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This article considers the premise that computer-based tutoring systems (CBTSs) could be used 

to accelerate learning and facilitate retention because of their ability to assess, predict and adapt 

to unique learner traits and states. Existing CBTSs tend to provide each learner the same 

instructional regimes (e.g., event-driven feedback) or provide very prescriptive instructional 

adaptations (e.g., change of flow or challenge level) based on the learner’s progress toward 

objectives. Much like human tutors, the success of CBTSs relative to accelerated learning is 

predicated on their ability to maintain high learning states while minimizing states in which little 

or no learning is occurring (e.g., boredom, overstimulation, confusion, frustration). By 

considering accelerated learning principles (e.g., contextual relevance and social learning) in the 

designing  CBTSs and by implementing methods to more fully model the learner and the 

learning context, tutoring systems should realize greater success in facilitating the learner’s rapid 

development of comprehensive mental models and improved reasoning skills, while promoting a 

lasting effect (retention). This article considers accelerated learning principles, retention issues 

and individual differences as drivers in the design and development of an adaptive, computer-

based tutoring capability. 
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This article examines how accelerated learning 

principles could influence the design of computer-

based tutoring systems (CBTSs; also known as 

intelligent tutoring systems) resulting in optimal 

self-directed learning experiences for learners. For 

the purposes of this discussion, accelerated learning 

is defined as any learning system that attempts to 

optimize time spent learning versus content learned. 

The goals of this approach are for faster attainment 

of knowledge and skill, and increased job 

performance with better retention of learning 

(Andrews and Fitzgerald, 2010). The motivation for 

examining technology (tools and methods) to 

support accelerated learning is higher throughput for 

large organizations such as the U.S. military where 

small reductions in time spent learning can result in 

large savings. The motivation to examine CBTS as 

an accelerated learning tool is to compound the 

opportunity to effectively support self-regulated 

learning and thereby reduce infrastructure (e.g., 

classrooms) and support (e.g., instructors) previously 

required to develop and deliver effective/efficient 

training. 

This article addresses the influence of accelerated 

learning and retention principles on the design of 

CBTSs in one-to-one training contexts. Toward this 

end, we describe a core model for CBTS and 

introduce five CBTS design objectives that tie the 

influences of cognitive theories, expert human 

tutoring models and tailored instructional strategies 

to accelerate learning and enhance retention. The 

five objectives are: supporting efficient, tailored 

instruction through comprehensive student 

modeling; supporting active, case-based learning; 

dividing training content into manageable chunks; 

supporting reflection and social learning; and testing 

for understanding.  

 

Furthermore, we discuss how our current CBTS 

architecture, the Generalized Intelligent Framework 

for Tutoring (GIFT) incorporates the five CBTS 

design objectives and enhances the core model for 
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CBTS. Finally, we provide recommendations for 

future CBTS research and development to support 

accelerated learning and retention objectives for 

individuals and teams. 

 
Core Model of CBTSs 

Before discussing the use of CBTS to accelerate 

learning, some common definitions for the functions 

of a CBTS are needed. Figure 1 illustrates a 

functional model of an adaptive individual tutoring 

system (Sottilare, 2010) which was derived from 

Beck, Stern and Haugsjaa’s (1996) tutoring model. 

As in most CBTS, the major components include a 

student model (also known as a learner, trainee or 

user model), an expert model, domain knowledge 

(including instructional content, questions, hints and 

misconceptions), a pedagogical module and a 

communication module. The student model contains 

information about the student’s current performance 

(as determined by pedagogical agents and a set of 

standards), the student’s domain competency (e.g., 

novice or expert), and sensor data (physiological 

and/or behavioral measures) used to ascertain the 

student’s cognitive and affective states. 

The expert model (also known as the ideal student 

model) contains standards to measure the progress of 

the student in the training domain as defined by the 

domain knowledge. The domain knowledge includes 

instructional content, problems, misconceptions, 

challenge levels and options for feedback. The 

pedagogical module assesses the student’s progress 

based on interactions with the instructional content. 

It uses this information to determine which 

instructional strategies (e.g., direction, support, 

questioning, changing challenge level or pace of 

instruction) to employ during the training session. 

The communication module is the student’s interface 

with the CBTS and includes devices for sensory 

interaction and data input (e.g., visual display, 

speakers, computer mouse, haptic devices for touch, 

keyboard for input) to present instruction, allow 

Figure 1. Adaptive Tutoring Model (Sottilare, 2010) 
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interaction and provide feedback to the student. This 

article considers the design and interactivity of tutor 

components in supporting accelerated learning and 

facilitating retention.  

CBTSs could, and we believe should, be designed 

for efficiency to support accelerated learning, but 

should not ignore the need to challenge the student 

in the interest of maintaining  motivational level and 

facilitating retention of knowledge and skills. In 

other words, their design should maximize high 

states of learning (e.g., acquisition of knowledge, 

understanding and application of concepts) while 

minimizing/eliminating states where little or no 

learning is occurring (e.g., boredom, 

overstimulation, confusion, frustration). It is 

undesirable to totally eliminate frustration since 

some difficulty in learning can maintain challenge 

levels and aid retention (Bjork, 1994). In order to 

optimize learning efficiency, a CBTS must be 

capable of two critical functions: 1) the ability to 

sense and model the student’s states (e.g., cognitive, 

affective) and 2) select instructional strategies (e.g., 

scaffolding) tailored to the student’s states/traits and 

relevant to the learning context. 

Sensing and modeling student states are critical to 

the computer-based tutor’s selection of appropriate 

instructional strategies. Strategy selection is vital in 

maintaining the student in an optimal flow to 

accelerate learning. Human tutors do this through 

observation and intervention (e.g., questioning, 

supporting, directing) and often their historical 

knowledge of the student’s learning habits. CBTSs 

would also interact with the student in this way, but 

additionally they would have the option to use 

physiological sensing technologies (e.g., 

electroencephalographs, galvanic skin response 

sensors and/or interbeat heart rate monitors), 

behavioral sensors and classifying methods (e.g., 

clustering techniques, decision trees or Bayesian 

algorithms) to ascertain their cognitive (e.g., level of 

engagement) and affective (e.g., emotions, mood) 

states.  

For example, using the training context (where the 

student is in the training), an eye-tracker (behavioral 

sensor) and breathing monitor (physiological sensor) 

along with the student’s progress, the tutor can 

ascertain the probability of a negative learning state 

(e.g., confusion, boredom, distraction or frustration). 

Based on the student’s affective and cognitive states, 

their progress and the learning context, the tutor 

selects an appropriate instructional strategy and set 

of problems or cases to be worked, perhaps using a 

classification method (e.g., Dynamic Bayesian 

Networks or Partially Observable Markov Decision 

Processes). The cycle continues as the tutor interacts 

with the student, senses and classifies the student’s 

states, and determines future instructional strategies.  

To illustrate the elements of the core CBTS model, 

we provide an exemplar highlighting data inputs and 

interactions within a human-tutoring system.  First, 

instructional material is presented to the student 

which may or may not elicit an emotional reaction 

(e.g., anger or frustration). Behavioral sensors (e.g., 

web camera) can be used to measure six distance 

measures on the student’s face and algorithms can be 

used to assess the relationship between these facial 

distances and six universal emotions (sadness, joy, 

anger, fear, disgust and surprise) (Neji & Ben 

Ammar, 2007). Changes in the facial distances D1: 

the opening of the eye; D2: distance between the 

interior corner of the eye and the eyebrow; D3: 

opening of the mouth in width; D4: opening of the 

mouth in height; D5: the distance between the eye 

and eyebrow; and D6: the distance between the 

corner of the mouth and the external corner of the 

eye) are captured and stored in the student model. 

Emotional states are classified within the student 

model based on behavioral measures. The student’s 

emotional state is then sent to the pedagogical 

module and used to influence the selection of 

tailored strategies (e.g., feedback, motivation, 

explanation, steering) to be implemented by the 

tutor.  
 

However, using sensor-driven data along with 

performance metrics to trigger instructional 

interventions in a CBTS is not enough. Tailored 

strategies authored to accelerate and optimize 

learning outcomes must accommodate the learning 

sciences theories of cognition, and should be 

designed around considerations associated with 

experience, real-time performance and diagnosed 

states. Based on these variables, CBTS designers 

must understand how adaptive strategies should be 

leveraged to assist individuals with their strengths 

and weaknesses within a given domain.    
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Implications of Cognitive Theories in CBTS Design 

Having reviewed the high-level architecture of 

CBTS, we can consider CBTS design to meet the 

accelerated learning objectives as derived from 

cognitive theories on accelerated learning. To this 

end, we review the fundamentals of the Cognitive 

Load Theory (CLT), the Cognitive Flexibility 

Theory (CFT) and the Cognitive Transformation 

Theory (CTT).  

 

Cognitive Load Theory in CBTS Design for 

Accelerated Learning and Retention 

CLT asserts that information should be presented in 

a manner that optimizes student performance by 

allowing instructional designers to manage the 

limitations of concurrent working memory load 

during instruction (Sweller, Van Merrienboer, & 

Paas, 1998). CLT defines three types of cognitive 

loads: intrinsic, extraneous and germane.  

Intrinsic cognitive load pertains to the inherent 

difficulty (e.g., complexity, vagueness, interactivity) 

associated with the instructional content and is not 

controllable by instructional designers (Sweller, Van 

Merrienboer, & Paas, 1998). For example, an 

algebra tutor would weigh the difference in intrinsic 

cognitive load (also known as problem difficulty) 

between an addition problem and solving a 

differential equation. While instructional designers 

cannot control the difficulty associated with a 

specific problem (e.g., except through changes in the 

wording of the problem), they can address when to 

select another problem of greater or lesser inherent 

difficulty. It will be important for the domain 

knowledge within a CBTS to include an assessment 

of problem difficulty within any particular training 

domain. The pedagogical agent within a tutor would 

narrow the selection to problems of appropriate 

difficulty based on the recent and long-term progress 

of the student in that domain and perhaps related 

domains. For example, the short-term positive 

progress of the student might indicate that harder 

problems are needed to maintain a positive 

engagement level, but his long-term progress may 

indicate a slower gradation of increasing problem 

difficulty based on previous interactions with the 

tutor. By examining short- and long-term trends, the 

tutor can manage the student’s arousal to maintain 

him in a “zone of proximal development” 

(Vygotsky, 1978; Csikszentmihalyi, 1990). Low 

arousal/challenge level can result in boredom and 

high arousal/challenge level can result in confusion 

or frustration. Defining the segmentation and 

sequencing of information within the domain 

knowledge may also be useful in managing intrinsic 

cognitive load. 

Extraneous cognitive load pertains to the way 

information is presented to students, and can be 

controlled by instructional designers (Sweller, Van 

Merrienboer, & Paas, 1998). For example, a history 

tutor could describe Abraham Lincoln’s 

mannerisms, or the tutor could provide a visual 

animation of Abraham Lincoln to illustrate his 

mannerisms. The written media might be more 

efficient and cheaper to produce, but might be more 

expensive in terms of extraneous cognitive load. As 

well, this load is at the expense of germane cognitive 

load, which facilitates learning. 

Germane cognitive load is associated with schema 
that a student engages that contribute to attaining the 
domain learning objectives (Sweller, Van 
Merrienboer, & Paas, 1998). Pedagogical agents in 
CBTSs are responsible for managing germane 
cognitive load. The tutor design should account for 
methods that recognize cognitive load type (intrinsic, 
extraneous and germane) and minimize extraneous 
load while maximizing germane cognitive load.  

As important as the management of cognitive load is 

in the design of CBTS, it is also necessary to address 

the need for flexibility and context in learning. To 

this end, we explore the Cognitive Flexibility Theory 

(CFT), which focuses on the nature of learning in 

complex and ill-defined domains (Spiro, Coulson, 

Feltovich, & Anderson, 1988).   

Cognitive Flexibility Theory in CBTS Design for 

Accelerated Learning and Retention 

CFT stresses the importance of how knowledge 

representations are constructed by the student so 

they can easily restructure domain knowledge later 

to adapt to changing scenarios by rejecting their 

simplistic understandings (Spiro, Coulson, 

Feltovich, & Anderson, 1988). CFT is especially 

applicable for presentation of instructional content 

by “interactive technology,” a category that includes 

adaptive CBTSs (Jonassen, Ambruso, & Olesen, 

1992). The following tenets of CFT may inform the 
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design of CBTSs: multiple representations of 

instructional content; context-dependent knowledge; 

complex, case-based instruction; and interrelated 

knowledge representations.  

Computer-based tutor design should allow for 

multiple representations of instructional concepts 

and learning activities within. While producing 

multiple representations of content may be an 

expensive proposition, standards such as the 

Sharable Content Object Reference Model 

(SCORM), a collection of standards and 

specifications for distributed learning applications, 

would allow the reuse of open source learning 

content objects to aid in reducing cost. Extensive 

SCORM-compatible content objects (commercial 

and open source) are available. In addition, research 

with artificially-intelligent agents is showing 

promise in developing content autonomously using 

data mining techniques via the internet (Gordon, 

2010). These techniques can be used to develop 

narratives to support context-dependent knowledge 

acquisition and case-based learning. For example, 

data mining techniques could be used to search the 

online blogs of experts and extract relevant story 

lines about their experiences as military commanders 

and construct a narrative for leadership training.   

Design that leverages CFT principles allows 

instructional content to support learners of varying 

preferences and mental models. Next, we will 

explore a theory that supports the building and 

revision of those mental models to support advances 

in learning.   

Cognitive Transformation Theory in CBTS Design 

for Accelerated Learning and Retention 

The traditional approaches to learning include: 1) 

defining learning objectives by comparing the 

student’s knowledge and a standard needed for 

proficiency; 2) providing opportunities for practice; 

and 3) providing mechanisms for feedback (Klein 

and Baxter, 2006). This methodology is the 

foundation for many of the existing CBTSs (e.g., 

ANDES Tutor - Schulze, Shelby, Treacy, 

Wintersgill, VanLehn, & Gertner, 2000; PUMP 

Algebra Tutor - Koedinger, Anderson, Hadley, & 

Mark, 1997). Cognitive Transformation Theory 

(CTT) asserts that advanced problem solving on the 

part of students requires the recognition of flaws in 

their existing mental models. CTT links learning 

objectives to the student’s current mental models and 

promotes processes for shedding flawed mental 

models for less flawed models through reflection and 

discovery. CFT and CTT make many of the same 

assertions. CFT and CTT each try to achieve growth 

but in different ways. For CFT, the focus is on 

flexibility and for CTT it is producing a better 

mental model.  

Students may be unwilling to discard a mental model 

that they are comfortable with in lieu of a new 

model. A significant challenge exists for CBTSs to 

be able to help the student evolve their mental model 

through appropriate practice opportunities and 

feedback to support the student in 

discarding/adapting their existing flawed model to 

reach higher levels of understanding (Klein and 

Baxter, 2006). Understanding the student’s states, 

managing their cognitive load and tailoring their 

experience are vital to selecting optimal strategies 

for learning.  

It is also important to understand and define desired 

accelerated learning and retention outcomes to focus 

tutor design. The next section reviews CBTS 

approaches to tailored instruction, optimizing 

challenge and flow and balancing learning and 

retention strategies. All of these design approaches 

have potential to influence accelerated learning 

outcomes.  

The Influence of Desired Accelerated Learning 

Outcomes on Tutor Design 

In this section, design considerations for CBTSs in 

regards to accelerated learning outcomes are 

discussed including enhanced proficiency, 

performance and retention. Hoffman, Feltovich, 

Fiore, Klein, and Andrews (2009) state that 

proficiency, as a degree of competence, is a critical 

prerequisite to performance in complex work 

contexts. The terms novice, journeyman and expert 

are often used to describe the proficiency levels of 

students. It is critical that the tutor (human or 

computer-based) understand the student’s level of 

proficiency in the domain being trained so 

appropriate decisions can be made about the 

presentation of content and instructional flow 

(Csikszentmihalyi, 1990). Hoffman and Feltovich 

(2010) posed the challenges of “rapidizing” training, 
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accelerating proficiency and improving retention. To 

enhance efficiency, proficiency and retention, we 

considered the following approaches for the design 

of CBTSs: tailoring instruction to individuals of 

differing proficiency and motivation levels; 

optimizing the flow of instruction based on changes 

to the student’s state; and balanced learning-

retention strategies. 

Campbell (1990) noted that individual differences in 

performance are a function of declarative 

knowledge, procedural knowledge, skill and 

motivation. The premise behind adaptive tutoring is 

to maintain the student in a “zone of proximal 

development” (Vygotsky, 1978) or a state of “ready 

to learn” where the flow and challenge level of 

instruction is appropriate to the student 

(Csikszentmihalyi, 1990; Murray, & Arroyo, 2003). 

By selecting instructional strategies that are 

marginally above the student’s competency level, we 

can maintain their engagement level and their 

motivation to learn more challenging concepts. This 

has the potential to accelerate learning by 

minimizing the amount of time spent in a “low or 

no” learning state (e.g., boredom resulting from 

concepts perceived to be little or no challenge and 

confusion or frustration resulting from content that is 

at a significantly higher challenge level than their 

current capabilities).  

Accelerating the acquisition of declarative and 

procedural knowledge could affect skill acquisition, 

motivation and retention in both positive and 

negative ways. On the positive side, more efficient 

acquisition of knowledge would allow for more time 

focused on skill development (sometimes called 

enrichment). Maintaining a “high” learning state 

minimizes boredom, confusion and frustration which 

would likely result in higher motivation/ 

commitment. On the negative side, rapid 

acceleration of learning could reduce opportunities 

for practice in increasingly difficult scenarios and 

thereby reduce opportunities to build expertise and 

retain knowledge/skills (Hoffman et al., 2009). It 

could also lead to burnout so the tutor must be 

sensitive to when and how quickly to accelerate 

learning. 

 

Furthermore, the motivational aspects of tutoring 

should not be ignored. “When people have the right 

attitudes and commitment, learning automatically 

follows” (Argyris, 1991). Cordova and Lepper 

(1996) found that students exposed to 

motivationally-embellished educational software 

(Lepper, Woolverton, Mumme, & Gurtneret, 1993) 

had higher levels of intrinsic motivation. As a result, 

they became more deeply engaged by the 

interaction, and learned more in a fixed period of 

time. 

Now that we have reviewed cognitive theories and 

their general influence on learning outcomes in tutor 

design, we will move forward in examining some 

fundamental approaches to accelerating learning 

through tailored interactions with CBTSs. These 

fundamental approaches may support more effective 

and/or efficient learning. In examining these 

approaches we must keep in mind that efficiency 

may be traded off for higher value learning 

(effectiveness). So the fundamental approaches to 

tailored instruction are meant to capture previous 

research and set the stage for our five accelerated 

learning design objectives. 

Approaches to Accelerating Learning through 

Tailored Instruction in CBTSs 

The need for tailored instruction fusing CBTSs is 

well documented (Woolf, 2010; Loll, Pinkwart, 

Scheuer, & McLaren 2009). A fundamental premise 

of CBTSs is that information about the student can 

be used to modify the presentation of information so 

that learning progresses efficiently (Johnson & 

Taatgen, 2005). Individualized guidance, assessment 

and feedback require an adequate model of the 

student’s knowledge and skill, proficiency, progress, 

errors and misconceptions (Foster & Fletcher, 2003). 

These modeled student characteristics will be the 

primary determining factor for the specific tailoring 

approach executed in the learning experience.   

The influence of motivation and affect on learning is 

also well-known (Picard, 2006; Heylen, Nijholt, 

Akker, & Vissers, 2003; Linnenbrink & Pintrich, 

2002), but student models are still insufficiently 

robust to support tailored instruction that account for 

the student’s motivational and affective states. 

Student models in CBTSs are largely built from 

dynamic sources (data that change during 

instruction) and static sources (historical data) (Neji 

& Ben Ammar, 2007; D’Mello, Craig, Sullins, & 
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Graesser, 2006; Picard et al., 2004; Murray & 

Arroyo, 2003). Dynamic data include physiological 

data (e.g., heart rate) and behavioral data (e.g., 

gesture) gathered from sensing technologies in near-

real-time on a periodic basis (e.g., 20 measurements 

per second) and in-situ self-report data (e.g., 

reflections, preferences, feelings). Static data is only 

static in that it includes data that is unlikely to 

change during a single instructional session. 

Examples of static data include demographics, 

historical self-report data (e.g., preferences, goal-

orientation, etc.), past performance, domain 

competencies and personality data that only change 

infrequently or not at all. Static data are normally 

stored in a learning management system (LMS) or 

other database format and are updated upon the 

completion of a lesson. Together dynamic and static 

data are used to classify student states (e.g., 

cognitive, affective). Combining sensing techniques 

(physiological and behavioral) might increase the 

accuracy of classification, but care should be taken 

to select techniques that are unobtrusive to minimize 

disruption to the learning process. It is important that 

sensing techniques are minimally distracting, do not 

detract from learning, and do not promote 

discomfort or frustration other than “desirable 

difficulties” needed to set learning.  

The examples that follow illustrate the varying 

degree of tailoring implemented through student 

modeling in CBTSs. As noted above, tailoring is one 

strategy to enhance the efficiency of tutors and 

thereby accelerate learning, but it could also be used 

to make decisions about the challenge level of 

scenarios and thereby improve retention. One such 

example is the Parent and Child Tutor, a CBTS that 

provides personalized coaching strategies for parents 

who in turn tutor their children (Lahart, Kelly, & 

Tangney, 2007a). The tutor facilitates parents’ 

learning by providing recommendations to promote 

positive emotional states in their children through 

the use of a set of 52 domain-independent tutoring 

rules based on four emotions (fear, anger, sadness 

and joy) observed in the children being tutored 

(Lahart, Kelly, & Tangney, 2007b). While this 

approach is adaptive, it is very prescriptive and does 

not account for the complexity of other variables 

(e.g., engagement, motivation) that can influence 

learning.  

In another approach, Beal and Qu (2007) used 

student interaction data (e.g., mouse movement, 

control selection rates, hint requests) to model 

engagement, transient shifts in attention, cognitive 

effort and emotions associated with learning during 

CBTS sessions. The model, which included a 

Dynamic Bayesian Network, predicted student 

performance on a post-test of math achievement in 

instances where the pre-test performance did not. 

Being able to predict future performance (e.g., at, 

below or above expectations) allows the CBTS to 

formulate appropriate instructional strategies. For 

instance, if the network predicted low performance, 

it could assess contributing factors for low 

performance based on the context, cognitive state 

(e.g., engagement level) and the affective state (e.g., 

motivational level) and then adapt the content to 

provide a review of key concepts (e.g., flow change 

or remediation strategy), provide feedback to 

positively affect motivation (e.g., supportive 

encouragement) or guide an opportunity for 

reflection (ala CTT). 

 

The ability of the CBTS to recognize engagement 

and predict performance will enhance the ability of 

tutors to keep students in high learning states and 

perhaps make accelerated learning possible. 

D’Mello, Craig , Sullins and Graesser (2006) and 

D’Mello and Graesser (2007) used the student’s 

conversation patterns to classify  one of three 

affective states (confusion, ‘eureka,’ frustration). 

Based on the student’s classified affective state and 

the instructional context, the tutor provided 

appropriate feedback, pumps, hints and assertions to 

influence student’s motivation and engagement.  

Finally, we include physiological sensing techniques 

that aid in modeling cognitive and affective states 

that allow selection of appropriate instructional 

strategies and thereby influence learning and 

retention. The effectiveness of this physiological 

modeling approach is limited and is prone to error 

due to noisy data produced by the sensors (Ward & 

Marsden, 2003). For example, Blanchard, Chalfoun 

and Frasson (2007) developed a predictive model 

incorporating multiple physiological sensors for 

determining cognitive workload and emotional 

response to stimuli. Electroencephalography, 

galvanic-skin response, skin temperature, respiration 
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rate, heart rate and facial feature tracking were used 

to provide a multimodal modeling approach to 

observe correlations among physiological markers as 

a response to environmental stimulus. Blanchard et 

al. (2007) found predictive inaccuracies in the 

resulting models due to the oversimplification of 

physiological data. Methodologies are needed that 

can support the real-time (or near-real-time) 

assessment of physiological data and its indication 

of transient affective and cognitive states.  

We have reviewed the potential influence of 

tailoring instruction, various methods of sensing, 

assessing and tailoring instruction. Now, it is time to 

examine recent approaches to optimizing challenge 

level and flow and their influence on learning 

outcomes.  

 

 

Approaches to Optimizing Challenge and Flow in 

CBTS 

Significant emphasis should be placed on balancing 

the student’s proficiency with the challenge level of 

instruction to maintain motivation and to avoid long-

term states of confusion, frustration, overstimulation 

and boredom (Csikszentmihalyi, 1990; Murray & 

Arroyo, 2003). Sessink, Beeftink, Tramper and 

Hartog (2007) asserted that “most traditional 

learning material targets the ‘average student’, and is 

suboptimal for students who lack certain prior 

knowledge, or students who have already attained 

some of the course objectives.” To support learning, 

comprehension and remembering, Bjork (1994) 

advocates manipulations within the instruction that 

introduce “desirable difficulties” for the student. 

Examples include, but are not limited to: varying the 

conditions of learning; providing “contextual 

interference” during learning; distributing or spacing 

study or practice sessions; and using tests as learning 

events.  

Introducing difficulties during instruction has the 

added benefit of focusing the student’s attention. 

Yun, Shastri, Pavlidis and Deng (2009) 

demonstrated the interpretation of a thermal camera, 

StressCam, to estimate student stress levels. They 

altered the difficulty levels of game play for students 

based on singular input from StressCam, which 

monitored heat dissipation in the forehead. Since 

stress levels are related to increased blood flow and 

higher blood flow equates to more heat, StressCam 

passively and continuously senses and interprets 

thermal images as stress states. Using this type of 

closed-loop system allowed for adaptation of the 

challenge level of the game. Challenge level could 

be lowered when stress was too high to support 

effective learning and increased to avoid boredom, 

thereby maintaining the student in a zone of 

proximal development. 

Not only is there a need for optimizing challenge and 

flow, there is also a need for a balanced approach to 

learning and retention. Accelerating learning (short 

term) may be at odds with retention objectives 

(longer term) as discussed below.   

Approaches to Balanced Learning-Retention 

Strategies in CBTS 

While it is important to develop instructional 

strategies to accelerate learning, it is equally 

important to consider how the design of CBTSs will 

facilitate retention. “Retention of knowledge and 

skill is better when material at the time of acquisition 

is processed deeply, embellished, and connected to, 

and integrated with other knowledge” (Hoffman & 

Feltovich, 2010). To facilitate retention, a CBTS will 

have to take into account a long-term view of the 

student. Most tutoring systems today are focused 

mainly on progress in a single domain of instruction 

and fail to address long-term student modeling. To 

achieve this, tutors will need to be integrated with an 

LMS to support even a career-long learning 

capability and address retention as well as the 

acquisition of knowledge and skills. 

Since retention of knowledge and skills is highly 

dependent on the opportunity to practice, CBTS 

capabilities should include a service-oriented 

architecture. The service-oriented architecture 

approach would allow for access to tutoring any 

place and anytime. The tutoring capability should 

also include a program of spaced repetition (also 

known as spaced rehearsal). This technique 

facilitates retention by gradually increasing intervals 

of time between each subsequent review of 

previously learned content (Baddeley, 1990; Spitzer, 

1939). Finally, the authors advocate incorporation of 

Bjork’s (1994) “desirable difficulties” into the 
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domain knowledge of any CBTS. This incorporates 

the inclusion of learning experiences that makes 

initial learning difficult but makes recall and 

application of facts easier at later instances.  

Having reviewed current approaches to tailoring 

instruction, optimizing challenge and flow, and 

balancing learning and retention strategies, we now 

focus on tying accelerated learning principles and 

learning theories to our proposed CBTS design 

objectives. Along the way, we will also discuss how 

our evolving design of GIFT supports these CBTS 

design objectives. 

Accelerated Learning Principles and Their Influence 

On Tutoring Design 

The connection between learning theories (e.g., 

CLT, CFT, CTT) and the integration of accelerated 

learning principles has been noted above. Now, we 

discuss the connection between accelerated learning 

principles and effective scenario-based tutoring 

design as described in the GIFT. The benefits of 

scenario-based training include the opportunity to 

practice tasks in relevant environments, to apply 

knowledge and to be exposed to scenarios of varying 

levels of challenge and complexity. According to 

Hoffman and Feltovich (2010) effective scenario-

based training includes scenarios that are 

challenging and novel to the student as described by 

the CFT and the CTT. The challenge level and 

novelty of any scenario is highly dependent on the 

competency level of the student and further 

highlights the need for student modeling and tailored 

strategies in tutor design.  

 

In Figure 2, GIFT elements and interactions are 

highlighted so we might compare and contrast the 

core CBTS model presented in Figure 1 as a prelude 

to discussing how GIFT supports the five design 

objectives put forth in this article. The most 

significant difference between GIFT and CBTS is 

the isolation of domain knowledge which provides 

Figure 2. Generalized Intelligent Framework for Tutoring (GIFT) 
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the opportunity to maintain other GIFT elements 

(sensor module, student module and pedagogical 

module) as domain independent. 

In reviewing the literature, some common principles 

associated with accelerated learning were identified. 

Common themes included tailoring based on student 

needs and providing practical, case-based scenarios. 

Moon, Birchall, Williams and Vrasidas (2005) 

defined accelerated learning design themes for an e-

learning system that is highly analogous to the 

CBTS context reviewed in this article. Below, we 

discuss five accelerated learning design objectives 

for CBTS capabilities and how GIFT has been 

designed to support these objectives. 

Design Objective #1: Support Efficient, Tailored 

Instruction through Comprehensive Student 

Modeling 

Methodologies for tailoring instruction are well 

documented (Woolf, 2010; Karagiannidis, Sampson, 

& Cardinali, 2001; Picard et al., 2004) and center 

around unique student modeling. According to 

Wenger (1987), all student models must perform 

three tasks: (1) the model must gather data from and 

about the learner; (2) the data must be used to build 

an interpretation of the learner’s state; and (3) the 

interpretation is used for performing a diagnosis of 

pedagogical strategies to carry out the presentation 

of subsequent information. 

To this end, many techniques and theories have been 

applied to modeling student states (e.g., competence, 

engagement, affect) with varying degrees of success. 

Examples of tutors with explicit student models 

include the LISP Tutor (Anderson, 1990), the PUMP 

Algebra Tutor (Koedinger, 1997), Wayang Outpost 

(Arroyo, 2004) and AutoTutor (Jackson, Mathews, 

Lin, Olney, & Graesser, 2003). GIFT, being 

developed at the U.S. Army Research Laboratory, 

also contains an explicit student model. GIFT is an 

authoring system for CBTS, a tutoring technology 

assessment tool and a communications architecture 

that is being designed to integrate tutor logic (e.g., 

trainee models, domain knowledge, pedagogical 

models), learning management systems and learning 

resources. The student model in GIFT provides a 

multi-dimensional view of the student’s states and 

traits. Short- and long-term views of the student’s 

cognitive and affective states, knowledge and 

proficiency are included in the student model with 

the more static views of biographical data and 

preferences stored in an LMS. The data in the 

student model is used to inform various predictive 

techniques (e.g., clustering algorithms, Bayesian 

networks or Markov Decision Processes) to  

ascertain the student’s state or assess optimal  

instructional strategies. 

Substantial research remains to optimize the 

structure of the student model to include states and 

traits that might be generalized across learning 

contexts and student populations. The student model 

also contains domain-specific information extracted 

from the LMS about the student’s training 

performance in various training domains (e.g., bi-

lateral negotiation, casualty care). This information 

may also be used to inform predictive models or 

techniques. 

 

The student model in GIFT has been designed to be 

sufficiently robust to allow the tutor to tailor 

scenarios to be relevant to the student’s own 

experiences. Student modeling research includes 

investigation into individual differences that 

influence accelerated learning and retention. For 

tutoring systems, states/traits of interest to possibly 

model include, but are not limited to: engagement, 

motivation, and affect (personality, mood and 

emotions).  

Unobtrusive behavioral and physiological sensing 

technologies (D’Mello & Graesser, 2007; Sottilare 

& Proctor, 2012) are showing great promise in 

assessing student states (e.g., frustration) that may 

not always manifest themselves in obvious ways. 

Multiple sensing methodologies that are integrated 

with contextual data (e.g., scenario) are showing 

higher accuracy in classifying cognitive and 

affective states (Wingrave, Hoffman, LaViola, & 

Sottilare, 2011), and will improve the 

appropriateness of instructional strategy selected by 

the tutor.  

Design Objective #2: Support Active, Case-Based 

Learning 

A CBTS should enable training in practical, not 

theoretical, contexts in order to tie knowledge 

acquisition to a relevant real-world scenario or case 

study. The scenarios/cases should be sufficiently 
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complex to challenge students to construct new or 

adapt old knowledge representations and they should 

motivate or require the student to actively interact 

with the scenario. Case studies allow the student to 

generalize lessons-learned in the case to other 

contexts and solve problems relevant to the student. 

This would allow the student to construct knowledge 

representations based on relevant experiences that 

may transfer more easily later to an operational 

context. It might also allow new experiences to 

motivate the student to shed old knowledge models 

in favor of newer, more complex models per the 

CTT.  

Design Objective #3: Divide Training Content into 

Manageable Chunks 

Moon et al. (2005) recommend instructional 

designers divide courses into small “discrete” 

sections which can stand alone or be used as part of 

more complex activities when joined with other 

learning content objects. Whereas novices may be 

capable of only dealing with a few small chunks of 

knowledge, more proficient learners are capable of 

integrating a greater number of chunks (and larger 

chunks) to construct more complex knowledge 

representations. 

As noted earlier, sharable content objects are the 

premise behind the SCORM standard. Small 

“chunks” of instruction offer maximum flexibility in 

creating new instructional objects from existing 

objects, and provide flexibility for the student to 

navigate the instructional material and construct 

their own unique knowledge representations as 

advocated by CFT.   

 

Design Objective #4: Support Reflection and Social 

Learning 

Reflection is defined by Boud, Keogh and Walker 

(1985) as “intellectual and affective activities in 

which individuals engage to explore their 

experiences in order to lead to a new understanding 

and appreciation.” Donald Schön (1983) discussed 

reflective thinking long before Boud et al. (1985) 

and Epstein and Hundert (2002) highlighted the 

relationship between competence and reflection in 

their definition of professional competence: 

“professional competence is the habitual and 

judicious use of communication, knowledge, 

technical skills, clinical reasoning, emotions, values, 

and reflection in daily practice for the benefit of the 

individual and community being served.” Reflection 

during the learning process is valuable in building 

new understanding of experiences (Boud et al., 

1985). Activities typically associated with reflection 

include personal journals and social learning through 

small group discussion (Harris, Pereira, & Davidson, 

2000). In addition to personal journals, Laurillard, 

Stratfold, Luckin, Plowman, and Taylor (2000) 

recommend that the tutor support and guide student 

reflection. Gouli, Gogoulou, Papanikolaou and 

Grigoriadou (2006) developed an adaptive 

framework to support reflection, guiding and 

tutoring.  

In a study of expert human tutors, Lepper and 

Woolverton (2002) argued that the most effective 

tutors are themselves reflective. Lepper and 

Wolverton (2002) included reflective functions for 

“articulation,” “explanation” and “generalization.” 

These are also desirable characteristics for a CBTS. 

For “articulation,” tutors ask students to reflect aloud 

right after the successful completion of a problem, to 

help the student understand the concepts and 

operations used in the problem and to ascertain any 

misconceptions about the problem. For 

“explanation,” the student is asked to explain their 

answers and the procedures used in problem solving. 

Finally, for “generalization,” the student is asked 

how the problem they just solved might relate to 

other problem spaces to help in transferring 

knowledge and skills to other domains.  

Supporting social learning is also an objective 

recommended in CBTS design. Social learning is 

learning that is “influenced by social interactions, 

interpersonal relations, and communication with 

others” (Alexander & Murphy, 1998). Social 

interaction can positively affect the students' sense 

of belonging and self-efficacy (Richardson & Swan, 

2003). Just as an accelerated learning-friendly tutor 

provides contextually relevant experiences or case 

studies for the student, it must also provide 

contextually-relevant meaningful feedback and 

interaction. Contextual cues of communication are 

important in creating a feeling of social presence 

during training (Richardson & Swan, 2003). Care 

should be taken in the tutor design to insure that 

interaction between the student and the content, the 

student and the tutor, and the student and other 



ADAPTIVE TUTORING SYSTEMS 

30                                                                 COGNITIVE TECHNOLOGY ● VOLUME 17 ● ISSUE 1 ● 2012                                                             

students (Vrasidas & Glass, 2002) is enabled to 

supports reflective and social learning activities in 

relevant contexts.  

 

Design Objective #5: Test for Understanding 

Opportunities to test for understanding during the 

training experience are also opportunities to learn. 

The National Research Council (2005) identified an 

“assessment-centered” approach to learning, which 

emphasizes the need to provide frequent 

opportunities to make the student’s thinking and 

learning apparent as a guide for both the tutor and 

the student during instruction. While testing alone is 

not a guarantee of future learning success, testing 

early and often means that the tutor will be able to 

identify that student has misconceptions about the 

instructional content early and make adjustments to 

instructional strategies (e.g., content, flow and 

challenge level) earlier and avoid wasted time spent 

later in the instruction on vaguely understood 

principles or concepts. This design objective is 

congruent with CTT, which asserts that advanced 

problem solving requires students to recognize flaws 

in their existing mental models. Frequent testing 

promotes the opportunity to assess and shed flawed 

mental models for less flawed models through 

reflection and discovery. The best tutors understand 

common misconceptions in any given training 

domain and distinguish between significant errors 

that hamper learning and those that are less 

consequential (Lepper & Woolverton, 2002; 

Hoffman, 1998).  
 

Recommendations for Future Research 

We present three recommendations for additional 

research to more deeply integrate accelerated 

learning principles into CBTS design. The first 

recommendation revolves around the 

importance/influence of individual differences 

within instructional design. There is much in the 

literature about the need to address individual 

differences in instructional design. What are lacking 

are studies to evaluate and validate the individual 

differences that are substantively important, and the 

effect size of those individual differences has on 

learning and retention. Research is needed to 

examine the portability of individual student 

modeling and tailored instruction across populations 

and training domains. Significant work has been 

done regarding individual and team performance 

(Salas, Rosen, Held, & Weissmuller, 2009). 

Additional research is needed to evaluate the 

influence of learning styles, personality preferences, 

individual values, group/organizational values, 

contextual affect (e.g., frustrated about a reflective 

exercise), age, gender, cognitive ability level, 

education level and culture on instructional decisions 

and ultimately, their influence on accelerating 

learning and facilitating retention.  

Our second recommendation is in the area of 

instructional strategy selection. Assuming a tailored 

student model is developed that includes significant 

influencers/predictors of learning outcomes, the 

strategies for selecting appropriate instructional 

changes (e.g., challenge level, flow, questioning, 

hinting) will need to be optimized for accelerated 

learning and retention outcomes.  

Our third recommendation for future research is to 

apply the INSPIRE Model (Intelligent, Nurturant, 

Socratic, Progressive, Indirect, Reflective and 

Encouraging) of tutoring success (Lepper, Drake, & 

O'Donnell-Johnson, 1997) to CBTS design and 

assess its effect size.  Based on a long-term study of 

successful human tutors, INSPIRE integrates several 

best practices discussed within this article, and may 

be the most promising model to translate successful 

human tutoring practice to CBTS.  

Our final recommendation is to research and develop 

a capability to author and evaluate accelerated 

learning and retention tutoring concepts easily for 

individual, team, social learning and mobile learning 

contexts. Today, most CBTSs are one-of-a-kind, 

handcrafted programs whose components were not 

designed to be modular or reusable. Integrating 

existing standards and developing new standards 

will enhance the capability of researchers to evaluate 

new accelerated learning concepts. The GIFT 

concept is being developed to support summative 

evaluations of CBTS.  

 

Conclusions 

We have observed significant correlations between 

accelerated learning and retention principles and 

effective CBTS design. Three cognitive theories 

were reviewed along with their implications for 

effective tutor design and positive accelerated 

learning outcomes. To achieve enhanced efficiency, 
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proficiency and retention outcomes, the authors also 

proposed three design approaches focused on 1) 

tailoring instruction based on individual differences 

(e.g., proficiency and motivation); 2) optimizing the 

flow of instruction based on changes in the student’s 

state; and 3) balancing learning and retention 

strategies within CBTS to maintain high states of 

learning and sufficient difficulties for students to 

build their own unique knowledge representations. 

 

Finally, based on the literature, the authors proposed 

a set of five accelerated learning and retention 

design objectives for CBTS. 
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