

Learner Models in the Generalized Intelligent Framework for Tutoring: Current Work and Future Directions

Gregory A. Goodwin, U.S. Army Research Laboratory GIFTSym 5, Orlando, FL May 10, 2017

Research Vectors

Real Time Dynamic Processes

Individual Learner & Team Modeling

- Learner & Team Data Acquisition
- Learner & Unit State Classification
 - Cognitive
 - Affective
 - Physical

Shared States

Social, Trust

Instructional Management Principles

- Real-time Adaptation
- Applied Learning Theory
- Modeling Behaviors of Expert Human Tutors

Domain Modeling

- Training domains matched to operational dimensions
 - Definition
 - Complexity
 - Alignment
- Training in the wild

Offline Processes

Authoring Tools & Methods

- Standards & Content Reuse
- Automated Authoring Methods
 - Expert Modeling
 - Game-Tutor Middleware
- Authoring Job Aids
- Interface Specifications

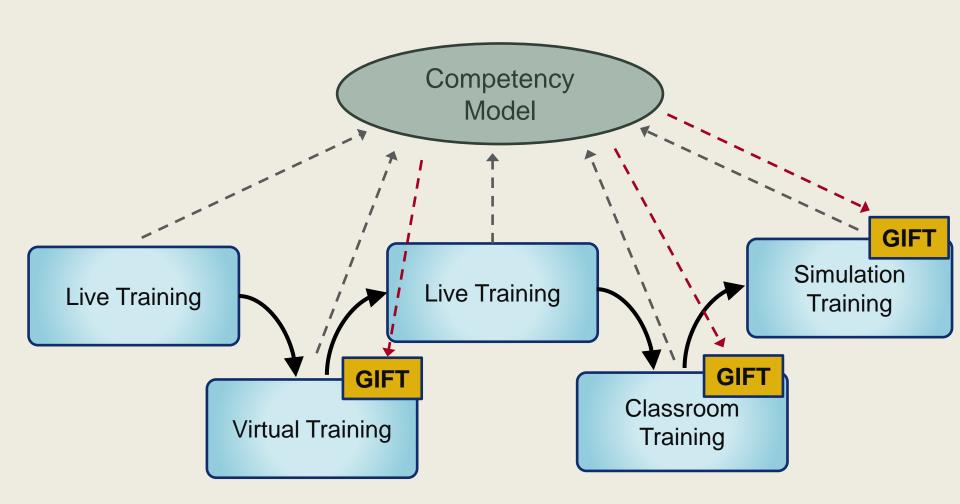
Evaluation Tools & Methods

- Training
 Effectiveness
 - Performance
 - Learning
 - Retention
 - Time to Competency
 - Transfer
- · Data Analytics

Architectural/Ontological Support

Generalized Intelligent Framework for Tutoring

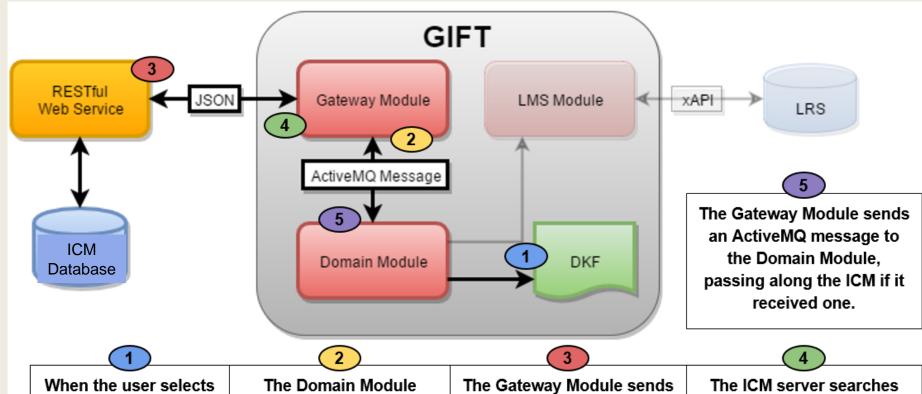
- Existing training systems & games
- Existing training content
- New adaptive tools & methods
- Improved Performance
- Improved Knowledge & Skill Acquisition
- Longer Retention & Less Refresher Training
- Shorter Time to Competency
- Improved Transfer to Operational Environments



	Learner Measure Category	Trait-Like (Outer Loop Adaptation)	State-Like (Inner Loop Adaptation)
Content Dependent	Cognitive	Relevant prior cognitive experience/knowledge/training	Comprehension of concepts presented in the training
	Psychomotor	Relevant prior psyhomotor Competencies	Measures of Skill improvement
	Affective	Long-Term	Arousal and emotions in response to the training
Content Independent	Cognitive	Meta-cognitive skills	Attention, Cognitive Workload
	Psychomotor	Physical strength, stamina, sensory acuity	Endurance and fatigue
	Affective	Personality Traits, general test anxiety	Arousal, emotions resulting from factors independent of training

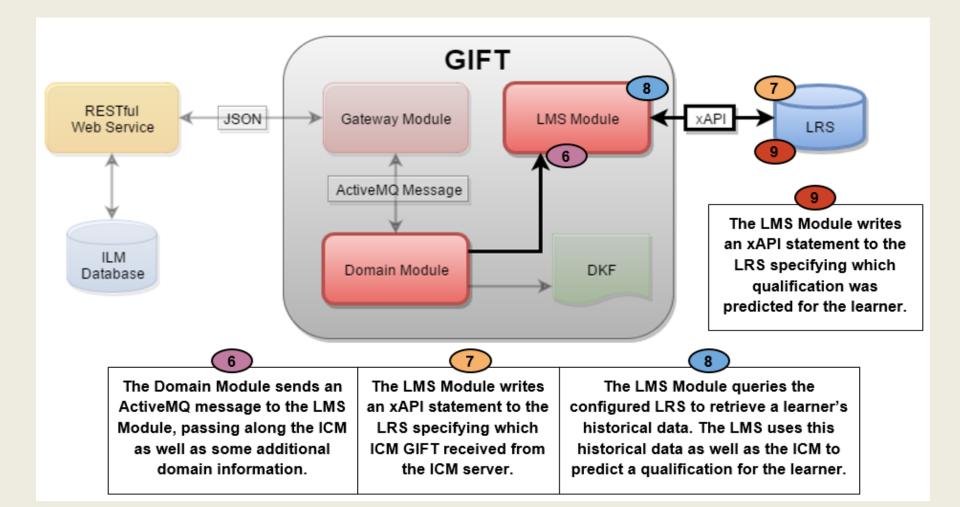
Competency Modeling

Interoperable Competency Models



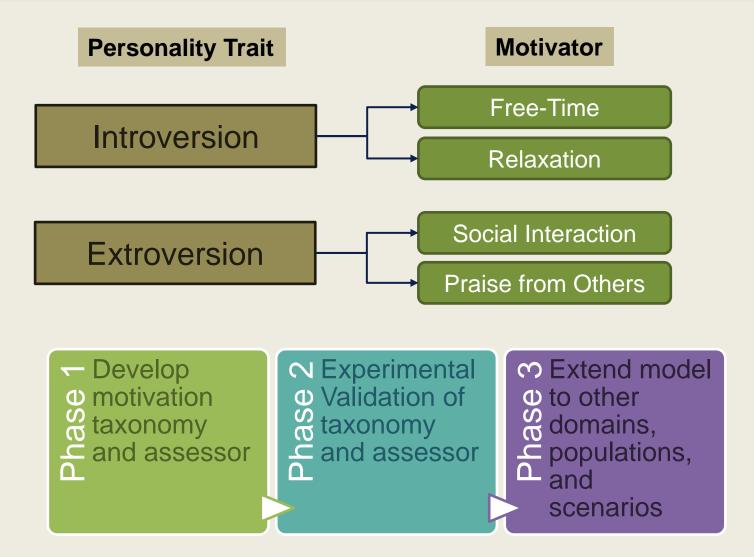
- Marksmanship Use Case
- Development of an Interoperable Competency Model that lives outside of GIFT.
- Competencies must be updated at run-time (forgetting, new experiences & training, etc.)
- Approach involves a competency model which defines or maps learner activities to competencies along with a database of all learner activities.
- Database employs the xAPI format developed by the DoD Advanced Distributed Learning Lab.

Interoperable Competency Model


When the user selects a course, the course concepts are read from the DKF into the Domain Module.

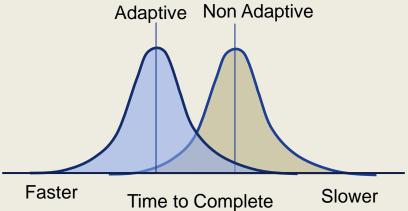
The Domain Module sends an ActiveMQ message to the Gateway Module, passing along the course concepts. The Gateway Module sends an HTTP GET request to the ICM server, passing along the course concepts as a query parameter. The ICM server searches and retrieves ICMs relating to the course concepts and returns them in JSON format.

Interoperable Competency Model (cont)

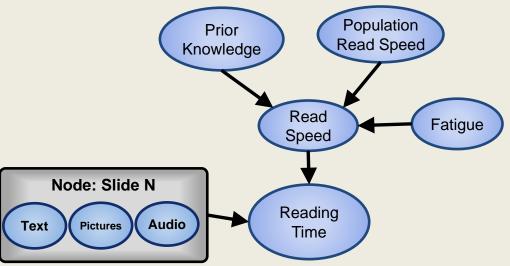


	Learner Measure Category	Trait-Like (Outer Loop Adaptation)	State-Like (Inner Loop Adaptation)
Content Dependent	Cognitive	Relevant prior cognitive experience/knowledge/training	Comprehension of concepts presented in the training
	Psychomotor	Relevant prior psyhomotor experience or training,	Measures of Skill improvement
	Affective	Fears, likes, goals, attitudes relevant to the training.	Arousal and emotions in response to the training
Content Independent	Cognitive	Intellect/Aptitude, Memory, Meta-cognitive skills	Attention, Cognitive Workload
	Psychomotor	Personality, Motivation, &	Endurance and fatigue
	Affective	Personal Affect eneral test anxiety	Arousal, emotions resulting from factors independent of training

Matching Motivators to Personality Traits



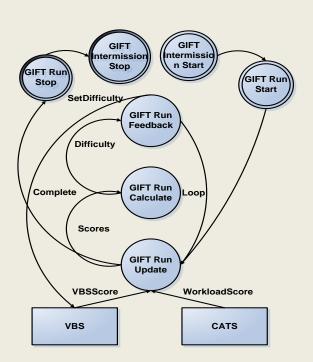
	Learner Measure Category	Trait-Like (Outer Loop Adaptation)	State-Like (Inner Loop Adaptation)
Content Dependent	Cognitive	Relevant prior cognitive experience/knowledge/training	Comprehension of concepts presented in the training
	Psychomotor	Relevant prior psyhomotor experience or training,	Me Acquisition improvement Rate
	Affective	Fears, likes, goals, attitudes relevant to the training.	Arousal and emotions in response to the training
Content Independent	Cognitive	Intellect/Aptitude, Memory, Meta-cognitive skills	Attention, Cognitive Workload
	Psychomotor	Physical strength, stamina, sensory acuity	Endurance and fatigue
	Affective	Personality Traits, general test anxiety	Arousal, emotions resulting from factors independent of training

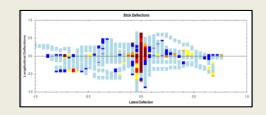

Predicting Training Time in GIFT

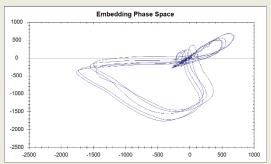
One advantage of adaptive training is greater training efficiency (reduced time to train to criterion)

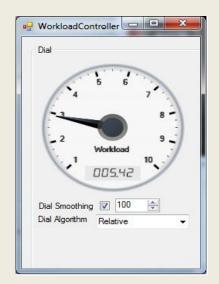
- Employ a probabilistic model to predict training time for learners that accounts for characteristics of learners, content, and training strategy.
- Implications for ROI, Authoring, and Run-time Evaluation

	Learner Measure Category	Trait-Like (Outer Loop Adaptation)	State-Like (Inner Loop Adaptation)
Content Dependent	Cognitive	Relevant prior cognitive experience/knowledge/training	Comprehension of concepts presented in the training
	Psychomotor	Relevant prior psyhomotor experience or training,	Measures of Skill improvement
	Affective	Fears, likes, goals, attitudes relevant to the training.	Arousal and emotions in response to the training
Content Independent	Cognitive	Intellect/Aptitude, Memory, Meta-cognitive skills	Attention, Cognitive Workload
	Psychomotor	Physical strength, stamina, sensory acuity	Cognitive Workload
	Affective	Personality Traits, general test anxiety	Arousal, emotions resulting from factors independent of training




Assessment of Trainee State: Cognitive Workload




Cognitive Assessment Toolkit:

Uses behavioral and physiological measures to assess cognitive workload

Unobtrusive Physiological and Adaptive Training (UPCAT)

- Combination of GIFT, VBS3 and CATS
- Advances training according to trainee performance and workload

(b) Run State

Conclusions and Future Directions

- Research on Learner Modeling is progressing in all quadrants of our framework.
- Learner modeling is a complex task and much remains to be done
- Future challenge areas include:
 - Integration with future learning architecture (e.g., the Total Learning Architecture)
 - Continued research on lightweight sensors for unobtrusive measurement of learner states.
 - Research into how to best adapt training to maximize efficiency and effectiveness