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Preface  

This report is 1 of 6 interdependent research outlines in the Adaptive Training 
research program. Portions of this text, which originated in ARL-SR-0325,1 appear 
in all 6 reports to ensure that readers get the same cross-cutting information.  

 
 

                                                 
1 Sottilare R, Sinatra A, Boyce M, Graesser A. Domain modeling for adaptive training and education in 

support of the US army learning model–research outline. Aberdeen Proving Ground (MD): Army Research 
Laboratory (US); June 2015. Report No.: ARL-SR-0325. 



 

1 
 

1. Introduction 

Training and education tools and methods must be of sufficient intelligence to 
understand the needs of individual learners and units of learners to mitigate 
negative learner states and to guide and tailor instruction in real time to optimize 
learning. These tools and methods must also be affordable, effective, and easy to 
access and use. These requirements are enablers of the US Army Learning Model 
(ALM), which includes an emphasis on self-regulated learning (SRL), where 
Soldiers are expected to manage their own learning and career development through 
the growth of metacognitive (e.g., reflection), self-assessment, and motivational 
skills (Butler and Winne 1995). While SRL skills are difficult to train and develop, 
support may be provided to the learner through “adaptive training technologies” 
(tools and methods) that may be focused to guide learning and reinforce SRL 
principles.  

To support ALM, the US Army Research Laboratory (ARL) has developed a 
program of research called “adaptive training” that includes 6 interdependent 
research areas or vectors: individual learner and unit modeling, instructional 
management principles, domain modeling, authoring tools and methods, evaluation 
tools and methods, and architectural and ontological support for adaptive training. 
The reports documenting these vectors expand the scope of the adaptive tutoring 
research described in ARL-SR-0284 (Sottilare 2013) to support ALM requirements 
in the mid- and long-term evolution of training and educational technology: the 
Synthetic Training Environment and the Future Holistic Training Environment for 
Live and Synthetic. 

This report (1 of 6 interdependent research outlines) focuses on instructional 
management research for adaptive training and education. An overarching goal of 
instructional management is to leverage prior research in the learning sciences and 
artificial intelligence (AI) communities (both theoretical and empirical) to establish 
a set of best practices on how to author and execute techniques, strategies, and 
tactics across any domain of instruction. This is a very large research space (Wang-
Costello et al. 2013), so it is important to identify the primary themes for applied 
instructional management practices. 

Today the majority of intelligent tutoring systems (ITSs), a form of adaptive 
training tool to support one-to-one computer-based instruction, supports well-
defined domains in mathematics, physics, and software programming. Since 
Soldiers operate in more-complex, more-dynamic, and more-ill-defined domains, 
it is necessary to expand the scope of adaptive training tools and methods to support 
training and education in these militarily relevant task environments. Instructional 
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management in adaptive training environments represents pedagogical logic and 
policies that dictate what is experienced and what assistance is provided. The goal 
is to align instructional management techniques with empirical research that 
informs what strategies have the greatest influence on performance, retention, and 
transfer. Effective instructional management research will dictate how best to 
instruct a particular task or set of concepts for a given type of learner that promotes 
the development of knowledge and skill across any domain of instruction.  

2. Research Goals and Objectives 

The goal of the research described in this report is to model militarily relevant 
training domains to support individually tailored and intelligently guided training 
experiences as prescribed by the ALM (US Army Training and Doctrine Command 
2011). The research provides guidelines, best practices, tools, models, and methods 
in support of this research goal. More specifically, we intend to accomplish the 
following: 

• Discover and deliver personalized and adaptive training experiences that are 
informed by experimentation or prior research on tutoring methods and 
techniques that are moderated by individual differences of a learner, or team 
of learners, to promote efficient knowledge and skill acquisition across 
technology-driven training applications. 

• Research, design, and develop prototype authoring tools grounded in 
learning and instructional theory and informed by empirical research to 
assist training managers, developers, and subject matter experts (SMEs) in 
building pedagogically sound training experiences without the requirement 
of programming. 

• Discover and develop modeling functions that account for uncertainty 
across policies informing pedagogical decisions (e.g., content delivery, 
course navigation, and guidance) with an ability for these functions to refine 
and optimize themselves through reinforcement learning mechanisms  over 
time as new interaction and performance data becomes available (e.g., 
Markov Decision Processes). 

In this research outline, we present the goals associated with the instructional 
management research vector and review specific subvectors across the program that 
influence the approach and direction of our dedicated efforts. This outline 
emphasizes desired functions and capabilities for ARL’s Generalized Intelligent 
Framework for Tutoring (GIFT), an open-source architecture intended to support 
adaptive instruction.
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3. Background 

While human tutoring and mentoring are common teaching tools, current US Army 
standards for training and education are group instruction and classroom training, 
also known as one-to-many instruction. Group instruction and classroom training 
have been generally focused on acquiring and applying knowledge in proxies for 
live training environments (e.g., desktop simulations, virtual simulations, 
constructive simulations, and serious games).  

Classroom training, especially for complex topics, is often taught as a series of lists 
that the instructor goes through in a linear fashion (Schneider et al. 2013). This 
approach puts a heavy burden on the learner to build mental models and make 
conceptual connections. Using this instructional methodology may lead to varying 
degrees of success due to individual differences in skills, traits, and/or preferences. 
In this fashion, lower-performing students who struggle are provided more hands-
on guidance while higher-performing students who are under-challenged (e.g., 
bored) are allowed to progress through a course at an accelerated rate. 

Small group instruction in live environments has also been used to assess 
application of knowledge and the development of skills. A standard feedback 
mechanism for US Army training is the after-action review (AAR), where 
significant decision points and actions are captured for small group discussions 
conducted after the completion of a training event to help capture teachable 
moments and to aid Soldiers in reflecting on their recent training experiences.  

Both classroom training and small group instruction are manpower-intensive, 
requiring teachers, mentors, and support staff to guide the Soldier’s experience. 
Today ITSs guide learner training and education primarily in physically static  
(e.g., desktop simulations), well-defined domains. Research is needed to expand 
ITS instructional management practices to support militarily relevant domains that 
train across knowledge, skills, and abilities required to be successful Soldiers. The 
focus of this research is to identify pedagogical principles that can be applied to 
manage knowledge and skill acquisition by addressing individual differences, 
managing affective states experienced during learning, supporting metacognitive 
development, enforcing reflection through personalized AARs, and promoting 
retention and transfer to operational environments.  

3.1 Self-Regulated Learning and the US Army Learning Model 

In 2011 the US Army placed significant emphasis on the development of SRL skills 
with the expectation that new methods of instruction (e.g., ITSs) would augment 
institutional training (i.e., classroom and small group instruction).
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One-to-one human tutoring has been shown to be significantly more effective than 
one-to-many instructional methods (e.g., traditional classroom instruction) (Bloom 
1984; VanLehn 2011). However, it is neither practical nor affordable to have one 
expert human tutor to mentor each Soldier in the US Army for every required 
operational task. This alone signals the need for capabilities to support one-to-one, 
tailored training and educational experiences.  

Additionally, under the ALM, Soldiers are largely responsible for managing their 
own learning, but SRL skills are difficult to train and develop (Azevedo et al. 2009; 
Butler and Winne 1995; Graesser and McNamara 2010). We anticipate adaptive 
training tools and methods will fill this gap and provide personalized guidance to 
acquire, apply, retain, and transfer knowledge and skills to the operational 
environment. This signals the need for a computer-regulated learning strategy to 
augment missing SRL skills; however, adaptive training technologies must first 
become affordable, sufficiently adaptive, and easy to use for this strategy to be 
realized.  

3.2 Motivation for Research 

A promising alternative to one-to-one human tutoring is one-to-one adaptive 
training tools that include ITSs. Meta-analyses and reviews support the claim that 
ITS technologies routinely improve learning over classroom teaching, reading 
texts, and/or other traditional learning methods. These meta-analyses normally 
report effect sizes (sigma [σ]), which refer to the difference between the ITS 
condition and a control condition in standard deviation units. The reported meta-
analyses show positive effect sizes that vary from σ = 0.05 (Dynarsky et al. 2007) 
to σ = 1.08 (Dodds and Fletcher 2004) but most hover between σ = 0.40 and  
σ = 0.80 (Fletcher 2003; Graesser et al. 2012; Ma et al. in press; Steenbergen-Hu 
and Cooper 2013, 2014; VanLehn 2011). Our current best meta-meta estimate from 
all of these meta-analyses is σ = 0.60. This performance is comparable to human 
tutoring, which varies from between σ = 0.20 and σ = 1.00 (Cohen et al. 1982; 
Graesser et al. 2011) depending on the expertise of the tutor. Human tutors have 
not varied greatly from ITSs in direct comparisons between ITS and trained human 
tutors (Olney et al. 2012; VanLehn 2011; VanLehn et al. 2007).  

Graesser et al. (2015 in press) are convinced that some subject matters will show 
higher effect sizes than others when comparing any intervention (e.g., computer 
trainers, human tutors, group learning) with a control. It is difficult to obtain high 
effect sizes for literacy and numeracy because these skills are ubiquitous in 
everyday life and habits are automatized. For example, Ritter et al. (2007) reported 
that Cognitive Tutor software for mathematics has shown an effect size of σ = 0.30 
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to 0.40 in environments with minimal control over instructors. Human interventions 
to improve basic reading skills typically report an effect size of σ = 0.20. In contrast, 
when the student starts essentially from ground zero, such as many subject matters 
in science and technology, effect sizes are expected to be more robust. ITSs show 
effect sizes of σ = 0.60 to 2.00 in the subject matters of physics (VanLehn 2011; 
VanLehn et al. 2005), computer literacy (Graesser et al. 2012; Graesser et al. 2004), 
biology (Olney et al. 2012), and scientific reasoning (Halpern et al. 2012; Millis et 
al. 2011). As a notable example, Digital Tutor software (Fletcher and Morrison 
2012) improves information technology by an effect size as high as σ = 3.70 for 
knowledge and σ = 1.10 for skills. The effect sizes attributed to improved 
instruction and improved domain knowledge have not been separated in this 
analysis. Such large effect sizes would never be expected in basic literacy and 
numeracy. 

Overall, these are promising results and equate to an increase of about a letter grade 
improvement over traditional classroom instruction. While ITSs are a promising 
technology to support adaptive training for individuals in well-defined domains like 
mathematics, physics, and computer programming, the US Army requires the 
ability to develop and exercise Soldier skills in more ill-defined domains (e.g., 
leadership) and at the unit level (e.g., collaborative learning and team training). 
Developing and maintaining the ability to make effective decisions under stress and 
in complex environments is also desirable.  

Adaptive systems by their nature require additional content and complexity to 
support tailored learning for each user and as a consequence have a very high 
development cost, a major barrier to adoption by the US Army. Adaptive systems 
are also insufficiently adaptive to support tailored, self-regulated training and 
educational experiences across a broad spectrum of military tasks as required by 
the ALM. Today, few ITS authoring tools are generalized across all of the domains 
requiring training, and no evaluation criteria or standards have been developed to 
promote reuse and interoperability among ITSs (Sottilare et al. 2012b). In other 
words, current adaptive systems are not yet intelligent enough to support the 
tailored instruction required by the US Army in the breadth of domains being 
trained, but there is a stable foundation of 50 years of science on which to grow an 
adaptive training and education capability for the US Army. 

3.3 Adaptive Training and Education Definitions 

In support of the ALM and affordable adaptive training and educational capabilities 
for the US Army, ARL is investigating and developing adaptive tools and methods. 
A desired end-state is the automation of authoring (creation) processes, instruction,
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and evaluation of computer-regulated training and education capabilities to help 
build SRL skills and support mixed-initiative interaction. A major goal within this 
research program is to reduce the time/cost and knowledge/skill required to author, 
deliver, and evaluate adaptive technologies to make them usable by a larger 
segment of the Army training and educational community. 

Adaptive training and education research includes elements of adaptive tutoring, 
distributed learning, virtual humans, and training effectiveness evaluation. For 
additional detail on research specific to ITSs, refer to ARL-SR-0284 (Sottilare 
2013). The following definitions are provided for this section to distinguish 
between adaptive training and education elements and also to highlight their 
relationships: 

Adaptive Tutoring: Also known as intelligent tutoring, these tailored instructional 
methods provide one-to-one and one-to-many computer-guided experiences 
focused on optimizing learning, comprehension, performance, retention, reasoning, 
and transfer of knowledge and acquired skills to the operational environment. 

Adaptive Tutoring Systems: Also known as ITSs, these mechanisms or 
technologies (tools and methods) provide tailored training and educational 
experiences. Adaptive tutoring systems respond to changing states in the learner 
and changing conditions in the training environment to optimize learning and 
anticipate and recognize teachable moments. 

Virtual Humans: Artificially intelligent visual representations of people that 
simulate or emulate cognitive, affective, physical, and social processes. 

Distributed Learning: Concurrent distribution of training and educational content 
to multiple users at the point of need in which content is intelligently selected to 
support learning, increased performance, and long-term competency in selected 
domains. 

Training/Learning Effectiveness: Evaluation of the impact of training and 
educational tools and methods on usability, learning, comprehension, performance, 
retention, reasoning, and transfer of knowledge and acquired skills to the 
operational environment. 

Adaptive Training and Education Systems: A convergence of ITSs and external 
training and education capabilities (e.g., serious games, virtual humans, and 
simulations) to support engaging experiences with reduced need for authoring 
(Sottilare 2015). 

Generalized Intelligent Framework for Tutoring (GIFT) (Sottilare et al. 2012a; 
Sottilare et al. 2013a): An open-source, modular architecture whose goals are to
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reduce the cost and skill required for authoring adaptive training and educational 
systems, automate instructional delivery and management, and develop and 
standardize tools for the evaluation of adaptive training and educational 
technologies. 

Adaptive training and education research at ARL are being conducted across 6 
interdependent research vectors: individual learner and unit modeling, instructional 
management principles, domain modeling, authoring tools and methods, evaluation 
tools and methods, and architectural and ontological support. This report (1 of 6 
interdependent research outlines) focuses on domain modeling research for 
adaptive training systems with the goal of guiding learning in militarily relevant 
training and educational domains.  

Soldiers operate in a variety of complex, dynamic, ill-defined domains where their 
ability to persevere in the face of adversity, adapt to their situation, collaborate, and 
think critically are key to the successful completion of their assigned missions. To 
develop and exercise these skills, it is paramount for Soldiers to train in challenging 
environments. Currently these few challenging training environments have been 
largely provided through manpower-intensive methods or systems with little ability 
to adapt instruction to support their learning needs. To illustrate this point, Franke 
(2011) asserts that through the use of case study examples, instruction can provide 
the pedagogical foundation for decision making under uncertainty. However, this 
approach is limited in implementation by the expanse of potential cases that would 
need to be consistently updated and maintained to support large populations like 
the US Army.  

As noted previously, adaptive systems like ITSs have been shown to be effective 
in promoting learning in primarily static (e.g., learners seated at desktop computers) 
instructional settings within relatively simple, well-defined domains (e.g., 
mathematics and physics) for individual learners. For our purposes, static 
instruction includes cognitive, affective, or social training tasks where a desktop 
computer delivers instruction and where the physical movement of the learner is 
limited to activities that can be conducted while seated. For example, static 
instruction can effectively support cognitive tasks involving decision making and 
problem solving but are less effective for training tasks involving motion and 
perception (e.g., land navigation and marksmanship). Ideally, we desire portable 
adaptive instructional capabilities to go with Soldiers to support training and 
education at their point of need across a wide spectrum of Army operational tasks. 
Research is needed to develop tools and methods to support broader domain 
modeling that is representative of the full spectrum of Army operational tasks. 
Standards, interoperability, and automation (e.g., automated scenario generation) 
(Zook et al. 2012) will likely play a significant role in making adaptive training 
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practical. In this way, adaptive training technologies will have the greatest impact 
on organizational learning in the Army. 

4. US Army Requirements for Adaptive Training Systems and 
Instructional Management Research 

The Army science and technology community uses Warfighter Outcomes (WFOs) 
as the authoritative source for identifying Warfighter needs. WFOs are used to share 
research and future technology solutions. In the training and education (TandE) 
domain, the adaptive TandE research program is targeting 4 specific requirements 
to support the evolution of US Army training: adaptive training and education 
systems, big data, training at the point of need, and AI.  

4.1 Adaptive Training and Education Systems and Instructional 
Management 

The primary gap to be addressed under this Army requirement is the lack of 
adaptive systems (e.g., intelligent tutors) to support individual and collective (team 
or unit) training. The Army needs an adaptive training and education capability that 
is persistent and easy to use/access with minimal start-up time. There are also 
requirements to automate an informal AAR (also known as postexercise critique) 
to reduce the time and skills needed to produce the AAR and improve its focus and 
quality. Another line of thought also notes that the AI in ITSs could be used to 
facilitate rapid mission planning and course-of-action analyses as a job aid in 
operational contexts.  

An effective adaptive training capability depends on sound instructional 
management practices. Instructional management practices consist of techniques, 
strategies, and tactics applied to a domain of instruction to optimize performance 
outcomes (Sottilare et al. 2014). With respect to GIFT, this vector of research is 
concerned with identifying instructional best practices that associate with all facets 
of learning as well as establishing authoring workflows that instantiate those 
practices across multiple environments of instruction. The goal is to provide 
adaptive training solutions that are sufficiently tailored for each individual Soldier 
and for teams of Soldiers.
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4.2 Big Data and Instructional Management 

The primary gap to be addressed under this Army requirement is that there is a lack 
of capability to handle and process large amounts of structured and unstructured 
data (also referred to as big data). One capability needed is a structured data 
analytics program linking individual data (e.g., achievements) to required long-
term competencies in military occupational specialties (MOSs). This would allow 
Soldiers to understand where they rank in terms of experiences and achievements 
among other Soldiers in their MOS. It would also allow the Army to identify 
specific experiences among successful Soldiers in that MOS and provide a model 
for other Soldiers in that MOS to follow. This data could also be used by course 
managers and instructors to continuously improve instruction and the mental 
models of both human and computer-based instructors. Finally, data collected on 
trainee learning and performance during adaptive training experiences could be 
used to facilitate unit training management where unit commanders would have 
access to empirical data to support unit training decisions. 

A goal of instructional management in GIFT is to optimize performance and 
competency outcomes through personalized training experiences that adapt to an 
individual’s knowledge, skills, and abilities (KSAs). A connection between big data 
and instructional management is applying large datasets from prior course 
interactions to update and improve technique and strategy implementations across 
all available courses. A challenge in defining instructional management logic in a 
domain-independent context is that it requires generalizability across applications. 
An issue with instructional strategy-based research is that an approach taken in one 
domain is hard to translate to a different without performing extensive research to 
validate its application. In addition, it is difficult to define definitive instructional 
management logic based on these uncertainties. As such, big data can be used to 
account for this uncertainty by applying machine learning and data mining 
techniques to assess specific causal relationships between instructional practices 
and outcomes on performance, retention, and transfer. This application of big data 
is used to reinforce instructional management models by optimizing itself over time 
as more and more data is made available. 

4.3 Training at the Point of Need and Instructional 
Management 

The primary gap to be addressed under this Army requirement is the lack of an 
easily accessible, persistent, cost-effective, and low-overhead training 
environment. A capability is needed to bring training to Soldiers instead of Soldiers 
going to fixed training locations. This point-of-need training capability would be 
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easily distributed, web-based, and built upon open-enterprise architecture in the 
cloud. Army training and educational opportunities would be available on demand 
anywhere and anytime. However, the delivery mechanism (e.g., laptop computer, 
mobile device, and smart glasses) for adaptive training is critical in determining the 
limitations of the domain model scope and complexity. For example, it may be 
extremely difficult to train all the complexities of a psychomotor task in a desktop 
computer setting. 

A goal of instructional management in GIFT is to support a model of training by 
convenience and to have mechanisms to support this form of education in the 
absence of live instruction. Effective training applications administered in a point-
of-need capacity requires 4 primary components to deliver sound instruction: 1) the 
ability to monitor trainee interaction and behavior to accurately assess performance 
against a granular concept by concept model, 2) the ability to communicate 
guidance and feedback messages that correspond with individual performance, 3) 
the ability to adapt scenario/problem elements to maintain appropriate challenge 
levels for promoting flow, and 4) the ability to manage an automated AAR to 
review scenario performance and promote reflection on the linkage between 
outcomes and overall learning objectives. Each of these components depend on 
each other for the purpose of delivering personalized training experiences through 
an easily distributed, web-based, open-enterprise architecture. In addition, an 
optimal adaptive training capability will leverage existing course materials to better 
serve the development of a competency through point-of-need functions. An 
example is providing a remedial training activity on an identified weakness  
between training events to better prepare that individual for the next period of 
instruction (e.g., recognizing trigger squeeze problems in the Engagement Skills 
Trainer and providing a remedial multimedia training event prior to the next round 
of marksmanship instruction on the live range).  

4.4 Artificial Intelligence Capabilities and Instructional 
Management 

The primary gap to be addressed under this Army requirement is that the Army 
lacks an automated capability to replicate the complexity and uncertainty of the 
operational environment. This gap specifically points to the lack of adaptiveness in 
virtual humans, intelligent tutoring systems, and other training capabilities. This 
gap leads to Soldiers developing training response strategies that result in less-
challenging training over time along with lower engagement and lower levels of 
learning and transfer of skills to more challenging operational environments. 
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A goal of instructional management in GIFT is to facilitate robust AI capabilities 
that enhance the realism and playability of simulation-based training exercises, 
specifically those that utilize virtual humans and semi-automated forces. These 
elements must be embedded with AI capabilities that provide an automated reactive 
capacity to trainee inputs and actions that adhere to the complexity and uncertainty 
of an operational environment. In terms of virtual humans, these entities must have 
logic that supports realistic movements and communication exchanges that reflect 
back to a culture or operational environment. This requires AI embedded within 
virtual humans that accounts for cultural norms and customs, along with the ability 
for the entity to adapt its behavior based on cues and actions perceived from the 
trainee (rolling of the eyes, change in vocal intonation, failing to account for 
appropriate cultural greeting, etc.). AI also needs to be embedded in virtual humans 
that enables their use as virtual teammates in a collaborative training scenario.  

This will allow for effective training of team-oriented missions without the 
requirement of using an all-human team. In terms of semi-automated forces, which 
are commonly used in tactical training events within environments such as Virtual 
Battlespace 3 (VBS3), AI techniques must be established that allow a group of 
forces to adapt their movements over time, as it can autonomously learn from 
actions and tactics executed by a trainee or team of trainees. This will allow a set 
of enemy forces to better adapt itself, much like in the real world, for the purpose 
of creating richer training experiences that increase complexity. In addition, AI 
techniques must be investigated to ease the development of training scenarios to 
avoid issues of “replay-ability”. A system such as VBS3 would benefit from 
technologies that enable the generation of multiple scenarios for training purposes 
based solely around a defined set of tasks, conditions, and standards. This promotes 
better training because a trainee needs to adapt his/her application of knowledge 
and skills to an unknown event rather than gaming a scenario by learning the 
various cues and scripts executed by an enemy entity (i.e., knowing an insurgent is 
hiding behind a specific door in a specific hallway).  

5. Understanding the Dimensions of Instructional 
Management 

There are 4 typical elements that comprise ITSs, a prime example of an adaptive 
training and education system: a learner or trainee model, an instructional or 
pedagogical model, a domain model, and some type of user interface. The domain 
model typically includes an expert or ideal student model by which the adaptive 
system measures/compares/contrasts the progress of the learner toward learning 
objectives. The domain model also includes the training environment, the training 
task, and all of the associated instructional actions (e.g., feedback, questions, hints,
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pumps, and prompts) that could possibly be delivered by the adaptive system for 
that particular training domain. Typical interaction between the learner, the training 
environment, and the adaptive system (tutoring agents) is shown in Fig. 1. 

 

Fig. 1 Adaptive training interaction 

Typical training systems examine the interaction between the learner and the 
training environment to measure progress toward learning objectives. The learner 
acts on the environment (e.g., opens a door or makes a choice to move into the room 
or stay outside) and then observes any changes or reactions within the environment. 
Adaptive systems add a layer of software-based tutoring agents that are designed 
to guide the learner in much the same way as a human tutor interacts with a learner. 
The tutoring agents observe the behaviors of the learner to assess their states (e.g., 
performance and attitudes) and interact with the learner to provide support, 
direction, and instruction. In addition, they track the effect of interactions on 
learning. Tutoring agents also interact with the training environment and may 
manipulate the environment to present more- or less-challenging scenarios in 
response to the assessed state of the learner. 

5.1  Theoretical Foundations of Instructional Management 

Instructional strategies have been advocated by researchers and practitioners in 
many different fields, including education, educational psychology, cognitive and 
learning sciences, military training, computer-based training, AI in education, 
computer-supported collaborative learning, educational data mining, etc. (Sottilare 
et. al. 2014). While these fields often vary across intent and scope of research, 
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common themes have been recognized across multiple reports involving 
interdisciplinary research groups organized by the government and research 
organizations. Examples include (as highlighted in Sottilare et. al. 2014) the 
following: 

• A Roadmap to Educational Technology. National Science Foundation, 
Arlington, VA; 2010. http://www.cra.org/ccc/docs/groe/GROE Roadmap 
for Education Technology Final Report.pdf. 

• The Army Learning Concept for 2015. US Army, Washington, DC; 2011. 
http://www-tradoc.army.mil/tpubs/pams/tp525-8-2.pdf.  

• Committee on Science Learning: Computer Games, Simulations, and 
Education. National Academy of Sciences, Washington, DC; 2011. 
http://www.nap.edu/catalog.php?record_id=13078.  

• Assessing 21st Century Skills. National Academy of Sciences, Washington, 
DC; 2011. http://www.nap.edu/catalog.php?record_id=13215#toc.  

• Improving Adult Literacy Instruction. National Academy of Sciences, 
Washington, DC; 2012. http://www.nap.edu/catalog.php?record_id=1342.  

• Organizing Instruction and Study to Improve Student Learning. Institute of 
Education Sciences of the United States Department of Education, 
Washington, DC; 2007. http://ies.ed.gov/ncee/wwc/pdf/practice_guides 
/20072004.pdf.  

• Lifelong Learning at Work and at Home. American Psychological 
Association and Association for Psychological Sciences, Washington, DC; 
2007. See Graesser AC. Inaugural editorial for Journal of Educational 
Psychology. 2009;101(2):259–261.  

These reports emphasize instructional strategies that are supported by empirical 
tests with scientific methodologies; therefore, the strategies are grounded in science 
and are evidence-based. It is important that many of the strategies recommended 
from these groups are geared toward live instruction. 

In terms of implementation, instructional management involves both an adaptive 
outer loop (i.e., adjusting problem selection based on performance outcomes) and 
an adaptive inner loop (i.e., providing real-time error-sensitive feedback or 
manipulating the scenario directly) function that accounts for individual differences 
across KSAs within a given domain. An adaptive, intelligent learning environment 
needs to launch the right instructional strategies at the right time in a mechanism 
that attempts to be sensitive to the learner model, maximize learning and 
motivation, and minimize training time and costs. 
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5.2 Instructional Management in GIFT 

Before we examine specific goals and research interests associated with 
instructional management in GIFT, it is important to review some high-level 
components of the architecture. This involves an understanding of how information 
and data is represented and how these representations ultimately inform the updated 
Learning Effect Model (LEM) (Sottilare 2015 in press; Sottilare et al. 2015, Fig. 
2). The important takeaway of the LEM is the flow of data with respect to the 
selection of an instructional practice. The effect chain is influenced by both 
historical data (e.g., prior experience, prior knowledge, and learner traits) 
maintained over time and real-time data captured during a specific interaction. This 
data is used to adapt instruction on 2 facets: 1) an inner-loop capacity using data to 
influence interaction within a single problem or scenario by providing guidance or 
adjusting difficulty levels similarly to Vygotsky’s (1978) zone of proximal 
development (ZPD) and 2) an outer-loop capacity that configures the next event 
experienced by a learner based on assessments from a prior event or through 
predictions based on historical representations and learner traits (VanLehn 2006). 
This might involve selecting a new problem/scenario, managing a remediation 
event, moving on to a new section of the course, administering an AAR, or ending 
the course. 

 

Fig. 2 Updated individual learning effect model (Sottilare 2015 in press; Sottilare et al. 
2015) 

In terms of the inner-loop adaptive function, Assistive Technology Learning 
through a Unified Curriculum (ATLEC) primarily interacts on learner assessments 
occurring in real time for both performance and affective related states. Ultimately, 
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raw interaction data are used to infer a learner state. This involves robust 
assessment techniques that can accurately gauge an individual learner’s 
performance for a given task, the affective responses they are having within that 
task, and their estimated competency for the domain that task is designed to train. 
This inferred learner state is used to inform the selection of an instructional strategy 
to mediate the learning experience. In the current baseline of GIFT (GIFT 2015), 
the instructional strategies supported for the inner loop consists of “provide 
guidance”, “adapt scenario”, “administer assessment”, and “do nothing”. These 
strategies are represented as high-level domain-independent descriptors of an 
action the system can take within a given learner event. These high-level actions 
must then be translated into a specific tactic of execution (see Sottilare et. al. 2014 
for a comprehensive breakdown of strategies versus tactics).  

For outer-loop adaptive functions, components of the ATLEC are administered up 
front to configure a lesson’s sequence of interaction. Learner data inform strategy 
selections that associate with Merrill’s (1994) Component Display Theory. This 
interaction is currently encapsulated in a tool used by GIFT called the Engine for 
Management of Adaptive Pedagogy (EMAP) (see Fig. 3). In the latest GIFT 
baseline, the EMAP is used to guide a learner through a set of interactions that 
focuses on 1) presentation of rules for a domain or task, 2) presentation of examples 
where those rules are being applied, 3) administering of a knowledge assessment 
that gauges a learner’s ability to recall facts, and 4) administering of a practice 
assessment that gauges a learner’s skill for performing tasks associated with the 
domain of instruction (Goldberg et al. 2012; Wang-Costello et. al. 2013). 
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Fig. 3 GIFT’s EMAP (Goldberg and Hoffman 2015) 

With a current layout of the functions GIFT supports from an instructional 
management perspective, the remainder of the research outline will target specific 
utilities of interest that a domain-independent architecture needs for wide use across 
military, academic, and industry settings. Specific goals of desired functions will 
be presented, followed by recognized subvectors of interest that require substantial 
research to determine their optimal conditions for use in a learning event. As GIFT 
is intended to be a unified standard for building ITSs of all kinds, it is important to 
recognize the varying instructional management practices that can be implemented 
and what conditions are best for their use.
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6. Instructional Management Research Goals and Challenges 

The foundational goal of adaptive training research at the ARL is to model the 
perception, judgment, and behaviors of expert human tutors to support practical, 
effective, and affordable learning experiences guided by computer-based agents. 
To this end, 5 primary challenges in instructional management for adaptive training 
systems have been identified and are discussed in this section. 

In the following subsections, we review the specific overarching themes associated 
with instructional management research in GIFT. Each theme is represented as a 
subvector in this research outline. While reading through these research thrusts, 
make sure to conceptualize their application across various training environments 
and use cases. While the subvectors can be somewhat confined in terms of 
instructional management intent, options for how they can be applied across all 
types of training environments are vast. This includes considering individualized 
versus team-based training events and the technologies being applied to facilitate 
the training itself. 

6.1 Guidance and Scaffolding 

Scaffolding is a term used to describe the application of instructional supports to 
assist a learner in developing knowledge and skills that the learner would not 
achieve when left to their own devices. Holden and Sinatra (2014) define scaffolds 
as a temporary application of strategy that is gradually removed (“faded”) once a 
learner demonstrates an increase in proficiency or skill. The word ‘strategy’ is used 
loosely here, as it can be a number of interventions that range from guidance, 
feedback, scenario/problem manipulation, and remediation. Prior to the advent of 
computer-based training environments and ITSs, an expert adult or peer (parent, 
teacher, classmate, teammate, etc.) provided scaffolding practices. This individual 
acted as an expert facilitator of KSAs required for learning, motivator, model, and 
means for the learner to reflect (Puntambekar and Hübscher 2005). As such, much 
of the applied guidance and scaffolding practices in adaptive training environments 
are based on what effective instructors and tutors do in real life. In examining 
models of expert human tutors, the following themes have been identified for 
effective interaction:  

• Demonstrate credible knowledge of the domain under training (e.g., tactical 
combat casualty care). 

• Read cues from the learner and adapt instruction in real time to meet their 
changing needs. 
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• Encourage question asking.  

• Provide indirect feedback. 

• Assess learning often. 

When designing scaffolds and the logic associated with their execution, 3 
dimensions require consideration: what to scaffold, when to scaffold, and how to 
scaffold (Azevedo and Jacobson 2008). With respect to GIFT, each of these 
dimensions must be conceptualized in a domain-agnostic fashion. The first 
consideration that will dictate how to proceed is based on available tools and 
methods for scaffolding. In this vein, the mode of interaction and the specific 
training application itself will determine what approaches can be implemented 
(Goldberg and Cannon-Bowers 2015). For instance, interacting in VBS3 affords 
different scaffolding strategies when compared with interacting with a negotiation 
trainer on a tablet. The type of state (e.g., performance, affective) information being 
monitored in the learner model (Shute et al. 2013), the type of communication 
interfaces available for presenting information (e.g., GIFT’s Tutor User Interface, 
smartphone, smart glasses, haptic device), and the type of adaptations supported by 
the training application (e.g., changing the weather in VBS3 to increase the 
complexity of scenario) all impact the types of scaffolds that can be built to support 
a specific course or lesson.  

Once one recognizes the available tools to trigger and support scaffolding practices, 
determining what to scaffold must be addressed next. What to scaffold can be 
represented in a generalized fashion and is based on defined learning objectives and 
barriers to a learner performing successfully. This could include scaffolding 
specifically on the cognitive level that accounts for the domain or the task 
procedures themselves. Or scaffolds can account for different constructs associated 
with the learning process, such as metacognition (i.e., to regulate goal planning, 
performance monitoring, and help-seeking) and affect (i.e., to regulate motivation, 
boredom, frustration, and confusion) (van de Pol et al. 2010). Recognizing what 
one wants to scaffold along with what tools and methods one has to support those 
types of interventions will lend itself into building the specific scaffolds for 
implementation. 

With scaffolds conceptually established, the next step is building logic for 
determining when to apply a scaffold and how to appropriately fade/adapt its use 
to promote efficient transfer of execution. A common perspective to account for 
this challenge is based on Vygotsky’s (1978) ZPD. ZPD is an optimal and efficient 
zone of learning that elevates the student from his/her current and actual 
developmental level to one of more potential through balancing challenge with 
ability and through formative guidance to enhance skill (Vygotsky 1978). In its 
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simplest form, the ZPD creates a formalized state space representation that enables 
a system to contextualize what a learner is experiencing for a given training domain. 
For example, if a training system launches a scenario with a preconfigured 
difficulty setting of expert and a trainee’s skill state is defined as journeyman, the 
system may trigger specific scaffolds that are intended to support the maturation of 
skill levels to meet the challenge level of a selected scenario. In this instance, if 
performance assessments associate execution with increased skill levels, the system 
must be able to recognize this shift and fade scaffolds. From the opposite end, if a 
learner demonstrates skills that fall below his or her predicted ability levels, the 
system must be able to appropriately trigger scaffolds to compensate for that 
inaccurate upfront classification. This must be possible for both dynamic scenario-
driven tasks as well as for training applications that use discrete problem sets that 
allow adaptation between each problem.  

Much of the described scaffolding- and guidance-focused end-state objectives are 
composed of a mix of inner-loop and outer-loop pedagogical practices. In short, the 
training application being used will dictate the type of scaffolding that can be 
executed. While GIFT is domain-agnostic, once a training application is applied, 
the next step is conceptualizing what adaptive functions are supported and what 
authoring processes are required. In an ideal end-state, a constraint-based, 
intelligent pedagogical agent can be applied to guide the authoring processes and 
to manage run-time decisions. These decisions center on selecting appropriate 
domain independent strategies, translating strategies into optimal tactics (actions) 
based on situational context, and then presenting the tactic (take action) through the 
delivery of feedback, providing direction, or changing the training environment.   

When considering scaffolding for adaptive training environments, several needed 
areas of research emerge. These areas are relevant due to the advancing popularity 
in ITSs and the relative infancy of these environments applied in military contexts. 
Holden and Sinatra (2014) identify several necessary future research areas 
involving scaffolding and GIFT. One involves defining the different focuses to 
scaffolding and distinguishing the conditions under which its implementation is 
best. Several specific types of scaffolding exist on a theoretical level, including 
conceptual, metacognitive, procedural, and strategic (Hannafin et al. 1999). As 
such, the word ‘scaffold’ applied in this context is as a very broad term that 
associates with multiple forms of transitions, interventions, and adaptations 
performed by a system. In terms of pedagogical intent, a range of scaffolds can be 
applied to associate with the following: 

• Error-Sensitive Feedback: An intervention triggered when the learner 
commits errors that are either individually or cumulatively significantly 
divergent from the ideal as defined in the expert model of the ITS.  
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• Mastery Learning: A strategy where the ITS ensures that the learner 
masters (can recall and apply) prerequisite lessons or concepts before 
allowing the learner to move on to the next lesson/concept.  

• Adaptive Spacing and Repetition: A strategy where the learner more 
easily recalls knowledge items/objects when the knowledge is exposed to 
the learner repeatedly over a long time-span rather than repeatedly studied 
during a short span of time (Benjamin and Tullis 2010; Dempster 1989).  

• Metacognitive Prompting: A strategy where the ITS encourages the 
learner to self-reflect and evaluate, self-explain, and self-correct rather than 
provide the answer directly.  

• Fading Worked Examples: “[A] step-by-step demonstration of how to 
perform a task or how to solve a problem” from which parts have been 
deliberately removed or faded (Clark et al. 2006, p. 190).  

While scaffolds are very domain-relevant and application-dependent, tools and 
methods must be established in GIFT to support building and implementing optimal 
scaffolds across all types of supporting training environments. This also extends 
into investigating scaffolds for team-based training events. From this association, 
the following potential research questions arise: 

• What is the best approach to the authoring run-time instructional 
management logic in GIFT? 

• Are there pedagogical best-practice heuristics that generalize across training 
environments with varying levels of interactivity and user control? 

• How do scaffolding best practices translate to collaborative and team-based 
training exercises? 

• What are the variations in feedback considerations when comparing 
individualized instruction with team-based training? 

• What role do worked examples play in military relevant training 
environments, and how can SMEs use this pedagogical function to create 
better training? 

• What probabilistic modeling techniques account for system uncertainties 
and optimize instructional management practices and tutorial planning logic 
over time to avoid solely deterministic execution? 

• What architectural modifications are required to support contextualized 
feedback prompts that adhere to a domain-agnostic pedagogical structure 
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(i.e., communicating scenario relevant feedback by including interaction 
data available in log files)? 

• How much control should the learner have on guidance and scaffolding 
support (i.e., help seeking)?  

• When should guidance and scaffolding be on demand (e.g., learner requests 
hint), triggered by a student/system event or state, or blended?  

• What performance factors and individual differences tracked in the learner 
model should moderate scaffold selection and fading logic? 

• How do generalized scaffolding techniques vary across training delivery 
modalities (e.g., laptop, smartphone/tablet, simulators, and smart 
glasses/head-mounted displays)? 

• How can SMEs embed scaffold supports in virtual world game 
environments commonly used for training purposes (e.g., VBS3)? 

• Under what conditions does an adaptive training environment provide 
guidance versus adapting the scenario or problem selection? 

• What assessment types trigger variations in scaffolding techniques (e.g., 
conceptual versus affective versus procedural versus metacognitive)? 

6.2 Social Dynamics and Virtual Humans 

In this research subvector, we review end-state goals associated with the role of 
social dynamics and virtual humans in managing instruction within adaptive 
training environments. This line of research associates with tenets of Social 
Cognitive Theory in that learning is theorized to be an inherently social process 
(Bandura 1986; Vygotsky 1978). As such, techniques should be applied to account 
for high-valued social elements that can potentially improve a piece of educational 
technology. In addition, Army task domains can involve highly socialized 
interactions. To support these task characteristics, adaptive training systems should 
account for the types of interactions a Soldier might face (e.g., negotiating with a 
village elder) and the variables that may influence their course of action (e.g., 
cultural norms for greetings and negotiations). From an adaptive training 
perspective, social dynamics and virtual human research is focused on the 
following:  

• Using technology and AI to replicate interactive discourse common in 
educational and operational settings.  
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• Using technology to embed social elements in the environment, such as 
virtual humans, to create a social grounding function for delivering 
information/guidance.  

• Using technology and AI to create realistic and reactive virtual humans as 
training elements in a simulation or scenario (e.g., role player and 
teammate). 

• Using technology to create a social forum for the purpose of supporting 
peer-to-peer and collaborative learning, both from a real-time perspective 
and a time-agnostic approach allowing interaction at convenience. 

Each referenced focus area is based on a specific social element of interest to the 
GIFT community. Of importance is the application of these elements within the 
standardized architecture inherent to GIFT. Specifically, how can the tools and 
methods built to afford these capabilities be translated to support ease of application 
within any type of training event and within any type of training environment 
supported by GIFT? Each identified element associates distinctly different research 
questions and associates distinctly different scientific disciplines. It is a very broad 
subvector of instructional management with many dependencies to other elements 
of the GIFT research program.  

In the case of using ITS technologies to replicate interactive discourse, an end-state 
goal is to establish state-of-the-art natural language processes to create a robust tool 
capable of dynamic question and answer (QandA) exchanges. In this instance, we 
want a training environment to be able to push a question to a learner and a trainee 
to be able to ask questions of the ITS, ideally through natural language and open 
response input methods. As highlighted previously, a characteristic of an effective 
tutor is one who encourages a learner to ask questions. This process in itself 
promotes learning through abstraction and reflection. As such, we need a discourse 
capability that can accurately interpret user responses and intent as they relate to 
the semantic space of instruction, and we want this capability to associate with pre-
existing training applications (i.e., natural discourse QandA in parallel with 
executing a VBS3 scenario). This capability can be applied in multiple training 
instances and under many conditions, including 1) discourse to support reflective 
QandA sessions to promote higher order cognitive thinking, 2) discourse to support 
training events that involve social exchanges to meet certain negotiation objectives, 
and 3) discourse to support realistic communication with virtual entities in an 
environment that associate with both friendly and opposing forces. Much like 
scaffolding capabilities, the application of natural language discourse in an adaptive 
training event associates many dependencies across the various research vectors. 
Specifically, domain modeling, authoring processes, and architecture requirements 
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are the greatest considerations when it comes to implementing this approach to 
instructional management. 

Next, virtual humans are identified as key technology pieces in extending adaptive 
training experiences to account for varying roles in the learning process. From an 
ITS support perspective, virtual human research is focused on the application of 
technology to provide an interactive communication layer that grounds all system-
generated prompts with a social element. An overarching intent is to facilitate 
interaction and communication with a computer in a way that is natural and 
realistic. The goal is to support highly engaging and interactive experiences through 
socialized sequencing of interaction and enhancing system communication by 
interfacing with a learner through comfortable modalities. Much of the prior 
research in this area focuses on the trust and perception of technology in facilitating 
a role traditionally managed by a person and the impact on motivation and effort 
(Holden and Goldberg 2011; Kim and Baylor 2006; Veletsianos 2010; Veletsianos 
et al. 2009).  

Virtual humans can also facilitate critical role players in training events. In these 
instances, AI methods allow virtual entities to realistically react to environmental 
stimuli and user inputs in a nonscripted fashion, making the experience more 
natural and engaging. Social media technologies are believed to offer innovative 
tools for instructional management practices that have yet to be fully taken 
advantage of. As a result, research is required to better understand how best those 
tools and methods can be applied. This involves the use of social media as a means 
to collect valuable user input on training materials to determine objects that need 
modifications, as well as investigating how social media can be used to promote 
collaborative learning, competition, and distributed guidance. 

6.3 Metacognition and Self-Regulated Learning  

SRL theory describes the process of taking control of and evaluating one’s own 
learning and behavior (Butler et al. 2011). As a higher-order cognitive function, 
SRL is guided by metacognitive processes (i.e., the knowledge and regulation of 
one’s own cognition), strategic actions and behaviors (i.e., planning, monitoring, 
and assessing one’s own performance), and motivational components (i.e., goal 
setting and self-efficacy) (Flavell et al. 1985; Schraw et al. 2006). These functions 
allow self-regulated learners to set goals, monitor their progress toward defined 
goals, and adapt and regulate their cognition, motivation, and behavior to reach the 
specified goals (Anderman and Corno 2013; Bransford et al. 2000). These 
characteristics also associate with desired competencies within the ALM that 
adaptive training solutions are intended to instill. As such, research in the 
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instructional management vector is focused on the application of models and 
strategies for enhancing metacognitive awareness and regulation.  

This approach to instructional management varies from traditional guidance and 
scaffolding techniques, as it focuses on behavior and application of strategy, rather 
than on task-dependent performance. One such question is based on GIFT 
supporting SRL and the efficacy of defining persistent metacognitive strategies that 
can be applied across domain applications. Currently, GIFT pedagogy is heavily 
focused on error-sensitive feedback. It works with system authors by translating 
instructional strategy recommendations communicated by GIFT’s pedagogical 
module into tactics as they relate to the specific training context. These tactics are 
used during ITS runtime and selected based on a learner’s individual differences. 
Currently, feedback in GIFT is domain-dependent and requires explicit content 
linked to each concept modeled. When it comes to metacognitive feedback, what 
are the implications to a domain-independent approach? First, modeling techniques 
need to be developed to monitor an individual’s practice of metacognitive strategies 
that can be expressed in a generalized format. An example would be incorporating 
a combined modeling approach, as described in Biswas et al. (2014), or by adapting 
a help-seeking model, as highlighted in Koedinger et al. (2009).  

One such approach is researching and establishing models based around commonly 
available GIFT interactions (e.g., request hint button). How can we use these 
available data inputs to build a representation of how effective students use the 
interface to solve problems and troubleshoot errors? This approach can aid in 
detecting learners not practicing good metacognitive behaviors through machine 
learning and data mining practices and can be used to trigger feedback interventions 
to improve their understanding of available strategies. With modeling techniques 
in place, generic strategies and tactics can be identified that are based on effective 
metacognitive behavior. In this instance, the generic strategy of “provide guidance” 
can be linked with a generic tactic of “you are ignoring available resources”, thus 
preventing any explicit authoring from a system developer. While tactics can be 
represented in a domain-independent format, their effect is relatively unknown.  

Regardless of the instructional management intent, just like all other facets of 
instruction, metacognitive tutoring depends on sound assessment practices that 
ultimately inform the type of intervention to execute. Due to difficulties in inferring 
upon interaction data alone, another area of interest is the application of alternative 
assessment techniques to better gauge an individual’s understanding of the task and 
the resources available to meet objectives. This involves inference procedures on 
interaction patterns and existing performance outcomes, as well as devising 
approaches to collect new information that is not implicitly available in the training 
environment. 
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Beyond all of the associated types of scaffolds that can serve metacognitive 
development, how does one implement such practices? A challenge that must be 
addressed is establishing an authoring environment and workflow for supporting 
SRL-derived modeling techniques and linking outputs to prescribed strategies that 
influence the regulation of metacognitive behaviors. The ultimate goal is to support 
and influence a learner’s approach to problem solving and learning in general. 
While the research identifies multiple examples of successful strategy 
implementation, what the literature lacks are guidelines for when best to instantiate 
them based on the domain being trained and the environment the interaction is 
taking place within. To enhance GIFT’s authoring functionalities, a generalized 
ontology is required that links specific instructional strategies and techniques with 
high-level domain-relevant content along with the types of tutoring environments 
and the services they can afford. By defining these relative dependencies, an ITS 
developer can embed empirically recommended metacognitive tutoring functions 
based on characteristics associated with the content being produced. 

In the context of tutor development within the GIFT architecture, the goal is to 
establish a set of strategies the framework can support and conceptualize their 
application for determining future authoring requirements to support their 
implementation, both from a modeling and pedagogical delivery standpoint. In 
accordance with this subvector of instructional management research in adaptive 
training environments, research questions of interest include the following: 

• What modeling implications are associated with supporting instructional 
management to develop metacognitive skills? 

• What architectural modifications are required to infer metacognitive 
relevant states from raw interaction data outputs? 

• What combination of assessment techniques provides the most accurate 
prediction of metacognitive strategy application? 

• What metacognitive strategies can be inherently assessed across all domains 
regardless of the training application? 

• How do metacognitive strategies translate across domains and training 
environments? 

• What educational data mining techniques can be applied to infer self-
regulated learning abilities from common GIFT produced log files? 

• How do scaffolding practices of delivery and fading for domain-specific 
guidance functions translate to metacognitive tutoring? 
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• Can metacognitive tutoring models and strategy implementations be 
developed by nontechnical SMEs?     

6.4 Optimizing the Selection of Tactics  

Our fourth goal is to optimize the selection of tactics—domain-specific actions by 
the tutor—to provide the greatest opportunity for performance, learning, retention, 
and transfer. In GIFT, tactics are the actions taken by the tutor in response to learner 
states and instructional context (e.g., conditions of the scenario or problem 
presented), as shown in Fig. 2, and are constrained by available options provided 
during the authoring process. Improving the usability and efficiency of authoring 
tools will likely result in a greater number of available options for adaptive training 
domains. 

Unlike instructional strategies, which are derived from good pedagogical practices–
based learning theory and influenced by the learner’s states, tactics are domain-
specific actions by the tutor and may not be generalized across all task domains. 
Research is needed to determine methods to select the best possible tactic given the 
selected instructional strategy, the training domain, and the availability of tactics. 

Modeling the expert behaviors of human tutors may be a starting point but accurate 
assessment methods are needed for both individual and team level states. These 
states are critical in selecting appropriate strategies (plans for action) and tactics 
(actions; e.g., assessments, feedback, questions, and changes to the training 
environment) per the Learning Effect Model (Sottilare et al. 2013b) as shown for 
both individuals (Fig. 2) and teams (Fig. 4). Assessment of team states may also be 
useful in determining constraints to be monitored by tutoring agents and 
interactions with the learner and the training environment as shown in Fig. 2. 

 

Fig. 4 Team learning effect model (Sottilare in press) 
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6.5 Personalization (Occupational and Noncognitive Factors) 

Personalization of content to an individual student’s interests has been shown to 
have a positive impact on learning, retention of information, and motivation 
(Cordova and Lepper 1996). Further, using this strategy has also demonstrated 
positive effects in transfer performance, which is the ability to extend what was 
learned to related tasks (Walkington 2013). This instructional strategy is generally 
referred to as context personalization, and has been shown to be effective in 
adaptive computer environments (Anand and Ross 1987; Cordova and Lepper 
1996; Walkington 2013). 

The majority of the context personalization research has been in the area of 
mathematics, with learning and transfer gains being found in areas such as algebra, 
fractions, and word problems (Anand and Ross 1987; Cordova and Lepper 1996; 
Ross et al. 1986; Walkington 2013). The self-reference effect, or the ability for 
reference to the self to improve memory (Symons and Johnson 1997), is often 
studied along with context personalization by including the student’s name or 
personal information in the materials (Anand and Ross 1987; Cordova and Lepper 
1996; Sinatra et al. 2014). In addition to mathematics, the self-reference effect has 
been examined in domain areas such as science and deductive reasoning (Moreno 
and Mayer 2000; Sinatra et al. 2014). 

By personalizing the context of the material that is learned, it could have both 
affective and cognitive impacts on the individual. Motivation and positive attitudes 
toward the material has been shown to increase in personalized contexts (Anand 
and Ross 1987; Cordova and Lepper 1996). In an adaptive system with self-entered 
preferences, the student may feel that the system is taking his or her preferences 
into account if interest personalized questions are given, which may result in more 
positive feelings toward the system (Ritter et al. 2007). Additionally, by aligning 
examples and information in the content to be learned with the previous knowledge 
base of the individual, it may both increase interest in the training and lessen the 
mental workload required to learn the material (Anand and Ross 1987; Ku and 
Sullivan 2002; Ross 1983; Sinatra et al. 2014).  

Research has suggested that by using examples that are consistent with one’s 
college major and area of expertise it can improve learning outcomes. Specifically, 
it was found that nursing students who received medical examples had more 
positive outcomes than those who were given teaching examples. Conversely, 
education students who were given teaching examples on the same task performed 
better than when they were given medical examples (Ross 1983). Follow-up work 
found that both individually selected interest preferences and general adaptation to 
interests (based on major) showed positive learning outcomes (Ross et al. 1986). 
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The reason behind these effects may be 2-fold: By using examples that are 
consistent with one’s knowledge base, it may be inherently more interesting to the 
individual; further, it may reduce the amount of cognitive effort that is necessary to 
engage with the material since the student already has a good understanding of the 
context. 

It would be advantageous to continue to research into the impact of context 
personalization in adaptive training programs. Current ITS systems, such as GIFT, 
offer more flexibility and features than systems and computer programs that were 
developed in the original context-personalization research conducted in the 1980s 
and 1990s. Additionally, as a domain-independent framework, GIFT can be used 
to examine the impact of context personalization in a variety of other domains, 
whereas in the past the research has primarily focused on math instruction. One 
approach to context-personalization research that can be taken with GIFT is to do 
work similar to Ross (1983), in which the context of the problems and materials are 
specifically matched or mismatched with the individual learner’s specialty area. In 
the context of military training, a Soldier’s MOS and near-term assignments can be 
used to personalize a training experience to better prepare that individual for the 
environment they will be operating within. 

Rather than using mathematics as the domain of interest, a military-relevant domain 
can be chosen. Providing materials that are matched to the individual learner’s 
specialty area is expected to have a positive impact on learning and attitudes toward 
the experience. Learning outcomes are expected to be improved, as the individual 
will not already have an understanding of the context of the provided examples but 
also will be able to easily see why it is relevant to their own job.  

To support personalization, additional studies could examine the impact of 
allowing learners to select the context of the questions they will receive based on 
their own preferences or the task that they will be engaging in. In many military-
related tasks there are subtle differences in the task that will be performed based on 
the geographic location of their assignment. For instance, if an individual is tasked 
with interacting and negotiating with individuals from a culture other than their 
own, they may engage with a negotiation tutor. However, depending on the culture 
that they are to engage, there may be different phrases or customs that should or 
should not be used. The basic elements of negotiation will be similar but the 
questions and materials can be edited to have geographic and culturally specific 
examples that will be more consistent with the actual experience the individual will 
have. Research can be conducted on the level and types of material and assessment 
personalization that results in positive outcomes and performance.  
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To support this type of research and personalization, ideally in an ITS, general 
questions can be created, and based on learner entered or selected information they 
can be personalized for the individual student. The following is a math example to 
demonstrate simple question context personalization: 

• General question:  “You have 4 _____. You are offered 5 _____ in exchange 
for half of your _____. How many ______ do you have after the trade?”  

• If you were using the context of fruit, the problem could read “You have 4 
apples. You are offered 5 oranges in exchange for half of your apples. How 
many pieces of fruit do you have after the trade?”  

• Additionally, if you were using the context of books, the question could 
read “You have 4 science fiction novels. You are offered 5 mystery novels 
in exchange for half of your science fiction novels. How many novels do 
you have after the trade?” 

In this example, a general question is authored and then specific items are added in 
to change the context or topic of the question. Research can examine the impact of 
providing questions and examples that are consistent (and inconsistent) with the 
learner’s job or interest areas. To do so in GIFT, edits may be needed to be made 
such that GIFT could store a bank of questions that are similar to each other but 
differ in context. The version of the questions that are consistent with the learner-
selected context can then be selected by the system and used during training. 
Additional techniques for personalization of questions and materials may include 
allowing for user-entered information (such as the individual’s name) to be 
integrated into the questions.  

If these or similar studies are shown to be successful, multiple versions of training 
question domains can be generated in ITSs, resulting in the learner engaging with 
the one that is most relevant to themselves based on previous experience and self-
entered preferences. As functionality is being developed in ITSs to track student 
learning history and characteristics, it may also be advantageous to store student 
preferences, interests, and the expertise area of the individual. This stored 
information can then be used for context personalization to ultimately increase 
learner performance and retention in ITSs such as GIFT. 

While personalization is an instructional strategy, research based on it will 
ultimately impact both the areas of authoring and learner modeling in GIFT. 
Authoring tools and/or support will need to be added into GIFT to allow for 
personalized questions and storing personalized question banks. Storage of learner 
preferences and information will need to be stored by GIFT’s learner module such 
that they can be used in future trainings and engagements with the system.  
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The following are personalization-related research questions:  

• Will matching the context of materials to be consistent with a learner’s job 
or interest area lead to increased learning and performance? 

• Will individuals who receive context personalized materials have more-
positive attitudes toward the tutoring system? 

• What types of personalization (e.g., based on self-selected interest, based 
on job, and based on task) will have the best outcomes? 

• Are their individual differences that will moderate the benefits of 
personalization? If so, what types of learner characteristics should result in 
the use of personalized materials? 

7. Interdependencies with Other Adaptive Training Research 
Vectors 

This section examines interdependencies between instructional management and 
the other 5 adaptive training research vectors (Fig. 5). This discussion forms the 
basis for the sequencing of research and ultimately bringing adaptive training 
capabilities into a state of practice.  

 

Fig. 5   Adaptive training research vectors 
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Accurate methods to classify individual and team learner states are a necessary 
precursor to selecting optimal instructional strategies, as noted in the learning effect 
models for individual learners (Fig. 2) and teams of learners (Fig. 4). In turn, 
instructional strategies along with instructional context are necessary precursors to 
selecting optimal instructional tactics and ultimately significant effect on desired 
outcomes: learning, performance, retention, and transfer. 

As such, it is difficult to conceptualize the application of instructional management 
focused research without involving other vector components of the GIFT program. 
Therefore, the dependency of instructional management research on other 
functional areas of the architecture is significant. 

7.1 Learner Modeling and Instructional Management 

Adaptive training systems are learner-centric systems. Independent of the domain 
under training, accurate modeling of the learner is critical to driving instructional 
decisions in adaptive training systems. However, collection and maintenance of this 
data may be costly, so it is necessary to select measures and states that significantly 
impact our desired outcomes: learning, performance, retention, and transfer. 
Research is needed to determine what this dataset will look like. Candidates abound 
in the literature but in general these include transient data/states, cumulative states 
(building over time), and enduring data/states (Paneva 2006). Learning falls into 
both transient and cumulative states. It is necessary to understand progress toward 
domain competency in addition to measures of near-term performance, and it is 
important to understand how domain-specific learning (skills) decay over time.  

Transient measures of importance include individual behavioral and physiological 
data, and cognitive, affective, physical, and social states to represent learning. 
Cumulative measures include achievements (e.g., certifications, training, 
education, and experiences), affiliations, work history, and domain competency. 
More-enduring information about the learner might include gender, culture, first 
language, physical constraints (e.g., colorblind/deaf), values, personality attributes, 
or other trait-based information (Sottilare and Brawner 2014). All of these 
measures/states are potential drivers for adaptive training decisions.  

In terms of instructional management, sound pedagogy is reliant on accurate 
representation in the learner model. It is important to identify variables in a learner 
model that moderate learning, account for variance in performance, and can be 
accurately assessed in real time for informing strategy selections. Selecting an 
inappropriate strategy and tactic combination can result in negative learning 
outcomes and can ultimately impact the perceived value of the system. 
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7.2 Domain Modeling and Instructional Management 

In GIFT, instructional management takes place in 2 modules/processes within the 
learning effect model. One process is instructional strategy selection within the 
pedagogical module. The second is within the domain module where specific 
tactics or actions are selected based on the strategy selection and instructional 
context. An important component of instructional management is translating a 
generalized strategy into a tactic that can be executed within a specific training 
environment. This requires understanding what knowledge components make up a 
domain and what tools are available to guide a learner and adapt the training event.  

In addition, domain modeling plays a critical role in enabling the use of reusable 
learning objects. When applying instructional management practices in an outer-
loop capacity through GIFT’s EMAP (Fig. 3), a well-designed domain model can 
be used to identify content that can be presented to a learner along with data that 
supports its application. This supports ease of authoring as well, as a developer can 
leverage existing content if the domain model has overlap with existing course 
representations. 

7.3 Authoring Tools and Instructional Management 

Authoring tools and methods are needed to configure instructional management 
practices across all adaptive training systems and domains of instruction. There are 
2 types of authors that must be considered. First, training developers and SMEs are 
targeted as end-users. These individuals will use GIFT services to create highly 
personalized adaptive training events by leveraging the pedagogical models 
established within available baseline versions. While a training developer and SME 
are well versed in the knowledge components of a domain, they will lack many of 
the skills required to build adaptive training solutions. The authoring tools must be 
designed to compensate for a developer’s lack of understanding across the various 
disciplines involved in creating such systems. Building tools that guide the various 
authoring processes is critical to the success of GIFT outside of the laboratory 
setting. It will also be important that these tools help individuals maintain a 
contextualized awareness of what they authoring and how that will be translated 
into a run-time instantiation. 

The second author to consider is a research scientist interested in instructional 
management research within adaptive training systems. These individuals will 
require the ability to manipulate various components of the GIFT modules to 
support their research. Using the ATLEC as a guiding function to highlight 
instructional management research in ITSs, authoring processes must be 
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established to configure the inputs, processes, and outputs of the pedagogical 
module. This includes defining the variables from the learner model that moderate 
strategy selection (with a large assumption that the modeling techniques applied for 
that variable are accurate), defining the logic and policies that dictate what strategy 
to select based on learner data, and defining how that strategy is translated into a 
specific tactic to be executed in the environment. This is greatly different from the 
training developer/SME example, as the only intended authoring function of this 
group is defining the tactic that would be executed. 

Another avenue of authoring that must also be addressed is metadata, which plays 
a large role in instructional management within a domain-independent framework, 
as it provides a way to describe your content and guidance functions in a relatively 
generic fashion. In terms of authoring, tools must be developed to facilitate easy 
application of metadata to learning objects. Research is required to determine how 
best to support this function. 

7.4 Evaluation and Instructional Management 

Training effectiveness research is focused primarily on the impact of instructional 
management practices on learning outcomes of interest: performance, retention, 
and transfer. To optimize the application of adaptive training in the Army, 
automated training effectiveness tools are required to run analyses as data become 
available. Much of these capabilities are researched within communities dedicated 
to educational data mining. The goal is to test pre-established configurations to 
determine their impact on learning and adapt instructional management policies to 
better optimize learning experiences.  

A goal of instructional management in GIFT is to optimize performance and 
competency outcomes through personalized training experiences that adapt to an 
individual’s KSAs. A connection between big data and instructional management 
is applying large datasets from prior course interactions to update and improve 
technique and strategy implementations across all available courses. A challenge 
with defining instructional management logic in a domain-independent context is 
that it requires generalizability across applications. An issue with instructional 
strategy-based research is that an approach taken in one domain is hard to translate 
to a different one without performing extensive research to validate its application. 
In addition, it is difficult to define definitive instructional management logic based 
on these uncertainties. As such, big data can be used to account for this uncertainty 
by applying machine learning and data mining techniques to assess specific causal 
relationships between instructional practices and outcomes on performance, 
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retention, and transfer. This application of big data is used to reinforce instructional 
management models by optimizing itself over time as more and more data are made 
available.  

7.5 Architecture and Instructional Management 

Managing instructional strategy selection and tactic delivery depends upon multiple 
components of GIFT. This associates domain modeling to apply context to a 
pedagogical decision, learner modeling to provide trainee relevant information that 
triggers a pedagogical intervention, authoring to provide a means for building these 
linkages and representations, and training effectiveness to determine if a strategy 
or set of strategies had an effect on performance-related outcomes. This highlights 
an important point; while each of the aforementioned components of instructional 
management has separate processes, the architecture is the component that dictates 
implementation design and development. 

In terms of architecture, GIFT end-state goals require potential integration with a 
number of technologies that facilitate varying roles of instructional management 
practices. These technologies include tools and methods to support content 
management, natural language processing, text-to-speech processing, virtual 
human authoring and configuration, social media framework connections, and 
training application manipulations (e.g., manipulating the weather in a virtual 
world). In addition, specific architectural modifications will be required to perform 
tasks inherent to the current standards of GIFT, including methods to create 
messaging templates used to auto-populate feedback scripts with context relevant 
information established in log files, the ability to personalize strategy selections on 
an outer- and inner-loop capacity across learners and teams of learners, and the 
application of actionable metadata and API statements to appropriately link learner 
information and prior experience with appropriate training and optimized 
configurations. In dealing with a domain-agnostic intelligent framework such as 
GIFT, the use of machine learning and data mining techniques is required to 
reinforce and optimize pedagogical logic over time.  

8. Conclusions 

This report outlines the ARL’s plans for conducting research in adaptive training 
and education to support the ALM. Specifically, this report relates to instructional 
management and the answer to the following question: What adaptive instructional 
methods (strategies, tactics, and techniques) are most effective for individual and 
team-based military training and educational domains? 
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This report outlined the following goals: 

• Model the perception, judgment, and behaviors of expert human tutors to 
support practical, effective, and affordable learning experiences guided by 
computer-based agents. 

• Leverage prior research in the learning sciences and AI communities (both 
theoretical and empirical) to establish a set of best practices on how to 
author and execute techniques, strategies, and tactics across any domain of 
instruction. 

• Discover and develop modeling functions that account for uncertainty 
across policies informing pedagogical decisions (e.g., content delivery, 
course navigation, and guidance). 

• Personalize instructional technique and strategy selections based on 
individual differences informed through empirical evaluations and 
reinforcement machine learning methods. 

• Develop authoring tools grounded in cognitive and instructional theory and 
informed by empirical research to assist training managers, developers, and 
SMEs in building pedagogically sound training experiences without the 
requirement of programming. 

• Support individual and team training (e.g., small unit and collective 
training) and education (e.g., collaborative learning and problem-solving) 
experiences.
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