

U.S. Army Research, Development and Engineering Command

Effective Learner Modeling for Computer-Based Tutoring of Cognitive and Affective Tasks

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Heather Holden, Robert Sottilare, Benjamin Goldberg, and Keith Brawner Army Research Laboratory (ARL)

Unclassified – Approved For Public Release

Presentation Agenda

- Introduction and Background
- Components to Consider for Comprehensive Learner Models
- Initial Ontology and Functionality Vision of a Comprehensive Learner Model within the Generalized Framework for Tutoring (GIFT)
- Conclusions

10100101010101010 01010101010100

Introduction and Background

Research Motivation

- Equipping Computer-Based Tutoring Systems (CBTSs) with the ability to emulate the same benefits of one-toone human tutoring is extremely complex.
- A Warfighter's tutor must: (MG Nick Justice, I/ITSEC 2011)
 - Have knowledge of the operational context being trained
 - Have mechanisms to monitor and adapt to learner fatigue and cognitive load
 - Allow Warfighter's to "train as they fight"
 - Prepare the Warfighter to become their individual best
 - Motivate Social Learning

Learner Models

- The core module of CBTSs
- Used to represent the learner's current state of knowledge at any given time. (Kassim, Kazi, & Ranganath, 2004)
- Ideally can contain information about the learner's individual difference characteristics, his/her past and current competency, performance, cognition, affect, behaviors, etc.
- Commonly referred to as a student model
- Can be constructed/generated in multiple ways with various levels of abstraction

Research Problem and Scope

- No standardization on the structure of learner models or the most appropriate learner modeling techniques that can be reusable across different populations and learning objectives.
- What aspects of the learner should be modeled and how can we achieve the best possible levels of state and performance classification and predictive accuracy?
- How can we address the need for reusability, modularity, and generalizability?

ND1010101010101010 101010101010

Components to Consider for Comprehensive Learner Models

Learner Model Content

Domain-Specific Information	Domain-Independent Information
Represents a reflection of the learner's state and level of knowledge or ability within a specific domain.	Consists of all relevant characteristics of an individual learner.
 Data Includes: Historical Competency (i.e., domain knowledge and skills measured over time) Misconceptions Problem-Solving Strategies 	 Data Includes: Learning Goals Cognitive Aptitudes Measures of Motivational State Learning Preferences (including styles and personality) Interest Demographics Past Performance and Competency (domain-independent) Behavioral/Psychological Measures Cognitive and Affective Dimensions Personal Control Beliefs

Influence of Individual Differences

- Individual difference can have a great impact on learning performance:
 - Information- Processing Allocation
 - Attention Focus and Metacognitive Processes
 - Motivation and Effort Allocation
 - Emotional Regulation and Control
 - State Determinations (Cognitive, Affective, Motivational, Social, Behavioral, etc.)
- Sensor Data vs. Self-Reported Data

Other Learner Model Elements

- Learner acceptance and system interactions may be indicative of current and future system usage behaviors.
 - Includes the evaluation of learner's expertise, skills, attitudes, perceptions, and self-efficacy towards both computers in general and the specified system.
 - Combined with the evaluation of the same perceptions towards learning, learner models could potentially increase explanations of states, performance, and system behavior.

Initial Ontology and Functionality Vision of a Comprehensive Learner Model

GIFT Functional Diagram

Initial Learner Model Ontology

Functionality Vision of GIFT Learner Module

Inputs:

- Weighted model/algorithm containing relevant learner characteristics. (Learning Management Systems (LMS))
- Processed sensor Information (Sensor Module)
- Current performance and other assessment variables (Domain module)
- Survey response data (Survey Authoring Tool)
- Functions:
 - Pre-training and Mid-training Assessment
 - Readiness Monitoring (interpretation cognition and affect)
 - Performance/Progress Monitoring
 - Interaction/Psychomotor behaviors of trainee within the training simulation
- Outputs:
 - Changes of monitoring results (including potential elements contributing to change) (Pedagogical Module)
 - Necessary updates relevant learner characteristics (LMS)

Conclusions

- Learner models with higher-level functionality and a more comprehensive understanding of the learner can produce the following benefits:
 - Provide great strides towards developing/generating learner models that are reusable, modular, and standardized
 - Increase the adaptability of the overall CBTS
- Many challenges ahead towards achieving this level of functionality.
- More research is needed to identify and validate interaction effects and causal relationships between learner model elements and state determinations.

Thank You! & Questions?

10100101010101010 31910101010100

Backup Slides

Individual Differences/Historical Data

