
The work depicted here was sponsored by the U.S. Army Research Laboratory (ARL) under contract number W911NF-14-D-

0005. Statements and opinions expressed and content included do not necessarily reflect the position or the policy of the 

Government,

and no official endorsement should be inferred.

Building a Backbone for Multi-Agent 

Intelligent Tutoring Systems 

(Work In Progress)
Benjamin D. Nye, David Auerbach, 

Tirth R. Mehta, Arno Hartholt, 

Institute for Creative Technologies 
University of Southern California

May 10, 2017



2

Distributed AIED: The Future

Pedagogical 

Domain Module

Communication 

Module (HTML)

Team Tutoring 

Module

Student Model 

Module

Affect Module 1

Affect Module 2

Communication 

Module (PC)



3

What is a Multi-Agent ITS?

 Goal-Oriented Services as Agents

 Designed with a certain role/purpose

 Adapts to available information

 Uses best available information (avoid hard fails on bad info)

 Communication Language

 Exchanges information using messages

 Declarative (claims) not imperative (commands)



4

Goals for Multi-Agent ITS Architecture in GIFT

 Rapid Development

 Quickly build new agents

 Map ontologies

 Integrate with new systems & protocols rapidly

 Hot-swap agents

 Persistent & Incremental Learning

 Record data about events

 Optimize performance based on data

 Combine data with human expert claims



5

GIFT Current Service Communication Patterns

Source: Sottilare, R., & Goldberg, B. (2012). Designing adaptive computer-based tutoring systems 

to accelerate learning and facilitate retention. Cognitive Technology, 17(1), 19-33.

1. GIFT Modules (ActiveMQ)

2. Gateway 

Pattern 

(ActiveMQ)

3. Module 

Agents (Java)

4. External 

Calls (e.g., 

SIMILE)



6

Additions for GIFT Targeted in this Phase

 Registering Services: Adding Services at Runtime

 Currently: Only possible using ActiveMQ protocol

 Need to have course declare mandatory/optional services

 Need to resolve/hotswap between alternate services

 Interoperability: Frameworks with Different Messages

 Currently: Only supports GIFT registered messages

 Need translate between different message ontologies

 Unified Agent Pattern

 Currently: Agents only experimentally hard-coded in modules

 Need a general way to attach agents to modules

 Need a place for agents/gateways that are not module-specific



7

The Target Process: Registering Agents at Runtime

1. Module & Agent Design Step: Modules and agents designed to 

receive/send specific message types

2. Ontology Map Step: Declare mappings between messages from 

different frameworks in a generic serialized format

3. Course Design Step:

 Configure course to declare module software agents (e.g., Java)

 Configure course to listen to external gateways/repositories for agents

 Configure to declare what ontology mappings are used by each gateway

4. Course Runtime: 

 Initialize agents in each module: Start Java gateway listeners/services

 Agent Messaging: Send/receive. Advanced patterns (e.g., proposals) occur.



8

The Target Process: Registering Agents at Runtime

1. Module & Agent Design Step: Modules and agents designed to 

receive/send specific message types

2. Ontology Map Step: Declare mappings between messages from 

different frameworks in a generic serialized format

3. Course Design Step:

 Configure course to declare module software agents (e.g., Java)

 Configure course to listen to external gateways/repositories for agents

 Configure to declare what ontology mappings are used by each gateway

4. Course Runtime: 

 Initialize agents in each module: Start Java gateway listeners/services

 Agent Messaging: Send/receive. Advanced patterns (e.g., proposals) 

occur.



9

Registering: SuperGLU (Generalized Learning Utils)

 Service-Oriented: All functions in services

 Gateway Model: No central bus, uses distributed gateways

 Anonymous Services: Messages filtered by semantics

Child Frame UI Frame Parent

S2

C2

Tutoring 

Session

Conversation 

Engine

Speech 

Engine

Student 

Agent

Tutor 

Agent

HTML UI

Parent 

Window

ALEKS 

Messager

Web 

Client 

(Browser)

Web 

Services

SKO 

Storage
S1

Student 

Model

C1



11

SuperGLU: Why was it made?

 Rapid service/agent creation:

 Build to receive and send information (messages)

 Emerging message ontology: Standard ITS logging

 Abstract connection to storage that saves/queries data

 HTML5: Client-side services in JS

 Docker containers: Spin up on cloud server

 Hot-swapping:

 Like a distributed publish/subscribe or fan-out

 Plug-and-play (connect/disconnect service to a gateway)

 No central hub (connect/disconnect gateways on-the-fly)



12

SuperGLU: What does it add?

 Services should care about information
 Content of message should determine handling

 Services should act like agents (e.g., “No reply? Ask again!”)

 Message Bus Wrappers:
 Each service only sees its own gateway

 Gateways handle message transport:
 Cross-domain JS services (HTML5 postMessage)

 Real-time client-server (socket.io Websockets)

 Server-to-server (wrap protocols like ActiveMQ/AMQP/Stomp)

 Only gateways know about URL’s and networks

 GIFT Integration Points:
 AgentContainer Module: New module to register agents/gateways

 Existing Modules: Register agents inside a module also

Child Frame UI Frame Parent



14

Ontology Mapping: Translating Messages

System A Sent:

System B Replied:

Ontology Broker solution:

- Register & store explicit ontologies
- Multiple Types: Message formats and types

- Convert messages from one ontology to another

Sometimes, messages can be unclear:



15

Ontology Broker: High Level View
- Three ways to do ontology mapping: 

- Declarative (e.g., from OWL/JSON): This is the one currently implemented

- Direct functions (e.g., custom converters): Simple to implement, but would be for ad-hoc cases

- Remote fall-through: Send request to external OntologyBrokerService. Also simple, but would

just be a dispatcher to one of the other two.

- Inventory of messages and mappings are in a Google Doc

- About a dozen mappings implemented that we are testing right now

- Broker searches for any series of maps from the current message to an endpoint in the target format

OntologyBroker

- mappings: List of <MessageMapping> to detect 

that a mapping can be made and do that mapping

- defaultTemplates: <list> of partially-complete 

messages that can be finished using a map

FindPathAndConvertMessage(BaseMessage

inMsg, MessageType inMsgType, MessageType

targetMsgType, boolean strict): Main function call 

for conversion

MessageType
- name = str

- minVersion = float or null

- maxVersion = float or null

- MessageTypeTemplate = MessageTemplate

MessageMapping
- InMsgType = MessageType>

- OutMsgType = MessageType

- InDefaultMsg = MessageTemplate

- OutDefaultMsg = MessageTemplate

- FieldMappings = List of <FieldMaps>

MessageTemplate
- DefaultFieldData = List of <FieldData>

FieldMap
- InFields = List of <FieldData>

- OutFields = List of <FieldData>

- Conversion = <DataConverter>

FieldData
- data: obj

NestedFieldData
- indices: List of <container 

type, key>, so < str, 

int/float/str/bool>

Note: By far the most common field type, a value in 

some nested lists, dicts, token/objs

docs.google.com/spreadsheets/d/1yLAJs5YyCiiwvvCCU2WLKtClb2I8M3d7_af-7864KSM/edit


Framework Case 1:

Integrating OS VHT



17

Proof of Concept: 

Unify GIFT, VH, and SuperGLU ecosystems

OSVHT Coming Soon at: 

https://github.com/USC-ICT

GLU Tools at:

https://github.com/GeneralizedLearningUtilities

https://github.com/USC-ICT
https://github.com/GeneralizedLearningUtilities


18

Virtual Human Toolkit

Virtual Human Toolkit



19

Virtual Human Toolkit

 Offers components that cover 

 Audio-visual sensing

 Automated speech recognition

 Natural language processing

 Nonverbal behavior generation

 Behavior realization

 Text-to-speech

 Rendering

 Integrated as part of a modular, flexible architecture

 Based on SAIBA, BML and FML standards

 Allows mixing and matching with one’s own technologies

 Government Purpose Rights (GPR) version available

https://vhtoolkit.ict.usc.edu



20

Open Source ICT Virtual Humans (OSVHT)

 Open source subset (OSVHT), intended to 
include:
 NVBG (generates nonverbal behavior from 

surface text)

 SmartBody (procedural animation system)

 vhAssets (Unity game engine wrapper)

 TTSRelay (unified interface to various TTS 
systems)

 VHMsg (message protocol based on 
ActiveMQ)

 Logger (logs messages)

 Launcher (launches and manages modules)

 Three characters to choose from
 Army Male

 Civilian Male

 Civilian Female



Agent

Speech

Recognition

Natural

Language

Understanding

Virtual Human Architecture

Audio-Visual

Sensing

User

Nonverbal

Behavior

Generation

Speech

Generation

Natural 

Language

Generation

Behavior

Realization

Renderer

Nonverbal

Behavior

Understanding



22

GIFT

OSVHT

User

NVBG

TTSRelay SmartBody

vhAssets

Natural 

Language

Generation

Natural

Language

Understanding

Audio-Visual

Sensing

Nonverbal

Behavior

Understanding

Speech

Recognition



Implementation



Gateway ModuleStudent Module

GIFT Modules

Pedagogy ModuleDomain Module

ActiveMQ

Agent Container Module

VHT Tutor 
Controller

VHT Unity 
Player

GIFT_VHT Converter Gateway

Ontology Converter

NVBG

TTSRelay

VHT Services

New Modules 
(SuperGLU in GIFT)



Live Demo
(Hold on to your hats…)



1. Agent Container Module listens to messages for all modules, relaying them to GIFT_VHT Converter Gateway 
(implemented in GIFT using a Java port of the SuperGLU library). Most messages that reach the GIFT_VHT Converter 
Gateway converter are ignored because they are have no relevant mapping in the VHT message ontology (which is 
its target). 

2. GIFT sends a GIFT:Display Guidance Tutor Request from the Domain Module. 

3. The GIFT:Display Guidance Tutor Request is received by the GIFT_VHT Converter Gateway. 
4. The gateway’s built-in ontology converter recognizes that a valid mapping chain exists for this message to create an 

VHT message. 

5. The ontology mapping converts the message into a SuperGLU:Speech message. The converter then maps the 
SuperGLU:Speech message into a VHT:vrExpress message. 

6. The VHT:vrExpress message reaches the VHT Tutor Controller, which modifies the message to set any required 
optional parameters (e.g., the name of the speaking agent). The OSVHT Tutor Controller currently exists to maintain 
values for default parameters. 

7. The VHT Tutor Controller sends a new VHT:vrExpress message back to the GIFT_VHT Converter Gateway. The 
gateway does not convert it before passing it to ActiveMQ, because relays OSVHT messages. 

8. The NVBG receives the VHT:vrExpress message through ActiveMQ. NVBG generates non-verbal behaviors that 
match the words given, and both the speech and behavioral markup are sent to the OSVHT Unity Player. The tutor 
says something in the OSVHT Unity Player, by transmitting messages to the TTSRelay to generate speech while the 
accompanying animations are executed by the character in the OSVHT Unity Player. 

26



27

Next Example: Lesson on Cybersecurity (Phishing)

SuperGLU

Wait- make sure 

you check the 

address bar first.

OSVHT

- Report good/bad web performance

- Dispatch GIFT tactics

- Communicate between iframes
Hide/show tutor

- Hints

- Gestures



Gateway ModuleStudent Module

Case 2: Viewing Agent Container Module Gateways and Services

Pedagogy ModuleDomain Module

ActiveMQ

Agent Container

ActiveMQ
Passthrough Gateway

VHT Tutor 
Controller

VHT Unity 
Player

GIFT_VHT Converter 
Gateway

GIFT_SuperGLU
HTML5 Gateway

HTML 
Practice Page



30

New Capabilities Implemented

 Rapid Development

 Quickly build new agents: 

 SuperGLU open source for HTML5 services + Python services

 Virtual Human pedagogical agent for GIFT

 Integrate with new systems rapidly

 SuperGLU HTML5: Build JS services or wrap existing

 SuperGLU Cloud: Build new cloud services or wrap

 Virtual Human Ecosystem: New modules built regularly

 Next Steps (in progress):

 Cybersecurity proof-of-concept mini-course

 Usability study: CS students creating & adding new services



Future Work:
Advanced Multi-Agent 

Communication: Proposals 

& Brokering 



32

Key Communication Patterns



33

Problem: Plug-and-Play for Distributed Agents

How to get web services to talk easily?

- Proposals: Solves many-vendors issue. Ask for services 
willing to give the info, and accept a reply bid (if any match). 

- Negotiation: Solves coordination/search problems. Counter 
proposals occur until a match found or quitting.



34

Problem 2: Extending Ontologies & Mappings

Message Formats to Convert:

1. SuperGLU (Standard ITS Logger)

2. OSVHT Messages

3. GIFT Messages

4. (xAPI Messages)

5. (DataShop/LearnSphere Messages?)

Status: Initial mappings in place, but limited 
overlap between these ontologies.



Questions & 

Discussion


