, make the authoring tasks invisible. For example, instead of an author hand-authoring a production
system (i.e., what should the computer do when there are different student inputs), in systems like
SimStudent the author tutors a machine learning system that learns the production system from scratch. In
the BrainTrust system for conversational tutoring, novices do some authoring, the computer generates
additional expressions automatically, and other novices check the work to ensure quality. In advanced
component-based authoring, previous components from a learning registry are reused and new
combinations of components are assembled; these candidate learning objects can be modified to fit
constraints of a new application. In these examples, content can be more quickly authored by interacting
with a simulation, generating content automatically, reusing content from previous applications, and
crowd sourcing. These new approaches are promising because expertise in authoring and subject matter
knowledge is typically limited and also requires exceptional analytical skills in more complex learning
environments.

Implications for the Generalized Intelligent Framework for Tutoring (GIFT)

The four chapters provide both general and specific recommendations for GIFT’s suite of authoring tools
for conversation-based tutors. GIFT has already developed one conversation-based tutor when it used the
AutoTutor-Lite authoring tool to integrate AutoTutor with Physics Playground, a learning environment
with multimedia, animation, and game features. This is an important beginning, but GIFT will need to be
expanded to build the more complex conversation-based ITS that have been covered in this section.

One issue periodically raised addresses the degree or depth of integration between the language/discourse
components and the subject matter knowledge/skills to be mastered. Should there be independent
components, loose coupling, or tight integration? The different approaches have implications for the
authoring tools in addition to the information that ends up being stored in the learner model (as in TinCan,
the Learner Record Store, or other GIFT solutions). A tight integration will result in a more complex
authoring tool and student model that incorporates language-discourse-knowledge-skill configurations. A
tight integration allows new discoveries in data-mining explorations to improve the conversation-based
ITS. However, it will also end up being more complex to author, more difficult to specify production
rules, and a more detailed inventory of learning objects, all of which aggravates the analytical challenges
for the author.

A second major issue addresses how GIFT can incorporate a suite of visualization tools, lexicons,
corpora, and other facilities that are routinely used in computational linguistics. For example, the projects
of AutoTutor (Cai et al.) and Virtual Role-Play Simulation (Johnson) both desired a chat map
visualization facility in the authoring tools. The authoring tools in all of the projects in this section would
benefit from standard computational linguistics resources, such as the WordNet lexicon, corpora in the
Linguistic Data Consortium, frequently used syntactic parsers, regular expression generators, and
machine learning tools for natural language. These would need to be integrated in the authoring tool so
the author can quickly test the fidelity of a candidate linguistic or symbolic expression being annotated.
Agent tool kits would be needed to quickly test out how an agent’s spoken message, facial expression, or
message is rendered. World knowledge representations, such as latent semantic analysis and semantic
networks, are also periodically needed. GIFT needs to expand its library of facilities in computational
linguistics, discourse, agent technologies, and world knowledge representations.

A third issue is to find ways for GIFT to automate aspects of the authoring process. The reuse of existing
successful components, modules, and lessons is encouraged by everyone and fits perfectly with the GIFT

197

philosophy. So relevant existing components need to be discovered for a particular lesson and then reused
and repurposed on the spot. A good authoring tool would essentially be good at modding a similar lesson.
Some deep thought is needed on how to expand GIFT to include the SimStudent, BrainTrust, and crowd-
sourcing approaches to iteratively improve the quality of the authored content, as was discussed in the
Olney et al. chapter, and to some extent, in the chapter by Ward and Cole.

198

cuartEr 17 ASAT: AutoTutor Script Authoring Tool

Zhigiang Cai, Arthur Graesser, and Xiangen Hu
University of Memphis

Introduction

AutoTutor is a class of intelligent tutoring systems (ITSs) that helps students learn by holding a
conversation in natural language (Graesser et al., 2004, 2012; Nye, Graesser & Hu, in press). AutoTutor’s
intelligent conversation framework has been integrated into many learning systems that range from
tutorial dialogues on science, technology, engineering, and mathematics (STEM) topics (such as
computer literacy, and physics) to trialogues (i.e., two agents and a human) on critical thinking and
reading comprehension (Graesser, Li & Forsyth, 2014; Millis et al., 2011; Halpern et al., 2012; Forsyth et
al., 2013). Examples of trialogues under construction
(https://www.youtube.com/channel/UCGoWLJj6BXZ6X2KIRLYrgZw) can be viewed for a more
concrete illustration of the nature of these conversations. AutoTutor is an advanced conversation
framework that can be used to generate conversation scripts and be integrated into most learning systems.
AutoTutor takes the learner’s typed verbal contributions, speech, and actions as input and accommodates
events in different media to trigger or change paths of conversations. It also sends commands to the
learning system for execution, such as presenting pictures and launching scenarios (Cai, Feng, Baer &
Graesser, 2014).

There are many steps in composing an AutoTutor conversation with one or more computer agents and a
human learner. Authoring an AutoTutor conversation includes preparing spoken contributions for each
computer agent, specifying conditions at which a speech is delivered, determining the points at which
human learners’ responses and/or environmental events are expected, formulating scores that can be used
to track learners’ performance, designing pedagogical strategies, creating commands that make changes to
learning system parameters, and so on (Cai, Hu & Graesser, 2013). Because of this complexity, an
AutoTutor script authoring process usually requires collaborative work by domain experts, language
experts, learning experts and software developers. Domain experts use the tool to construct learning
content in terms of agent questions and expected learner responses. Language experts revise the content
of the dialogue moves to accommodate targeted learners and their possible responses. Learning experts
design student models and pedagogical models. Software developers specify interaction constraints and
develop interactive media units.

The AutoTutor Script Authoring Tool (ASAT) is a tool we developed to facilitate the process of authoring
AutoTutor content. In this chapter, we present ASAT-V, the visualized version of ASAT. ASAT-V uses
graphical shapes to represent agents’ spoken contributions, questions, answers, world events, and system
actions. Semantic cues and student performance scores are stored in shape data. Conversation rules are
represented by directional connections from shape to shape. Pedagogical strategies are represented by
partial flowcharts, which can be reused. The tool also integrates utility modules to help authors validate,
test and refine scripts. In this chapter, we first give an overview of the AutoTutor framework and the
major components that make AutoTutor work. We then describe ASAT-V and the AutoTutor shapes that
are used to compose visual scripts. The chapter ends with suggestions for developing conversation
modules and authoring tools for ITSs.

199

https://www.youtube.com/channel/UCGoWLJj6BXZ6X2KIRLYrgZw

AutoTutor Framework

AutoTutor provides a framework to integrate intelligent conversations into learning systems. A learning
system can start an AutoTutor conversation session by loading an AutoTutor script to the AutoTutor
Conversation Engine (ACE). ACE sends messages to the learning system, including agent spoken
utterances and system commands. An AutoTutor conversation usually starts with spoken turns by
computer agents, together with background changes on the computer screen, such as page turning, video
playing, image changing, and text highlighting. At particular points, the system stops and waits for the
learner’s input, in the form of speech, text, or action. The learner’s input is then sent by the learning
system to ACE. ACE is responsible for evaluating the input, setting learner’s performance scores,
selecting a new set of conversational messages, and sending all of them back to the learning system. The
process repeats until the conversation session ends.

An example illustrates this process. Suppose a learning system is showing a video to a learner to review a
lesson about the use of punctuations. While the video is playing, a tutor agent is talking about the video.
The video pauses at a certain time and the tutor asks the learner questions about the learning material. The
learning system starts this process by loading a script to ACE. After the script is successfully loaded,
ACE sends to the learning system the following actions to execute:

(1) System : LoadVideo : https://www.youtube.com/watch?v=wTs6Q8Cs5AY

(2) System : SetPauseTime : 00:00:30

(3) System : StartVidio

(4) Tutor : Speak: Now, let us have a review of lesson 5. In this lesson, we learn about the use of

punctuations. Please watch this video carefully and pay attention to how punctuations help
reading.

When the learning system gets these four actions from ACE, the system first loads the video from the
given URL. Then the system sets a timer for 30 seconds and starts to play the video. The tutor talks while
the video is playing. Notice that ACE may send many different types of actions to the learning system.
The learning system is responsible for interpreting the actions. AutoTutor authors have to collaborate with
learning system developers on what actions are executable and how they should be executed.

When the video pauses at the specified time, the learning system sends to ACE a message that the video is
paused. ACE then makes decisions on what to do next and sends a new set of actions to the learning
system:

(1) Tutor : Speak : OK. This video talked about punctuation definition signals. What are they?

(2) System : WaitForlnput : 20
The learning system then delivers the speech and waits 20 seconds for the learner to enter a response.
Suppose the learner entered “They are dashes and commas.” The response then is sent to ACE. ACE then
analyzes the response and figures out that the response is a partial answer. ACE then sends out a new set
of actions:

(1) Tutor : Speak : Wonderful! You got some of them. Can you say more?

200

https://www.youtube.com/watch?v=wTs6Q8Cs5AY

(2) System : WaitForlnput : 20
This process continues until the conversation session ends.

The above example involves the conversation engine ACE, the conversation script, and semantic analysis.
In order to understand the authoring process of AutoTutor conversation, it is important to know the
following main features in AutoTutor framework.

Script

An AutoTutor script defines all elements in a conversation session, including agents, commonly used
speech acts, spoken messages of agents, questions, answers, and so on. Conversation rules are also
specified in the script, which is implemented in ASAT-V by connecting script shapes with single
directional lines.

Natural Language Input Assessment

Evaluating natural language input in AutoTutor is accomplished in two steps. The first step is to
determine the type of speech act of the learner input, such as definitional question (“What is X?”), yes/no
guestion (“Is X?”), request (“Can you show me another page?”’), meta-cognition (“l have no idea about
that.”), meta-communication (“Can you repeat that?”), statement, and so on (Samei, Li, Keshtkar, Rus &
Graesser, 2014). The second step is to identify semantic units in the input and match the input with
prepared target units. For example, if the input is a definitional question, then AutoTutor will find for
what concept the learner needs a definition. If the input is an answer to a question an agent asked,
AutoTutor will match the input with prepared answers to the question. AutoTutor uses two ways to
accomplish semantic matching. One is using regular expression matching. A regular expression is simply
a string pattern that is used to check whether or not a target string has matches to the pattern. For
example, if the expected answer is “they are dashes and commas,” the regular expressions could be
{“\bdash”, “\bcomma”}, where “\b” indicates “word boundary”. For each target answer, a set of regular
expressions is created to represent the key parts of the answer. The proportion of matched regular
expressions is used as regular expression matching score as part of the semantic evaluation. Another one
is latent semantic analysis (LSA) (Hu et al., 2007, Cai et al., 2011). LSA represents the meaning of text
units by vectors of statistical semantic features. The cosine value between two vectors (the student input
and an expected answer, both in natural language) is used as another part of semantic evaluation.

Student Models and Pedagogical Models

Student models keep track of students’ performance. The data from student model are used by
pedagogical model for tutoring strategy selection. What should be used as variables for student modeling
is still an unanswered question (Graesser, 2013). AutoTutor allows authors and learning system designers
to create customized variables to track students’ learning process and performance. The customized
student model is implemented as a set of name-value pairs, together with a few functions to do score
operations, such as initializing scores, adding scores, etc. The tutoring strategies in AutoTutor are
implemented as conversation patterns, such as vicarious learning, expectation-misconception tailored
tutoring, teachable agent, etc. (Cai et al., 2014). In ASAT-V, conversation patterns are implemented as
partial flowcharts, which can be reused in script authoring.

201

Communication between AutoTutor Conversation Engine and Learning Systems

When AutoTutor conversation is integrated into a learning system, the conversation engine needs to
communicate with the learning system constantly. The conversation engine needs to know what is
happening in the learning environment in order to choose the next step to move on. In the example above,
when the video is paused, a “video paused” message is sent from the learning system to the conversation
engine and the conversation engine decides that the next step is to ask the learner a question. AutoTutor
allows learning system to send messages about what happens in the learning system as “world events.”
World events are simply labels that are pre-negotiated between learning system developers and AutoTutor
rule designers. In the example above, “VideoPaused” could be a label that is used to indicate the pause of
any video in the learning environment. The learning system always sends such a world event to
AutoTutor engine when a video is paused. It is up to the rule designer to decide what to do with this
event. Therefore, a world event list needs to be shared by the learning system developers and AutoTutor
rule designers, so that the system developers know what can be sent and the rule designers know what can
be expected.

ACE: AutoTutor Conversation Engine

ACE is a web service that interprets AutoTutor scripts and communicates with learning systems. ACE is
currently implemented as a RESTful web service, which can be easily integrated into any system.

With the above features, AutoTutor is capable of taking care of the conversation part of learning systems.
However, authoring AutoTutor scripts is never an easy task. The AutoTutor research group at University
of Memphis has worked for more than a decade to develop tools to help the script authoring process.
ASAT-V, a visualized authoring tool, is the latest development.

ASAT-V

ASAT-V is a windows desktop application that requires .Net Framework 4.5 and Microsoft Visio 2013.
This tool is used to define computer agents, view Visio flowcharts, and test scripts.

Figure 1 shows a screen shot of ASAT-V. On the menu strip, there are only two menu items. The “FILE”
menu is used for creating a new project or open an existing project. A project is a set of Visio flowcharts.
Developers can select “Sample Project” in the File menu to open the sample project. The sample project
folder is in the installation directory of ASAT-V. Authors can make a new copy of the sample project
folder to start a new project. The “HELP” menu is used to access an online help document, which is
updated when new release of the tool comes out.

The left panel of the tool is a list box that contains the flowchart names of the opened project. Authors can
click an item to select a flowchart to work on.

The right panel contains six tab pages, labeled as “Visio,” “Shape Data,” “Question,” “Test,” “Agent,”
and “Speech Acts,” respectively. “Visio” page contains a standard Visio Viewer that displays a selected
Visio flowchart. This page is connected to Visio 2013. When editing is needed, an author can press the
Visio editing button to open the Visio script in Visio 2013. The flowchart shown in Figure 1 contains
different Visio shapes (circles, rectangles, lines, etc.). In addition to the look of each shape, each shape
type contains a set of attributes that are specifically defined in ASAT-V. We explain the data defined for
every shape type in later sections. The tab page “Shape Data” lists all shapes in the selected script and
displays the associated data of a selected shape. Authors can review the data shape by shape and see if
there is any error. The tab page “Questions” is actually created for answer evaluation. The questions in a

202

selected flowchart are listed in this page. When a question is selected, all prepared answers associated
with the selected question are then displayed. There is an input box on the page for an author to type in an
answer to the question and see how much an answer can match each prepared answer. Authors can use
this tab page to set the thresholds for semantic assessment. The “Test” page is for script testing. Authors
can simulate a student’s interaction to a selected script by submitting expected textual responses or world
events to find out if the system performs as desired. The “Agent” page defines computer agents. An
author can find all defined agents in a dropdown menu. When an item in the menu is selected, the
information about the selected agent will be displayed and can be edited. New agents can be added by
typing in the text field of the dropdown menu. The tab page “Common Speech Acts” defines commonly
used speech acts using regular expressions. The definition of agents and speech acts are for all flowcharts
in a selected project. Therefore, the agents and speech acts are not defined in any of the flowcharts.

' ASAT-V - The University of Memphis -10| x|
FILE Help
IShapeDaml QueﬂbnslTéﬁ Iﬁgaﬂ IChmmunSpaaj1ﬂds|
1-RigidScript vsdx e
2-Participant Intro vsdx @ e] [&ﬁl'lﬂﬁ'; v” | F,"
J-EstablishGroupGoal vsdx
4-Grounding Referents . vsdx | | il
A-AnsweringVerficationCGuestion vsdx
&-CounterVerficationQuestion vsdx
Packet1 vsdx N E % % %
Packet 2 vedx
f “Lo a =
® ||]‘
EE
(] S
= |
M 4 » m|y start | 4] | v|

Ready

Figure 4. ASAT-V

In the next section, we describe all AutoTutor shapes, their text and data fields, and their use in
constructing the scripts. Although these shapes are currently implemented in Visio 2013, it is possible to
implement them in other drawing tools that store accessible shape data.

Autotutor shapes

Figure 2 shows an AutoTutor script flowchart drawn in Visio 2013. The flowchart is an AutoTutor
conversation pattern called “Greeting.” The conversation begins with a greeting “Hello!” from a teacher.
Then the system waits for user’s response. If the user says anything, the teacher says, “Terrific! We’ve
connected.” The conversation then ends. If the user is silent, the teacher says, “Are you there, user?”” Then
the system waits for the user to respond. If the user is silent again, the teacher says, “Too bad.” Then the
conversation ends.

203

[Any]
Hi!

[Teahcer]
Terrific! We've
connected.

[Teacher]
Hello!

[Teacher]
Too bad.

[Teacher]
Are you there,
user?

Figure 2. Script flowchart for Greeting

As one can see in Figure 2, the conversation script is represented by connected Autotutor shapes. An
AutoTutor shape refers to a visual shape and its associated data. Every shape has a type name and a text
field. Any text inside a pair of brackets is considered commentary text and is ignored by ACE in the
interpretation. Currently, ten shape types have been defined for AutoTutor script. Figure 3 shows these
ten shapes as the AutoTutor stencil in Visio 2013. We explain these shapes below in more detail.

Start = End

Agent - Speech

Event Action

@
- Question g Answer

Transition i | Connectar

End Shape

Figure 3. AutoTutor stencil in Visio 2013

Start Shape

A Start shape represents the beginning of a conversation. The text should be “Start.” Although, the text
field of this shape is not really used in the script interpretation, using an explicit “Start” helps to make the

204

flowchart clear. No shape data are defined for Start shape. Each script should have one and only one Start
shape, which should point to at least one other shape. Usually, Start is the first shape to put to a script
flowchart.

An End shape represents an end of a conversation. A script must have at least one End shape. Multiple
End shapes are allowed. The text field of the End shape helps to indicate the ending path of a
conversation. Therefore, the text on different End shapes can be different, such as “End-1,” “Good-End,”
“A-End,” etc. ““Score” is the only data field in an End shape. Authors may specify this score for a shape in
a flowchart to indicate the learner’s performance at the specific ending.

Agent Shape

AutoTutor agents are not defined in the flowchart, as we already explained earlier. However, we created
Agent shape type for authors to put agent names together with a script flowchart to show what agents are
used in the flowchart. Agent shape is not required in a script and will not be interpreted by ACE. The
agents used in the flowchart are defined in the Agent tab page of ASAT-V.

Speech Shape

The Speech shape represents the conversational contribution of an agent. The text field is the text form of
the speech content, together with optional commentary note in brackets. While the commentary note is
arbitrary, it is recommended that, for a Speech shape, the note contains the agent information, such as
“Teacher,” “Peer Student,” etc. The text form of the speech content can be displayed to the learner. There
are two data fields in Speech shape. One is “Agent.” The value of “Agent” field is an ID created separately
(see section ASAT-V). The other data field is “Speech.” The value of this field is optional. Authors may
use this field for one of the two different purposes: (1) to create a tagged speech string for on-the-fly
speech generation or (2) to store a label or URL of a stored speech. The stored speech could be recorded
human speech or a pre-generated speech from a text-to-speech (TTS) engine. If the speech data are
empty, the displayable text can be used to generate speech. When a conversation moves to this shape, the
agent will deliver the speech. Once the speech is done, the flow moves to the next shape.

Question Shape

The Question shape has the same data fields as the Speech shape. However, this shape is always followed
by answer shapes or transition shapes (see below). When the conversation moves to this shape, whether or
not the question shape will be asked depends on if there is a good answer of the question that has already
been answered by the learner. If the learner has already answered the question, this shape will not be
selected and the conversation will move to other paths. One important issue for authors to keep in mind is
that, alternative paths should be available when a question shape is not selected, so that the conversation
always has a path to go.

Answer Shape
The Answer shape represents a possible answer that a learner may give to a preceding question. The text

field of this shape is a sample answer of the type. There are several data fields in Answer shape, as
described below:

205

o AnswerType: Answer type can be any arbitrary string. However, there are a few reserved types,
including “Good,” “Bad,” “Irrelevant,” “Undetermined,” and “Blank.” These types have special
interpretations in ACE and should be used correctly.

o A “Good” answer (Figure 4) is a correct and complete answer to the question. If this
answer is matched with the learner’s previous input, then the question associated with
this answer will not normally be asked because the content is already covered. If, for
some reason, one wants to ask the question anyway, that can be accomplished by not
specifying any answer with the type as “Good.”

SHAPE DATA - ANSWER »
AnswerType Good| IZI
RegEx “bfarcetb, \baravity\b[vbverticalb|\bdc

RegExThreshold 0.70
LSAThreshold 0.70
Score +10
Samplel

Sample2

Sample3

Sampled

Sample5

ResponseType Global

Figure 4. Data for the Answer shape

o A “Bad” answer represents a typical bad answer that a learner may usually give. In
addition to help determining the conversation path, “Bad” answer also helps to determine
whether or not an answer is “Irrelevant” or “Undetermined.”

o Ananswer is “Irrelevant” if it does not match any “Good” answer or “Bad” answer.

o An answer is “Undetermined” if it matches at least one “Good” answer and one “Bad”
answer.

o “Blank” answer is an answer without any word.
o RegEXx: The value of this field is a set of regular expressions. Each regular expression represents
the string pattern of a part of the answer. This field is used to assess a learner’s answer by regular

expressions. The proportion of the matched regular expressions is the learner’s regular expression
match score.

e RegExThreshold: This field is a value between 0 and 1, indicating the minimum regular
expression score for an answer to be considered matched by regular expression.

206

e LSAThreshold: This filed is a value between 0 and 1, indicating the minimum LSA match value
for an answer to be considered matched by LSA. The LSA score is computed by comparing a
learner’s answer to the answer in the text field and the “Sample” fields (see below) of the answer
shape. The largest cosine value of all comparisons is taken as the final LSA match score.

e Score: This field is a number to indicate a score that a learner should receive if this answer is
matched by a regular expression or LSA.

e SampleN: The sample fields (Samplel, Sample2, ...) are possible answers of this type. These
samples are used to compute LSA scores. The number of sample answers is not limited and an
author can put as many samples as desired. The samples may come from real student responses
after the script has been used. In this way, AutoTutor can learn from learners and improve its
performance over time.

o ResponseType: The response type could be “Global” or “Local.” This is used in nested
guestions. Usually, an answer to a main question or problem to solve is “Global” and an answer
to a hint or prompt is “Local.”

Event Shape

Event shape is used to integrate AutoTutor conversation with external environment. This shape is used
when an external event is expected. An external event can be an action from the learner, such as a mouse
click, a choice selection, etc. It can also be a system event, such as a scenario is loaded, a certain time has
elapsed, and so on. Event shape data has an “Agent” field and a “Score” field. “Agent” indicates the
source of the event, from learner or system. “Score” is a performance score assigned to the learner when
this event is matched. The text filed of this shape is the label of the event. When the label of any external
event matches the text field of the shape, this event is considered matched.

Action Shape

The Action shape is used to send a sequence of actions to the system. There is only one “Name” field in
the shape data. Authors can put a sequence of lines in the text field of the shape. Each line is of the form
“Agent:Act:Data.” An example line could be “System:Wait:30,” meaning that the system should wait for
30 seconds. When this shape is encountered, ACE will send all actions to the external environment for
execution. Authors have to negotiate with external environment developers to get a list of executable acts
and associated data.

Transition Shape

The Transition shape does not have any data field. However, it plays a very important role in simplifying
the structure of the flowchart. What an author should know is that all Transition shapes with the same text
are considered “identical” in the flowchart. For example, in Figure 2, two shapes point to the “Greeting”
shape and the “Greeting” shape points to two other shapes. If there is another Transition shape in the
flowchart with the same text “Greeting,” then that shape will also be considered as connected with those
four shapes in the same way.

207

Connector Shape

The Connector shapes connect other shapes together to form a conversation flowchart. A connector shape
is a single directional line that connects two shapes, indicating a move from one shape to another shape. A
Connector shape has three data fields: “Priority,” “Frequency,” and “MaxVisit”. These three fields play
important roles in controlling the conversation flow. We explain each of them in detail below:

Priority: Priority is a positive integer (1,2,3,...) indicating the priority of a path. A value 1
indicates the highest priority. A shape may point to multiple shapes. ACE will consider the paths
according to the priority. For example, in Figure 2, the Transition shape “Greeting” points to two
shapes, an answer shape “Hi!” and an event shape “Silence.” The connector to “Hi!” has a
priority 1 and “Silence” has a priority 2. When ACE selects a path from “Greeting,” it will first
match the answer shape “Hi!” If the learner greets back, that path will be selected. Otherwise, it
will consider the event “Silence.”

Frequency: This field is a positive number. This number is used to set a selection probability for
paths of same priority. The selection probability of a path is the frequency of that path divided by
the sum of frequencies of all possible paths coming out from the same shape. Paths will be
randomly selected with the given probability distribution.

MaxVisit: This field is a positive number, indicating the number of times a path can be chosen.
This value is used to terminate a loop. For example, in Figure 2, the connector from the “Silence”
shape to the question shape “Are you there, _user_?” has MaxVisit = 1. Therefore, that path can
be selected for only once. Otherwise, the system may keep asking “Are you there, _user ?”
forever if the user keeps silent.

The above shapes are used to compose AutoTutor script flowcharts. With the help of the Transition
shape, flowcharts can be drawn on multiple pages and connected by common Transition shapes. Step-by-
step tutorials are available. Authors can click on the “Help” menu on ASAT-V to access online tutorials.

While currently these shapes are implemented in ASAT-V as Visio shapes, they can be implemented in
any drawing tools that has the following features:

Shapes can be customized,;

Each shape can be associated with a set of customized properties;
Shapes can be connected by connector shapes to form flowcharts;
One complete flowchart can be split into multiple pages; and

The flowcharts can be exported as xml files.

Conclusion

As a generalized intelligent framework for tutoring, GIFT needs to include intelligent conversations.
Unfortunately, creating intelligent conversations is a very complex process. AutoTutor conversation
framework makes it possible to seamlessly integrate conversations into learning systems. When authoring
conversations, the most challenging task is to set up conversation rules. The visualized authoring tool,
ASAT-V, makes the rules visible and greatly reduces the complexity of the authoring process. Thus,

208

visualized conversation authoring tools like ASAT-V are important components of GIFT framework. To
close this chapter, we give the following list of suggestions on general intelligent conversation modules
and authoring tools for intelligent conversations:

(1) Conversation modules should have good communication channels with learning systems.

(2) Conversation modules should have flexible student model so that student’s learning process and
performance can be easily integrated into the conversation.

(3) Conversation modules should have fast and high quality natural language processing (NLP)
support. It is the best that the conversation module allows NLP plug-ins.

(4) Conversation script authoring should have graphical rule editing tools.

(5) Conversation authoring tools should have good validation and test utility.

References

Cai, Z., Graesser, A. C., Forsyth, C., Burkett, C., Millis, K., Wallace, P., Halpern, D. & Butler, H. (2011,
November). Trialog in ARIES: User Input Assessment in an Intelligent Tutoring System. In W. Chen & S.
Li (Eds.), Proceedings of the 3 IEEE International Conference on Intelligent Computing and Intelligent
Systems (pp.429-433). Guangzhou: IEEE Press.

Cai, Z., Forsyth, C. M., Germany, M. L., Graesser, A. C. & Millis, K. (2012). Accuracy of tracking student’s natural
language in OperationARIES!: A serious game for scientific methods. In S. A. Cerri & B. Clancey
(Eds.), Proceedings of the 11th International Conference on Intelligent Tutoring Systems (ITS 2012) (pp.
629-630). Berlin: Springer-Verlag.

Cai, Z., Hu, X. & Graesser, A. C., (2013, November). ASAT: AutoTutor script authoring tool. Paper presented at the
meeting of the Society for Computers in Psychology, Toronto, CA.

Cai, Z., Feng, S., Baer, W. & Graesser, A. C. (2014). Instructional strategies in trialog-based intelligent tutoring
systems. In R. Sottilare, A. C. Graesser, X. Hu & B. Goldberg (Eds.), Design Recommendations for
Intelligent Tutoring Systems: Adaptive Instructional Strategies (Vol.2)(pp. 225-235). Orlando, FL: Army
Research Laboratory.

Forsyth, C. M., Graesser, A. C., Pavlik, P., Cai, Z., Butler, H., Halpern, D. F. & Millis, K. (2013). OperationARIES!
methods, mystery and mixed models: Discourse features predict affect in a serious game. Journal of
Educational Data Mining, 5, 147-189.

Gholson, B. & Craig, S. D. (2006). Promoting constructive activities that support vicarious learning during
computer-based instruction. Educational Psychology Review, 18, 119-139.

Graesser, A. C. (2013). A guide to understanding learner models. In R. Sottilare, A. C. Graesser, X. Hu & H. Holden
(Eds.), Design Recommendations for Intelligent Tutoring Systems: Learner Modeling (Vol.1)(pp. 3-6).
Orlando, FL: Army Research Laboratory.

Graesser, A. C., D’Mello, S. K., Hu, X., Cai, Z., Olney, A. & Morgan, B. (2012). AutoTutor. In P. M. McCarthy &
C. Boonthum (Eds.), Applied natural language processing and content analysis: Identification,
investigation and resolution (pp. 169-187). Hershey, PA: IGI Global.

Graesser, A. C., Li, H. & Forsyth, C. M. (2014). Learning by communicating in natural language with
conversational agents. Current Directions in Psychological Science, 23, 374-380.

Graesser, A. C., Lu, S., Jackson, G. T., Mitchell, H. H., Ventura, M., Olney, A. M. & Louwerse M. M. (2004).
AutoTutor: A tutor with dialogue in natural language. Behavior Research Methods, Instruments &
Computers, 36, 180-193.

Graesser, A. C., Wiemer-Hastings, K., Wiemer-Hastings, P., Kreuz, R. & the Tutoring Research Group (1999).
AutoTutor: A simulation of a human tutor. Journal of Cognitive System Research, 1, 35-51.

Halpern, D. F., Millis, K., Graesser, A. C., Butler, H., Forsyth, C. M. & Cai, Z. (2012). Operation ARA: A
computerized learning game that teaches critical thinking and scientific reasoning. Thinking Skills and
Creativity, 7, 93-100.

209

Hu, X., Cai, Z., Wiemer-Hastings, P., Graesser, A. C. & McNamara, D. S. (2007). Strengths, limitations, and
extensions of LSA. In T. K. Landauer, D. S. McNamara, S. Dennis & W. Kintsch (Eds.), Handbook of
latent semantic analysis (pp. 401-426). Mahwah, NJ: Lawrence Erlbaum.

Hu, X., Morrison, D. M. & Cali, Z. (2013). On the use of learner micromodels as partial solutions to complex
problems in a multiagent, conversation-based intelligent tutoring system. In R. Sottilare, A. C. Graesser, X.
Hu & B. Goldberg (Eds.), Design Recommendations for Intelligent Tutoring Systems: Adaptive
Instructional Strategies (Vol.2)(pp. 97-110) . Orlando, FL: Army Research Laboratory.

Millis, K, Forsyth, C. M., Butler, H., Wallace, P., Graesser, A. C. & Halpern, D. F. (2011) Operation ARIES! A
serious game for teaching scientific inquiry. In M. Ma, A. Oikonomou & J. Lakhmi (Eds.), Serious games
and edutainment applications (pp.169-196). London, UK: Springer-Verlag.

Nye, B. D., Graesser, A. C. & Hu, X. (in press). AutoTutor and family: A review of 17 years of natural language
tutoring. International Journal of Artificial Intelligence in Education.

Samei, B., Li, H., Keshtkar, F., Rus, V. & Graesser, A. (2014) Context-based Speech Act Classification in
Intelligent Tutoring Systems. In S. Trausan-Matu, K. Boyer, M. Croshy & K. Panou (Eds.), Proceedings of
the 12th International Conference on Intelligent Tutoring Systems (pp. 236 241). Berlin: Springer.

210

Chapter 18 Constructing Virtual Role-Play Simulations

W. Lewis Johnson, Ph.D.
Alelo Inc.

Introduction

Virtual role-play simulations are interactive simulations in which learners perform roles similar to what
they would perform in real life. They are populated with virtual role players, i.e., non-player characters
that fill out the roles in the simulation and interact with learners much as people typically do in real-life
situations. Virtual role play is an important category of training that is particularly well suited to
interpersonal skills. It has been applied to foreign language education (Johnson, 2010), cross-cultural
skills training (Johnson et al., 2011), negotiation skills training (Kim et al., 2009), motivational
interviewing (Radecki et al., 2013), and other clinical skills. Role-play scenarios are employed in sales
and customer service training (Simmons, 2010). The impact of virtual role play is likely to grow as easy-
to-use tools for creating such simulations become more widely available. It thus has a potentially
important role to play as part of the Generalized Intelligent Frameworks For Tutoring (GIFT).

Virtual role play is inspired by training with live role players. In the military, it is common to employ
people as role players in training exercises, acting as civilians and combatants, for example, see Wilcox
(2012). Such training can be highly effective but unfortunately the costs involved in employing role
players and the logistics involved in staging live exercises limit their use. Sometimes military members
must play supporting roles in these training exercises, acting as foreign civilians or opposing forces, so
they are supporting the exercise instead of receiving training themselves. Medical education also makes
use of live role players in the form of standardized patients, actors trained to behave as if they have a
particular medical condition (Barrows, 1993). Such training can be valuable but is limited by the
availability of suitably trained actors. Role play is also very common in sales training (Robinson, 1987),
but trainees often do not like it because it is not conducted in a way that is supportive and conducive to
learning (Sandler Training, 2014). Best practices call for sales managers to role play the customer in such
training episodes; this limits role play to times when busy sales managers are available to engage in
training sessions.

Some researchers are seeking to make role-play training more convenient by moving interaction with live
role players into virtual worlds. For example the Otago Virtual Hospital lets learners practice their clinical
skills in a virtual world, interacting with simulated patients played by clinicians (Loke et al., 2012). Such
training offers added convenience, but it still depends upon the availability of skilled role players to
control the patient avatars in the virtual world. Virtual role play with virtual humans has no such
constraint; trainees can practice as much as they want, whenever they want.

Alelo has been heavily involved in virtual role-play training since its inception. It draws on an extensive
body of research in supporting technologies such as pedagogical agents (Johnson & Lester, in press). The
development team at Alelo has broad experience in creating virtual role-play content for a variety of user
groups. For example Alelo’s Virtual Cultural Awareness Trainers (VCATS) have been developed to teach
about culture in over 80 countries. Users of Alelo courses number in the hundreds of thousands. This
gives us practical insights into the issues involved in creating, validating, and delivering virtual role-play
training at scale.

This chapter provides an overview of the key capabilities of virtual role-play training systems, using
deployed training systems as examples. This motivates the requirements for authoring tools. This is

211

followed by a discussion of authoring processes for creating and validating virtual role-play content.
Authoring tools should be designed with these processes in mind. Next is an overview of available tools
for authoring virtual role-play content. These include tools for creating simple role-play scenarios, tools
for authoring complex role-play simulations, and emerging tools that empower trainers to construct and
customize role-play training content themselves. Finally there is a discussion of future directions for this
work and its implications for GIFT.

Examples of Virtual Role-Play Technologies

Figure 1 shows two example usage scenarios for virtual role play. These particular examples are intended
to help learners develop their Chinese conversational skills. A common use case is shown on the left,
where the learner has an on-screen avatar who interacts with on-screen virtual role players. If the user’s
computer or mobile device supports speech input, as in this example, the training system can employ
speech understanding technology so that the virtual role players understand what the learner says and
respond accordingly. This results in an engaging, immersive experience in which learners must apply
their communication skills much as they would in real-life situations.

Figure 1. Learners can participate in a virtual role-play exercise by speaking and choosing actions for an on-
screen avatar (left) or speaking directly with the virtual role player (right).

Advances in sensor technologies make it possible for learners to interact directly with virtual role players,
instead of through an avatar. When integrated into lifelike robots, as in Figure 1 right, the virtual role
player can interact with learners in the real world. This increases the realism of the role-play experience,
particularly if the interface incorporates proximity sensors and gesture recognition to support mixed-
initiative multimodal communication. In practice, similar software architectures can be used in both cases
to control the virtual role players.

Mobile devices are also increasingly attractive as platforms for virtual role play (Johnson et al., 2012).
Advances in the computing power of mobile devices make it possible to deliver interactive virtual role
players on tablets and smart phones, for anywhere, anytime training. Mobile devices are increasingly
equipped with cameras and other sensors that facilitate natural interaction between learners and virtual
role players.

212

Techniques for Effective Use of Virtual Role Play

When used properly virtual role play offers a training experience that is realistic and similar to real-life
interaction, but is in many ways actually superior to practice in real life. The example shown in Figure 2,
taken from Alelo’s VCAT Taiwan course, is a case in point. Here the learner is playing the role of an
American officer on assignment in Taiwan. The learner has been invited to a formal banquet hosted by his
Taiwanese counterpart. It is important that the learner make a good impression and avoid doing
something embarrassing or culturally inappropriate. For example, many toasts tend to be exchanged at
such dinners. How can one follow proper etiquette for exchanging toasts without getting drunk in the
process? Virtual role play offers an alternative to learning the hard way by making mistakes in real-life
high-stakes situations. In this example, the learner’s avatar, on the left, has offered a toast saying, “Drink
as you like.” This gives the learner the option of offering the toast with his teacup instead of a shot glass,
as his host on the right does. If the learner says or does something inappropriate, the virtual role players
will react to it, so learner can see the consequences of mistakes. But since the training module is just a
simulation the negative consequences of mistakes are minimal. The learner can practice multiple times
until becoming comfortable saying and doing the right things at the right times. Alternative training
media such as guidebooks may give learners a general understanding of the culture, but do not help
learners acquire the skills they need for such situations.

Figure 2. Virtual role play lets learners practice high-stakes interactions in a safe environment.

The following are some techniques for employing virtual role play that maximize its effectiveness.
Authoring tools and technologies for virtual role play should support these techniques to help developers
and trainers make best use of this innovative instructional technology.

Intelligent tutoring technology, in the form of virtual coaches, can monitor learner performance in role-
play simulations, provide feedback, and ensure that learners draw the right lessons from the practice
experience. Figure 3 illustrates the VCAT’s Virtual Coach, Erika, in action. In this example, the learner
has expressed dislike for a dish that sounded unappealing, namely, sea cucumber. The Virtual Coach
advises the learner to show appreciation and interest in the dishes that his host has offered. Such feedback
can be very important in cross-cultural communication, where learners sometimes are not even aware
when they make cultural mistakes.

213

Objectives

, ' i
sl [y N

Keep trying.
Remember, it's important to ask your counterparts
about the food and show genuine interest and
excitement in learning about the different dishes. Your
counterpart will appreciate that you have an interest in
Taiwanese food.

Figure 3. A Virtual Coach provides scaffolding and feedback on the learner’s performance.

When tasks become particularly complex, involving a variety of skills, it can be beneficial to break a task
a part into component skills and role play them separately in a part-task training approach. VCATSs and
other Alelo courses use this approach to reinforce individual communication skills, as shown in Figure 4.
Here the learner is practicing offering compliments to his host. Learners can practice individual responses
by selecting from menus of options, as in this case, or speaking their response into a microphone.

Practice 8

Compliment the host on his choice of restaurant by
saying, "Very beautiful.”

of Han pidoliang!

W Hén man yong.
. 4 W Qing man yong.

W Qing pidoliang.

‘ LESSONS PREV INDEX NEXT
e

Figure 4. Learners can practice individual communication skills in a part-task training approach.

To encourage ongoing practice and provide an appropriate level of challenge, simulations can be made to
vary both in terms of amount of scaffolding and degree of difficulty of the interactions. The Tactical

214

Interaction Simulator (T1 Simulator) (Emonts et al., 2012) illustrates both dimensions of variability, as
shown in Figure 5. The avatar in these examples is an Australian soldier on a peacekeeping mission in
East Timor. The screenshots in the figure illustrate two different simulations of a clearance operation, in
which the learner is supposed to keep civilians clear of hazardous areas. In the left screenshot, the learner
is provided with a high degree of scaffolding, including a transcript of the dialogue, possible courses of
action, and possible ways of expressing these courses of action in Tetum (the language spoken in East
Timor). In the example on the right, the scaffolding is removed and the learner is expected to engage in
conversation unassisted.

0TI Simulator - Tetum 0TI Simulator - Tetum

ne'e para ba servisu. (I need to
get through to get to work.)
John: ta nia naran saida?
Marco: Ha'u Marco. (F'm Marco.)

Marco: ta la 16 orden ba ha'u.
don't tell me what to do

Figure 5. The Tactical Interaction Simulator can be played at a low level of difficulty and a high level of
scaffolding (left), or a high level of difficulty and a low level of scaffolding (right).

The left example, in which the civilians are hostile, is at a low level of communicative difficulty all the
learner can do in this case is to tell the civilians to calm down and call the police. The right example, in
which the civilian is initially cooperative, is linguistically more difficult the learner must explain calmly
why the civilian cannot enter the restricted zone and avoid raising tensions. These examples illustrate how
virtual role-play simulations, if designed properly, can support learners at a variety of skill levels and
encourage learners to practice and try alternative courses of action until they have fully mastered the
target skills.

These examples also illustrate that virtual role play involves nonverbal communication as well as verbal
dialogue. The body language of the virtual role players can communicate their emotions and attitudes in
ways that their verbal responses may not. Conversely, virtual role play can enable learners to practice
their nonverbal communication and use of body language. If the computing device has suitable sensors, it
can track the learner’s body language directly. If not, the learner can use menus or interface gestures to
control the body movements of his avatar.

Virtual role-play simulations can serve multiple purposes and phases of training: walkthroughs, practice,
and assessment. In walkthrough scenarios, the learner may have little or no mastery of the target skills
and so the system provides a high degree of scaffolding and helps the learner walk through the scenario to
get a feel for how to perform the task. The left screenshot in Figure 4 is an example of such a walkthrough

one doesn’t need to know much Tetum to complete this simulation, although the score one
receives depends upon how much Tetum is used. Practice simulations help learners develop their skills
and involve progressively less amounts of scaffolding and higher levels of difficulty. In assessment
simulations, scaffolding is withheld and learners must demonstrate that they can complete the task
unassisted.

215

In summary, below is a list of desirable characteristics for virtual role play, as illustrated in these
examples:

e Engaging, immersive experiences that simulate real-world interactions.

e Support for multiple computing devices and interface modalities.

e Support for speech recognition and other sensors for more realistic interaction.
e Nonverbal as well as verbal communication.

e Alternative courses of action, to promote replayability.

e Support for walkthroughs, practice, and assessment.

o Virtual coaching support.

e Part-task training of component skills.

o Varying levels of scaffolding.

o Varying levels of difficulty.

Role-Play Training and Scenario-Based Training

Virtual role-play training is a related to scenario-based training. Scenarios and stories are used widely in
training, and authoring tools are available to support their development. However, scenarios in general are
much simpler than virtual role-play simulations, and so are the authoring tools used to create them.

Figure 6 shows an example scenario created by Van Nice (2014), created using Articulate Storyline
(Articulate Global, 2015). In this approach to scenario-based training, each character in the scenario
appears as a drawn or photographic character, in a sequence of still poses. The non-player character poses
a question, presented on the screen. The learner chooses from a small set of multiple-choice answers. The
non-player character then responds to the learner’s choice, and the system gives feedback on that choice.

216

This is the e\ues{,ion

Hello! I'm calling to find out about the
new product you're selling and how it §_
can benefit my patients.

Independent studies prove that our new product

reduces infections by 80% and helps alleviate gy
pain in almost all cases. LA

— &
Our new product reduces infections by y
more than 50%. It also helps with pain. \’\ /\)

These are the two possible answers

Figure 6. This example scenario was created using the Articulate Storyline authoring tool.

Scenarios such as this are useful for some purposes such walkthroughs. Current authoring tools make it
possible to create such scenarios without any programming. However, they lack many of the
characteristics discussed in the previous section, and this limits their utility. In particular, scenarios tend
to limit learners to a small set of choices, as in this example. They are limited to a single question-
response pair, as in this case, or a linear sequence of inputs and responses. This limits their replayability.
Simulations in contrast support a range of possible inputs, responses, and outcomes, and so are more
suitable for ongoing practice and sustainment. The challenge for role-play authoring tools is to make it
easy to create such simulations with little or no programming.

Authoring Processes

Authoring virtual role play is not simply the application of a tool; it is a process. It can involve multiple
stages, with different participants involved at each stage. This is true for any significant intelligent
tutoring development effort, but it is especially true for virtual role-play authoring, because it can involve
people with different skill sets. Authoring tools must be designed to support the intended process,
participants, and roles.

Figure 7 shows one example development process, used to develop VCAT courses. Development
proceeds in six distinct phases, from background sociocultural research through instructional design,
scenario authoring, media production, and quality assurance. Each phase of authoring involves distinct
activities and skill sets, and consequently, different authoring capabilities. The course also goes through
an approval process with the client, which also involves multiple phases. Authoring tool features can vary
depending upon the stage.

217

i Remarch and Design @ Approve Environments

W APl | g
& Author Outline

—0C@ 000000600

@ Appecws Cutiine - I Graph Scenarios & Approrcs Characien W Creane Art W Recoed B rechwical
o

@ Alelo Aud Integration
&0A

Figure 7. This example authoring process involves multiple phases and roles, both for the system developer
and for the client.

Below are examples of some process issues that a good virtual role-play authoring toolset should support
in order to create product-quality virtual role-play training systems:

e Domain model validation. The role-play simulation must reflect an accurate understanding of
how the target skills are performed in real life. This is important when the training author and the
subject matter experts are different people, or when multiple subject matter experts are required.
Otherwise there is a risk that the course author will create content that appears to be correct but in
fact is inaccurate. This is a critical issue for cultural awareness courses such as VCATS, which
incorporate expertise in culture as well as military operations. For VCATSs, we cross-validate
cultural content from multiple sources to ensure that the final content correctly reflects the target
culture.

e Team collaboration and workflow. Role-play simulation development often requires
multidisciplinary teams. Authoring tools should support sharing among team members.

e Courseware quality assurance. The tools should support thorough testing and validation to
ensure that the resulting content is free of mistakes. Again, VCATS provide a good case in point.
Errors can creep in in the domain model, the instructional design and content, the artwork, and
the interaction behavior.

Virtual Role-Play Authoring Tools

Currently, few authoring tools are generally available for creating virtual role-play simulations. Virtual
role-play developers such as SIMmersion (2013) and Kognito Interactive (Boyd, 2015) create simulations
using in-house tools and methods; they do not make these tools available to others and publish few details
about them. Scenario editors such as Articulate Storyline (Articulate Global, 2015) and Video RolePlay
(Rehearsal Video Role-Play, 2015) make it easy to create simple scenarios but are not designed to support
the creation of rich role-play simulations.

Page-based Authoring Tools
Most scenario authoring tools use a page metaphor, similar to slides in PowerPoint. The author creates a

set of pages, where the virtual role player and learner’s dialogue choices are bits of artwork embedded in
the page. The dialogue progresses by jumping from page to page.

218

SkillStudio, the authoring toolset offered by Skillsoft, has support for creating role-plays (Skillsoft
Ireland Limited, 2013). SkillStudio does not give users the option of creating new role-plays, but it
permits users to edit existing role-plays developed by Skillsoft.

Skillsoft role-plays are composed of pages showing an image of a character saying something to the
learner and a list of multiple-choice responses to select from, similar to the example in Figure 6.
SkillStudio supports single-path role-plays and multiple-path role-plays. In single-path role-plays, there is
only one correct choice in each turn of the role-play, and learner is constrained to follow the correct path.
In multiple-path role-plays, each choice leads to a new dialogue page, each of which, in turn, leads to a
set of successor pages. This results in a tree of pages. Skillsoft role-plays can be played in either Explore
Mode or Summary Mode. Explore Mode is a kind of walkthrough mode in which the learner can explore
the outcome of each option before making a choice. Summary Mode is a kind of assessment mode, in
which the learner must make an immediate choice at each step in the role-play. Learners receive a
cumulative score based on number of correct choices they make over the course of the role-play.

One limitation of the Skillsoft approach is that it offers the learner a limited range of options at each
decision point. Each learner action is selected from a small list of choices, so learners learn to recognize
appropriate responses instead of coming up with their own responses. Single-path role-plays constrain
learners to follow a linear script. Multiple-path role-play trees offer more options, but they are not
scalable. The number of pages is exponential in the depth of the tree. Realistic role-plays involving a
series of conversational turns and a range of options become very large and time-consuming to produce.

ZebraZapps (Lee, 2013) is a more recently released authoring tool that supports the creation of role-
plays as well as other interactive eLearning media. As in SkillStudio authors can author role-plays by
creating a set of pages showing a picture of a character saying something and a set of multiple-choice
options. The author can specify go-tos between pages, so that when the learner selects a choice it causes
the course to jump to another page. The properties of graphical objects in the page, as well as the go-tos
between pages, are presented in a table to facilitate editing.

ZebraZapps role-play applications do not require quite as many pages as SkillSoft role-plays, since
authors can use go-tos to merge paths and share pages across paths. But since each simulation state is a
separate page, dynamic simulations inevitably require large numbers of pages. Large numbers of go-tos
result in complex control structures that are hard to follow and difficult to maintain.

Dialogue Authoring Tools

Dialogue authoring tools differ from the above tools in that there is an explicit model of the dialogue that
the character is engaging in, independent of the screen artwork. Dialogue authoring tools are designed to
enable authors to define complex dialogues with interactive characters. Some dialogue authoring tools are
emerging that are designed specifically to create role-play simulations.

ChatMapper (Urban Brain Studios, 2014) is a general-purpose authoring tool for nonlinear dialogue.
Authors can create dialogue trees and specify conditions under which branches are activated. It can thus
be used to create complex simulations. Dialogues are compiled into the Lua scripting language (Lua,
2014), a commonly used scripting language in games. The ChatMapper editor has a built-in conversation
simulator, which makes it easy for developers to test dialogues as they are developing them. Although
ChatMapper is very flexible, it only takes care of authoring dialogue logic. Constructing complete role-
play simulations with capabilities listed above, such as spoken dialogue, scaffolding, etc., inevitably
requires additional Lua scripting and programming.

219

The USC Institute for Creative Technologies (ICT) has developed a series of experimental authoring tools
for role-play development. For example the Tactical Questioning authoring tool (Gandhe et al., 2009)
been used to create virtual role players for a system that trains tactical questioning skills. It supports a
model of dialogue in which the virtual role player responds to questions posed by the trainee, and
sometimes engages in subdialogues to negotiate with the trainee for compensation in return for the release
of information. In this approach, the author creates a model of information that the virtual role player
knows and can talk about. This includes information about objects, people, and places. The author then
defines dialogue acts that the player and virtual role player can engage in concerning this information.
Dialogue acts include questions, assertions, offers, threats, offers, and insults, as well greetings and
closings to start and end the conversation. Dialogue moves are specified as state transition networks, in
which the author can specify conditions under which transitions may occur. Conditions may include the
emotional state of the character and character’s willingness to comply and cooperate, which, in turn, are
influenced by what the learner has said previously in the dialogue. The system uses statistical language
processing techniques for natural language understanding as well as natural language generation to map
between English text utterances and dialogue acts. The authoring tool enables the author to train the
natural language processor by selecting which dialogue act to map to a given text utterance. Ghandhe et
al. (2009) report that the developers used the Tactical Questioning authoring tool to create the first
character, Hassan, after which two subject matter experts without previous experience building dialogue
systems used the tool to author dialogue for two additional characters.

More recent ICT authoring tool named Situated Pedagogical Authoring (SitPed) uses the ChatMapper
tool to create branching dialogue and incorporates a character simulator so that authors can test and
annotate dialogue as they create it (Lane et al., in press). It also provides authors a tool for annotating
dialogue texts to indicate how well they exhibit the skills being taught in the simulation. An evaluation of
SitPed was conducted in 2014, and at the time of this writing, the results of this evaluation are still being
analyzed.

Alelo has a suite of tools for creating training content employing virtual role play (Johnson & Valente,
2008). Alelo uses these in house and also makes them available to third parties. For example, the Danish
Simulator (Dansksimulatoren, 2015), an award-winning game for learning Danish language and culture,
was developed using Alelo’s tools and platform. The toolset supports development teams throughout the
authoring process, from background sociocultural research through building complete training systems.
The tools and supporting methodology have enabled Alelo to deliver a wide range of effective culture and
language training courses, which have a consistently high level of quality.

The core tools in the Alelo authoring toolset are Xonnet and Tide. Xonnet supports web-based authoring
by teams of authors, operating on content stored in a central learning content management system. It
provides content management functions necessary for collaborative authoring such as checking in and
checking out of content. Tide is used to design and construct the virtual role-play content elements within
each course. Other tools in the toolset edit and manage the media assets comprising simulations, such as
character animations and voice recordings. Content is specified in a device-agnostic fashion so that it can
run on personal computers and mobile devices, in web browsers, immersive games, mixed-reality
environments, and even mobile robots. For each hardware/software configuration, Alelo has developed a
content player capable of delivering content on that device and software platform.

To understand how authoring works one needs to know something about how the Alelo architecture
controls the behavior of virtual role players (Johnson et al., 2012). Each virtual role player has a “brain”
(decision engine) that controls a “body” (character persona and sensing-action layer) that operates within
the simulated world or real-world environment. When the virtual role player is interacting with a trainee,
the sensing-action layer receives inputs from the speech recognizer, user interface, other sensors, and the
virtual-world simulation, and relays them to the decision engine to determine what the character should

220

do in response. The decision engine interprets the inputs in the context of the culture, current situation,
and dialogue history to determine what act the trainee is performing. Acts are similar to the dialogue acts
in Ghandhe et al.’s (2009) formulation, but also subsume nonverbal communication and other actions. For
example in the VCAT Taiwan simulations the trainee’s avatar might extend his hand in order to share
hands or raise his glass to offer a toast. The decision engine interprets such behaviors as acts with
communicative intent and chooses an action to perform in response. The decision engine is able to
recognize a variety of possible acts, affording the trainee a range of possible courses of action. The
decision engine then chooses what action to perform in response, and realizes that as a combination of
speech and gesture for the sensing-action layer to perform.

Each virtual role-player model can incorporate a set of dynamic variables that represent the attitudes of
the virtual role player toward the trainee. Trust and rapport are typically the most important variables.
These can change over the course of the encounter in reaction to the trainee’s actions and can influence
what actions the virtual role player will take. In many of the simulations Alelo creates the trainee must
first establish trust and rapport in order to accomplish the mission.

The job of Tide is to enable authors to create content that conforms to this architecture, enables the virtual
role player to interpret the trainee’s actions, and responds accordingly. For each encounter or scene,
authors create an act library, which is the inventory of acts that the trainee or the virtual role player may
perform during the encounter or scene. These can vary from simulation to simulation, but in practice
authors reuse elements of previous act libraries when developing new act libraries. Authors also create
utterance libraries, which consist of example utterances that express the meaning of the acts in the target
language. To increase the coverage of utterances in the utterance library, authors can use a templatizer
tool, based on the work of Kumar et al. (2009), to generalize utterances into utterance patterns that match
a variety of utterances.

Tide provides an interactive diagramming tool for specifying interactive dialogues. Dialogues are
depicted as directed acyclic graphs containing nodes representing acts, utterances, and nonverbal
behaviors. Transitions may be conditioned on certain predicates becoming true, e.g., a character’s trust
level exceeding a certain threshold. Authors can also create subdialogues that are activated and
deactivated during the course of the dialogue. Through these simple mechanisms authors can create
complex dialogues with a variety of alternative paths. A testing function enables authors to execute a
dialogue within the editor to validate the dialogue logic. This helps with the problem of quality assurance
of the simulation content.

As authors create dialogues they incorporate assessment and feedback. Learner responses are scored and
contribute to an overall assessment of the trainee’s performance in the simulation. Some feedback, what
we call organic feedback, is incorporated into the responses of the virtual role player and thus becomes an
organic part of the simulation. For example, the virtual role player might take offence at the trainee’s
statement or display facial expressions that indicate discomfort or disapproval. Such feedback is powerful
and effective because learners can immediately see the consequences of their actions. Other feedback
takes the form of corrective and explanatory feedback to be provided by the Virtual Coach. The author
supplies the feedback at authoring time, and it is up to the run-time content player to determine whether to
present that feedback to the learner, based upon the chosen level of scaffolding or upon learner request.

Alelo tools are used to create role-play simulations that serve as walkthroughs, practice sessions, or
assessments. They include single conversational turns for part-task training, as well as extended
exchanges of several minutes in duration. Hundreds or even thousands of simulations have been authored
to date using these tools.

221

Empowering Trainers Using Role-Play Configuration Tools

Current dialogue authoring tools reduce the amount of programming required to create role-play
simulations. However to promote adoption of the virtual role-play approach at a really large scale, it is
important that we empower trainers so that they can create their own virtual role-play simulations. This
goal of empowering trainers is one of the next big challenges for adaptive intelligent tutoring systems
(ITSs) generally, including the tools described in this volume. Visionaries such as Sottilare (2013) have
called for interfaces to ITSs that teachers and instructors can use. However, there are just a few instances
to date, such as ASSISTments (Heffernan & Heffernan, 2014) that teachers or trainers have used to any
significant extent to create their own content. Alelo has developed a new product named VRP® MIL
(Stuart, 2014) that is specifically designed to meet this need in the area of virtual role play.

VRP MIL was developed to meet the needs of military training organizations that wish to organize
training exercises for their units at simulation training centers. Simulation training centers are equipped
with computers for virtual training and staffed with personnel who are skilled in running training
exercises using this equipment. The simulation center staff is permanently resident at the training center,
while the units continually rotate through the center as part of their preparation for deployment.

When a unit wishes to organize a training program, the training officer associated with the unit typically
works with the simulation center staff to define a series of training exercises for the unit to perform. The
training officers are experts in training but may have little knowledge of simulation technology. It is up to
the simulation center staff to quickly put together training simulations that meet the training officer’s
requirements. A common request from the training officer is training scenarios at varying levels of
difficulty. The training officer might start with a training exercise at a high level of difficulty knowing
that the trainees will likely fail the exercise in order to motivate the trainees to improve. The trainer will
then undertake another exercise at a low level of difficulty, in which the trainees will likely succeed. They
then undertake additional exercises at progressively higher levels of difficulty until the exercises again
reach a high level of difficulty. By this point, the trainees have progressed to the point where they can
successfully complete the mission with full confidence in their skills.

When the training is preparation for overseas deployments, a key challenge is providing training that
accurately reflects the culture of the region of deployment. Unfortunately, the training officers and
simulation staff may not have detailed knowledge of the target culture. Cultural subject matter experts, if
available, may not have much knowledge of military missions or simulation technology. Moreover, if
they are available they may not have accurate knowledge of the culture of the specific region; if they have
been out of the country for an extended period, their knowledge may not be up to date.

VRP MIL helps trainers and simulation staff to overcome these challenges and quickly create training
simulations that are culturally accurate and appropriate for the intended training objectives. It provides
trainers with a library of reusable virtual role players, each intended to perform a designated role in
training simulations. Example roles include local leaders, guards and sentries, shopkeepers, and passers-
by on the street. Instead of authoring content from scratch using authoring tools, trainers populate the
virtual training world with virtual role players and configure them to meet their needs. The behavior of
each virtual role player has been validated beforehand as culturally accurate, ensuring that the resulting
training simulation is also culturally accurate. VRP MIL is built as a plug-in that integrates into the
popular VBS simulation-based training tool (Bohemia Interactive Simulations, 2015), which already
provides users with tools for constructing virtual worlds and populating them with buildings, vehicles,
and other entities.

We have developed the VRP MIL framework and a basic library of virtual role players (VRPS), and now
plan to extend it with form-based interfaces for providing the necessary configuration parameters.

222

Configuration parameters will include the level of difficulty interaction with the VRP, as well as specific
topics that the VRP is prepared to discuss with the trainee. This fits well with the way the military
currently defines roles for live role players in training exercises. These configuration parameters will then
be automatically inserted into the dialogue model to generate the target behavior. Authoring tools will still
be used to create the VRP models, but this way each VRP model will undergo much broader use.
Simulation center staff will have the option to use the authoring tools themselves to add adapt and extend
the VRP library.

VRP MIL underwent a successful trial evaluation in February 2015 at the NATO Joint Force Training
Centre in Bydgoszcz, Poland, with NATO units preparing to travel to Afghanistan on training and support
missions. From there, we anticipate its adoption by NATO member nations and allied nations preparing
for overseas coalition operations.

Conclusions and Future Directions

Virtual role play is becoming an increasingly important training method for intelligent learning
environments. It is being applied to an ever-broadening range of education and training applications,
particularly for cross-cultural communication. Progress in authoring tool development for this class of
applications has made this possible. Emerging developments such as role-play configuration tools are
likely to further accelerate the expansion and large-scale adoption of this technology.

Dialogue authoring tools for role-play simulations are in some ways similar to tutorial dialogue authoring
tools such as AutoTutor’s authoring tools (Nye et al., 2014) or TuTalk (Jordan et al., 2007), and there is
much that we can learn from these tools. However role-play simulations have their own unique
characteristics that warrant their own class of authoring tools.

Role-play authoring tools have been most successful when they take into account the tasks and roles of
the people using the tools, and the processes by which content is developed. This is an important general
lesson for authoring tools for adaptive ITSs. The clearer understanding we have of our intended users the
better a job we can do of addressing their needs.

As we have seen, existing page-based authoring tools are quite capable of creating simple role-play
scenarios. These tools are very widely available, and many training developers are familiar with their use.
Virtual role-play and associated tools are most likely to be adopted when they offer clear and compelling
advantages over existing methods, especially in skill development, authentic assessment, and promoting
behavior change. There is a general lesson here for authoring tools for the adaptive ITSs of GIFT.
Researchers in adaptive ITSs often wonder why their technologies are not being adopted more widely.
Existing authoring tools are quite capable of creating simple versions of various types of learning
environments, and trainers are unlikely to switch to new tools if they do not see a compelling advantage.

The general architecture for GIFT, as described in Sottilare (2012), needs to be clarified so that it
accommaodates the instructional interaction typical of virtual role-play simulations. According to the GIFT
architecture the tutor-user interface and the training app client are separate, and interact with users
separately. However, as we have seen, assessment and feedback are often tightly integrated into virtual
role-play simulations, and feedback is an organic part of virtual-role-player behavior. If the GIFT
architecture is to support virtual role play it should support such integrated interaction.

Virtual role-play systems can collect valuable, accurate data about trainee performance. There is an

opportunity to capture and exploit this data as part of the GIFT architecture. One way of doing this via the
TinCan API. Once data are captured via TinCan and stored in a Learner Record Store (LRS), it is possible

223

to analyze these data and develop more granular models of learner skills, which in turn can be used to
tailor training. If these are integrated with job performance data, it would provide a method for providing
just-in-time training and promoting behavior change on the job.

There is a need in virtual role-play systems for flexible domain models of dialogue that can be used in a
variety of ways. In live role-play training exercises, it can be useful to switch roles, so that the trainee can
better understand the perspective of the other person. For virtual role-play systems to have similar
flexibility, they require dialogue models that capture the interaction while being agnostic as to which roles
are played by the learners and which are played by the virtual role players. This is very consistent with the
GIFT approach of modeling domain expertise independent of specific instructional use.

Looking ahead, speech recognition will continue to improve. Sensor and interface technologies will
increase in performance and reduce in cost. This will make it easier to deliver virtual role-play training
and assessment in a wider range of domains, to a wider range of organizations. Techniques that have been
developed and proven in military training can be applied to a wide range of domains in training,
development, and behavior change for a wide range of organizations. Many of these currently rely on
traditional methods and informal observation of performance. There are many opportunities to achieve
radical improvements in training and performance development, through virtual role-play methods that
employ realistic models of skill and provide accurate assessments of performance.

References

Avrticulate Global (2015). Storyline 2: Create interactive e-learning, easily. Retrieved Feb. 19, 2015 from
https://www.articulate.com/products/storyline-why.php.

Barrows, H.S. (1993). An overview of the uses of standardized patients for teaching and evaluating clinical skills.
Academic Medicine, (1993), 443-451.

Bohemia Interactive Simulations (2015). VBS3: The future battlespace. Retrieved Feb. 19, 2015 from
www.bisimulations.com/virtual-battlespace-3.

Boyd, P. (2015). Dooplo - Kognito’s human interaction platform. Retrieved Feb. 19, 2015 from
http://patboyd.com/site/projects/kognito-platform.

Dansksimulatoren (2015). Dansksimulatorenrevolutionizing language learning. Retrieved Feb. 19, 2015 from
www.dansksimulatoren.dk.

Emonts, M., Row, R., Johnson. W.L., Thomson, E., Joyce, H. de S., Gorman, G. & Carpenter, R. (2012). Integration
of social simulations into a task-based blended training curriculum. In Proceedings of the 2012 Land
Warfare Conference. Canberra, AUS: DSTO.

Gandhe, S., Whitman, N., Traum, D. & Artstein, R. (2009). An integrated authoring tool for tactical questioning
dialogue systems. In 6th Workshop on Knowledge and Reasoning in Practical Dialogue Systems, Pasadena,
California. 2009. Retrieved Feb. 19, 2015 from
http://people.ict.usc.edu/~traum/Papers/krpd09authoring.pdf.

Heffernan, N. & Heffernan, C. (2014). The ASSISTments Ecosystem: Building a platform that brings scientists and
teachers together for minimally invasive research on human learning and teaching. International Journal of
Artificial Intelligence in Education 24(4), 470-497.

Johnson, W.L. (2010). Serious use of a serious game for language learning. International Journal of Artificial
Intelligence in Education, 20(2), 175-195.

Johnson, W.L., Friedland, L., Schrider, P., Valente, A. & Sheridan, S. (2011). The Virtual Cultural Awareness
Trainer (VCAT): Joint Knowledge Online’s (JKO’s) solution to the individual operational culture and
language training gap. In Proceedings of ITEC 2011. London: Clarion Events.

Johnson, W.L., Friedland, L., Watson, A.M. & Surface, E.A. (2012). The art and science of developing intercultural
competence. In P.J. Durlach & A.M. Lesgold (Eds.), Adaptive Technologies for Training and Education,
261-285. New York: Cambridge University Press.

Johnson, W.L. & Lester, J.C. (in press). Twenty years of face-to-face interaction with pedagogical agents.
International Journal of Artificial Intelligence in Education.

224

Johnson, W.L. & Valente, A. (2008). Collaborative authoring of serious games for language and culture.
Proceedings of SimTecT 2008.

Jordan, P., Hall, B., Ringenberg, M., Cue, Y. & Rosé, C. (2007). Tools for authoring a dialog agent that participates
in learning studies. In R. Luckin et al. (Eds.), Artificial Intelligence in Education, 43-50. Amsterdam: 10S
Press.

Kim, J.M., Hill, R.W. Jr., Durlach, P.J., Lane, H.C., Forbell, E., Core, M.G., Marsella, S. Pynadath, D.V. & Hart, J.
(2009). BiLAT: A game-based environment for practicing negotiation in a cultural context. International
Journal of Artificial Intelligence in Education, 19, 289-308.

Lane, H.C., Core, M.G. & Goldberg, B.S. (in press). Lowering the skill level requirements for building intelligent
tutors: A review of authoring tools. In R. Sottilare, A. Graesser, Xiangen Hu & K. Brawner (Eds.), Design
Recommendations for Adaptive Intelligent Tutoring Systems: Authoring Tools (Volume 3). Orlando, FL:
U.S. Army Research Laboratory.

Lee, S. (2013). Build a role play in a day with ZebraZapps. Retrieved Feb. 19, 2015 from
http://vimeo.com/80417830.

Loke, S.-K., Blyth, P. & Swan, J. (2012). Student views on how role-playing in a virtual hospital is distinctly
relevant to medical education. Proceedings of ascilite 2012. Retrieved Feb. 19, 2015 from
http://www.ascilite.org/conferences/Wellington12/2012/pagec16a.html.

Lua (2014). Lua: The programming language. Retrieved Feb. 19, 2015 from www.lua.org.

Nye, B.D., Graesser, A.C. & Hu, X. (2014). AutoTutor and family: A review of 17 years of natural language
tutoring. International Journal of Artificial Intelligence in Education 24 (2014), 427-469.

Radecki, L., Goldman, R, Baker, A., Lindros, J. & Boucher, J. (2013). Are pediatricians “game”? Reducing
childhood obesity by training clinicians to use motivational interviewing through role-play simulations with
avatars. Games for Health Journal, 2(3), 174-178.

Rehearsal Video Role-Play (2015). Rehearsal features. Retrieved Feb. 19, 2015 from
http://www.videoroleplay.com/features.

Robinson, L.J.B. (1987). Role playing as a sales training tool. Harvard Business Review, May-June 1987, No.
87310. Cambridge, MA: Harvard Business Publishing.

Sandler Training (2014). A better way to role play. Retrieved on Feb. 19, 2015 from http://www.sandler.com/blog/a-
better-way-to-role-play/.

SIMmersion (2013). Technology: Ground-breaking technology lets SIMmersion deliver effective communication
training to learners of all kinds. Retrieved Feb. 19, 2015 from http://simmersion.com/Technology.aspx.

Simmons, T.G. (2010). Using virtual role-play to solve training problems: How do you train employees to think on
their feet? eLearn magazine, June 2010. Retrieved Feb. 19, 2015 from
http://elearnmag.acm.org/archive.cfm?aid=1821985.

Skillsoft Ireland Limited (2013). Roleplays. Retrieved Feb. 19, 2015 from
http://documentation.skillsoft.com/en_us/sstudio/index.htm#17853.htm.

Sottilare, R.A. (2012). A modular framework to support the authoring and assessment of adaptive computer-based
tutoring systems. Paper presented at the Interservice/Industry Training, Simulation & Education
Conference (I/ITSEC), Orlando, FL.

Sottilare, R.A. (2013). Pushing and pulling toward future ITS learner modeling concepts. In R. Sottilare, A.
Graesser, X. Hu & H. Holden (Eds.), Design recommendations for intelligent tutoring systems, 195-198.
Orlando, FL: U.S. Army Research Laboratory.

Stuart, S. (2014). Using video games to prepare for the culture shock of war. PC.com, Nov. 24, 2014. Retrieved Feb.
19, 2015 from http://www.pcmag.com/article2/0,2817,2472395,00.asp.

Urban Brain Studios (2014). Chat Mapper 1.7 documentation. Retrieved Feb. 19, 2015 from
http://www.chatmapper.com/documentation.

USC ICT (2013). Situated pedagogical authoring for virtual human-based training. Retrieved on Feb. 19, 2015 from
http://ict.usc.edu/wp-content/uploads/overviews/Situated%20Pedagogical%20Authoring_Overview.pdf.

Van Nice, J. (2014). Toolbox Tip: Creating scenarios in Articulate Storyline No programming necessary.
Retrieved Feb. 19, 2015 from https://www.td.org/Publications/Blogs/Learning-Technologies-
Blog/2014/08/Creating-Scenarios-in-Articulate-Storyline.

Wilcox, A. (2012). Somali-Americans assist reserve Marines with pre-deployment training. The Daily News

Jacksonville, NC, Dec. 13.

225

226

i

wner?, Phillip Pavlik®, Kenneth R. Koedinger®
2US Army Research Laboratory; * Carnegie Mellon University

ity o -i{/'lemphis’;

Introduction

Traditional intelligent tutoring systems (ITS) are specialized feats of engineering: they are custom-made
to implement a theory of learning, in a particular domain, within a specific computer environment. There
are many ways to describe or categorize authoring tools used to make ITSs (Murray, 2004). This chapter
considers authoring tools primarily in terms of intelligent tutor paradigms. Three popular ITS paradigms
are dialogue-based tutors (Nye, Graesser & Hu, 2014), constraint-based tutors (Mitrovic, 2012), and
model-tracing tutors (Anderson et al., 1995). These paradigms may be distinguished along two abstract
axes, as shown in Figure 1. The axes reflect how the learning task is defined and how student progress in
the task is measured.

Direct comparison to ideal answer

Dialogue- Model-
based Tracing

Path-
oriented

Constraint-
oriented

Constraint-
based

Indirect comparison to ideal answer

Figure 6. Tutoring paradigms arranged by orientation (path vs. constraint) and
comparison to ideal answer (direct vs. indirect).

The horizontal axis indicates whether the paradigm is primarily path-oriented or constraint-oriented. A
path-oriented paradigm conceives the learning task as a sequence of steps that lead to a solution. For
example, the instructional theory behind model-tracing tutors can be expressed within the knowledge-

learning-instruction (KLI) framework (Koedinger, Perfetti & Corbett, 2012). Critical to the KLI
framework are the ideas that (a) most of our knowledge in any area of expertise (e.g., grammar, algebra,
design) is in the form of procedural skills, which are learned by induction from experience and feedback,
and (b) two forms of instruction that best facilitate such learning are problem solving practice with as-
needed feedback on student errors and as-needed examples of correct behavior (next step hints). The key
is to engage the learner in the process of doing, that is, engaging in the target activity, and provide
personalized tutoring support for the learner that adapts to their particular needs. Tutoring support is
achieved by the use of a model of desired or correct performances and of particularly common undesired
or incorrect performances. This direct comparison against a model (which includes ideal answers) also
situates model-tracing on the vertical axis. Each student’s actions are traced against this model such that
feedback can be generated when undesired performance is observed and next-step hints can be generated
when students are stuck. In both cases, the emphasis is on minimal intervention (Anderson et al., 1995) in
order to maximize student active and constructive involvement in the thinking and learning process.

Conversely, a constraint-oriented paradigm conceives of the learning task as attaining a solution state
irrespective of the path that led to it. Both dialogue-based and constraint-based paradigms share this
property but they differ in many respects, most notably in how they represent knowledge and compare the
student answer to an ideal answer. Dialogue-based tutors are typically frame-filling systems (McTear,
2002) that fill slots in a frame in any order. For example, given the physics question, “If a lightweight car
and a massive truck have a head-on collision, upon which vehicle is the impact force greater, and why?”,
a dialogue-based system might have the slots [The magnitudes of the forces exerted by A and B on each
other are equal] and [If A exerts a force on B, then B exerts a force on A in the opposite direction]. If a
user says, “the forces are equal,” the system would recognize that the first slot is filled and follow up with
a question to fill the second slot like, “What can you say about the direction of the forces?” The slots are
known as expectations, or expected components of the ideal answer (Graesser, D’Mello, et al., 2012), and
the follow-up questions used to fill out the frame are aligned with models of naturalistic human tutoring
(D’Mello, Olney & Person, 2010; Graesser & Person, 1994; Graesser, Person & Magliano, 1995; Person,
Graesser, Magliano & Kreuz, 1994) plus ideal pedagogical strategies in some versions. Dialogue-based
systems determine whether a slot, or expectation, is filled by directly comparing the student’s answer to
an ideal answer, typically using methods like latent semantic analysis (Landauer, McNamara, Dennis &
Kintsch, 2007) and other semantic matching algorithms. Dialogue-based tutors can be considered as a
very narrow form of constraint-based tutors where the constraints are defined by whether all slots are
filled, i.e., all expectations are met.

Constraint-based tutors operationalize constraints as consisting of a relevance condition (R) and a
satisfaction condition (S) (Ohlsson, 1992). The constraint is only applicable when the relevance condition
is met, at which point the satisfaction condition defines what conditions the student’s solution must meet
in order to be correct. Only solutions that violate no constraints are correct. Constraints therefore do not
specify a path or set of paths to a solution but rather define a space of correct solutions (Ohlsson &
Mitrovic, 2007). For example, a constraint for fraction addition might have the relevance conditions
problem statement: a/b + ¢/d and student solution: (a+c)/n with satisfaction condition b=d=n: the solution
is correct only when the denominators of the problem statement and student solution are equal (Ohlsson,
1992). Constraints are well suited for design tasks and tasks that are ill defined precisely because they
allow solutions to be recognized without requiring them to be enumerated by the author. With regard to
the vertical axis, constraint-based tutors do not directly compare a solution to an ideal solution but instead
compare indirectly via preserved and violated constraints.

The characterization presented in Figure 1 is undoubtedly an over-simplification of the differences
between these tutoring paradigms because they differ on so many other dimensions. Moreover, they share
more features than Figure 1 represents, because path-oriented tutors can relax ordering restrictions and
constraint-oriented tutors can incorporate path-like ordering restrictions. However, from an authoring tool

228

standpoint, the above depiction highlights some of the key authoring problems faced by each paradigm.
Model-tracing tutors require a model to trace, commonly in the form of sequences of steps and production
rules that require next-step hints. Dialogue-based tutors require a set of expectations and associated
follow-up questions (e.g., hints or prompts) when the expectations are unfulfilled. Constraint-based tutors
require a set of constraints and associated feedback for their violations.

This chapter discusses several emerging approaches to ITS authoring that attempt to go beyond the
typical human-created practice and automate more of the authoring process than has been previously
attempted. Efforts are currently being undertaken in order to ease this burden from the authors in the form
of programming by tutoring, automated concept map generation, metadata tagging, extensive content
reuse, and continual refinement. With respect to Figure 1, the chapter emphasizes automated authoring in
the model-tracing and dialogue-based traditions (see Mitrovic et al., 2006 and Mitrovic et al., 2009 for
discussion of automated authoring of constraint-based tutors).

Related Research

Advanced Authoring for Model-Tracing Tutors

This section focuses on authoring tools for model-tracing tutors. The instructional approach in such tutors
is to provide students with one-on-one tutoring support as they work on problem or activity scenarios of
varying complexity. They do so within rich interface tools or simulation environments, for example,
solving a physics problem using tools for drawing and annotating a free body diagram, and for writing
and solving equations (e.g., VanLehn, 2006); solving a real-world quantitative reasoning problem (e.g.,
which cell phone plan to choose) using tools for creating tables, graphs, and equations (e.g., Koedinger et
al., 1997); designing an efficient system using a thermodynamics simulation (see Fig. 26 in Aleven et al.,
2009); and making an English grammar choice using a pop-menu (Wylie, Koedinger & Mitamura, 2010).

Effective and efficient authoring depends on how completely, accurately, and quickly an author can
specify a sufficiently complete set of desired and common undesired student actions. This set of
reasonable actions was traditionally specified in a general artificial intelligence (Al) rule-based system
(cf., Anderson et al., 1995). For example, in a production system, each production rule is annotated with
instructional messages, such as (a) next-step hints in the case of productions that represent desirable
student actions and (b) error feedback messages in the case of productions that represent common student
errors or underlying misconceptions. One successful alternative to production system authoring is to
concretely enumerate, for each problem scenario, every action along all reasonable solution paths. This is
the “example-tracing” approach taken in the Cognitive Tutor Authoring Tools (CTAT) (Aleven, Mclaren,
Sewall & Koedinger, 2009), a complete tutor-authoring suite that has been used to create several dozen
ITSs.

A second alternative to hand-authoring production systems is to have the author tutor a machine learning
system that learns the production system (largely) from scratch. This is the approach taken by SimStudent
(Matsuda, Cohen & Koedinger, 2015). SimStudent learns problem-solving skills from the two kinds of
instruction that are arguably the most powerful in human skill acquisition: learning from examples and
learning from (feedback on) doing (e.g., Gick & Holyoak, 1983; Roediger & Butler, 2011; Zhu & Simon,
1987). Figure 2 shows an example of SimStudent being tutored on algebra equation solving. An example
of an acquired production rule (in the JESS language) from the first author demonstration is shown on the
right. SimStudent has three online learning mechanisms that focus on learning (1) information retrieval
paths (clauses of the IF-part of the production that identifies where in the interface relevant information
may lie), (2) preconditions on actions (clauses of the IF-part that constrain when the production is
appropriate), and (3) action plans (compositions of functions that compute appropriate actions). The

229

newest addition to SimStudent is a representation learning mechanism that learns the general structure of
declarative memory structures, which are the basis for both the operation and learning of production rules
(Li, Matsuda, Cohen & Koedinger, 2015).

Equation Transformation

Production rule induced from
= step demonstrated by author
— (defrule divide

F Edit View Graph Cognitive Model Sim. Student T ?tablel ?table2 ?table3 7))
?tablel <- (table (columns ?column1))
?columnl <- (column (cells ?cell1 ????7?))
?celll <- (cell (value ?val1&™nil))

?table2 <- (table (columns ?column2))
?column2 <- (column (cells ?cell2 ?????))

Tutoype Simulated St . Author Mode De : kB

nsole \ WME Editor X(Group Editor Variable Viey

) " _ ? ~e i

Each step performed = ?cell2 <- (cell (value ?val2&~nil))

by author or | ?table3 <- (table (columns ?column3))
SimStudent is L. dorminTable3 CIR1, divide : ?column3 <- (column (cells ?cell3?????))
displayed in CTAT divide simst ?cell3 <- (cell (name ?selection) (value nil))

behavior graph with \

associated skill label I (test (has-coefficient ?vall))
! CIR X =2
' e ,'” ‘ = (bind ?val3 (get-first-integer-without-sign ?vall))
”47 (bind ?input (skill-divide ?val3))

_ | T (modify ?cell3 (value ?Input)))

Figure 2. After using CTAT to create an interface (shown at top) and entering a problem (“2x=8"), the author
begins teaching SimStudent either by giving yes-or-no feedback when SimStudent attempts a step or by
demonstrating a correct step when SimStudent cannot (e.g., “divide 2). SimStudent induces production rules
from demonstrations (example shown on right) for each skill label (e.g., “divide” or “div-typein” shown on
left). It refines productions based on subsequent positive (demo or yes feedback) or negative (no feedback)
examples.

The use of SimStudent as authoring tool is still experimental, but there is evidence that it may accelerate
the authoring process and that it may produce more accurate cognitive models. In one demonstration,
Matsuda et al. (2015) explored the benefits of a traditional programming by demonstration approach to
authoring in SimStudent versus a programming by tutoring approach, whereby SimStudent asks for
demonstrations only at steps in a problem/activity where it has no relevant productions and otherwise it
performs a step (firing a relevant production) and asks the author for feedback as to whether the step is
correct/desirable or not. They found that programming by tutoring is much faster, 13 productions learned
with 20 problems in 77 minutes versus 238 minutes in programming by demonstration. They also found
that programming by tutoring produced a more accurate cognitive model whereby there were fewer
productions that produced overgeneralization errors. Programming by tutoring is now the standard
approach used in SimStudent and its improved efficiency and effectiveness over programming by
demonstration follow from having SimStudent start performing its own demonstrations. Better efficiency
is obtained because the author need only respond to each of SimStudent’s step demonstrations with a
single click, on a yes or no button, which is much faster than demonstrating that step. Better effectiveness
is obtained because these demonstrations better expose overgeneralization errors to which the author

230

responds “no” and the system learns new IF-part preconditions to more appropriately narrow the
generality of the modified production rule.

In a second demonstration of SimStudent as an authoring tool, MacLellan, Koedinger & Matsuda (2014)
compared authoring in SimStudent (by tutoring) with authoring example-tracing tutors in CTAT.
Tutoring SimStudent has considerable similarity with creating an example-tracing tutor except that
SimStudent starts to perform actions for the author, which can be merely checked as desirable or not,
saving the time it otherwise takes for an author to perform those demonstrations. That study reported a
potential savings of 43% in authoring time by using SimStudent to aid in creating example-tracing tutors.
A third demonstration by Li, Stampfer, Cohen, and Koedinger (2013) evaluated the empirical accuracy of
the cognitive models that SimStudent learns as compared to hand authored cognitive models. The
accuracy of a cognitive model in this demonstration was measured by the so-called “smooth learning
curve” criteria (Martin, Mitrovic, Mathan & Koedinger, 2011; Stamper & Koedinger, 2011) that tests how
well a cognitive model predicts student performance data over successive opportunities to practice and
improve. Across four domains (algebra, fractions, chemistry, English grammar), Li et al.(2013) found that
the cognitive model acquired by SimStudent produced cognitive models that typically produced better
predictions of learning curve data (in 3 of 4 cases). More ambitious attempts to improve and evaluate
SimStudent as a tutor authoring aid are underway. SimStudent and other means for Al-driven
enhancement of ITSs, including data-driven hint generation and Markov decision process algorithms to
optimize tutor action choices, are discussed in Koedinger et al. (2013).

Advanced Authoring for Dialogue-Based Tutors

In dialogue-based ITSs (Graesser et al., 2005; Olney et al., 2012, Rus et al., 2014), the computer attempts
to tutor the student by having a conversation with them. These ITSs present similar challenges in ITS
authoring as those without natural language dialogue, but there are greater dialogue-authoring demands
than typical ITSs. The dialogue is typically authored by a subject matter expert (Graesser et al., 2004),
though attempts have been made to semi-automate the process by automatically generating questions and
representations that a subject matter can select or modify (Olney, Cade & Williams, 2011; Olney,
Graesser & Person, 2012). However, both manual and semi-automated approaches have a common
weakness: a shortage of motivated experts. In other words, experts are scarce, and it is uncommon for
experts to volunteer their time to author ITS content. Without willing experts to use an authoring tool, an
authoring tool will remain unused.

Our recent work addresses the shortage of motivated experts by considering expertise and motivation
independently. Expertise may be approximated by allowing novices to do the authoring but then having
other novices check the work to ensure quality. Motivation may be addressed by disguising the authoring
task as another task in which novices are already engaged. We combine these two approaches in the
BrainTrust system. In order to enhance motivation, BrainTrust leverages out-of-class reading activities,
specifically online reading activities using eTextbooks through providers like CourseSmart!, as
opportunities for ITS authoring. As students read online, they work with a virtual student on a variety of
educational tasks related to the reading. These educational tasks are designed to both improve reading
comprehension and contribute to the creation of an ITS based on the material read. After reading a
passage, the human student works with the virtual student to summarize, generate concept maps, reflect
on the reading, and predict what will happen next. The tasks and interaction are inspired by reciprocal
teaching (Palincsar and Brown, 1984), a well-known method of teaching reading comprehension
strategies. Thus the key strategies to enhance motivation are leveraging a reading task to which the user
has already committed, a teachable agent that enhances motivation (Chase et al., 2009), and a
collaborative dialogue that increases arousal (D’Mello et al., 2010).

! http://www.coursesmart.com/

231

The virtual student’s performance on these tasks is be a mixture of previous student answers and answers
dynamically generated using Al and natural language processing techniques. As the human teaches and
corrects the virtual student, they, in effect, improve the answers from previous sessions and author
dialogues and a domain model for the underlying ITS. The process of presenting previously proposed
solutions to a task for a new set of users to improve upon has been called “iterative improvement” in the
human computation literature (von Ahn, 2005; Chklovski, 2005; Cycorp, 2005). These methods often use
a simple heuristic that if the majority of evaluating users agrees a solution is correct, then the solution is
correct, a process sometimes referred to as “majority voting.” However, even simple tasks, such as
determining if an image includes the sky, can have non-agreeing “schools of thought” who systematically
respond in opposing ways (Tian & Zhu, 2012). Therefore it is preferable to use Bayesian models of
agreement jointly to determine the ability of the user (and their trustworthiness as teachers) as well as the
difficulty of the items they correct (Raykar et al., 2010). Although Bayesian approaches of this kind are
an emerging research area, they are being actively pursued by the massive open online course (MOOC)
community, because peer-grading is an important component of scaling MOOCs to many thousands of
students (Piech et al., 2013).

Because BrainTrust activities are designed to facilitate learning (both of the content and of reading
comprehension strategies) while preserving motivation, not all of the BrainTrust activities directly relate
to the authoring of an ITS. In fact, the primary task that relates to ITS authoring is the construction of
concept maps, as show in Figure 2. Concept maps can be used to generate exercises and questions in a
dialogue-based ITS (Olney, Cade & Williams, 2011; Olney, Graesser & Person, 2012). They can also be
used to generate rather trivially direct instruction, e.g., “attitudes are made of emotions and beliefs,” as in
Figure 2. With a small amount of additional information, such as the overall gist of a text passage,
concept maps can also be used to generate larger summaries or “ideal answers” (Graesser et al., 2005). In
the example given, the gist is “attitudes and attitude change,” and using this gist, a concept-map driven
summary can be topicalized so that “attitudes” are the key concept rather than another node.
Topicalization is important because non-hierarchical concept maps can be read in any order, but a given
text passage can only be read in the linear order in which it was written.

232

S il
Social Cognition: Attitudes and Attitude
Change-Copping a 'Tude

Journey Question 14.3 How are attitudes acquired and
changed?

What is your attitude toward affirmative action, euthanasia,
environmental groups, the situation in the Middle East, the
death penalty, legalized abortion, junk food, psychology?
Your answers, which are often influenced by social situations,
can have far-reaching effects on your behavior. Attitudes are
intimately woven into our actions and views of the world.
Our tastes, friendships, votes, preferences, goals, and
behavior in many other situations are all touched by
attitudes (Baumeister and Bushman, 2011). Let's see how
attitudes are formed and changed.

What specifically is an attitude? An attitude is a mixture of
belief and emotion that predisposes a person to respond to
other people, objects, or groups in a positive or negative
way. Attitudes summarize your evaluation of objects (Bohner
and Dickel, 2010). As a result, they predict or direct future
actions.

)

4+ A ¢ =
Alright. So the important things to
remember are Attitudes are made
of beliefs Attitudes are made of
emotions Attitudes affect actions

Does that sound right?

affect

attitudes]

made of

actions

beliefs

emotions

Submit

Figure 7. BrainTrust during a concept map activity

Advanced Component-Based Authoring

(1) Gather content.
(2)
©)
(4)
()
(6)

(7)

Make the content discoverable.

Make the content customizable.

The previous sections describe efforts to automate authoring of a particular ITS component, such as the
model in model-tracing tutors. However, there are also emerging technologies that facilitate the reuse and
dynamic configuration of existing components, which allow for a different kind of automated authoring.
Instead of authoring the components, these technologies attempt to dynamically assemble components for
a particular learning objective. An outline of these technologies is presented in this section as a possible
path forward to completely remove ITS expertise required in component-based authoring. In short, the
steps to this process, addressed in further detail below, are the following:

Generate additional tutoring-type information.
Perform delivery for both information and practice sessions.
Perform ITS-standard tasks (learner modeling, experience tracking, etc.); not discussed here.

Repeat: perform pedagogical selection/adaption (steps 1-6).

233

With regards to gathering (1) of content, the Internet presents a wealth of information, but little of it is
relevant to educational goals. There are a few such efforts that attempt to make learning-specific
resources available: the Learning Registry (Jesukiewicz & Rehak, 2011), Gooru Learning
(GoorulLearning, 2014) and, to a lesser extent, the Soldier-Centered Army Learning Environment
(Mangold, Beauchat, Long & Amburn, 2012). Fundamentally, each of these has faced the problem of
indexing learning content for gathering purposes. The Learning Registry adopts a solution of maintaining
separately developed, but interlinked, content repositories while making indexing information available.
Gooru instead allows for a centrally managed cloud of content, indexed in the same fashion as a search
engine.

Continuing with the Internet analogy, search engines make content discoverable through indexing and
cross-referencing. Each of the two main learning architectures must make the content discoverable (2) for
a given topic in order for it to be used. Gooru Learning takes a traditional web approach of using
community-curated metadata tags, while the Learning Registry has a project to automate the generation of
these tags using a project called “Data for Enabling Content in Adaptive Learning Systems (DECALS)”
(Veden, 2014). Both approaches make use of metadata-based descriptions of the content in order to drive
content selection, in approaches inspired by search engines. The content is made customizable (3) through
the editing access from the Gooru platform, or a Sharable Contend Object Reference Model (SCORM)
editing and packaging standard (Initiative, 2001) is made available through the Re-Usability Support
System for eLearning (RUSSEL) for management of repurposing courses, documents, and multimedia
(Eduworks Corporation, 2014). Such systems allow content to be found via search of metadata attributes
(e.g., reading level, interactivity index, etc.) and customized for the user.

Generating tutoring-type information (4) is discussed in the previous sections, but simply involves the
supplementation of a piece of content with learning-relevant information. One such example of a process
involves the generation of a concept map of the key topics contained within the indexed material. Such a
concept map can then be used grouping of learning content, with underlying content used for the
supplementation of additional learning-relevant items. Examples of such machine-generated learning-
relevant information include topic sequencing (Robson, Ray & Cai, 2013), question generation for
learning assessment (Olney, Graesser & Person, 2012), hint generation for student help during learning,
or other supplemental information.

Content delivery (5) is both an easy and a difficult problem. Both Gooru and the Generalized Intelligent
Frameworks For Tutoring (GIFT) support delivery via a web browser, which can easily deliver the
majority of modern content. Difficulty stems from more complex SCORM objects, executable programs,
3D simulations, or other items. RUSSEL makes use of human authoring of Gagne’s 9 events (Gagné &
Gagné, 1985), while GIFT automates the process of authoring through the Rule/Example/Recall/Practice
guadrants of Merril’s Component Display Theory (Wang-Costello, Tarr, Cintron, Jiang & Goldberg,
2013). The potential to automate the delivery of content based on searchable metadata parameters is one
of the key services missing from most of the instructional architectures, but has great potential for content
to reach a wide audience quickly.

With the difficult problem of content delivery, the user may be given a simulated environment to practice
their obtained knowledge. The integration of intelligent tutoring technologies into systems of practice is
not an easy problem, but it is one that is commonly addressed. This integration is a frequent and standard
use of the GIFT and Cognitive Tutor systems (e.g., Aleven et al., 2009; Ritter & Koedinger, 1997).
However, the current adaptive content (hints, prompts, pumps, etc.) is hand-generated. It may be possible
to use the generated tutoring-style information from the previous sections of this work to assist within the
practice environment, and eschew the need for expert authoring. As an example, the ordering-based hint
“you should multiply before you add” can be generated from the content and used to populate the practice
environment.

234

The above sequence of technologies has the potential to create an adaptive learning system without
human intervention. Even substantially diminishing the human workload required would represent a
significant savings of time. As part of this overall vision, learning content can be found on the Internet,
indexed and sorted into repositories, tagged with searchable metadata information, supplemented with
tutoring information, and delivered via browser. The combination of these technologies can allow an
instructional system to use an instructional template (e.g., “Rule” content), define user characteristics
(e.g., low motivation), match it with intended metadata (e.g., animated/interactable), query a learning
system for the appropriate content on the subject (e.g., 4™ grade history), and deliver it to the student.
Such a combination averts the problem of authoring by reusing existing ITS components for a particular
learning objective.

Closing the Authoring Loop: Continuous Feedback and Improvement

Many ITSs have a number of free parameters that must be fixed during the authoring process. For
example, in dialogue-based systems, the author must decide how ““correct” a student answer should be in
order to be counted correct, e.g., must it be exactly the same as the ideal answer or can it be “close
enough.” Once fixed, these parameters usually remain fixed until the ITS is overhauled or re-
parameterized with new data.

However, ideally, we would close the loop and an ITS would be “self-updating” such that the parameters
of the theory of learning would be automatically adjusted to be more optimal as more students used the
system. While automated authoring of content involves creating exercises for students to interact with,
automated improvement in the pedagogical interactions means modifying the learner model used for
pedagogical decision making. For example, a self-updating system may be able to make use of
information on population dynamics to provide a “best guess” for model parameters of an unseen student.
Such guesses could be updated based upon their effect on learning among groups, allowing broader
applicability of the ITSs.

To do such continuous improvement will require a flexible model that characterizes the student learning
in the domain. Flexible implies that the model will behave in multiple different ways, depending on how
it is configured with parameters or mechanisms. For example, a model might characterize the different
outcomes for the student from success and failure with a practice problem. This model can be flexible in
its representation of the effect of the success and failure if the model allows this difference to vary, for
example, by quantifying success and failure effects numerically. Similarly, a model might characterize
forgetting, but again a flexible representation of forgetting would specify that it might range from none at
all to very fast depending on some numerical parameter. Again, the model allows for continuous variation
in the model space.

Given such a flexible model, one can configure a system with only preliminary settings for the different
flexible mechanisms. Following this initial cold start, the system would be designed to be self-tuning,
such that the model continuously improves both for groups of students and individual students connected
in a server-client architecture. While the network communication and mathematical complexity of this
proposal makes it challenging, the possibility for better effectiveness with students in ITSs may also be
large. It should also be noted that similar, but conceptually much simpler, A/B tests are now commonly
used in industry (e.g., deciding how many search results to put on a page). In the next few paragraphs, we
sketch the outlines for such a system.

The system would be controlled by a central server that receives data from the individual clients in order

for the server to reestimate parameters. These group estimates of parameters would then be offered to
existing and new clients. This system would allow for all the students’ data to be quickly analyzed by the

235

server to see if the default parameters resulted in a good fit or if they needed to be adjusted. Adjustments
would be gradual. Default parameters would thus incrementally evolve on the server for the task,
depending on the clients. These default parameters mean that the system will adapt to different contexts
of use. For example, a poor performing school district might give rise to parameters that reflect higher
forgetting than a better funded district. An adapted system would be expected to promote better learning,
since the accuracy of the model effects the accuracy of pedagogical decision making.

In addition to this tracking at the server level, the individual student models would be adjusted at the
client level as well. For example, a low performing student might find the task hard, since the system
would have adapted to the average student. The client level tracking would correct this inaccuracy very
quickly, since the client data would weigh heavily on the model parameters provided by the server. In
fact, the server level tracking would function more as a seed for new students than having active effects
on a student, minute to minute, supplied by the client level model.

Such capabilities are currently possible but have not been explored greatly. Some systems have been
constructed which illustrate this client level tracking of the student model. For example, in the FaCT
system experimental software (Pavlik Jr. et al., 2007), the model that controls student actions can be
configured to automatically take optimization steps every N number of student practices. After N
practices, any particular parameter can be optimized one step either up or down by a specific increment
(the step size). This is accomplished by computing the log-likelihood of model fit for the parameter
above, below and at the current value. The step size can be specified to determine how fast adaptation
occurs. If adaptation occurs too quickly with too little data, pedagogical decisions may fluctuate too
wildly.

One problem with this strategy is that often there is not enough variability in the data due to the
consistency of the pedagogical decisions. For example, the FaCT system tries to balance correctness and
spacing, and generally recommends practice at around 95% correct. Unfortunately, this means that there
is little variability in the conditions of the data collection with which to improve the model. One solution
to this is to embed small experiments in the tutored practice in order to better measure the parameters in
the individual student’s model. These embedded randomized trials might be delivered at much wider
spacing than the tutor selected items, making them more difficult. Efforts like this to create varying
conditions in the tutor data may be necessary to make sure that automated adjustment systems have some
variability in the data in order to identify the parameters being optimized as being unique from the other
parameters.

Discussion

The new approaches to authoring discussed in this chapter overlap in the problems they are trying to
solve. Firstly, there must be content that the user will interact with, whether it is digital characters,
simulated environments, or static webpages. This content is usually authored by a subject matter expert
(SME) or an instructional design expert (ISD). SimStudent, BrainTrust, and component-based authoring
all try to ease the burden of authoring content while still keeping a human “in the loop.”

Secondly, adaptive tutoring systems must have something to adapt to, usually through the modeling of
expert and learner knowledge. While this content has traditionally been authored by an SME, SimStudent
and BrainTrust speed the authoring of both these models simultaneously, because they compare student
actions to an ideal, or expert, answer. Component-based authoring can make use of diverse student
models, and a system with continuous improvement and feedback re-parameterizes the student model
making best use of the learner data collected to date.

236

Thirdly, adaptive tutoring systems must contain instruction and feedback to give to the student when
diagnosed with a deficiency in a proficiency. These items consist of hints, scenario adaptations, texts,
summaries, or other items in response to student actions. There are several efforts at authoring tools
which attempt to automate this process. SimStudent uses author demonstrations and collects feedback
from the author on the steps SimStudent performs to learn production rules that can be employed to check
student solution progress and to generate next step hints when a student is stuck. BrainTrust uses the
guestion-generation technology previously developed for Guru and uses concept maps to generate various
kinds of question, e.g., hints, prompts, verification, as well as direct instruction. Similar reusable
components are being developed for concept maps and question generation (Robson, Ray & Cai, 2013).

Naturally, all of the items of the ITS system must be delivered through an actual system, which is usually
developed through the programming of a simulation or conversational interaction. Both SimStudent and
BrainTrust assume specific systems, namely, they produce expert models to be used in existing model-
tracing and dialogue-based systems. To create other modules (e.g., interface and tutoring modules), other
tools (e.g., CTAT) or other system-level programming may be necessary. In contrast, component-based
authoring addresses programming more comprehensively by attempting to dynamically assemble systems
out of existing components with no additional programming.

The above discussion is summarized in Table 1. Both SimStudent and BrainTrust address the majority of
authoring needs but do not squarely address system-level programming. If SimStudent is used as a
module within CTAT, then systems-level programming support is provided through the remainder of the
CTAT suite. CTAT provides non-programmer authoring tools for interface development and algorithms
(model tracing and knowledge tracing) that provide adaptive tutoring support when given the production
rules that SimStudent automatically learns. Component-based approaches and continuous improvement,
as presented in this chapter, most directly address the authoring needs of programming and assessment,
respectively. However, each approach is quite general and could be applied to other authoring needs.

237

Table 1 Authoring roles addressed by emerging approaches discussed in this chapter.

Authoring Need Human role SimStudent BrainTrust Component- Continuous-
based improvement

Content SME & ISD v v

Assessment SME & ISD v v v

Instruction/Feedback SME & ISD v v

Programming Programmer v

Note. SME: Subject Matter Expert; ISD: Instructional Design Expert

As this chapter has focused on emerging areas of research, it is perhaps no surprise that these areas are
operating somewhat in their own silos, motivated by authoring problems in their own ITS traditions.
Perhaps a total integration of these approaches may not be possible, given the differences discussed in the
introduction and depicted in Figure 1. To that end, it may be preferable for these emerging areas to
continue to develop following their own needs, but also more broadly to the needs of their tutoring
paradigm, namely, model-tracing, dialogue-based, and constraint-based. If general tools can be made for
these quadrants, then in time it may be possible to assemble an integrated suite of tools that, once a
paradigm has been selected, afford the greatest degree of automation possible so that ITS learning
objectives may be authored completely, accurately, and quickly.

Finally, Figure 1 has an empty quadrant corresponding to path-oriented tutors that indirectly compare
student activities to an ideal answer. Whether existing ITS research can properly be located in this
quadrant is unclear, but there are several possibilities that may have implications for tutoring in ill-defined
domains (Fournier-Viger, Nkambou & Nguifo, 2010; Lynch et al., 2006). In particular, it may be that
tutors using case-based reasoning (CBR), such as those used for tutoring the law (Aleven, 2003), fall into
this quadrant, because they are both path-oriented and only indirectly compare student input to an expert
solution. CBR compares the current situation to previous situations (i.e., cases) and adapts solutions from
previous situations to the current problem (Leake, 1996). From this standpoint, CBR may be viewed as
representing solution paths in cases, but these paths are ultimately fragments that might be generalized or
recombined in a new situation. Comparison to an ideal answer may be indirect because comparison may
apply not only to the final solution (as in constraint-based tutoring), but also to whether the solution made
use of the same cases and in the same way. If so, then CBR tutors may be an area of research that is
currently underdeveloped and amenable to further research in automated authoring.

Recommendations and Future Research

Based on our findings, we can make several recommendations for GIFT and future ITSs. First, the four
quadrants of ITS research described in Figure 1 should continue to be developed, with an end goal that
the resulting authoring tools may ultimately form a suite of tools that could generally be applied to any
problem in their respective tutoring paradigm. As discussed above, however, these approaches are largely
building models and do not implement systems-level programming. To assemble new systems from
scratch, GIFT should also encompass component-based authoring. This implies that tools operating in the
four quadrants should output reusable components, but it further implies that these components must be
discoverable and customizable. Finally, we argue that all future ITSs should implement continuous
improvement so that the tutor can better adapt to an individual or specific population. As described in this
chapter, continuous improvement best aligns with improving of learner models based on interaction data,
but it is also conceivable to implement continuous improvement generally for content, assessment, and
instruction.

238

Very impressive performance support tools for ITS authoring already exist (Aleven et al., 2009) and the
research described in this chapter does not propose to replace these tools in the near future. Instead, we
recommend that such tools continue to incorporate improvements in automated authoring in the research
we describe, so that ITS learning objectives may be authored completely, accurately, and quickly. Indeed,
it may be the case that some tasks supported by such performance support tools, such as drag-and-drop
editors for building ITS graphical interfaces, may never be completely automated. We anticipate that the
current generation of ITS authoring tools will instead continue to be enriched by new advances in
automated authoring, which will ultimately lower the cost and increase the adoption of ITS.

References

Aleven, V. (2003). Using background knowledge in case-based legal reasoning: A computational model and an
intelligent learning environment. Artificial Intelligence, 150(1-2), 183-237. doi:10.1016/S0004-
3702(03)00105-X

Aleven, V., Mclaren, B. M., Sewall, J. & Koedinger, K. R. (2009). A new paradigm for intelligent tutoring systems:
Example-tracing tutors. International Journal of Artificial Intelligence in Education, 19(2), 105-154.

Anderson, J. R., Corbett, A. T., Koedinger, K. R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The
Journal of the Learning Sciences, 4 (2), 167-207.

Chase, C.C., Chin, D.B., Oppezzo, M.A. & Schwartz, D.L. (2009). Teachable Agents and the Protégé Effect:
Increasing the effort towards learning. Journal of Science Education and Technology, 18(4), 334-352.

Chklovski, T. (2005). Collecting Paraphrase Corpora from Volunteer Contributors. In Proceedings of the 3rd
International Conference on Knowledge Capture (pp. 115-120). New York, NY, USA: ACM.
d0i:10.1145/1088622.1088644

Cycorp. (2005). Factory. http://game.cyc.com/. Accessed: 7/23/12.

D’Mello, S. K., Hays, P., Williams, C., Cade, W., Brown, J. & Olney, A. M. (2010). Collaborative Lecturing by
Human and Computer Tutors. In Intelligent Tutoring Systems (pp. 178-187). Berlin: Springer.

Eduworks Corporation. (2014). Re-Usability Support System for eLearning (RUSSEL). from
https://github.com/adinet/RUSSEL

Fournier-Viger, P., Nkambou, R. & Nguifo, E. M. (2010). Building Intelligent Tutoring Systems for IlI-Defined
Domains. In R. Nkambou, J. Bourdeau & R. Mizoguchi (Eds.), Advances in Intelligent Tutoring Systems
(pp. 81-101). Springer Berlin Heidelberg. Retrieved from http://link.springer.com/chapter/10.1007/978-3-
642-14363-2_5

Gagné, R. M. & Gagné, R. M. (1985). Conditions of learning and theory of instruction. New York: Holt, Rinehart
and Winston.

Gick, M.L. & Holyoak, K.J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1-38.

GoorulLearning. (2014). http://www.goorulearning.org. Retrieved 10/6/2014, 2014

Graesser, A. C., Chipman, P., Haynes, B. & Olney, A. M. (2005). AutoTutor: An Intelligent Tutoring System with
Mixed-Initiative Dialogue. IEEE Transactions on Education, 48(4), 612— 618.

Graesser, A. C., D’Mello, S. K., Hu, X, Cai, Z., Olney, A. & Morgan, B. (2012). AutoTutor. In P. McCarthy & C.
Boonthum-Denecke (Eds.), Applied Natural Language Processing: Identification, Investigation, and
Resolution. (pp. 169-187). Hershey, PA: IGI Global.

Graesser, A. C. & Person, N. K. (1994). Question Asking during Tutoring. American Educational Research Journal,
31, 104-137.

Graesser, A. C., Person, N. K. & Magliano, J. P. (1995). Collaborative dialogue patterns in naturalistic one-to-one
tutoring. Applied Cognitive Psychology, 9, 1-28.

Initiative, A. D. L. (2001). Sharable Content Object Reference Model (SCORM™). Advanced Distributed Learning,
http://www. adlnet. org.

Jesukiewicz, P. & Rehak, D. R. (2011). The Learning Registry: Sharing Federal Learning Resources. Paper
presented at the Interservice/Industry Training, Simulation & Education Conference, Orlando, FL.

Koedinger, K. R., Anderson, J. R., Hadley, W. H. & Mark, M. A. (1997). Intelligent tutoring goes to school in the
big city. International Journal of Artificial Intelligence in Education, 8, 30-43.

Koedinger, K.R., Brunskill, E., Baker, R.S.J.d., McLaughlin, E.A., Stamper, J. (2013). New potentials for data-
driven intelligent tutoring system development and optimization. Al Magazine, 34(3).

239

Koedinger, K.R., Corbett, A.C. & Perfetti, C. (2012). The Knowledge-Learning-Instruction (KLI) framework:
Bridging the science-practice chasm to enhance robust student learning. Cognitive Science, 36 (5), 757-798.

Landauer, T. K., McNamara, D. S., Dennis, S. E. & Kintsch, W. E. (2007). Handbook of latent semantic analysis.
Lawrence Erlbaum Associates Publishers.

Leake, D. B. (1996). Case-Based Reasoning: Experiences, Lessons and Future Directions (1st ed.). Cambridge,
MA, USA: MIT Press.

Li, N., Matsuda, N., Cohen, W. & Koedinger, K.R. (2015). Integrating representation learning and skill learning in a
human-like intelligent agent. Artificial Intelligence.

Li, N., Stampfer, E., Cohen, W. & Koedinger, K.R. (2013). General and efficient cognitive model discovery using a
simulated student. In M. Knauff, N. Sebanz, M. Pauen, I. Wachsmuth (Eds.), Proceedings of the 35th
Annual Conference of the Cognitive Science Society. (pp. 894-9) Austin, TX: Cognitive Science Society.

Lynch, C., Ashley, K., Aleven, V. & Pinkwart, N. (2006). Defining ill-defined domains; a literature survey. In
Proceedings of the Workshop on Intelligent Tutoring Systems for Ill-Defined Domains at the 8th
International Conference on Intelligent Tutoring Systems (pp. 1-10). Retrieved from
http://people.cs.pitt.edu/~collinl/Papers/IlI-DefinedProceedings.pdf#page=7

MacLellan, C.J., Koedinger, K.R., Matsuda, N. (2014) Authoring Tutors with SimStudent: An Evaluation of
Efficiency and Model Quality. Proceedings of the 12th International Conference on Intelligent Tutoring
Systems. Honolulu, HI. June 5-9, 2014.

Mangold, L. V., Beauchat, T., Long, R. & Amburn, C. (2012). An Architecture for a Soldier-Centered Learning
Environment. Paper presented at the Simulation Interoperability Workshop.

Martin, B., Mitrovic, T., Mathan, S. & Koedinger, K.R. (2011). Evaluating and improving adaptive educational
systems with learning curves. User Modeling and User-Adapted Interaction: The Journal of Personalization
Research (UMUAL), 21(3), 249-283. [2011 James Chen Annual Award for Best UMUAI Paper]

Matsuda, N., Cohen, W. W. & Koedinger, K. R. (2015). Teaching the Teacher: Tutoring SimStudent leads to more
Effective Cognitive Tutor Authoring. International Journal of Artificial Intelligence in Education, 25, 1-34.

McTear, M. F. (2002). Spoken dialogue technology: enabling the conversational user interface. ACM Computing
Surveys (CSUR), 34, 90-169.

Mitrovic, A. (2012). Fifteen years of constraint-based tutors: what we have achieved and where we are going.User
Modeling and User-Adapted Interaction, 22, 39-72.

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., Holland, J. (2006). Authoring constraint-based
tutors in ASPIRE. In lkeda, M., Ashley, K., Chan, T.-W. (eds.), Proceedings of ITS 2006. LNCS, vol.
4053, pp. 41-50.

Mitrovic, A., Martin, B., Suraweera, P., Zakharov, K., Milik, N., Holland, J., McGuigan, N. (2009). ASPIRE: an
authoring system and deployment environment for constraint-based tutors. International Journal of
Artificial Intelligence in Education, 19(2), 155-188.

Nye, B. D., Graesser, A. C. & Hu, X. (2014). AutoTutor and Family: A Review of 17 Years of Natural Language
Tutoring. International Journal of Artificial Intelligence in Education, 24(4), 427-469.
d0i:10.1007/s40593-014-0029-5

Ohlsson, S. (1992). Constraint-based student modelling. International Journal of Artificial Intelligence in
Education, 3, 429-447.

Ohlsson, S. & Mitrovic, A. (2007). Fidelity and Efficiency of Knowledge Representations for Intelligent Tutoring
Systems. Technology, Instruction, Cognition and Learning (TICL), 5, 101-132.0lney, A. M., Graesser, A.
C. & Person, N. K. (2012). Question generation from concept maps. Dialogue & Discourse, 3(2), 75-99.

Olney, A. M., Cade, W. & Williams, C. (2011). Generating Concept Map Exercises from Textbooks. In Proceedings
of the Sixth Workshop on Innovative Use of NLP for Building Educational Applications (pp. 111-119).
Portland, Oregon: Association for Computational Linguistics. Retrieved from
http://www.aclweb.org/anthology/W11-1414

Olney, A. M., D’Mello, S., Person, N., Cade, W., Hays, P., Williams, C., Graesser, A. (2012). Guru: A Computer
Tutor That Models Expert Human Tutors. In S. Cerri, W. Clancey, G. Papadourakis & K. Panourgia (Eds.),
Intelligent Tutoring Systems (Vol. 7315, pp. 256-261). Springer Berlin / Heidelberg.

Olney, A. M., Person, N. K. & Graesser, A. C. (2012). Guru: Designing a Conversational Expert Intelligent Tutoring
System. In P. McCarthy, C. Boonthum-Denecke & T. Lamkin (Eds.), Cross-Disciplinary Advances in
Applied Natural Language Processing: Issues and Approaches (pp. 156-171). Hershey, PA: IGI Global.

Palinscar, A. S. & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-
monitoring activities. Cognition and instruction, 1(2), 117-175.

240

Pavlik Jr., P. 1., Presson, N., Dozzi, G., Wu, S.-m., MacWhinney, B. & Koedinger, K. R. (2007). The FaCT (Fact
and Concept Training) System: A new tool linking cognitive science with educators. In D. McNamara & G.
Trafton (Eds.), Proceedings of the Twenty-Ninth Annual Conference of the Cognitive Science Society (pp.
1379-1384). Mahwah, NJ: Lawrence Erlbaum.

Person, N. K., Graesser, A. C., Magliano, J. P. & Kreuz, R. J. (1994). Inferring what the student knows in one-to-
one tutoring: The role of student questions and answers. Learning and Individual Differences, 6, 205-229.

Piech, C., Huang, J., Chen, Z., Chuong Do, Andrew Ng & Daphne Koller. (2013). Tuned Models of Peer
Assessment in MOOCs. In D’Mello, S. K., Calvo, R. A. & Olney, A. (Eds.), Proceedings of the 6th
International Conference on Educational Data Mining (pp. 153-160).

Raykar, V. C., Yu, S., Zhao, L. H., Valadez, G. H., Florin, C., Bogoni, L. & Moy, L. (2010). Learning From
Crowds. Journal of Machine Learning Research, 11, 1297-1322.

Ritter, S. & Koedinger, K. R. (1996). An architecture for plug-in tutoring agents. In Journal of Artificial Intelligence
in Education, 7 (3/4), 315-347. Charlottesville, VA: Association for the Advancement of Computing in
Education.

Robson, R., Ray, F. & Cai, Z. (2013). Transforming Content into Dialogue-based Intelligent Tutors. Paper presented
at the The Interservice/Industry Training, Simulation & Education Conference (I/ITSEC), Orlando, FL.

Roediger, H.L. & Butler A.C. (2011). The critical role of retrieval practice in long-term retention. Trends in
Cognitive Science 15:20-27

Rus, V., Stefanescu, D., Niraula, N. & Graesser, A. C. (2014). DeepTutor: Towards Macro- and Micro-adaptive
Conversational Intelligent Tutoring at Scale. In Proceedings of the First ACM Conference on Learning @
Scale Conference (pp. 209-210). New York, NY, USA: ACM. doi:10.1145/2556325.2567885

Stamper, J.C. & Koedinger, K.R. (2011). Human-machine student model discovery and improvement using data. In
G. Biswas, S. Bull, J. Kay & A. Mitrovic (Eds.), Proceedings of the 15th International Conference on
Artificial Intelligence in Education, pp. 353-360. Berlin: Springer.

Tian, Y. & Zhu, J. (2012). Learning from Crowds in the Presence of Schools of Thought. In Proceedings of the 18th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 226—-234). New
York, NY, USA: ACM. doi:10.1145/2339530.2339571

VanLehn, K. (2006). The behavior of tutoring systems. International Journal of Artificial Intelligence in Education,
16(3), 227-265.

Veden, A. (2014). Data for Enabling Content in Adaptive Learning Systems (DECALS). from
https://github.com/adinet/DECALS

Von Ahn, L. (2005). Human Computation (Doctoral thesis). Carnegie Mellon University.

Wang-Costello, J., Tarr, R. W., Cintron, L. M., Jiang, H. & Goldberg, B. (2013). Creating an Advanced
Pedagogical Model to Improve Intelligent Tutoring Technologies. Paper presented at the The
Interservice/Industry Training, Simulation & Education Conference (I/ITSEC).

Wylie, R., Koedinger, K. R. & Mitamura, T. (2010). Analogies, explanations, practice: Examining how task types
affect second language grammar learning. In V. Aleven, J. Kay & J. Mostow (Eds.), Proceedings of the
International Conference on Intelligent Tutoring Systems (pp. 214-223). Heidelberg, Berlin: Springer.

Zhu, X. & Simon, H. A. (1987). Learning mathematics from examples and by doing. Cognition and Instruction,
4(3), 137-166.

241

242

cuarter 20 Developing Conversational Multimedia
Tutorial Dialogues

Wayne Ward"? and Ron Cole*
! Boulder Language Technologies; * University of Colorado

Introduction

This chapter describes an approach to authoring intelligent tutoring systems (ITSs) used in My Science
Tutor (MyST). This virtual science tutor engages children in spoken dialogues in which they learn to
construct explanations of science phenomena presented in illustrations, animations, and interactive
simulations. Tutorials are developed through an iterative process of recording, annotating, and analyzing
logs from sessions with students, and then updating tutor models. This approach has been used to develop
over 100 tutorial dialogue sessions, of about 15 minutes each, in 8 areas of elementary school science.
Summative evaluations indicate that students are highly engaged in the tutoring sessions and achieve
learning outcomes equivalent to expert human tutors (Ward et al., 2011; 2013).

This chapter describes the process of developing conversational science tutors that use visual media and
the infrastructure supporting the development. A particular focus is the development of models for
representing and extracting the semantics that provide the basis for selecting tutor actions based on
interpretations of student answers. While initial evidence suggests that MyST tutorials can improve
students’ motivation and science learning (Ward et al., 2011; 2013), the potential of these systems to
transform learning and education is limited by the amount of effort required to develop them. A major
focus of our current research, discussed in this chapter, is to motivate and demonstrate the feasibility of an
approach to authoring conversational tutoring systems that substantially reduces the effort and data
required to develop dialogues for each new science domain.

Related Research

Research in ITSs addresses a critical need to provide teachers and students with accessible, inexpensive
and reliably effective tools for improving young learners’ interest in science, as well as their ability to
learn science and participate productively in classroom science activities. The 2009 National Assessment
of Educational Progress (NAEP 2009) reports that fewer than 2% of 4", 8" and 12™ grade students
demonstrated advanced knowledge of science, and over two-thirds of all students in these grades were
scored as not proficient in science. Analyses of NAEP scores in reading, math, and science over the past
20 years indicate that this situation is not improving, and is actually worsening. The gap between English
learners and English-only students, which is over one standard deviation lower for English learners, has
increased rather than decreased over the past 20 years.

ITSs aim to enhance learning by providing students with individualized and adaptive instruction similar
to that provided by a knowledgeable human tutor. These systems support conversational interaction with
users through either typed or spoken input with the system presenting prompts and feedback via text,
human voice, or an animated pedagogical agent (Graesser et al., 2001; D’Mello et al., 2011; Rus et al.,
2013; Graesser et al., 2014). Advances in ITSs during the past 15 years have resulted in systems that
produce learning gains equivalent to human tutoring, which is widely regarded as the most efficient and
effective form of learning. A review by Van Lehn (2011) compared learning gains with human tutoring

243

and ITSs that required students to engage in problem solving and construct explanations. When compared
to students who did not receive tutoring, the effect size of human tutoring across studies was d=0.79
whereas the effect size of tutoring systems was d=0.76. Van Lehn concluded that ITSs “are nearly as
effective as human tutoring systems.” (Van Lehn, 2011, pg. 197). A recent meta-analysis by Ma et al.
(2014) indicated that ITSs produce significant effects across a wide range of subjects at all education
levels relative to large group instruction, non-ITS computer-based instruction, or textbook or workbooks,
and no differences between human tutoring and learning using ITSs (Ma, et al., 2014).

Research in argumentation and collaborative discourse acknowledges the strong influence of the theories
of Vygotsky (1978, 1987) and Bakhtin (1975; 1986), who argue that all learning occurs in and is shaped
by the social, cultural, and linguistic contexts in which they occur. Roth (2013, 2014) provides an
excellent integration of Vygotsky’s and Bakhtin’s theories and their relevance to research on
collaborative discourse. He argues that, when considered in the context of the basic tenets of their
theories, “currently available analyses of science classroom talk do not appear to exhibit sufficient
appreciation of the fact that words, statements, and language are living phenomena, that is, they
inherently change in speaking” (Roth, 2014). Vygotsky argued that scientific vocabulary and concepts
could only be learned through deliberate instruction in an academic setting, as opposed to the more ad-
hoc manner in which vocabulary and concepts are learned in everyday conversation. Consistent with this
view, the 2007 NRC report emphasizes that scientific inquiry and discourse is a learned skill, so students
need to be involved in activities in which they learn appropriate norms and language for productive
participation in scientific discourse and argumentation (Duschl et al., 2007).

The past decade has seen a remarkable growth in publications investigating scientific discourse and
argumentation. Kuhn (2010) notes that argumentation has become widely advocated as a framework for
science education. The idea that argumentation has become both a reform movement and framework for
science education is supported by growing evidence of substantial benefits of explicit instruction and
practice on the quality of students’ argumentation and learning (Chin & Osborne, 2010; Kulatunga &
Lewis, 2013). Evidence from these studies indicates that argumentation can be improved by providing
professional development to teachers or knowledgeable students (Bricker & Bell, 2009; Bricker & Bell,
2014; deJong, 2013; Berland, 2009), explicitly teaching students the structure of good arguments, and
providing students with scaffolds during argumentation that helps them provide evidence for their own
arguments and critiquing other’s arguments (Kulatunga et al., 2013; Kulatunga and Lewis, 2013).

In the remainder of this chapter, the type of interaction used by MyST is described along with the
semantic representation used to support the interaction. The process for developing tutorials is explained
with a focus on creation and refinement of the model for extracting semantic representations from spoken
student responses. A new approach is then presented for developing more robust semantic parsers for the
domain with significantly reduced developer effort.

Discussion

The Nature of Tutorial Dialogues between Students and Marni in MyST

Since 2007, our research has focused on development of MyST, an ITS designed to improve science
learning of 3", 4™ and 5™ grade children through spoken dialogues with Marni, a virtual science tutor.
Because many elementary school children have difficulty reading at grade level, we decided to develop
tutoring systems in which students use speech to converse with a virtual tutor. Students in our study
received eight to ten weeks of classroom instruction in one of four areas of science—measurement, water,
magnetism and electricity, or variables—using the Full Option Science System (FOSS, 2014). Over the
course of each FOSS module instruction, students conducted 16 science investigations in small groups.

244

Students made written entries and drawings in science notebooks about their predictions, observations and
explanations of the science encountered in each investigation. Shortly after each investigation, students
engaged in spoken dialogues for 15 to 20 minutes with the virtual tutor Marni or with an expert human
tutor. In these dialogues, the human or virtual tutors asked open-ended questions about the science
encountered in the classroom science investigations. The tutors asked students questions about science
presented in illustrations, animations, or interactive simulations to scaffold learning and help them
construct accurate and complete explanations. Analyses of dialogues indicate that, during a dialogue of
about 15 minutes, tutors and students produced about the same amount of speech, around 5 minutes each.
The main result of the summative evaluation was that, relative to students in classrooms who did not
receive supplemental tutoring, students who were tutored by Marni and by human tutors achieved
equivalent learning gains, with moderate to strong effect sizes. Surveys indicated that over 70% of
students tutored by Marni reported that they were more excited about studying science in the future.
Details of these experiments are reported in Ward et al. (2011, 2013).

It is noteworthy that tutoring by both human and virtual tutors produced significant learning gains,
relative to students who did not receive tutoring, given that all students in the study received classroom
instruction using a highly respected inquiry-based learning program (FOSS, 2014) that is used by over 1
million K-8 students annually in the US. These results are consistent with a meta-analysis by Chi (2009),
which indicates that students whose instruction involves interactive tasks that include collaborative
discourse and argumentation learn more than students whose learning involves constructive tasks, (e.g.,
classroom investigations and written reports) or active tasks (e.g., classroom Science Investigations).
Chi’s synthesis of research indicates the critical importance of having students talk about and explain
science to optimize learning in inquiry-based programs.

When using MyST, the student’s computer shows a full screen window that contains the virtual tutor
Marni (a 3D character), a display area for presenting information and a display button that indicates the
listening status of the system. The agent’s lips and facial movements are synchronized with her speech,
which is recorded by an experienced science tutor, the voice talent whose phrasing and prosody imbues
Marni with the personality of a sensitive and supportive tutor. Spoken dialogues involve Marni asking
open-ended questions about science presented in illustrations, silent animations and interactive
simulations. Interactive simulations allow students to use a mouse to manipulate variables and observe the
effects, such as adding additional winds of wire to an electromagnet core and observing the effect on the
number of washers picked up. The pedagogical role of these media types are discussed in detail in Ward
et al. (2011). Figure 1 shows a screen shot of the student’s screen for the example interactive.

Figure 1: The student screen contains the avatar Marni, a display area, and a listening indicator.

245

A typical sequence of actions for the tutor would be to introduce a Flash animation (“Let’s look at this.”),
display the animation, and then ask a question (“What’s going on there?””). Depending on the nature of the
question and the media, the student may interact with content in the display area, watch a movie, or make
passive observations. Students wear high quality headphones with a noise-cancelling microphone. When
ready to speak, the student holds down the space bar. As the student speaks, the audio data are sent to the
speech recognition system. When the space bar is released, the word string produced by the speech
recognizer is parsed to produce a set of semantic parses. The set of parses is pruned using session context
information to a single best interpretation., The new information is added to the session context and a new
set of tutor actions is generated. The actions are executed and the system again waits for a student
response.

The focus of the MyST system is to elicit explanations of science concepts from students. Each 15 to 20
minute MyST dialogue session functions as an independent learning activity that provides, to the extent
possible, the scaffolding required to stimulate students to think, reason, and talk about science during
spoken dialogues with the virtual tutor. The goal of these multimedia dialogues is to help students
construct explanations that express their ideas. The dialogues are designed so that over the course of the
conversation with Marni, the student is able to reflect on their explanations and refine their ideas in
relation to the media they are viewing or interacting with, leading to a deeper understanding of the science
they are discussing. It is necessary to design dialogues that (1) engage students in conversations that
provide the system with the information needed to identify gaps in knowledge, misconceptions, and other
learning problems; and
(2) guide students to arrive at correct understandings and accurate explanations of the scientific processes
and principles. A related challenge is to decide when students need to be provided with specific
information (e.g., a narrated animation) in order to provide the foundation or context for further
productive dialogue. Students sometimes lack sufficient knowledge to produce satisfactory explanations,
and must therefore be presented with information that provides a supporting or integrating function for
learning, such as brief multimedia presentation that explains the key concepts the student was attempting
to explain.

MyST tutorials are characterized by two key features: the inclusion of media throughout the dialogue and
the use of open-ended questions related to the phenomena and concepts presented via the media. Follow-
on questions attempt to build on things the student said. For example, an initial classroom investigation
about magnets has students move around the classroom exploring and writing down what things do and
do not stick to their magnets. The subsequent multimedia dialogue with Marni begins with an animation
that shows a magnet being moved over a set of identifiable objects, which picks up some of the objects
but not others. Marni then says: “What’s going on here?” If the student says: “The magnet picked up
some of the objects,” Marni might say: “Tell me more about the types of objects magnets pick up.”

Each tutorial session in MyST is designed to cover a few main points (typically two to four) in a 15 to 20-
minute session with a student. The tutorial dialogue is designed to get students to articulate concepts and
be able to explain processes underlying their thinking. Tutor actions are designed to encourage students to
share what they know and help them articulate why they know what they know. For the system (Marni),
the goal of a tutorial session is to elicit responses from students that show their understanding of a
specific set of points, or more specifically, to entail a set of propositions. Marni attempts to elicit the
points by encouraging self-expression from the student. Many dialogue moves are adapted from
principles of questioning the author (QtA) (Beck & McKeown, 2006). Much use is made of open-end
questions such as “What do you think is going on here?” One of the developers of QtA, Margaret
McKeown, worked closely with our development team during development of MyST dialogues. Dr.
McKeown analyzed annotations of sessions with human tutors trained in QtA dialogue moves, and
provided feedback that were used to improve subsequent dialogues. Analysis of MyST dialogues (Ward
et al., 2011; 2013) reveals that concepts expressed by students are recognized at about 85% accuracy. The

246

system fails to recognize about 15% of the concepts correctly expressed by the student. MyST does not
tell students that they are wrong, but simply moves on to other propositions if the student expressed
understanding, or continues to discuss the current topic otherwise. This strategy provides for graceful
dialogues when concept recognition errors occur.

Semantic Representation
The MyST dialogue model is based on representing what students are saying about attributes of entities
and how entities and events in the domain are related. MyST uses the Phoenix system for natural
language processing and generating tutor moves. Phoenix represents the propositions being discussed as
semantic frames with role labels similar to other semantic parsing systems such as FrameNet (Baker et al.,
1998) and PropBank (Palmer et al., 2005), but uses role labels specific to the domain of Science. Roles
represent how entities are related to each other and to predicates (usually a verb or nominalization).
Semantic frames are used to represent role sets important for the domain. The following example of a
statement describing movement would be extracted as follows:
e Electricity flows from the negative terminal through the bulb and to the positive terminal.
o Frame: DescribeMovement
o Predicate: Move
o Theme: Electricity
o Source: Terminal.negative
o Goal: Terminal.positive
o Path: Bulb
Other examples of frames important in science discourse are the following:
e Grass is a producer.
o Frame: ClassMembership
o Member: Grass
o Class: Producer
e The bulbs are not shining because the pathway for electricity to flow has been broken.
o Frame: CausalRelation
o Result:
o Theme: Bulb
o State: Off

o Cause:

247

o Predicate: Interrupted
o Theme: Pathway

Student responses are extracted by the system into semantic frames. Tutor next moves are selected by
comparing the frames extracted from student responses to reference frames representing correct role
assignments. The following sections explain how role extraction is accomplished and how the extracted
frames are used in generating tutor moves.

Defining and Extracting Semantic Frames

The first step in developing a MyST tutorial dialogue is to define the topics to be covered. The
specification of tutorial semantics begins with creating a narrative. The tutorial narrative is a set of natural
language statements that express the concepts to be discussed in as simple a form as possible. These do
not represent the questions that the system asks, but are the set of points that the student should express.
The narrative represents what an ideal explanation from a student would look like. The narrative
statements are manually annotated to reflect the desired semantic parse. An example annotation is as
follows:

e The current flows from the minus terminal to the plus.

o Theme: [Electricity] (The current)

o Predicate: [Move] (flows)

o Source: from the [_negative] (minus terminal)

o Goal: to the [_positive] (plus)

o Which results in the extracted frame:

o Theme: Electricity

o Predicate: Move

o Source: negative

o Goal: positive
These parsed statements define the domain of the tutorial. After enumerating the concepts to be discussed,
the visuals to be used to illustrate scientific vocabulary, materials, and phenomena and are defined. A
short narrative is written and parsed for each of the media files to be used in the tutorial. The Phoenix
compiler is used to compile the annotated narratives into recursive transition networks that are used by the
parser to extract text into semantic frames.
Student responses are also parsed into the same semantic representations as the narratives. The initial
patterns are created from the narratives and have all of the roles and entities that will be discussed, but
only a few ways of expressing them. Over the course of development, the patterns must be expanded to
cover the various ways students articulate their understandings of the science concepts. In developing the

MyST system, project tutors were asked to type simulated student input. These inputs were annotated and
added to the training data for the extraction patterns. Once the initial components for a tutorial have been

248

specified, the task becomes to obtain coverage in the extraction patterns of all of the ways in which the
semantics are expressed by students. As the system is used, it logs all transactions and records student
speech. When tutorials are deployed for live use, all session data are uploaded to a server each night. The
data are processed automatically to assess system confidence in the interpretation of student responses.
Using an active learning paradigm, low confidence sessions are selected for transcription and annotation.
Once annotated, the data are added to the training set and system models (acoustic models, language
models and extraction patterns) are retrained. Periodically, data are sampled for test sets and a learning
curve is plotted for each module. All elements of this process are automatic except for transcription and
annotation.

Generating Tutor Moves

The virtual tutor has a set of resources to conduct the session dialogue; synthesized prompts, recorded
prompts, narrations, static visuals, silent animations, narrated animations, and interactive simulations. The
tutor model controls how the resources for each tutor turn are selected. Features used for move selection
include a semantic representation of the last prompt, whether the student reply was responsive to the
prompt, and a comparison between the extracted representation from student responses and the reference
representation from the narrative. These features generally express whether each target frame role (a)
hasn’t been addressed, (b) has been prompted for but not answered, (c) has been expressed incorrectly, or
(d) has been expressed correctly. Boolean expressions of features are used to select the next tutor move.
Tutor moves are sequences of the basic tutor actions: speak(play a recorded audio file), synthesize(a
specified word string), flash(execute Flash application), and play(static media file or recorded video).
Production rules in the form of Boolean expressions of features are associated with a sequence of actions
to be taken by the tutor if the rule evaluates true. Some example pattern-action rules are as follows:

last student response indicated boredom
Response == “boredom”
Action: “synth(So, | have to be entertaining every minute? You try it some time.)”

Got it all right, give positive feedback and re-state
Origin == Reference:Origin AND Destination == Reference:Destination
Action: “synth(Excellent observations!);
synth(So, electricity is flowing from the negative end of the battery
and back to the positive end of the battery)”

origin wrong
Origin = Reference:Origin
Action: “synth(Let’s take a look at something together. Look at the flow of electricity.
What do you notice about which end the electricity is flowing away from?)”

Templates are created for interaction types to make authoring of dialogue interactions more efficient. For
example, when discussing word definitions, set membership, and causal relations, very similar dialogue
sequences are used regardless of specific content. This is especially true of the introductory parts of each
concept, where very open-ended prompts are used. Tell types of moves introduce a concept and present a
narrated animation. Elicit type moves might make an opening statement to segue into a concept, present a
silent animation and ask “What’s going on here?” Elicitation of explanation of a causal relationship might
use a scenario using and interactive simulation. Ask “What do you think would happen if ...”, then have
the student try it in the simulation and then explain their observation.” The specific predicates and entities
are different, but the interaction pattern is very similar.

249

During initial development and testing of dialogues, synthetic speech is used in the virtual tutor to allow
easy modification. The application could use synthesis in field use, but we generally choose to have
prompts recorded by a voice talent before students engage with Marni. This is a viable option since
prompts for a session are known in advance and we have an efficient procedure for recording them.
System tools generate the set of sentences to be recorded and a recording application is provided to
efficiently manage recording and verifying each prompt, as well as the accuracy of the alignment of the
speech to the movements of Marni’s lips and associating each audio file with the word string. The tools
also automatically produce a task control file where all synth(word string) actions have been replaced
with play(recorded file) actions.

Summary of Current MyST Tutorials Dialogue Development Process

The primary activities involved in the development of MyST tutorial sessions are developing Flash
media; authoring feature expressions and associated action sequences; and annotating data for extracting
semantic representations. Templates of interaction types are used to reduce the effort of creating new tutor
models. An efficient process is in place for collecting and annotating data and re-training system models.
Fifty tutorial sessions were developed in four months by a small team (one project manager, two digital
artists, and two linguistics students).

That optimistic assessment notwithstanding, substantial effort is required to develop and tune multimedia
conversational tutorials. Less expensive media can be substituted for Flash animations, but the media is so
integral to the presentation that we feel the expense justified. The other labor-intensive effort is the
annotation of extraction patterns. The next section details a proposal for reducing the data and effort
required for training the semantic extraction model.

Applying Linguistic Resources to Semantic Extraction

One of the more costly and time-consuming aspects of developing a tutorial with this model is achieving
good coverage in the extraction patterns used in parsing. The semantics of the domain are constrained, but
student responses can vary greatly in the ways they choose to express concepts and terms. An efficient
process is in place for collecting data and training the system, but the first time the system sees a construct
it has not seen before, it does not extract it correctly. It still takes time, effort, and data to get good
coverage of student responses.

The patterns are used to extract (and normalize) entities into semantic roles, and thus represent both
patterns for entity recognition and higher-level patterns assigning the entities to roles. Entity patterns
represent the set of phrases considered to be an acceptable synonym for a term. Electricity could be
expressed as electricity, energy, power, current, or electrical energy. Coverage of term synonyms from
annotated data is achieved fairly quickly and easily and can be done by most anyone familiar with the
domain. The larger problem is the patterns discriminating between possible role assignments. Not only is
there more disfluency and variability here, annotating them is a more difficult task for someone not
trained to do it.

One possibility for increasing robustness of extraction patterns and reducing data (and effort) needed to
achieve coverage for role assignment is to use output from a domain-independent semantic role labeling
(SRL) system to help with role assignment. The Proposition Bank (PropBank) provides a corpus of
sentences annotated with domain-independent semantic roles (Palmer, et al.). PropBank has been widely
used for the development of machine learning based SRL systems. Pradhan et al. (2005) used the
representation in open domain question answering and Albright et al. (2013) extended PropBank for
processing clinical narratives. The idea is not to try to use PropBank output directly to produce the

250

extracted representations, but to map PropBank SRL output onto MyST frames domain-specific entity
patterns will still need to be applied to produce the canonical extracted form, but this is a much simpler
task than role assignment and one more suited to non-linguists.

An initial investigation has been conducted to examine how well the semantic frames used in MyST can
be produced from PropBank roles. Many of the roles can be mapped directly, such as class membership.
In some cases, such as causal relations between two events, several PropBank predicates are involved in
producing the MyST frame. PropBank parses are oriented around a predicate and separate parses are
produced for each predicate. These need to be unified to produce the MyST frame. An example of a
Propbank parse that maps directly is as follows:

All metals are conductors

PropBank MyST

Predicate: are Frame: ClassMembership
Al: metals Member: metals

A2: conductors Class: conductors

And an example of one that is not so direct is:

When the switch is