

Educational Data Mining Using GIFT

Authors: Alan Carlin, Chris Nucci, Evan Oster, Diane Kramer, Keith Brawner

© 2016 Aptima, Inc._5/2016

After Action Review

- Several questions related to ITS's motivate this work
- What is the best content for a personalized After Action Review (AAR)?
 - Personalization implies:
 - Understanding learner Knowledges, Skills, and Abilities (KSA's)
 - Understanding KSA's in the training domain
 - Understanding how training measures relate to those KSA's
 - Implementation of a policy to select the AAR given the above

Educational Data Mining

Training data

- Data mining software to extract results from the GIFT LMS
- After Action Review based on the data mining
- Implementation of training policy software that personalizes training based on the information in the AAR
- Improvements to GIFT-powered Newtonian Talk to implement the above
- Improvements to GIFT Cloud to enable a data collection study

GIFT modules affected

Sequence of events

- 1. The student takes a pre-test to assess physics knowledge.
- 2. An adaptive learning algorithm (e.g., MDP) determines which course the student should take next.
- 3. An AAR screen shows the results of the learning algorithm, including level of expertise in each skill.
- 4. The learning algorithm also makes a recommendation for which course the student should take next.
- 5. The student takes the next course.
- 6. The process repeats (go to step 2 above) 9 times.
- 7. After the 9th scenario, the learning loop ceases and the student takes a post-test.
- The LMS was modified to store a custom construct called student state
 Messages were added to support transmission between GIFT modules
- The Domain Module was enhanced to include classes that represent an adaptive AAR policy
 - The Domain Module was also used to get/set user state in the LMS.
- **Tutor UI**: The tutor UI was tweaked to display AAR.

Newtonian Talk

 Use Case: GIFT-powered Newtonian Talk (Zhou et al., 2015

Data mining model

- State is defined as a k-tuple of numbers, e.g., <3,5,5,1>
 - For this study, we automatically extracted these from the measures in the LMS
- Actions are the options available to the tutor
 - Selection of modules and AAR
- Transition is the modeled effect of each action
- Observations are the modeled probability of receiving a measure, given learner state

- Taken from IRT:
$$p(correct) \frac{1}{1+e^{\sum_k w_i^k (d_i^k - \theta_j^k)}}$$

 This corresponds to a Partially Observable Markov decision Process (POMDP) model

Student Data

Student ID	Seq Numbe r	Scenario	Score	Time
111	1	Lesson A	10/10	5s
111	2	Lesson C	1/10	10s
111	3	Lesson B	7/10	1s
192	1	Lesson A	5/10	5s
192	2	Lesson D	1/10	10s

Lesson Data

Scenario	Feature 1
Lesson A	Video
Lesson B	Quiz
Lesson C	Speaking

Student Data

Inference via Machine Learning

Student ID	Seq Numbe r	Scenario	Score	Time	Skill 1	Skill 2	Skill 3
111	1	Lesson A	10/10	5s	Untrained	Untrained	Untrained
111	2	Lesson C	1/10	10s	Beginner	Untrained	Untrained
111	3	Lesson B	7/10	1s	Beginner	Untrained	Untrained
192	1	Lesson A	5/10	5s	Untrained	Untrained	Untrained
192	2	Lesson D	1/10	10s	Untrained	Untrained	Untrained

Lesson	Data	Inference via Machine Learning				
Scenario	Feature 1	Skill 1 Applicability	Skill 1 Difficulty	Skill 2 Applicability		
Lesson A	Video	Very	Easy	N/A		
Lesson B	Quiz	N/A	N/A	Moderate		
Lesson C	Speaking	N/A	N/A	N/A		

Student Data

Inference via Machine Learning

Student ID	Seq #	Scenario	Score	Time	Skill 1	Skill 2	Skill 3
111	1	Lesson A	10/10	5s	θ ¹¹¹ (1)	$\theta_2^{111}(1)$	$\theta_3^{111}(1)$
111	2	Lesson C	1/10	10s	θ ¹¹¹ (2)	$\theta_2^{111}(2)$	$\theta_3^{111}(2)$
111	3	Lesson B	7/10	1s	θ ¹¹¹ (3)	$\theta_{2}^{111}(3)$	θ ¹¹¹ (3)
192	1	Lesson A	5/10	5s	θ ¹¹¹ (1)	$\theta_2^{111}(1)$	$\theta_3^{111}(1)$
192	2	Lesson D	1/10	10s	θ ¹¹¹ (2)	$\theta_{2}^{111}(2)$	$\theta_{3}^{111}(2)$

Lesson Data

Inference via Machine Learning

Material	Feature 1	Skill 1 Applicability	Skill 1 Difficulty	Skill 2 Applicability
Material 1	Video	a_1^1	d_1^1	a_2^1
Material 2	Quiz	a_1^2	d_1^2	a ₂ ²
Material 3	Speaking	<i>a</i> ³ ₁	d_1^3	a_{3}^{3}

POMDP Overview

Sequential Optimization under Uncertainty

Intelligent mathematical modeling approach called POMDP (Partially Observable Markov Decision Process

Reasoning under Uncertainty (left) Sequential Optimization Model (right)

Model

Score 1 ... Score n

Model for GIFT

Course	Name	draw pin	draw spring	draw anything	draw pinned	draw freeform	draw ramp
Playground 1, Puzzle 1	Tutorial 1						
Playground 1, Puzzle 2	Tutorial 2						
Playground 1, Puzzle 3	Tutorial 3						
Playground 1, Puzzle 4	Tutorial 4						
Playground 1, Puzzle 5	Tutorial 5						
Playground 2, Puzzle 1	Impulse 1	х	х				
Playground 2, Puzzle 2	Impulse 2	Х	х				
Playground 2, Puzzle 3	Impulse 3	Х	х				
Playground 3, Puzzle 1	Momentum 1			х	х		
Playground 3, Puzzle 2	Momentum 2			х	х		
Playground 3, Puzzle 3	Momentum 3			х	х		
Playground 4, Puzzle 1	Energy 1					х	х
Playground 4, Puzzle 2	Energy 2					х	х
Playground 4, Puzzle 3	Energy 3					Х	х

Data mining results (1)

- We collected data for 42 students running through sequences.
 - We extracted this data, used it to learn a model

Course #	Ge ner al	Draw Anyth ing	Draw Freeform	Draw Pin	Draw Pinned	Draw Ramp	Draw Spring	User Ramp	User Spring
0	2	1	1	2	2	0	0	0	1
1	3	1	1	3	3	0	0	0	1
2	3	2	2	3	3	1	1	0	2
4	3	3	2	5	4	1	1	0	2
5	7	3	2	5	5	2	2	1	2
6	7	4	3	6	5	2	2	2	3
7	8	5	4	7	5	2	2	3	3
(Jn	e stu	ident's	s pro	gres	sion			

Data mining results (2)

Course ID	Sampled Diffiulty
p2p1.course.xml	7
p2p2.course.xml	6
p2p3.course.xml	6
p3p1.course.xml	4
p3p2.course.xml	5
p3p3.course.xml	4
p4p1.course.xml	1
p4p2.course.xml	5
p4p3.course.xml	5
tutorials.course.xml	1

Course difficulties

Transition probability for one course, for trainees who are currently at Level 0

0	1	2	3	4	5	6	7	8	9	
71.1%	28.3%	.6%	0	0	0	0	0	0	0	APTIMA
										Human-Centered Engineering

Simulated students

- We simulated 10000 students using the learned data model
 - We used the learned model to compare an adaptive to a random training strategy in Newton's Playground

Average Skill Level

Next steps (1)

Use for AAR

Use for adaptive training

Next steps (1)

Use for AAR

Use for adaptive training

Conclusions

- We produced techniques for machine learning information saved to an LMS in GIFT
 - The technique populates a model of the domain
- We ran a data collection study, to learn the model parameters
 - Based on this study, we can simulate students
- The work involved several enhancements so that we could run the study on GIFT Cloud and recommend next content
- Next step, run an adaptive training study
 - Populate with AAR

Alan Carlin | Capability Lead – Advanced Learning Management acarlin@aptima.com Direct:

Aptima, Inc. | www.aptima.com 12 Gill Street Street, Suite 1400 Woburn, MA 01801