Toward Simulated Students for Reinforcement Learning-Driven Tutorial Planning in GIFT

Jonathan Rowe

Bob Pokorny

Benjamin Goldberg

Bradford Mott

James Lester

North Carolina State University

Tutorial Planning

Tutorial Planning

- Hints
- Feedback
- Scenario adaptations
- Embedded assessments
- Remedial instruction

Data-Driven Tutorial Planning

Data-Driven Tutorial Planning

Data-Driven Tutorial Planning

How can we leverage *simulated students* to generate synthetic data for training generalized tutorial planners in GIFT?

- Reinforcement Learning-Based Tutorial Planning
- Design Issues for Simulated Students
- Implementing Simulated Students for COIN
 Training
- Conclusions and Future Directions

Outline

Reinforcement Learning-Based Tutorial Planning

- Design Issues for Simulated Students
- Implementing Simulated Students for COIN
 Training
- Conclusions and Future Directions

Reinforcement Learning

Problem: Devise software agent that learns how to behave in

order to maximize numerical reward

- No external supervision
 - Delayed rewards

Adapted from Sutton & Barto (1998)

Markov Decision Processes

- Reinforcement learning problems are often modeled as Markov decision processes (MDP)
- Defined by a tuple $\mathcal{M} = (\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R})$
 - Environment state set \mathcal{S}
 - Action set $\mathcal A$
 - State transition model $\mathcal{P}: \{\mathcal{S} \times \mathcal{A} \times \mathcal{S}\} \rightarrow [0, 1]$
 - Reward model $\mathcal{R}: \{\mathcal{S} \times \mathcal{A} \times \mathcal{S}\} \to \mathfrak{R}$
- Solution is optimal policy $\pi^*: \{S\} \rightarrow \mathcal{A}$

Policy Learning

Online learning

- Interleave data collection and model operation
- Temporal-difference methods
- Works well with simulation-generated training data

Offline learning

- Separate data collection and model operation
- Certainty equivalent learning (Kaelbling, Littman & Moore 1996)
- Approximate state-transition model and reward model using collected corpus

- Reinforcement Learning-Based Tutorial Planning
- Design Issues for Simulated Students
- Implementing Simulated Students for COIN
 Training
- Conclusions and Future Directions

 Reinforcement Learning-Based Tutorial Planning

Design Issues for Simulated Students

- Implementing Simulated Students for COIN
 Training
- Conclusions and Future Directions

Definition:

"... computer systems that simulate human students as they learn educationally significant subject matter ... "

(VanLehn, Ohlsson, & Nason, 1993)

Applications

- 1. Provide teachers with practice opportunities
- 2. Serve as co-learners for human students
- 3. Conduct formative evaluations of learning materials

Definition:

"... computer systems that simulate human students as they learn educationally significant subject matter ... "

(VanLehn, Ohlsson, & Nason, 1993)

Applications

- 1. Provide teachers with practice opportunities
- 2. Serve as co-learners for human students
- 3. Conduct formative evaluations of learning materials
- 4. Enable ITS authoring systems using authoring-by-tutoring (Matsuda, Cohen, & Koedinger, 2014)
- 5. Generate synthetic data for training data-driven intelligent tutors (Beck, Woolf, & Beal, 2000; Wang et al., 2017)

Definition:

"... computer systems that simulate human students as they learn educationally significant subject matter ... "

(VanLehn, Ohlsson, & Nason, 1993)

Applications

- 1. Provide teachers with practice opportunities
- 2. Serve as co-learners for human students
- 3. Conduct formative evaluations of learning materials
- 4. Enable ITS authoring systems using authoring-by-tutoring (Matsuda, Cohen, & Koedinger, 2014)
- 5. Generate synthetic data for training data-driven intelligent tutors (Beck, Woolf, & Beal, 2000; Wang et al., 2017)

Related Work

- AIED Workshop Series on Simulated Learners (AIED-2013, AIED-2015)
- SimStudent (Matsuda, Cohen, & Koedinger, 2014)
- Simulated students in RL-based tutoring systems
 (Beck, Woolf, & Beal, 2000; Folsom-Kovarik, Sukthankar, & Schatz, 2013; Wang et al., 2017)
- Simulated users in spoken dialogue systems (Schatzmann, Weilhammer, & Young, 2006; Young et al., 2013)

Design Dimensions for Simulated Students

- Representational Granularity
- Computational Framework
- Model Complexity
- Learning Process
- Model Validity

Design Dimensions for Simulated Students

Representational Granularity

- Computational Framework
- Model Complexity
- Learning Process
- Model Validity

- Varying levels of temporal granularity
- Fine-grained representation
 SimStudent (Matsuda, Cohen, & Koedinger, 2014)
 - Coarse-grained representation
 - SimGrad (LeLei & McCalla, 2015)

(Matsuda, Cohen, & Koedinger, 2014)

Design Dimensions for Simulated Students

- Representational Granularity
- Computational Framework
- Model Complexity
- Learning Process
- Model Validity

Computational Framework

- Expert systems
- Closed-form expressions
 - Weighted sum (Frost & McCalla, 2015)
 - Item response theory (Hernando, Guzman, & Conejo, 2013)
- Machine learned models
 - Linear regression (Beck, Woolf, & Beal, 2000)
 - Hidden Markov models (Pardos & Yudelson, 2013)
 - LSTM neural networks (Wang et al., 2017)

Design Dimensions for Simulated Students

#intelliMEDIA group

- Representational Granularity
- Computational Framework
- Model Complexity
- Learning Process
- Model Validity

Model Complexity

- Number of parameters
- Linear vs non-linear functions
- Tabular vs algorithmic simulations (VanLehn, Ohlsson, & Nason, 1993)
 - Tabular models are efficient and easily authored
 - Algorithmic models generalize to novel situations
- Run-time efficiency

Design Dimensions for Simulated Students

SintelliMEDIA group

- Representational Granularity
- Computational Framework
- Model Complexity
- Learning Process
- Model Validity

Learning Process

Cognitive simulations

- Problem-solving behavior (Matsuda, Cohen, & Koedinger, 2014)
- Academic performance (LeLei & McCalla, 2015)
- Affective simulations
 - Emotion regulation (Sabourin et al., 2013)
- Social simulations
 - Peer-to-peer learning (Frost & McCalla, 2013)

Design Dimensions for Simulated Students

SintelliMEDIA group

- Representational Granularity
- Computational Framework
- Model Complexity
- Learning Process
- Model Validity

Model Validity

- Not all simulated students are validated
 - Designer intuition
 - Theoretically grounded
 - Empirically derived
- Designer bias
- Population-dependent aspects of learning are difficult to estimate

- Reinforcement Learning-Based Tutorial Planning
- Design Issues for Simulated Students
- Implementing Simulated Students for COIN
 Training
- Conclusions and Future Directions

- Reinforcement Learning-Based Tutorial Planning
- Design Issues for Simulated Students
- Implementing Simulated Students for COIN
 Training
- Conclusions and Future Directions

Tutorial Planning for Counterinsurgency Training

Adaptive Hypermedia

Simulation-Based Training

UrbanSim Primer

UrbanSim (McAlinden, Pynadath, & Hill, 2014)

COIN Training Testbed

UrbanSim Primer

- Adaptive hypermedia learning environment
- Range of doctrinal concepts of COIN
 - Population support
 - Clear-Hold-Build
 - Intelligence gathering
- Preliminary instruction on UrbanSim usage

COIN Training Testbed

- Simulation-based learning environment
- Role: Learner is battalion commander
- Objective: Maximize civilian
 support for host nation
 government
 - PsychSim social simulation engine

UrbanSim

Generalized Instructional Strategies for COIN Training

- High-level instructional strategies
 - Single-topic coaching
 - Multi-concept review
 - Feedback on unproductive learning behaviors
- ICAP-inspired implementation strategies (Chi, 2009)
 - Constructive
 - Active
 - Passive

GIFT Pedagogical Module

fintelli

GIFT Pedagogical Module

Sintelli

Toward Simulated Students for COIN Training

Bipartite model of simulated students

- Student behavior
- Learning outcomes
- Tabular joint probability distribution
 - Values estimated from pilot study data
 - Data sparsity challenges
- Granularity
 - UrbanSim Primer: One lesson
 - UrbanSim: One turn of simulation

Toward Simulated Students for COIN Training

- Devise simulated student for each MDP
- Domain-independent state features
 - Student knowledge & traits
 - Task states
 - Pedagogical history
- Model student responses to pedagogical actions
- Rewards model student learning gains
- Population of simulated students

- Reinforcement Learning-Based Tutorial Planning
- Design Issues for Simulated Students
- Implementing Simulated Students for COIN
 Training
- Conclusions and Future Directions

- Reinforcement Learning-Based Tutorial Planning
- Design Issues for Simulated Students
- Implementing Simulated Students for COIN
 Training
- Conclusions and Future Directions

Conclusions

- Simulated students show promise for generating synthetic data to train data-driven tutorial planners
- Design of simulated students presents several questions:
 - Representational granularity
 - Computational framework
 - Model complexity
 - Target learning process
 - Model validity
 - We are devising simulated students to support RL-based tutorial planning for COIN training in GIFT

Future Directions

- Conduct studies validating simulated students by comparing synthetic data with human student data
- Devise tools and workflows for incorporating tutorial planning policies induced from simulated students in GIFT
- Provide tools for non-expert users to work with simulated students, including creating, configuring, sharing, and refining simulated student models
 - Conduct GIFT studies with Mechanical Turk populations to complement synthetic data from simulated students

Acknowledgments

- NCSU Army ROTC Program
- Institute for Creative Technologies
- Vanderbilt University
- Dignitas Technologies

Support provided by the U.S. Army Research Laboratory under cooperative agreement W911NF-15-2-0030.