
A HYBRID MACHINE LEARNING APPROACH TO AUTOMATED SCENARIO
GENERATION (ASG) TO SUPPORT ADAPTIVE INSTRUCTION IN VIRTUAL

SIMULATIONS AND GAMES

Robert A. Sottilare
US Army Natick Soldier Center
robert.a.sottilare.civ@mail.mil

ABSTRACT
This paper examines machine learning methods to
automatically generate a large number of child scenarios
from a small number of parent scenarios in support of
adaptive instruction conducted in virtual simulations and
game-based platforms. Adaptive instructional systems
(AISs) include Intelligent Tutoring Systems (ITSs),
intelligent mentors, recommender systems, personal
assistants, and intelligent instructional media. AISs
attempt to tailor instruction for individuals and teams
based on their learning needs (e.g., knowledge or skill
deficiencies), goals, and preferences. This often requires
much more content than current non-adaptive systems
which provide one or a very limited set of training
scenarios to address a given set of learning objectives.
The goal of the research described in this paper is to
reduce the authoring burden for developing a large
number of unique and relevant training scenarios. The
methodology presented also ranks the resulting scenarios
with respect to a set of author-specified learning
objectives and learner/team competency in the domain of
instruction. The unique contributions of this paper are
tied to its hybrid machine learning approach, and
consideration for both learning objectives and
learner/team competency in automatically ranking
generated scenarios.

Keywords: adaptive instruction, adaptive instructional
systems (AISs), automated scenario generation (ASG),
combinatorial optimization search (COS), evolutionary
scenario generation (ESG), genetic algorithm (GA),
Intelligent Tutoring System (ITS), machine learning,
novelty search, ranking algorithm, reinforcement
learning

1. INTRODUCTION
Adaptive instructional systems (AISs) are a class of
intelligent, machine-based tools that “guide learning
experiences by tailoring instruction and
recommendations based on the goals, needs, and
preferences of each learner [or team] in the context of
domain learning objectives” (Sottilare & Brawner,
2018a; Sottilare & Brawner, 2018b; Brawner & Sottilare,
2018). AISs may include technologies like intelligent
tutoring systems (ITSs), intelligent mentors,
recommender systems, personal assistants for learning,
and intelligent instructional media.

In late 2017, the Institute for Electrical and Electronics
Engineers (IEEE) Learning Technologies Standards
Committee (LTSC) under the auspices of the IEEE
Standards Association established an AIS study group to
examine opportunities for potential standards to lower
the entry and maintenance costs associated with AISs and
the AIS study group identified authoring (development)
as a major barrier to the adoption of AISs. The AIS
authoring process can be divided into two sub-processes:
1) developing or finding appropriate content (often called
curation), and 2) sequencing or aligning content with
learning objectives (sometimes called building or
configuring depending on the authoring tool).
Specifically, the AIS standards study group identified the
skill and cost of authoring these systems as very high,
usually requiring highly technical individuals with expert
programming skills to develop and maintain these
systems. Compounding this problem is the fact that AISs
often require significantly more content (as much as 2 or
3 times) than non-adaptive systems since each adaptation
(tailored instructional sequence) requires new content,
and each remediation also requires new content.
We are suggesting that the authoring barrier might be
reduced by automating as much of the authoring process
as possible. Ideally, we would want to fully automate the
entire AIS authoring process, but are taking the approach
to solve one problem at a time beginning with the
complex problem of automated scenario generation
(ASG; Zook, et al, 2012) which can greatly expand the
content choices for adaptive instruction offered by
authoring tools like the Generalized Intelligent
Framework for Tutoring (GIFT; Sottilare, Brawner,
Goldberg, & Holden, 2012; Sottilare, Brawner, Sinatra,
& Johnston, 2017), the Cognitive Tutor Authoring Tool
(CTAT; Aleven, McLaren, Sewall, & Koedinger, 2006),
the Authoring Software Platform for Intelligent
Resources in Education (ASPIRE; Mitrovic et al, 2006)
and other AIS authoring platforms.
The goal of ASG is to create training scenarios for
domains that vary in their complexity, definition, and
dynamics (Sinatra & Sottilare, 2016), and are ranked by
their relationship with specified learning objectives. The
basic idea is to automatically create significantly
different scenarios where all the variables in the scenario
are allowed to vary maximally resulting a large number
of training situations available to support tailored
instruction. Of course, not all the scenarios created
would be relevant, doctrinally correct or even possible in

mailto:robert.a.sottilare.civ@mail.mil

the real-world. A mechanism is needed to rank their
relevance or fitness with respect to a set of learning
objectives and the competency of the learner in
performing the assigned task.
By way of example, we have selected a room clearing
task under varying conditions to illustrate the functional
aspects of ASG and how it might work for military
training. Usually, an instructional developer would be
responsible to handcraft each scenario using a scenario
editor specific to the game/simulation being used and
their expertise in the domain of instruction. A military
or law enforcement squad or fire team would usually
train to master the task of entering and clearing a room
of any hostiles. ASG is critical to providing both
challenging and doctrinally correct scenarios for
adaptive team training.
The next section of this paper explores the scope of the
ASG problem space by way of defining terms and
describing the process associated with a genetic
algorithm (GA) approach.

2. SCOPING THE PROBLEM OF ASG
As part of examining the ASG problem space, we
thought it would be useful to provide a few definitions to
help shape the scope of our discussion:

• Scenario - a process in which a learner or
learners interact within an environment over a
sequence of events which introduce and/or
exercise a set of skills defined by a set of
learning objectives

• Fitness Function – criteria used to assess how
close a scenario is to achieving a set of defined
objectives

• Scenario Generator - a computational system
that solves the problem of producing a set of
viable scenarios given knowledge about their
attributes and their alignment with the fitness
criteria

• Initial Population – an initial set of scenarios
that adequately represent a set of targeted
learning objectives and are used to generate
future scenarios through some machine learning
technique

• New Population – a resulting set of scenarios
automatically generated that are more closely
aligned with the fitness criteria than their
parents; a scenario’s fitness is determined by the
weighted linear sum of all evaluation functions

The ASG problem space can be distilled into three
distinct challenges: 1) how to insure sufficient variation
in the parent population so these traits are passed to
subsequent generations; 2) how to promote sufficient
variation of complexity and tailoring in the subsequent
generations/new populations; and 3) defining the fitness
criteria to evolve and rank a population of new scenarios
that support specified learning objectives, support goals,
preferences, and learning needs of individuals or teams,
and are realistic.

Given the definitions and challenges described, we can
now concentrate on describing a generalized process for
ASG using GAs (Figure 1). We chose to use GAs based
on their flexibility in addressing a variety of tasks, their
ability to cover the search space, and their ability to
address the three challenges we identified. In the next
section of this paper, we explore three approaches to
developing an ASG capability using GAs.

3. EXAMINING POTENTIAL GA

APPROACHES
According to Zook et al (2012), a genetic algorithm
usually starts with a population of randomly generated
potential scenarios and attempts to modify and/or
combine aspects of different scenarios within the
population to improve the fitness of the next generation
of scenarios according to a given fitness function. A GA
is “a search heuristic that is inspired by Charles Darwin's
theory of natural evolution” (Mallawaarachchi, 2017)
that generates a pool of candidate solutions called a
population.
GAs have an advantage over gradient based methods
which may trend toward local optima for many complex
real-world domains. GAs have the ability to provide a
large number of usable (good enough) solutions
relatively quickly (Wikipedia, 2018). GAs are also
relatively easy to implement and resolve to a solution in
most cases. For ASG, this makes them a more attractive
choice over other approaches (e.g., deep reinforcement
learning, artificial neural networks) which may be
difficult to implement.
For our exploration of ASG using GAs, we will use a
“room clearing training task” as a basis for the
examination of three machine learning approaches that
exploit genetic algorithms:

• Brute Force Search
• Novelty Search
• Combinatorial Optimization Search

3.1. Brute Force Search Approach
A brute force search (also known as an exhaustive
search) solves the generation problem by systematically
enumerating all possible candidates for the solution and
checking whether each candidate satisfies the problem's
statement (Wikipedia, Brute-Force Search, 2018).
Depending upon the number and type of variables, how
we decide to implement the GA for our room clearing
task could be complex or very simple. Our example task
discussed in Section 4 of this paper is very simple in
order to illustrate the principles and process of
implementing a GA.
Brute force searches are the easiest to implement, and
always find a solution if one exists. However, as the
number of candidate solutions grows, the search time
also grows rapidly. “Therefore, brute-force search is
typically used when the problem size is limited, or when
there are problem-specific heuristics that can be used to
reduce the set of candidate solutions to a manageable
size. The method is also used when the simplicity of

implementation is more important than speed”
(Wikipedia, Brute-Force Search, 2018).

3.2. Novelty Search
Fitness functions for genetic algorithms are typically
goal-focused. The goal in ASG is to understand the
alignment of candidate scenarios with specified learning
objectives. An exception to this is novelty search.
Novelty search uses a fitness function to promote
behavioral novelty instead of attempting to conduct a
search through the use of a static objective or set of
objectives (Lehman, 2012). Since the goal of this search
is to identify unique candidates, the result is more likely
to include candidates outside of what might be normally
acquired through a static objective search or in systems
where the number of candidates is limited. Conversely
for ASG, large numbers of initial candidates (parent
scenarios) are likely to yield a more diverse set of child
scenarios resulting in some non-viable scenarios.
Genetic algorithms attempt to satisfy a criteria set by the
fitness function so they generally do not identify optimal
candidates and with the exception of novelty search do
not tend to cover the entire search space. Novelty search
in its attempt to identify all unique candidates does tend
to cover the more remote areas of the search space often
left uncovered by other GA approaches.

3.3. Combinatorial Optimization Approaches
Combinatorial Optimization uses a scenario generation
approach to deliver the requisite diversity and quality of
scenarios while tailoring the scenarios to a particular
learner’s needs and abilities. This type of optimization
includes an eight step process illustrated in Figure 1 and
discussed in detail in Sections 3.1.-3.6 (Shiffman, 2012).

• Step 1: define fitness criteria
• Step 2: create an initial population of N

scenarios
• Step 3: assess the fitness of each individual

within the population based on the fitness
criteria until stop criteria is met, then go to step
8

• Step 4: create a mating pool based on fitness
scores and select pairs for reproduction

• Steps 5 & 6: reproduce N times through cross-
over and mutation and add each child to the new
population

• Step 7: replace the old population with the new
one and return to step 3

• Step 8: print results and terminate

Figure 1. Combinatorial GA Approach

In the next section of this paper, we discuss how we
might apply and vary the GA approaches reviewed above
to support ASG for our example task, clear rooms
training task.

4. COMBINATORIAL OPTIMIZATION WITH

NOVELTY SEARCH
In this section, we layout a process for combinatorial
optimization with novelty search. The steps discussed
below are applicable to a variety of task domains and we
provide an example task to illustrate its use. The
example task, an understanding of its elements and how
these elements relate to a specified fitness function are
critical to reusing this process for other domains.
For our example task we have chosen a “clear rooms
training task” (US Army, 2007) which is usually
performed by squads of dismounted soldiers on patrol.
Since the room clearing task is a psychomotor task, we
refer to the GIFT authoring tools which use a
psychomotor task model based on theories advanced by
Dave (1970), Simpson (1972), Harrow (1972), and
Romiszowski (1999) as adapted by Brown, Bell &
Goldberg (2017). The goal is to have the team practice
and demonstrate a level of proficiency where
automaticity and fluid motion are the norm. In a game-
based training environment, the focus is more on the
cognitive aspects of the task and mastering the interface,

but in a fully immersive virtual environment, the focus is
on mastering the physical aspects of the task, interaction
with the environment, and interaction (e.g.,
communication and coordination) with other members of
the team.
All military training scenarios describe the task, the
conditions under which each task is conducted, and the
standards or measures of successful performance. The
standards or measures of success for our room clearing
task include:

• Enter the room quickly and smoothly
• Clear the doorway immediately
• Remain within arm’s reach of another squad

member
• Secure room by neutralizing any enemy present
• Maintain sufficient force to defeat any enemy

counterattack and continue operations

Note that even an identical environment (e.g., same room
layout and same threats at the same locations) could
result in a different scenario based on the squad’s
decisions and performance. The simple decision of
entering the room at a different location can impact the
sequence of events to follow. If we examine the dynamic
elements (e.g., skill events, environment, and
constraints) of our room clearing training example, we
find that our scenarios can vary by type, sequence,
length, and outcome of events, but can also vary in
complexity by changes to the environment (e.g., threats
or the physical configuration of the building) and the
number and type of constraints (e.g., rules of engagement
or presence of non-combatants).

Next, we describe eight essential steps in the GA process
described below and shown in the context of Figure 1.
We have modified these to fit our example training task
and to overcome our defined set of challenges:

• define our fitness criteria
• insure sufficient variation in the parent

population
• promote sufficient variation of complexity and

tailoring in the child population

For our technical approach to ASG (described in the
eight steps below), we have chosen to primarily use a
combinatorial optimization approach since it would
inefficient to pursue a brute force approach for more
complex scenarios than our example task. This will
allow us to represent more complex domains in the future
with the same GA process. We have also chosen to
substitute a Novelty search in Step 2 (create initial
population) to provide a more full representation of the
search space and provide a higher degree of variability in
subsequent generations.

The resulting combinatorial optimization with novelty
search process for ASG is based on a Darwinian model

of evolution through natural selection and genetic
variation:

• Step 1: define fitness criteria
• Step 2: create an initial population of N

scenarios has two substeps:
 2a. select 3-4 scenarios that vary

across the variables selected for the
fitness criteria

 2b. use Novelty search to expand this
population to N unique scenarios using
single point crossover and single point
mutation

• Step 3: assess the fitness of each individual
within the population based on the fitness
criteria until stop criteria is met, then go to step
8

• Step 4: create a mating pool based on fitness
scores and select pairs for reproduction

• Steps 5 & 6: reproduce N times through cross-
over and mutation and add each child to the new
population

• Step 7: replace the old population with the new
one and return to step 3

• Step 8: print results, output scenario editor file
and terminate

4.1. Step 1: Define Fitness Criteria
The first and most important challenge is to define our
fitness criteria such that scenarios that more closely align
to our learning objectives are ranked higher than those
that are more loosely aligned with the learning
objectives.
In scoping the ASG problem space, it is necessary to
understand the relationship between task learning
objectives and attributes of potential solutions in the
initial population. For our task, a squad will be trained
to clear one or more rooms in a building in a virtual
simulation (e.g., Virtual Battle Space). The room
clearing task involves many coordinated behaviors, but
the learning objectives or standards for the squad can be
distilled into five essential assessments defined
previously in this section.
The complexity of the task can vary and scenarios that
account for varying complexity can be tailored to the
competency (experience or prior knowledge) of the team
members. Each of these task learning objectives and
thereby any associated scenario may be complicated by
the:

• Size and shape of the room
• Number of armed enemy forces present
• Number of non-combatants present
• Obstacles at the doorway or in the room

Given this task and varying complexity, we represented
any given solution in the population of possible scenarios
as a four digit integer where each integer varies from 0 to
9:

• Size and shape of the room - where 0 = simplest
room (e.g., a small rectangular room) and 9 =

most complex room (e.g., large room with
interior corners and multiple doorways)

• Number of armed enemy forces present – where
0 = no enemy forces present, and 9 = 9 enemy
forces present

• Number of non-combatants present – where 0 =
no non-combatants present, and 9 = 9
combatants present

• Obstacles at the doorway or in the room – where
0 = no obstacles and 9 = 9 obstacles present

Assuming it is physically possible to fit 9 enemy forces,
9 non-combatants and 9 obstacles in the smallest room,
this would mean we can generate up to 104 scenarios
using a genetic algorithm approach as shown in Figure 2.

Figure 2. Population Representation Schema

For simplicity, we have elected to measure the
complexity of a scenario by summing the four genes or
attributes that make up a scenario. For example, the
complexity for the chromosome or potential solution
shown in Figure 2 would be 6 (0 + 5 + 0 + 1) where 0
would is the lowest complexity and 36 the highest. If we
align the complexity of scenario with the domain
competency of the team, we would have alignment
within Vygotsky’s (1987) Zone of Proximal
Development (ZPD; Figure 3). This alignment will help
maintain engagement and positive affect during the
training process.

Figure 3. Zone of Proximal Development

We could then use this as a fitness criteria by comparing
the complexity of the scenario and domain competency
of the team. Defining the team domain competency in

four intervals between 0 and 36 provides the following
distribution for team competency:

• Expert (28-36)

• High Skills (19-27)

• Moderate Skills (10-18)

• Low Skills (0-9)

We assume that some long term model of the team’s
domain competence, a pretest, or subject matter
assessment would determine where any particular team
would fall on this competency scale, but the fitness
function for this example task domain would be:

Fitness = domain competency – scenario complexity

For example, a moderately skilled team with a domain
competency score of 17 would be sufficiently challenged
by a scenario with a complexity of 17 ± σ. Assuming σ
= 4, then any scenario in the range of 13-21 would be at
an appropriate level of complexity for that particular
team. While this example may be overly simplified, it
does illustrate the process which could be applied in
more complex training domains. If we wished to
generate the 10 most appropriate scenarios for this team,
we would rank them from lowest difference to highest
difference.

4.2. Step 2: Create an Initial Population
The next step in the process is to generate a set of
individual scenarios (solutions or chromosomes) which
comprise the population. Parameters are represented in
the chromosomes as variables are known as genes.
Normally, the initial population is generated randomly,
but it is critical that sufficient variability is represented in
this initial population or the GA search will produce
limited results. We have chosen to start with a limited set
of four scenarios and then stretch the variability of the
population through Novelty search. In this way, we
might find sufficient variety in future generations if
variability is also represented in the initial population.
For example, an initial population should contain at least
one scenario for each of the levels of complexity (easy,
moderate, and hard) could be expanded using Novelty
search. In our case, we aligned domain complexity
intervals with the competency intervals defined in Step
1. Randomly using 0150 (low complexity), 5273
(moderate complexity), 9911 (high complexity), and
4997 (very high complexity) as a seed population for
Novelty search will result in several solutions that
represent a large portion of the scenario complexity
required for future generations. It also allows us to
expand our approach to represent other learner/team
attributes beyond complexity and competency. The
resulting unique set of scenarios will be sufficient to act
as an initial population for a combinatorial optimization
approach (e.g., crossover and mutation) in subsequent
steps discussed below.

4.3. Step 3: Assess the Fitness of Individuals
The fitness function determines the suitability of an
individual scenario as a potential solution. The candidate
solutions in the population are assessed with respect to
the learning objectives which we used to determine the
variables in the GA search and matched to scenarios
aligning with the competency level of the team.

4.4. Step 4: Select Individuals for Reproduction
In our problem space, ASG, the GA selects the fittest
individual scenarios in the current generation to produce
offspring for the next generation of the population using
a fitness function. In the selection step the goal is to pair
the fittest individuals to let them reproduce and pass their
genes to the next generation. Some number of pairs (two
or more) are selected where the probability of selection
of an individual scenario for reproduction is based on its
fitness score. Again, assuming a team competency of 17,
we selected the top four scenarios in terms of fitness in
our first generation resulting from Novelty search for our
example task:

• 1772
• 1952
• 1970
• 0773

4.5. Step 5: Reproduce using Crossover
Genetic algorithms are usually used to find solutions
meeting the fitness criteria by employing operators like
crossover. A single crossover point in the chromosome
is chosen and the genes prior to the crossover point are
exchanged between the pair of scenarios. For our
example task, using the four fittest scenarios defined in
Step 4, we might see a pairing between 1772 and 1952
resulting in 1972 and 1752 (Figure 4).

Figure 4. Reproduction Using Crossover (also
known as Recombination)

4.6. Step 6: Apply Mutation
In a percentage of the new individuals formed by the
crossover reproduction, a random gene is selected for
change (single point mutation). Mutation randomly
alters a parameter of a randomly chosen event in the
scenario and then reevaluates the mutation to determine
if its fitness has improved. Mutation is critical step in
maintaining diversity in the new population. For our
example task, we might see a random mutation that
changes 1972 to 8972. While this might seem inefficient
since the fitness of the scenario went from 0 to 9, overall

mutation infused the new population with greater
diversity while the average fitness of the population will
continue to optimize.
Note that in addition to crossover and mutation, other less
used operators include addition and deletion (Mitchell,
1996; Zook et al, 2012). Addition inserts a random event
into the scenario at a random location and then
reevaluates the resulting candidate scenario to determine
if its fitness has improved. Deletion removes a random
event from the scenario. For simplicity, we elected to
apply only crossover and mutation operators for our
example task.

4.7. Step 7: Replace Old Population with New

Population
In this step, we discard the old population in favor of the
new population created using crossover and mutation. It
is important for the author to select a large enough
number of iterations to allow the average fitness score of
each new population to trend toward some optimal value
or plateau.

4.8. Step 8: Terminate
In this step, we determine when to terminate the ASG
process and output the results. The ASG process may
continue until a termination trigger is reached:

• a candidate solution is identified that satisfies
some minimum criteria

• a fixed number of generations is reached
• an allocated amount of time has elapsed
• candidate solutions reach a level of fitness

where they plateau (no significant change)

The output of the ASG process is two-fold:

• Printed list of scenarios (e.g., 1772) with their
associated fitness scores

• Scenario editor input (digital file compatible
with common scenario editors for games and
immersive virtual environments used for
training

5. RESULTS
The pseudo code below represents the resulting
combinatorial optimization with novelty search GA used
to generate scenarios based on the example training task
of room clearing:

1. START: Set competency target = 17 with
fitness = domain competency – scenario
complexity and fitness goal = 0

2. Selection: randomly 3 initial scenarios with
significantly different complexity scores
(results = 0342, 5172, 9145)

3. Novelty Search: expand initial population to 10
unique scenarios using single point crossover
and single point mutation (10%) to create 7
additional new scenarios (results = 0342, 5172,
9145, 0372, 5142, 0345, 9142, 5145, 9172,
7372)

4. Compute fitness of each individual scenario
(results for generation 0)

a. 0342 fitness = abs(17-9) = 8
b. 5172 fitness = abs(17-15) = 2
c. 9145 fitness = abs(17-19) = 2
d. 0372 fitness = abs(17-12) = 5
e. 5142 fitness = abs(17-12) = 5
f. 0345 fitness = abs(17-12) = 5
g. 9142 fitness = abs(17-16) = 1
h. 5145 fitness = abs(17-15) = 2
i. 9172 fitness = abs(17-19) = 2
j. 7372 fitness = abs(17-19) = 2

5. REPEAT
a. Selection for mating pool – based on

fitness and stochastic universal
sampling (Baker, 1987)

b. Crossover
c. Mutation (10%)
d. Compute fitness

6. UNTIL population has converged
7. END

6. CONCLUSIONS, CHALLENGES AND NEXT

STEPS
We presented a process and schema for applying a hybrid
(Combinatorial Optimization with Novelty Search) GA
approach to the automated authoring of scenarios for
games and immersive virtual environments. The process
provided wide variability for the resulting scenarios that
were aligned to author specified learning objectives and
learner/team competency to support adaptive instruction.
The ASG approach in this paper is applicable to a broad
number of domains in digital training environments.
While we focused this application of GAs to ASG for
games and virtual simulations, we also see application of
this process to live simulations (e.g., mission rehearsal).
The GA approach to ASG described herein benefits
greatly from more specific domain knowledge resulting
in better objective values. Of course it takes some time
for a person to define schema and to incorporate this
specific knowledge in each new domain, so this process
is not fully automatic, but can be for the end user once
the schema and fitness criteria are defined. A likely next
step is to create an author dashboard for unit commanders
and subject matter experts to lead them through the
process of developing learning objectives and critical
variables as input to the ASG process defined herein.
The primary challenges defined were three-fold: 1)
generating a large number of feasible scenarios which
cover a large portion of the search space for variables like
complexity (e.g., easy, moderate, and hard scenarios) and
which cover the highest percentage of the learning
objectives, 2) ranking scenarios in order of relevance to
a set of author-defined learning objectives, and 3)
providing output from the ASG process which is
compatible with scenario editors for both games (e.g.
Virtual Battle Space) and immersive virtual
environments used for military training. The first two
challenges have been met by the process described in this
paper along with alignment between learner/team

competency and scenario complexity ala Vygotsky’s
ZPD. This tailoring will enhance the relevance of the
scenario for the learner/team and thereby enhance
engagement and learning.
The third challenge has not been met, but is simply a
mechanical translation of the scenario code to a format
that can be understood by scenario editors for games and
virtual simulations. The delay in meeting this challenge
is based on understanding what games/simulations will
have the highest use and thereby the most need for the
ASG process. We anticipate solving this problem very
quickly once a set of target simulation environments is
identified.
One next step includes application of this ASG process
to a diverse set of task domains for both individual
learners and teams. The application of ASG for teams is
particularly challenging given the complexity of
assessing team learning and performance, and will only
strengthen the process over time.
Another next step for GA-based process might also
include alignment with other learner/team states that
moderate learning. For example, another desired end
state for this research is to be able to adapt existing
scenarios or select available scenarios based on
individual learner emotions (e.g., boredom or anxiety) or
behavioral markers (e.g., encouragement) which are
antecedents to team states (e.g., team cohesion). The
emotional state of the learner(s) might also be a criteria
for selecting either a more or less difficult scenario or
injecting support feedback (scaffolding) into an existing
scenario to make it easier per Vygotsky’s (1987) ZPD
(Figure 3).
We also anticipate experimenting with local search after
the crossover and mutation steps to see if that will yield
better solutions or enhance the speed of the ASG process
for more complex domains.
Finally, in spite of the complications in using deep
reinforcement learning (Rowe, Smith, Pokorny, Mott, &
Lester, 2018), we anticipate continuing research in this
area with the hope of enhanced results over time. This
assumes that we will find a process that will be flexible
enough to apply easily in a variety of task domains
trained by military organizations.

ACKNOWLEDGMENTS
The research described herein has been sponsored by the
U.S. Army. The statements and opinions expressed in
this article do not necessarily reflect the position or the
policy of the United States Government, and no official
endorsement should be inferred.

REFERENCES
Aleven, V., McLaren, B. M., Sewall, J., & Koedinger,

K. R. (2006, June). The cognitive tutor authoring
tools (CTAT): preliminary evaluation of
efficiency gains. In International Conference on
Intelligent Tutoring Systems (pp. 61-70). Springer,
Berlin, Heidelberg.

Baker, James E. (1987). "Reducing Bias and
Inefficiency in the Selection Algorithm".
Proceedings of the Second International
Conference on Genetic Algorithms and their
Application. Hillsdale, New Jersey: L. Erlbaum
Associates: 14–21.

Brawner, K. & Sottilare, R. (2018, June). Proposing
Module-level Interoperability for Adaptive
Instructional Systems. In the Exploring
Opportunities to Standardize Adaptive
Instructional Systems (AISs) Workshop of the
18th International Conference of Artificial
Intelligence in Education (AIED), London, United
Kingdom, June 2018.

Brown, D., Bell, B. and Goldberg, B., 2017. Authoring
Adaptive Tutors for Simulations in Psychomotor
Skills Domains. In Proceedings of MODSIM
World 2017, Virginia Beach, VA: NTSA.

Dave, R.H. (1970). Psychomotor levels. In R.J.
Armstrong (Ed.), Developing and Writing
Behavioral Objectives. Tucson, Arizona:
Educational Innovators Press.

Folsom-Kovarik, J.T. & Brawner, K. (2018, May).
Automating Variation in Training Content for
Domain-general Pedagogical Tailoring. In
Proceedings of the 6th Annual Generalized
Intelligent Framework for Tutoring (GIFT) Users
Symposium. US Army Research Laboratory,
Orlando, FL.

Harrow, A. (1972) A Taxonomy of Psychomotor
Domain: A Guide for Developing Behavioral
Objectives. New York: David McKay.

Lehman, J. (2012). Evolution through the search for
novelty. Dissertation: University of Central
Florida.

Lehman, J., & Stanley, K.O. (2011). Novelty search and
the problem with objectives Genetic Programming
Theory and Practice IX (pp. 37-56): Springer.

Liapis, A., Yannakakis, G. N., & Togelius, J. (2015).
Constrained novelty search: A study on game
content generation. Evolutionary computation,
23(1), 101-129.

Luo, L., Yin, H., Cai, W., Zhong, J., & Lees, M. (2016).
Design and evaluation of a data-driven scenario
generation framework for game-based training.
IEEE Transactions on Computational Intelligence
and AI in Games.

Mallawaarachchi, V. (2017). Introduction to Genetic
Algorithms – Including Example Code. Towards
Data Science. Retrieved from:
https://towardsdatascience.com/introduction-to-
genetic-algorithms-including-example-code-
e396e98d8bf3.

Mitchell, Melanie (1996). An Introduction to Genetic
Algorithms. Cambridge, MA: MIT Press. ISBN
9780585030944.

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K.,
Milik, N., & Holland, J. (2006, June). Authoring
constraint-based tutors in ASPIRE. In

International Conference on Intelligent Tutoring
Systems (pp. 41-50). Springer, Berlin, Heidelberg.

Romiszowski, A. (1999). The development of physical
skills: Instruction in the psychomotor domain. In
Instructional-design theories and models: a new
paradigm of instructional theory (Vol. 2).
Mahwah, NJ: Erlbaum.

Rowe, J., Smith, A., Pokorny, R., Mott, B., and Lester,
J., (2018, May). Toward Automated Scenario
Generation with Deep Reinforcement Learning in
GIFT. In Proceedings of the 6th Annual
Generalized Intelligent Framework for Tutoring
(GIFT) Users Symposium. US Army Research
Laboratory, Orlando, FL.

Shiffman, D. (2012). The Nature of Code: Simulating
Natural Systems with Processing. Daniel
Shiffman.

Simpson E.J. (1972). The Classification of Educational
Objectives in the Psychomotor Domain.
Washington, DC: Gryphon House.

Sinatra, A.M. & Sottilare, R. (2016). Chapter 14 ‒
Exploring the Diversity of Domain Modeling for
Training and Educational Applications. In R.
Sottilare, A. Graesser, X. Hu, A. Olney, B. Nye &
A. Sinatra (Eds.) Design Recommendations for
Intelligent Tutoring Systems: Volume 4 – Domain
Modeling. US Army Research Laboratory,
Orlando, Florida. ISBN: 978-0-9893923-9-6
(digital version).

Sottilare, R. A., Brawner, K. W., Goldberg, B. S., &
Holden, H. K. (2012). The generalized intelligent
framework for tutoring (GIFT). Orlando, FL: US
Army Research Laboratory–Human Research &
Engineering Directorate (ARL-HRED).

Sottilare, R. A., Brawner, K. W., Sinatra, A. M., &
Johnston, J. H. (2017). An updated concept for a
Generalized Intelligent Framework for Tutoring
(GIFT). GIFTtutoring. org.

Sottilare, R. & Brawner, K. (2018a, March). Exploring
Standardization Opportunities by Examining
Interaction between Common Adaptive
Instructional System Components. In Proceedings
of the First Adaptive Instructional Systems (AIS)
Standards Workshop, Orlando, Florida.

Sottilare, R. & Brawner, K. (2018b, June). Component
Interaction within the Generalized Intelligent
Framework for Tutoring (GIFT) as a Model for
Adaptive Instructional System Standards. In the
Adaptive Instructional System (AIS) Standards
Workshop of the 14th International Conference of
Intelligent Tutoring Systems (ITS), Montreal,
Quebec, Canada, June 2018.

Sottilare, R.A. & Ososky, S. (2017, July). Defining
Complexity in the Authoring Process for Adaptive
Instruction. In Foundations of Augmented
Cognition (pp. 237-249). Springer International
Publishing.

US Army (2007). Field Manual No. 3-21.8 - The
Infantry Rifle Platoon and Squad. Department of
the Army Washington, DC, 28 March 2007

Vygotsky, L. (1987). Zone of proximal development.
Mind in society: The development of higher
psychological processes, 5291, 157.

Wikipedia. (2018). Brute-Force Search. Retrieved
from: https://en.wikipedia.org/wiki/Brute-
force_search

Zook, A., Lee-Urban, S., Riedl, M.O., Holden, H.K.,
Sottilare, R.A., & Brawner, K.W. (2012, May 29-
June 1). Automated scenario generation: Toward
Tailored and Optimized Military Training in
Virtual Environments. Paper presented at the
International conference on the Foundations of
Digital Games, Raleigh, NC.

AUTHOR BIOGRAPHY
Dr. Robert A. Sottilare is the Adaptive Training
Research Lead at the US Army Natick Soldier Center
where the focus of his research is automated authoring,
instructional management, and analysis tools and
methods for intelligent tutoring systems (ITSs). He is a
co-creator of the Generalized Intelligent Framework for
Tutoring (GIFT), an open source, AI-based adaptive
instructional architecture. He is also the lead editor for
the Design Recommendations for Intelligent Tutoring
Systems book series and founder/chair of the GIFT Users
Symposia. Dr. Sottilare is a member of the IEEE and AI
in Education Society. He leads an IEEE working group
for adaptive instructional system (AIS) standards. He is
widely published and is a frequent speaker at the Defense
& Homeland Security Simulation (DHSS) Workshop,
the Florida AI Research Society, Augmented Cognition,
and AI in Education conferences. Dr. Sottilare is also a
faculty scholar and adjunct professor at the University of
Central Florida where he teaches a graduate level course
in ITS design. He is also a frequent lecturer at the United
States Military Academy (USMA) where he teaches a
senior level colloquium on ITS design. He is the
recipient of two lifetime achievement awards in
Modeling & Simulation: US Army RDECOM (2012;
inaugural recipient) and National Training & Simulation
Association (2015; Governor’s Award – highest level).

	1. Introduction
	2. Scoping the problem of aSG
	3. Examining potential GA Approaches
	3.1. Brute Force Search Approach
	3.2. Novelty Search
	3.3. Combinatorial Optimization Approaches

	4. Combinatorial Optimization with Novelty search
	4.1. Step 1: Define Fitness Criteria
	4.2. Step 2: Create an Initial Population
	4.3. Step 3: Assess the Fitness of Individuals
	4.4. Step 4: Select Individuals for Reproduction
	4.5. Step 5: Reproduce using Crossover
	4.6. Step 6: Apply Mutation
	4.7. Step 7: Replace Old Population with New Population
	4.8. Step 8: Terminate

	5. Results
	6. Conclusions, challenges and next steps

