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 ABSTRACT  

 

Evolving technology continues to support increasingly advanced training systems that allow customization and 

personalization of content to provide instruction tailored for individual learner needs. This paper will address the 

identification of macro-adaptive instructional strategies for informing a generalized model of pedagogy to be 

implemented in a domain-agnostic Computer-Based Tutoring System (CBTS) framework. Research indicates that 

higher-order thinking skills are not acquired through didactic approaches but rather learner interaction with the 

subject matter (Shute & Psotka, 1996). Consequently, it becomes necessary to research strategies that enhance 

trainees’ learning within computer-based platforms that allow such interaction to occur. This requires prescriptive 

pedagogy that tailors interaction and feedback based on trainee traits. Intelligent Tutoring Systems (ITSs) are one 

such application that monitors user interactions and uses Artificial Intelligence tools and methods to assess trainee 

performance and apply pedagogical interventions to support learning. Here, pedagogical models are responsible for 

informing adaptation in response to the knowledge state of users by implementing strategies intended to aid in 

knowledge/skill acquisition. ITSs continue to be effective instructional tools across multiple domains, yet their wide 

use is limited by associated development costs and lack of extensibility beyond specifically designed applications. 

To address these constraints, a framework is under development to provide standardized processes for authoring and 

applying ITS functionality across multiple training platforms and domains. Macro-adaption focuses on using learner 

aptitude and trait variables, measured prior to training, to inform the system regarding appropriate instructional 

strategies for achieving maximal learning outcomes. The intent is to utilize research-supported strategies prescribed 

for specific learner, knowledge, and domain conditions. These parameters will be used to construct a domain-

independent pedagogical model for authoring and implementing macro-adaptive functions based on the learner’s 

historical characteristics. The result will be a self-executing decision tree used to inform and adapt instructional 

strategies based on known information about the learner.  

 

ABOUT THE AUTHORS 

 

Benjamin Goldberg is a member of the Learning in Intelligent Tutoring Environments (LITE) Lab at the U.S. 

Army Research Laboratory’s (ARL) Simulation and Training Technology Center (STTC) in Orlando, FL. He has 

been conducting research in the Modeling and Simulation community for the past four years with a focus on 

adaptive learning and how to leverage Artificial Intelligence tools and methods for adaptive computer-based 

instruction. Currently, he is the LITE Lab’s lead scientist on instructional strategy research within adaptive training 

environments. Mr. Goldberg is a Ph.D. student at the University of Central Florida and holds an M.S. in Modeling & 

Simulation. Prior to employment with ARL, he held a Graduate Research Assistant position for two years in the 

Applied Cognition and Training in Immersive Virtual Environments (ACTIVE) Lab at the Institute for Simulation 

and Training. 

 

Ron Tarr, Ph.D. is a retired Army officer and Senior Research faculty member at University of Central Florida and 

has an M.S. degree in Instructional Design from Florida State University. He is Program Director of the RAPTER 

Lab at UCF’s Institute for Simulation and Training and leads a team of inter-disciplinary researchers who function 

as analysts, planners, integrators and designers of the advanced applications of Simulation & Learning Technologies 

for the purpose of enhancing human performance. 

 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012 

 

2012 Paper No. 12288 Page 2 of 12 

Deborah R. Billings, Ph.D. obtained an M.S. degree in Modeling and Simulation, Human Systems (2008), and a 

Ph.D. in Applied Experimental and Human Factors Psychology (2010) from the University of Central Florida. Dr. 

Billings received the 2011 Briggs Dissertation Award, presented by Division 21 of the American Psychological 

Association. She is currently a Post-Doctoral Researcher with the Institute for Simulation & Training.   

 

Naomi Malone is a doctoral student at the University of Central Florida in the College of Education’s Department 

of Educational and Human Science. She currently works as Research Assistant at UCF’s Institute for Simulation & 

Training to identify strategies that can more efficiently train military personnel.  

 

Keith Brawner is a researcher for the Learning in Intelligent Tutoring Environments (LITE) Lab within the U. S. 

Army Research Laboratory’s Human Research & Engineering Directorate (ARL-HRED). He has 6 years of 

experience within U.S. Army and Navy acquisition, development, and research agencies. He holds an M.S.in 

Computer Engineering with a focus on Intelligent Systems and Machine Learning from the University of Central 

Florida, and is currently a Ph.D. candidate for doctoral degree in the same field. The focus of his current research is 

in machine learning, adaptive training, affective computing, datastream mining, and semi/fully automated user tools 

for adaptive training content. 

 

Robert A. Sottilare, Ph.D. is the Associate Director for Science & Technology within the U.S. Army Research 

Laboratory - Human Research and Engineering Directorate (ARL-HRED) and directs research within the Learning 

in Intelligent Tutoring Environments (LITE) Laboratory at ARL’s SFC Paul Ray Smith Simulation & Training 

Technology Center (STTC). He has 28 years of experience as both a U.S. Army and Navy training and simulation 

researcher, engineer and program manager. He leads the international program at STTC and chairs training 

technology panels within The Technical Cooperation Program (TTCP) and NATO. Dr. Sottilare holds a patent for a 

high-resolution, head-mounted projection display and his recent publications have appeared in the Educational 

Technology Journal, the Journal for Defense Modeling and Simulation and the proceedings of the Intelligent 

Tutoring Systems Conference 2010. He is a graduate of the Advanced Program Managers Course at the Defense 

Systems Management College, and his doctorate in modeling & simulation with a focus in intelligent systems is 

from the University of Central Florida. In January 2012, Dr. Sottilare was honored as the inaugural recipient of the 

U.S. Army Research Development & Engineering Command’s (RDECOM’s) Modeling & Simulation Lifetime 

Achievement Award. The focus of his current research is on the application of artificial intelligence tools and 

methods to adaptive training environments. 

 

 



 

 

 

Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2012 

 

2012 Paper No. 12288 Page 3 of 12 

Use of Evidence-based Strategies to Enhance the Extensibility of Adaptive 

Tutoring Technologies 

 

Benjamin Goldberg, Keith Brawner,  

& Robert Sottilare 

Ron Tarr, Deborah R. Billings, 

& Naomi Malone 

 Army Research Laboratory Institute for Simulation & Training, UCF 

 Orlando, FL Orlando, FL 

 {benjamin.s.goldberg, keith.w.brawner, 

robert.sottilare}@us.army.mil 

 

{rtarr, dbillings, nmalone}@ist.ucf.edu 

 

 

INTRODUCTION 

 

Adaptive training has the potential to significantly 

improve the effectiveness of learning interventions by 

accommodating individual differences and creating 

customized learning experiences for each individual 

student (Landsberg et al., 2010). Training and 

instructional components can be adapted based on the 

real-time performance of a student, but they can also be 

adapted based on specific learner characteristics such 

as aptitudes, learning preferences, and prior 

experiences. This further enhances adaptive 

mechanisms to incorporate attributes and 

characteristics unique to the learner. The importance of 

research efforts in this area is evident, especially in 

military contexts. Recognizing the wide variety of 

learner characteristics, the 2015 Army Learning Model 

envisions training that can be tailored to differences 

)such as prior performance and knowledge) to present 

Soldiers with individualized training at any time and in 

any location (TRADOC, 2011). In this paper, the 

authors present work for the design and development 

of a domain-independent pedagogical model to be 

applied within a Computer-Based Tutoring System 

(CBTS) framework. The model will inform tailoring 

and adaptation approaches on a generalized level for 

the authoring of personalized training experiences prior 

to system interaction. 

 

Computer-Based Tutoring Systems 

 

Computer-based tutoring systems (CBTSs) are 

applications that apply Artificial Intelligence tools and 

methods to assess trainee performance and direct 

appropriate pedagogical interventions to support 

learning. CBTS designers strive to create automated 

computer-based tutors that are as effective at 

personalizing the learning experience as a human tutor 

(Brawner & Gonzalez, 2011). A CBTS may be a viable 

solution to what is called the 2-sigma problem (Bloom, 

1984), where students who received one-to-one human 

tutoring performed two standard deviations better than 

students in classroom environments. Therefore, it is 

necessary to create CBTSs based on a sound 

pedagogical framework to emulate the adaptability and 

responsiveness of a human tutor to his/her individual 

student’s learning needs and characteristics.  

 

Current Research 

 

CBTSs continue to be effective instructional tools 

across multiple domains, yet their wide use is limited 

by associated development costs and lack of 

extensibility beyond specifically designed applications 

(VanLehn, 2011). To address these constraints, a 

framework is under development to provide 

standardized processes for authoring and applying 

CBTS functionality across multiple training platforms 

and domains. Here, we focus specifically on macro-

adaption, which refers to the process of using learner 

aptitude and trait variables measured prior to training, 

to inform the system regarding appropriate 

instructional strategies for achieving maximal learning 

outcomes. The intent is to utilize research-supported 

strategies prescribed for specific learner, knowledge, 

performance levels, etc. These parameters will be used 

to construct a domain-independent (i.e., generic) 

pedagogical model for authoring and implementing 

macro-adaptive functions based on learners’ historical 

profiles. The result will be a self-executing decision 

tree used to inform and adapt instructional strategies 

based on known information about the trainee. Such a 

domain-free framework would allow training platforms 

to display the properties of a well-designed CBTS, 

ultimately becoming adaptive mechanisms that provide 

instruction based on common pedagogical practices. 

This approach would enable individualized training to 

be developed much more quickly and efficiently, and it 

would reduce costs associated with researching and 

validating adaptive instructional strategies and 

pedagogical models into every new CBTS.  
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Figure 1. Generalized Intelligent Framework for Tutoring 

 

THE GENERALIZED INTELLIGENT 

FRAMEWORK FOR TUTORING (GIFT) 
 

The Generalized Intelligent Framework for Tutoring 

(GIFT) is the architecture under development that is 

driving requirements for this work (see Figure 1). It is 

an empirically-based, service-oriented framework 

designed to support the authoring and execution of 

pedagogical functions in a computer-based training 

environment. It specifically addresses the need for a 

reusable CBTS framework that can be extended across 

multiple domains and training applications, as 

highlighted in the Army Learning Model 2015 

(TRADOC, 2011). In addition, GIFT utilizes a modular 

design for easy reconfiguration and serves as a test-bed 

to conduct impact assessments of CBTS components 

and methodologies. In the instructional strategy 

context, GIFT will serve as a test-bed for evaluating 

generalized models across multiple domains to assess 

their effectiveness and utility. The goal is for GIFT to 

simplify the integration of CBTS technologies in 

training applications both currently in use and under 

development through a standardized process. This 

enables the distribution of individualized training 

focused on the strengths and weaknesses associated 

with a given learner across multiple domains. 

GIFT uses all components common to traditional 

CBTS implementation: (1) a learner module to track 

state variables specific to the learner; (2) a pedagogical 

module to inform instruction based on performance 

states communicated from the learner module; (3) a 

domain module that drives the training content and 

houses expert performance for tracing methods; (4) a 

sensor module for assessing state variables and a 

trainee’s readiness to learn; and (5) a Learning 

Management System to store learner profiles. To 

maintain domain independency, all modules outside of 

the domain are agnostic to the knowledge and skills 

being trained (Goldberg, Holden, Brawner, & Sottilare, 

2011). This is essential for extending the functions of 

GIFT into any computer-based training platform. It 

applies standardized messaging that links domain 

content to a domain-independent concept map and to a 

pedagogical framework that manages instruction.  
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GIFT provides tailoring and adaptation in two phases. 

First, dependent on what is being trained and who is 

being trained, offline processes will tailor content 

based on an individual’s prior knowledge, attributes, 

and abilities prior to system interaction. Following, the 

system guides and adapts instruction as an individual 

progresses through a training session via state 

messages, communicated between modules in real-

time. An authored system will track predetermined 

performance objectives key to skill development and 

affective/cognitive states that have been found to 

impact performance outcomes through behavioral and 

physiological sensing technologies. GIFT tracks 

performance to determine training concepts that need 

attention and affective/cognitive states deemed 

negative to learning (e.g., boredom, frustration, anger, 

disengagement, etc.). The pedagogical model will then 

use this information to prescribe empirically-based 

guidance or adaptation techniques informed from 

sound instructional design research. A key challenge 

associated with a domain-agnostic design is structuring 

a generalized pedagogical approach that can be applied 

across domains and platforms. In this function, the 

pedagogical module determines appropriate 

instructional strategy implementation based on 

attributes specific to both the individual and content 

being trained.   

 

Pedagogical Model 

 

Traditionally, a pedagogical model in a CBTS informs 

explicit execution of feedback and adaptation based on 

an individual’s performance within a defined problem 

space. Theories of education provide an empirical basis 

for identifying variables that influence learning and a 

pedagogical framework describes the principles 

through which theory is applied (Mayes & Freitas, 

2004). Specifically, a pedagogical model is designed to 

balance the level of guidance a student needs with the 

goal of maintaining engagement and motivation (Beal 

& Lee, 2005). This requires tailoring content to an 

appropriate challenge level prior to system interaction 

along with tracking performance in real-time to 

intervene when parameters exist that warrant an 

interruption. To this effect, a pedagogical model 

manages training practices by adapting content to the 

knowledge and abilities of a single user, and providing 

real-time guidance and feedback based on system 

interactions. There are many opinions out there on 

what strategies are best and when they are most 

appropriate; it is the pedagogical model that defines the 

rules and conditions they are executed under.  

 

Pedagogical models in a CBTS are customarily 

informed by strategies that expert tutors and instructors 

can use to assist individuals in learning (Beal & Lee, 

2005; Person & Graesser, 2003), and are typically 

developed as a one-fit solution to the system they 

operate within. This requires a system to be able to  

recognize errors in performance, determine the root 

cause or misconception linked to that error, and 

implement an instructional strategy in real-time to 

mitigate negative outcomes. This closed-loop process 

is dependent on the training application the system is 

acting on, and strategies authored are tied directly to 

the training domain. This bounds their application and 

extensibility to the specific domain they are modeled to 

train (VanLehn, 2011). Due to this constraint, CBTS 

developers are required to spend a large amount of time 

and effort to author guidance and adaptive functions 

for a single platform (Woolf, 2009).  

 

In recognition of the desire to ease the process of 

authoring adaptive capabilities in training platforms, 

GIFT’s pedagogical module is designed to inform 

tailoring and intervention approaches through 

empirically-based instructional strategies that are 

generic in nature. That is, strategies selected are 

focused on high-level processes that highlight their 

theoretical purpose and intent for application. It uses 

attribute data (highlighted below) associated with the 

user and domain to determine recommended strategies 

based on pedagogical theory. Instructional strategies 

will be identified that form the foundation of the 

domain-independent pedagogical model used in the 

GIFT framework. Ultimately, the pedagogical model 

will serve as an authoring tool to select generalized 

strategies along with guidelines that will assist a trainer 

in authoring the specific tactic to implement. Here, we 

explore a macro-adaptive approach to instructional 

strategies, which allows tailoring of the instruction. 

 

Macro-adaptive Approach 

 

Several different approaches to implementing adaptive 

training exist: the macro-adaptive approach, the 

Aptitude Treatment Interaction (ATI) approach, and 

the micro-adaptive approach. Macro strategies 

structure an organized and sequential set of tactics (to 

be implemented online) and address four instructional 

design areas: selection, sequencing, synthesizing, and 

summarizing (Reigeluth, 1999). This approach 

generally focuses on the sequencing of instruction and 

the degree of learner control, based on metrics 

collected prior to the commencement of training 

(Landsberg et al., 2010). Here, instructors categorize 

students prior to training, typically based on formal 

assessments of the student’s instructional goals, general 

ability, and achievement levels (Park & Lee, 2004; 

Spain, Priest, & Murphy, 2012). Pre-planned adaptive 

interventions (i.e., what to adapt and how to adapt) are 

then implemented for the different groups (Spain, 
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Priest, & Murphy, 2012). Examples of macro-adaptive 

instructional interventions include: breadth or depth of 

content, content difficulty, sequencing of content, type 

of media used to present content, number of practice 

problems, and type and specificity of feedback (Spain, 

Priest, & Murphy, 2012). In the macro-approach, the 

selected instructional tactic aligns with both the 

strengths and weaknesses of the groups (see Figure 2 

on next page).  

 

The ATI approach is very closely related to the macro-

adaptive approach in that it focuses on adapting 

instructional tactics to individual learner characteristics 

and individual differences (e.g., intellectual ability, 

learning styles, and prior knowledge; Landsberg et al., 

2010). In this way, the ATI approach categorizes 

students based on specific learner characteristics and 

presents the most effective instruction for that 

particular group. From this description, it appears there 

is much crossover between macro-adaptive and ATI 

approaches. However, macro-adaptive instruction 

always tailors instruction before training begins. 

Conversely, the ATI approach can involve tailoring 

instruction before training begins, and it can also be 

used to personalize instruction during training 

(Landsberg et al., 2010). These two methods are the 

primary focus for the initial generalized pedagogical 

model commented on in this paper.  

 

Finally, instruction can be modified using a micro-

adaptive approach, in which task performance and 

learning needs are monitored in real time. Micro-

adaptation uses system performance metrics and 

learner state variables to assess progress, reaction to 

training and adapt instruction in real-time (Landsberg 

et al., 2010; Park & Lee, 2004). These strategies focus 

on guidance and feedback within a problem space and 

are triggered through specific actions taken in the 

system. Despite the adaptive functions a system can 

perform, understanding how people learn and how 

individual differences affect the way they learn is 

essential in authoring effective adaptive training. For 

this purpose tools must be in place that assist training 

developers in identifying and integrating sound 

instructional strategies into their training applications.  

 

 

IDENTIFICATION OF INSTRUCTIONAL 

STRATEGIES 

 

The term ‘instructional strategy’ encompasses a 

continuum ranging from organizers that structure 

instructional objectives (e.g., Bloom’s taxonomy) to  

simple instructional tactics (e.g., chunking or fading) 

that are chosen based on these objectives (Jonassen & 

Grabowski, 1993, Arends & Castle, 2002). 

Instructional strategies fall in the middle of this 

continuum and consist of a series of steps or events, 

usually supported by theory and research (Hirumi, 

2010, Arends & Castle, 2002). Further, many 

instructional strategies can be grouped according to 

general approaches (e.g., learner-centered, teacher-

centered, or experiential). Simulations are instructional 

strategies rooted in established theories and research in 

human learning that are generally associated with 

experiential approaches (Hirumi, 2010). Designing 

instruction is a complex endeavor involving numerous 

inputs and variables. Therefore, it may be a useful 

exercise to group and situate individual tactics within 

specific instructional strategies to conceptualize them 

as building blocks that can be constructed according to 

the needs of specific learning objectives, instructional 

strategies, and the variables associated with them.  

 

This current effort utilizes research (for The Office of 

Naval Research and the Marine Corp) that investigated 

instructional strategies to enhance training. That study 

organized instructional strategies and tactics taken 

from research literature into a web/search application 

built to assist training developers and instructors with 

multimedia and simulation-based training. Using that 

work as a baseline, the research team is investigating 

empirically-examined instructional strategies and 

tactics relevant to macro-adaptation and intelligent 

tutoring for the GIFT program. 

 

Macro-Adaptive Instructional Strategies 

 

Macro-adaptive, as well as some ATI instructional 

tactics comprise the focus of the current research effort. 

Instructional tactics that can be adapted based on 

metrics collected prior to training (i.e., metrics that 

place students into different groups, depending on 

certain characteristics) are currently being investigated.  

In particular, the current research effort is most 

interested in research supporting macro-adaptive 

instructional tactics that are applicable to computer-

based training applications.  

 

A literature review was conducted using Google 

Scholar, PsycINFO, Academic Search Premier, 

Education Full Text (H. W. Wilson), Education Index 

Retrospective: 1929-1983 (H. W. Wilson), and ERIC 

databases. Additionally, we performed searches within 

ProQuest (Dissertation and Thesis Search). The 

following keywords were initially used to conduct 

searches: macro-adaptive, individual differences, 

pedagogy, goal-orientation, self-efficacy, trait, 

individualized instruction, tailored instruction, 

personalized instruction, and Interactive Multimedia 

Instruction (IMI). Both empirical and theoretical papers 

which described instructional strategies and tactics that 
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could be adapted to learners were collected for further 

review. Several sources and targets of adaptation were 

identified from the body of literature. 

 

Sources of Adaptation 

 

Sources of adaptation refer to the factors that prompt, 

or trigger, adaptation to occur, namely the 

characteristics of learners that elicit specific 

instructional tactics to be implemented. In other words, 

the sources of adaptation represent different groupings 

that students can be assigned to prior to training. To 

date, in our review of the literature, we have identified 

several different categories for sources of adaptation at 

the macro-level (see Figure 2). Targets of adaptation 

refer to “what” instructional components are adapted, 

based on the sources of adaptation. We have also 

identified several different categories of these targets 

for inclusion in our research.  

 

 
 

Figure 2. Identified sources of adaptation in the 

literature to date 

 

 

 

Targets of Adaptation 

 

Different sources of adaptation appear to be linked 

with different targets of adaptation (see Figure 3) in the 

literature. For instance, depending on the level of 

student performance and achievement, different types 

of feedback may be more effective than others (Shute, 

2008). Working memory capacity has also been cited 

as integral to adapting instruction, and in particular can 

be used as a guideline for sequencing and segmenting 

instruction based on the capacity of each individual 

student (Lusk et al., 2008). Another source of 

adaptation is knowledge type (e.g., procedural or 

theoretical), which can impact the success of different 

methods of sequencing instructional components (Van 

Patten, Chao, & Reigeluth, 1986). Task difficulty and 

complexity  have  also been identified  as   sources    of  

 

 
Figure 3. Identified targets of adaptation in the 

literature to date 

 

adaptation. For example, the optimal level of guidance 

given during instruction may depend on the initial 

difficulty of the task or content of instruction (Van 

Merrienboer, Kester, & Paas, 2006). A learner’s prior 

knowledge or expertise of the instructional content can 

affect the most effective methods of presenting 

feedback to the learner, as well as the level of guidance 

to give throughout training (Smits et al., 2008). Also, a 

learner’s traits, abilities, and aptitudes can determine 

the most efficient level of control to give students over 

their own instruction (Amadieu et al., 2009). Learning 

and cognitive styles, although controversial constructs, 

may provide valuable insight into the most effective 
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ways to adapt feedback, level of learner control, and 

the amount of guidance to each individual learner 

based on his or her cognitive style (Triantafillou et al., 

2004). Finally, Interactive Multimedia Instruction 

(IMI) levels can impact the effectiveness of certain 

instructional tactics (Campbell et al., 2006; Schatz et 

al., 2012). IMI levels “…describe how much 

interactivity is possible in a piece of instructional 

media, such as an educational video or a training 

simulation” (Schatz et al., 2012, p. 191). 

 

 

APPLICATION OF MACRO-ADAPTIVE 

STRATEGIES 

 

Specific instructional tactics and “best practices” found 

in the literature will be translated into 

recommendations for the generic framework for 

intelligent tutoring system design. Design guidelines 

will incorporate information relating to “how” to adapt 

instruction to effectively tailor it to individual students. 

These will then be incorporated in the GIFT framework 

and subjected to empirical testing to determine the 

efficacy of using recommended macro-adaptive 

instructional tactics across multiple learning domains. 

 

Development of Decision Tree 

 

The concept of a decision tree was originally 

developed for the purpose of decision support. The idea 

behind it is that a series of branching pathways built 

from initial variable input are able to produce the ideal 

behavior of a network. This is then built from a series 

of thresholds or tests. An example of this can be found 

in animal classification tests, where descriptive inputs 

such as fur, egg-laying, scales, and feathers can place 

animals in categories of mammalian, reptilian and 

avian. 

 

A decision tree is usually built alongside a model of 

probability or entropy. The early nodes of the tree 

should be the most descriptive of the data. This field 

intersects with the field of AI in the arena of optimal 

decision tree construction. In many aspects of artificial 

intelligence the aim is to optimize the decision process 

to be efficient, and decision tree construction is not 

significantly different. With AI, a decision tree is 

typically optimized towards one of two goals: the 

minimization of entropy, or the maximization of the 

likelihood. Decision trees created relating to 

instructional design have two potential chokepoints. 

The first point of contention is the ability to garner 

learner data. For example, basing a decision on a 

learner’s Intelligence Quotient (IQ) takes 15 minutes to 

assess.  This may not be practical when assessing a 

classroom of 40 students, which could take a combined 

10 hours. Instructional strategy recommendation 

decision trees should optimize towards decision points 

which are easily collected. 

 

The other, more significant, bottleneck of decision tree 

creation is the generation of types of feedback. 

Eventually, the final part of the process of student trait 

and task type evaluations is a decision. This decision, 

as shown in Figure 4 may be to change difficulty, pace, 

sequence, or presentation of instruction. Conceivably, 

each of these decisions could be broken down into 

three or more different levels (e.g., easy/medium/hard 

problems; slow/medium/fast instructions). However, at 

some level, a content author is required to create this 

level of feedback in order to respond to the 

instructional strategy request. Optimization towards the 

minimum set of intervention types is desirable in order 

to reduce the load on content creators. To this effect, 

attributes associated with the training content 

(knowledge type, difficulty/ complexity, etc.) will be 

used to organize a bank of strategies associated with 

these characteristics. This will slice the identified 

strategies into a manageable list to be used by authors 

and system developers. In turn, characteristics and 

attributes associated with the user will be used to select 

an optimal strategy out of the associated bank.  

 

Illustrative Example of GIFT  

 

Here, we illustrate how the generic framework will be 

applied to a CBTS and outline a  use case process that 

will ultimately generate the most appropriate 

instructional tactics. Figure 4 depicts this process 

graphically, from inputs needed prior to training to the 

implementation of the appropriate instructional 

strategies. It also shows an overview of how the human 

instructor will interact with the system. 

  

Prior to training, there are several different types of 

information that need to be entered into the framework 

(i.e., input by the instructor or course developer): 

 

1. The instructor enters training content into GIFT 

and develops suitable learning objectives for the 

task training. 

2. The instructor designates each learning objective 

as a specific knowledge type (e.g., declarative, 

integrative, conceptual, procedural). 

3. The learner is assessed according to several pre-

determined characteristics (e.g., knowledge level, 

prior experience on this particular training task, 

motivation, goal orientation, etc.). 

 

The GIFT system takes these inputs made prior to 

training and generates a collection of instructional
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Figure 4. Process used to generate appropriate macro-instructional tactics in GIFT 

 

tactics for the CBTS to incorporate. Essentially GIFT 

acts as an instructional designer or authoring tool so 

that the human instructor does not need to possess this 

knowledge in order to administer effective training. 

GIFT generates, for each specific learner, a complete 
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strategy may be slightly different. The instructional 
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how this would be implemented in the system (e.g., to 

increase the fog in the virtual environment of a 

reconnaissance training mission). While to date, we 

have only explored macro-adaptive strategies, the 

micro-adaptive strategies will be explored in future 

research efforts. 

 

Extensibility of GIFT 

 

One of the significant research questions that GIFT 

seeks to answer via experimentation is the viability of 

various types of instructional strategy decisions for an 

individual. Presumably, the correct decision is the one 

which consistently increases learning on the topic, 

while keeping the trainee interested in this learning. 

Research suggesting that there is little evidence for 

adapting instruction based on learning styles (Pashler, 

McDaniel, Rohrer, & Bjork, 2008)  can easily be 

empirically evaluated in this type of framework. As an 

example, an experimenter could create two 

instructional engines which consistently tailor content 

in accordance with learning style theory and practice.. 

 

Furthering this type of research is the idea that 

experimental control can be maintained. Each module 

may be seamlessly interchanged as part of the 

experimental design, while keeping the training 

content, interactions, student models, and sensors 

static. This provides a valuable experimental 

framework for drawing novel conclusions. 

 

Additionally, a system such as GIFT is extensible to 

multiple domains through the engineering trade-off of 

requesting non-domain-specific instructional 

interventions. This allows for the creation of one 

instructional strategy engine which is able to inform 

multiple simulators, games for training, or other types 

of instructional content presentation systems. One 

instructional designer is able to create a system which 

is able to be experimentally validated against others, 

and able to train multiple tasks across vastly diverse 

populations of interest.  

 

Additional research is needed to develop best practices 

and select "best in class" models and functions for 

incorporation in GIFT. There continues to be much 

debate about the influence of individual differences 

(e.g., learning styles, personality) on informing tailored 

instructional strategy decisions and thereby learning 

outcomes. Future CBTS research should address the 

impacts of individual differences on accelerated 

learning and retention (Sottilare and Goldberg, 2012), 

small unit tutoring (Sottilare, Holden, Brawner and 

Goldberg, 2011), mobile learning, and other self-

regulated learning outcomes and modalities. Retention 

raises the bar for CBTS expectations in that future 

tutoring systems will also require a long-term model of 

the learners to understand their capacity to retain 

information and recommend spacing and frequency of 

tutoring for specific domains. 

 

 

CONCLUSION 
 

Many of the best CBTSs provide a 1-sigma learning 

gain, have limited perception and "understanding" of 

the learner's states and traits, and/or have limited 

capacity to use learner data to drive pedagogical 

decisions. This paper addressed macro-adaptive 

instructional strategies to inform a generalized model of 

pedagogy for a domain-agnostic CBTS framework. 

Informing micro-adaptive (in-situ) strategies is still 

more challenging. In order to provide timely and 

relevant feedback, real-time or near real-time 

assessments of the learner's cognitive and affective 

states may be needed to support micro-adaptive strategy 

decisions. The accuracy of these state assessments will 

be critical in providing optimal feedback to enhance 

learning. The CBTS will also be required to assess and 

interpret multi-sensor data inputs, and track learner 

performance against expectations (e.g., standards) to 

adapt the tutoring session and optimize learning.  

 

To move toward and beyond Bloom's 2-sigma learning 

gain, CBTS will require an assessment framework to 

empirically evaluate the effect of CBTS structure and 

function. Learner models, task analysis, and 

pedagogical strategies and tactics are among the CBTS 

structures and functions to be evaluated andvalidated. 

To this end, GIFT has been developed as a service-

oriented architecture to support comparative 

evaluations of CBTS structure, tools and methods 

including the effect of macro-adaptive strategies and 

tactics on learning gain. GIFT 1.0 was released in May 

2012 to the Department of Defense (DoD) and DoD 

contractors and may be requested via GIFTtutoring.org. 

It is envisioned that future versions of GIFT will evolve 

based on the contributions of the GIFT user 

community. 
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