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Research Question

How can we leverage simulated students to 
generate synthetic data for training generalized 
tutorial planners in GIFT?
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Reinforcement Learning

 Problem: Devise 
software agent that 
learns how to behave in 
order to maximize 
numerical reward

 No external supervision

 Delayed rewards

Adapted from Sutton & Barto (1998)
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Markov Decision Processes

 Reinforcement learning problems are often modeled 
as Markov decision processes (MDP)

 Defined by a tuple
• Environment state set 
• Action set
• State transition model 
• Reward model

 Solution is optimal policy



Policy Learning

 Online learning
• Interleave data collection and model operation

• Temporal-difference methods

• Works well with simulation-generated training data

 Offline learning
• Separate data collection and model operation

• Certainty equivalent learning (Kaelbling, Littman & 
Moore 1996)

• Approximate state-transition model and reward 
model using collected corpus
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Related Work

 AIED Workshop Series on Simulated Learners 
(AIED-2013, AIED-2015)

 SimStudent (Matsuda, Cohen, & Koedinger, 2014)

 Simulated students in RL-based tutoring systems 
(Beck, Woolf, & Beal, 2000; Folsom-Kovarik, Sukthankar, & Schatz, 2013; Wang et 
al., 2017)

 Simulated users in spoken dialogue systems (Schatzmann, 

Weilhammer, & Young, 2006; Young et al., 2013)
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Representational Granularity

 Varying levels of temporal 
granularity

 Fine-grained representation

SimStudent (Matsuda, Cohen, 

& Koedinger, 2014)

 Coarse-grained 
representation

SimGrad (LeLei & McCalla, 

2015)

(Matsuda, Cohen, & Koedinger, 2014)
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Computational Framework

 Expert systems

 Closed-form expressions
• Weighted sum (Frost & 

McCalla, 2015)

• Item response theory 
(Hernando, Guzman, & Conejo, 
2013)

 Machine learned models
• Linear regression (Beck, 

Woolf, & Beal, 2000)

• Hidden Markov models 
(Pardos & Yudelson, 2013)

• LSTM neural networks 
(Wang et al., 2017)
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Model Complexity

 Number of parameters

 Linear vs non-linear functions

 Tabular vs algorithmic simulations (VanLehn, Ohlsson, 

& Nason, 1993)

• Tabular models are efficient and easily authored

• Algorithmic models generalize to novel situations

 Run-time efficiency
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Learning Process

 Cognitive simulations
• Problem-solving behavior 

(Matsuda, Cohen, & Koedinger, 
2014)

• Academic performance 
(LeLei & McCalla, 2015)

 Affective simulations
• Emotion regulation 

(Sabourin et al., 2013)

 Social simulations
• Peer-to-peer learning 

(Frost & McCalla, 2013)
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Model Validity

 Not all simulated students are validated

• Designer intuition

• Theoretically grounded

• Empirically derived

 Designer bias 

 Population-dependent aspects of learning are 
difficult to estimate
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Tutorial Planning for 
Counterinsurgency Training

Adaptive Hypermedia Simulation-Based Training

UrbanSim
(McAlinden, Pynadath, & Hill, 2014)

UrbanSim Primer



COIN Training Testbed

UrbanSim Primer
 Adaptive hypermedia 

learning environment

 Range of doctrinal concepts 
of COIN

• Population support

• Clear-Hold-Build

• Intelligence gathering

 Preliminary instruction on 
UrbanSim usage



COIN Training Testbed

UrbanSim
 Simulation-based learning 

environment

 Role: Learner is battalion 
commander

 Objective: Maximize civilian 
support for host nation 
government

 PsychSim social simulation 
engine



Generalized Instructional 
Strategies for COIN Training

 High-level instructional strategies

• Single-topic coaching

• Multi-concept review

• Feedback on unproductive learning behaviors

 ICAP-inspired implementation strategies (Chi, 2009)

• Constructive

• Active

• Passive



GIFT Pedagogical Module



GIFT Pedagogical Module



Toward Simulated Students for 
COIN Training

 Bipartite model of simulated students
• Student behavior
• Learning outcomes

 Tabular joint probability distribution
• Values estimated from pilot study data
• Data sparsity challenges

 Granularity
• UrbanSim Primer: One lesson
• UrbanSim: One turn of simulation



Toward Simulated Students for 
COIN Training

 Devise simulated student for each MDP

 Domain-independent state features

• Student knowledge & traits

• Task states

• Pedagogical history

 Model student responses to pedagogical actions

 Rewards model student learning gains

 Population of simulated students
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Conclusions

 Simulated students show promise for generating synthetic 
data to train data-driven tutorial planners

 Design of simulated students presents several questions: 

• Representational granularity

• Computational framework

• Model complexity

• Target learning process

• Model validity

 We are devising simulated students to support RL-based 
tutorial planning for COIN training in GIFT



Future Directions

 Conduct studies validating simulated students by comparing 
synthetic data with human student data

 Devise tools and workflows for incorporating tutorial planning 
policies induced from simulated students in GIFT

 Provide tools for non-expert users to work with simulated 
students, including creating, configuring, sharing, and refining 
simulated student models

 Conduct GIFT studies with Mechanical Turk populations to 
complement synthetic data from simulated students
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