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Distributed AIED: The Future
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What is a Multi-Agent ITS?

 Goal-Oriented Services as Agents

 Designed with a certain role/purpose

 Adapts to available information

 Uses best available information (avoid hard fails on bad info)

 Communication Language

 Exchanges information using messages

 Declarative (claims) not imperative (commands)
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Goals for Multi-Agent ITS Architecture in GIFT

 Rapid Development

 Quickly build new agents

 Map ontologies

 Integrate with new systems & protocols rapidly

 Hot-swap agents

 Persistent & Incremental Learning

 Record data about events

 Optimize performance based on data

 Combine data with human expert claims
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GIFT Current Service Communication Patterns

Source: Sottilare, R., & Goldberg, B. (2012). Designing adaptive computer-based tutoring systems 

to accelerate learning and facilitate retention. Cognitive Technology, 17(1), 19-33.
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Additions for GIFT Targeted in this Phase

 Registering Services: Adding Services at Runtime

 Currently: Only possible using ActiveMQ protocol

 Need to have course declare mandatory/optional services

 Need to resolve/hotswap between alternate services

 Interoperability: Frameworks with Different Messages

 Currently: Only supports GIFT registered messages

 Need translate between different message ontologies

 Unified Agent Pattern

 Currently: Agents only experimentally hard-coded in modules

 Need a general way to attach agents to modules

 Need a place for agents/gateways that are not module-specific
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The Target Process: Registering Agents at Runtime

1. Module & Agent Design Step: Modules and agents designed to 

receive/send specific message types

2. Ontology Map Step: Declare mappings between messages from 

different frameworks in a generic serialized format

3. Course Design Step:

 Configure course to declare module software agents (e.g., Java)

 Configure course to listen to external gateways/repositories for agents

 Configure to declare what ontology mappings are used by each gateway

4. Course Runtime: 

 Initialize agents in each module: Start Java gateway listeners/services

 Agent Messaging: Send/receive. Advanced patterns (e.g., proposals) occur.
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Registering: SuperGLU (Generalized Learning Utils)

 Service-Oriented: All functions in services

 Gateway Model: No central bus, uses distributed gateways

 Anonymous Services: Messages filtered by semantics
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SuperGLU: Why was it made?

 Rapid service/agent creation:

 Build to receive and send information (messages)

 Emerging message ontology: Standard ITS logging

 Abstract connection to storage that saves/queries data

 HTML5: Client-side services in JS

 Docker containers: Spin up on cloud server

 Hot-swapping:

 Like a distributed publish/subscribe or fan-out

 Plug-and-play (connect/disconnect service to a gateway)

 No central hub (connect/disconnect gateways on-the-fly)
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SuperGLU: What does it add?

 Services should care about information
 Content of message should determine handling

 Services should act like agents (e.g., “No reply? Ask again!”)

 Message Bus Wrappers:
 Each service only sees its own gateway

 Gateways handle message transport:
 Cross-domain JS services (HTML5 postMessage)

 Real-time client-server (socket.io Websockets)

 Server-to-server (wrap protocols like ActiveMQ/AMQP/Stomp)

 Only gateways know about URL’s and networks

 GIFT Integration Points:
 AgentContainer Module: New module to register agents/gateways

 Existing Modules: Register agents inside a module also

Child Frame UI Frame Parent
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Ontology Mapping: Translating Messages

System A Sent:

System B Replied:

Ontology Broker solution:

- Register & store explicit ontologies
- Multiple Types: Message formats and types

- Convert messages from one ontology to another

Sometimes, messages can be unclear:
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Ontology Broker: High Level View
- Three ways to do ontology mapping: 

- Declarative (e.g., from OWL/JSON): This is the one currently implemented

- Direct functions (e.g., custom converters): Simple to implement, but would be for ad-hoc cases

- Remote fall-through: Send request to external OntologyBrokerService. Also simple, but would

just be a dispatcher to one of the other two.

- Inventory of messages and mappings are in a Google Doc

- About a dozen mappings implemented that we are testing right now

- Broker searches for any series of maps from the current message to an endpoint in the target format

OntologyBroker

- mappings: List of <MessageMapping> to detect 

that a mapping can be made and do that mapping

- defaultTemplates: <list> of partially-complete 

messages that can be finished using a map

FindPathAndConvertMessage(BaseMessage

inMsg, MessageType inMsgType, MessageType

targetMsgType, boolean strict): Main function call 

for conversion

MessageType
- name = str

- minVersion = float or null

- maxVersion = float or null

- MessageTypeTemplate = MessageTemplate

MessageMapping
- InMsgType = MessageType>

- OutMsgType = MessageType

- InDefaultMsg = MessageTemplate

- OutDefaultMsg = MessageTemplate

- FieldMappings = List of <FieldMaps>

MessageTemplate
- DefaultFieldData = List of <FieldData>

FieldMap
- InFields = List of <FieldData>

- OutFields = List of <FieldData>

- Conversion = <DataConverter>

FieldData
- data: obj

NestedFieldData
- indices: List of <container 

type, key>, so < str, 

int/float/str/bool>

Note: By far the most common field type, a value in 

some nested lists, dicts, token/objs

docs.google.com/spreadsheets/d/1yLAJs5YyCiiwvvCCU2WLKtClb2I8M3d7_af-7864KSM/edit


Framework Case 1:

Integrating OS VHT



17

Proof of Concept: 

Unify GIFT, VH, and SuperGLU ecosystems

OSVHT Coming Soon at: 

https://github.com/USC-ICT

GLU Tools at:

https://github.com/GeneralizedLearningUtilities

https://github.com/USC-ICT
https://github.com/GeneralizedLearningUtilities
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Virtual Human Toolkit

Virtual Human Toolkit
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Virtual Human Toolkit

 Offers components that cover 

 Audio-visual sensing

 Automated speech recognition

 Natural language processing

 Nonverbal behavior generation

 Behavior realization

 Text-to-speech

 Rendering

 Integrated as part of a modular, flexible architecture

 Based on SAIBA, BML and FML standards

 Allows mixing and matching with one’s own technologies

 Government Purpose Rights (GPR) version available

https://vhtoolkit.ict.usc.edu
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Open Source ICT Virtual Humans (OSVHT)

 Open source subset (OSVHT), intended to 
include:
 NVBG (generates nonverbal behavior from 

surface text)

 SmartBody (procedural animation system)

 vhAssets (Unity game engine wrapper)

 TTSRelay (unified interface to various TTS 
systems)

 VHMsg (message protocol based on 
ActiveMQ)

 Logger (logs messages)

 Launcher (launches and manages modules)

 Three characters to choose from
 Army Male

 Civilian Male

 Civilian Female
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Implementation
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Live Demo
(Hold on to your hats…)



1. Agent Container Module listens to messages for all modules, relaying them to GIFT_VHT Converter Gateway 
(implemented in GIFT using a Java port of the SuperGLU library). Most messages that reach the GIFT_VHT Converter 
Gateway converter are ignored because they are have no relevant mapping in the VHT message ontology (which is 
its target). 

2. GIFT sends a GIFT:Display Guidance Tutor Request from the Domain Module. 

3. The GIFT:Display Guidance Tutor Request is received by the GIFT_VHT Converter Gateway. 
4. The gateway’s built-in ontology converter recognizes that a valid mapping chain exists for this message to create an 

VHT message. 

5. The ontology mapping converts the message into a SuperGLU:Speech message. The converter then maps the 
SuperGLU:Speech message into a VHT:vrExpress message. 

6. The VHT:vrExpress message reaches the VHT Tutor Controller, which modifies the message to set any required 
optional parameters (e.g., the name of the speaking agent). The OSVHT Tutor Controller currently exists to maintain 
values for default parameters. 

7. The VHT Tutor Controller sends a new VHT:vrExpress message back to the GIFT_VHT Converter Gateway. The 
gateway does not convert it before passing it to ActiveMQ, because relays OSVHT messages. 

8. The NVBG receives the VHT:vrExpress message through ActiveMQ. NVBG generates non-verbal behaviors that 
match the words given, and both the speech and behavioral markup are sent to the OSVHT Unity Player. The tutor 
says something in the OSVHT Unity Player, by transmitting messages to the TTSRelay to generate speech while the 
accompanying animations are executed by the character in the OSVHT Unity Player. 
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Next Example: Lesson on Cybersecurity (Phishing)
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New Capabilities Implemented

 Rapid Development

 Quickly build new agents: 

 SuperGLU open source for HTML5 services + Python services

 Virtual Human pedagogical agent for GIFT

 Integrate with new systems rapidly

 SuperGLU HTML5: Build JS services or wrap existing

 SuperGLU Cloud: Build new cloud services or wrap

 Virtual Human Ecosystem: New modules built regularly

 Next Steps (in progress):

 Cybersecurity proof-of-concept mini-course

 Usability study: CS students creating & adding new services



Future Work:
Advanced Multi-Agent 

Communication: Proposals 

& Brokering 
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Key Communication Patterns
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Problem: Plug-and-Play for Distributed Agents

How to get web services to talk easily?

- Proposals: Solves many-vendors issue. Ask for services 
willing to give the info, and accept a reply bid (if any match). 

- Negotiation: Solves coordination/search problems. Counter 
proposals occur until a match found or quitting.
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Problem 2: Extending Ontologies & Mappings

Message Formats to Convert:

1. SuperGLU (Standard ITS Logger)

2. OSVHT Messages

3. GIFT Messages

4. (xAPI Messages)

5. (DataShop/LearnSphere Messages?)

Status: Initial mappings in place, but limited 
overlap between these ontologies.



Questions & 

Discussion


